WorldWideScience

Sample records for narrow angle imaging

  1. Comparison of Scheimpflug imaging and spectral domain anterior segment optical coherence tomography for detection of narrow anterior chamber angles.

    Grewal, D S; Brar, G S; Jain, R; Grewal, S P S

    2011-05-01

    To compare the performance of anterior chamber volume (ACV) and anterior chamber depth (ACD) obtained using Scheimpflug imaging with angle opening distance (AOD500) and trabecular-iris space area (TISA500) obtained using spectral domain anterior segment optical coherence tomography (SD-ASOCT) in detecting narrow angles classified using gonioscopy. In this prospective, cross-sectional observational study, 265 eyes of 265 consecutive patients underwent sequential Scheimpflug imaging, SD-ASOCT imaging, and gonioscopy. Correlations between gonioscopy grading, ACV, ACD, AOD500, and TISA500 were evaluated. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LRs) were calculated to assess the performance of ACV, ACD, AOD500, and TISA500 in detecting narrow angles (defined as Shaffer grade ≤1 in all quadrants). SD-ASOCT images were obtained at the nasal and temporal quadrants only. Twenty-eight eyes (10.6%) were classified as narrow angles on gonioscopy. ACV correlated with gonioscopy grading (P<0.001) for temporal (r=0.204), superior (r=0.251), nasal (r=0.213), and inferior (r=0.236) quadrants. ACV correlated with TISA500 for nasal (r=0.135, P=0.029) and temporal (P=0.160, P=0.009) quadrants and also with AOD500 for nasal (r=0.498, P<0.001) and temporal (r=0.517, P<0.001) quadrants. For detection of narrow angles, ACV (AUC=0.935; 95% confidence interval (CI) =0.898-0.961) performed similar to ACD (AUC=0.88, P=0.06) and significantly better than AOD500 nasal (AUC=0.761, P=0.001), AOD500 temporal (AUC=0.808, P<0.001), TISA500 nasal (AUC=0.756, P<0.001), and TISA500 temporal (AUC=0.738, P<0.001). Using a cutoff of 113 mm(3), ACV had 90% sensitivity and 88% specificity for detecting narrow angles. Positive and negative LRs for ACV were 8.63 (95% CI=7.4-10.0) and 0.11 (95% CI=0.03-0.4), respectively. ACV measurements using Scheimpflug imaging outperformed AOD500 and TISA500 using SD-ASOCT for detecting narrow angles.

  2. Ocular Biometrics of Myopic Eyes With Narrow Angles.

    Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay

    2016-02-01

    The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.

  3. THE TREATMENT OF OPEN- AND NARROW-ANGLE GLAUCOMA

    1971-04-10

    Apr 10, 1971 ... glaucoma will be considered: narrow-angle glaucoma. (acute glaucoma) and ... emotional or a physical crisis. The pain is in the distribu- .... ness, not increased pressure, haunts people suffering from glaucoma'.' The saga of ...

  4. Assessment of narrow angles by gonioscopy, Van Herick method and anterior segment optical coherence tomography.

    Park, Seong Bae; Sung, Kyung Rim; Kang, Sung Yung; Jo, Jung Woo; Lee, Kyoung Sub; Kook, Michael S

    2011-07-01

    To evaluate anterior chamber (AC) angles using gonioscopy, Van Herick technique and anterior segment optical coherence tomography (AS-OCT). One hundred forty-eight consecutive subjects were enrolled. The agreement between any two of three diagnostic methods, gonioscopy, AS-OCT and Van Herick, was calculated in narrow-angle patients. The area under receiver-operating characteristic curves (AUC) for discriminating between narrow and open angles determined by gonioscopy was calculated in all participants for AS-OCT parameter angle opening distance (AOD), angle recess area, trabecular iris surface area and anterior chamber depth (ACD). As a subgroup analysis, capability of AS-OCT parameters for detecting angle closure defined by AS-OCT was assessed in narrow-angle patients. The agreement between the Van Herick method and gonioscopy in detecting angle closure was excellent in narrow angles (κ = 0.80, temporal; κ = 0.82, nasal). However, agreement between gonioscopy and AS-OCT and between the Van Herick method and AS-OCT was poor (κ = 0.11-0.16). Discrimination capability of AS-OCT parameters between open and narrow angles determined by gonioscopy was excellent for all AS-OCT parameters (AUC, temporal: AOD500 = 0.96, nasal: AOD500 = 0.99). The AUCs for detecting angle closure defined by AS-OCT image in narrow angle subjects was good for all AS-OCT parameters (AUC, 0.80-0.94) except for ACD (temporal: ACD = 0.70, nasal: ACD = 0.63). Assessment of narrow angles by gonioscopy and the Van Herick technique showed good agreement, but both measurements revealed poor agreement with AS-OCT. The angle closure detection capability of AS-OCT parameters was excellent; however, it was slightly lower in ACD.

  5. High prevalence of narrow angles among Filipino-American patients.

    Seider, Michael I; Sáles, Christopher S; Lee, Roland Y; Agadzi, Anthony K; Porco, Travis C; Weinreb, Robert N; Lin, Shan C

    2011-03-01

    To determine the prevalence of gonioscopically narrow anterior chamber angles in a Filipino-American clinic population. The records of 122 consecutive, new, self-declared Filipino-American patients examined in a comprehensive ophthalmology clinic in Vallejo, California were reviewed retrospectively. After exclusion, 222 eyes from 112 patients remained for analysis. Data were collected for anterior chamber angle grade as determined by gonioscopy (Shaffer system), age, sex, manifest refraction (spherical equivalent), intraocular pressure, and cup-to-disk ratio. Data from both eyes of patients were included and modeled using standard linear mixed-effects regression. As a comparison, data were also collected from a group of 30 consecutive White patients from the same clinic. After exclusion, 50 eyes from 25 White patients remained for comparison. At least 1 eye of 24% of Filipino-American patients had a narrow anterior chamber angle (Shaffer grade ≤ 2). Filipino-American angle grade significantly decreased with increasingly hyperopic refraction (P=0.007) and larger cup-to-disk ratio (P=0.038). Filipino-American women had significantly decreased angle grades compared with men (P=0.028), but angle grade did not vary by intraocular pressure or age (all, P≥ 0.059). Narrow anterior chamber angles are highly prevalent in Filipino-American patients in our clinic population.

  6. Angle imaging: Advances and challenges

    Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin

    2011-01-01

    Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037

  7. Associations between Narrow Angle and Adult Anthropometry: The Liwan Eye Study

    Jiang, Yuzhen; He, Mingguang; Friedman, David S.; Khawaja, Anthony P.; Lee, Pak Sang; Nolan, Winifred P.; Yin, Qiuxia; Foster, Paul J.

    2015-01-01

    Purpose To assess the associations between narrow angle and adult anthropometry. Methods Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Results Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p<0.001; vs height p<0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Conclusion Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women. PMID:24707840

  8. High Prevalence of Narrow Angles among Chinese-American Glaucoma and Glaucoma Suspect Patients

    Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C

    2009-01-01

    Purpose To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Patients and Methods Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data was collected for gender, age, race (self-declared), refraction (spherical equivalent), intraocular pressure (IOP), gonioscopy and vertical cup-to-disk ratio (CDR). Results Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade ≤2 in three or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the two groups did not differ in terms of gender, refraction, IOP or CDR (all, P≥0.071). In a multivariate model including age, gender and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). Conclusions A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of gender or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed. PMID:19826385

  9. High prevalence of narrow angles among Chinese-American glaucoma and glaucoma suspect patients.

    Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C

    2009-01-01

    To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data were collected for sex, age, race (self-declared), refraction (spherical equivalent), intraocular pressure, gonioscopy, and vertical cup-to-disk ratio. Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade or = 0.071). In a multivariate model including age, sex, and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of sex or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed.

  10. Multi-angle compound imaging

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  11. Association of lens vault with narrow angles among different ethnic groups.

    Lee, Roland Y; Huang, Guofu; Cui, Qi N; He, Mingguang; Porco, Travis C; Lin, Shan C

    2012-06-01

    To compare lens vault between open-angle and narrow-angle eyes in African-, Caucasian-, Hispanic-, Chinese- and Filipino-Americans. In this prospective study, 436 patients with open angle and narrow angle based on the Shaffer gonioscopic grading classification underwent anterior-segment optical coherence tomography. The Zhongshan Angle Assessment Program was used to calculate lens vault. The narrow-angle group included 32 Chinese-Americans, 22 Filipino-Americans, 26 African-Americans, 24 Hispanic-Americans and 73 Caucasian-Americans. The open-angle group included 56 Chinese-Americans, 29 Filipino-Americans, 45 African-Americans, 27 Hispanic-Americans and 102 Caucasian-Americans. Linear mixed effect regression models, accounting for the use of both eyes and adjusting for age, sex, pupil diameter and spherical equivalent, were used to test for the ethnicity and angle coefficients. Tukey's multiple comparison test was used for pairwise comparisons among the open-angle racial groups. Significant difference in lens vault was found among the open-angle racial groups (P = 0.022). For the open-angle patients, mean values for the lens vault measurements were 265 ± 288 µm for Chinese-Americans, 431 ± 248 µm for Caucasian-Americans, 302 ± 213 µm for Filipino-Americans, 304 ± 263 µm for Hispanic-Americans and 200 ± 237 µm for African-Americans. Using Tukey's multiple comparison for pairwise comparisons among the open-angle racial groups, a significant difference was found between African-American and Caucasian-Americans groups (P values for the rest of the pairwise comparisons were not statistically significant. No significant difference was found among the narrow-angle racial groups (P = 0.14). Comparison between the open angle and narrow angle within each racial group revealed significant difference for all racial groups (P < 0.05). Among all the ethnicities included in this study, narrow-angle eyes have greater lens vault compared to open-angle

  12. Telescope and mirrors development for the monolithic silicon carbide instrument of the osiris narrow angle camera

    Calvel, Bertrand; Castel, Didier; Standarovski, Eric; Rousset, Gérard; Bougoin, Michel

    2017-11-01

    The international Rosetta mission, now planned by ESA to be launched in January 2003, will provide a unique opportunity to directly study the nucleus of comet 46P/Wirtanen and its activity in 2013. We describe here the design, the development and the performances of the telescope of the Narrow Angle Camera of the OSIRIS experiment et its Silicon Carbide telescope which will give high resolution images of the cometary nucleus in the visible spectrum. The development of the mirrors has been specifically detailed. The SiC parts have been manufactured by BOOSTEC, polished by STIGMA OPTIQUE and ion figured by IOM under the prime contractorship of ASTRIUM. ASTRIUM was also in charge of the alignment. The final optical quality of the aligned telescope is 30 nm rms wavefront error.

  13. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  14. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.

    1994-01-01

    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized

  15. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  16. Automated analysis of angle closure from anterior chamber angle images.

    Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin

    2014-10-21

    To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  17. Acquisition and visualization techniques for narrow spectral color imaging.

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  18. Automatic Cobb Angle Determination From Radiographic Images

    Sardjono, Tri Arief; Wilkinson, Michael H. F.; Veldhuizen, Albert G.; van Ooijen, Peter M. A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.

    2013-01-01

    Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.

  19. New comparative clinical and biometric findings between acute primary angle-closure and glaucomatous eyes with narrow angle

    Rafael Vidal Mérula

    2010-12-01

    Full Text Available Purpose: To compare, clinically and biometrically, affected and fellow acute primary angle-closure (APAC eyes and glaucomatous eyes with narrow angle (NA. Methods: Comparative case series; 30 patients with APAC and 27 glaucomatous patients with NA were evaluated. Keratometry (K, central corneal thickness (CCT, lens thickness (LT, axial length (AL and anterior chamber depth (ACD were measured. Parameters defined as lens posisiton (LP and relative lens position (RLP were calculated. Results: Biometric difference between APAC-affected and fellow eyes was found only in LP (P=0.046. When fellow eyes were compared to glaucomatous eyes with NA, differences were found in ACD (P=0.009, AL (P=0.010, and LT/AL (P=0.005. The comparison between APAC-affected and glaucomatous eyes with NA showed significant differences in almost all biometric parameters, except for LT (P=0.148 and RLP (P=0.374. We found that the logistic regression model (LRM, built with three parameters (K, CCT and LT/AL, higher than 0.334 could be a reasonable instrument to differentiate APAC eyes from glaucomatous eyes with NA. Conclusions: This study showed that APAC-affected and fellow eyes have similar biometric features, and glaucomatous eyes with NA have a less crowded anterior segment. The LRM built showed promising results in distinguishing APAC from glaucomatous eyes with NA.

  20. Narrow-Band Imaging: Clinical Application in Gastrointestinal Endoscopy

    Sandra Barbeiro

    2018-03-01

    Full Text Available Narrow-band imaging is an advanced imaging system that applies optic digital methods to enhance endoscopic images and improves visualization of the mucosal surface architecture and microvascular pattern. Narrow-band imaging use has been suggested to be an important adjunctive tool to white-light endoscopy to improve the detection of lesions in the digestive tract. Importantly, it also allows the distinction between benign and malignant lesions, targeting biopsies, prediction of the risk of invasive cancer, delimitation of resection margins, and identification of residual neoplasia in a scar. Thus, in expert hands it is a useful tool that enables the physician to decide on the best treatment (endoscopic or surgical and management. Current evidence suggests that it should be used routinely for patients at increased risk for digestive neoplastic lesions and could become the standard of care in the near future, at least in referral centers. However, adequate training programs to promote the implementation of narrow-band imaging in daily clinical practice are needed. In this review, we summarize the current scientific evidence on the clinical usefulness of narrow-band imaging in the diagnosis and characterization of digestive tract lesions/cancers and describe the available classification systems.

  1. US images encoding envelope amplitude following narrow band filtering

    Sommer, F.G.; Stern, R.A.; Chen, H.S.

    1986-01-01

    Ultrasonic waveform data from phantoms having differing scattering characteristics and from normal and cirrhotic human liver in vivo were recorded within a standardized dynamic range and filtered with narrow band filters either above or below the mean recorded ultrasonic center frequency. Images created by mapping the amplitudes of received ultrasound following such filtration permitted dramatic differentiation, not discernible in conventional US images, of phantoms having differing scattering characteristics, and of normal and cirrhotic human livers

  2. Predictors of Intraocular Pressure After Phacoemulsification in Primary Open-Angle Glaucoma Eyes with Wide Versus Narrower Angles (An American Ophthalmological Society Thesis).

    Lin, Shan C; Masis, Marisse; Porco, Travis C; Pasquale, Louis R

    2017-08-01

    To assess if narrower-angle status and anterior segment optical coherence tomography (AS-OCT) parameters can predict intraocular pressure (IOP) drop in primary open-angle glaucoma (POAG) patients after cataract surgery. This was a prospective case series of consecutive cataract surgery patients with POAG and no peripheral anterior synechiae (PAS) using a standardized postoperative management protocol. Preoperatively, patients underwent gonioscopy and AS-OCT. The same glaucoma medication regimen was resumed by 1 month. Potential predictors of IOP reduction included narrower-angle status by gonioscopy and angle-opening distance (AOD500) as well as other AS-OCT parameters. Mixed-effects regression adjusted for use of both eyes and other potential confounders. We enrolled 66 eyes of 40 glaucoma patients. The IOP reduction at 1 year was 4.2±3 mm Hg (26%, P gonioscopy. By AOD500 classification, the narrower-angle group had 3.4±3 mm Hg (21%, P <.001) reduction vs 2.5±3 mm Hg (16%, P <.001) in the wide-angle group ( P =.031 for difference). When the entire cohort was assessed, iris thickness, iris area, and lens vault were correlated with increasing IOP reduction at 1 year ( P <.05 for all). In POAG eyes, cataract surgery lowered IOP to a greater degree in the narrower-angle group than in the wide-angle group, and parameters relating to iris thickness and area, as well as lens vault, were correlated with IOP reduction. These findings can guide ophthalmologists in their selection of cataract surgery as a potential management option.

  3. Variable-flip-angle spin-echo imaging (VFSE)

    Kasai, Toshifumi; Sugimura, Kazuro; Kawamitsu, Hideaki; Yasui, Kiyoshi; Ishida, Tetsuya; Tsukamoto, Tetsuji.

    1990-01-01

    T 2 weighted imaging provides images with high object contrast for pathologic conditions in which the water content of tissues is increased. The authors predicted theoretical analysis of the effects of changing flip angle, and analyzed the effects in MR imaging of both phantoms and humans. Variable flip angle spin echo MR imaging (VFSE) with a 1,000/80 (repetition time msec/echo time msec) can obtain T 2 weighted image when flip angle is smaller than 80 degrees. VFSE with 40 to 60 degrees flip angle have higher contrast than other flip angle images. Signal to noise ratio (S/N) of VFSE are 55% at a 30 degree, 76% at a 45 degree, 92% at a 60 degree respectively as compared with conventional spin echo image (2000/80, flip angle 90 degree). VFSE is applicable to obtain T 2 weighted image reduced imaging time. (author)

  4. The narrow-band imaging examination method in otorhinolaryngology

    Robert Šifrer

    2013-10-01

    Full Text Available Early diagnostics could improve the prognosis of patients with squamous-cell carcinomas of the head and neck. Narrow-Band Imaging (NBI is the latest examination method in the group of biologic endoscopies. NBI improves the distinction between malignant and benign mucosal lesions. Early suspect oncologic lesions that may otherwise be missed by normal white light illumination can also be diagnosed. The biggest benefit of NBI technology is achieved by using it together with a HDTV camera that enables better contrast and higher resolution. NBI is based on better imaging of superficial mucosal vasculature. The biologic potential of mucosal lesions could be predicted from vascular changes. The colour of normal mucosa under NBI is blue and green and the vessels show no pathological features. Well-demarcated brownish areas and scattered thick dark spots and abnormal winding and branching out of vessels on the mucosa are all oncologically suspicious features. Authors report the experience from literature on the use of NBI to identify carcinomas of the oral cavity, epipharynx, oropharynx, hypopharynx and larynx and evaluation of unknown primaries. In addition, the literature reports the benefit of NBI in identifying early stage carcinomas in previously irradiated patients. Persistence and recurrence of carcinoma and the development of new primary tumour could easily be missed by using only standard white-light illumination. The method proved to be highly sensitive and specific for predicting malignant changes in the above-mentioned circumstances. Authors report their own experience with NBI technology as well. For further improvement of the method, new technologic development is expected to enable the connection of NBI and HDTV with flexible endoscopes.

  5. Search for narrow baryons in pi /sup -/p elastic scattering at large angles

    Baillon, Paul; Benayoun, M; Chauveau, J; Chew, D; Ferro-Luzzi, M; Kahane, J; Lellouch, D; Leruste, P; Liaud, P; Moreau, F; Perreau, J M; Séguinot, Jacques; Sené, R; Tocqueville, J; Urban, M

    1980-01-01

    Hoping to find resonant structures in the momentum dependence of pi /sup -/p elastic scattering the authors have measured the differential cross section for this reaction at c.m. angles near 90 degrees . An intense pion beam ( approximately=10/sup 7/ pi /s) has been used, together with a high incident momentum resolution (dP/P approximately =2*10/sup -4/), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than approximately=0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted. (4 refs) .

  6. An enhanced narrow-band imaging method for the microvessel detection

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  7. Muon tomography imaging improvement using optimized limited angle data

    Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew

    2014-05-01

    Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.

  8. Automatic anterior chamber angle assessment for HD-OCT images.

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin

    2011-11-01

    Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.

  9. A study of images of Projective Angles of pulmonary veins

    Wang Jue [Beijing Anzhen Hospital, Beijing (China); Zhaoqi, Zhang [Beijing Anzhen Hospital, Beijing (China)], E-mail: zhaoqi5000@vip.sohu.com; Yu Wei; Miao Cuilian; Yan Zixu; Zhao Yike [Beijing Anzhen Hospital, Beijing (China)

    2009-09-15

    Aims: In images of magnetic resonance and computed tomography (CT) there are visible angles between pulmonary veins and the coronary, transversal or sagittal section of body. In this study these angles are measured and defined as Projective Angles of pulmonary veins. Several possible influential factors and characters of distribution are studied and analyzed for a better understanding of this imaging anatomic character of pulmonary veins. And it could be the anatomic base of adjusting correctly the angle of the central X-ray of the angiography of pulmonary veins undergoing the catheter ablation of atrial fibrillation (AF). Method: Images of contrast enhanced magnetic resonance angiography (CEMRA) and contrast enhanced computer tomography (CECT) of the left atrium and pulmonary veins of 137 health objects and patients with atrial fibrillation (AF) are processed with the technique of post-processing, and Projective Angles to the coronary and transversal sections are measured and analyzed statistically. Result: Project Angles of pulmonary veins are one of real and steady imaging anatomic characteristics of pulmonary veins. The statistical distribution of variables is relatively concentrated, with a fairly good representation of average value. It is possible to improve the angle of the central X-ray according to the average value in the selective angiography of pulmonary veins undergoing the catheter ablation of AF.

  10. Multi-angle Imaging SpectroRadiometer

    Diner, David J. (Principal Investigator)

    MISR views the sunlit Earth simultaneously at nine widely spaced angles and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measures of the brightness, contrast, and color of reflected sunlight. MISR provides new types of information for scientists studying Earth's climate, such as the regional and global distribution of different types of atmospheric particles and aerosols. The change in reflection at different view angles provides the means to distinguish aerosol types, cloud forms, and land surface cover. Combined with stereoscopic techniques, this enables construction of 3-D cloud models and estimation of the total amount of sunlight reflected by Earth's diverse environments. MISR was built for NASA by the Jet Propulsion Laboratory (JPL) in Pasadena, California. It is part of NASA's first Earth Observing System (EOS) spacecraft, the Terra spacecraft, which was launched into polar orbit from Vandenberg Air Force Base on December 18, 1999. MISR has been continuously providing data since February 24, 2000. [Mission Objectives] The MISR instrument acquires systematic multi-angle measurements for global monitoring of top-of-atmosphere and surface albedos and for measuring the shortwave radiative properties of aerosols, clouds, and surface scenes in order to characterize their impact on the Earth's climate. The Earth's climate is constantly changing -- as a consequence of both natural processes and human activities. Scientists care a great deal about even small changes in Earth's climate, since they can affect our comfort and well-being, and possibly our survival. A few years of below-average rainfall, an unusually cold winter, or a change in emissions from a coal-burning power plant, can influence the quality of life of people, plants, and animals in the region involved. The goal of NASA's Earth Observing System (EOS) is to increase our understanding of the climate changes that are occurring on our

  11. Next-generation narrow band imaging system for colonic polyp detection: a prospective multicenter randomized trial.

    Horimatsu, Takahiro; Sano, Yasushi; Tanaka, Shinji; Kawamura, Takuji; Saito, Shoichi; Iwatate, Mineo; Oka, Shiro; Uno, Koji; Yoshimura, Kenichi; Ishikawa, Hideki; Muto, Manabu; Tajiri, Hisao

    2015-07-01

    Previous studies have yielded conflicting results on the colonic polyp detection rate with narrow-band imaging (NBI) compared with white-light imaging (WLI). We compared the mean number of colonic polyps detected per patient for NBI versus WLI using a next-generation NBI system (EVIS LUCERA ELITE; Olympus Medical Systems) used with standard-definition (SD) colonoscopy and wide-angle (WA) colonoscopy. this study is a 2 × 2 factorial, prospective, multicenter randomized controlled trial. this study was conducted at five academic centers in Japan. patients were allocated to one of four groups: (1) WLI with SD colonoscopy (H260AZI), (2) NBI with SD colonoscopy (H260AZI), (3) WLI with WA colonoscopy (CF-HQ290), and (4) NBI with WA colonoscopy (CF-HQ290). the mean numbers of polyps detected per patient were compared between the four groups: WLI with/without WA colonoscopy and NBI with/without WA colonoscopy. Of the 454 patients recruited, 431 patients were enrolled. The total numbers of polyps detected by WLI with SD, NBI with SD, WLI with WA, and NBI with WA were 164, 176, 188, and 241, respectively. The mean number of polyps detected per patient was significantly higher in the NBI group than in the WLI group (2.01 vs 1.56; P = 0.032). The rate was not higher in the WA group than in the SD group (1.97 vs 1.61; P = 0.089). Although WA colonoscopy did not improve the polyp detection, next-generation NBI colonoscopy represents a significant improvement in the detection of colonic polyps.

  12. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  13. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at

  14. Search for narrow baryon resonances (of masses through 3.4 and 5 GeV) through a π-p large angle elastic scattering formation experiment

    Chauveau, J.

    1981-01-01

    This work describes a search for narrow baryon resonances (of masses between 3.4 and 5 GeV) through a π - p large angle elastic scattering formation experiment. An optimization of the sensitivity of the experiment to detect resonances is obtained by the measurement of the central part of the angular distribution (/cos theta*/ -4 . The apparatus and data analysis are described in details. No narrow resonance has been found, the sensitivity of the experiment being characterized by a width GAMMA approximately equal to 1 MeV and an elasticity x approximately equal to 0.01. Finally, the differential cross section measurement is compared to some parton models [fr

  15. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture

    Kolkman, R.G.M.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2004-01-01

    A photoacoustic double-ring sensor, featuring a narrow angular aperture, is developed for laser-induced photoacoustic imaging of blood vessels. An integrated optical fiber enables reflection-mode detection of ultrasonic waves. By using the cross-correlation between the signals detected by the two

  16. The OMERACT-RAMRIS Rheumatoid Arthritis Magnetic Resonance Imaging Joint Space Narrowing Score

    Møller Døhn, Uffe; Conaghan, Philip G; Eshed, Iris

    2014-01-01

    To test the intrareader and interreader reliability of assessment of joint space narrowing (JSN) in rheumatoid arthritis (RA) wrist and metacarpophalangeal (MCP) joints on magnetic resonance imaging (MRI) and computed tomography (CT) using the newly proposed OMERACT-RAMRIS JSN scoring method...

  17. Contrast-enhanced CISS imaging of cerebellopontine angle tumors

    Tozaki, Mitsuhiro; Toyoda, Keiko; Hata, Yuichi; Fukuda, Yasushi; Fukuda, Kunihiko [Jikei Univ., Tokyo (Japan). School of Medicine; Katano, Shuichi

    1999-10-01

    Our purpose of this study was to evaluate the clinical usefulness of contrast-enhanced CISS-3DFT MR imaging for the diagnosis of CP angle tumors. CISS-3DFT MR imaging is expected for screening procedure of acoustic schwannoma because of excellent spatial resolution. Recently, we discovered contrast enhancement effect on CISS sequence in spite of heavily T{sub 2}-weighted images. Fourteen patients with CP angle tumors were performed on a 1.0 T MR unit. Transaxial CISS-3DFT MRI was obtained both before and after intravenous injections of Gd-DTPA. Multiplanar reconstructions (MPRs) were performed in all cases. Contrast enhancement effect of CP angle tumors, and the relationship between tumors and the adjacent cranial nerves were evaluated. Contrast enhancement effect of the tumors was present in all cases in spite of heavily T{sub 2}-weighted images of CISS sequences. In the internal auditory canal, relationship between the tumors and the cranial nerves was demonstrated in 6 cases (6/9). In the cerebellopontine cistern, all cases were demonstrated (11/11). Contrast-enhanced CISS-3DFT MR imaging with a good contrast resolution and an excellent spatial resolution is useful for the diagnosis of CP angle tumors. (author)

  18. Indirect gonioscopy system for imaging iridocorneal angle of eye

    Perinchery, Sandeep M.; Fu, Chan Yiu; Baskaran, Mani; Aung, Tin; Murukeshan, V. M.

    2017-08-01

    Current clinical optical imaging systems do not provide sufficient structural information of trabecular meshwork (TM) in the iridocorneal angle (ICA) of the eye due to their low resolution. Increase in the intraocular pressure (IOP) can occur due to the abnormalities in TM, which could subsequently lead to glaucoma. Here, we present an indirect gonioscopy based imaging probe with significantly improved visualization of structures in the ICA including TM region, compared to the currently available tools. Imaging quality of the developed system was tested in porcine samples. Improved direct high quality visualization of the TM region through this system can be used for Laser trabeculoplasty, which is a primary treatment of glaucoma. This system is expected to be used complementary to angle photography and gonioscopy.

  19. NMR imaging of solids with multiple-pulse line narrowing and radiofrequency gradients

    Werner, M.H.

    1993-01-01

    The usual methods of magnetic resonance imaging fail in rigid solids due to the line-shape contributions of dipolar coupling, chemical shift dispersion and anisotropy, and bulk magnetic susceptibility. This dissertation presents a new method of solid-stage imaging by nuclear magnetic resonance which averages away these contributions with multiple-pulse line-narrowing and encodes spatial information with pulsed radiofrequency field gradients. This method is closely related to simultaneously developed methods utilizing pulsed DC gradients, and offers similar improvements in sensitivity and resolution. The advantage of rf gradients is that they can be rapidly switched without inducing eddy currents in the probe or the magnet. In addition, the phases and amplitudes of the rf gradients can be switched by equipment which is already part of an NMR spectrometer capable of solid-state spectroscopy. The line-narrowing and gradient pulses originate in separate rf circuits tuned to the same frequency. Interactions between the circuits have been minimized by a method of active Q-switching which employs PIN diodes in the matching networks of these circuits. Both one- and two-dimensional images are presented. The latter are obtained by a novel method in which the two dimensions of imaging transverse to the static magnetic field are encoded by two orthogonal components of a single rf gradient. A π/2 phase shift of the rf phase relative to that of the line-narrowing pulses selects one component or the other. This arrangement allows the solid-state analogs of versatile imaging sequences based on Fourier imaging and eliminates the need for sample rotation and back-projection methods. Coherent averaging theory is used to analyze this imaging technique and exact numerical simulations on several coupled spins are discussed. These lend insight to the residual linewidth and its dependence on pixel position as well as to the range of applicability of this technique

  20. Left mainstem bronchial narrowing: a vascular compression syndrome? Evaluation by magnetic resonance imaging

    Hungate, R.G.; Newman, B.; Meza, M.P.

    1998-01-01

    aortopexy and ligation of the ligamentum arteriosum. Conclusion. LMSB narrowing is well-defined by MR imaging. While a prespinal position of the DA occurs in some children as a normal variant, it is more common and more marked in children with LMSB narrowing. Vascular compression of the LMSB between an anteriorly positioned DA and the pulmonary artery appears to be important in children with symptomatic LMSB narrowing. (orig.)

  1. Phase distribution measurements in narrow rectangular channels using image processing techniques

    Bentley, C.; Ruggles, A.

    1991-01-01

    Many high flux research reactor fuel assemblies are cooled by systems of parallel narrow rectangular channels. The HFIR is cooled by single phase forced convection under normal operating conditions. However, two-phase forced convection or two phase mixed convection can occur in the fueled region as a result of some hypothetical accidents. Such flow conditions would occur only at decay power levels. The system pressure would be around 0.15 MPa in such circumstances. Phase distribution of air-water flow in a narrow rectangular channel is examined using image processing techniques. Ink is added to the water and clear channel walls are used to allow high speed still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh 2ci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time averaged spatial liquid distribution to formulate the combined temporally and spatially averaged fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity

  2. Cerebellopontine angle lipomas: magnetic resonance imaging findings in two cases

    Borges, Rafael S. [Clinica de Diagnostico por Imagem Multi-Imagem, Rio de Janeiro, RJ (Brazil); Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Radiologia; Brito, Cecilia Castelo Branco [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Fac. de Medicina; Carvalho, Gustavo A. [Clinica Bambina, Rio de Janeiro, RJ (Brazil). Dept. de Neurocirurgia; Hospital Silvestre, Rio de Janeiro, RJ (Brazil); Domingues, Romeu C. [Clinicas CDPI e Multi-Imagem, Rio de Janeiro RJ (Brazil); Gasparetto, Emerson L. [Clinicas CDPI e Multi-Imagem, Rio de Janeiro RJ (Brazil)

    2009-07-01

    Vestibular schwannomas and meningiomas are the most common lesions of the cerebellopontine angle (CPA), accounting for approximately 85-90% of the tumors seen in this location. Lipomas are rare at this topography, representing about 0.15% of the CPA lesions. These tumors are mal developmental masses that arise from abnormal differentiation of the meninx primitive. Clinically, CPA lipomas can cause slowly progressive neurological symptoms and signs affecting cranial nerves or brain stem. Because these lesions usually are strongly attached to the surrounding structures, any surgical attempts of complete resection can result in neural or vascular damage, reinforcing the importance of the pre-operative imaging diagnosis. Although the CT findings of CPA lipomas can be typical, the magnetic resonance (MR) imaging, especially the fat suppression sequences, had improved the identification of these lesions. We aimed to report two patients with a CPA lipoma, emphasizing the MR imaging findings. (author)

  3. Two wide-angle imaging neutral-atom spectrometers

    McComas, D.J.

    1997-12-31

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

  4. Two wide-angle imaging neutral-atom spectrometers

    McComas, D.J.

    1997-01-01

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , ∼ 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ''Sun-Earth Connections'' science theme of the NASA Office of Space Science

  5. Cerebellopontine angle lipomas: magnetic resonance imaging findings in two cases

    Borges, Rafael S.; Domingues, Romeu C.; Gasparetto, Emerson L.

    2009-01-01

    Vestibular schwannomas and meningiomas are the most common lesions of the cerebellopontine angle (CPA), accounting for approximately 85-90% of the tumors seen in this location. Lipomas are rare at this topography, representing about 0.15% of the CPA lesions. These tumors are mal developmental masses that arise from abnormal differentiation of the meninx primitive. Clinically, CPA lipomas can cause slowly progressive neurological symptoms and signs affecting cranial nerves or brain stem. Because these lesions usually are strongly attached to the surrounding structures, any surgical attempts of complete resection can result in neural or vascular damage, reinforcing the importance of the pre-operative imaging diagnosis. Although the CT findings of CPA lipomas can be typical, the magnetic resonance (MR) imaging, especially the fat suppression sequences, had improved the identification of these lesions. We aimed to report two patients with a CPA lipoma, emphasizing the MR imaging findings. (author)

  6. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  7. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    Tuite, M.J.; Asinger, D.; Orwin, J.F.

    2001-01-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  8. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    Tuite, M J; Asinger, D; Orwin, J F [Dept. of Radiology, Univ. of Wisconsin Hospital and Clinics, Madison, WI (United States)

    2001-05-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  9. Multimodal image registration based on binary gradient angle descriptor.

    Jiang, Dongsheng; Shi, Yonghong; Yao, Demin; Fan, Yifeng; Wang, Manning; Song, Zhijian

    2017-12-01

    Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for

  10. The power of Kawaii: viewing cute images promotes a careful behavior and narrows attentional focus.

    Hiroshi Nittono

    Full Text Available Kawaii (a Japanese word meaning "cute" things are popular because they produce positive feelings. However, their effect on behavior remains unclear. In this study, three experiments were conducted to examine the effects of viewing cute images on subsequent task performance. In the first experiment, university students performed a fine motor dexterity task before and after viewing images of baby or adult animals. Performance indexed by the number of successful trials increased after viewing cute images (puppies and kittens; M ± SE=43.9 ± 10.3% improvement more than after viewing images that were less cute (dogs and cats; 11.9 ± 5.5% improvement. In the second experiment, this finding was replicated by using a non-motor visual search task. Performance improved more after viewing cute images (15.7 ± 2.2% improvement than after viewing less cute images (1.4 ± 2.1% improvement. Viewing images of pleasant foods was ineffective in improving performance (1.2 ± 2.1%. In the third experiment, participants performed a global-local letter task after viewing images of baby animals, adult animals, and neutral objects. In general, global features were processed faster than local features. However, this global precedence effect was reduced after viewing cute images. Results show that participants performed tasks requiring focused attention more carefully after viewing cute images. This is interpreted as the result of a narrowed attentional focus induced by the cuteness-triggered positive emotion that is associated with approach motivation and the tendency toward systematic processing. For future applications, cute objects may be used as an emotion elicitor to induce careful behavioral tendencies in specific situations, such as driving and office work.

  11. The Power of Kawaii: Viewing Cute Images Promotes a Careful Behavior and Narrows Attentional Focus

    Nittono, Hiroshi; Fukushima, Michiko; Yano, Akihiro; Moriya, Hiroki

    2012-01-01

    Kawaii (a Japanese word meaning “cute”) things are popular because they produce positive feelings. However, their effect on behavior remains unclear. In this study, three experiments were conducted to examine the effects of viewing cute images on subsequent task performance. In the first experiment, university students performed a fine motor dexterity task before and after viewing images of baby or adult animals. Performance indexed by the number of successful trials increased after viewing cute images (puppies and kittens; M ± SE = 43.9±10.3% improvement) more than after viewing images that were less cute (dogs and cats; 11.9±5.5% improvement). In the second experiment, this finding was replicated by using a non-motor visual search task. Performance improved more after viewing cute images (15.7±2.2% improvement) than after viewing less cute images (1.4±2.1% improvement). Viewing images of pleasant foods was ineffective in improving performance (1.2±2.1%). In the third experiment, participants performed a global–local letter task after viewing images of baby animals, adult animals, and neutral objects. In general, global features were processed faster than local features. However, this global precedence effect was reduced after viewing cute images. Results show that participants performed tasks requiring focused attention more carefully after viewing cute images. This is interpreted as the result of a narrowed attentional focus induced by the cuteness-triggered positive emotion that is associated with approach motivation and the tendency toward systematic processing. For future applications, cute objects may be used as an emotion elicitor to induce careful behavioral tendencies in specific situations, such as driving and office work. PMID:23050022

  12. The power of Kawaii: viewing cute images promotes a careful behavior and narrows attentional focus.

    Nittono, Hiroshi; Fukushima, Michiko; Yano, Akihiro; Moriya, Hiroki

    2012-01-01

    Kawaii (a Japanese word meaning "cute") things are popular because they produce positive feelings. However, their effect on behavior remains unclear. In this study, three experiments were conducted to examine the effects of viewing cute images on subsequent task performance. In the first experiment, university students performed a fine motor dexterity task before and after viewing images of baby or adult animals. Performance indexed by the number of successful trials increased after viewing cute images (puppies and kittens; M ± SE=43.9 ± 10.3% improvement) more than after viewing images that were less cute (dogs and cats; 11.9 ± 5.5% improvement). In the second experiment, this finding was replicated by using a non-motor visual search task. Performance improved more after viewing cute images (15.7 ± 2.2% improvement) than after viewing less cute images (1.4 ± 2.1% improvement). Viewing images of pleasant foods was ineffective in improving performance (1.2 ± 2.1%). In the third experiment, participants performed a global-local letter task after viewing images of baby animals, adult animals, and neutral objects. In general, global features were processed faster than local features. However, this global precedence effect was reduced after viewing cute images. Results show that participants performed tasks requiring focused attention more carefully after viewing cute images. This is interpreted as the result of a narrowed attentional focus induced by the cuteness-triggered positive emotion that is associated with approach motivation and the tendency toward systematic processing. For future applications, cute objects may be used as an emotion elicitor to induce careful behavioral tendencies in specific situations, such as driving and office work.

  13. Honeywell's Compact, Wide-angle Uv-visible Imaging Sensor

    Pledger, D.; Billing-Ross, J.

    1993-01-01

    Honeywell is currently developing the Earth Reference Attitude Determination System (ERADS). ERADS determines attitude by imaging the entire Earth's limb and a ring of the adjacent star field in the 2800-3000 A band of the ultraviolet. This is achieved through the use of a highly nonconventional optical system, an intensifier tube, and a mega-element CCD array. The optics image a 30 degree region in the center of the field, and an outer region typically from 128 to 148 degrees, which can be adjusted up to 180 degrees. Because of the design employed, the illumination at the outer edge of the field is only some 15 percent below that at the center, in contrast to the drastic rolloffs encountered in conventional wide-angle sensors. The outer diameter of the sensor is only 3 in; the volume and weight of the entire system, including processor, are 1000 cc and 6 kg, respectively.

  14. Two wide-angle imaging neutral-atom spectrometers (TWINS)

    McComas, D.J.; Blake, B.; Burch, J.

    1998-01-01

    Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a revolutionary new mission designed to stereoscopically image the magnetosphere in charge exchange neutral atoms for the first time. The authors propose to fly two identical TWINS instruments as a mission of opportunity on two widely-spaced high-altitude, high-inclination US Government spacecraft. Because the spacecraft are funded independently, TWINS can provide a vast quantity of high priority science observations (as identified in an ongoing new missions concept study and the Sun-Earth Connections Roadmap) at a small fraction of the cost of a dedicated mission. Because stereo observations of the near-Earth space environs will provide a particularly graphic means for visualizing the magnetosphere in action, and because of the dedication and commitment of the investigator team to the principles of carrying space science to the broader audience, TWINS will also be an outstanding tool for public education and outreach

  15. Characterization of 3 to 5 Micron Thermal Imagers and Analysis of Narrow Band Images

    Quek, Yew S

    2004-01-01

    ...) and the Minimum Resolvable Temperature (MRT). An available thermal imager, the Cincinnati Electronics IRRIS-256LN, and a newly purchased thermal imager, the Indigo Systems Merlin InSb Laboratory Camera, were investigated and compared...

  16. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  17. Narrow-band imaging of the inner R Aquarii nebula - Further evidence for shock excitation

    Burgarella, D.; Paresce, F.

    1991-01-01

    The jetlike nebulosity in the inner regions of the symbiotic variable R Aqr was imaged through narrow-band interference filters. A high spatial resolution image in the forbidden N II 6583 A line shows that the relative fluxes of features B and D defined by Paresce et al. (1988) have changed in the sense of a higher D/B brightness ratio at this line in a little over a year with respect to that observed previously in similar seeing conditions. The overall morphology of the jet has remained stable in this period. Line ratios for feature B are presented which can be best understood in terms of excitation of gas clumps surrounding R Aqr by a moving shock. Comparison of the observed fluxes with theoretical expectations yields shock velocity of order 90-100 km/s, a preshock gas density of roughly 10/cu cm, and a gas temperature of roughly 10,000 K. 26 refs

  18. Image reconstruction from limited angle Compton camera data

    Tomitani, T.; Hirasawa, M.

    2002-01-01

    The Compton camera is used for imaging the distributions of γ ray direction in a γ ray telescope for astrophysics and for imaging radioisotope distributions in nuclear medicine without the need for collimators. The integration of γ rays on a cone is measured with the camera, so that some sort of inversion method is needed. Parra found an analytical inversion algorithm based on spherical harmonics expansion of projection data. His algorithm is applicable to the full set of projection data. In this paper, six possible reconstruction algorithms that allow image reconstruction from projections with a finite range of scattering angles are investigated. Four algorithms have instability problems and two others are practical. However, the variance of the reconstructed image diverges in these two cases, so that window functions are introduced with which the variance becomes finite at a cost of spatial resolution. These two algorithms are compared in terms of variance. The algorithm based on the inversion of the summed back-projection is superior to the algorithm based on the inversion of the summed projection. (author)

  19. A study on the angle between the abdominal aorta and the superior mesenteric artery by 3D image reconstruction

    Kim, Young Keun; Choi, Sung Kwan

    2003-01-01

    SMAS (Superior Mesenteric Artery Syndrome) is a disease caused by a chronic obstruction of the duodenum (transverse portion ), which is hardly detectable. However, it is known that when the superior mesenteric artery and abdominal aorta form a narrow angle, that the transverse portion of the duodenum is pressed down between the superior mesenteric artery and the abdominal aorta, and that this can lead to obstruction of the duodenum. Measuring this angle is a complicated job using conventional angiography, and results often turns out to be inaccurate. In addition, no attempt has been made to determine the value of this angle in Koreans. In this study, we conducted abdominal CT angiography using MIP (maximum intensity projection) on patients with no clinical evidence of SMAS in order to determine the angle at which the superior mesenteric artery branches from the abdominal aorta by using PC based software (Rapidia ver. 1.2) for the image reconstruction. Accordingly, we found that the mean angle between the abdominal aorta and the superior mesenteric artery was 50.05 ± 15.87 .deg. on average, and that the angle in men (53.64 ± 16.57 .deg.) is higher than in women (46.46 ± 14.98 .deg. ). We hope that the angles determined by our study will serve as an important indicator for detecting SMAS

  20. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  1. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  2. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  3. Combined ab interno trabeculotomy and lens extraction: a novel management option for combined uveitic and chronic narrow angle raised intraocular pressure.

    Lin, Siying; Gupta, Bhaskar; Rossiter, Jonathan

    2016-02-01

    Minimally invasive glaucoma surgery is a developing area that has the potential to replace traditional glaucoma surgery, with its known risk profile, but at present there are no randomised controlled data to validate its use. We report on a case where sequential bilateral combined ab interno trabeculotomy and lens extraction surgery was performed on a 45-year-old woman with combined uveitic and chronic narrow angle raised intraocular pressure. Maximal medical management alone could not control the intraocular pressure. At 12-month follow-up, the patient had achieved stable intraocular pressure in both eyes on a combination of topical ocular antiglaucomatous and steroid therapies. This case demonstrates the effectiveness of trabecular meshwork ablation via ab interno trabeculotomy in a case of complex mixed mechanism glaucoma. 2016 BMJ Publishing Group Ltd.

  4. Narrow Band Imaging Enhances the Detection Rate of Penetration and Aspiration in FEES.

    Nienstedt, Julie C; Müller, Frank; Nießen, Almut; Fleischer, Susanne; Koseki, Jana-Christiane; Flügel, Till; Pflug, Christina

    2017-06-01

    Narrow band imaging (NBI) is widely used in gastrointestinal, laryngeal, and urological endoscopy. Its original purpose was to visualize vessels and epithelial irregularities. Based on our observation that adding NBI to common white light (WL) improves the contrast of the test bolus in fiberoptic endoscopic evaluation of swallowing (FEES), we now investigated the potential value of NBI in swallowing disorders. 148 FEES images were analyzed from 74 consecutive patients with swallowing disorders, including 74 with and 74 without NBI. All images were evaluated by four dysphagia specialists. Findings were classified according to Rosenbek's penetration-aspiration scale modified for evaluating these FEES images. Intra- and inter-rater reliability was determined as well as observer confidence. A better visualization of the bolus is the main advantage of NBI in FEES. This generally leads to sharper optical contrasts and better detection of small bolus quantities. Accordingly, NBI enhances the detection rate of penetration and aspiration. On average, identification of laryngeal penetration increased from 40 to 73% and of aspiration from 13 to 24% (each p dysphagia evaluation and shortening FEES evaluation time. It leads to a markedly higher detection rate of pathological findings. The significantly better intra- and inter-rater reliability argues further for a better overall reproducibly of FEES interpretation.

  5. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  6. "Leopard skin sign": the use of narrow-band imaging with magnification endoscopy in celiac disease.

    Tchekmedyian, Asadur J; Coronel, Emmanuel; Czul, Frank

    2014-01-01

    Celiac Disease (CD) is an immune reaction to gluten containing foods such as rye, wheat and barley. This condition affects individuals with a genetic predisposition; it targets the small bowel and may cause symptoms including diarrhea, malabsorption, weight loss, abdominal pain and bloating. The diagnosis is made by serologic testing of celiac-specific antibodies and confirmed by histology. Certain endoscopic characteristics, such as scalloping, reduction in the number of folds, mosaic-pattern mucosa or nodular mucosa, are suggestive of CD and can be visualized under white light endoscopy. Due to its low sensitivity, endoscopy alone is not recommended to diagnose CD; however, enhanced visual identification of suspected mucosal abnormalities through the use of new technologies, such as narrow band imaging with magnification (NBI-ME), could assist in targeting biopsies and thereby increasing the sensitivity of endoscopy. This is a case series of seven patients with serologic and histologic diagnoses of CD who underwent upper endoscopies with NBI-ME imaging technology as part of their CD evaluation. By employing this imaging technology, we could identify patchy atrophy sites in a mosaic pattern, with flattened villi and alteration of the central capillaries of the duodenal mucosa. We refer to this epithelial pattern as "Leopard Skin Sign". Since epithelial lesions are easily seen using NBI-ME, we found it beneficial for identifying and targeting biopsy sites. Larger prospective studies are warranted to confirm our findings.

  7. Polyp Detection, Characterization, and Management Using Narrow-Band Imaging with/without Magnification

    Takahiro Utsumi

    2015-11-01

    Full Text Available Narrow-band imaging (NBI is a new imaging technology that was developed in 2006 and has since spread worldwide. Because of its convenience, NBI has been replacing the role of chromoendoscopy. Here we review the efficacy of NBI with/without magnification for detection, characterization, and management of colorectal polyps, and future perspectives for the technology, including education. Recent studies have shown that the next-generation NBI system can detect significantly more colonic polyps than white light imaging, suggesting that NBI may become the modality of choice from the beginning of screening. The capillary pattern revealed by NBI, and the NBI International Colorectal Endoscopic classification are helpful for prediction of histology and for estimating the depth of invasion of colorectal cancer. However, NBI with magnifying colonoscopy is not superior to magnifying chromoendoscopy for estimation of invasion depth. Currently, therefore, chromoendoscopy should also be performed additionally if deep submucosal invasive cancer is suspected. If endoscopists become able to accurately estimate colorectal polyp pathology using NBI, this will allow adenomatous polyps to be resected and discarded; thus, reducing both the risk of polypectomy and costs. In order to achieve this goal, a suitable system for education and training in in vivo diagnostics will be necessary.

  8. Visualization of cerebellopontine angle lesions by nuclear magnetic resonance imaging

    Ochiai, Chikayuki; Takakura, Kintomo; Machida, Tohru; Araki, Tsutomu; Iio, Masahiro; Basugi, Norihiko.

    1983-01-01

    The preliminary results from the clinical use a prototype whole body nuclear magnetic resonance (NMR) machine constructed by Toshiba Inc. are presented. Cranial NMR scans were performed on more than 30 cases with broad spectrum of neurologic diseases using saturation-recovery and inversion-recovery sequences with a field strength of 1500 Gauss. Selective excitation sequence was used for the slice selection and filtered backprojection was used to reconstruct the images. They were displayed on a 256 x 256 matrix as 12 mm thick sections. Data aquisition time varied between 3 and 12 minutes. Our initial experiences with six cases harboring cerebellopontine angle lesions discolsed advantages and disadvantages of NMR imaging in comparison with X-ray CT. The advantages were the absence of linear artifacts from the surrounding bone, the marked gray-white matter differentiation, and the variety of tomographic planes available. The disadvantages included the lack of bone detail, the lack of visualization of the major intracranial vessels, and the long time required for scanning (several minutes per slice). Although much continued evaluation is necessary, NMR seems to have vast potential as a diagnostic tool. (author)

  9. Angle-corrected imaging transcranial doppler sonography versus imaging and nonimaging transcranial doppler sonography in children with sickle cell disease.

    Krejza, J; Rudzinski, W; Pawlak, M A; Tomaszewski, M; Ichord, R; Kwiatkowski, J; Gor, D; Melhem, E R

    2007-09-01

    Nonimaging transcranial Doppler sonography (TCD) and imaging TCD (TCDI) are used for determination of the risk of stroke in children with sickle cell disease (SCD). The purpose was to compare angle-corrected, uncorrected TCDI, and TCD blood flow velocities in children with SCD. A total of 37 children (mean age, 7.8 +/- 3.0 years) without intracranial arterial narrowing determined with MR angiography, were studied with use of TCD and TCDI at the same session. Depth of insonation and TCDI mean velocities with and without correction for the angle of insonation in the terminal internal carotid artery (ICA) and middle (MCA), anterior (ACA), and posterior (PCA) cerebral arteries were compared with TCD velocities with use of a paired t test. Two arteries were not found on TCDI compared with 15 not found on TCD. Average angle of insonation in the MCA, ACA, ICA, and PCA was 31 degrees , 44 degrees , 25 degrees , and 29 degrees , respectively. TCDI and TCD mean depth of insonation for all arteries did not differ significantly; however, individual differences varied substantially. TCDI velocities were significantly lower than TCD velocities, respectively, for the right and left sides (mean +/- SD): MCA, 106 +/- 22 cm/s and 111 +/- 33 cm/s versus 130 +/- 19 cm/s and 134 +/- 26 cm/s; ICA, 90 +/- 14 cm/s and 98 +/- 27 cm/s versus 117 +/- 18 cm/s and 119 +/- 23 cm/s; ACA, 74 +/- 24 cm/s and 88 +/- 25 cm/s versus 105 +/- 23 cm/s and 105 +/- 31 cm/s; and PCA, 84 +/- 27 cm/s and 82 +/- 21 cm/s versus 95 +/- 23 cm/s and 94 +/- 20 cm/s. TCD and angle-corrected TCDI velocities were not statistically different except for higher angle-corrected TCDI values in the left ACA and right PCA. TCD velocities are significantly higher than TCDI velocities but are not different from the angle-corrected TCDI velocities. TCDI identifies the major intracranial arteries more effectively than TCD.

  10. A Strong High Altitude Narrow Jet At Saturn'S Equator From Cassini/ISS Images

    Garcia-Melendo, Enrique; Sánchez-Lavega, A.; Legarreta, J.; Pérez-Hoyos, S.; Hueso, R.

    2010-10-01

    The intense equatorial eastward jets observed at cloud level in Jupiter and Saturn, represent a major challenge for geophysical fluid dynamics. Saturn's equatorial jet is of particular interest in view of its three dimensional structure, suspected large temporal variability, and related stratospheric semiannual oscillation. Here we report the discovery at the upper cloud level of an extremely narrow and strong jet centered in the middle of the broad equatorial jet. Previously published works on Saturn's equatorial winds at cloud level provided only a partial coverage. Automatic correlation of brightness scans and manually tracked cloud features, retrieved from images obtained by the Cassini Imaging Science Subsystem (ISS), show that the jet reaches 430 ms-1 with a peak speed difference of 180 ms-1 relative to nearby latitudes at 60 mbar and 390 ms-1 at depths > 500 mbar. Images were obtained in two filters: MT3, centred at the 889nm strong methane absorption band, and CB3 centred at the near infrared 939nm continuum, which are sensitive to different altitude levels at the upper clouds and hazes. Contrarily to what is observed in other latitudes, its velocity increases with altitude. Our findings helps to extend the view we have of the equatorial stratospheric dynamics of fast rotating planets beyond the best known terrestrial environment, and extract more general consequences of the interaction between waves and mean flow. It remains to be known if this equatorial jet structure, now determined in detail in three dimensions, is permanent or variable with the seasonal solar insolation cycle, including the variable shadow cast by the rings. EGM, ASL, JL, SPH, and RH have been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and ASL, JL, SPH, and RH by Grupos Gobierno Vasco IT-464-07

  11. Efektivitas Terapi Kortikosteroid Intranasal pada Hipertrofi Adenoid Usia Dewasa berdasarkan Pemeriksaan Narrow Band Imaging

    Sinta Sari Ratunanda

    2016-12-01

    Full Text Available Adenoid hypertrophy is a process in which adenoid size becomes enlarged and causes clinical symptoms, especially nasal obstruction. Adenoid hypertrophy can be due to physiological, inflammatory, or malignancy processes. Adenoid inflammatory process can be assessed using a flexible fiberoptic nasoendoscopy with narrow band imaging (NBI. Intranasal corticosteroid is one of the choices to treat adenoid hypertrophy in children; however, more experiments are needed to use it in adults. This study was performed in the period of November 2012 to January 2013 at the outpatient clinic of the Otorhinolaryngology-Head and Neck Surgery Department of Dr. Hasan Sadikin General Hospital Bandung, using pre- and post-test open-labeled quasiexperimental design. Sample was selected through consecutive sampling, involving 11 subjects. Diagnosis was based on research subject’s anamnesis, ear nose and throat (ENT physical examination, NBI-equipped fiberoptic nasoendocopy examination, and adenoid mucosal biopsy. Subjects were given intranasal corticosteroid therapy for four weeks. NBI-equipped fiberoptic nasoendocopy examination and biopsy examination were performed after therapy. Data were analyzed using Wilcoxon test, showing significant improvement of the adenoid inflammation after intranasal corticosteroids therapy (p<0.05. McNemar test results showed a significant reduction in adenoid size (p<0.05. Spearman rank test showed a significant correlation between histopathologic findings and NBI examination result (p<0.05. In conclusion, intranasal corticosteroids are effective for adult adenoid hypertrophy treatment based on NBI examination. [MKB. 2016;48(4:228–33

  12. Use of narrow-band imaging bronchoscopy in detection of lung cancer.

    Zaric, Bojan; Perin, Branislav

    2010-05-01

    Narrow-band imaging (NBI) is a new endoscopic technique designed for detection of pathologically altered submucosal and mucosal microvascular patterns. The combination of magnification videobronchoscopy and NBI showed great potential in the detection of precancerous and cancerous lesions of the bronchial mucosa. The preliminary studies confirmed supremacy of NBI over white-light videobronchoscopy in the detection of premalignant and malignant lesions. Pathological patterns of capillaries in bronchial mucosa are known as Shibuya's descriptors (dotted, tortuous and abrupt-ending blood vessels). Where respiratory endoscopy is concerned, the NBI is still a 'technology in search of proper indication'. More randomized trials are necessary to confirm the place of NBI in the diagnostic algorithm, and more trials are needed to evaluate the relation of NBI to autofluorescence videobronchoscopy and to white-light magnification videobronchoscopy. Considering the fact that NBI examination of the tracheo-bronchial tree is easy, reproducible and clear to interpret, it is certain that NBI videobronchoscopy will play a significant role in the future of lung cancer detection and staging.

  13. OLGA- and OLGIM-based staging of gastritis using narrow-band imaging magnifying endoscopy.

    Saka, Akiko; Yagi, Kazuyoshi; Nimura, Satoshi

    2015-11-01

    As atrophic gastritis and intestinal metaplasia as a result of Helicobacter pylori are considered risk factors for gastric cancer, it is important to assess their severity. In the West, the operative link for gastritis assessment (OLGA) and operative link for gastric intestinal metaplasia assessment (OLGIM) staging systems based on biopsy have been widely adopted. In Japan, however, narrow-band imaging (NBI)-magnifying endoscopic diagnosis of gastric mucosal inflammation, atrophy, and intestinal metaplasia has been reported to be fairly accurate. Therefore, we investigated the practicality of NBI-magnifying endoscopy (NBI-ME) for gastritis staging. We enrolled 55 patients, in whom NBI-ME was used to score the lesser curvature of the antrum (antrum) and the lesser curvature of the lower body (corpus). The NBI-ME score classification was established from images obtained beforehand, and then biopsy specimens taken from the observed areas were scored according to histological findings. The NBI-ME and histology scores were then compared. Furthermore, we assessed the NBI-ME and histology stages using a combination of scores for the antrum and corpus, and divided the stages into two risk groups: low and high. The degree to which the stage assessed by NBI-ME approximated that assessed by histology was then ascertained. Degree of correspondence between the NBI-ME and histology scores was 69.1% for the antrum and 72.7% for the corpus, and that between the high- and low-risk groups was 89.1%. Staging of gastritis using NBI-ME approximates that based on histology, and would be a practical alternative to the latter. © 2015 The Authors. Digestive Endoscopy © 2015 Japan Gastroenterological Endoscopy Society.

  14. A multicenter validation of an endoscopic classification with narrow band imaging for gastric precancerous and cancerous lesions

    Pimentel-Nunes, P.; Dinis-Ribeiro, M.; Soares, J. B.; Marcos-Pinto, R.; Santos, C.; Rolanda, C.; Bastos, R. P.; Areia, M.; Afonso, L.; Bergman, J.; Sharma, P.; Gotoda, T.; Henrique, R.; Moreira-Dias, L.

    2012-01-01

    Background and study aim: The reliability and external validity of narrow band imaging (NBI) in the stomach have not been described consistently. The aim of the current study was to describe and estimate the accuracy and reliability of a simplified classification system for NBI in the diagnosis of

  15. Increased polyp detection using narrow band imaging compared with high resolution endoscopy in patients with hyperplastic polyposis syndrome

    Boparai, K. S.; van den Broek, F. J. C.; van Eeden, S.; Fockens, P.; Dekker, E.

    2011-01-01

    Hyperplastic polyposis syndrome (HPS) is associated with colorectal cancer and is characterized by multiple hyperplastic polyps, sessile serrated adenomas (SSAs) and adenomas. Narrow band imaging (NBI) may improve the detection of polyps in HPS. We aimed to compare polyp miss rates with NBI with

  16. High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett's esophagus: a prospective randomized crossover study

    Kara, M. A.; Peters, F. P.; Rosmolen, W. D.; Krishnadath, K. K.; ten Kate, F. J.; Fockens, P.; Bergman, J. J. G. H.

    2005-01-01

    Background and study aims: High-resolution endoscopy (HRE) may improve the detection of early neoplasia in Barrett's esophagus. Indigo carmine chromoendoscopy (ICc) and narrow-band imaging (NBI) may be useful techniques to complement HRE. The aim of this study was to compare HRE-ICC with HrE-NBI for

  17. Therapeutic efficacy of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome.

    Kajiwara, Mitsuru; Inoue, Shougo; Kobayashi, Kanao; Ohara, Shinya; Teishima, Jun; Matsubara, Akio

    2014-04-01

    Narrow band imaging cystoscopy can increase the visualization and detection of Hunner's lesions. A single-center, prospective clinical trial was carried out aiming to show the effectiveness of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome. A total of 23 patients (19 women and 4 men) diagnosed as having ulcer-type interstitial cystitis/painful bladder syndrome were included. All typical Hunner's lesions and suspected areas identified by narrow band imaging were electrocoagulated endoscopically after the biopsy of those lesions. Therapeutic efficacy was assessed prospectively by using visual analog scale score of pain, O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score. The mean follow-up period was 22 months. All patients (100%) experienced a substantial improvement in pain. The average visual analog scale pain scores significantly decreased from 7.3 preoperatively to 1.2 1 month postoperatively. A total of 21 patients (91.3%) who reported improvement had at least a 50% reduction in bladder pain, and five reported complete resolution. Daytime frequency was significantly decreased postoperatively. O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score were significantly decreased postoperatively. However, during the follow-up period, a total of six patients had recurrence, and repeat narrow band imaging-assisted transurethral electrocoagulation of the recurrent lesions was carried out for five of the six patients, with good response in relieving bladder pain. Our results showed that narrow band imaging-assisted transurethral electrocoagulation could be a valuable therapeutic alternative in patients with ulcer-type interstitial cystitis/painful bladder syndrome, with good efficacy and reduction of recurrence rate. © 2014 The Japanese Urological Association.

  18. Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-01-01

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT). We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography(3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image. (author)

  19. [Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-03-20

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.

  20. Partial flip angle spin-echo imaging to obtain T1 weighted images with electrocardiographic gating

    Kawamitsu, Hideaki; Sugimura, Kazuro; Kasai, Toshifumi; Kimino, Katsuji

    1993-01-01

    ECG-gated spin-echo (SE) imaging can reduce physiologic motion artifact. However, it does not provide strong T 1 -weighted images, because the repetition time (TR) depends on heart rate (HR). For odd-echo SE imaging, T 1 contrast can be maximized by using a smaller flip angle (FA) of initial excitation RF pulses. We investigated the usefulness of partial FA SE imaging in order to obtain more T 1 -dependent contrast with ECG gating and determined the optimal FA at each heart rate. In computer simulation and phantom study, the predicted image contrast and signal-to-noise ratio (SNR) obtained for each FA (0∼180deg) and each HR (55∼90 beats per minute (bpm)) were compared with those obtained with conventional T 1 -weighted SE imaging (TR=500 ms, TE=20 ms, FA=90deg). The optimal FA was decreased by reducing HR. The FA needed to obtain T 1 -dependent contrast identical to that with T 1 -weighted SE imaging was 43deg at a HR of 65 bpm, 53deg at 70 bpm, 60deg at 75 bpm. This predicted FA were in excellent agreement with that obtained with clinical evaluation. The predicted SNR was decreased by reducing FA. The SNR of partial FA SE imaging at HR of 65 bpm (FA=43deg) was 80% of that with conventional T 1 -weighted SE imaging. However, this imaging method presented no marked clinical problem. ECG-gated partial FA SE imaging provides better T 1 -dependent contrast than conventional ECG-gated SE imaging, especially for Gd-DTPA enhanced imaging. (author)

  1. Azimuth and angle gathers from wave equation imaging in VTI media

    Alkhalifah, Tariq Ali

    2009-01-01

    Angles in common-image angle domain gathers refer to the scattering angle at the reflector and provide a natural access to analyzing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-space-frequency planes into angle-space planes simultaneously with applying the imaging condition in a transversely isotropic (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case anisotropic media differs from its isotropic counterpart, difference depending mainly on the strength of anisotropy.

  2. Detection of Mucosal Recurrent Nasopharyngeal Carcinomas After Radiotherapy With Narrow-Band Imaging Endoscopy

    Wang, Wen-Hung; Lin, Yen-Chun; Chen, Wen-Cheng; Chen, Miao-Fen; Chen, Chih-Cheng; Lee, Kam-Fai

    2012-01-01

    Purpose: This study evaluated the feasibility of screening mucosal recurrent nasopharyngeal carcinoma with narrow-band imaging (NBI) endoscopy. Methods and Materials: One hundred and six patients were enrolled. All patients underwent conventional white-light (WL) endoscopic examination of the nasopharynx followed by NBI endoscopy. Biopsies were performed if recurrence was suspected. Results: We identified 32 suspected lesions by endoscopy in WL and/or NBI mode. Scattered brown spots (BS) were identified in 22 patients, and 4 of the 22 who had negative MRI findings were histopathologically confirmed to be neoplasias that were successfully removed via endoscopy. A comparison of the visualization in NBI closer view corresponded to histopathological findings in 22 BS, and the prevalence rates of neoplasias in tail signs, round signs, and irregularities signs were 0% (0/6), 0% (0/7), and 44.4% (4/9), respectively (p = 0.048). The sensitivity, specificity, and diagnostic capability were 37.5%, 92.9% and 0.652 for WL, 87.5%, 74.5% and 0.810 for NBI, and 87.5%, 87.8%, and 0.876 for NBI closer view, respectively. NBI closer view was effective in increasing specificity compared with NBI alone (87.8% vs. 74.5%, p < 0.05), and in increasing sensitivity and diagnostic capability compared to WL alone (87.5% vs. 37.5%, p < 0.05; 0.876 vs. 0.652, p = 0.0001). Conclusions: Although NBI in endoscopy can improve sensitivity of mucosal recurrent nasopharyngeal neoplasias, false-positive (nonneoplasia BS) results may be obtained in areas with nonspecific inflammatory changes due to postradiation effects. NBI closer view not only can offer a timely, convenient, and highly reliable assessment of mucosal recurrent nasopharyngeal carcinoma, it can also make endoscopic removal possible.

  3. Diagnostic Performance of Narrow Band Imaging for Laryngeal Cancer: A Systematic Review and Meta-analysis.

    Sun, Changling; Han, Xue; Li, Xiaoying; Zhang, Yayun; Du, Xiaodong

    2017-04-01

    Objective To evaluate the performance of narrow band imaging (NBI) for the diagnosis of laryngeal cancer and to compare the diagnostic value of NBI with that of white light endoscopy. Data Sources PubMed, Embase, Cochrane Library, and CNKI databases. Review Methods Data analyses were performed with Meta-DiSc. The updated Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality and potential bias. Publication bias was assessed with the Deeks's asymmetry test. The protocol used in this article has been published on PROSPERO and is in accordance with the PRISMA checklist. The registry number for this study is CRD42015025866. Results Six studies including 716 lesions were included in this meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratio for the NBI diagnosis of laryngeal cancer were 0.94 (95% confidence interval [95% CI]: 0.91-0.96), 0.89 (95% CI: 0.85-0.92), and 142.12 (95% CI: 46.42-435.15), respectively, and the area under receiver operating characteristics curve was 0.97. Among the 6 studies, 3 evaluated the diagnostic value of white light endoscopy, with a sensitivity of 0.81 (95% CI: 0.76-0.86), a specificity of 0.92 (95% CI: 0.88-0.95), and a diagnostic odds ratio of 33.82 (95% CI: 14.76-77.49). The evaluation of heterogeneity, calculated per the diagnostic odds ratio, gave an I 2 of 66%. No marked publication bias ( P = .84) was detected in this meta-analysis. Conclusion The sensitivity of NBI is superior to white light endoscopy, and the potential value of NBI needs to be validated in future studies.

  4. Use of EyeCam for imaging the anterior chamber angle.

    Perera, Shamira A; Baskaran, Mani; Friedman, David S; Tun, Tin A; Htoon, Hla M; Kumar, Rajesh S; Aung, Tin

    2010-06-01

    To compare EyeCam (Clarity Medical Systems, Pleasanton, CA) imaging with gonioscopy for detecting angle closure. In this prospective, hospital-based study, subjects underwent gonioscopy by a single observer and EyeCam imaging by a different operator. EyeCam images were graded by two masked observers. The anterior chamber angle in a quadrant was classified as closed if the trabecular meshwork could not be seen. The eye was classified as having angle closure if two or more quadrants were closed. One hundred fifty-two subjects were studied. The mean age was 57.4 years (SD 12.9) and there were 82 (54%) men. Of the 152 eyes, 21 (13.8%) had angle closure. The EyeCam provided clear images of the angles in 98.8% of subjects. The agreement between the EyeCam and gonioscopy for detecting angle closure in the superior, inferior, nasal, and temporal quadrants based on agreement coefficient (AC1) statistics was 0.73, 0.75, 0.76, and 0.72, respectively. EyeCam detected more closed angles than did gonioscopy in all quadrants (P gonioscopy, 21/152 (13.8%) eyes were diagnosed as angle closure compared to 41 (27.0%) of 152 with EyeCam (P gonioscopy for detecting angle closure. However, it detected more closed angles than did gonioscopy in all quadrants.

  5. A study on projection angles for an optimal image of PNS water's view on children

    Son, Sang Hyuk; Song, Young Geun; Kim, Sung Kyu; Hong, Sang Woo; Kim, Je Bong

    2007-01-01

    This study is to calculate the proper angle for the optimal image of PNS Water's view on children, comparing and analyzing the PNS Water's projection angles between children and adults at every age. This study randomly selected 50 patients who visited the Medical Center from January to May in 2005, and examined the incidence path of central ray, taking a PNS Water's and skull trans-Lat. view in Water's filming position while attaching a lead ball mark on the Orbit, EAM, and acanthion of the patient's skull. And then, we calculated the incidence angles (angle A) of the line connected from OML and the petrous ridge to the inferior margin of maxilla on general (random) patient's skull image, following the incidence path of central ray. Finally, we analyzed two pieces of the graphs at ages, developing out the patient's ideal images at PNS Water's filming position taken by a digital camera, and calculating the angle (angle B) between OML and IP(Image Plate). The angle between OML and IP is about 43 .deg. in 4-years-old children, which is higher than 37 .deg. as age increases the angle decreases, it goes to 37 .deg. around 30 years of age. That is similar result to maxillary growth period. We can get better quality of Water's image for children when taking the PNS Water's view if we change the projection angles, considering maxillary growth for patients in every age stage

  6. MR imaging of the temporomandibular joint. Part 2. Effect of flip angle on MR imaging with FLASH sequence

    Sakamoto, Maya; Sasano, Takashi; Higano, Shuichi; Takahashi, Shoki; Kurihara, Noriko

    1998-01-01

    In our previous study on MR imaging of the temporomandibular joint (TMJ), fast low angle shot (FLASH) showed the highest image contrast between disc and surrounding TMJ tissues compared with those of 4 other sequences (i,e., fast imaging with steady precession (FISP), conventional T1-weighted spin echo (SE) and fast spin echo (FSE, TR/TE/ETL: 1100/12/3, 3000/15/7)). Furthermore, FLASH also received a high score on visual evaluation including the position and contour of the disc, and the border between the disc and surrounding tissues. Therefore, we concluded that FLASH was the most suitable sequence for evaluating the TMJ disc. However, the image contrast and signal intensity on MR imaging with gradient echo pulse sequence are affected by flip angle. Consequently, in this report, to find the most suitable flip angle for MR scanning of the TMJ using a FLASH sequence (TR/TE: 450/11), ten TMJs of 5 volunteers were experimentally imaged with various flip angles from 10 degrees to 70 degrees at an interval of 10 degrees between 10 to 70. The image contrast and contrast-to-noise ratio (CNR) between the disc and surrounding tissues were compared. In addition, signal-to-noise ratio (SNR) of phantoms was also calculated using the same imaging parameters. Visual evaluation including position and contour of the disc, and the border between the disc and surrounding tissues, was also performed by 4 radiologists. As the flip angle increased, imaging contrast decreased while SNR increased. Images with flip angles between 30 and 60 degrees demonstrated high CNR. On visual evaluation, images using flip angles between 30 and 50 degrees received high scores. In conclusion, FLASH sequence with a flip angle between 30 and 50 degrees was considered most suitable for evaluating the TMJ disc based on the results of visual assessment and analysis of three major components of image diagnostic quality: image contrast, CNR and SNR. (author)

  7. Diagnostic Performance of Narrow Band Imaging for Nasopharyngeal Cancer: A Systematic Review and Meta-analysis.

    Sun, Changling; Zhang, Yayun; Han, Xue; Du, Xiaodong

    2018-03-01

    Objective The purposes of this study were to verify the effectiveness of the narrow band imaging (NBI) system in diagnosing nasopharyngeal cancer (NPC) as compared with white light endoscopy. Data Sources PubMed, Cochrane Library, EMBASE, CNKI, and Wan Fang databases. Review Methods Data analyses were performed with Meta-Disc. The updated Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality and potential bias. Publication bias was assessed with a Deeks asymmetry test. The registry number of the protocol published on PROSPERO is CRD42015026244. Results This meta-analysis included 10 studies of 1337 lesions. For NBI diagnosis of NPC, the pooled values were as follows: sensitivity, 0.83 (95% CI, 0.80-0.86); specificity, 0.91 (95% CI, 0.89-0.93); positive likelihood ratio, 8.82 (95% CI, 5.12-15.21); negative likelihood ratio, 0.18 (95% CI, 0.12-0.27); and diagnostic odds ratio, 65.73 (95% CI, 36.74-117.60). The area under the curve was 0.9549. For white light endoscopy in diagnosing NPC, the pooled values were as follows: sensitivity, 0.79 (95% CI, 0.75-0.83); specificity, 0.87 (95% CI, 0.84-0.90); positive likelihood ratio, 5.02 (95% CI, 1.99-12.65); negative likelihood ratio, 0.34 (95% CI, 0.24-0.49); and diagnostic odds ratio, 16.89 (95% CI, 5.98-47.66). The area under the curve was 0.8627. The evaluation of heterogeneity, calculated per the diagnostic odds ratio, gave an I 2 of 0.326. No marked publication bias ( P = .68) existed in this meta-analysis. Conclusion The sensitivity and specificity of NBI for the diagnosis of NPC are similar to those of white light endoscopy, and the potential value of NBI for the diagnosis of NPC needs to be validated further.

  8. Validation of the OMERACT Magnetic Resonance Imaging Joint Space Narrowing Score for the Wrist in a Multireader Longitudinal Trial

    Glinatsi, Daniel; Lillegraven, Siri; Haavardsholm, Espen A

    2015-01-01

    OBJECTIVE: To assess the intrareader and interreader agreement and sensitivity to change of the Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis Magnetic Resonance Imaging Joint Space Narrowing (RAMRIS-JSN) score in the rheumatoid arthritis (RA) wrist in a longitudinal multireader...... exercise. METHODS: Coronal T1-weighted MR image sets of 1 wrist from 20 patients with early RA were assessed twice for JSN at 17 sites at baseline and after 36 or 60 months by 4 readers blinded to patient data but not time order. The joints were scored 0-4 according to the OMERACT RAMRIS-JSN score...

  9. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  10. Characteristics of magnetic resonance imaging with partial flip angle and gradient field echo

    Hamada, Tatsumi; Uto, Tatsurou; Okafuji, Tatsumasa; Ookusa, Akihiko; Oonishi, Takuya; Mabuchi, Nobuhisa; Fujii, Kouichi; Yoshioka, Hiroyasu; Ishida, Osamu

    1988-01-01

    Characteristics of a magnetic resonance (MR) imaging pulse sequence with short repetition time (Tr), short echo time (Te), partial flip angle and gradient field echo, at 0.5 T, were studied. A series of sagittal images of the cerebrospinal region was obtained with varied Tr, Te and flip angle, signal intensities were measured by means of a region of interest (ROI) function, and optimal parameters to achieve maximum tissue contrast were found. Of the parameters flip angle had the greatest effect on tissue contrast. Flip angles less than 20 or more than 60 degrees were necessary to discriminate between spinal cord and cerebrospinal fluid. So called MR myelography was obtained with the flip angle of 15 degrees. Opposed and inphase images were obtained at the Te levels of 21 and 28 ms, respectively. Likewise, a series of transverse images of the abdomen with short Tr, short Te and varied flip angles was obtained in a breath-holding interval, and signal intensities of ROIs were measured. Maximum intensities of the liver, the spleen and perirenal fat were obtained at the flip angles of 40, 30 and 60 degrees, respectively. Although maximum intensity was found at the flip angle of 30 degrees for both of the renal cortex and medulla, the maximum contrast between the two tissues was obtained at the flip angles of 50-60 degrees. The image contrast obtained by these pulse sequences was also theoretically predictable, and so it is thought possible that flip angle, Tr and Te are manipulated to yield a desired contrast. (author)

  11. Improvement of viewing-zone angle and image quality of digital holograms

    Nomura, Takanori, E-mail: nom@sys.wakayama-u.ac.j [Faculty of Systems Enigneering, Wakayama Univesity, 930 Sakaedani, Wakayama, 640-8510 (Japan)

    2010-02-01

    The method to improve of a viewing-zone angle and an image quality of a digital hologram is presented. A number of digital holograms of a central object are recorded from the position on the circumference. The holograms are used for a hologram synthesis to improve the image quality from whole viewing-zone angle. The synthesis is achieved by a correlation between a hologram and numerically propagated holograms. The large-sized synthesized digital hologram has a wide viewing-zone angle and less speckles. Some experimental results are shown to confirm the proposed method.

  12. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: zhupp@ihep.ac.cn; Huang Wanxia; Yuan, Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue; Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed.

  13. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    Zhu Peiping; Huang Wanxia; Yuan, Qingxi; Wang Junyue; Shu Hang; Chen Bo; Wu Ziyu

    2007-01-01

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed

  14. A method to measure internal contact angle in opaque systems by magnetic resonance imaging.

    Zhu, Weiqin; Tian, Ye; Gao, Xuefeng; Jiang, Lei

    2013-07-23

    Internal contact angle is an important parameter for internal wettability characterization. However, due to the limitation of optical imaging, methods available for contact angle measurement are only suitable for transparent or open systems. For most of the practical situations that require contact angle measurement in opaque or enclosed systems, the traditional methods are not effective. Based upon the requirement, a method suitable for contact angle measurement in nontransparent systems is developed by employing MRI technology. In the Article, the method is demonstrated by measuring internal contact angles in opaque cylindrical tubes. It proves that the method also shows great feasibility in transparent situations and opaque capillary systems. By using the method, contact angle in opaque systems could be measured successfully, which is significant in understanding the wetting behaviors in nontransparent systems and calculating interfacial parameters in enclosed systems.

  15. Kinematics of reflections in subsurface offset and angle-domain image gathers

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry

  16. Detecting deep venous thrombosis with limited flip angle gradient refocused MR imaging

    Spritzer, C.E.; Sussman, S.K.; Herfkens, R.J.; Blinder, R.A.; Saeed, M.; Vogler, J.A.; Baker, M.E.

    1987-01-01

    This study was undertaken to determine if limited flip angle gradient refocused MR pulse sequences (GRASS) could be used to accurately diagnose deep venous thrombosis (DVT). Sixteen patients (17 extremities) with possible DVT were prospectively evaluated with MR imaging and venography. Typical imaging parameters included a 16-msec echo time, 33-msec repetition time, 30 0 flip angle, and section thickness of 2 nex. MR imaging correctly disclosed the presence (nine cases) or absence (eight cases) of DVT. In one study, GRASS images overestimated the extent of clot due to slow venous blood flow. Subsequently the flip angle was varied to distinguish between venous thrombus and slow flow. When this technique was used, no false-positive studies occurred in the remaining patients. MR gradient refocused imaging appears to be an accurate aid for the diagnosis of DVT

  17. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system

    Curvers, W. L.; Singh, R.; Song, L.-M. Wong-Kee; Wolfsen, H. C.; Ragunath, K.; Wang, K.; Wallace, M. B.; Fockens, P.; Bergman, J. J. G. H. M.

    2008-01-01

    OBJECTIVE: To investigate the diagnostic potential of endoscopic tri-modal imaging and the relative contribution of each imaging modality (i.e. high-resolution endoscopy (HRE), autofluorescence imaging (AFI) and narrow-band imaging (NBI)) for the detection of early neoplasia in Barrett's oesophagus.

  18. Angle gathers in wave-equation imaging for transversely isotropic media

    Alkhalifah, Tariq Ali; Fomel, Sergey B.

    2010-01-01

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  19. Angle gathers in wave-equation imaging for transversely isotropic media

    Alkhalifah, Tariq Ali

    2010-11-12

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  20. Variable flip angle excitation for reduced acquisition time magnetic resonance imaging

    Mills, T.C.; Ortendahl, D.A.; Hylton, N.M.; Carlson, J.W.; Crooks, L.E.; Kaufman, L.

    1987-01-01

    This paper describes an MRI technique which can be used to acquire images at short TR values while maintaining the sensitivity to disease found in longer TR images. For spin echo imaging there are three acquisition parameters that can be set in the imaging protocol; TR, the repetition interval; TE, the time of echo and Θ, the excitation flip angle. Standard imaging techniques set Θ to 90 degrees regardless of the TR value. With Θ fixed, imaging systems have been optimized by varying the value for TE and TR with the results in general indicating the need for long TR values. However, if the flip angle is included as a variable acquisition parameter the optimal operating point can be changed. The solution to the Bloch equation shows a functional relationship between the flip angle and the ratio TR/T1. This functionality was first observed by Ernst and Anderson as a method to increase the signal generated in fourier transform magnetic resonance spectroscopy. When TR/T1<1 the optimum flip angle for producing maximum magnetization in the transverse plane is less then 90 degrees. Therefore, by reducing both TR and flip angle it is possible to maintain signal intensity while reducing the time of data acquisition

  1. Influence of insonification angle on echogenicity of B-mode images of atherosclerotic plaque in vitro

    Wilhjelm, Jens E.; Jespersen, Søren Kragh; Hansen, J. U.

    1998-01-01

    ) volts was calculated for the plaque region in each image. The standard deviation over the 48 MAL values were for each of the 7 angles between 0.12 V and 0.18 V. For each scan plane, the standard deviation was also calculated over the 7 images. The mean and standard deviation of these 48 numbers were 0...

  2. Wide-azimuth angle-domain imaging for anisotropic reverse-time migration

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2011-01-01

    Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The reflection and azimuth angles are derived from the extended images using analytic relations between the space-lag and time-lag extensions. This post-imaging decomposition requires only information which is already available at the time of migration, i.e. the model parameters and the tilt angles of the TI medium. The transformation amounts to a linear Radon transform applied to the CIPs obtained after the application of the extended imaging condition. If information about the reflector dip is available at the CIP locations, then only two components of the space-lag vectors are required, thus reducing computational cost and increasing the affordability of the method. This efficient angle decomposition method is suitable for wide-azimuth imaging in anisotropic media with arbitrary orientation of the symmetry plane. © 2011 Society of Exploration Geophysicists.

  3. Rotation Estimation for Wide-Angle Inverse Synthetic Aperture Radar Imaging

    Wei Zhou

    2016-01-01

    Full Text Available To present focused ISAR imaging results in the homogenous range and cross-range domain, an integrated scheme is proposed to estimate both the targets equivalent rotational velocity (RV and rotational center (RC. The RV estimation is improved by radial projection combined with keystone processing, and then the RC is estimated through image entropy minimization. Finally, delicate imaging results may be obtained for wide-angle scenarios. Experiment results are provided to demonstrate the effectiveness of the proposed method.

  4. Wide angle Michelson Doppler imaging interferometer. [measuring atmospheric emissions

    Shepherd, G. G.

    1980-01-01

    The optical system, stepping control, phase and modulation depth, array detector, and directions sensor are described for a specialized type of Michelson interferometer which works at sufficiently high resolution to measure the line widths and Doppler shifts of naturally occurring atmospheric emissions. With its imaging capability, the instrument can potentially supply this data independently for each element of the 100 x 100 detector array. The experiment seeks: (1) to obtain vertical profiles of atmospheric winds and temperatures as functions of latitude by observing near the limb; (2) to acquire exploratory wind and temperature data on smaller scale structures in airglow irregularities and in auroral forms; and (3) to collaborate with other Spacelab experiments, such as barium cloud releases, in providing wind and temperature data.

  5. Geometric approach to the design of an imaging probe to evaluate the iridocorneal angle structures

    Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-06-01

    Photographic imaging methods allow the tracking of anatomical changes in the iridocorneal angle structures and the monitoring of treatment responses overtime. In this work, we aim to design an imaging probe to evaluate the iridocorneal angle structures using geometrical optics. We first perform an analytical analysis on light propagation from the anterior chamber of the eye to the exterior medium using Snell's law. This is followed by adopting a strategy to achieve uniform near field irradiance, by simplifying the complex non-rotational symmetric irradiance distribution of LEDs tilted at an angle. The optimization is based on the geometric design considerations of an angled circular ring array of 4 LEDs (or a 2 × 2 square LED array). The design equation give insights on variable parameters such as the illumination angle of the LEDs, ring array radius, viewing angle of the LEDs, and the working distance. A micro color CCD video camera that has sufficient resolution to resolve the iridocorneal angle structures at the required working distance is then chosen. The proposed design aspects fulfil the safety requirements recommended by the International Commission on Non-ionizing Radiation Protection.

  6. Determination of rice panicle numbers during heading by multi-angle imaging

    Lingfeng Duan

    2015-06-01

    Full Text Available Plant phenomics has the potential to accelerate progress in understanding gene functions and environmental responses. Progress has been made in automating high-throughput plant phenotyping. However, few studies have investigated automated rice panicle counting. This paper describes a novel method for automatically and nonintrusively determining rice panicle numbers during the full heading stage by analyzing color images of rice plants taken from multiple angles. Pot-grown rice plants were transferred via an industrial conveyer to an imaging chamber. Color images from different angles were automatically acquired as a turntable rotated the plant. The images were then analyzed and the panicle number of each plant was determined. The image analysis pipeline consisted of extracting the i2 plane from the original color image, segmenting the image, discriminating the panicles from the rest of the plant using an artificial neural network, and calculating the panicle number in the current image. The panicle number of the plant was taken as the maximum of the panicle numbers extracted from all 12 multi-angle images. A total of 105 rice plants during the full heading stage were examined to test the performance of the method. The mean absolute error of the manual and automatic count was 0.5, with 95.3% of the plants yielding absolute errors within ± 1. The method will be useful for evaluating rice panicles and will serve as an important supplementary method for high-throughput rice phenotyping.

  7. Angle-resolved imaging of single-crystal materials with MeV helium ions

    Strathman, M D; Baumann, S [Charles Evans and Associates, Redwood City, CA (United States)

    1992-02-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a {+-}2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.).

  8. Refraction angle and edge visibility in X-ray diffraction enhanced imaging

    Chen Yu; Jia Quanjie; Li Gang; Wang Yuzhu; Xue Xianying; Jiang Xiaoming

    2007-01-01

    Diffraction-enhanced X-ray imaging could extract accurately the refraction angles of the sample, which is very important to increase the image contrast of low Z samples. In this paper, the DEI experiments with X-rays of different energies were performed both on wedge-shaped and rounded model samples. Refraction angles of the two samples were all obtained accurately, and the results agreed well with the calculations. Quantitative analyses based on Edge Visibility were performed for the wedge-shaped model sample. The results revealed that the calculated positions for the Best Edge Visibility of the slope with fixed refraction angle were calculable in good agreement with the experimental results. A quantitative research on the Edge Visibility of real tissues sample was carried out and the optimal condition for best contrast of DEI images were discussed. (authors)

  9. Angle-resolved imaging of single-crystal materials with MeV helium ions

    Strathman, M.D.; Baumann, S.

    1992-01-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a ±2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.)

  10. Low flip angle spin-echo MR imaging to obtain better Gd-DTPA enhanced imaging with ECG gating

    Sugimura, Kazuro; Kawamitsu, Hideaki; Yoshikawa, Kazuaki; Kasai, Toshifumi; Yuasa, Koji; Ishida, Tetsuya

    1992-01-01

    ECG-gated spin-echo imaging (ECG-SE) can reduce physiological motion artifact. However, ECG-SE does not provide strong T1-weighted images because repetition time (TR) depends on heart rate (HR). We investigated the usefulness of low flip angle spin-echo imaging (LFSE) in obtaining more T1-dependent contrast with ECG gating. In computer simulation, the predicted image contrast and single-to-noise ratio (SNR) obtained for each flip angle (0-180deg) and each TR (300 msec-1200 msec) were compared with those obtained by conventional T1-weighted spin-echo imaging (CSE: TR=500 msec, TE=20 msec). In clinical evaluation, tissue contrast [contrast index (CI): (SI of lesion-SI of muslce) 2* 100/SI of muscle] obtained by CSE and LFSE were compared in 17 patients. At a TR of 1,000 msec, T1-dependent contrast increased with decreasing flip angle and that at 38deg was identical to that with T1-weighted spin-echo. SNR increased with the flip angle until 100deg, and that at 53deg was identical to that with T1-weighted spin-echo. CI on LFSE (74.0±52.0) was significantly higher than CI on CSE (40.9±35.9). ECG-gated LFSE imaging provides better T1-dependent contrast than conventional ECG-SE. This method was especially useful for Gd-DTPA enhanced MR imaging. (author)

  11. left-angle 100 right-angle Burgers vector in single phase γ' material verified by image simulation

    Link, T.; Knobloch, C.; Glatzel, U.

    1998-01-01

    The deformation mechanisms of Ni 3 Al, an ordered L1 2 or γ' phase, is under intense research since Westbrook showed the increase of its hardness with temperature in 1957. The super dislocations of this ordered phase normally have Burgers vectors rvec b = a left-angle 110 right-angle, disassociated in either two a/2 left-angle 110 right-angle or two rvec b = a/3 left-angle 112 right-angle, depending on deformation temperature and rate. Recent observations in [111] oriented γ' specimens suggest that additional dislocations with the shorter Burgers vector rvec b = a left-angle 100 right-angle might be active. Dislocations with rvec b = a left-angle 110 right-angle on cube glide planes have a Schmidt factor of 0.47 and on octahedral planes of 0.27. Dislocations with rvec b = a left-angle 100 right-angle have a Schmidt factor of 0.47 for {110} glide planes and 0.33 for cube glide planes. The a left-angle 100 right-angle Burgers vector is the shortest of all complete dislocations of the L1 2 structure and creates no planar fault like antiphase boundaries or stacking faults. Due to the [111] oriented stress axis, which is used in this contribution, plastic deformation by a left-angle 100 right-angle dislocations as well as cube glide planes for left-angle 110 right-angle dislocations is encouraged. These dislocations could be reaction products, but will soon after contribute to deformation

  12. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging lidar

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng

    2002-09-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  13. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry L.; Ho, Cheng

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  14. Relationship between the trochlear groove angle and patellar cartilage morphology defined by 3D spoiled gradient-echo imaging

    Harada, Yuko; Tokuda, Osamu; Matsunaga, Naofumi [Yamaguchi University Graduate School of Medicine, Department of Radiology, Yamaguchi (Japan); Fukuda, Kouji [Shunan Memorial Hospital, Division of Radiological Technology, Yamaguchi (Japan); Shiraishi, Gen; Motomura, Tetsuhisa [Shunan Memorial Hospital, Department of Orthopedics Surgery, Yamaguchi (Japan); Kimura, Motoichi [Customer Application Gr., GE Healthcare MR Sales and Marketing Department, Osaka (Japan)

    2012-05-15

    To examine whether the femoral trochlear groove angle (TGA) is a determinant of the patellar cartilage volume and patellar cartilage damage. Patellar cartilage was evaluated by MR imaging in 66 patients (22 males and 44 females) with knee pain. Fat-suppressed 3D spoiled gradient-echo images were used to calculate the cartilage volume and to grade the cartilage damage. The proximal and distal TGAs were measured from axial PD-weighted FSE MR images with fat suppression. For every increase in the TGA at the distal femur, the patellar cartilage volume was significantly increased by 6.07 x 10{sup -3} cm{sup 3} (95% CI: 1.27 x 10{sup -3}, 10.9 x 10{sup -3}) after adjustment for age, gender, and patellar bone volume (P < 0.05). The MR grade of medial patellar cartilage damage progressed as the distal TGA became narrower, although there was no significant correlation between the distal TGA and the MR grading of patellar cartilage damage. A more flattened distal TGA was associated with increased patellar cartilage volume. However, there was no association between TGA and patellar cartilage defects. (orig.)

  15. Correlation between pennation angle and image quality of skeletal muscle fibre tractography using deterministic diffusion tensor imaging.

    Okamoto, Yoshikazu; Okamoto, Toru; Yuka, Kujiraoka; Hirano, Yuji; Isobe, Tomonori; Minami, Manabu

    2012-12-01

    The aim of this study was to ascertain whether a correlation existed between muscle pennation angle and the ability to successfully perform tractography of the lower leg muscle fibres with deterministic diffusion tensor imaging (DTI) in normal volunteers. Fourteen volunteers aged 20-39 (mean 28.2 years old) were recruited. All volunteers were scanned using DTI, and six fibre tractographs were constructed from one lower leg of each volunteer, and the 'fibre density' was calculated in each of the tractographs. The pennation angle is the angle formed by the muscle fibre and the aponeurosis. The average pennation angle (AVPA) and standard deviation of the pennation angle (SDPA) were also measured for each muscle by ultrasonography in the same region as the MRI scan. For all 84 tractography images, the correlation coefficient between the fibre density and AVPA or SDPA was calculated. Fibre density and AVPA showed a moderate negative correlation (R = -0.72), and fibre density and SDPA showed a weak negative correlation (R = -0.47). With respect to comparisons within each muscle, AVPA and fibre density showed a moderate negative correlation in the gastrocnemius lateralis muscle (R = -0.57). Our data suggest that a larger, more variable pennation angle resulted in worse skeletal muscle tractography using deterministic DTI. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  16. Effect of image resolution manipulation in rearfoot angle measurements obtained with photogrammetry.

    Sacco, I C N; Picon, A P; Ribeiro, A P; Sartor, C D; Camargo-Junior, F; Macedo, D O; Mori, E T T; Monte, F; Yamate, G Y; Neves, J G; Kondo, V E; Aliberti, S

    2012-09-01

    The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.

  17. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution

    Hodel, Jerome [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Hopital Henri Mondor, Creteil (France); Silvera, Jonathan [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Bekaert, Olivier; Decq, Philippe [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neurosurgery, Creteil (France); Rahmouni, Alain [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Radiology, Creteil (France); Bastuji-Garin, Sylvie [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Public Health, Creteil (France); Vignaud, Alexandre [Siemens Healthcare, Saint Denis (France); Petit, Eric; Durning, Bruno [Laboratoire Images Signaux et Systemes Intelligents, UPEC, Creteil (France)

    2011-02-15

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)

  18. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution

    Hodel, Jerome; Silvera, Jonathan; Bekaert, Olivier; Decq, Philippe; Rahmouni, Alain; Bastuji-Garin, Sylvie; Vignaud, Alexandre; Petit, Eric; Durning, Bruno

    2011-01-01

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)

  19. Cloud Classification in Wide-Swath Passive Sensor Images Aided by Narrow-Swath Active Sensor Data

    Hongxia Wang

    2018-05-01

    Full Text Available It is a challenge to distinguish between different cloud types because of the complexity and diversity of cloud coverage, which is a significant clutter source that impacts on target detection and identification from the images of space-based infrared sensors. In this paper, a novel strategy for cloud classification in wide-swath passive sensor images is developed, which is aided by narrow-swath active sensor data. The strategy consists of three steps, that is, the orbit registration, most matching donor pixel selection, and cloud type assignment for each recipient pixel. A new criterion for orbit registration is proposed so as to improve the matching accuracy. The most matching donor pixel is selected via the Euclidean distance and the square sum of the radiance relative differences between the recipient and the potential donor pixels. Each recipient pixel is then assigned a cloud type that corresponds to the most matching donor. The cloud classification of the Moderate Resolution Imaging Spectroradiometer (MODIS images is performed with the aid of the data from Cloud Profiling Radar (CPR. The results are compared with the CloudSat product 2B-CLDCLASS, as well as those that are obtained using the method of the International Satellite Cloud Climatology Project (ISCCP, which demonstrates the superior classification performance of the proposed strategy.

  20. Image reconstruction for digital breast tomosynthesis (DBT) by using projection-angle-dependent filter functions

    Park, Yeonok; Park, Chulkyu; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Lee, Minsik; Cho, Heemoon; Choi, Sungil; Koo, Yangseo [Yonsei University, Wonju (Korea, Republic of)

    2014-09-15

    Digital breast tomosynthesis (DBT) is considered in clinics as a standard three-dimensional imaging modality, allowing the earlier detection of cancer. It typically acquires only 10-30 projections over a limited angle range of 15 - 60 .deg. with a stationary detector and typically uses a computationally-efficient filtered-backprojection (FBP) algorithm for image reconstruction. However, a common FBP algorithm yields poor image quality resulting from the loss of average image value and the presence of severe image artifacts due to the elimination of the dc component of the image by the ramp filter and to the incomplete data, respectively. As an alternative, iterative reconstruction methods are often used in DBT to overcome these difficulties, even though they are still computationally expensive. In this study, as a compromise, we considered a projection-angle dependent filtering method in which one-dimensional geometry-adapted filter kernels are computed with the aid of a conjugate-gradient method and are incorporated into the standard FBP framework. We implemented the proposed algorithm and performed systematic simulation works to investigate the imaging characteristics. Our results indicate that the proposed method is superior to a conventional FBP method for DBT imaging and has a comparable computational cost, while preserving good image homogeneity and edge sharpening with no serious image artifacts.

  1. Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images

    Diner, D.; Paradise, S.; Martonchik, J.

    1994-01-01

    In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.

  2. Clinical utility of partial flip angle T2-weighted spin-echo imaging of the brain

    Chang, K.H.; Yi, J.G.; Han, M.H.; Han, M.C.; Kim, C.W.; Cho, M.H.; Cho, Z.H.

    1990-01-01

    To assess the clinical usefulness of partial flip angle (PFA) spin-echo (SE) brain imaging, a total of eighty patients were examined with both conventional double echo T2-weighted SE (2500/30, 80/90deg/one excitation) and PFA double echo SE (1200/30, 70/45deg/two excitations) on 2.0T system. Two comparative studies were performed: (1) In 65 patients PFA SE technique was compared with conventional SE without flow compensating gradients, and (2) in 15 patients the former was compared with the latter with flow compensating gradients. Imaging time was nearly identical in each sequence. In both studies we found that PFA T2-weighted SE images were almost identical to those obtained with the conventional SE technique in the contrast characteristics and the detection rate of the abnormalities (100%, 85/85 lesions), and more importantly, PFA SE revealed few flow artifacts in the brain stem, temporal lobes and basal ganglia which were frequently seen on conventional SE without flow compensating gradients. Additionally, PFA SE images demonstrated no suppression of CSF flow void in the aqueduct which was commonly seen on conventional SE with flow compensating gradients. In overall image quality, the PFA SE images, particularly the second echo images, were almost comparable with those of conventional SE with flow compensating gradients. A flip angle of 45deg seems to be close to Ernst angle, the angle at which maximum signal occurs, for a given TR of 1200 msec for CSF and most of the abnormalities containing higher water content. In conclusion, PFA SE sequence (i.e. 1200/30, 70/45deg/2) appears to be useful as a primary or an adjunctive technique in certain clinical circumstances, particularly in imaging of hydrocephalic patients for assessing aqueductal patency. (orig.)

  3. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging

    Zhou Yongjin

    2012-09-01

    Full Text Available Abstract Background Muscle fascicle pennation angle (PA is an important parameter related to musculoskeletal functions, and ultrasound imaging has been widely used for measuring PA, but manually and frame by frame in most cases. We have earlier reported an automatic method to estimate aponeurosis orientation based on Gabor transform and Revoting Hough Transform (RVHT. Methods In this paper, we proposed a method to estimate the overall orientation of muscle fascicles in a region of interest, in order to complete computing the orientation of the other side of the pennation angle, but the side found by RVHT. The measurements for orientations of both fascicles and aponeurosis were conducted in each frame of ultrasound images, and then the dynamic change of pennation angle during muscle contraction was obtained automatically. The method for fascicle orientation estimation was evaluated using synthetic images with different noise levels and later on 500 ultrasound images of human gastrocnemius muscles during isometric plantarflexion. Results The muscle fascicle orientations were also estimated manually by two operators. From the results it’s found that the proposed automatic method demonstrated a comparable performance to the manual method. Conclusions With the proposed methods, ultrasound measurement for muscle pennation angles can be more widely used for functional assessment of muscles.

  4. Target acquisition performance : Effects of target aspect angle, dynamic imaging and signal processing

    Beintema, J.A.; Bijl, P.; Hogervorst, M.A.; Dijk, J.

    2008-01-01

    In an extensive Target Acquisition (TA) performance study, we recorded static and dynamic imagery of a set of military and civilian two-handheld objects at a range of distances and aspect angles with an under-sampled uncooled thermal imager. Next, we applied signal processing techniques including

  5. Laterally Spreading Tumors of the Colon During High Resolution Colonoscopy with Narrow Band Imaging and Acetic Acid Chromoscopy

    V.A. Yakovenko

    2015-02-01

    Materials and Methods. 1632 colonoscopy protocols were studied: 735 — by using video colonoscope Olympus CF-HQ190L and 897 — Olympus CF-150. Results and Discussion. In study group, adenoma detection rate was higher than in control one: 0.78 (571/735 vs. 0.47 (422/897, p < 0.00001; c2 = 157.9. Adenoma detection index was 3.6 times higher in study group than in control one: 2.9 (2,104/735 vs. 0.8 (708/897. Laterally spreading tumors were diagnosed 2.2 times more often in study group than in control one: 22 % (187/735 vs. 10 % (85/897, p < 0.00001; c2 = 53.6. Conclusions. High resolution colonoscopy with narrow band imaging and acetic acid chromoscopy has a high diagnostic value for detection of laterally spreading tumors of the colon.

  6. Gas Distributions in Comet ISON’s Coma: Concurrent Integral-Field Spectroscopy and Narrow-band Imaging.

    Schmidt, Carl; Johnson, Robert E.; Baumgardner, Jeffrey; Mendillo, Michael

    2014-11-01

    At a solar distance of 0.44 AU, Oort cloud comet C/2012 S1 (ISON) exhibited an outburst phase that was observed by small telescopes at the McDonald Observatory. In conjunction with narrow-band (14Å) imaging over a wide-field, an image-slicer spectrograph ( 20,000) simultaneously measured the spatial distribution of ISON’s coma over a 1.6 x 2.7 arcminute field made up of 246 individual spectra. More than fifty emission lines from C2, NH2, CO, H2O+ and Na were observed within a single Echelle order spanning 5868Å to 5930Å. Spatial reconstructions of these species reveal that ISON’s coma was quite elongated several thousand km along the axis perpendicular to its motion. The ion tail appeared distinctly broader than the neutral Na tail, providing strong evidence that Na in the coma did not originate by dissociative recombination of a sodium bearing molecular ion. Production rates increased from 1.6 ± 0.3 x 1023 to 5.8 ± 1 x 1023 Na atoms/s within 24 hours, outgassing much less than comparable comets relative to ISON’s water production. The anti-sunward Na tail was imaged >106 km from the nucleus. Its distribution indicates origins both near the nucleus and in the dust tail, with the ratio of these Na sources varying on hourly timescales due to outburst activity.

  7. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom

    2015-01-01

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  8. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  9. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    Majidi, Keivan; Wernick, Miles N; Brankov, Jovan G; Li, Jun; Muehleman, Carol

    2014-01-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  10. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  11. A method of directly extracting multiwave angle-domain common-image gathers

    Han, Jianguang; Wang, Yun

    2017-10-01

    Angle-domain common-image gathers (ADCIGs) can provide an effective way for migration velocity analysis and amplitude versus angle analysis in oil-gas seismic exploration. On the basis of multi-component Gaussian beam prestack depth migration (GB-PSDM), an alternative method of directly extracting multiwave ADCIGs is presented in this paper. We first introduce multi-component GB-PSDM, where a wavefield separation is proceeded to obtain the separated PP- and PS-wave seismic records before migration imaging for multiwave seismic data. Then, the principle of extracting PP- and PS-ADCIGs using GB-PSDM is presented. The propagation angle can be obtained using the real-value travel time of Gaussian beam in the course of GB-PSDM, which can be used to calculate the incidence and reflection angles. Two kinds of ADCIGs can be extracted for the PS-wave, one of which is P-wave incidence ADCIGs and the other one is S-wave reflection ADCIGs. In this paper, we use the incident angle to plot the ADCIGs for both PP- and PS-waves. Finally, tests of synthetic examples show that the method introduced here is accurate and effective.

  12. ℓ0 Gradient Minimization Based Image Reconstruction for Limited-Angle Computed Tomography.

    Wei Yu

    Full Text Available In medical and industrial applications of computed tomography (CT imaging, limited by the scanning environment and the risk of excessive X-ray radiation exposure imposed to the patients, reconstructing high quality CT images from limited projection data has become a hot topic. X-ray imaging in limited scanning angular range is an effective imaging modality to reduce the radiation dose to the patients. As the projection data available in this modality are incomplete, limited-angle CT image reconstruction is actually an ill-posed inverse problem. To solve the problem, image reconstructed by conventional filtered back projection (FBP algorithm frequently results in conspicuous streak artifacts and gradual changed artifacts nearby edges. Image reconstruction based on total variation minimization (TVM can significantly reduce streak artifacts in few-view CT, but it suffers from the gradual changed artifacts nearby edges in limited-angle CT. To suppress this kind of artifacts, we develop an image reconstruction algorithm based on ℓ0 gradient minimization for limited-angle CT in this paper. The ℓ0-norm of the image gradient is taken as the regularization function in the framework of developed reconstruction model. We transformed the optimization problem into a few optimization sub-problems and then, solved these sub-problems in the manner of alternating iteration. Numerical experiments are performed to validate the efficiency and the feasibility of the developed algorithm. From the statistical analysis results of the performance evaluations peak signal-to-noise ratio (PSNR and normalized root mean square distance (NRMSD, it shows that there are significant statistical differences between different algorithms from different scanning angular ranges (p<0.0001. From the experimental results, it also indicates that the developed algorithm outperforms classical reconstruction algorithms in suppressing the streak artifacts and the gradual changed

  13. Limited angle tomographic breast imaging: A comparison of parallel beam and pinhole collimation

    Wessell, D.E.; Kadrmas, D.J.; Frey, E.C.

    1996-01-01

    Results from clinical trials have suggested no improvement in lesion detection with parallel hole SPECT scintimammography (SM) with Tc-99m over parallel hole planar SM. In this initial investigation, we have elucidated some of the unique requirements of SPECT SM. With these requirements in mind, we have begun to develop practical data acquisition and reconstruction strategies that can reduce image artifacts and improve image quality. In this paper we investigate limited angle orbits for both parallel hole and pinhole SPECT SM. Singular Value Decomposition (SVD) is used to analyze the artifacts associated with the limited angle orbits. Maximum likelihood expectation maximization (MLEM) reconstructions are then used to examine the effects of attenuation compensation on the quality of the reconstructed image. All simulations are performed using the 3D-MCAT breast phantom. The results of these simulation studies demonstrate that limited angle SPECT SM is feasible, that attenuation correction is needed for accurate reconstructions, and that pinhole SPECT SM may have an advantage over parallel hole SPECT SM in terms of improved image quality and reduced image artifacts

  14. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.

    Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu

    2018-04-01

    Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.

  15. High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy

    Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham

    2016-07-01

    Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.

  16. CT and MR Imaging Characteristics of Intravestibular and Cerebellopontine Angle Lipoma

    Buyukkaya, Ramazan; Buyukkaya, Ayla; Ozturk, Beyhan; Yaman, Huseyin; Belada, Abdullah

    2014-01-01

    Intracranial lipoma is an uncommon entity. A rare type of tumor in the internal auditory canal (IAC) and the cerebellopontine angle (CPA) is lipoma. There are a few case reports in the literature related to intravestibular lipoma. Herein, we report a case of lipomas within the cerebellopontine angle and vestibule of the inner ear in a patient with tinnitus and dizziness. The patient was evaluated with a 1.5 T magnetic resonance imaging (MRI) system. MRI and CT showed the masses in the left CPA and the left IAC. These lesions were hyperintense on both T1- and T2 weighted images and showed no enhancement after gadolinium administration. Conservative management was suggested. Histopathological diagnosis is rarely necessary with the widespread use of magnetic resonance imaging. Considering significant morbidity during resection, conservative follow-up is the best approach for CPA and IAC lipoma

  17. CT and MR Imaging Characteristics of Intravestibular and Cerebellopontine Angle Lipoma

    Buyukkaya, Ramazan [Department of Radiology, School of Medicine, Duzce University, Duzce (Turkey); Buyukkaya, Ayla [Department of Radiology, Duzce Ataturk Government Hospital, Duzce (Turkey); Ozturk, Beyhan [Department of Radiology, School of Medicine, Duzce University, Duzce (Turkey); Yaman, Huseyin; Belada, Abdullah [Department of Ear Nose and Throat, School of Medicine, Duzce University, Duzce (Turkey)

    2014-06-15

    Intracranial lipoma is an uncommon entity. A rare type of tumor in the internal auditory canal (IAC) and the cerebellopontine angle (CPA) is lipoma. There are a few case reports in the literature related to intravestibular lipoma. Herein, we report a case of lipomas within the cerebellopontine angle and vestibule of the inner ear in a patient with tinnitus and dizziness. The patient was evaluated with a 1.5 T magnetic resonance imaging (MRI) system. MRI and CT showed the masses in the left CPA and the left IAC. These lesions were hyperintense on both T1- and T2 weighted images and showed no enhancement after gadolinium administration. Conservative management was suggested. Histopathological diagnosis is rarely necessary with the widespread use of magnetic resonance imaging. Considering significant morbidity during resection, conservative follow-up is the best approach for CPA and IAC lipoma.

  18. Direct image reconstruction with limited angle projection data for computerized tomography

    Inouye, T.

    1980-01-01

    Discussions are made on the minimum angle range for projection data necessary to reconstruct the complete CT image. As is easily shown from the image reconstruction theorem, the lack of projection angle provides no data for the Fourier transformed function of the object on the corresponding angular directions, where the projections are missing. In a normal situation, the Fourier transformed function of an object image holds an analytic characteristic with respect to two-dimensional orthogonal parameters. This characteristic enables uniquely prolonging the function outside the obtained region employing a sort of analytic continuation with respect to both parameters. In the method reported here, an object pattern, which is confined within a finite range, is shifted to a specified region to have complete orthogonal function expansions without changing the projection angle directions. These orthogonal functions are analytically extended to the missing projection angle range and the whole function is determined. This method does not include any estimation process, whose effectiveness is often seriously jeopardized by the presence of a slight fluctuation component. Computer simulations were carried out to demonstrate the effectiveness of the method

  19. Multi-angle lensless digital holography for depth resolved imaging on a chip

    Su, Ting-Wei; Isikman, Serhan O.; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-01-01

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over ~60 mm2 field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems. PMID:20588819

  20. Sensitivity and specificity of narrow-band imaging nasoendoscopy compared to histopathology results in patients with suspected nasopharyngeal carcinoma

    Adham, M.; Musa, Z.; Lisnawati; Suryati, I.

    2017-08-01

    Nasopharyngeal carcinoma (NPC) is a disease which is prevalent in developing countries like Indonesia. There were 164 new cases of nasopharyngeal carcinoma in the ear, nose, and throat (ENT) oncology outpatient clinic of the Cipto Mangunkusumo hospital in 2014, and 142 cases in 2015. Unfortunately, almost all of these cases presented at an advanced stage. The success of nasopharyngeal carcinoma treatment is largely determined by the stage when patients are diagnosed; it is critical to diagnose NPC as early as possible. Narrow-band imaging (NBI) is an endoscopic instrument with a light system that can improve the visualization of blood vessels of mucosal epithelial malignant tumors. NBI is expected to help clinicians to assess whether a lesion is malignant or not; to do so, it is important to know the value of sensitivity and specificity. This study is a cross-sectional form of a diagnostic test which was performed in the outpatient clinic of the ENT Head and Neck Surgery Department for the Cipto Mangunkusumo Hospital, from January to June 2016, and involved 56 subjects. Patients with a nasopharyngeal mass discovered by physical examination or imaging, and a suspected nasopharyngeal carcinoma were included as a subject. An NBI examination and biopsy was performed locally. Based on this research, NBI could be used as a screening tool for nasopharyngeal carcinoma with high sensitivity (100%), but with a low specificity result (6.7%).

  1. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  2. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  3. A Novel Multi-View-Angle Range Images Generation Method for Measurement of Complicated Polyhedron in 3D Space

    Deming Kong

    2017-01-01

    Full Text Available A new kind of generation method is proposed in this paper to acquire range images for complicated polyhedron in 3D space from a series of view angles. In the proposed generation method, concept of three-view drawing in mechanical cartography is introduced into the range image generation procedure. Negative and positive directions of x-, y-, and z-axes are selected as the view angles to generate the range images for complicated polyhedron in 3D space. Furthermore, a novel iterative operation of mathematical morphology is proposed to ensure that satisfactory range images can be generated for the polyhedron from all the selected view angles. Compared with the existing method based on single view angle and interpolation operation, structure features contained in surface of the complicated polyhedron can be represented more consistently with the reality by using the proposed multi-view-angle range images generation method. The proposed generation method is validated by using an experiment.

  4. Wetting of biopolymer coatings: contact angle kinetics and image analysis investigation.

    Farris, Stefano; Introzzi, Laura; Biagioni, Paolo; Holz, Torsten; Schiraldi, Alberto; Piergiovanni, Luciano

    2011-06-21

    The surface wetting of five biopolymers, used as coating materials for a plastic film, was monitored over a span of 8 min by means of the optical contact angle technique. Because most of the total variation was observed to occur during the first 60 s, we decided to focus on this curtailed temporal window. Initial contact angle values (θ(0)) ranged from ∼91° for chitosan to ∼30° for pullulan. However, the water drop profile began to change immediately following drop deposition for all biocoatings, confirming that the concept of water contact angle equilibrium is not applicable to most biopolymers. First, a three-parameter decay equation [θ(t) = θ(0) exp(kt(n))] was fit to the experimental contact angle data to describe the kinetics of the contact angle change for each biocoating. Interestingly, the k constant correlated well with the contact angle evolution rate and the n exponent seemed to be somehow linked to the physicochemical phenomena underlying the overall kinetics process. Second, to achieve a reliable description of droplet evolution, the contact angle (CA) analysis was coupled with image analysis (IA) through a combined geometric/trigonometric approach. Absorption and spreading were the key factors governing the overall mechanism of surface wetting during the 60 s analysis, although the individual quantification of both phenomena demonstrated that spreading provided the largest contribution for all biopolymers, with the only exception of gelatin, which showed two quasi-equivalent and counterbalancing effects. The possible correlation between these two phenomena and the topography of the biopolymer surfaces are then discussed on the basis of atomic force microscopy analyses. © 2011 American Chemical Society

  5. Stratigraphic imaging of sub-basalt sediments using waveform tomography of wide-angle seismic data

    Sain, K.; Gao, F.; Pratt, G.; Zelt, C. A.

    2003-12-01

    The oil industry is interested in imaging the fine structures of sedimentary formations masked below basalt flows for commercial exploration of hydrocarbons. Seismic exploration of sediments hidden below high-velocity basalt cover is a difficult problem because near-vertical reflection data are contaminated with multiples, converted waves and scattering noise generated by interbeds, breccia and vesicles within the basalt. The noise becomes less prominent as the source-receiver offset increases, and the signals carrying sub-surface information stand out at the wide-angle range. The tomography of first arrival traveltime data can provide little information about the underlying low-velocity sediments. Traveltime inversion of wide-angle seismic data including both first arrivals and identifiable wide-angle reflected phases has been an important tool in the delineation of the large-scale velocity structure of sub-basalt sediments, although it lacks the small-scale velocity details. Here we apply 2-D full-waveform inversion ("waveform tomography") to wide-angle seismic data with a view to extracting the small-scale stratigraphic features of sedimentary formations. Results from both synthetic data, generated for a realistic earth model, and field dataset from the basalt covered Saurashtra peninsula, India, will be presented. This approach has potential to delineate thin sedimentary layers hidden below thick basalt cover also, and may serve as a powerful tool to image sedimentary basins, where they are covered by high-velocity materials like basalts, salts, carbonates, etc. in various parts of the world.

  6. Diagnostic efficacy of magnifying endoscopy with narrow-band imaging for gastric neoplasms: a meta-analysis.

    Xiuhe Lv

    Full Text Available Magnifying endoscopy with narrow-band imaging (ME-NBI is a novel, image-enhanced endoscopic technique for differentiating gastrointestinal neoplasms and potentially enabling pathological diagnosis.The aim of this analysis was to assess the diagnostic performance of ME-NBI for gastric neoplasms.We performed a systematic search of the PubMed, EMbase, Web of Science, and Cochrane Library databases for relevant studies. Meta-DiSc (version 1.4 and STATA (version 11.0 software were used for the data analysis. Random effects models were used to assess diagnostic efficacy. Heterogeneity was tested by the Q statistic and I2 statistic. Meta-regression was used to analyze the sources of heterogeneity.A total of 10 studies, with 2151 lesions, were included. The pooled characteristics of these studies were as follows: sensitivity 0.85 (95% confidence interval [CI]: 0.81-0.89, specificity 0.96 (95% confidence interval [CI]: 0.95-0.97, and area under the curve (AUC 0.9647. In the subgroup analysis, which compared the diagnostic efficacy of ME-NBI and white light imaging (WLI, the pooled sensitivity and specificity of ME-NBI were 0.87 (95% CI: 0.80-0.92 and 0.93 (95% CI: 0.90-0.95, respectively, and the area under the curve (AUC was 0.9556. In contrast, the pooled sensitivity and specificity of WLI were 0.61 (95% CI: 0.53-0.69 and 0.65 (95% CI: 0.60-0.69, respectively, and the area under the curve (AUC was 0.6772.ME-NBI presents a high diagnostic value for gastric neoplasms and has a high specificity.

  7. Investigation of mucosal pattern of gastric antrum using magnifying narrow-band imaging in patients with chronic atrophic fundic gastritis.

    Yamasaki, Yasushi; Uedo, Noriya; Kanzaki, Hiromitsu; Kato, Minoru; Hamada, Kenta; Aoi, Kenji; Tonai, Yusuke; Matsuura, Noriko; Kanesaka, Takashi; Yamashina, Takeshi; Akasaka, Tomofumi; Hanaoka, Noboru; Takeuchi, Yoji; Higashino, Koji; Ishihara, Ryu; Tomita, Yasuhiko; Iishi, Hiroyasu

    2017-01-01

    Magnifying narrow-band imaging (M-NBI) can reportedly help predict the presence and distribution of atrophy and intestinal metaplasia in the gastric corpus. However, the micro-mucosal pattern of the antrum shown by M-NBI differs from that of the corpus. We studied the distribution and histology of the micro-mucosal pattern in the antrum based on magnifying endoscopy. Endoscopic images of the greater curvature of the antrum were evaluated in 50 patients with chronic atrophic fundic gastritis (CAFG). The extent of CAFG was evaluated by autofluorescence imaging. The micro-mucosal pattern was evaluated by M-NBI and classified into groove and white villiform types. The localization of white villiform type mucosa was classified into three types in relation to the areae gastricae : null, central, and segmental types. Biopsies were taken from regions showing different micro-mucosal patterns. Associations among the extent of CAFG, micro-mucosal pattern, and histology were examined. As the extent of CAFG increased, the proportion of white villiform type mucosa increased, whereas that of groove type mucosa decreased (P=0.022). In patients with extensive CAFG, most of the areae gastricae was composed of the segmental or central type of white villiform type mucosa (P=0.044). The white villiform type mucosa had significantly higher grades of atrophy (P=0.002) and intestinal metaplasia (P<0.001) than did the groove type mucosa. White villiform type mucosa is indicative of atrophy and intestinal metaplasia in the gastric antrum. It extends to the whole or central part of the areae gastricae as CAFG becomes more extensive.

  8. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  9. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  10. Inter-observer variability between radiologists reporting on cerebellopontine angle tumours on magnetic resonance imaging.

    Teh, S R; Ranguis, S; Fagan, P

    2017-01-01

    Studies demonstrate the significance of intra- and inter-observer variability when measuring cerebellopontine angle tumours on magnetic resonance imaging, with measured differences as high as 2 mm. To determine intra- and inter-observer measurement variability of cerebellopontine angle tumours in a specialised institution. The magnetic resonance imaging maximal diameter of 12 randomly selected cerebellopontine angle tumours were independently measured by 4 neuroradiologists at a tertiary referral centre using a standard definition for maximal tumour diameter. Average deviation and intraclass correlation were subsequently calculated. Inter-observer difference averaged 0.33 ± 0.04 mm (range, 0.0-0.8 mm). Intra-observer measurements were more consistent than inter-observer measurements, with differences averaging 0.17 mm (95 per cent confidence interval = 0.27-0.06, p = 0.002). Inter-observer reliability was 0.99 (95 per cent confidence interval = 0.97-0.99), suggesting high reliability between the readings. The use of a standard definition for maximal tumour volume provided high reliability amongst radiologists' readings. To avoid oversizing tumours, it is recommended that conservative monitoring be conducted by the same institution with thin slice magnetic resonance imaging scans.

  11. Imaging of the iridocorneal angle with the RTVue spectral domain optical coherence tomography.

    Perera, Shamira A; Ho, Ching Lin; Aung, Tin; Baskaran, Mani; Ho, Henrietta; Tun, Tin A; Lee, Tian Loon; Kumar, Rajesh S

    2012-04-02

    To determine the ability of the RTVue spectral domain optical coherence tomography (SDOCT) to image the anterior chamber angle (ACA). Consecutive subjects, recruited from glaucoma clinics, prospectively underwent ophthalmic evaluation including gonioscopy by an ophthalmologist and anterior chamber imaging with SDOCT, adapted with a corneal lens adapter (cornea anterior module-low magnification [CAM-L]) and anterior segment OCT (ASOCT), both performed by a technician. Two different ophthalmologists, masked to gonioscopy findings, assessed visualization of the scleral spur (SS), Schwalbe's line (SL), and trabecular meshwork (TM) by the two modalities. The ability to detect a closed angle was compared with gonioscopy. The average age (SD) of the 81 subjects enrolled was 64.1 (11.4) years; the majority were Chinese (91.4%) and female (61.7%). SDOCT images revealed the SS in 26.9% (56/324) of quadrants and the SL in 44.1% (143/324) of quadrants; in ASOCT images, the SS could be visualized in 69.1% (224/324) of quadrants (P gonioscopy. When analyzing the horizontal quadrants only, both modalities agreed well with gonioscopy, 0.75 and 0.74, respectively (AC1 statistics). The RTVue SDOCT allowed visualization of SL, TM, and SS. However, these landmarks were not detected in a large percentage of images.

  12. Factors influencing fast low angle positive contrast steady-state free precession (FLAPS) magnetic resonance imaging

    Dharmakumar, Rohan; Koktzoglou, Ioannis; Li Debiao

    2007-01-01

    The presence of susceptibility-shifting media can lead to signal voids in magnetic resonance images. While signal voids have been traditionally used to detect such magnetic perturbers, selective magnetic resonance imaging of off-resonant spins surrounding susceptibility-shifted media allows for them to be visualized as hyper-intense (positive contrast) regions. These positive contrast methods can potentially improve the detection conspicuity of magnetic perturbers against regions that appear dark due to the absence of protons, such as air. Recently, a fast low angle positive contrast steady-state free precession (FLAPS) technique has been proposed as a positive contrast imaging method. This work systematically evaluates the contrast characteristics and acquisition strategies of FLAPS-based imaging from the standpoint of imaging parameters and physical properties of the magnetic perturbers. Results show that scan parameters (T R , flip angle, B 0 ), physical properties of the perturber (size and concentration of shift reagent) and the ratio of the relaxation constants (T 1 /T 2 ) of the medium are significant factors influencing the FLAPS-based positive contrast

  13. Fast-gradient-echo variable-flip-angle imaging of the cervical spine

    Van Dyke, C.W.; Ross, J.S.; Masaryk, T.J.; Tkach, J.; Beale, S.; Hueftle, M.G.; Kaufman, B.; Modic, M.T.

    1987-01-01

    Two hundred consecutive patients were studied with 4-mm sagittal and axial T1-weighted images and gradient echo sequences with 6-msec or 13-msec echo time (TE) and 10 0 or 60 0 flip angles to evaluate cervical extradural disease. Images were independently evaluated for contrast behavior and anatomy, then directly compared for conspicuity of lesions. FLASH sequences produced better conspicuity of disease in half the imaging time. T1-weighted spin-echo (SE) sequences were more sensitive to marrow changes and intradural disease. Shorter TEs produced overall image improvement and reduced susceptibility effects. A fast and sensitive cervical examination combines sagittal T1-weighted SE with sagittal and axial FLASH 10 0 sequences with 6-msec TE

  14. The Role of Narrow Band Imaging in the Detection of Recurrent Laryngeal and Hypopharyngeal Cancer after Curative Radiotherapy

    Michal Zabrodsky

    2014-01-01

    Full Text Available Narrow band imaging is considered a significant improvement in the possibility of detecting early mucosal lesion of the upper aerodigestive tract. Early detection of mucosal neoplastic lesions is of utmost importance for patients survival. There is evidence that, especially in patients previously treated by means of curative radiotherapy or chemoradiotherapy, the early detection rate of recurrent disease is quite low. The aim of this study was to prove whether the videoendoscopy coupled with NBI might help detect recurrent or secondary tumors of the upper aerodigestive tract. 66 patients previously treated by means of RT or CRT with curative intent were enrolled in the study. All patients underwent transnasal flexible videoendoscopy with NBI mode under local anesthesia. When a suspicious lesion was identified in an ambulatory setting, its nature was proved histologically. Many of these changes were not identifiable by means of conventional white light (WL endoscopy. The accuracy, sensitivity, specificity, and positive and negative predictive value of the method are very high (88%, 92%, 76%, 96%, and 91%, resp.. Results demonstrate that outpatient transnasal endoscopy with NBI is an excellent method for the follow-up of patients with carcinomas of the larynx and the hypopharynx primarily treated with radiotherapy.

  15. Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142

    Macías, Enrique; Anglada, Guillem; Osorio, Mayra; Gómez, José F. [Instituto de Astrofísica de Andalucía (CSIC) Glorieta de la Astronomía s/n E-18008 Granada (Spain); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC) and Institut de Ciències del Cosmos (UB)/IEEC, Can Magrans S/N, Cerdanyola del Vallès, Barcelona (Spain); Carrasco-González, Carlos; Rodríguez, Luis F.; Sierra, Anibal, E-mail: emacias@bu.edu [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico)

    2017-04-01

    We report Very Large Array observations at 7 mm, 9 mm, and 3 cm toward the pre-transitional disk of the Herbig Ae star HD 169142. These observations have allowed us to study the millimeter emission of this disk with the highest angular resolution so far (0.″12 × 0.″09, or 14 au × 11 au, at 7 mm). Our 7 and 9 mm images show a narrow ring of emission at a radius of ∼25 au tracing the outer edge of the inner gap. This ring presents an asymmetric morphology that could be produced by dynamical interactions between the disk and forming planets. Additionally, the azimuthally averaged radial intensity profiles of the 7 and 9 mm images confirm the presence of the previously reported gap at ∼45 au and reveal a new gap at ∼85 au. We analyzed archival DCO{sup +}(3–2) and C{sup 18}O(2–1) ALMA observations, showing that the CO snowline is located very close to this third outer gap. This suggests that growth and accumulation of large dust grains close to the CO snowline could be the mechanism responsible for this proposed outer gap. Finally, a compact source of emission is detected at 7 mm, 9 mm, and 3 cm toward the center of the disk. Its flux density and spectral index indicate that it is dominated by free–free emission from ionized gas, which could be associated with the photoionization of the inner disk, an independent object, or an ionized jet.

  16. Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142

    Macías, Enrique; Anglada, Guillem; Osorio, Mayra; Gómez, José F.; Torrelles, José M.; Carrasco-González, Carlos; Rodríguez, Luis F.; Sierra, Anibal

    2017-01-01

    We report Very Large Array observations at 7 mm, 9 mm, and 3 cm toward the pre-transitional disk of the Herbig Ae star HD 169142. These observations have allowed us to study the millimeter emission of this disk with the highest angular resolution so far (0.″12 × 0.″09, or 14 au × 11 au, at 7 mm). Our 7 and 9 mm images show a narrow ring of emission at a radius of ∼25 au tracing the outer edge of the inner gap. This ring presents an asymmetric morphology that could be produced by dynamical interactions between the disk and forming planets. Additionally, the azimuthally averaged radial intensity profiles of the 7 and 9 mm images confirm the presence of the previously reported gap at ∼45 au and reveal a new gap at ∼85 au. We analyzed archival DCO + (3–2) and C 18 O(2–1) ALMA observations, showing that the CO snowline is located very close to this third outer gap. This suggests that growth and accumulation of large dust grains close to the CO snowline could be the mechanism responsible for this proposed outer gap. Finally, a compact source of emission is detected at 7 mm, 9 mm, and 3 cm toward the center of the disk. Its flux density and spectral index indicate that it is dominated by free–free emission from ionized gas, which could be associated with the photoionization of the inner disk, an independent object, or an ionized jet.

  17. The role of high-resolution endoscopy and narrow-band imaging in the evaluation of upper GI neoplasia in familial adenomatous polyposis

    Lopez-Ceron, Maria; van den Broek, Frank J. C.; Mathus-Vliegen, Elisabeth M.; Boparai, Karam S.; van Eeden, Susanne; Fockens, Paul; Dekker, Evelien

    2013-01-01

    The Spigelman classification stratifies cancer risk in familial adenomatous polyposis (FAP) patients with duodenal adenomatosis. High-resolution endoscopy (HRE) and narrow-band imaging (NBI) may identify lesions at high risk. To compare HRE and NBI for the detection of duodenal and gastric polyps

  18. Development and Validation of a Classification System to Identify High-Grade Dysplasia and Esophageal Adenocarcinoma in Barrett's Esophagus Using Narrow-Band Imaging

    Sharma, Prateek; Bergman, Jacques J. G. H. M.; Goda, Kenichi; Kato, Mototsugu; Messmann, Helmut; Alsop, Benjamin R.; Gupta, Neil; Vennalaganti, Prashanth; Hall, Matt; Konda, Vani; Koons, Ann; Penner, Olga; Goldblum, John R.; Waxman, Irving

    2016-01-01

    Although several classification systems have been proposed for characterization of Barrett's esophagus (BE) surface patterns based on narrow-band imaging (NBI), none have been widely accepted. The Barrett's International NBI Group (BING) aimed to develop and validate an NBI classification system for

  19. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  20. Backscattered electron imaging at low emerging angles: A physical approach to contrast in LVSEM

    Cazaux, J., E-mail: jacques.cazaux@univ-reims.fr [LISM, EA 4695 Faculty of Sciences, BP 1039, 51687 Reims Cedex 2 (France); Kuwano, N. [Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Sato, K. [Steel Research Laboratory, JFE Steel Corporation, 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835 (Japan)

    2013-12-15

    Due to the influence of refraction effects on the escape probability of the Back-Scattered Electrons (BSE), an expression of the fraction of these BSE is given as a function of the beam energy, E°, and emission angle (with respect to the normal) α. It has been shown that these effects are very sensitive to a local change of the work function in particular for low emerging angles. This sensitivity suggests a new type of contrast in Low Voltage Scanning Electron Microscopy (LVSEM for E°<2 keV): the work function contrast. Involving the change of ϕ with crystalline orientation, this possibility is supported by a new interpretation of a few published images. Some other correlated contrasts are also suggested. These are topographical contrasts or contrasts due to subsurface particles and cracks. Practical considerations of the detection system and its optimization are indicated. - Highlights: • Refraction effects experienced by Back-Scattered Electrons at sample/vacuum interfaces are evaluated as a function of energy and angles. • Sensitive to local work function changes with crystalline orientation these effects concern mainly keV-electrons at low emerging angles. • A new type of contrast in SEM is thus deduced and illustrated. • Some other correlated contrasts, topographical contrasts or contrasts due to subsurface particles and cracks are also suggested.

  1. Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy.

    Bohannon, Kevin P; Holz, Ronald W; Axelrod, Daniel

    2017-10-01

    The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.

  2. Effects of small-angle mistilts on dopant visibility in ADF-STEM imaging of nanocrystals

    Held, Jacob T.; Duncan, Samuel; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu

    2017-06-15

    Highlights: • ADF-STEM is powerful technique for 3D location of substitutionally doped atoms. • The effects of specimen mistilt on ADF-STEM imaging of doped atoms are evaluated. • Visibility changes over 0–30 mrad mistilts are large enough to preclude 3D dopant location. • Dopant visibility is a strong function of specimen mistilt and cannot be ignored. - Abstract: Quantitative ADF-STEM imaging paired with image simulations has proven to be a powerful technique for determining the three dimensional location of substitutionally doped atoms in thin films. Expansion of this technique to lightly-doped nanocrystals requires an understanding of the influence of specimen mistilt on dopant visibility due to the difficulty of accurate orientation determination in such systems as well as crystal movement under the beam. In this study, the effects of specimen mistilt on ADF-STEM imaging are evaluated using germanium-doped silicon nanocrystals as model systems. It is shown that dopant visibility is a strong function of specimen mistilt, and the accuracy of specimen orientation is an important factor in the analysis of three-dimensional dopant location, but the sensitivity to mistilt can be weakened by increasing the STEM probe convergence angle and optimizing ADF detector inner angle.

  3. Impact of large field angles on the requirements for deformable mirror in imaging satellites

    Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij

    2018-04-01

    For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.

  4. Optimal Design of an Achromatic Angle-Insensitive Phase Retarder Used in MWIR Imaging Polarimetry

    Guo-Guo, Kang; Qiao-Feng, Tan; Guo-Fan, Jin

    2009-01-01

    Dielectric gratings with period in the range from λ/10 to λ/4 with λ being the illumination wavelength not only exclude higher order diffractions but also exhibit strong dispersion of effective indices which are proportional to the wavelength. Moreover, they are insensitive to the incident angle of the illumination wave. With these features, we can design a true zero-order achromatic and angle-insensitive phase retarder which can be used as the polarization state analyzer in middle wave infrared (MWIR) imaging polarimetry. A design method using effective medium theory is described, and the performance of the designed phase retarder is evaluated by rigorous coupled wave analysis theory. The calculation results demonstrate that the retardance deviates from 45° by < ±1.6° within a field of view ±10° over the MWIR bandwidth (3–5 μm). (fundamental areas of phenomenology (including applications))

  5. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront

    Jingkun Gao

    2016-12-01

    Full Text Available An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG-based nonuniform FFT (NUFFT is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section of targets in the terahertz regime.

  6. Advantages of magnifying narrow-band imaging for diagnosing colorectal cancer coexisting with sessile serrated adenoma/polyp.

    Chino, Akiko; Osumi, Hiroki; Kishihara, Teruhito; Morishige, Kenjiro; Ishikawa, Hirotaka; Tamegai, Yoshiro; Igarashi, Masahiro

    2016-04-01

    In the present study, we investigated the advantages of narrow-band imaging (NBI) for efficient diagnosis of sessile serrated adenoma/polyp (SSA/P). The main objective of this study was to analyze the characteristic features of cancer coexisting with serrated lesion by carrying out NBI. We evaluated 264 non-malignant serrated lesions by using three modalities (conventional white light colonoscopy, magnifying chromoendoscopy, and magnifying NBI). Of the evaluated cancer cases with serrated lesions, 37 fulfilled the inclusion criteria. In diagnosing non-malignant SSA/P, an expanded crypt opening (ECO) under magnifying NBI is a useful sign. One hundred and twenty-five lesions (87%) of observed ECO were, at the same time, detected to have type II open pit pattern, which is known to be a valuable indicator when using magnifying chromoendoscopy. ECO had high sensitivity of 80% for identifying SSA/P, with 62% specificity and 83% positive predictive value (PPV). In detecting the cancer with SSA/P, irregular vessels under magnifying NBI were frequently observed with 100% sensitivity and 99% specificity, 86% PPV and 100% negative predictive value. A focus on irregular vessels in serrated lesions might be useful for identification of cancer with SSA/P. This is an advantage of carrying out magnifying NBI in addition to being used simultaneously with other modalities by switching, and observations can be made by using wash-in water alone. We can carry out advanced examinations for selected lesions with irregular vessels. To confirm cancerous demarcation and invasion depth, a combination of all three aforementioned modalities should be done. © 2016 The Authors Digestive Endoscopy © 2016 Japan Gastroenterological Endoscopy Society.

  7. Narrow-band imaging (NBI for improving the assessment of vocal fold leukoplakia and overcoming the umbrella effect.

    H Klimza

    Full Text Available It is crucial to find a balance between functional and oncological outcome when choosing an adequate method for the management of vocal fold leukoplakia. Therefore, a detailed examination is a milestone in the decision-making process.To examine whether narrow-band imaging (NBI can be helpful in vocal fold assessment in the case of leukoplakia and how to overcome the "umbrella effect"- understood as the submucosal vascular pattern hidden under the plaque.Prospective cohort of 41 consecutive patients. Inclusion criteria: vocal fold leukoplakia, no previous procedures (surgery, radiotherapy, and preoperative endoscopy with an optical filter for NBI. Two groups: "suspicious" and "normal", according to the submucosal microvascular pattern of peripheral regions of the mucosa surrounding the plaque, were distinguished. Patients were qualified for a full-thickness or partial-thickness biopsy, respectively. Criteria defining suspected characters were well-demarcated brownish areas with scattered brown spots corresponding to type IV, Va, Vb, and Vc NI classifications.In 22/41 (53.7% patients with "suspected" microvascular pattern, full-thickness biopsy was performed. Moderate and severe dysplasia was revealed in 15 type IV and 7 type Va NI patients. In 19/41 (46.3% patients with proper NBI vessel pattern treated by partial-thickness biopsy, hyperkeratosis was diagnosed. There was a strong correlation between the NBI pattern and final histology: Chi2 (2 = 41.0 (p = 0.0000.The results demonstrate that NBI endoscopic assessment of the submucosal microvascular pattern of mucosa surrounding the plaque can be an effective method to categorise the risk in vocal fold leukoplakia prior to treatment.

  8. Investigating the Nanoporous Structure of Aluminosilicate Geopolymers with Small Angle Scattering and Imaging Techniques

    Maitland, C.F.; Buckley, C.E.; O'Connor, B.H.; Rowles, M.R.; Hart, R.D.; Gilbert, E.P.; Connolly, J.

    2005-01-01

    Full text: Rowles and O'Connor optimised the compressive strength of a geopolymer produced by sodium silicate-activation of metakaolinite, and found that this material may have a greater compressive strength than ordinary Portland cement. It has been observed that similar metakaolin-based geopolymers have a multiscale structure that consists of partially dissolved metakaolinite embedded in a nanoporous matrix. The characteristics of the nanostructure within this matrix influence the physical properties of the geopolymer. An investigation, using small-angle neutron scattering and imaging techniques, into how the matrix nanostructure varies with chemical composition of the starting material has been undertaken. The results of this investigation will be reported. (authors)

  9. Lorentz angle studies for the SLD endcap Cerenkov Ring Imaging Detector

    Coyle, P.; Cavalli-Sforza, M.; Coyne, D.

    1987-11-01

    The design of the endcap Cerenkov Ring Imaging Detectors for SLD requires a detailed understanding of how electrons drift in gases under the influence of crossed electric and magnetic fields. In this report, we present recent measurements of Lorentz angles and drift velocities in gases suitable for the endcap CRID photon detectors. We compare these measurements to predictions from a theoretical model; good agreement is observed. Based on our results we present a design for detectors operating in a 0.6 Tesla transverse magnetic field. 14 refs., 10 figs., 4 tabs

  10. Image acquisition optimization of a limited-angle intrafraction verification (LIVE) system for lung radiotherapy.

    Zhang, Yawei; Deng, Xinchen; Yin, Fang-Fang; Ren, Lei

    2018-01-01

    Limited-angle intrafraction verification (LIVE) has been previously developed for four-dimensional (4D) intrafraction target verification either during arc delivery or between three-dimensional (3D)/IMRT beams. Preliminary studies showed that LIVE can accurately estimate the target volume using kV/MV projections acquired over orthogonal view 30° scan angles. Currently, the LIVE imaging acquisition requires slow gantry rotation and is not clinically optimized. The goal of this study is to optimize the image acquisition parameters of LIVE for different patient respiratory periods and gantry rotation speeds for the effective clinical implementation of the system. Limited-angle intrafraction verification imaging acquisition was optimized using a digital anthropomorphic phantom (XCAT) with simulated respiratory periods varying from 3 s to 6 s and gantry rotation speeds varying from 1°/s to 6°/s. LIVE scanning time was optimized by minimizing the number of respiratory cycles needed for the four-dimensional scan, and imaging dose was optimized by minimizing the number of kV and MV projections needed for four-dimensional estimation. The estimation accuracy was evaluated by calculating both the center-of-mass-shift (COMS) and three-dimensional volume-percentage-difference (VPD) between the tumor in estimated images and the ground truth images. The robustness of LIVE was evaluated with varied respiratory patterns, tumor sizes, and tumor locations in XCAT simulation. A dynamic thoracic phantom (CIRS) was used to further validate the optimized imaging schemes from XCAT study with changes of respiratory patterns, tumor sizes, and imaging scanning directions. Respiratory periods, gantry rotation speeds, number of respiratory cycles scanned and number of kV/MV projections acquired were all positively correlated with the estimation accuracy of LIVE. Faster gantry rotation speed or longer respiratory period allowed less respiratory cycles to be scanned and less kV/MV projections

  11. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.

    2017-09-01

    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.

  12. Characterization of lipid films by an angle-interrogation surface plasmon resonance imaging device.

    Liu, Linlin; Wang, Qiong; Yang, Zhong; Wang, Wangang; Hu, Ning; Luo, Hongyan; Liao, Yanjian; Zheng, Xiaolin; Yang, Jun

    2015-04-01

    Surface topographies of lipid films have an important significance in the analysis of the preparation of giant unilamellar vesicles (GUVs). In order to achieve accurately high-throughput and rapidly analysis of surface topographies of lipid films, a homemade SPR imaging device is constructed based on the classical Kretschmann configuration and an angle interrogation manner. A mathematical model is developed to accurately describe the shift including the light path in different conditions and the change of the illumination point on the CCD camera, and thus a SPR curve for each sampling point can also be achieved, based on this calculation method. The experiment results show that the topographies of lipid films formed in distinct experimental conditions can be accurately characterized, and the measuring resolution of the thickness lipid film may reach 0.05 nm. Compared with existing SPRi devices, which realize detection by monitoring the change of the reflective-light intensity, this new SPRi system can achieve the change of the resonance angle on the entire sensing surface. Thus, it has higher detection accuracy as the traditional angle-interrogation SPR sensor, with much wider detectable range of refractive index. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view

    Percoco, Gianluca; Sánchez Salmerón, Antonio J.

    2015-09-01

    The measurement of millimetre and micro-scale features is performed by high-cost systems based on technologies with narrow working ranges to accurately control the position of the sensors. Photogrammetry would lower the costs of 3D inspection of micro-features and would be applicable to the inspection of non-removable micro parts of large objects too. Unfortunately, the behaviour of photogrammetry is not known when photogrammetry is applied to micro-features. In this paper, the authors address these issues towards the application of digital close-range photogrammetry (DCRP) to the micro-scale, taking into account that in literature there are research papers stating that an angle of view (AOV) around 10° is the lower limit to the application of the traditional pinhole close-range calibration model (CRCM), which is the basis of DCRP. At first a general calibration procedure is introduced, with the aid of an open-source software library, to calibrate narrow AOV cameras with the CRCM. Subsequently the procedure is validated using a reflex camera with a 60 mm macro lens, equipped with extension tubes (20 and 32 mm) achieving magnification of up to 2 times approximately, to verify literature findings with experimental photogrammetric 3D measurements of millimetre-sized objects with micro-features. The limitation experienced by the laser printing technology, used to produce the bi-dimensional pattern on common paper, has been overcome using an accurate pattern manufactured with a photolithographic process. The results of the experimental activity prove that the CRCM is valid for AOVs down to 3.4° and that DCRP results are comparable with the results of existing and more expensive commercial techniques.

  14. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view

    Percoco, Gianluca; Sánchez Salmerón, Antonio J

    2015-01-01

    The measurement of millimetre and micro-scale features is performed by high-cost systems based on technologies with narrow working ranges to accurately control the position of the sensors. Photogrammetry would lower the costs of 3D inspection of micro-features and would be applicable to the inspection of non-removable micro parts of large objects too. Unfortunately, the behaviour of photogrammetry is not known when photogrammetry is applied to micro-features.In this paper, the authors address these issues towards the application of digital close-range photogrammetry (DCRP) to the micro-scale, taking into account that in literature there are research papers stating that an angle of view (AOV) around 10° is the lower limit to the application of the traditional pinhole close-range calibration model (CRCM), which is the basis of DCRP.At first a general calibration procedure is introduced, with the aid of an open-source software library, to calibrate narrow AOV cameras with the CRCM. Subsequently the procedure is validated using a reflex camera with a 60 mm macro lens, equipped with extension tubes (20 and 32 mm) achieving magnification of up to 2 times approximately, to verify literature findings with experimental photogrammetric 3D measurements of millimetre-sized objects with micro-features. The limitation experienced by the laser printing technology, used to produce the bi-dimensional pattern on common paper, has been overcome using an accurate pattern manufactured with a photolithographic process.The results of the experimental activity prove that the CRCM is valid for AOVs down to 3.4° and that DCRP results are comparable with the results of existing and more expensive commercial techniques. (paper)

  15. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    Ishikawa, Ryo, E-mail: ishikawa@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, University of Tokyo, Tokyo 113-8656 (Japan); Lupini, Andrew R. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinuma, Yoyo [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Pennycook, Stephen J. [Department of Materials Science and Engineering, The University of Tennessee, 328 Ferris Hall, Knoxville, TN 37996 (United States)

    2015-04-15

    To fully understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us to measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation. - Highlights: • We theoretically demonstrate 3D near-atomic depth resolution imaging by large-angle illumination STEM. • This method can be useful to identify the depth of single dopants, single vacancies within materials. • This method can be useful to determine reconstructed surface atomic structures.

  16. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging

    Beyer, Andreas, E-mail: andreas.beyer@physik.uni-marburg.de; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-15

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible. - Highlights: • Atomic resolution high angle annular dark field images of gallium phosphide are compared quantitatively with simulated ones. • The influence of partial spatial and temporal coherence on the HAADF-intensity is investigated. • The influence of amorphous layers introduced by the sample preparation is simulated.

  17. A wide angle view imaging diagnostic with all reflective, in-vessel optics at JET

    Clever, M. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, 52425 Jülich (Germany); Arnoux, G.; Balshaw, N. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Garcia-Sanchez, P. [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Patel, K. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sergienko, G. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, 52425 Jülich (Germany); Soler, D. [Winlight System, 135 rue Benjamin Franklin, ZA Saint Martin, F-84120 Pertuis (France); Stamp, M.F.; Williams, J.; Zastrow, K.-D. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► A new wide angle view camera system has been installed at JET. ► The system helps to protect the ITER-like wall plasma facing components from damage. ► The coverage of the vessel by camera observation systems was increased. ► The system comprises an in-vessel part with parabolic and flat mirrors. ► The required image quality for plasma monitoring and wall protection was delivered. -- Abstract: A new wide angle view camera system has been installed at JET in preparation for the ITER-like wall campaigns. It considerably increases the coverage of the vessel by camera observation systems and thereby helps to protect the – compared to carbon – more fragile plasma facing components from damage. The system comprises an in-vessel part with parabolic and flat mirrors and an ex-vessel part with beam splitters, lenses and cameras. The system delivered the image quality required for plasma monitoring and wall protection.

  18. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  19. Office-based narrow band imaging-guided flexible laryngoscopy tissue sampling: A cost-effectiveness analysis evaluating its impact on Taiwanese health insurance program

    Fang, Tuan-Jen; Li, Hsueh-Yu; Liao, Chun-Ta; Chiang, Hui-Chen; Chen, I-How

    2015-01-01

    Narrow band imaging (NBI)-guided flexible laryngoscopy tissue sampling for laryngopharyngeal lesions is a novel technique. Patients underwent the procedure in an office-based setting without being sedated, which is different from the conventional technique performed using direct laryngoscopy. Although the feasibility and effects of this procedure were established, its financial impact on the institution and Taiwanese National Health Insurance program was not determined. Methods: This is a ...

  20. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  1. The visible to the near infrared narrow band acousto-optic tunable filter and the hyperspectral microscopic imaging on biomedicine study

    Zhang, Chunguang; Wang, Hao; Huang, Junfeng; Gao, Qiang

    2014-01-01

    Based on the parallel tangents momentum-matching condition, a narrow band noncollinear acousto-optic tunable filter (AOTF) using a single TeO 2 crystal is designed with the consideration of the birefringence and the rotatory property of the material. An effective setup is established to evaluate the performance of the designed AOTF. The experimental observed spectrum pattern of the diffracted light is nearly the same with the theoretical result. The measured tuning relationship between the diffracted central optical wavelength and acoustic frequency is in accordance with the theoretical prospect. The optical bandwidth of the diffracted light is as narrow as 1.88 nm when the central wavelength is 556.75 nm. The high spectral resolution is significant in practical applications of imaging AOTF. Additionally, the AOTF based hyperspectral microscopic imaging system is established. The stability and the image resolution of the designed narrow band AOTF are satisfying. Finally, the study of the biologic samples indicates the feasibility of our system on biomedicine. (paper)

  2. Angle-independent measure of motion for image-based gating in 3D coronary angiography

    Lehmann, Glen C.; Holdsworth, David W.; Drangova, Maria

    2006-01-01

    The role of three-dimensional (3D) image guidance for interventional procedures and minimally invasive surgeries is increasing for the treatment of vascular disease. Currently, most interventional procedures are guided by two-dimensional x-ray angiography, but computed rotational angiography has the potential to provide 3D geometric information about the coronary arteries. The creation of 3D angiographic images of the coronary arteries requires synchronization of data acquisition with respect to the cardiac cycle, in order to minimize motion artifacts. This can be achieved by inferring the extent of motion from a patient's electrocardiogram (ECG) signal. However, a direct measurement of motion (from the 2D angiograms) has the potential to improve the 3D angiographic images by ensuring that only projections acquired during periods of minimal motion are included in the reconstruction. This paper presents an image-based metric for measuring the extent of motion in 2D x-ray angiographic images. Adaptive histogram equalization was applied to projection images to increase the sharpness of coronary arteries and the superior-inferior component of the weighted centroid (SIC) was measured. The SIC constitutes an image-based metric that can be used to track vessel motion, independent of apparent motion induced by the rotational acquisition. To evaluate the technique, six consecutive patients scheduled for routine coronary angiography procedures were studied. We compared the end of the SIC rest period (ρ) to R-waves (R) detected in the patient's ECG and found a mean difference of 14±80 ms. Two simultaneous angular positions were acquired and ρ was detected for each position. There was no statistically significant difference (P=0.79) between ρ in the two simultaneously acquired angular positions. Thus we have shown the SIC to be independent of view angle, which is critical for rotational angiography. A preliminary image-based gating strategy that employed the SIC was

  3. Image-based Modeling of PSF Deformation with Application to Limited Angle PET Data

    Matej, Samuel; Li, Yusheng; Panetta, Joseph; Karp, Joel S.; Surti, Suleman

    2016-01-01

    The point-spread-functions (PSFs) of reconstructed images can be deformed due to detector effects such as resolution blurring and parallax error, data acquisition geometry such as insufficient sampling or limited angular coverage in dual-panel PET systems, or reconstruction imperfections/simplifications. PSF deformation decreases quantitative accuracy and its spatial variation lowers consistency of lesion uptake measurement across the imaging field-of-view (FOV). This can be a significant problem with dual panel PET systems even when using TOF data and image reconstruction models of the detector and data acquisition process. To correct for the spatially variant reconstructed PSF distortions we propose to use an image-based resolution model (IRM) that includes such image PSF deformation effects. Originally the IRM was mostly used for approximating data resolution effects of standard PET systems with full angular coverage in a computationally efficient way, but recently it was also used to mitigate effects of simplified geometric projectors. Our work goes beyond this by including into the IRM reconstruction imperfections caused by combination of the limited angle, parallax errors, and any other (residual) deformation effects and testing it for challenging dual panel data with strongly asymmetric and variable PSF deformations. We applied and tested these concepts using simulated data based on our design for a dedicated breast imaging geometry (B-PET) consisting of dual-panel, time-of-flight (TOF) detectors. We compared two image-based resolution models; i) a simple spatially invariant approximation to PSF deformation, which captures only the general PSF shape through an elongated 3D Gaussian function, and ii) a spatially variant model using a Gaussian mixture model (GMM) to more accurately capture the asymmetric PSF shape in images reconstructed from data acquired with the B-PET scanner geometry. Results demonstrate that while both IRMs decrease the overall uptake

  4. Effect of mandibular plane angle on image dimensions in linear tomography

    Bashizadeh Fakhar H

    2011-02-01

    Full Text Available "nBackground and Aims: Accurate bone measurements are essential for determining the optimal size and length of proposed implants. The radiologist should be aware of the head position effects on image dimensions in each imaging technique. The purpose of this study was to evaluate the effect of mandibular plane angle on image dimensions in linear tomography."nMaterials and Methods: In this in vitro study, the vertical dimensions of linear tomograms taken from 3 dry mandibles in different posteroantenior or mediolateral tilts were compared with actual condition. In order to evaluate the effects of head position in linear tomography, 16 series of images while mandibular plane angle was tilted with 5, 10, 15 and 20 degrees in anterior, posterior, medial, or lateral angulations as well as a series of standard images without any tilt in mandibular position were taken. Vertical distances between the alveolar crest and the superior border of the inferior alveolar canal were measured in posterior mandible and the vertical distances between the alveolar crest and inferior rim were measured in anterior mandible in 12 sites of tomograms. Each bone was then sectioned through the places marked with a radiopaque object. The radiographic values were compared with the real conditions. Repeat measure ANOVA was used to analyze the data."nResults: The findings of this study showed that there was significant statistical difference between standard position and 15º posteroanterior tilt (P<0.001. Also there was significant statistical difference between standard position and 10º lateral tilt (P<0.008, 15º tilt (P<0.001, and 20º upward tilt (P<0.001. In standard mandibular position with no tilt, the mean exact error was the same in all regions (0.22±0.19 mm except the premolar region which the mean exact error was calculated as 0.44±0.19 mm. The most mean exact error among various postroanterior tilts was seen in 20º lower tilt in the canine region (1±0.88 mm

  5. Posterior Vitreous Detachment as Observed by Wide-Angle OCT Imaging.

    Tsukahara, Mayuka; Mori, Keiko; Gehlbach, Peter L; Mori, Keisuke

    2018-04-06

    Posterior vitreous detachment (PVD) plays an important role in vitreoretinal interface disorders. Historically, observations of PVD using OCT have been limited to the macular region. The purpose of this study is to image the wide-angle vitreoretinal interface after PVD in normal subjects using montaged OCT images. An observational cross-sectional study. A total of 144 healthy eyes of 98 normal subjects aged 21 to 95 years (51.4±22.0 [mean ± standard deviation]). Montaged images of horizontal and vertical OCT scans through the fovea were obtained in each subject. Montaged OCT images. By using wide-angle OCT, we imaged the vitreoretinal interface from the macula to the periphery. PVD was classified into 5 stages: stage 0, no PVD (2 eyes, both aged 21 years); stage 1, peripheral PVD limited to paramacular to peripheral zones (88 eyes, mean age 38.9±16.2 years, mean ± standard deviation); stage 2, perifoveal PVD extending to the periphery (12 eyes, mean age 67.9±8.4 years); stage 3, peripapillary PVD with persistent vitreopapillary adhesion alone (7 eyes, mean age 70.9±11.9 years); stage 4, complete PVD (35 eyes, mean age 75.1±10.1 years). All stage 1 PVDs (100%) were observed in the paramacular to peripheral region where the vitreous gel adheres directly to the cortical vitreous and retinal surface. After progression to stage 2 PVD, the area of PVD extends posteriorly to the perifovea and anteriorly to the periphery. Vitreoschisis was observed in 41.2% at PVD initiation (stage 1a). Whereas prior work suggests that PVD originates in the perifoveal region and after the sixth decade, our observations demonstrate that (1) PVD first appears even in the third decade of life and gradually appears more extensively throughout life; (2) more than 40% of eyes without fundus diseases at their PVD initiation are associated with vitreoschisis; and (3) PVD is first noted primarily in the paramacular-peripheral region where vitreous gel adheres to the retinal surface and is

  6. Experimental evaluation of interfaces using atomic-resolution high angle annular dark field (HAADF) imaging

    Robb, Paul D.; Finnie, Michael; Longo, Paolo; Craven, Alan J.

    2012-01-01

    Aberration-corrected high angle annular dark field (HAADF) imaging in scanning transmission electron microscopy (STEM) can now be performed at atomic-resolution. This is an important tool for the characterisation of the latest semiconductor devices that require individual layers to be grown to an accuracy of a few atomic layers. However, the actual quantification of interfacial sharpness at the atomic-scale can be a complicated matter. For instance, it is not clear how the use of the total, atomic column or background HAADF signals can affect the measured sharpness or individual layer widths. Moreover, a reliable and consistent method of measurement is necessary. To highlight these issues, two types of AlAs/GaAs interfaces were studied in-depth by atomic-resolution HAADF imaging. A method of analysis was developed in order to map the various HAADF signals across an image and to reliably determine interfacial sharpness. The results demonstrated that the level of perceived interfacial sharpness can vary significantly with specimen thickness and the choice of HAADF signal. Individual layer widths were also shown to have some dependence on the choice of HAADF signal. Hence, it is crucial to have an awareness of which part of the HAADF signal is chosen for analysis along with possible specimen thickness effects for future HAADF studies performed at the scale of a few atomic layers. -- Highlights: ► Quantification of interfaces using atomic-scale HAADF imaging is considered. ► The sharpness of AlAs/GaAs interfaces is investigated. ► A method of analysis was developed to map the various HAADF signals in an image. ► Measured sharpness varies with specimen thickness and HAADF signal type.

  7. The consequences of multiplexing and limited view angle in coded-aperture imaging

    Smith, W.E.; Barrett, H.H.; Paxman, R.G.

    1984-01-01

    Coded-aperture imaging (CAI) is a method for reconstructing distributions of radionuclide tracers that offers advantages over ECT and PET; namely, many views can be taken simultaneously without detector motion, and large numbers of photons are utilized since collimators are not required. However, because of this type of data acquisition, the coded image suffers from multiplexing; i.e., more than one object point may be mapped to each detector in the coded image. To investigate the dependence of the reconstruction on multiplexing, the authors reconstruct a simulated two-dimensional circular object from multiplexed one-dimensional coded-image data, then perform the reconstruction from un-multiplexed data. Each of these reconstructions are produced both from noise-free and noisy simulated data. To investigate the dependence on view angle, the authors reconstruct two simulated three-dimensional objects; a spherical phantom, and a series of point-like objects arranged nearly in a plane. Each of these reconstructions are from multiplexed two-dimensional coded-image data, first using two orthogonal views, and then a single viewing direction. The two-dimensional reconstructions demonstrate that, in the noise-free case, the multiplexing of the data does not seriously affect the reconstruction equality and that in the noisy-data case, the multiplexing helps, due to the fact that more photons are collected. Also, for point-like objects confined to a near-planar region of space, the authors show that restricted views can give satisfactory results, but that, for a large, three-dimensional object, a more complete viewing geometry is required

  8. Significance of operator variation and the angle of illumination in lineament analysis on synoptic images. [LANDSAT geological investigations

    Siegal, B. S.; Short, N. M.

    1977-01-01

    The significance of operator variation and the angle of illumination in acquired imagery is analyzed for lineament analysis. Five operators analyzed a LANDSAT image and four photographs of a plastic relief map illuminated at a low angle from varying directions of the Prescott, Arizona region. Significant differences were found in both number and length of the lineaments recognized by the different investigators for the images. The actual coincidence of lineaments recognized by the investigators for the same image is exceptionally low. Even the directional data on lineament orientation is significantly different from operator to operator and from image to image. Cluster analysis of the orientation data displays a clustering by operators rather than by images. It is recommended that extreme caution be taken before attempting to compare different investigators' results in lineament analysis.

  9. DETERMINATION OF STEERING WHEEL ANGLES DURING CAR ALIGNMENT BY IMAGE ANALYSIS METHODS

    M. Mueller

    2016-06-01

    Full Text Available Optical systems for automatic visual inspections are of increasing importance in the field of automation in the industrial domain. A new application is the determination of steering wheel angles during wheel track setting of the final inspection of car manufacturing. The camera has to be positioned outside the car to avoid interruptions of the processes and therefore, oblique images of the steering wheel must be acquired. Three different approaches of computer vision are considered in this paper, i.e. a 2D shape-based matching (by means of a plane to plane rectification of the oblique images and detection of a shape model with a particular rotation, a 3D shape-based matching approach (by means of a series of different perspectives of the spatial shape of the steering wheel derived from a CAD design model and a point-to-point matching (by means of the extraction of significant elements (e.g. multifunctional buttons of a steering wheel and a pairwise connection of these points to straight lines. The HALCON system (HALCON, 2016 was used for all software developments and necessary adaptions. As reference a mechanical balance with an accuracy of 0.1° was used. The quality assessment was based on two different approaches, a laboratory test and a test during production process. In the laboratory a standard deviation of ±0.035° (2D shape-based matching, ±0.12° (3D approach and ±0.029° (point-to-point matching could be obtained. The field test of 291 measurements (27 cars with varying poses and angles of the steering wheel results in a detection rate of 100% and ±0.48° (2D matching and ±0.24° (point-to-point matching. Both methods also fulfil the request of real time processing (three measurements per second.

  10. Measurement of angles of abduction for diagnosis of shoulder instability in dogs using goniometry and digital image analysis.

    Cook, James L; Renfro, Daniel C; Tomlinson, James L; Sorensen, Jill E

    2005-01-01

    To compare abduction angles of shoulders with medial instability and unaffected shoulders in the same dogs and in age- and breed-matched dogs. Case-control study. Dogs with medial instability of the shoulder (n=33) and 26 control dogs. Dogs were sedated and positioned in lateral recumbency with both scapulas parallel to the table. With the elbow and shoulder in extension, the non-recumbent limb was maximally abducted and the angle between the scapular spine and lateral aspect of the brachium measured with a goniometer; a digital image was taken from the cranial aspect. Both techniques were performed in triplicate by 2 examiners. Mean abduction angles for each shoulder were determined from goniometric measurements and image analysis. Data were analyzed for significant differences between affected and unaffected shoulders, measurement techniques, and examiners. Strength of correlation between measurement techniques was determined. Mean abduction angles for shoulders with instability (53.7+/-4.7 degrees goniometric, 51.2+/-4.9 degrees image) were significantly (P<.001) larger than for all unaffected shoulders (32.6+/-2.0 degrees goniometric, 30.9+/-2.3 degrees image). In dogs diagnosed with instability, affected shoulders had significantly (P<.001) larger abduction angles than the contralateral (unaffected) shoulders. No significant differences were identified between right and left shoulders for control dogs, measurement techniques, or examiners. A strong (r=0.90) significant (P<.001) positive correlation between measurement techniques was noted. Shoulder abduction angles measured under sedation provide objective data for diagnosis of shoulder instability in dogs. Shoulders with clinical and arthroscopic evidence of medial instability have significantly higher abduction angles than shoulders that are considered normal. Determination of shoulder abduction angles should be included in the diagnostic protocol for forelimb lameness assessment in dogs.

  11. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  12. Azimuth and angle gathers from wave equation imaging in VTI media

    Alkhalifah, Tariq Ali; Fomel, Sergey B.

    2009-01-01

    by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-space-frequency planes into angle-space planes simultaneously

  13. 3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle

    Lim, Chung Hwang; Bae, Sung Jin

    2009-01-01

    This study presents the optimization of flip angle (FA) to obtain higher contrast to noise ratio (CNR) and lower specific absorption rate (SAR). T1-weighted images of the cerebrum of brain were obtained from 50 degrees to 130 degrees FA with 10 interval. Signal to noise ratios (SNRs) were calculated for white matter (WM), gray matter (GM), and background noise. The proper FA was analyzed by T-test statistics and Kruskal-wallis analysis using R1 = 1- exp (-TR/T1) and Ernst angle cos = exp ((-TR/T1). The SNR of WM at 130 degrees FA is approximately 1.6 times higher than the SNR of WM at 50 degrees. The SNR of GM at 130 degrees FA is approximately 1.9 times higher than the SNR of GM at 50 degrees. Although the SNRs of WM and GM showed similar trends with the change of FA values, the slowdown point of decrease after linear fitting were different. While the SNR of WM started decreasing at 120 degrees FA, the SNR of GM started decreasing at less than 110 degrees. The highest SNRs of WM and GM were obtained at 130 degrees FA. The highest CNRs, however, were obtained at 80 degrees FA. Although SNR increased with the change of FA values from 50 degrees to 130 degrees at 3T SE T1WI, CNR was higher at 80 degrees FA than at the usually used 90 degrees FA. In addition, the SAR was decreased by using smaller FA. The CNR can be increased by using this optimized FA at 3T MR SE T1WI.

  14. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle

    Woehl, Taylor, E-mail: tjwoehl@umd.edu; Keller, Robert

    2016-12-15

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30 kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150 mrad) and on thick substrates (>50 nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. - Highlights: • Developed a

  15. Estimation of carrying angle based on CT images in preoperative surgical planning for cubitus deformities

    Park, Shinsuk; Kim, Eugene

    2009-01-01

    Conventionally, the carrying angle of the elbow is measured using simple two-dimensional radiography or goniometry, which has questionable reliability. This study proposes a novel method for estimating carrying angles using computed tomography that can enhance the reliability of the angle measurement. Data of CT scans from 25 elbow joints were processed to build segmented three-dimensional models. The cross-sectional centerlines of the ulna and the humerus were traced from the 3D models, and the angle between 2 vectors formed from the centerlines of the humerus and the ulna was defined as the 'three-dimensional carrying angle.' These angles were compared with those measured by simple radiograph. Two cases of angular deformity were underwent surgery based on this preoperative surgical planning, and the postoperative 3D carrying angles were evaluated using the proposed method. The mean value of the calculated three-dimensional carrying angle was 20.7deg±3.61, while it was 16.3deg±3.21 based on simple radiography without statistical difference. Based on the 3D carrying angle estimations, 2 surgical cases of cubitus deformities were planned by comparison with the normal contra-lateral elbow. Postoperative angle estimations confirmed that the corrected angles were nearly identical to the planned angles for both cases. The results of this study showed that the carrying angle can be accurately estimated using three-dimensional CT and that the proposed method is useful in evaluating deformities of the elbow with high reliability. (author)

  16. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La 0.7 Sr 0.3 MnO 3 (LSMO) and Nd 0.5 Sr 0.5 MnO 3 , in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Learning binary code via PCA of angle projection for image retrieval

    Yang, Fumeng; Ye, Zhiqiang; Wei, Xueqi; Wu, Congzhong

    2018-01-01

    With benefits of low storage costs and high query speeds, binary code representation methods are widely researched for efficiently retrieving large-scale data. In image hashing method, learning hashing function to embed highdimensions feature to Hamming space is a key step for accuracy retrieval. Principal component analysis (PCA) technical is widely used in compact hashing methods, and most these hashing methods adopt PCA projection functions to project the original data into several dimensions of real values, and then each of these projected dimensions is quantized into one bit by thresholding. The variances of different projected dimensions are different, and with real-valued projection produced more quantization error. To avoid the real-valued projection with large quantization error, in this paper we proposed to use Cosine similarity projection for each dimensions, the angle projection can keep the original structure and more compact with the Cosine-valued. We used our method combined the ITQ hashing algorithm, and the extensive experiments on the public CIFAR-10 and Caltech-256 datasets validate the effectiveness of the proposed method.

  18. Automated 3D quantitative assessment and measurement of alpha angles from the femoral head-neck junction using MR imaging

    Xia, Ying; Chandra, Shekhar S; Crozier, Stuart; Fripp, Jurgen; Walker, Duncan; Engstrom, Craig

    2015-01-01

    To develop an automated approach for 3D quantitative assessment and measurement of alpha angles from the femoral head-neck (FHN) junction using bone models derived from magnetic resonance (MR) images of the hip joint.Bilateral MR images of the hip joints were acquired from 30 male volunteers (healthy active individuals and high-performance athletes, aged 18–49 years) using a water-excited 3D dual echo steady state (DESS) sequence. In a subset of these subjects (18 water-polo players), additional True Fast Imaging with Steady-state Precession (TrueFISP) images were acquired from the right hip joint. For both MR image sets, an active shape model based algorithm was used to generate automated 3D bone reconstructions of the proximal femur. Subsequently, a local coordinate system of the femur was constructed to compute a 2D shape map to project femoral head sphericity for calculation of alpha angles around the FHN junction. To evaluate automated alpha angle measures, manual analyses were performed on anterosuperior and anterior radial MR slices from the FHN junction that were automatically reformatted using the constructed coordinate system.High intra- and inter-rater reliability (intra-class correlation coefficients  >  0.95) was found for manual alpha angle measurements from the auto-extracted anterosuperior and anterior radial slices. Strong correlations were observed between manual and automatic measures of alpha angles for anterosuperior (r  =  0.84) and anterior (r  =  0.92) FHN positions. For matched DESS and TrueFISP images, there were no significant differences between automated alpha angle measures obtained from the upper anterior quadrant of the FHN junction (two-way repeated measures ANOVA, F  <  0.01, p  =  0.98).Our automatic 3D method analysed MR images of the hip joints to generate alpha angle measures around the FHN junction circumference with very good reliability and reproducibility. This work has the

  19. Peritoneal vascular density assessment using narrow-band imaging and vascular analysis software, and cytokine analysis in women with and without endometriosis.

    Kuroda, Keiji; Kitade, Mari; Kikuchi, Iwaho; Kumakiri, Jun; Matsuoka, Shozo; Kuroda, Masako; Takeda, Satoru

    2010-01-01

    The development and onset of endometriosis is associated with angiogenesis and angiogenic factors including cytokines. We analyzed intrapelvic conditions in women with endometriosis via vascular density assessment of grossly normal peritoneum and determination of cytokine levels in peritoneal fluid. Seventy-three patients underwent laparoscopic surgery because of gynecologic disease including endometriosis in our department using a narrow-band imaging system. Each patient was analyzed for peritoneal vascular density using commercially available vascular analysis software (SolemioENDO ProStudy; Olympus Corp, Tokyo, Japan). Each patient was also subjected to analysis of interleukin 6 (IL-6), IL-8, tumor necrosis factor-alpha, and vascular endothelial growth factor concentrations in peritoneal fluid. We defined 4 groups as follows: group 1, endometriosis: gonadotropin-releasing hormone (GnRH) agonist administration group (n=27); group 2, endometriosis: GnRH agonist nonadministration group (n=15); group 3, no endometriosis: GnRH agonist administration group (n=18); and group 4, no endometriosis: GnRH agonist nonadministration group (n=13). No significant differences in peritoneal vascular density between the 4 groups were found under conventional light; however, under narrow-band light, vascular density in the endometriosis groups (groups 1 and 2) was significantly higher. Cytokine analysis of the 4 groups determined that IL-6 and IL-8 concentrations were significantly higher compared with the no endometriosis groups (groups 3 and 4). Tumor necrosis factor-alpha and vascular endothelial growth factor concentrations were not significantly different between groups. In endometriosis, peritoneal vascular density was significantly higher as assessed using the narrow-band imaging system and SolemioENDO ProStudy, whereas GnRH agonist did not obviously decrease vascular density but IL-6 concentration was lower in the GnRH agonist administration group. Copyright (c) 2010 AAGL

  20. HIGH RESOLUTION He i 10830 Å NARROW-BAND IMAGING OF AN M-CLASS FLARE. I. ANALYSIS OF SUNSPOT DYNAMICS DURING FLARING

    Wang, Ya; Su, Yingna; Hong, Zhenxiang; Ji, Haisheng [Key Laboratory of DMSA, Purple Mountain Observatory, CAS, Nanjing, 210008 (China); Zeng, Zhicheng; Goode, Philip R.; Cao, Wenda [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, Kaifan [Yunnan Astronomical Observatories, Kunming 650011 (China)

    2016-12-20

    In this paper, we report our first-step results of high resolution He i 10830 Å narrow-band imaging (bandpass: 0.5 Å) of an M1.8 class two-ribbon flare on 2012 July 5. The flare was observed with the 1.6 m aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes; both take the form of absorption in the 10830 Å narrow-band images. From a space–time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspot’s penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a return of the absorption strip with similar speed. We tentatively explain the phenomena as the result of a sudden increase in the density of ortho-helium atoms in the area of the sunspot being excited by the flare’s extreme ultraviolet illumination. This explanation is based on the observation that 10830 Å absorption around the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.

  1. Automated 3D quantitative assessment and measurement of alpha angles from the femoral head-neck junction using MR imaging

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Walker, Duncan; Crozier, Stuart; Engstrom, Craig

    2015-10-01

    To develop an automated approach for 3D quantitative assessment and measurement of alpha angles from the femoral head-neck (FHN) junction using bone models derived from magnetic resonance (MR) images of the hip joint. Bilateral MR images of the hip joints were acquired from 30 male volunteers (healthy active individuals and high-performance athletes, aged 18-49 years) using a water-excited 3D dual echo steady state (DESS) sequence. In a subset of these subjects (18 water-polo players), additional True Fast Imaging with Steady-state Precession (TrueFISP) images were acquired from the right hip joint. For both MR image sets, an active shape model based algorithm was used to generate automated 3D bone reconstructions of the proximal femur. Subsequently, a local coordinate system of the femur was constructed to compute a 2D shape map to project femoral head sphericity for calculation of alpha angles around the FHN junction. To evaluate automated alpha angle measures, manual analyses were performed on anterosuperior and anterior radial MR slices from the FHN junction that were automatically reformatted using the constructed coordinate system. High intra- and inter-rater reliability (intra-class correlation coefficients  >  0.95) was found for manual alpha angle measurements from the auto-extracted anterosuperior and anterior radial slices. Strong correlations were observed between manual and automatic measures of alpha angles for anterosuperior (r  =  0.84) and anterior (r  =  0.92) FHN positions. For matched DESS and TrueFISP images, there were no significant differences between automated alpha angle measures obtained from the upper anterior quadrant of the FHN junction (two-way repeated measures ANOVA, F  hip joints to generate alpha angle measures around the FHN junction circumference with very good reliability and reproducibility. This work has the potential to improve analyses of cam-type lesions of the FHN junction for large

  2. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone

    Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian

    2018-06-01

    Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.

  3. Testing the Feasibility of Using PERM to Apply Scattering-Angle Filtering in the Image-Domain for FWI Applications

    Alzahrani, Hani Ataiq

    2014-09-01

    ABSTRACT Testing the Feasibility of Using PERM to Apply Scattering-Angle Filtering in the Image-Domain for FWI Applications Hani Ataiq Alzahrani Full Waveform Inversion (FWI) is a non-linear optimization problem aimed to estimating subsurface parameters by minimizing the mis t between modeled and recorded seismic data using gradient descent methods, which are the only practical choice because of the size of the problem. Due to the high non-linearity of the problem, gradient methods will converge to a local minimum if the starting model is not close to the true one. The accuracy of the long-wavelength components of the initial model controls the level of non-linearity of the inversion. In order for FWI to converge to the global minimum, we have to obtain the long wavelength components of the model before inverting for the short wavelengths. Ultra-low temporal frequencies are sensitive to the smooth (long wavelength) part of the model, and can be utilized by waveform inversion to resolve that part. Un- fortunately, frequencies in this range are normally missing in eld data due to data- acquisition limitations. The lack of low frequencies can be compensated for by uti- lizing wide-aperture data, as they include arrivals that are especially sensitive to the long wavelength components of the model. The higher the scattering angle of a 5 recorded event, the higher the model wavelength it can resolve. Based on this prop- erty, a scattering-angle ltering algorithm is proposed to start the inversion process with events corresponding to the highest scattering angle available in the data, and then include lower scattering angles progressively. The large scattering angles will resolve the smooth part of the model and reduce the non-linearity of the problem, then the lower ones will enhance the resolution of the model. Recorded data is rst migrated using Pre-stack Exploding Re ector Migration (PERM), then the resulting pre-stack image is transformed into angle gathers to which

  4. Accurate Angle Estimator for High-Frame-rate 2-D Vector Flow Imaging

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Lindskov Hansen, Kristoffer

    2016-01-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using...

  5. Agreement between image grading of conventional (45°) and ultra wide-angle (200°) digital images in the macula in the Reykjavik eye study.

    Csutak, A; Lengyel, I; Jonasson, F; Leung, I; Geirsdottir, A; Xing, W; Peto, T

    2010-10-01

    To establish the agreement between image grading of conventional (45°) and ultra wide-angle (200°) digital images in the macula. In 2008, the 12-year follow-up was conducted on 573 participants of the Reykjavik Eye Study. This study included the use of the Optos P200C AF ultra wide-angle laser scanning ophthalmoscope alongside Zeiss FF 450 conventional digital fundus camera on 121 eyes with or without age-related macular degeneration using the International Classification System. Of these eyes, detailed grading was carried out on five cases each with hard drusen, geographic atrophy and chorioretinal neovascularisation, and six cases of soft drusen. Exact agreement and κ-statistics were calculated. Comparison of the conventional and ultra wide-angle images in the macula showed an overall 96.43% agreement (κ=0.93) with no disagreement at end-stage disease; although in one eye chorioretinal neovascularisation was graded as drusenoid pigment epithelial detachment. Of patients with drusen only, the exact agreement was 96.1%. The detailed grading showed no clinically significant disagreement between the conventional 45° and 200° images. On the basis of our results, there is a good agreement between grading conventional and ultra wide-angle images in the macula.

  6. Multi-Angle Imager for Aerosols (MAIA) Investigation of Airborne Particle Health Impacts

    Diner, D. J.

    2016-12-01

    Airborne particulate matter (PM) is a well-known cause of heart disease, cardiovascular and respiratory illness, low birth weight, and lung cancer. The Global Burden of Disease (GBD) Study ranks PM as a major environmental risk factor worldwide. Global maps of PM2.5concentrations derived from satellite instruments, including MISR and MODIS, have provided key contributions to the GBD and many other health-related investigations. Although it is well established that PM exposure increases the risks of mortality and morbidity, our understanding of the relative toxicity of specific PM types is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. The satellite instrument that is part of the investigation is a multiangle, multispectral, and polarimetric camera system based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA was selected for funding in March 2016. Estimates of the abundances of different aerosol types from the WRF-Chem model will be combined with MAIA instrument data. Geostatistical models derived from collocated surface and MAIA retrievals will then be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents, including sulfate, nitrate, organic carbon, black carbon, and dust. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. MAIA launch is planned for early in the next decade. The MAIA instrument incorporates a pair of cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. Primary Target Areas (PTAs) on five continents are chosen to include major population centers covering a range of PM concentrations and particle types, surface-based aerosol sunphotometers

  7. Spatio-temporal encoding using narrow-band linear frequency modulated signals in synthetic aperture ultrasound imaging

    Gran, Fredrik; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a method for spatio-temporal encoding is presented for synthetic transmit aperture ultrasound imaging (STA). The purpose is to excite several transmitters at the same time in order to transmit more acoustic energy in every single transmission. When increasing the transmitted acousti...

  8. Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma.

    Lai, Isabel; Mak, Heather; Lai, Gilda; Yu, Marco; Lam, Dennis S C; Leung, Christopher K S

    2013-06-01

    To investigate the use of swept-source optical coherence tomography (OCT) for measuring the area and degree of peripheral anterior synechia (PAS) involvement in patients with angle-closure glaucoma. Cross-sectional study. Twenty-three eyes with PAS (detected by indentation gonioscopy) from 20 patients with angle-closure glaucoma (20 eyes had primary angle-closure glaucoma and 3 eyes had angle-closure glaucoma secondary to chronic anterior uveitis [n = 2] and Axenfeld-Rieger syndrome [n = 1]). The anterior chamber angles were evaluated with indentation gonioscopy and imaged by swept-source OCT (Casia OCT, Tomey, Nagoya, Japan) in room light and in the dark using the "angle analysis" protocol, which was composed of 128 radial B-scans each with 512 A-scans (16-mm scan length). The area and degree of PAS involvement were measured in each eye after manual detection of the scleral spur and the anterior irido-angle adhesion by 2 masked observers. The interobserver variability of the PAS measurements was calculated. The agreement of PAS assessment by gonioscopy and OCT, the area and the degree of PAS involvement, and the intraclass correlation coefficient (ICC) of interobserver PAS measurements. The area of PAS (mean ± standard deviation) was 20.8 ± 16.9 mm(2) (range, 3.9-74.9 mm(2)), and the degree of PAS involvement was 186.5 ± 79.9 degrees (range, 42-314 degrees). There was no difference in the area of PAS (P = 0.90) and the degree of PAS involvement (P = 0.95) between images obtained in room light and in the dark. The interobserver ICCs were 0.99 (95% confidence interval [CI], 0.98-1.00) for the area of PAS and 0.99 (95% CI, 0.97-1.00) for the degree of PAS involvement. There was good agreement of PAS assessment between gonioscopy and OCT images (kappa = 0.79; 95% CI, 0.67-0.91). Swept-source OCT allows visualization and reproducible measurements of the area and degree of PAS involvement, providing a new paradigm for evaluation of PAS progression and risk assessment

  9. The prevalence of cervical myelopathy among subjects with narrow cervical spinal canal in a population-based magnetic resonance imaging study: the Wakayama Spine Study.

    Nagata, Keiji; Yoshimura, Noriko; Hashizume, Hiroshi; Muraki, Shigeyuki; Ishimoto, Yuyu; Yamada, Hiroshi; Takiguchi, Noboru; Nakagawa, Yukihiro; Minamide, Akihito; Oka, Hiroyuki; Kawaguchi, Hiroshi; Nakamura, Kozo; Akune, Toru; Yoshida, Munehito

    2014-12-01

    A narrow cervical spinal canal (CSC) is a well-known risk factor for cervical myelopathy (CM). However, no epidemiologic data of the CSC based on a population-based cohort are available. The purpose of the study was to investigate the age-related differences in CSC diameters on plain radiographs and to examine the associated magnetic resonance imaging (MRI) abnormalities including cervical cord compression and increased signal intensity (ISI) as well as the clinical CM with the narrow CSC. This was a cross-sectional study. Data were obtained from the baseline survey of the Wakayama Spine Study that was performed from 2008 to 2010 in a western part of Japan. Finally, a total of 959 subjects (319 men and 640 women; mean age, 66.4 years) were included. The outcome measures included in the study were the CSC diameter at C5 level on plain radiographs, cervical cord compression and ISI on sagittal T2-weighted MRI, and physical signs related to CM (eg, the Hoffmann reflex, hyperreflexia of the patellar tendon, the Babinski reflex, sensory and motor function, and bowel/bladder symptoms). The age-related differences of CSC diameters in men and women were investigated by descriptive statistics. The prevalence of MRI abnormalities and clinical CM was compared among the groups divided by the CSC diameter (less than 13, 13-15, and 15 mm or more). In addition, a logistic regression analysis was performed to determine the association of the CSC diameter with cervical cord compression/clinical CM after overall adjustment for age, sex, and body mass index. The CSC diameter was narrower with increasing age in both men and women. The prevalence of cervical cord compression, ISI, and the clinical CM was significantly higher in the narrower CSC group. The prevalence of cervical cord compression, ISI, and CM among subjects with CSC diameter less than 13 mm was 38.0%, 5.4%, and 10.1%, respectively. In the logistic model, the CSC diameter was a significant predictive factor for the

  10. Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

    Luminati, Jonathan E

    2005-01-01

    ...) imagery from a Radar Cross Section (RCS) chamber validates this approach. The second implementation problem stems from the large Doppler spread in the wide-angle scene, leading to severe aliasing problems...

  11. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy

    Johnson, Jared M.; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo, E-mail: hwang.458@osu.edu

    2017-01-15

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga{sub 2}O{sub 3} and SrTiO{sub 3}, we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra “ripples” at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20–40 mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. - Highlights: • A new electron microscopy technique that can visualize 3D position of point defect is proposed. • The technique relies on the electron de-channeling signals at low scattering angles. • The technique enables precise determination of the depth of vacancies and lighter impurity atoms.

  12. Utility of the cromoendoscopy and the narrow band image at colon polyps; Utilidad de la cromoendoscopia y la imagen de banda estrecha en los polipos de colon

    Perez Gonzalez, Teresita; Chao Gonzalez, Lissette; Tusen Toledo, Yunia, E-mail: teresitaperez@infomed.sld.cu [Centro de Investigaciones Medico Quirurgicas, La Habana (Cuba); others, and

    2013-07-01

    Colorrectal adenomas constitute the best characterized pre-malignancy injury in the development of the cancer in the colon. Colonoscopy with diagnostic and therapeutic aims is essential to prevent the cancer appearance. A prospective, descriptive and observational study was carried out in patients that assisted for colonoscopy at Medical Surgical Research Center from September 2010 to July 2011 The Kudo and the Sano-Emura classifications were used to determine the importance of the cromoendoscopy and the narrow band image at the time to identify histological nature of the polyps in the colon. Sensibility, specificity, positive and negative predictable values and the concordance degree were estimated. The morfology and the dysplasia degree were associated.

  13. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum

    Benz, Mark G. [Safer Pediatric Imaging and Engineering Horizons International, Lincoln, VT (United States); Benz, Matthew W. [Southboro Medical Group, Southboro, MA (United States); Birnbaum, Steven B. [Dartmouth Hitchcock Clinic Manchester, Department of Radiology, Manchester, NH (United States); Chason, Eric; Sheldon, Brian W. [Brown University, Division of Engineering, Materials Science and Engineering Program, Providence, RI (United States); McGuire, Dale [R and D Manager, C and G Technologies Inc., Jeffersonville, IN (United States)

    2014-08-15

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique. (orig.)

  14. A high resolution, high counting rate bidimensional, MWPC imaging detector for small angle X-ray diffraction studies

    Bateman, J.E.; Connolly, J.F.; Sawyer, E.C.; Stephenson, R.

    1981-07-01

    The performance is reported of a 200 mm x 200 mm X-ray imaging MWPC aimed at applications in small angle X-ray diffraction and scattering. With quantum energies of approximately 8 keV high spatial resolution (+- 0.5 mm x +- 0.14 mm) with a capability for data taking at >approximately 350 kHz is reported. The detection efficiency is approximately 75% and the detector operates as a sealed unit with a long lifetime. (author)

  15. Comparison of high-resolution magnification narrow-band imaging and white-light endoscopy in the prediction of histology in Barrett's oesophagus.

    Singh, Rajvinder; Karageorgiou, Haris; Owen, Victoria; Garsed, Klara; Fortun, Paul J; Fogden, Edward; Subramaniam, Venkataraman; Shonde, Anthony; Kaye, Philip; Hawkey, Christopher J; Ragunath, Krish

    2009-01-01

    To evaluate whether there is any appreciable difference in imaging characteristics between high-resolution magnification white-light endoscopy (WLE-Z) and narrow-band imaging (NBI-Z) in Barrett's oesophagus (BE) and if this translates into superior prediction of histology. This was a prospective single-centre study involving 21 patients (75 areas, corresponding NBI-Z and WLE-Z images) with BE. Mucosal patterns (pit pattern and microvascular morphology) were evaluated for their image quality on a visual analogue scale (VAS) of 1-10 by five expert endoscopists. The endoscopists then predicted mucosal morphology based on four subtypes which can be visualized in BE. Type A: round pits, regular microvasculature; type B: villous/ridge pits, regular microvasculature; type C: absent pits, regular microvasculature; type D: distorted pits, irregular microvasculature. The sensitivity (Sn), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were then compared with the final histopathological analysis and the interobserver variability calculated. The overall pit and microvasculature quality was significantly higher for NBI-Z, pit: NBI-Z=6, WLE-Z=4.5, p < 0.001; microvasculature: NBI-Z=7.3, WLE-Z=4.9, p < 0.001. This translated into a superior prediction of histology (Sn: NBI-Z: 88.9, WLE-Z: 71.9, p < 0.001). For the prediction of dysplasia, NBI-Z was superior to WLE-Z (chi(2)=10.3, p < 0.05). The overall kappa agreement among the five endoscopists for NBI-Z and WLE-Z, respectively, was 0.59 and 0.31 (p < 0.001). NBI-Z is superior to WLE-Z in the prediction of histology in BE, with good reproducibility. This novel imaging modality could be an important tool for surveillance of patients with BE.

  16. REVIEW OF ADVANCES IN COBB ANGLE CALCULATION AND IMAGE-BASED MODELLING TECHNIQUES FOR SPINAL DEFORMITIES

    V. Giannoglou

    2016-06-01

    Full Text Available Scoliosis is a 3D deformity of the human spinal column that is caused from the bending of the latter, causing pain, aesthetic and respiratory problems. This internal deformation is reflected in the outer shape of the human back. The golden standard for diagnosis and monitoring of scoliosis is the Cobb angle, which refers to the internal curvature of the trunk. This work is the first part of a post-doctoral research, presenting the most important researches that have been done in the field of scoliosis, concerning its digital visualisation, in order to provide a more precise and robust identification and monitoring of scoliosis. The research is divided in four fields, namely, the X-ray processing, the automatic Cobb angle(s calculation, the 3D modelling of the spine that provides a more accurate representation of the trunk and the reduction of X-ray radiation exposure throughout the monitoring of scoliosis. Despite the fact that many researchers have been working on the field for the last decade at least, there is no reliable and universal tool to automatically calculate the Cobb angle(s and successfully perform proper 3D modelling of the spinal column that would assist a more accurate detection and monitoring of scoliosis.

  17. Supersonic Shear Imaging Elastography in Skeletal Muscles: Relationship Between In Vivo and Synthetic Fiber Angles and Shear Modulus.

    Lima, Kelly; Rouffaud, Remi; Pereira, Wagner; Oliveira, Liliam F

    2018-04-30

    To verify a relationship between the pennation angle of synthetic fibers and muscle fibers with the shear modulus (μ) generated by Supersonic shear imaging (SSI) elastography and to compare the anisotropy of synthetic and in vivo pennate muscle fibers in the x 2 -x 3 plane (probe perpendicular to water surface or skin). First, the probe of Aixplorer ultrasound scanner (v.9, Supersonic Imagine, Aix-en-Provence, France) was placed in 2 positions (parallel [aligned] and transverse to the fibers) to test the anisotropy in the x 2 -x 3 plane. Subsequently, it was inclined (x 1 -x 3 plane) in relation to the fibers, forming 3 angles (18.25 °, 21.55 °, 36.86 °) for synthetic fibers and one (approximately 0 °) for muscle fibers. On the x 2 -x 3 plane, μ values of the synthetic and vastus lateralis fibers were significantly lower (P < .0001) at the transverse probe position than the longitudinal one. In the x 1 -x 3 plane, the μ values were significantly reduced (P < .0001) with the probe angle increasing, only for the synthetic fibers (approximately 0.90 kPa for each degree of pennation angle). The pennation angle was not related to the μ values generated by SSI elastography for the in vivo lateral head of the gastrocnemius and vastus lateralis muscles. However, a μ reduction with an angle increase in the synthetic fibers was observed. These findings contribute to increasing the applicability of SSI in distinct muscle architecture at normal or pathologic conditions. © 2018 by the American Institute of Ultrasound in Medicine.

  18. APPLICABILITY OF THE COBB ANGLE MEASUREMENT IN IDIOPATHIC SCOLIOSIS USING SCANNED IMAGING

    ERASMO DE ABREU ZARDO

    Full Text Available ABSTRACT Objectives: To compare the measurement of the Cobb angle on printed radiographs and on scanned radiographs viewed through the software "PixViewer". Methods: Preoperative radiographs of 23 patients were evaluated on printed films and through the software "PixViewer". The same evaluator, a spine surgeon, chose the proximal and distal limiting vertebrae of the main curve on printed radiographs, without identification of patients, and measured the Cobb angle based on these parameters. The same parameters and measurements were applied to scanned radiographs. The measurements were compared, as well as the choice of limiting vertebrae. Results: The average variation of the Cobb angle between methods was 1.48 ± 1.73°. The intraclass correlation coefficient (ICC was 0.99, demonstrating excellent reproducibility. Conclusion: The Cobb method can be used to evaluate scoliosis through the "PixViewer" tool with the same reliability as the classic method on printed radiographs.

  19. Enlarged acceptance angle of a finite size detector in photoacoustic imaging using acoustic lenses

    Xia, W.; Piras, D.; Heijblom, Michelle; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton

    2011-01-01

    A large surface area transducer is preferable to be used to detect extremely weak photoacoustic signals in mammography due to its high sensitivity. The lateral resolution is limited by the small acceptance angle of such a transducer. We introduce an excellent material for an acoustic lens used to

  20. The impact of insonation angle on four-chamber view image quality: an observational study on 2866 routine scans.

    Jaudi, Suha; Fries, Nicolas; Tezenas du Montcel, Sophie; Dommergues, Marc

    2015-04-01

    To determine insonation angles achieved in routine screening practice and their impact on image quality. Prospective cross-sectional observational survey of 2866 four-chamber views produced by 287 senor ultrasonographers, from unselected routine second-trimester screening scans. Images were scored from 0 to 5 according to whether two atria, two ventricles, the heart crux, the apex, and the descending aorta were seen. Images were considered adequate if two atria, two ventricles, and the heart crux were seen. The insonation angle was classified as apical, basal, or lateral according to the orientation of the fetal heart to the ultrasound beam. There were 1612 (56.3%) apical, 869 (30.3%) basal, and 385 (13.4%) lateral views. The mean score and the rate of adequate images were significantly greater in the apical group (4.56 and 81.8%) than in the basal group (4.19 and 71.1 %) and were significantly greater in the basal group than in the lateral one (3.6 and 30.9%), p John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.

  1. Modelling of AlAs/GaAs interfacial structures using high-angle annular dark field (HAADF) image simulations.

    Robb, Paul D; Finnie, Michael; Craven, Alan J

    2012-07-01

    High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Determination of Seed Soundness in Conifers Cryptomeria japonica and Chamaecyparis obtusa Using Narrow-Multiband Spectral Imaging in the Short-Wavelength Infrared Range

    Matsuda, Osamu; Hara, Masashi; Tobita, Hiroyuki; Yazaki, Kenichi; Nakagawa, Toshinori; Shimizu, Kuniyoshi; Uemura, Akira; Utsugi, Hajime

    2015-01-01

    Regeneration of planted forests of Cryptomeria japonica (sugi) and Chamaecyparis obtuse (hinoki) is the pressing importance to the forest administration in Japan. Low seed germination rate of these species, however, has hampered low-cost production of their seedlings for reforestation. The primary cause of the low germinability has been attributed to highly frequent formation of anatomically unsound seeds, which are indistinguishable from sound germinable seeds by visible observation and other common criteria such as size and weight. To establish a method for sound seed selection in these species, hyperspectral imaging technique was used to identify a wavelength range where reflectance spectra differ clearly between sound and unsound seeds. In sound seeds of both species, reflectance in a narrow waveband centered at 1,730 nm, corresponding to a lipid absorption band in the short-wavelength infrared (SWIR) range, was greatly depressed relative to that in adjacent wavebands on either side. Such depression was absent or less prominent in unsound seeds. Based on these observations, a reflectance index SQI, abbreviated for seed quality index, was formulated using reflectance at three narrow SWIR wavebands so that it represents the extent of the depression. SQI calculated from seed area-averaged reflectance spectra and spatial distribution patterns of pixelwise SQI within each seed area were both proven as reliable criteria for sound seed selection. Enrichment of sound seeds was accompanied by an increase in germination rate of the seed lot. Thus, the methods described are readily applicable toward low-cost seedling production in combination with single seed sowing technology. PMID:26083366

  3. Narrow-band imaging can increase the visibility of fibrin caps after bleeding of esophageal varices: a case with extensive esophageal candidiasis.

    Furuichi, Yoshihiro; Kasai, Yoshitaka; Takeuchi, Hirohito; Yoshimasu, Yuu; Kawai, Takashi; Sugimoto, Katsutoshi; Kobayashi, Yoshiyuki; Nakamura, Ikuo; Itoi, Takao

    2017-08-01

    A 58-year-old man with hepatitis B cirrhosis noticed black stools and underwent an endoscopy at a community hospital. The presence of esophageal varices (EVs) was confirmed, but the bleeding point was not found. He was referred to our institution and underwent a second endoscopy. Extensive white patches of esophageal candidiasis were visible on endoscopy by white-light imaging (WLI), but it was difficult to find the fibrin cap of the EVs. This was easier under narrow-band imaging (NBI), however, as the color turned red from absorption by hemoglobin adhered to it. We retrospectively measured the color differences (CD) between the fibrin cap and the surrounding mucosa 10 times using the CIE (L*a*b*) color space method. The median value of CD increased after NBI (13.9 → 43.0, p candidiasis, but the increased visibility of the fibrin cap by NBI enabled it to be found more easily. This is the first report of a case in which NBI was helpful in locating a fibrin cap of EVs.

  4. Pulmonary artery imaging under free-breathing using golden-angle radial bSSFP MRI: a proof of concept.

    Fyrdahl, Alexander; Vargas Paris, Roberto; Nyrén, Sven; Holst, Karen; Ugander, Martin; Lindholm, Peter; Sigfridsson, Andreas

    2018-03-14

    To evaluate the feasibility of an improved motion and flow robust methodology for imaging the pulmonary vasculature using non-contrast-enhanced, free-breathing, golden-angle radial MRI. Healthy volunteers (n = 10, age 46 ± 11 years, 50% female) and patients (n = 2, ages 27 and 84, both female) were imaged at 1.5 T using a Cartesian and golden-angle radial 2D balanced SSFP pulse sequence. The acquisitions were made under free breathing without contrast agent enhancement. The radial acquisitions were reconstructed at 3 temporal footprints. All series were scored from 1 to 5 for perceived diagnostic quality, artifact level, and vessel sharpness in multiple anatomical locations. In addition, vessel sharpness and blood-to-blood clot contrast were measured. Quantitative measurements showed higher vessel sharpness for golden-angle radial (n = 76, 0.79 ± 0.11 versus 0.71 ± 0.16, p golden-angle radial in the 2 patients. At comparable temporal footprints, golden-angle radial was scored higher for diagnostic quality (mean ± SD, 2.3 ± 0.7 versus 2.2 ± 0.6, p < .01) and vessel sharpness (2.2 ± 0.8 versus 2.1 ± 0.5, p < .01), whereas the artifact level did not differ (3.0 ± 0.9 versus 3.0 ± 1.0, p = .80). The ability to retrospectively choose a temporal resolution and perform sliding-window reconstructions was demonstrated in patients. In pulmonary artery imaging, the motion and flow robustness of a radial trajectory does both improve image quality over Cartesian trajectory in healthy volunteers, and allows for flexible selection of temporal footprints and the ability to perform real-time sliding window reconstructions, which could potentially provide further diagnostic insight. © 2018 International Society for Magnetic Resonance in Medicine.

  5. A new approximate algorithm for image reconstruction in cone-beam spiral CT at small cone-angles

    Schaller, S.; Flohr, T.; Steffen, P.

    1996-01-01

    This paper presents a new approximate algorithm for image reconstruction with cone-beam spiral CT data at relatively small cone-angles. Based on the algorithm of Wang et al., our method combines a special complementary interpolation with filtered backprojection. The presented algorithm has three main advantages over Wang's algorithm: (1) It overcomes the pitch limitation of Wang's algorithm. (2) It significantly improves z-resolution when suitable sampling schemes are applied. (3) It avoids the waste of applied radiation dose inherent to Wang's algorithm. Usage of the total applied dose is an important requirement in medical imaging. Our method has been implemented on a standard workstation. Reconstructions of computer-simulated data of different phantoms, assuming sampling conditions and image quality requirements typical to medical CT, show encouraging results

  6. Angles measuring on radiographic images as a tool for the diagnosis of Blount disease

    Mora Rojas, Raul

    2010-01-01

    The etiology of Blount disease has followed unknown at the present; although are described factors that could be related to the appearance of the same. Even, to make the diagnosis of this disease remains a challenge, due to it difficult to predict the behavior of the tibia varus in young children. Some measures were described in the radiographs of patients with tibia vara (the most currently used has been the Tibial Proximal Diaphyseal Goal Angle) to try to provide another tool in the diagnosis, but without be able to establish a free relationship between disruption of these measures with the pathological development of tibial varus. A new measurement (Tibial Proximal Fibular Mechanic Angle) established in the radiographs has been the purpose, taking into account the structures and concepts that are altered in patients with Blount diseases. The proximal tibial physis and the mechanical axis of the tibia are performed without to take into account in some of the measurements described above. (author) [es

  7. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  8. Column ratio mapping: A processing technique for atomic resolution high-angle annular dark-field (HAADF) images

    Robb, Paul D.; Craven, Alan J.

    2008-01-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [1 1 0]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 A-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  9. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    Kok, P.; Dijkstra, J.; Botha, C.P.; Post, F.H.; Kaijzel, E.; Que, I.; Löwik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2007-01-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate

  10. Rapid small-angle X-ray diffraction of a tonically contracting molluscan smooth muscle recorded with imaging plates

    Tajima, Y.; Okada, K.; Yoshida, O.; Seto, T.; Amemiya, Y.

    1989-01-01

    Small-angle X-ray diffraction patterns from the anterior byssus retractor muscles of Mytilus edulis contracting tonically in response to stimulation with acetylcholine were recorded in a 30 s exposure with synchrotron radiation and a high-sensitivity X-ray area detector called an imaging plate. The 190 A layer line from the thin filaments increased in intensity with increase in tonic tension up to 6x10 4 kg m -2 . Above this value, the layer-line intensity remained almost constant and comparable to that for a contracting skeletal muscle, indicating that the same structural changes of the thin filaments occur in both muscles. (orig.)

  11. Using narrow-band imaging with conventional hysteroscopy increases the detection of chronic endometritis in abnormal uterine bleeding and postmenopausal bleeding.

    Ozturk, Mustafa; Ulubay, Mustafa; Alanbay, Ibrahim; Keskin, Uğur; Karasahin, Emre; Yenen, Müfit Cemal

    2016-01-01

    A preliminary study was designed to evaluate whether a narrow-band imaging (NBI) endoscopic light source could detect chronic endometritis that was not identifiable with a white light hysteroscope. A total of 86 patients with endometrial pathology (71 abnormal uterine bleeding and 15 postmenopausal bleeding) were examined by NBI endoscopy and white light hysteroscopy between February 2010 and February 2011. The surgeon initially observed the uterine cavity using white light hysteroscopy and made a diagnostic impression, which was recorded. Subsequently, after pressing a button on the telescope, NBI was used to reevaluate the endometrial mucosa. The median age of the patients was 40 years (range: 30-60 years). Endometritis was diagnosed histologically. Six cases of abnormal uterine bleeding (6/71, 8.4%, 95% confidence interval [CI] 0.03-0.17) and one case of postmenopausal bleeding (1/15, 6%, 95%CI 0.01-0.29) were only diagnosed with chronic endometritis by NBI (7/86, 8.1%, 95%CI 0.04-0.15). Capillary patterns of the endometrium can be observed by NBI and this method can be used to assess chronic endometritis. © 2015 Japan Society of Obstetrics and Gynecology.

  12. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES

    Doi, Akihiro [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Asada, Keiichi; Inoue, Makoto [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Fujisawa, Kenta [The Research Institute of Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8511 (Japan); Nagai, Hiroshi; Hagiwara, Yoshiaki [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wajima, Kiyoaki, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China)

    2013-03-01

    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.

  13. Prediction of Helicobacter pylori status by conventional endoscopy, narrow-band imaging magnifying endoscopy in stomach after endoscopic resection of gastric cancer.

    Yagi, Kazuyoshi; Saka, Akiko; Nozawa, Yujiro; Nakamura, Atsuo

    2014-04-01

    To reduce the incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer, Helicobacter pylori eradication therapy has been endorsed. It is not unusual for such patients to be H. pylori negative after eradication or for other reasons. If it were possible to predict H. pylori status using endoscopy alone, it would be very useful in clinical practice. To clarify the accuracy of endoscopic judgment of H. pylori status, we evaluated it in the stomach after endoscopic submucosal dissection (ESD) of gastric cancer. Fifty-six patients treated by ESD were enrolled. The diagnostic criteria for H. pylori status by conventional endoscopy and narrow-band imaging (NBI)-magnifying endoscopy were decided, and H. pylori status was judged by two endoscopists. Based on the H. pylori stool antigen test as a diagnostic gold standard, conventional endoscopy and NBI-magnifying endoscopy were compared for their sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Interobserver agreement was assessed in terms of κ value. Interobserver agreement was moderate (0.56) for conventional endoscopy and substantial (0.77) for NBI-magnifying endoscopy. The sensitivity, specificity, PPV, and NPV were 0.79, 0.52, 0.70, and 0.63 for conventional endoscopy and 0.91, 0.83, 0.88, and 0.86 for NBI-magnifying endoscopy, respectively. Prediction of H. pylori status using NBI-magnifying endoscopy is practical, and interobserver agreement is substantial. © 2013 John Wiley & Sons Ltd.

  14. Spontaneous imbibition of water and determination of effective contact angles in the Eagle Ford Shale Formation using neutron imaging

    DiStefano, Victoria H.; Cheshire, Michael C.; McFarlane, Joanna; Kolbus, Lindsay M.; Hale, Richard E.; Perfect, Edmund; Bilheux, Hassina Z.; Santodonato, Louis J.; Hussey, Daniel S.; Jacobson, David L.; LaManna, Jacob M.; Bingham, Philip R.; Starchenko, Vitaliy; Anovitz, Lawrence M.

    2017-10-01

    Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extraction. Although, the modern analytical and computational models can capture fracture growth, there is a lack of experimental data on spontaneous imbibition and wettability in oil and gas reservoirs for the validation of further model development. In this work, we used neutron imaging to measure the spontaneous imbibition of water into fractures of Eagle Ford Shale with known geometries and fracture orientations. An analytical solution for a set of nonlinear second-order differential equations was applied to the measured imbibition data to determine effective contact angles. The analytical solution fit the measured imbibition data reasonably well and determined effective contact angles were slightly higher than static contact angles due to effects of in-situ changes in velocity, surface roughness, and heterogeneity of mineral surfaces on the fracture surface. Additionally, small fracture widths may have retarded imbibition and affected model fits, which suggests that average fracture widths are not satisfactory for modeling imbibition in natural systems.

  15. Feasibility study for image reconstruction in circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing theory

    Park, Yeonok; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Hong, Daeki; Park, Chulkyu; Cho, Heemoon; Choi, Sungil; Woo, Taeho

    2015-03-21

    In this work, we performed a feasibility study for image reconstruction in a circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing (CS) theory. Here, the X-ray source moves along an arc within a limited-scan angle (≤ 180°) on a circular path set perpendicularly to the axial direction during the image acquisition. This geometry, compared to full-angle (360°) scan geometry, allows imaging system to be designed more compactly and gives better tomographic quality than conventional linear digital tomosynthesis (DTS). We implemented an efficient CS-based reconstruction algorithm for the proposed geometry and performed systematic simulations to investigate the image characteristics. We successfully reconstructed CDTS images with incomplete projections acquired at several selected limited-scan angles of 45°, 90°, 135°, and 180° for a given tomographic angle of 80° and evaluated the reconstruction quality. Our simulation results indicate that the proposed method can provide superior tomographic quality for axial view and even for the other views (i.e., sagittal and coronal), as in computed tomography, to conventional DTS. - Highlights: • Image reconstruction is done in circular digital tomosynthesis (CDTS). • The designed geometry allows imaging system to be the better image. • An efficient compressed-sensing (CS)-based reconstruction algorithm is performed. • Proposed method can provide superior tomographic quality for the axial view.

  16. Vascular density of superficial esophageal squamous cell carcinoma determined by direct observation of resected specimen using narrow band imaging with magnifying endoscopy.

    Kikuchi, D; Iizuka, T; Hoteya, S; Nomura, K; Kuribayashi, Y; Toba, T; Tanaka, M; Yamashita, S; Furuhata, T; Matsui, A; Mitani, T; Inoshita, N; Kaise, M

    2017-11-01

    Observation of the microvasculature using narrow band imaging (NBI) with magnifying endoscopy is useful for diagnosing superficial squamous cell carcinoma. Increased vascular density is indicative of cancer, but not many studies have reported differences between cancerous and noncancerous areas based on an objective comparison. We observed specimens of endoscopic submucosal dissection (ESD) using NBI magnification, and determined the vascular density of cancerous and noncancerous areas. A total of 25 lesions of esophageal squamous cell carcinoma that were dissected en bloc by ESD between July 2013 and December 2013 were subjected to NBI magnification. We constructed a device that holds an endoscope and precisely controls the movement along the vertical axis in order to observe submerged specimens by NBI magnification. NBI image files of both cancerous (pathologically determined invasion depth, m1/2) and surrounding noncancerous areas were created and subjected to vascular density assessment by two endoscopists who were blinded to clinical information. The invasion depth was m1/2 in 20, m3/sm1 in four and sm2 in one esophageal cancer lesion. Mean vascular density was significantly increased in cancerous areas (37.6 ± 16.3 vessels/mm2) compared with noncancerous areas (17.6 ± 10.0 vessels/mm2) (P squamous cell carcinoma. The rates of agreement between vascular density values determined by two independent operators were high. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Hand joint space narrowing and osteophytes are associated with magnetic resonance imaging-defined knee cartilage thickness and radiographic knee osteoarthritis: data from the Osteoarthritis Initiative.

    Haugen, Ida K; Cotofana, Sebastian; Englund, Martin; Kvien, Tore K; Dreher, Donatus; Nevitt, Michael; Lane, Nancy E; Eckstein, Felix

    2012-01-01

    To evaluate whether features of radiographic hand osteoarthritis (OA) are associated with quantitative magnetic resonance imaging (MRI)-defined knee cartilage thickness, radiographic knee OA, and 1-year structural progression. A total of 765 participants in Osteoarthritis Initiative (OAI; 455 women, mean age 62.5 yrs, SD 9.4) obtained hand radiographs (at baseline), knee radiographs (baseline and Year 1), and knee MRI (baseline and Year 1). Hand radiographs were scored for presence of osteophytes and joint space narrowing (JSN). Knee radiographs were scored according to the Kellgren-Lawrence (KL) scale. Cartilage thickness in the medial and lateral femorotibial compartments was measured quantitatively from coronal FLASHwe images. We examined the cross-sectional and longitudinal associations between features of hand OA (total osteophyte and JSN scores) and knee cartilage thickness, 1-year knee cartilage thinning (above smallest detectable change), presence of knee OA (KL grade ≥ 3), and progression of knee OA (KL change ≥ 1) by linear and logistic regression. Both hand OA features were included in a multivariate model (if p ≤ 0.25) adjusted for age, sex, and body mass index (BMI). Hand JSN was associated with reduced knee cartilage thickness (ß = -0.02, 95% CI -0.03, -0.01) in the medial femorotibial compartment, while hand osteophytes were associated with the presence of radiographic knee OA (OR 1.10, 95% CI 1.03-1.18; multivariate models) with both hand OA features as independent variables adjusted for age, sex, and BMI). Radiographic features of hand OA were not associated with 1-year cartilage thinning or radiographic knee OA progression. Our results support a systemic OA susceptibility and possibly different mechanisms for osteophyte formation and cartilage thinning.

  18. Evaluation of an e-learning system for diagnosis of gastric lesions using magnifying narrow-band imaging: a multicenter randomized controlled study.

    Nakanishi, Hiroyoshi; Doyama, Hisashi; Ishikawa, Hideki; Uedo, Noriya; Gotoda, Takuji; Kato, Mototsugu; Nagao, Shigeaki; Nagami, Yasuaki; Aoyagi, Hiroyuki; Imagawa, Atsushi; Kodaira, Junichi; Mitsui, Shinya; Kobayashi, Nozomu; Muto, Manabu; Takatori, Hajime; Abe, Takashi; Tsujii, Masahiko; Watari, Jiro; Ishiyama, Shuhei; Oda, Ichiro; Ono, Hiroyuki; Kaneko, Kazuhiro; Yokoi, Chizu; Ueo, Tetsuya; Uchita, Kunihisa; Matsumoto, Kenshi; Kanesaka, Takashi; Morita, Yoshinori; Katsuki, Shinichi; Nishikawa, Jun; Inamura, Katsuhisa; Kinjo, Tetsu; Yamamoto, Katsumi; Yoshimura, Daisuke; Araki, Hiroshi; Kashida, Hiroshi; Hosokawa, Ayumu; Mori, Hirohito; Yamashita, Haruhiro; Motohashi, Osamu; Kobayashi, Kazuhiko; Hirayama, Michiaki; Kobayashi, Hiroyuki; Endo, Masaki; Yamano, Hiroo; Murakami, Kazunari; Koike, Tomoyuki; Hirasawa, Kingo; Miyaoka, Youichi; Hamamoto, Hidetaka; Hikichi, Takuto; Hanabata, Norihiro; Shimoda, Ryo; Hori, Shinichiro; Sato, Tadashi; Kodashima, Shinya; Okada, Hiroyuki; Mannami, Tomohiko; Yamamoto, Shojiro; Niwa, Yasumasa; Yashima, Kazuo; Tanabe, Satoshi; Satoh, Hiro; Sasaki, Fumisato; Yamazato, Tetsuro; Ikeda, Yoshiou; Nishisaki, Hogara; Nakagawa, Masahiro; Matsuda, Akio; Tamura, Fumio; Nishiyama, Hitoshi; Arita, Keiko; Kawasaki, Keisuke; Hoppo, Kazushige; Oka, Masashi; Ishihara, Shinichi; Mukasa, Michita; Minamino, Hiroaki; Yao, Kenshi

    2017-10-01

    Background and study aim  Magnifying narrow-band imaging (M-NBI) is useful for the accurate diagnosis of early gastric cancer (EGC). However, acquiring skill at M-NBI diagnosis takes substantial effort. An Internet-based e-learning system to teach endoscopic diagnosis of EGC using M-NBI has been developed. This study evaluated its effectiveness. Participants and methods  This study was designed as a multicenter randomized controlled trial. We recruited endoscopists as participants from all over Japan. After completing Test 1, which consisted of M-NBI images of 40 gastric lesions, participants were randomly assigned to the e-learning or non-e-learning groups. Only the e-learning group was allowed to access the e-learning system. After the e-learning period, both groups received Test 2. The analysis set was participants who scored e-learning group and 197 in the non-e-learning group). After the e-learning period, all 395 completed Test 2. The analysis sets were e-learning group: n = 184; and non-e-learning group: n = 184. The mean Test 1 score was 59.9 % for the e-learning group and 61.7 % for the non-e-learning group. The change in accuracy in Test 2 was significantly higher in the e-learning group than in the non-e-learning group (7.4 points vs. 0.14 points, respectively; P  e-learning system in improving practitioners' capabilities to diagnose EGC using M-NBI.Trial registered at University Hospital Medical Information Network Clinical Trials Registry (UMIN000008569). © Georg Thieme Verlag KG Stuttgart · New York.

  19. A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography.

    Liang, Zhiting; Guan, Yong; Liu, Gang; Chen, Xiangyu; Li, Fahu; Guo, Pengfei; Tian, Yangchao

    2016-03-01

    The `missing wedge', which is due to a restricted rotation range, is a major challenge for quantitative analysis of an object using tomography. With prior knowledge of the grey levels, the discrete algebraic reconstruction technique (DART) is able to reconstruct objects accurately with projections in a limited angle range. However, the quality of the reconstructions declines as the number of grey levels increases. In this paper, a modified DART (MDART) was proposed, in which each independent region of homogeneous material was chosen as a research object, instead of the grey values. The grey values of each discrete region were estimated according to the solution of the linear projection equations. The iterative process of boundary pixels updating and correcting the grey values of each region was executed alternately. Simulation experiments of binary phantoms as well as multiple grey phantoms show that MDART is capable of achieving high-quality reconstructions with projections in a limited angle range. The interesting advancement of MDART is that neither prior knowledge of the grey values nor the number of grey levels is necessary.

  20. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.

    Beaussart, Audrey; Parkinson, Luke; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2012-02-15

    The adsorption of three dextrins (a regular wheat dextrin, Dextrin TY, carboxymethyl (CM) Dextrin, and hydroxypropyl (HP) Dextrin) on molybdenite has been investigated using adsorption isotherms, tapping mode atomic force microscopy (TMAFM), contact angle measurements, and dynamic bubble-surface collisions. In addition, the effect of the polymers on the flotation recovery of molybdenite has been determined. The isotherms revealed the importance of molecular weight in determining the adsorbed amounts of the polymers on molybdenite at plateau coverage. TMAFM revealed the morphology of the three polymers, which consisted of randomly dispersed domains with a higher area fraction of surface coverage for the substituted dextrins. The contact angle of polymer-treated molybdenite indicated that polymer layer coverage and hydration influenced the mineral surface hydrophobicity. Bubble-surface collisions indicated that the polymers affected thin film rupture and dewetting rate differently, correlating with differences in the adsorbed layer morphology. Direct correlations were found between the surface coverage of the adsorbed layers, their impact on thin film rupture time, and their impact on flotation recovery, highlighting the paramount role of the polymer morphology in the bubble/particle attachment process and subsequent flotation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data

    Humphries, T.; Winn, J.; Faridani, A.

    2017-08-01

    Recent work in CT image reconstruction has seen increasing interest in the use of total variation (TV) and related penalties to regularize problems involving reconstruction from undersampled or incomplete data. Superiorization is a recently proposed heuristic which provides an automatic procedure to ‘superiorize’ an iterative image reconstruction algorithm with respect to a chosen objective function, such as TV. Under certain conditions, the superiorized algorithm is guaranteed to find a solution that is as satisfactory as any found by the original algorithm with respect to satisfying the constraints of the problem; this solution is also expected to be superior with respect to the chosen objective. Most work on superiorization has used reconstruction algorithms which assume a linear measurement model, which in the case of CT corresponds to data generated from a monoenergetic x-ray beam. Many CT systems generate x-rays from a polyenergetic spectrum, however, in which the measured data represent an integral of object attenuation over all energies in the spectrum. This inconsistency with the linear model produces the well-known beam hardening artifacts, which impair analysis of CT images. In this work we superiorize an iterative algorithm for reconstruction from polyenergetic data, using both TV and an anisotropic TV (ATV) penalty. We apply the superiorized algorithm in numerical phantom experiments modeling both sparse-view and limited-angle scenarios. In our experiments, the superiorized algorithm successfully finds solutions which are as constraints-compatible as those found by the original algorithm, with significantly reduced TV and ATV values. The superiorized algorithm thus produces images with greatly reduced sparse-view and limited angle artifacts, which are also largely free of the beam hardening artifacts that would be present if a superiorized version of a monoenergetic algorithm were used.

  2. Viewing angle switching of patterned vertical alignment liquid crystal display

    Lim, Young Jin; Jeong, Eun; Chin, Mi Hyung; Lee, Seung Hee; Ji, Seunghoon; Lee, Gi-Dong

    2008-01-01

    Viewing angle control of a patterned vertical alignment (PVA) liquid crystal display using only one panel is investigated. In conventional PVA modes, a vertically aligned liquid crystal (LC) director tilts down in four directions making 45 deg. with respect to crossed polarizers to exhibit a wide viewing angle. In the viewing angle control device, one pixel was divided into two sub-pixels such that the LC director in the main pixel is controlled to be tilted down in multiple directions making an angle with the polarizer, playing the role of main display with the wide viewing angle, while the LC director in the sub-pixel is controlled to be tilted down to the polarizer axis, playing the role of sub-pixel to the viewing angle control for the narrow viewing angle. Using sub-pixel control, light leakage or any type of information such as characters and image can be generated in oblique viewing directions without distorting the image quality in the normal direction, which will prevent others from peeping at the displayed image by overlapping the displayed image with the made image

  3. Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging

    Monticone, Francesco; Valagiannopoulos, Constantinos A.; Alù, Andrea

    2016-10-01

    Lens design for focusing and imaging has been optimized through centuries of developments; however, conventional lenses, even in their most ideal realizations, still suffer from fundamental limitations, such as limits in resolution and the presence of optical aberrations, which are inherent to the laws of refraction. In addition, volume-to-volume imaging of three-dimensional regions of space is not possible with systems based on conventional refractive optics, which are inherently limited to plane-to-plane imaging. Although some of these limitations have been at least theoretically relaxed with the advent of metamaterials, several challenges still stand in the way of ideal imaging of three-dimensional regions of space. Here, we show that the concept of parity-time symmetry, combined with tailored nonlocal responses, enables overcoming some of these challenges, and we propose the design of a loss-immune, linear, transversely invariant, planarized metamaterial lens, with reduced aberrations and the potential to realize volume-to-volume imaging.

  4. Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging

    Francesco Monticone

    2016-10-01

    Full Text Available Lens design for focusing and imaging has been optimized through centuries of developments; however, conventional lenses, even in their most ideal realizations, still suffer from fundamental limitations, such as limits in resolution and the presence of optical aberrations, which are inherent to the laws of refraction. In addition, volume-to-volume imaging of three-dimensional regions of space is not possible with systems based on conventional refractive optics, which are inherently limited to plane-to-plane imaging. Although some of these limitations have been at least theoretically relaxed with the advent of metamaterials, several challenges still stand in the way of ideal imaging of three-dimensional regions of space. Here, we show that the concept of parity-time symmetry, combined with tailored nonlocal responses, enables overcoming some of these challenges, and we propose the design of a loss-immune, linear, transversely invariant, planarized metamaterial lens, with reduced aberrations and the potential to realize volume-to-volume imaging.

  5. Retrieving atmospheric dust opacity on Mars by imaging spectroscopy at large angles

    Douté, S.; Ceamanos, X.; Appéré, T.

    2013-09-01

    We propose a new method to retrieve the optical depth of Martian aerosols (AOD) from OMEGA and CRISM hyperspectral imagery at a reference wavelength of 1 μm. Our method works even if the underlying surface is completely made of minerals, corresponding to a low contrast between surface and atmospheric dust, while being observed at a fixed geometry. Minimizing the effect of the surface reflectance properties on the AOD retrieval is the second principal asset of our method. The method is based on the parametrization of the radiative coupling between particles and gas determining, with local altimetry, acquisition geometry, and the meteorological situation, the absorption band depth of gaseous CO2. Because the last three factors can be predicted to some extent, we can define a new parameter β that expresses specifically the strength of the gas-aerosols coupling while directly depending on the AOD. Combining estimations of β and top of the atmosphere radiance values extracted from the observed spectra within the CO2 gas band at 2 μm, we evaluate the AOD and the surface reflectance by radiative transfer inversion. One should note that practically β can be estimated for a large variety of mineral or icy surfaces with the exception of CO2 ice when its 2 μm solid band is not sufficiently saturated. Validation of the proposed method shows that it is reliable if two conditions are fulfilled: (i) the observation conditions provide large incidence or/and emergence angles (ii) the aerosols are vertically well mixed in the atmosphere. Experiments conducted on OMEGA nadir looking observations as well as CRISM multi-angular acquisitions with incidence angles higher than 65° in the first case and 33° in the second case produce very satisfactory results. Finally in a companion paper the method is applied to monitoring atmospheric dust spring activity at high southern latitudes on Mars using OMEGA.

  6. Contemporary Approach to the Diagnosis and Management of Primary Angle-Closure Disease.

    Razeghinejad, M Reza; Myers, Jonathan S

    2018-05-16

    Primary angle closure disease spectrum varies from a narrow angle to advanced glaucoma. A variety of imaging technologies may assist the clinician in determining the pathophysiology and diagnosis of primary angle closure, but gonioscopy remains a mainstay of clinical evaluation. Laser iridotomy effectively eliminates the pupillary block component of angle closure; however, studies show that in many patients the iridocorneal angle remains narrow from underlying anatomic issues, and increasing lens size often leads to further narrowing over time. Recent studies have further characterized the role of the lens in angle closure disease, and cataract or clear lens extraction is increasingly used earlier in its management. As a first surgical step in angle closure glaucoma, lens extraction alone often effectively controls the pressure with less risk of complications than concurrent or stand alone glaucoma surgery, but may not be sufficient in more advanced or severe disease. We provide a comprehensive review on the primary angle-closure disease nomenclature, imaging, and current laser and surgical management. Copyright © 2018. Published by Elsevier Inc.

  7. Counting Tm dopant atoms around GaN dots using high-angle annular dark field images

    Rouvière, J-L; Okuno, H; Jouneau, P H; Bayle-Guillemaud, P; Daudin, B

    2011-01-01

    High resolution Z-contrast STEM imaging is used to study the Tm doping of GaN quantum dots grown in AlN by molecular beam epitaxy (MBE). High-angle annular dark field (HAADF) imaging allows us to visualize directly individual Tm atoms in the AlN matrix and even to count the number of Tm atoms in a given AlN atomic column. A new visibility coefficient to determine quantitatively the number of Tm atoms in a given atomic column is introduced. It is based on locally integrated intensities rather than on peak intensities of HAADF images. STEM image simulations shows that this new visibility is less sensitive to the defocus-induced blurring or to the position of the Tm atom within the thin lamella. Most of the Tm atoms diffuse out of GaN dots. Tm atoms are found at different positions in the AlN matrix, (i) Above the wetting layer, Tm atoms are spread within a thickness of 14 AlN monolayers (MLs). (ii) Above the quantum dots all the Tm are located in the same plane situated at 2-3 MLs above the apex of the GaN dot, i.e. at a distance of 14 MLs from the wetting layer, (iii) In addition, Tm can diffuse very far from the GaN dot by following threading dislocations lines.

  8. Office-based narrow band imaging-guided flexible laryngoscopy tissue sampling: A cost-effectiveness analysis evaluating its impact on Taiwanese health insurance program.

    Fang, Tuan-Jen; Li, Hsueh-Yu; Liao, Chun-Ta; Chiang, Hui-Chen; Chen, I-How

    2015-07-01

    Narrow band imaging (NBI)-guided flexible laryngoscopy tissue sampling for laryngopharyngeal lesions is a novel technique. Patients underwent the procedure in an office-based setting without being sedated, which is different from the conventional technique performed using direct laryngoscopy. Although the feasibility and effects of this procedure were established, its financial impact on the institution and Taiwanese National Health Insurance program was not determined. This is a retrospective case-control study. From May 2010 to April 2011, 20 consecutive patients who underwent NBI flexible laryngoscopy tissue sampling were recruited. During the same period, another 20 age-, sex-, and lesion-matched cases were enrolled in the control group. The courses for procedures and financial status were analyzed and compared between groups. Office-based NBI flexible laryngoscopy tissue sampling procedure took 27 minutes to be completed, while 191 minutes were required for the conventional technique. Average reimbursement for each case was New Taiwan Dollar (NT$)1264 for patients undergoing office-based NBI flexible laryngoscopy tissue sampling, while NT$10,913 for those undergoing conventional direct laryngoscopy in the operation room (p institution suffered a loss of at least NT$690 when performing NBI flexible laryngoscopy tissue sampling. Office-based NBI flexible laryngoscopy tissue sampling is a cost-saving procedure for patients and the Taiwanese National Health Insurance program. It also saves the procedure time. However, the net financial loss for the institution and physician would limit its popularization unless reimbursement patterns are changed. Copyright © 2013. Published by Elsevier B.V.

  9. The learning curve for narrow-band imaging in the diagnosis of precancerous gastric lesions by using Web-based video.

    Dias-Silva, Diogo; Pimentel-Nunes, Pedro; Magalhães, Joana; Magalhães, Ricardo; Veloso, Nuno; Ferreira, Carlos; Figueiredo, Pedro; Moutinho, Pedro; Dinis-Ribeiro, Mário

    2014-06-01

    A simplified narrow-band imaging (NBI) endoscopy classification of gastric precancerous and cancerous lesions was derived and validated in a multicenter study. This classification comes with the need for dissemination through adequate training. To address the learning curve of this classification by endoscopists with differing expertise and to assess the feasibility of a YouTube-based learning program to disseminate it. Prospective study. Five centers. Six gastroenterologists (3 trainees, 3 fully trained endoscopists [FTs]). Twenty tests provided through a Web-based program containing 10 randomly ordered NBI videos of gastric mucosa were taken. Feedback was sent 7 days after every test submission. Measures of accuracy of the NBI classification throughout the time. From the first to the last 50 videos, a learning curve was observed with a 10% increase in global accuracy, for both trainees (from 64% to 74%) and FTs (from 56% to 65%). After 200 videos, sensitivity and specificity of 80% and higher for intestinal metaplasia were observed in half the participants, and a specificity for dysplasia greater than 95%, along with a relevant likelihood ratio for a positive result of 7 to 28 and likelihood ratio for a negative result of 0.21 to 0.82, were achieved by all of the participants. No constant learning curve was observed for the identification of Helicobacter pylori gastritis and sensitivity to dysplasia. The trainees had better results in all of the parameters, except specificity for dysplasia, compared with the FTs. Globally, participants agreed that the program's structure was adequate, except on the feedback, which should have consisted of a more detailed explanation of each answer. No formal sample size estimate. A Web-based learning program could be used to teach and disseminate classifications in the endoscopy field. In this study, an NBI classification for gastric mucosal features seems to be easily learned for the identification of gastric preneoplastic

  10. Detection and recurrence rate of transurethral resection of bladder tumors by narrow-band imaging: Prospective, randomized comparison with white light cystoscopy

    Seung Bin Kim

    2018-03-01

    Full Text Available Purpose: The purpose of this study was to evaluate the efficacy of narrow-band imaging (NBI as a diagnostic tool for detecting bladder tumors during cystoscopy compared with white light cystoscopy (WLC. Materials and Methods: From December 2013 to June 2017, a randomized prospective study was conducted on 198 patients underwent transurethral resection of bladder tumor by a single surgeon. The patients were divided into two groups according to diagnostic method. In Group I, WLC only was performed. In Group II, NBI was additionally performed after WLC. We analyzed the rate of detection of bladder tumors as a primary endpoint. In addition, we evaluated rates of recurrence in each group. Results: There were no significant differences between the two groups in characteristics except hypertension. In the analysis of rates of detection, the probability of diagnosing cancer was 80.9% (114/141 in the WLC group, and the probability of diagnosing cancer using WLC in the NBI group was 85.5% (159/186. After switching from WLC to NBI for second-look cystoscopy in the NBI group, NBI was shown to detect additional tumors with a detection rate of 35.1% (13/37 from the perspective of the patients and 42.2% (27/64 from the perspective of the tumors. The 1-year recurrence-free rate was 72.2% in the WLC group and 85.2% in the NBI group (p=0.3. Conclusions: NBI had benefits for detecting tumors overlooked by WLC. Although the difference in the 1-year recurrence-free rate was not statistically significant, our results showed a trend for higher recurrence in the NBI group.

  11. Magnetic Resonance Imaging based Cartilage Loss in Painful Contra-Lateral Knees with and without Radiographic Joint Space Narrowing – Data from the Osteoarthritis Initiative (OAI)

    Eckstein, Felix; Benichou, Olivier; Wirth, Wolfgang; Nelson, David R; Maschek, Susanne; Hudelmaier, Martin; Kwoh, C. Kent; Guermazi, Ali; Hunter, David

    2010-01-01

    Objective Magnetic resonance imaging (MRI) was used to assess whether knees with advanced radiographic disease (medial joint space narrowing = mJSN) encounter greater longitudinal cartilage loss than contra-lateral knees with earlier disease (no or less mJSN). Methods Participants were selected from 2678 cases in the Osteoarthritis Initiative, based on exhibition of bilateral pain, BMI>25, mJSN in one knee, no or less mJSN in the contra-lateral knee, and no lateral JSN in both knees. 80 participants (age 60.6±9.1 yrs) fulfilled these criteria. Medial tibial and femoral cartilage morphology was analyzed from baseline and 1-year follow-up sagittal DESSwe 3 Tesla MRI of both knees, by experienced readers blinded to the timepoint and mJSN status. Results Knees with more radiographic mJSN displayed greater medial cartilage loss (-80 μm), assessed by MRI, than contra-lateral knees with less mJSN (-57μm). The difference reached statistical significance in participants with mJSN grade 2 or 3 (p=0.005 to p=0.08), but not in participants with mJSN grade 1 (p=0.28 to 0.98). In knees with more mJSN, cartilage loss increased with higher grades of mJSN (p=0.003 in the medial femur). Knees with mJSN grade 2 or 3 displayed greater cartilage loss in the weight-bearing medial femur than in the posterior femur or in the medial tibia (p=0.048). Conclusion Knees with advanced mJSN displayed greater cartilage loss than contra-lateral knees with less mJSN. These data suggest that radiography can be used to stratify fast structural progressors, and that MRI cartilage thickness loss is more pronounced at advanced radiographic disease stage. PMID:19714595

  12. An alternative option for "resect and discard" strategy, using magnifying narrow-band imaging: a prospective "proof-of-principle" study.

    Takeuchi, Yoji; Hanafusa, Masao; Kanzaki, Hiromitsu; Ohta, Takashi; Hanaoka, Noboru; Yamamoto, Sachiko; Higashino, Koji; Tomita, Yasuhiko; Uedo, Noriya; Ishihara, Ryu; Iishi, Hiroyasu

    2015-10-01

    The "resect and discard" strategy is beneficial for cost savings on screening and surveillance colonoscopy, but it has the risk to discard lesions with advanced histology or small invasive cancer (small advanced lesion; SALs). The aim of this study was to prove the principle of new "resect and discard" strategy with consideration for SALs using magnifying narrow-band imaging (M-NBI). Patients undergoing colonoscopy at a tertiary center were involved in this prospective trial. For each detected polyp <10 mm, optical diagnosis (OD) and virtual management ("leave in situ", "discard" or "send for pathology") were independently made using non-magnifying NBI (N-NBI) and M-NBI, and next surveillance interval were predicted. Histological and optical diagnosis results of all polyps were compared. While the management could be decided in 82% of polyps smaller than 10 mm, 24/31 (77%) SALs including two small invasive cancers were not discarded based on OD using M-NBI. The sensitivity [90% confidence interval (CI)] of M-NBI for SALs was 0.77 (0.61-0.89). The risk for discarding SALs using N-NBI was significantly higher than that using M-NBI (53 vs. 23%, p = 0.02). The diagnostic accuracy (95% CI) of M-NBI in distinguishing neoplastic from non-neoplastic lesions [0.88 (0.86-0.90)] was significantly better than that of N-NBI [0.84 (0.82-0.87)] (p = 0.005). The results of our study indicated that our "resect and discard" strategy using M-NBI could work to reduce the risk for discarding SALs including small invasive cancer (UMIN-CTR, UMIN000003740).

  13. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Komugi, Shinya [Division of Liberal Arts, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015 (Japan); Koshida, Shintaro [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Manabe, Sho [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Nakashima, Asami, E-mail: tateuchi@ioa.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  14. Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging

    Arena, Francesca; Irrera, Pietro; Consolino, Lorena; Colombo Serra, Sonia; Zaiss, Moritz; Longo, Dario Livio

    2018-02-01

    Several molecules have been exploited for developing MRI pH sensors based on the chemical exchange saturation transfer (CEST) technique. A ratiometric approach, based on the saturation of two exchanging pools at the same saturation power, or by varying the saturation power levels on the same pool, is usually needed to rule out the concentration term from the pH measurement. However, all these methods have been demonstrated by using a continuous wave saturation scheme that limits its translation to clinical scanners. This study shows a new ratiometric CEST-MRI pH-mapping approach based on a pulsed CEST saturation scheme for a radiographic contrast agent (iodixanol) possessing a single chemical exchange site. This approach is based on the ratio of the CEST contrast effects at two different flip angles combinations (180°/360° and 180°/720°), keeping constant the mean irradiation RF power (Bavg power). The proposed ratiometric approach index is concentration independent and it showed good pH sensitivity and accuracy in the physiological range between 6.0 and 7.4.

  15. Low Computational-Cost Footprint Deformities Diagnosis Sensor through Angles, Dimensions Analysis and Image Processing Techniques

    J. Rodolfo Maestre-Rendon

    2017-11-01

    Full Text Available Manual measurements of foot anthropometry can lead to errors since this task involves the experience of the specialist who performs them, resulting in different subjective measures from the same footprint. Moreover, some of the diagnoses that are given to classify a footprint deformity are based on a qualitative interpretation by the physician; there is no quantitative interpretation of the footprint. The importance of providing a correct and accurate diagnosis lies in the need to ensure that an appropriate treatment is provided for the improvement of the patient without risking his or her health. Therefore, this article presents a smart sensor that integrates the capture of the footprint, a low computational-cost analysis of the image and the interpretation of the results through a quantitative evaluation. The smart sensor implemented required the use of a camera (Logitech C920 connected to a Raspberry Pi 3, where a graphical interface was made for the capture and processing of the image, and it was adapted to a podoscope conventionally used by specialists such as orthopedist, physiotherapists and podiatrists. The footprint diagnosis smart sensor (FPDSS has proven to be robust to different types of deformity, precise, sensitive and correlated in 0.99 with the measurements from the digitalized image of the ink mat.

  16. Narrow linewidth pulsed optical parametric oscillator

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity ...

  17. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    Chen, T; Yue, N; Jabbour, S; Zhang, M [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components that were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy

  18. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    Chen, T; Yue, N; Jabbour, S; Zhang, M

    2016-01-01

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components that were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy

  19. Consideration of Shoulder Joint's Image with the Changed Tube Angle of the Shoulder Oblique Projection in Supine Position

    Seo, Jae Hyun; Choi, Nam Gil

    2008-01-01

    There is a standard shoulder oblique method (Grashey method) available to view the shoulder joint. This method projects AP view of the shoulder joint so that the Humerus head's subuxation or joint degeneration can be easily visualized. However, in this view, the patients, with supine or sitting or erect position, have to keep their body obliquely. Whereas, the patients who are not well or operated, usually feel very uncomfortable to keep their body in this position and hence, we need other persons' help and much efforts will be needed to get the good quality shoulder joint view. Therefore, we thought of examining a method which shows the joint well by angling the tube to Medio-Lateral direction and without keeping the patients' one side upward in supine position. For this study, total 15 subjects with no history of neurological or psychiatric illness, were recruited for examinations. They consisted of 9 males and 6 females. Statistic group analysis was performed with ANOVA test. Scores of the evaluation of the experts were 1.01±0.54 at 25 degrees, 2.50±0.50 at 30 degrees, 2.85±0.36 at 35 degrees and 2.33±0.47 at 40 degrees, respectively, and they were significant(p<0.05, Table 1). Joint space of the Humerus head and Scapula were well distinguished at 35 degrees, 30 degrees and 40 degrees with the almost same score. However, the degree of distortion at 40 degrees was more severe than that at 30 degrees. Ultimately, 30-35 degrees views were shown to yield good quality shoulder oblique images. In conclusion, this method may be very useful for the patients who are uncomfortable and for the emergency patients. In order to get similar or comparable view, the same X-tube angle is recommended to be used before and after the operation. Therefore, we hope that this new angled method seems to be efficient.

  20. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  1. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    Zhao, Yongjia; Zhou, Suiping

    2017-01-01

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503

  2. System description and analysis. Part 1: Feasibility study for helicopter/VTOL wide-angle simulation image generation display system

    1977-01-01

    A preliminary design for a helicopter/VSTOL wide angle simulator image generation display system is studied. The visual system is to become part of a simulator capability to support Army aviation systems research and development within the near term. As required for the Army to simulate a wide range of aircraft characteristics, versatility and ease of changing cockpit configurations were primary considerations of the study. Due to the Army's interest in low altitude flight and descents into and landing in constrained areas, particular emphasis is given to wide field of view, resolution, brightness, contrast, and color. The visual display study includes a preliminary design, demonstrated feasibility of advanced concepts, and a plan for subsequent detail design and development. Analysis and tradeoff considerations for various visual system elements are outlined and discussed.

  3. Probabilistic Evaluation of Three-Dimensional Reconstructions from X-Ray Images Spanning a Limited Angle

    Jörn Ostermann

    2012-12-01

    Full Text Available An important part of computed tomography is the calculation of a three-dimensional reconstruction of an object from series of X-ray images. Unfortunately, some applications do not provide sufficient X-ray images. Then, the reconstructed objects no longer truly represent the original. Inside of the volumes, the accuracy seems to vary unpredictably. In this paper, we introduce a novel method to evaluate any reconstruction, voxel by voxel. The evaluation is based on a sophisticated probabilistic handling of the measured X-rays, as well as the inclusion of a priori knowledge about the materials that the object receiving the X-ray examination consists of. For each voxel, the proposed method outputs a numerical value that represents the probability of existence of a predefined material at the position of the voxel while doing X-ray. Such a probabilistic quality measure was lacking so far. In our experiment, false reconstructed areas get detected by their low probability. In exact reconstructed areas, a high probability predominates. Receiver Operating Characteristics not only confirm the reliability of our quality measure but also demonstrate that existing methods are less suitable for evaluating a reconstruction.

  4. Study of optimal flip angle for inversion-recovery gradient echo method in delayed contrast-enhanced cardiac magnetic resonance imaging

    Ogawa, Masashi; Matsumura, Yoshio; Tsuchihashi, Toshio

    2013-01-01

    Delayed contrast-enhanced cardiac magnetic resonance imaging (MRI) is a valuable tool for detecting myocardial infarction and assessing myocardial viability. The standard viability MRI technique is the inversion-recovery gradient echo (IR-GRE) method. Several previous studies have demonstrated that this imaging technique provides superior image quality at high magnetic field strengths, e.g., 3.0 T. However, there are numerous possible flip angles. We investigated the optimal flip angle of IR-GRE in delayed contrast-enhanced cardiac MRI. Phantoms were made that modeled infarcted myocardium and normal myocardium after administration of contrast agent. To determine optimal flip angle, we compared the contrast-to-noise ratio (CNR) among these phantoms and evaluated the degree of artifacts induced by increased flip angle. The flip angle that showed the highest CNR for 2D IR-GRE and 3D IR-GRE was 30deg/15deg at 1.5 T and 25deg/15deg at 3.0 T. The flip angle that showed the highest CNR was independent of R-R interval. Streak artifacts induced by increased flip angle tended to occur more readily at 3.0 T than 1.5 T. The optimal flip angle for 2D IR-GRE and 3D IR-GRE at 1.5 T was 30deg and 15deg, respectively. At 3.0 T, taking into account the results for both CNR and streak artifacts, we concluded the optimal flip angle of 2D IR-GRE to be 15-20deg. (author)

  5. Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques

    Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.

    2015-12-01

    We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. First results in rapid MR imaging of focal liver and spleen lesions using field echos and small angle excitation (gradient echo sequences)

    Griebel, J.; Hess, C.F.; Kurtz, B.; Klose, U.; Kueper, K.

    1987-01-01

    15 healthy subjects and 39 patients with focal liver and spleen lesions were examined via MR tomography at 1.5 tesla. Gradient field echos at small angle excitation ( 0 ) were employed. The imaging time per layer was 10 seconds so that rapid imaging could be carried out at respiratory standstill. This enabled visualisation of liver and spleen without interference by breathing artifacts and with accurate localisation. Focal lesions can be imaged best at low flip-angle pulses (liver) or low to medium-angle pulses (spleen). The primary liver cell carcinoma is visualised as an inhomogeneous structure with similar signal intensity as the surrounding tissue. All other examined liver lesions (metastases, haemangiomas, lymphatic infiltrates, echinococcus cysts, FNH, gummae) showed greater signal intensity than the remaining organ at small angle excitation. Furthermore, contrast reversals were seen at medium-angle pulses. Contrariwise, with the exception of the light-coloured spleen infarcts, spleen lesions (lymphatic infiltrate, Boeck's disease or sarcoidosis) appeared darker at all excitation angles than the surrounding tissue. (orig.) [de

  7. First results in rapid MR imaging of focal liver and spleen lesions using field echos and small angle excitation (gradient echo sequences)

    Griebel, J.; Hess, C.F.; Kurtz, B.; Klose, U.; Kueper, K.

    1987-01-01

    15 healthy subjects and 39 patients with focal liver and spleen lesions were examined via MR tomography at 1.5 tesla. Gradient field echos at small angle excitation (< 90/sup 0/) were employed. The imaging time per layer was 10 seconds so that rapid imaging could be carried out at respiratory standstill. This enabled visualisation of liver and spleen without interference by breathing artifacts and with accurate localisation. Focal lesions can be imaged best at low flip-angle pulses (liver) or low to medium-angle pulses (spleen). The primary liver cell carcinoma is visualised as an inhomogeneous structure with similar signal intensity as the surrounding tissue. All other examined liver lesions (metastases, haemangiomas, lymphatic infiltrates, echinococcus cysts, FNH, gummae) showed greater signal intensity than the remaining organ at small angle excitation. Furthermore, contrast reversals were seen at medium-angle pulses. Contrariwise, with the exception of the light-coloured spleen infarcts, spleen lesions (lymphatic infiltrate, Boeck's disease or sarcoidosis) appeared darker at all excitation angles than the surrounding tissue.

  8. Narrow dibaryon resonances

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  9. DETECTIONS OF LYMAN CONTINUUM FROM STAR-FORMING GALAXIES AT z ∼ 3 THROUGH SUBARU/SUPRIME-CAM NARROW-BAND IMAGING

    Iwata, I.; Inoue, A. K.; Matsuda, Y.; Furusawa, H.; Akiyama, M.; Hayashino, T.; Kousai, K.; Yamada, T.; Burgarella, D.; Deharveng, J.-M.

    2009-01-01

    Knowing the amount of ionizing photons from young star-forming galaxies is of particular importance to understanding the reionization process. Here we report initial results of a Subaru/Suprime-Cam deep imaging observation of the SSA22 proto-cluster region at z = 3.09, using a special narrow-band filter to optimally trace ionizing radiation from galaxies at z ∼ 3. The unique wide field-of-view of Suprime-Cam enabled us to search for ionizing photons from 198 galaxies (73 Lyman break galaxies (LBGs) and 125 Lyα emitters (LAEs)) with spectroscopically measured redshifts z ≅ 3.1. We detected ionizing radiation from 7 LBGs, as well as from 10 LAE candidates. Some of the detected galaxies show significant spatial offsets of ionizing radiation from nonionizing UV emission. For some LBGs the observed nonionizing UV to Lyman continuum flux density ratios are smaller than values expected from population synthesis models with a standard Salpeter initial mass function (IMF) with moderate dust attenuation (which is suggested from the observed UV slopes), even if we assume very transparent intergalactic medium along the sightlines of these objects. This implies an intrinsically bluer spectral energy distribution, e.g., that produced by a top-heavy IMF, for these LBGs. The observed flux density ratios of nonionizing UV to ionizing radiation of 7 detected LBGs range from 2.4 to 23.8 and the median is 6.6. The observed flux density ratios of the detected LAEs are even smaller than LBGs, if they are truly at z ≅ 3.1. We find that the median value of the flux density ratio for the detected LBGs suggests that their escape fractions are likely to be higher than 4%, if the Lyman continuum escape is isotropic. The results imply that some of the LBGs in the proto-cluster at z ∼ 3 have escape fraction significantly higher than that of galaxies (in a general field) at z ∼ 1 studied previously.

  10. Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans.

    Melki, Lea; Costet, Alexandre; Konofagou, Elisa E

    2017-10-01

    Electromechanical wave imaging (EWI) is an ultrasound-based technique that can non-invasively map the transmural electromechanical activation in all four cardiac chambers in vivo. The objective of this study was to determine the reproducibility and angle independence of EWI for the assessment of electromechanical activation during normal sinus rhythm (NSR) in healthy humans. Acquisitions were performed transthoracically at 2000 frames/s on seven healthy human hearts in parasternal long-axis, apical four- and two-chamber views. EWI data was collected twice successively in each view in all subjects, while four successive acquisitions were obtained in one case. Activation maps were generated and compared (i) within the same acquisition across consecutive cardiac cycles; (ii) within same view across successive acquisitions; and (iii) within equivalent left-ventricular regions across different views. EWI was capable of characterizing electromechanical activation during NSR and of reliably obtaining similar patterns of activation. For consecutive heart cycles, the average 2-D correlation coefficient between the two isochrones across the seven subjects was 0.9893, with a mean average activation time fluctuation in LV wall segments across acquisitions of 6.19%. A mean activation time variability of 12% was obtained across different views with a measurement bias of only 3.2 ms. These findings indicate that EWI can map the electromechanical activation during NSR in human hearts in transthoracic echocardiography in vivo and results in reproducible and angle-independent activation maps. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. WE-DE-BRA-01: SCIENCE COUNCIL JUNIOR INVESTIGATOR COMPETITION WINNER: Acceleration of a Limited-Angle Intrafraction Verification (LIVE) System Using Adaptive Prior Knowledge Based Image Estimation

    Zhang, Y; Yin, F; Ren, L; Zhang, Y

    2016-01-01

    Purpose: To develop an adaptive prior knowledge based image estimation method to reduce the scan angle needed in the LIVE system to reconstruct 4D-CBCT for intrafraction verification. Methods: The LIVE system has been previously proposed to reconstructs 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. This system uses limited-angle beam’s eye view (BEV) MV cine images acquired from the treatment beam together with the orthogonally acquired limited-angle kV projections to reconstruct 4D-CBCT images for target verification during treatment. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the CBCT images. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on projections acquired in limited angle (orthogonal 6°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of patient motion.The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of this technique with LIVE system. A lung patient was simulated with different scenario, including baseline drifts, amplitude change and phase shift. Limited-angle orthogonal kV and beam’s eye view (BEV) MV projections were generated for each scenario. The CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate the reconstruction accuracy. Results: Using orthogonal-view of 6° kV and BEV- MV projections, the VPD/COMS values were 12.7±4.0%/0.7±0.5 mm, 13.0±5.1%/0.8±0.5 mm, and 11.4±5.4%/0.5±0.3 mm for the three scenarios, respectively. Conclusion: The

  12. WE-DE-BRA-01: SCIENCE COUNCIL JUNIOR INVESTIGATOR COMPETITION WINNER: Acceleration of a Limited-Angle Intrafraction Verification (LIVE) System Using Adaptive Prior Knowledge Based Image Estimation

    Zhang, Y; Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States); Zhang, Y [UT Southwestern Medical Ctr at Dallas, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop an adaptive prior knowledge based image estimation method to reduce the scan angle needed in the LIVE system to reconstruct 4D-CBCT for intrafraction verification. Methods: The LIVE system has been previously proposed to reconstructs 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. This system uses limited-angle beam’s eye view (BEV) MV cine images acquired from the treatment beam together with the orthogonally acquired limited-angle kV projections to reconstruct 4D-CBCT images for target verification during treatment. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the CBCT images. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on projections acquired in limited angle (orthogonal 6°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of patient motion.The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of this technique with LIVE system. A lung patient was simulated with different scenario, including baseline drifts, amplitude change and phase shift. Limited-angle orthogonal kV and beam’s eye view (BEV) MV projections were generated for each scenario. The CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate the reconstruction accuracy. Results: Using orthogonal-view of 6° kV and BEV- MV projections, the VPD/COMS values were 12.7±4.0%/0.7±0.5 mm, 13.0±5.1%/0.8±0.5 mm, and 11.4±5.4%/0.5±0.3 mm for the three scenarios, respectively. Conclusion: The

  13. High energy electron radiography system design and simulation study of beam angle-position correlation and aperture effect on the images

    Zhao, Quantang; Cao, S.C.; Liu, M.; Sheng, X.K.; Wang, Y.R.; Zong, Y.; Zhang, X.M.; Jing, Y.; Cheng, R.; Zhao, Y.T.; Zhang, Z.M.; Du, Y.C.; Gai, W.

    2016-01-01

    A beam line dedicated to high-energy electron radiography experimental research with linear achromat and imaging lens systems has been designed. The field of view requirement on the target and the beam angle-position correlation correction can be achieved by fine-tuning the fields of the quadrupoles used in the achromat in combination with already existing six quadrupoles before the achromat. The radiography system is designed by fully considering the space limitation of the laboratory and the beam diagnostics devices. Two kinds of imaging lens system, a quadruplet and an octuplet system are integrated into one beam line with the same object plane and image plane but with different magnification factor. The beam angle-position correlation on the target required by the imaging lens system and the aperture effect on the images are studied with particle tracking simulation. It is shown that the aperture position is also correlated to the beam angle-position on the target. With matched beam on the target, corresponding aperture position and suitable aperture radius, clear pictures can be imaged by both lens systems. The aperture is very important for the imaging. The details of the beam optical requirements, optimized parameters and the simulation results are presented.

  14. SU-G-JeP3-06: Lower KV Image Dose Are Expected From a Limited-Angle Intra-Fractional Verification (LIVE) System for SBRT Treatments

    Ding, G [Vanderbilt University Nashville, TN (United States); Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: In order to track the tumor movement for patient positioning verification during arc treatment delivery or in between 3D/IMRT beams for stereotactic body radiation therapy (SBRT), the limited-angle kV projections acquisition simultaneously during arc treatment delivery or in-between static treatment beams as the gantry moves to the next beam angle was proposed. The purpose of this study is to estimate additional imaging dose resulting from multiple tomosynthesis acquisitions in-between static treatment beams and to compare with that of a conventional kV-CBCT acquisition. Methods: kV imaging system integrated into Varian TrueBeam accelerators was modeled using EGSnrc Monte Carlo user code, BEAMnrc and DOSXYZnrc code was used in dose calculations. The simulated realistic kV beams from the Varian TrueBeam OBI 1.5 system were used to calculate dose to patient based on CT images. Organ doses were analyzed using DVHs. The imaging dose to patient resulting from realistic multiple tomosynthesis acquisitions with each 25–30 degree kV source rotation between 6 treatment beam gantry angles was studied. Results: For a typical lung SBRT treatment delivery much lower (20–50%) kV imaging doses from the sum of realistic six tomosynthesis acquisitions with each 25–30 degree x-ray source rotation between six treatment beam gantry angles were observed compared to that from a single CBCT image acquisition. Conclusion: This work indicates that the kV imaging in this proposed Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments has a negligible imaging dose increase. It is worth to note that the MV imaging dose caused by MV projection acquisition in-between static beams in LIVE can be minimized by restricting the imaging to the target region and reducing the number of projections acquired. For arc treatments, MV imaging acquisition in LIVE does not add additional imaging dose as the MV images are acquired from treatment beams directly during the

  15. Development of Portable Digital Radiography System with a Device for Monitoring X-ray Source-Detector Angle and Its Application in Chest Imaging

    Tae-Hoon Kim

    2017-03-01

    Full Text Available This study developed a device measuring the X-ray source-detector angle (SDA and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR was evaluated using the signal-to-noise (SNR, contrast-to-noise ratio (CNR, spatial resolution, distortion and entrance surface dose (ESD. According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles (p < 0.05, whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines.

  16. Jihadism, Narrow and Wide

    Sedgwick, Mark

    2015-01-01

    The term “jihadism” is popular, but difficult. It has narrow senses, which are generally valuable, and wide senses, which may be misleading. This article looks at the derivation and use of “jihadism” and of related terms, at definitions provided by a number of leading scholars, and at media usage....... It distinguishes two main groups of scholarly definitions, some careful and narrow, and some appearing to match loose media usage. However, it shows that even these scholarly definitions actually make important distinctions between jihadism and associated political and theological ideology. The article closes...

  17. Sua Pan surface bidirectional reflectance: a validation experiment of the Multi-angle Imaging SpectroRadiometer (MISR) during SAFARI 2000

    Abdou, Wedad A.; Pilorz, Stuart H.; Helmlinger, Mark C.; Diner, David J.; Conel, James E.; Martonchik, John V.; Gatebe, Charles K.; King, Michael D.; Hobbs, Peter V.

    2004-01-01

    The Southern Africa Regional Science Initiative (SAFARI 2000) dray deason campaign was carried out during August and September 2000 at the peak of biomass burning. The intensive ground-based and airborne measurements in this campaign provided a unique opportunity to validate space sensors, such as the Multi-angle Imaging SpectroRadiometer (MISR), onboard NASA's EOS Terra platform.

  18. Climatology of the Aerosol Optical Depth by Components from the Multi-Angle Imaging Spectroradiometer (MISR) and Chemistry Transport Models

    Lee, Huikyo; Kalashnikova, Olga V.; Suzuki, Kentaroh; Braverman, Amy; Garay, Michael J.; Kahn, Ralph A.

    2016-01-01

    The Multi-angle Imaging Spectroradiometer (MISR) Joint Aerosol (JOINT_AS) Level 3 product has provided a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and aerosol type information for each month over 16+ years since March 2000. Using Version 1 of JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical - near or downwind of their major source regions. The statistical moments (means, standard deviations, and skew-nesses) and distributions of AOD by components derived from the JOINT_AS are compared with results from two chemistry transport models (CTMs), the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and SPectral RadIatioN-TrAnSport (SPRINTARS). Overall, the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR and models show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.

  19. Correlates of Narrow Bracketing

    Koch, Alexander; Nafziger, Julia

    We examine whether different phenomena of narrow bracketing can be traced back to some common characteristic and whether and how different phenomena are related. We find that making dominated lottery choices or ignoring the endowment when making risky choices are related phenomena and are both as...

  20. Evaluation of Transient Motion During Gadoxetic Acid-Enhanced Multiphasic Liver Magnetic Resonance Imaging Using Free-Breathing Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging.

    Yoon, Jeong Hee; Lee, Jeong Min; Yu, Mi Hye; Hur, Bo Yun; Grimm, Robert; Block, Kai Tobias; Chandarana, Hersh; Kiefer, Berthold; Son, Yohan

    2018-01-01

    The aims of this study were to observe the pattern of transient motion after gadoxetic acid administration including incidence, onset, and duration, and to evaluate the clinical feasibility of free-breathing gadoxetic acid-enhanced liver magnetic resonance imaging using golden-angle radial sparse parallel (GRASP) imaging with respiratory gating. In this institutional review board-approved prospective study, 59 patients who provided informed consents were analyzed. Free-breathing dynamic T1-weighted images (T1WIs) were obtained using GRASP at 3 T after a standard dose of gadoxetic acid (0.025 mmol/kg) administration at a rate of 1 mL/s, and development of transient motion was monitored, which is defined as a distinctive respiratory frequency alteration of the self-gating MR signals. Early arterial, late arterial, and portal venous phases retrospectively reconstructed with and without respiratory gating and with different temporal resolutions (nongated 13.3-second, gated 13.3-second, gated 6-second T1WI) were evaluated for image quality and motion artifacts. Diagnostic performance in detecting focal liver lesions was compared among the 3 data sets. Transient motion (mean duration, 21.5 ± 13.0 seconds) was observed in 40.0% (23/59) of patients, 73.9% (17/23) of which developed within 15 seconds after gadoxetic acid administration. On late arterial phase, motion artifacts were significantly reduced on gated 13.3-second and 6-second T1WI (3.64 ± 0.34, 3.61 ± 0.36, respectively), compared with nongated 13.3-second T1WI (3.12 ± 0.51, P < 0.0001). Overall, image quality was the highest on gated 13.3-second T1WI (3.76 ± 0.39) followed by gated 6-second and nongated 13.3-second T1WI (3.39 ± 0.55, 2.57 ± 0.57, P < 0.0001). Only gated 6-second T1WI showed significantly higher detection performance than nongated 13.3-second T1WI (figure of merit, 0.69 [0.63-0.76]) vs 0.60 [0.56-0.65], P = 0.004). Transient motion developed in 40% (23/59) of patients shortly after

  1. Reducing contrast contamination in radial turbo-spin-echo acquisitions by combining a narrow-band KWIC filter with parallel imaging.

    Neumann, Daniel; Breuer, Felix A; Völker, Michael; Brandt, Tobias; Griswold, Mark A; Jakob, Peter M; Blaimer, Martin

    2014-12-01

    Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information. Radial TSE acquisitions allow the reconstruction of multiple images with different T2 contrasts using the k-space weighted image contrast (KWIC) filter. In this work, the image contrast is improved by reducing the band-width of the KWIC filter. Data for the reconstruction of a single image are selected from within a small temporal range around the desired echo time. The resulting dataset is undersampled and, therefore, an iterative parallel imaging algorithm is applied to remove aliasing artifacts. Radial TSE images of the human brain reconstructed with the proposed method show an improved contrast when compared with Cartesian TSE images or radial TSE images with conventional KWIC reconstructions. The proposed method provides multi-contrast images from radial TSE data with contrasts similar to multi spin-echo images. Contaminations from unwanted contrast weightings are strongly reduced. © 2014 Wiley Periodicals, Inc.

  2. Comparison of Three Non-Imaging Angle-Diversity Receivers as Input Sensors of Nodes for Indoor Infrared Wireless Sensor Networks: Theory and Simulation

    Beatriz R. Mendoza

    2016-07-01

    Full Text Available In general, the use of angle-diversity receivers makes it possible to reduce the impact of ambient light noise, path loss and multipath distortion, in part by exploiting the fact that they often receive the desired signal from different directions. Angle-diversity detection can be performed using a composite receiver with multiple detector elements looking in different directions. These are called non-imaging angle-diversity receivers. In this paper, a comparison of three non-imaging angle-diversity receivers as input sensors of nodes for an indoor infrared (IR wireless sensor network is presented. The receivers considered are the conventional angle-diversity receiver (CDR, the sectored angle-diversity receiver (SDR, and the self-orienting receiver (SOR, which have been proposed or studied by research groups in Spain. To this end, the effective signal-collection area of the three receivers is modelled and a Monte-Carlo-based ray-tracing algorithm is implemented which allows us to investigate the effect on the signal to noise ratio and main IR channel parameters, such as path loss and rms delay spread, of using the three receivers in conjunction with different combination techniques in IR links operating at low bit rates. Based on the results of the simulations, we show that the use of a conventional angle-diversity receiver in conjunction with the equal-gain combining technique provides the solution with the best signal to noise ratio, the lowest computational capacity and the lowest transmitted power requirements, which comprise the main limitations for sensor nodes in an indoor infrared wireless sensor network.

  3. Development of a model using narrow slit beam profiles to account for the backscatter response of an amorphous silicon electronic portal imaging device

    Maria Das, K.J.; Ostapiak, Orest

    2008-01-01

    An electronic portal imaging device (EPID), currently used for determining proper patient placement during irradiation in a radiotherapy treatment, can also be used for the purpose of pre- treatment IMRT QA. However, the Varian aS500 portal imager exhibits dosimetric artifacts caused by non-uniform backscatter from mechanical support structures located behind the imager

  4. Motion tracking in narrow spaces: a structured light approach

    Olesen, Oline Vinter; Paulsen, Rasmus; Højgaard, Liselotte

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...... the system to a standard optical motion tracker based on a rigid tracking tool. Our system achieves an angular RMSE of 0.11 degrees demonstrating its relevance for motion compensated 3D scan image reconstructions as well as its competitiveness against the standard optical system with an RMSE of 0.08 degrees...... point clouds are matched to a reference surface using a robust iterative closest point algorithm. A main challenge is the narrow geometry requiring a compact structured light system and an oblique angle of observation. The system is validated using a mannequin head mounted on a rotary stage. We compare...

  5. A network meta-analysis of therapeutic outcomes after new image technology-assisted transurethral resection for non-muscle invasive bladder cancer: 5-aminolaevulinic acid fluorescence vs hexylaminolevulinate fluorescence vs narrow band imaging

    Lee, Joo Yong; Cho, Kang Su; Kang, Dong Hyuk; Jung, Hae Do; Kwon, Jong Kyou; Oh, Cheol Kyu; Ham, Won Sik; Choi, Young Deuk

    2015-01-01

    This study included a network meta-analysis of evidence from randomized controlled trials (RCTs) to assess the therapeutic outcome of transurethral resection (TUR) in patients with non-muscle-invasive bladder cancer assisted by photodynamic diagnosis (PDD) employing 5-aminolaevulinic acid (5-ALA) or hexylaminolevulinate (HAL) or by narrow band imaging (NBI). Relevant RCTs were identified from electronic databases. The proceedings of relevant congresses were also searched. Fifteen articles based on RCTs were included in the analysis, and the comparisons were made by qualitative and quantitative syntheses using pairwise and network meta-analyses. Seven of 15 RCTs were at moderate risk of bias for all quality criteria and two studies were classified as having a high risk of bias. The recurrence rate of cancers resected with 5-ALA-based PDD was lower than of those resected using HAL-based PDD (odds ratio (OR) = 0.48, 95 % confidence interval (CI) [0.26–0.95]) but was not significantly different than those resected with NBI (OR = 0.53, 95 % CI [0.26–1.09]). The recurrence rate of cancers resected using HAL-based PDD versus NBI did not significantly differ (OR = 1.11, 95 % CI [0.55–2.1]). All cancers resected using 5-ALA-based PDD, HAL-based PDD, or NBI recurred at a lower rate than those resected using white light cystoscopy (WLC). No difference in progression rate was observed between cancers resected by all methods investigated. The recurrence rate of some bladder cancers can be decreased by the implementation of either PDD- and NBI-assisted TUR; in real settings, clinicians should consider replacing WLC as the standard imaging technology to guide TUR

  6. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.

    Zhang, Lingli; Zeng, Li; Guo, Yumeng

    2018-03-15

    Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes

  7. Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media.

    Scanziani, Alessio; Singh, Kamaljit; Blunt, Martin J; Guadagnini, Alberto

    2017-06-15

    Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  8. Details of 1π sr wide acceptance angle electrostatic lens for electron energy and two-dimensional angular distribution analysis combined with real space imaging

    Tóth, László; Matsuda, Hiroyuki; Matsui, Fumihiko; Goto, Kentaro; Daimon, Hiroshi

    2012-01-01

    We propose a new 1π sr Wide Acceptance Angle Electrostatic Lens (WAAEL), which works as a photoemission electron microscope (PEEM), a highly sensitive display-type electron energy and two-dimensional angular distribution analyzer. It can display two-dimensional angular distributions of charged particles within the acceptance angle of ±60° that is much larger than the largest acceptance angle range so far and comparable to the display-type spherical mirror analyzer developed by Daimon et al. . It has good focusing capabilities with 5-times magnification and 27(4) μm lateral-resolution. The relative energy resolution is typically from 2 to 5×10 -3 depending on the diameter of energy aperture and the emission area on the sample. Although, the lateral resolution of the presented lens is far from those are available nowadays, but this is the first working model that can form images using charged particles collected from 1π sr wide acceptance angle. The realization of such lens system is one of the first possible steps towards reaching the field of imaging type atomic resolution electron microscopy Feynman et al. Here some preliminary results are shown.

  9. Glaucoma anterior chamber morphometry based on optical Scheimpflug images.

    Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis

    2010-01-01

    To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.

  10. Evaluation of short repetition time, partial flip angle, gradient recalled echo pulse sequences in cervical spine imaging

    Enzmann, D.; Rubin, J.B.

    1987-01-01

    A short repetition time (TR), partial flip angle, gradient recalled echo pulse sequence (GRASS) was prospectively studied to optimize it for the diagnosis of cervical disk and cord disease in 98 patients. Changes in signal-to-noise ratio (SNR) and contrast were measured as the following parameters were varied: flip angle (3 0 to 18 0 ), TR (22-60 msec), and echo time (TE) (12.5-25 msec). Flip angle was the single most important parameter. For disk disease, cerebrospinal fluid (CSF) SNR peaked at an 8 0 flip angle in the axial view but at a 4 0 flip angle in the sagittal view. In the sagittal view, disk-CSF contrast decreased progressively from a flip angle of 3 0 , while in the axial view it peaked at 10 0 . For cord lesions the findings were similar except that lesion-cord contrast could be increased by lengthening both TR and TE. No one combination of parameters proved greatly superior for either disk disease or cord disease. The selection of parameters required balancing of several factors that often had opposing effects

  11. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study

    Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang

    2013-11-01

    Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally <1 mm and the rotational setup errors from 5° to <1°. Compared with the PICCS algorithm alone, the integration of rigid

  12. Pool Boiling CHF in Inclined Narrow Annuli

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  13. Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI.

    Johansson, Adam; Balter, James; Cao, Yue

    2018-03-01

    Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P <  0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Scoliosis angle

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  15. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  16. Narrow beam neutron dosimetry.

    Ferenci, M Sutton

    2004-01-01

    Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.

  17. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    Mohammed Rigi

    2016-01-01

    Full Text Available Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4 years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69 and FD ASOCT (0.58 and 0.75. Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86 and FD ASOCT (0.57 and 0.85. Interinstrument agreements were fair to good (0.34 to 0.63, with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy.

  18. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    Nguyen, Donna; Minnal, Vandana R.

    2016-01-01

    Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT) for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4) years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69) and FD ASOCT (0.58 and 0.75). Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86) and FD ASOCT (0.57 and 0.85). Interinstrument agreements were fair to good (0.34 to 0.63), with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy. PMID:27990300

  19. Fluorescence imaging of sample zone narrowing and dispersion in a glass microchip: the effects of organic solvent (acetonitrile)-salt mixtures in the sample matrix and surfactant micelles in the running buffer.

    Jia, Zhijian; Lee, Yi-kuen; Fang, Qun; Huie, Carmen W

    2006-03-01

    A mismatch in the EOF velocities between the sample zone and running buffer region is known to generate pressure-driven, parabolic flow profile of the sample plug in electrokinetic separation systems. In the present study, video fluorescence microscopy was employed to capture real-time dynamics of the sample plug (containing fluorescein as the probe molecule) in a discontinuous conductivity system within a glass microchip, in which the sample matrix consisted of a mixture of ACN and salt (NaCl), and the running buffer contained sodium cholate (SC) micelles as the pseudo-stationary phase (i.e., performing "ACN stacking" in the mode of MEKC). Upon application of the separation voltage, the video images revealed that zone narrowing and broadening of the probe molecules occurred as the sample plug headed toward the cathode during the initial time period, probably resulting in part from the stacking/sweeping, and destacking of the SC micelles at the boundaries between the sample zone and running buffer. Interestingly, a second sample zone narrowing event can be observed as the sample plug moved further toward the cathode, which could be attributed to the sweeping of the slower moving probe molecules by the faster moving SC micelles that originated from the anode. This phenomenon was studied as a function of pH, sample plug length, as well as the concentration of organic solvent and salt in the sample matrix. The data suggested that the presence of large amounts of an organic solvent (such as ACN or methanol) and salts in the sample matrix not only induces sample dispersion due to the formation of a pressure-driven (hydrodynamic) flow, but may also lead to the formation of a double sample zone narrowing phenomenon by altering the local EOF dynamics within the separation system.

  20. Aerosol Retrieval Sensitivity and Error Analysis for the Cloud and Aerosol Polarimetric Imager on Board TanSat: The Effect of Multi-Angle Measurement

    Xi Chen

    2017-02-01

    Full Text Available Aerosol scattering is an important source of error in CO2 retrievals from satellite. This paper presents an analysis of aerosol information content from the Cloud and Aerosol Polarimetric Imager (CAPI onboard the Chinese Carbon Dioxide Observation Satellite (TanSat to be launched in 2016. Based on optimal estimation theory, aerosol information content is quantified from radiance and polarization observed by CAPI in terms of the degrees of freedom for the signal (DFS. A linearized vector radiative transfer model is used with a linearized Mie code to simulate observation and sensitivity (or Jacobians with respect to aerosol parameters. In satellite nadir mode, the DFS for aerosol optical depth is the largest, but for mode radius, it is only 0.55. Observation geometry is found to affect aerosol DFS based on the aerosol scattering phase function from the comparison between different viewing zenith angles or solar zenith angles. When TanSat is operated in target mode, we note that multi-angle retrieval represented by three along-track measurements provides additional 0.31 DFS on average, mainly from mode radius. When adding another two measurements, the a posteriori error decreases by another 2%–6%. The correlation coefficients between retrieved parameters show that aerosol is strongly correlated with surface reflectance, but multi-angle retrieval can weaken this correlation.

  1. Cosmic ray zenith angle distribution at low geomagnetic latitude

    Aragon, G [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina; Gagliardini, A; Ghielmetti, H S

    1977-12-01

    The intensity of secondary charged cosmic rays at different zenith angles was measured by narrow angle Geiger-Mueller telescopes up to an atmospheric depth of 2 g cm/sup -2/. The angular distribution observed at high altitudes is nearly flat at small angles around the vertical and suggests that the particle intensity peaks at large zenith angles, close to the horizon.

  2. Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil.

    Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich

    2014-03-01

    Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability.

    Becher, Christoph; Fleischer, Benjamin; Rase, Marten; Schumacher, Thees; Ettinger, Max; Ostermeier, Sven; Smith, Tomas

    2017-08-01

    This study analysed the effects of upright weight bearing and the knee flexion angle on patellofemoral indices, determined using magnetic resonance imaging (MRI), in patients with patellofemoral instability (PI). Healthy volunteers (control group, n = 9) and PI patients (PI group, n = 16) were scanned in an open-configuration MRI scanner during upright weight bearing and supine non-weight bearing positions at full extension (0° flexion) and at 15°, 30°, and 45° flexion. Patellofemoral indices included the Insall-Salvati Index, Caton-Deschamp Index, and Patellotrochlear Index (PTI) to determine patellar height and the patellar tilt angle (PTA), bisect offset (BO), and the tibial tubercle-trochlear groove (TT-TG) distance to assess patellar rotation and translation with respect to the femur and alignment of the extensor mechanism. A significant interaction effect of weight bearing by flexion angle was observed for the PTI, PTA, and BO for subjects with PI. At full extension, post hoc pairwise comparisons revealed a significant effect of weight bearing on the indices, with increased patellar height and increased PTA and BO in the PI group. Except for the BO, no such changes were seen in the control group. Independent of weight bearing, flexing the knee caused the PTA, BO, and TT-TG distance to be significantly reduced. Upright weight bearing and the knee flexion angle affected patellofemoral MRI indices in PI patients, with significantly increased values at full extension. The observations of this study provide a caution to be considered by professionals when treating PI patients. These patients should be evaluated clinically and radiographically at full extension and various flexion angles in context with quadriceps engagement. Explorative case-control study, Level III.

  4. Seismic images of an extensional basin, generated at the hangingwall of a low-angle normal fault: The case of the Sansepolcro basin (Central Italy)

    Barchi, Massimiliano R.; Ciaccio, Maria Grazia

    2009-12-01

    The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.

  5. T2 image contrast evaluation using three dimension sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE)

    Yamazaki, Ryo; Hiura, Yukikazu; Tsuji, Akio; Nishiki, Shigeo; Uchikoshi, Masato

    2011-01-01

    Sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE) sequence enables one to decrease specific absorption rate (SAR) by using variable flip angle refocusing pulse. Therefore, it is expected that the contrast obtained with 3D-SPACE sequences is different from that of spin echo (SE) images and turbo spin echo (TSE) images. The purpose of this study was to evaluate the characteristics of the signal intensity and central nervous system (CNS) image contrast in T 2 weighted 3D-SPACE. Using 3 different sequences (SE, 3D-TSE and 3D-SPACE) with repetition time (TR)/ echo time (TE)=3500/70, 90 and 115 ms, we obtained T 2 weighted magnetic resonance (MR) images of inhouse phantom and five healthy volunteers' brain. Signal intensity of the phantom which contains various T 1 and T 2 value was evaluated. Tissue contrasts of white/gray matter, cerebrospinal fluid (CSF)/subcutaneous fat and gray matter/subcutaneous fat were evaluated for a clinical image study. The phantom study showed that signal intensity in 3D-SPACE significantly decreased under a T 1 value of 250 ms. It was markedly decreased in comparison to other sequences, as effective echo time (TE) was extended. White/gray matter contrast of 3D-SPACE was the highest in all sequences. On the other hand, CSF/fat and gray matter/fat contrast of 3D-SPACE was higher than TSE but lower than SE. CNS image contrasts of 3D-SPACE were comparable to that of SE. Signal intensity had decreased in the range where T 1 and T 2 values were extremely short. (author)

  6. Coupled Retrieval of Aerosol Properties and Surface Reflection Using the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI)

    Xu, F.; van Harten, G.; Kalashnikova, O. V.; Diner, D. J.; Seidel, F. C.; Garay, M. J.; Dubovik, O.

    2016-12-01

    The Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 10 km and is observed from 9 view angles between ±67° off of nadir. We have developed an efficient and flexible code that uses the information content of AirMSPI data for a coupled retrieval of aerosol properties and surface reflection. The retrieval was built based on the multi-pixel optimization concept [2], with the use of a hybrid radiative transfer model [3] that combines the Markov Chain [4] and adding/doubling methods [5]. The convergence and robustness of our algorithm is ensured by applying constraints on (a) the spectral variation of the Bidirectional Polarization Distribution Function (BPDF) and angular shape of the Bidirectional Reflectance Distribution Function (BRDF); (b) the spectral variation of aerosol optical properties; and (c) the spatial variation of aerosol parameters across neighboring image pixels. Our retrieval approach has been tested using over 20 AirMSPI datasets having low to moderately high aerosol loadings ( 0.02550-nmSpace Sci. Rev. 16, 527 (1974).

  7. Angle Performance on Optima XE

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  8. Development of an Operational System for the Retrieval of Aerosol and Land Surface Properties from the Terra Multi-Angle Imaging SpectroRadiometer

    Crean, Kathleen A.

    2003-01-01

    An operational system to retrieve atmospheric aerosol and land surface properties using data from the Multi-angle Imaging SpectroRadiometer (MISR) instrument, currently flying onboard NASA's Terra spacecraft, has been deployed. The system is in full operation, with new data products generated daily and distributed to science users worldwide. This paper describes the evolution of the system, from initial requirements definition and prototyping through design, implementation, testing, operational deployment, checkout and maintenance activities. The current status of the system and future plans for enhancement are described. Major challenges encountered during implementation are detailed.

  9. Narrow, duplicated internal auditory canal

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  10. Synthetic imaging diagnosis of valvular heart diseases (especially, mytral valve), for the most part of angled projections in cineangiocardiographic study

    Katabuchi, Tetsuro; Wakamatsu, Takashi; Nakayama, Kazuhiko

    1981-01-01

    Recently, owing to developments of high output X-ray tube, high resolution image intensifier and mobile U or C arm, increasing remarkably, has been application of cinegraphy to angiocardiographic study. Surgical treatments for heart diseases have been very advanced in this few years, so that before operation, is demanded to precise anatomically and functionally diagnosis of them. In this paper, are discussed cineangiocardiography, echocardiography, in regard to the most useful investigation of valvelar heart diseases and some problems of imaging techniques, finally, introduced the newest examination method of diagnostic imaging. (author)

  11. New methods for optical distance indicator and gantry angle quality control tests in medical linear accelerators: image processing by using a 3D phantom

    Shandiz, Mahdi Heravian; Khalilzadeh, Mohammadmahdi; Anvari, Kazem [Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Layen, Ghorban Safaeian [Mashhad University of Medical Science, Mashhad (Iran, Islamic Republic of)

    2015-03-15

    In order to keep the acceptable level of the radiation oncology linear accelerators, it is necessary to apply a reliable quality assurance (QA) program. The QA protocols, published by authoritative organizations, such as the American Association of Physicists in Medicine (AAPM), determine the quality control (QC) tests which should be performed on the medical linear accelerators and the threshold levels for each test. The purpose of this study is to increase the accuracy and precision of the selected QC tests in order to increase the quality of treatment and also increase the speed of the tests to convince the crowded centers to start a reliable QA program. A new method has been developed for two of the QC tests; optical distance indicator (ODI) QC test as a daily test and gantry angle QC test as a monthly test. This method uses an image processing approach utilizing the snapshots taken by the CCD camera to measure the source to surface distance (SSD) and gantry angle. The new method of ODI QC test has an accuracy of 99.95% with a standard deviation of 0.061 cm and the new method for gantry angle QC has a precision of 0.43 degrees. The automated proposed method which is used for both ODI and gantry angle QC tests, contains highly accurate and precise results which are objective and the human-caused errors have no effect on the results. The results show that they are in the acceptable range for both of the QC tests, according to AAPM task group 142.

  12. New methods for optical distance indicator and gantry angle quality control tests in medical linear accelerators: image processing by using a 3D phantom

    Shandiz, Mahdi Heravian; Khalilzadeh, Mohammadmahdi; Anvari, Kazem; Layen, Ghorban Safaeian

    2015-01-01

    In order to keep the acceptable level of the radiation oncology linear accelerators, it is necessary to apply a reliable quality assurance (QA) program. The QA protocols, published by authoritative organizations, such as the American Association of Physicists in Medicine (AAPM), determine the quality control (QC) tests which should be performed on the medical linear accelerators and the threshold levels for each test. The purpose of this study is to increase the accuracy and precision of the selected QC tests in order to increase the quality of treatment and also increase the speed of the tests to convince the crowded centers to start a reliable QA program. A new method has been developed for two of the QC tests; optical distance indicator (ODI) QC test as a daily test and gantry angle QC test as a monthly test. This method uses an image processing approach utilizing the snapshots taken by the CCD camera to measure the source to surface distance (SSD) and gantry angle. The new method of ODI QC test has an accuracy of 99.95% with a standard deviation of 0.061 cm and the new method for gantry angle QC has a precision of 0.43 degrees. The automated proposed method which is used for both ODI and gantry angle QC tests, contains highly accurate and precise results which are objective and the human-caused errors have no effect on the results. The results show that they are in the acceptable range for both of the QC tests, according to AAPM task group 142.

  13. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds

    Love, Steven P.; Davis, A.B.; Rohde, C.A.; Ho, Cheng

    2001-01-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  14. The influence of flip angle on the magic angle effect

    Zurlo, J.V.; Blacksin, M.F.; Karimi, S.

    2000-01-01

    Objective. To assess the impact of flip angle with gradient sequences on the ''magic angle effect''. We characterized the magic angle effect in various gradient echo sequences and compared the signal- to-noise ratios present on these sequences with the signal-to-noise ratios of spin echo sequences.Design. Ten normal healthy volunteers were positioned such that the flexor hallucis longus tendon remained at approximately at 55 to the main magnetic field (the magic angle). The tendon was imaged by a conventional spin echo T1- and T2-weighted techniques and by a series of gradient techniques. Gradient sequences were altered by both TE and flip angle. Signal-to-noise measurements were obtained at segments of the flexor hallucis longus tendon demonstrating the magic angle effect to quantify the artifact. Signal-to-noise measurements were compared and statistical analysis performed. Similar measurements were taken of the anterior tibialis tendon as an internal control.Results and conclusions. We demonstrated the magic angle effect on all the gradient sequences. The intensity of the artifact was affected by both the TE and flip angle. Low TE values and a high flip angle demonstrated the greatest magic angle effect. At TE values less than 30 ms, a high flip angle will markedly increase the magic angle effect. (orig.)

  15. New narrow baryon resonances in pp inelastic scattering

    Tatischeff, B.; Willis, N.; Comets, M.P.; Courtat, P.; Gacougnolle, R.; Le Bornec, Y.; Loireleux, E.; Reide, F.; Yonnet, J.; Boivin, M.

    1999-01-01

    The reaction pp → pπ + X has been studied at 3 energies (T p 1520, 1805 and 2100 MeV) and 6 angles from 0 angle up to 17 angle (lab.). Several narrow states have been observed in missing mass spectra at: 1004, 1044, 1094 MeV. Their widths are typically one order of magnitude smaller than the widths of N * of Δ. Possible biases are discussed. These masses are in agreement with those calculated within a simple phenomenological mass formula based on color magnetic interaction between two colored quark clusters. (authors)

  16. Measurements of angles of the normal auditory ossicles relative to the reference plane and image reconstruction technique for obtaining optimal sections of the ossicles in high-resolution multiplanar reconstruction using a multislice CT scanner

    Fujii, Naoko; Katada, Kazuhiro; Yoshioka, Satoshi; Takeuchi, Kenji; Takasu, Akihiko; Naito, Kensei

    2005-01-01

    Using high-resolution isotropic volume data obtained by 0.5 mm, 4-row multislice CT, cross-sectional observation of the auditory ossicles is possible from any desired direction without difficulty in high-resolution multiplanar reconstruction (HR-MPR) images, also distortion-free three-dimensional images of the ossicles are generated in three-dimensional CT (3D-CT) images. We measured angles of fifty normal ossicles relative to the reference plane, which has been defined as a plane through the bilateral infraorbital margins to the middle portion of the external auditory canal. Based on the results of angle measurement, four optimal sections of the ossicles for efficient viewing to the ossicular chain were identified. To understand the position of the angle measurement and the four sections, the ossicles and the reference plane were reconstructed in the 3D-CT images. As the result of observation of the ossicles and the reference plane, the malleus was parallel to the incudal long process and perpendicular to the reference plane. As the results of angle measurement, the mean angle of the tympanic portion of the facial nerve relative to the reference plane in the sagittal plane was found to be 17 deg, and the mean angle of the stapedial crura relative to the reference plane in the sagittal plane was found to be 6 deg. The mean angle of the stapes relative to the reference plane in the coronal plane was 44 deg, and the mean angle of the incudal long process relative to the stapes in the coronal plane was 89 deg. In 80% of ears, the stapes extended straight from the incudal long process. Image reconstruction technique for viewing four sections of the ossicles was investigated. Firstly, the image of the malleal head and the incudal short process was identified in the axial plane. Secondly, an image of the malleus along the malleal manubrium was reconstructed in the coronal plane. Thirdly, the image of the incudal long process was seen immediately behind the malletis image

  17. Flooding correlations in narrow channel

    Kim, S. H.; Baek, W. P.; Chang, S. H.

    1999-01-01

    Heat transfer in narrow gap is considered as important phenomena in severe accidents in nuclear power plants. Also in heat removal of electric chip. Critical heat flux(CHF) in narrow gap limits the maximum heat transfer rate in narrow channel. In case of closed bottom channel, flooding limited CHF occurrence is observed. Flooding correlations will be helpful to predict the CHF in closed bottom channel. In present study, flooding data for narrow channel geometry were collected and the work to recognize the effect of the span, w and gap size, s were performed. And new flooding correlations were suggested for high-aspect-ratio geometry. Also, flooding correlation was applied to flooding limited CHF data

  18. Narrow n anti n resonances

    Bogdanova, L.N.; Dalkarov, O.D.; Kerbikov, B.O.; Shapiro, I.S.

    1975-01-01

    The present status of the problem of quasinuclear states in systems of nucleons and antinucleons is reviewed. The theoretical predictions are compared with experimental data on narrow meson resonances near N anti N threshold which appeared in 1971-74

  19. Measurements of anterior chamber depth, white-to-white distance, anterior chamber angle, and pupil diameter using two Scheimpflug imaging devices

    Alberto Domínguez-Vicent

    2014-08-01

    Full Text Available Purpose: To compare the ocular anterior chamber depth, white-to-white distance, anterior chamber angle, and pupil diameter, as measured with two different Scheimpflug imaging devices. Methods: This transversal study included 80 right eyes from 80 subjects aged from 20 to 40 years. Their spherical equivalents ranged from -4.25 to +1.00 diopters (D. Each eye's anterior chamber depth, white-to-white distance, anterior chamber angle, and pupil diameter, were measured for far vision using both the Galilei G4 (double Scheimpflug camera and the Pentacam HR (single Scheimpflug camera systems. Results: Mean anterior chamber depths were calculated as 3.12 ± 0.23 mm and 3.19 ± 0.24 mm when measured with the Galilei G4 and the Pentacam HR, respectively. The mean white-to-white distance measured was 11.84 ± 0.31 mm and 11.90 ± 0.43 mm when measured with the Galilei G4 and the Pentacam HR, respectively. Mean pupil diameters were measured as 3.22 ± 0.58 mm and 3.22 ± 0.52 mm when measured with the Galilei G4 and the Pentacam HR, respectively. Finally, the mean anterior chamber angle was 34.30 ± 2.86 degrees when it was measured with the Galilei G4, and 39.26 ± 2.85 degrees when measured with the Pentacam HR. A comparative analysis revealed that the Galilei G4 yielded a significantly lower (P0.05 for both devices were obtained for the white-to-white distance measurements. Conclusion: The Galilei G4 and Pentacam HR Scheimpflug systems cannot be used interchangeably because they produce significant measurement differences.

  20. Consideration of Shoulder Joint's Image with the Changed Tube Angle of the Shoulder Oblique Projection in Supine Position

    Seo, Jae Hyun; Choi, Nam Gil [Dept. of Radiology, Chonnam National University Hospital, Kwangju (Korea, Republic of)

    2008-06-15

    There is a standard shoulder oblique method (Grashey method) available to view the shoulder joint. This method projects AP view of the shoulder joint so that the Humerus head's subuxation or joint degeneration can be easily visualized. However, in this view, the patients, with supine or sitting or erect position, have to keep their body obliquely. Whereas, the patients who are not well or operated, usually feel very uncomfortable to keep their body in this position and hence, we need other persons' help and much efforts will be needed to get the good quality shoulder joint view. Therefore, we thought of examining a method which shows the joint well by angling the tube to Medio-Lateral direction and without keeping the patients' one side upward in supine position. For this study, total 15 subjects with no history of neurological or psychiatric illness, were recruited for examinations. They consisted of 9 males and 6 females. Statistic group analysis was performed with ANOVA test. Scores of the evaluation of the experts were 1.01{+-}0.54 at 25 degrees, 2.50{+-}0.50 at 30 degrees, 2.85{+-}0.36 at 35 degrees and 2.33{+-}0.47 at 40 degrees, respectively, and they were significant(p<0.05, Table 1). Joint space of the Humerus head and Scapula were well distinguished at 35 degrees, 30 degrees and 40 degrees with the almost same score. However, the degree of distortion at 40 degrees was more severe than that at 30 degrees. Ultimately, 30-35 degrees views were shown to yield good quality shoulder oblique images. In conclusion, this method may be very useful for the patients who are uncomfortable and for the emergency patients. In order to get similar or comparable view, the same X-tube angle is recommended to be used before and after the operation. Therefore, we hope that this new angled method seems to be efficient.

  1. Hong's grading for evaluating anterior chamber angle width.

    Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul

    2012-11-01

    To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.

  2. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.

    Chen, Ting; Zhang, Miao; Jabbour, Salma; Wang, Hesheng; Barbee, David; Das, Indra J; Yue, Ning

    2018-04-10

    Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring. Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis. The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using

  3. Mammography image quality and evidence based practice: Analysis of the demonstration of the inframammary angle in the digital setting.

    Spuur, Kelly; Webb, Jodi; Poulos, Ann; Nielsen, Sharon; Robinson, Wayne

    2018-03-01

    The aim of this study is to determine the clinical rates of the demonstration of the inframammary angle (IMA) on the mediolateral oblique (MLO) view of the breast on digital mammograms and to compare the outcomes with current accreditation standards for compliance. Relationships between the IMA, age, the posterior nipple line (PNL) and compressed breast thickness will be identified and the study outcomes validated using appropriate analyses of inter-reader and inter-rater reliability and variability. Differences in left versus right data were also investigated. A quantitative retrospective study of 2270 randomly selected paired digital mammograms performed by BreastScreen NSW was undertaken. Data was collected by direct measurement and visual analysis. Intra-class correlation analyses were used to evaluate inter- and intra-rater reliability. The IMA was demonstrated on 52.4% of individual and 42.6% of paired mammograms. A linear relationship was found between the posterior nipple line (PNL) and age (p-value PNL was predicted to increase by 0.48 mm for every one year increment in age. The odds of demonstrating the IMA reduced by 2% for every one year increase in age (p-value = 0.001); are 0.4% higher for every 1 mm increase in PNL (p-value = 0.001) and 1.6% lower for every 1 mm increase in compressed breast thickness, (p-valuePNL while there was 100% agreement for the demonstration of the IMA. Analysis of the demonstration of the IMA indicates clinically achievable rates (42.6%) well below that required for compliance (50%-75%) to known worldwide accreditation standards for screening mammography. These standards should be aligned to the reported evidence base. Visualisation of the IMA is impacted negatively by increasing age and compressed breast thickness but positively by breast size (PNL). Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The add-on N-acetylcysteine is more effective than dimethicone alone to eliminate mucus during narrow-band imaging endoscopy: a double-blind, randomized controlled trial.

    Chen, Ming-Jen; Wang, Horng-Yuan; Chang, Chen-Wang; Hu, Kuang-Chun; Hung, Chien-Yuan; Chen, Chih-Jen; Shih, Shou-Chuan

    2013-02-01

    Recent studies have shown that pronase can improve mucosal visibility, but this agent is not uniformly available for human use worldwide. This study aimed to assess the efficacy of N-acetylcysteine (NAC), a mucolytic agent, in improving mucus elimination as measured by decreased endoscopic water flushes during narrow-band imaging (NBI) endoscopy. A consecutive series of patients scheduled for upper gastrointestinal endoscopy at outpatient clinics were enrolled in this double-blind, randomized controlled trial. The control group drank a preparation of 100 mg dimethicone (5 ml at 20 mg/ml) plus water up to 100 ml, and the NAC group drank 300 mg NAC plus 100 mg dimethicone and water up to 100 ml. During the endoscopy, the endoscopist used as many flushes of water as deemed necessary to produce a satisfactory NBI view of the entire gastric mucosa. In all, 177 patients with a mean age of 51 years were evaluated in this study. Significantly lesser water was used for flushing during NBI endoscopy for the NAC group than the control group; 40 ml (30-70, 0-120) versus 50 ml (30-100, 0-150) (median (interquartile range, range), p = 0.0095). Considering the safety profile of NAC, decreasing the number of water flushes for optimal vision and unavailability of pronase in some areas, the authors suggest the use of add-on NAC to eliminate mucus during NBI endoscopy.

  5. Frequency scaling for angle gathers

    Zuberi, M. A H; Alkhalifah, Tariq Ali

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  6. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  7. MUSIC - Multifunctional stereo imaging camera system for wide angle and high resolution stereo and color observations on the Mars-94 mission

    Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.

    1990-10-01

    Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.

  8. MALIBU: A High Spatial Resolution Multi-Angle Imaging Unmanned Airborne System to Validate Satellite-derived BRDF/Albedo Products

    Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.

    2016-12-01

    Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and

  9. Peripheral laser iridoplasty opens angle in plateau iris by thinning the cross-sectional tissues

    Liu J

    2013-09-01

    Full Text Available Ji Liu,1,2 Tania Lamba,1 David A Belyea1 1Department of Ophthalmology, The George Washington University, Washington DC, USA; 2Yale Eye Center, Yale University, New Haven, CT, USA Abstract: Plateau iris syndrome has been described as persistent angle narrowing or occlusion with intraocular pressure elevation after peripheral iridotomy due to the abnormal plateau iris configuration. Argon laser peripheral iridoplasty (ALPI is an effective adjunct procedure to treat plateau iris syndrome. Classic theory suggests that the laser causes the contraction of the far peripheral iris stroma, "pulls" the iris away from the angle, and relieves the iris-angle apposition. We report a case of plateau iris syndrome that was successfully treated with ALPI. Spectral domain optical coherence tomography confirmed the angle was open at areas with laser treatment but remained appositionally closed at untreated areas. Further analysis suggested significant cross-sectional thinning of the iris at laser-treated areas in comparison with untreated areas. The findings indicate that APLI opens the angle, not only by contracting the iris stroma, but also by thinning the iris tissue at the crowded angle. This is consistent with the ALPI technique to aim at the iris as far peripheral as possible. This case also suggests that spectral domain optical coherence tomography is a useful adjunct imaging tool to gonioscopy in assessing the angle condition. Keywords: plateau iris, optic coherence tomography, argon laser peripheral iridoplasty, angle-closure glaucoma

  10. Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging.

    Chen, Lihua; Liu, Daihong; Zhang, Jiuquan; Xie, Bing; Zhou, Xiaoyue; Grimm, Robert; Huang, Xuequan; Wang, Jian; Feng, Li

    2018-02-13

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been shown to be a promising technique for assessing lung lesions. However, DCE-MRI often suffers from motion artifacts and insufficient imaging speed. Therefore, highly accelerated free-breathing DCE-MRI is of clinical interest for lung exams. To test the performance of rapid free-breathing DCE-MRI for simultaneous qualitative and quantitative assessment of pulmonary lesions using Golden-angle RAdial Sparse Parallel (GRASP) imaging. Prospective. Twenty-six patients (17 males, mean age = 55.1 ± 14.4) with known pulmonary lesions. 3T MR scanner; a prototype fat-saturated, T 1 -weighted stack-of-stars golden-angle radial sequence for data acquisition and a Cartesian breath-hold volumetric-interpolated examination (BH-VIBE) sequence for comparison. After a dual-mode GRASP reconstruction, one with 3-second temporal resolution (3s-GRASP) and the other with 15-second temporal resolution (15s-GRASP), all GRASP and BH-VIBE images were pooled together for blind assessment by two experienced radiologists, who independently scored the overall image quality, lesion delineation, overall artifact level, and diagnostic confidence of each case. Perfusion analysis was performed for the 3s-GRASP images using a Tofts model to generate the volume transfer coefficient (K trans ) and interstitial volume (V e ). Nonparametric paired two-tailed Wilcoxon signed-rank test; Cohen's kappa; unpaired Student's t-test. 15s-GRASP achieved comparable image quality with conventional BH-VIBE (P > 0.05), except for the higher overall artifact level in the precontrast phase (P = 0.018). The K trans and V e in inflammation were higher than those in malignant lesions (K trans : 0.78 ± 0.52 min -1 vs. 0.37 ± 0.22 min -1 , P = 0.020; V e : 0.36 ± 0.16 vs. 0.26 ± 0.1, P = 0.177). Also, the K trans and V e in malignant lesions were also higher than those in benign lesions (K trans : 0.37

  11. Optical coherence tomography in anterior segment imaging

    Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive

    2008-01-01

    Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288

  12. The double Brewster angle effect

    Thirion-Lefevre, Laetitia; Guinvarc'h, Régis

    2018-01-01

    The Double Brewster angle effect (DBE) is an extension of the Brewster angle to double reflection on two orthogonal dielectric surfaces. It results from the combination of two pseudo-Brewster angles occurring in complementary incidence angles domains. It can be observed for a large range of incidence angles provided that double bounces mechanism is present. As a consequence of this effect, we show that the reflection coefficient at VV polarization can be at least 10 dB lower than the reflection coefficient at HH polarization over a wide range of incidence angle - typically from 20 to 70∘. It is experimentally demonstrated using a Synthetic Aperture Radar (SAR) image that this effect can be seen on buildings and forests. For large buildings, the difference can reach more than 20 dB. xml:lang="fr"

  13. Evaluation of the dependence of CEST-EPI measurement on repetition time, RF irradiation duty cycle and imaging flip angle for enhanced pH sensitivity

    Sun, Phillip Zhe; Lu Jie; Wu Yin; Xiao Gang; Wu Renhua

    2013-01-01

    Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) contrast mechanism that can detect dilute CEST agents and microenvironmental properties, with a host of promising applications. Experimental measurement of the CEST effect is complex, and depends on not only CEST agent concentration and exchange rate, but also experimental parameters such as RF irradiation amplitude and scheme. Although echo planar imaging (EPI) has been increasingly used for CEST MRI, the relationship between CEST effect and repetition time (TR), RF irradiation duty cycle (DC) and EPI flip angle (α) has not been fully evaluated and optimized to enhance CEST MRI sensitivity. In addition, our study evaluated gradient echo CEST-EPI by quantifying the CEST effect and its signal-to-noise ratio per unit time (SNR put ) as functions of TR, DC and α. We found that CEST effect increased with TR and DC but decreased with α. Importantly, we found that SNR put peaked at intermediate TRs of about twice the T 1 and α, at approximately 75°, and increased with RF DC. The simulation results were validated using a dual-pH creatine-gel CEST phantom. In summary, our study provides a useful framework for optimizing CEST MRI experiments. (note)

  14. Uniting Satellite Data With Health Records to Address the Societal Impacts of Particulate Air Pollution: NASA's Multi-Angle Imager for Aerosols

    Nastan, A.; Diner, D. J.

    2017-12-01

    Epidemiological studies have demonstrated convincingly that airborne particulate matter has a major impact on human health, particularly in urban areas. However, providing an accurate picture of the health effects of various particle mixtures — distinguished by size, shape, and composition — is difficult due to the constraints of currently available measurement tools and the heterogeneity of atmospheric chemistry and human activities over space and time. The Multi-Angle Imager for Aerosols (MAIA) investigation, currently in development as part of NASA's Earth Venture Instrument Program, will address this issue through a powerful combination of technologies and informatics. Atmospheric measurements collected by the MAIA satellite instrument featuring multiangle and innovative polarimetric imaging capabilities will be combined with available ground monitor data and a chemical transport model to produce maps of speciated particulate matter at 1 km spatial resolution for a selected set of globally distributed cities. The MAIA investigation is also original in integrating data providers (atmospheric scientists), data users (epidemiologists), and stakeholders (public health experts) into a multidisciplinary science team that will tailor the observation and analysis strategy within each target area to improve our understanding of the linkages between different particle types and adverse human health outcomes.

  15. Effect of bubble interface parameters on predicted of bubble departure diameter in a narrow channel

    Xu Jianjun; Xie Tianzhou; Zhou Wenbin; Chen Bingde; Huang Yanping

    2014-01-01

    The predicted model on the bubble departure diameter in a narrow channel is built by analysis of forces acting on the bubble, and effects of bubble interface parameters such as the bubble inclination angle, upstream contact angle, downstream contact angle and bubble contact diameter on predicted bubble departure diameters in a narrow channel are analysed by comparing with the visual experimental data. Based on the above results, the bubble interface parameters as the input parameters used to obtain the bubble departure diameter in a narrow channel are assured, and the bubble departure diameters in a narrow channel are predicted by solving the force equation. The predicted bubble departure diameters are verified by the 58 bubble departure diameters obtained from the vertical and inclined visual experiment, and the predicted results agree with the experimental results. The different forces acting on the bubble are obtained and the effect of thermal parameters in this experiment on bubble departure diameters is analysed. (authors)

  16. Evaluation of the Normal Cochlear Second Interscalar Ridge Angle and Depth on 3D T2-Weighted Images: A Tool for the Diagnosis of Scala Communis and Incomplete Partition Type II.

    Booth, T N; Wick, C; Clarke, R; Kutz, J W; Medina, M; Gorsage, D; Xi, Y; Isaacson, B

    2018-05-01

    Cochlear malformations may be be subtle on imaging studies. The purpose of this study was to evaluate the angle and depth of the lateral second interscalar ridge or notch in ears without sensorineural hearing loss (normal ears) and compare them with ears that have a documented incomplete type II partition malformation. The second interscalar ridge notch angle and depth were measured on MR imaging in normal ears by a single experienced neuroradiologist. The images of normal and incomplete partition II malformation ears were then randomly mixed for 2 novice evaluators to measure both the second interscalar ridge notch angle and depth in a blinded manner. For the mixed group, interobserver agreement was calculated, normal and abnormal ear measurements were compared, and receiver operating characteristic curves were generated. The 94 normal ears had a mean second interscalar ridge angle of 80.86° ± 11.4° and depth of 0.54 ± 0.14 mm with the 98th percentile for an angle of 101° and a depth of 0.3 mm. In the mixed group, agreement between the 2 readers was excellent, with significant differences for angle and depth found between normal and incomplete partition type II ears for angle and depth on average ( P 114° and a depth of the second interscalar ridge notch of ≤0.31 mm suggest the diagnosis of incomplete partition type II malformation and scala communis. These measurements can be accurately made by novice readers. © 2018 by American Journal of Neuroradiology.

  17. Intra- and inter-rater reliabilities of measurement of ultrasound imaging for muscle thickness and pennation angle of tibialis anterior muscle in stroke patients.

    Cho, Ki Hun; Lee, Hwang Jae; Lee, Wan Hee

    2017-07-01

    Dysfunction of skeletal muscle has been commonly reported in stroke patients. The purpose of this study was to investigate the intra- and inter-rater reliabilities of measurement of ultrasound imaging (USI) for pennation angle (PA) and muscle thickness (MT) of tibialis anterior muscle in stroke patients. Thirty-four stroke patients (19 men) participated in this study. USI was used for measurement of PA and MT of the tibialis anterior muscles at rest and during maximum voluntary contraction (MVC). Two examiners acquired images from all participants during two separate testing sessions, seven days apart. Intra-class correlation coefficients (ICCs), confidence interval (CI), standard error of measurement, minimal detectable change, and Bland-Altman plots were used for estimation of reliability. In the intra-rater reliability between measures, for all variables (PA and MT of the paretic and non-paretic sides of tibialis anterior muscles at rest and during MVC), the ICCs ranged between 0.639 and 0.998 and the CI was within an acceptable range of 0.388-0.999. In inter-rater reliability between examiners for the two tests, for all variables, the ICCs ranged between 0.690 and 0.995 and the CI was within an acceptable range of 0.463-0.997. In addition, significant difference was observed between the paretic and non-paretic sides of the tibialis anterior muscle architecture (p stroke patients. In addition, objective and quantitative measurements of tibialis anterior muscle using USI may provide appropriate management for the walking recovery of stroke patients.

  18. New 4.4 km-resolution aerosol product from NASA's Multi-angle Imaging SpectroRadiometer: A user's guide

    Nastan, A.; Garay, M. J.; Witek, M. L.; Seidel, F.; Bull, M. A.; Kahn, R. A.; Diner, D. J.

    2017-12-01

    The NASA Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has provided an 18-year-and-growing aerosol data record. MISR's V22 aerosol product has been used extensively in studies of regional and global climate and the health effects of particulate air pollution. The MISR team recently released a new version of this product (V23), which increases the spatial resolution from 17.6 km to 4.4 km, improves performance versus AERONET, and provides better spatial coverage, more accurate cloud screening, and improved radiometric conditioning relative to V22. The product formatting was also completely revamped to improve clarity and usability. Established and prospective users of the MISR aerosol product are invited to learn about the features and performance of the new product and to participate in one-on-one demonstrations of how to obtain, visualize, and analyze the new product. Because the aerosol product is used in generating atmospherically-corrected surface bidirectional reflectance factors, improvements in MISR's 1.1 km resolution land surface product are a by-product of the updated aerosol retrievals. Illustrative comparisons of the V22 and V23 aerosol and surface products will be shown.

  19. Left ventricular volume measurements with free breathing respiratory self-gated 3-dimensional golden angle radial whole-heart cine imaging - Feasibility and reproducibility.

    Holst, Karen; Ugander, Martin; Sigfridsson, Andreas

    2017-11-01

    To develop and evaluate a free breathing respiratory self-gated isotropic resolution technique for left ventricular (LV) volume measurements. A 3D radial trajectory with double golden-angle ordering was used for free-running data acquisition during free breathing in 9 healthy volunteers. A respiratory self-gating signal was extracted from the center of k-space and used with the electrocardiogram to bin all data into 3 respiratory and 25 cardiac phases. 3D image volumes were reconstructed and the LV endocardial border was segmented. LV volume measurements and reproducibility from 3D free breathing cine were compared to conventional 2D breath-held cine. No difference was found between 3D free breathing cine and 2D breath-held cine with regards to LV ejection fraction, stroke volume, end-systolic volume and end-diastolic volume (Pcine and 2D breath-held cine (Pcine and conventional 2D breath-held cine showed similar values and test-retest repeatability for LV volumes in healthy volunteers. 3D free breathing cine enabled retrospective sorting and arbitrary angulation of isotropic data, and could correctly measure LV volumes during free breathing acquisition. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Large-grazing-angle, multi-image Kirkpatrick-Baez microscope as the front end to a high-resolution streak camera for OMEGA

    Gotchev, O.V.; Hayes, L.J.; Jaanimagi, P.A.; Knauer, J.P.; Marshall, F.J.; Meyerhofer, D.D.

    2003-01-01

    A high-resolution x-ray microscope with a large grazing angle has been developed, characterized, and fielded at the Laboratory for Laser Energetics. It increases the sensitivity and spatial resolution in planar direct-drive hydrodynamic stability experiments, relevant to inertial confinement fusion research. It has been designed to work as the optical front end of the PJX - a high-current, high-dynamic-range x-ray streak camera. Optical design optimization, results from numerical ray tracing, mirror-coating choice, and characterization have been described previously [O. V. Gotchev, et al., Rev. Sci. Instrum. 74, 2178 (2003)]. This work highlights the optics' unique mechanical design and flexibility and considers certain applications that benefit from it. Characterization of the microscope's resolution in terms of its modulation transfer function over the field of view is shown. Recent results from hydrodynamic stability experiments, diagnosed with the optic and the PJX, are provided to confirm the microscope's advantages as a high-resolution, high-throughput x-ray optical front end for streaked imaging

  1. Seismic reflection data imaging and interpretation from Braniewo2014 experiment using additional wide-angle refraction and reflection and well-logs data

    Trzeciak, Maciej; Majdański, Mariusz; Białas, Sebastian; Gaczyński, Edward; Maksym, Andrzej

    2015-04-01

    Braniewo2014 reflection and refraction experiment was realized in cooperation between Polish Oil and Gas Company (PGNiG) and the Institute of Geophysics (IGF), Polish Academy of Sciences, near the locality of Braniewo in northern Poland. PGNiG realized a 20-km-long reflection profile, using vibroseis and dynamite shooting; the aim of the reflection survey was to characterise Silurian shale gas reservoir. IGF deployed 59 seismic stations along this profile and registered additional full-spread wide-angle refraction and reflection data, with offsets up to 12 km; maximum offsets from the seismic reflection survey was 3 km. To improve the velocity information two velocity logs from near deep boreholes were used. The main goal of the joint reflection-refraction interpretation was to find relations between velocity field from reflection velocity analysis and refraction tomography, and to build a velocity model which would be consistent for both, reflection and refraction, datasets. In this paper we present imaging results and velocity models from Braniewo2014 experiment and the methodology we used.

  2. Large-Grazing-Angle, Multi-Image Kirkpatrick-Baez Microscope as the Front End to a High-Resolution Streak Camera for OMEGA

    Gotchev, O.V.; Hayes, L.J.; Jaanimagi, P.A.; Knauer, J.P.; Marshall, F.J.; Meyerhofer, D. D.

    2003-01-01

    (B204)A new, high-resolution x-ray microscope with a large grazing angle has been developed, characterized, and fielded at the Laboratory for Laser Energetics. It increases the sensitivity and spatial resolution in planar direct-drive hydrodynamic stability experiments, relevant to inertial confinement fusion (ICF) research. It has been designed to work as the optical front end of the PJX-a high-current, high-dynamic-range x-ray streak camera. Optical design optimization, results from numerical ray tracing, mirror-coating choice, and characterization have been described previously [O. V. Gotchev, et al./Rev. Sci. Instrum. 74, 2178 (2003)]. This work highlights the optics' unique mechanical design and flexibility and considers certain applications that benefit from it. Characterization of the microscope's resolution in terms of its modulation transfer function (MTF) over the field of view is shown. Recent results from hydrodynamic stability experiments, diagnosed with the optic and the PJX, are provided to confirm the microscope's advantages as a high-resolution, high-throughput x-ray optical front end for streaked imaging

  3. QSOs with narrow emission lines

    Baldwin, J.A.; Mcmahon, R.; Hazard, C.; Williams, R.E.

    1988-01-01

    Observations of two new high-redshift, narrow-lined QSOs (NLQSOs) are presented and discussed together with observations of similar objects reported in the literature. Gravitational lensing is ruled out as a possible means of amplifying the luminosity for one of these objects. It is found that the NLQSOs have broad bases on their emission lines as well as the prominent narrow cores which define this class. Thus, these are not pole-on QSOs. The FWHM of the emission lines fits onto the smoothly falling tail of the lower end of the line-width distribution for complete QSO samples. The equivalent widths of the combined broad and narrow components of the lines are normal for QSOs of the luminosity range under study. However, the NLQSOs do show ionization differences from broader-lined QSOs; most significant, the semiforbidden C III/C IV intensity ratio is unusually low. The N/C abundance ratio in these objects is found to be normal; the Al/C abundance ratio may be quite high. 38 references

  4. Laser peripheral iridoplasty for angle-closure.

    Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto

    2012-02-15

    Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations.   To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations

  5. Cervical spinal canal narrowing in idiopathic syringomyelia

    Struck, Aaron F.; Carr, Carrie M.; Shah, Vinil; Hesselink, John R.; Haughton, Victor M.

    2016-01-01

    The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7. (orig.)

  6. Cervical spinal canal narrowing in idiopathic syringomyelia

    Struck, Aaron F. [Massachusetts General Hospital, Department of Neurology, Boston, MA (United States); Carr, Carrie M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Shah, Vinil [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Hesselink, John R. [University of California San Diego, Department of Radiology, San Diego, CA (United States); Haughton, Victor M. [University of Wisconsin, Department of Radiology, Madison, WI (United States)

    2016-08-15

    The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7. (orig.)

  7. MRI of surgically created pulmonary artery narrowing in the dog

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B. (Michigan Univ., Ann Arbor (USA). Dept. of Radiology)

    1989-11-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.).

  8. MRI of surgically created pulmonary artery narrowing in the dog

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B.

    1989-01-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.)

  9. Narrow field electromagnetic sensor system and method

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  10. A controllable viewing angle LCD with an optically isotropic liquid crystal

    Kim, Min Su; Lim, Young Jin; Yoon, Sukin; Kang, Shin-Woong; Lee, Seung Hee; Kim, Miyoung; Wu, Shin-Tson

    2010-01-01

    An optically isotropic liquid crystal (LC) such as a blue phase LC or an optically isotropic nano-structured LC exhibits a very wide viewing angle because the induced birefringence is along the in-plane electric field. Utilizing such a material, we propose a liquid crystal display (LCD) whose viewing angle can be switched from wide view to narrow view using only one panel. In the device, each pixel is divided into two parts: a major pixel and a sub-pixel. The main pixels display the images while the sub-pixels control the viewing angle. In the main pixels, birefringence is induced by horizontal electric fields through inter-digital electrodes leading to a wide viewing angle, while in the sub-pixels, birefringence is induced by the vertical electric field so that phase retardation occurs only at oblique angles. As a result, the dark state (or contrast ratio) of the entire pixel can be controlled by the voltage of the sub-pixels. Such a switchable viewing angle LCD is attractive for protecting personal privacy.

  11. SU-C-18C-02: Specifcation of X-Ray Projection Angles Which Are Aligned with the Aortic Valve Plane From a Planar Image of a Valvuloplasty Balloon Inflated Across the Aortic Valve

    Fetterly, K; Mathew, V [Mayo Clinic, Rochester, MN (United States)

    2014-06-01

    Purpose: Transcatheter aortic valve replacement (TAVR) procedures provide a method to implant a prosthetic aortic valve via a minimallyinvasive, catheter-based procedure. TAVR procedures require use of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane to minimize prosthetic valve positioning error due to x-ray imaging parallax. The purpose of this work is to calculate the continuous range of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane from a single planar image of a valvuloplasty balloon inflated across the aortic valve. Methods: Computational methods to measure the 3D angular orientation of the aortic valve were developed. Required inputs include a planar x-ray image of a known valvuloplasty balloon inflated across the aortic valve and specifications of x-ray imaging geometry from the DICOM header of the image. A-priori knowledge of the species-specific typical range of aortic orientation is required to specify the sign of the angle of the long axis of the balloon with respect to the x-ray beam. The methods were validated ex-vivo and in a live pig. Results: Ex-vivo experiments demonstrated that the angular orientation of a stationary inflated valvuloplasty balloon can be measured with precision less than 1 degree. In-vivo pig experiments demonstrated that cardiac motion contributed to measurement variability, with precision less than 3 degrees. Error in specification of x-ray geometry directly influences measurement accuracy. Conclusion: This work demonstrates that the 3D angular orientation of the aortic valve can be calculated precisely from a planar image of a valvuloplasty balloon inflated across the aortic valve and known x-ray geometry. This method could be used to determine appropriate c-arm angular projections during TAVR procedures to minimize x-ray imaging parallax and thereby minimize prosthetic valve positioning errors.

  12. SU-C-18C-02: Specifcation of X-Ray Projection Angles Which Are Aligned with the Aortic Valve Plane From a Planar Image of a Valvuloplasty Balloon Inflated Across the Aortic Valve

    Fetterly, K; Mathew, V

    2014-01-01

    Purpose: Transcatheter aortic valve replacement (TAVR) procedures provide a method to implant a prosthetic aortic valve via a minimallyinvasive, catheter-based procedure. TAVR procedures require use of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane to minimize prosthetic valve positioning error due to x-ray imaging parallax. The purpose of this work is to calculate the continuous range of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane from a single planar image of a valvuloplasty balloon inflated across the aortic valve. Methods: Computational methods to measure the 3D angular orientation of the aortic valve were developed. Required inputs include a planar x-ray image of a known valvuloplasty balloon inflated across the aortic valve and specifications of x-ray imaging geometry from the DICOM header of the image. A-priori knowledge of the species-specific typical range of aortic orientation is required to specify the sign of the angle of the long axis of the balloon with respect to the x-ray beam. The methods were validated ex-vivo and in a live pig. Results: Ex-vivo experiments demonstrated that the angular orientation of a stationary inflated valvuloplasty balloon can be measured with precision less than 1 degree. In-vivo pig experiments demonstrated that cardiac motion contributed to measurement variability, with precision less than 3 degrees. Error in specification of x-ray geometry directly influences measurement accuracy. Conclusion: This work demonstrates that the 3D angular orientation of the aortic valve can be calculated precisely from a planar image of a valvuloplasty balloon inflated across the aortic valve and known x-ray geometry. This method could be used to determine appropriate c-arm angular projections during TAVR procedures to minimize x-ray imaging parallax and thereby minimize prosthetic valve positioning errors

  13. Optimization of the half-acceptance angle for a non-imaging refractive concentrator using an insolation model; Nissha model wo riyoshita kussetsugata hikessho shukoki no kyoyo nyusha kakudo no saitekika

    Yoshioka, K; Suzuki, A; Saito, T [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    The application of concentrating optical systems to PV modules is under investigation because of anxious supply of materials for crystalline PV cells and cost limitation. However, since the height of the conventional CPC (compound parabolic concentrator) is considerably larger than the width of a concentration part, its application to PV cells is unsuitable. A non-imaging refractive lens was thus devised. Since the portion from a refractive surface to a concentration part of this lens is made of transparent resin with the same refractive index, the lens can reduce interface transmission, reflection loss and the height of concentrators. The half-acceptance angle for maximizing yearly optical concentration was selected using an insolation model for titled concentrators. In the case of a tilt angle equal to the latitude (35deg) of Tokyo, a maximum yearly optical concentration ratio of 1.71 was obtained at a half- acceptance angle of 23deg in calculation. The optimum half-acceptance angle increased linearly with the tilt angle in a range of 20-35deg. 4 refs., 6 figs.

  14. Glaucoma, Open-Angle

    ... Home » Statistics and Data » Glaucoma, Open-angle Listen Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  15. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  16. [Chamber Angle Assessment in Clinical Practice - A Comparison between Optical Coherence Tomography and Gonioscopy].

    Mösler, M P; Werner, J U; Lang, G K

    2015-07-01

    In glaucoma the structures of the anterior chamber are important for classification, therapy, progression and prognosis. In this context anterior segment optical coherence tomography (AS-OCT) gains more relevance. This study compares AS-OCT with gonioscopy in diagnostic performance of chamber angle (CA) assessment. 104 consecutive subjects with glaucoma underwent AS-OCT imaging using the Visante OCT. RESULTS were compared to gonioscopic grading from patient history using the Shaffer system. In addition, anterior chamber depth (ACD) assessment using slitlamp examination was evaluated as a prognostic factor for chamber angle width (CAW) and verified by AS-OCT measurement. Average CAW was 29° (AS-OCT). 17 % of the CAs that were "wide" in gonioscopy (variance 5-55°), showed a "narrow" CA in AS-OCT. 35 % of the CAs that were "narrow" in gonioscopy (variance 0-39°) showed a "wide" CA in AS-OCT. ACD assessment using slitlamp examination is a good predictor for CAW. In this context the technique provides equal informative value as gonioscopy. In cases of "wide" ACDs it is even superior. The critical ACD for an increased risk of angle closure is 2.4 mm. Concerning the critical ACD (gonioscopy difficult or impossible, optical coherence tomography is an effective alternative to the gold standard and is to some extent even superior. Georg Thieme Verlag KG Stuttgart · New York.

  17. Anterior segment changes after pharmacologic mydriasis using Pentacam and optical coherence tomography in angle closure suspects

    Jing-Min Guo

    2015-10-01

    Full Text Available AIM:To compare the dynamic changes of anterior segment parameters especially iris morphology induced by pharmacologic mydriasis between angle closure suspects and normal controls.METHODS:The study group comprised 19 eyes of 19 angle closure suspects and 19 eyes of 19 age- and sex-matched normal open-angle eyes. Pentacam and optical coherence tomography measurements before and 30min after instillation of compound tropicamide eye drop were performed and compared. Biometric evaluations of iris tomography and anterior chamber angle were estimated by a customized image-processing software.RESULTS:Baseline axial length, iris cross sectional area and volume did not differ significantly between angle closure suspects and normal controls. Angle closure suspects had smaller pupil size, narrower anterior segment dimension and axial length, thinner iris with greater curve in comparison with normal controls. Pharmacologic mydriasis led to significant increments in iris thickness at 750 μm, anterior chamber depth and volume, whereas significant decrements in iris curve, cross sectional area and volume in both groups. Angle opening distance at 500 μm was increased significantly in normal controls (from 0.465±0.115 mm to 0.539±0.167 mm, P=0.009, but not in angle closure suspects (from 0.125±0.100 mm to 0.145±0.131 mm, P=0.326. Iris volume change per millimeter of pupil dilation (△IV/△PD decreased significantly less in angle closure suspects than normal controls (-2.47±1.33 mm2 vs -3.63±1.58 mm2, P=0.019. Linear regression analysis showed that the change of angle opening distance at 500 μm was associated most with the change of central anterior chamber depth (β=0.841, P=0.002 and △IV/△PD (β=0.028, P=0.002, followed by gender (β=0.062, P=0.032.CONCLUSION:Smaller iris volume decrement per millimeter of pupil dilation is related significantly with the less anterior angle opening in angle closure suspects after pharmacologic mydriasis. Dynamic

  18. Angle independent velocity spectrum determination

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  19. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  20. Narrow gap electronegative capacitive discharges

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  1. Small angle spectrometers: Summary

    Courant, E.; Foley, K.J.; Schlein, P.E.

    1986-01-01

    Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices

  2. Contact Angle Goniometer

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  3. Orthogonal image pairs coupled with OSMS for noncoplanar beam angle, intracranial, single-isocenter, SRS treatments with multiple targets on the Varian Edge radiosurgery system

    Jasmine A. Oliver, PhD

    2017-07-01

    Conclusion: Based on our study, CR-induced shifts with the Varian Edge radiosurgery system will not produce noticeable dosimetric effects for SRS treatments. Thus, replacing cone beam CT with orthogonal kV/kV pairs coupled with OSMS at the treatment couch angle could reduce the number of cone beam CT scans that are acquired during a standard SRS treatment while providing an accurate and safe treatment with negligible dosimetric effects on the treatment plan.

  4. Myosin helical pitch angle as a quantitative imaging biomarker for characterization of cardiac programming in fetal growth restriction measured by polarization second harmonic microscopy

    Amat-Roldan, I.; Psilodimitrakopoulos, S.,; Eixarch, E.,; Torre, I.; Wotjas, B.; Crispi, F.; Figueras, F.; Artigas, D.,; Loza-Alvarez, P.; Gratacos, E.,

    2009-07-01

    Fetal growth restriction (FGR) has recently shown a strong association with cardiac programming which predisposes to cardiovascular mortality in adulthood. Polarization Second Harmonic Microscopy can quantify molecular architecture changes with high sensitivity in cardiac myofibrils. In this work, we use myosin helical pitch angle as an example to quantify such alterations related to this high risk population. Importantly, this shows a potential use of the technique as an early diagnostic tool and an alternative method to understand pathophysiological processes.

  5. From the Atlas to the Rif a Crustal seismic image across Morocco: The SIMA & RIFSEIS control source wide-angle seismic reflection data

    Carbonell, Ramon; Ayarza, Puy; Gallart, Josep; Diaz, Jordi; Harnafi, Mimoun; Levander, Alan; Teixell, Antonio

    2014-05-01

    The velocity structure of the crust and the geometry of the Moho across Morocco has been the main target of two recently acquired wide-angle seismic reflection transects. One is the SIMA experiment which provided seismic constraints beneath the Atlas Mountains and the second has been the RIFSEIS experiment which sampled the RIF orogen. Jointly these controlled source wide-angle seismic reflection data results in an almost 700 km, seismic profile going from the the Sahara craton across the High and Middle Atlas and Rif Mountain till the Gibraltar-Arc (Alboran). Current work on the interpretation of the seismic data-set is based on forward modeling, ray-tracing, as well as low fold wide-angle stacking. The data has resulted in a detailed crustal structure and velocity model for the Atlas Mountains and a 700 km transect revealing the irregular topography of the Moho beneath these two mountain orogens. Results indicate that the High Atlas features a moderate crustal thickness and that shortening is resolved at depth through a crustal root where the Saharan crust under-thrusts below the Moroccan crust, defining a lower crust imbrication which locally places the Moho boundary at, approximately, 40 km depth. The P-wave velocity model is characterized, in averaged, by relatively low velocities. These low deep crustal velocities together with other geophysical observables such as: conductivity estimates derived from Mt measurements; moderate Bouguer gravity anomaly; surface exposures of recent alkaline volcanics; lead the interpretation to propose that partial melts are currently emplaced in the deep crustal levels and in the upper mantle. The Moho discontinuity defines a crust which is in average relatively thin beneath the Atlas which is almost a 4000 m high orogenic belt. The resulting model supports existence of mantle upwelling as a possible mechanism that contributes, significantly, to maintain the High Atlas topography.

  6. Are Narrow Line Seyfert 1 Galaxies Viewed Pole-on?

    2011-04-01

    0.2’’ respectively. Figure 1 displays the position of each slit over a Barbosa et al. (2009) GMOS IFU image of the [S III] flux (which originates...C. Winge, H. Schmitt: Gemini/ GMOS IFU gas velocity ’tomography’ of the narrow line region of nearby active galaxies, MNRAS, 396 (2009) 2. [2] D...1995) 81. 4 P o S ( N L S 1 ) 0 5 0 Are NLS1s Pole-on? Travis C. Fischer 5 Figure 1: NGC 4051 GMOS IFU image showing integrated [SIII] flux

  7. A systematic procedure to optimise dose and image quality for the measurement of inter-vertebral angles from lateral spinal projections using Cobb and superimposition methods.

    Al Qaroot, Bashar; Hogg, Peter; Twiste, Martin; Howard, David

    2014-01-01

    Patients with vertebral column deformations are exposed to high risks associated with ionising radiation exposure. Risks are further increased due to the serial X-ray images that are needed to measure and asses their spinal deformation using Cobb or superimposition methods. Therefore, optimising such X-ray practice, via reducing dose whilst maintaining image quality, is a necessity. With a specific focus on lateral thoraco-lumbar images for Cobb and superimposition measurements, this paper outlines a systematic procedure to the optimisation of X-ray practice. Optimisation was conducted based on suitable image quality from minimal dose. Image quality was appraised using a visual-analogue-rating-scale, and Monte-Carlo modelling was used for dose estimation. The optimised X-ray practice was identified by imaging healthy normal-weight male adult living human volunteers. The optimised practice consisted of: anode towards the head, broad focus, no OID or grid, 80 kVp, 32 mAs and 130 cm SID. Images of suitable quality for laterally assessing spinal conditions using Cobb or superimposition measurements were produced from an effective dose of 0.05 mSv, which is 83% less than the average effective dose used in the UK for lateral thoracic/lumbar exposures. This optimisation procedure can be adopted and use for optimisation of other radiographic techniques.

  8. Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales.

    Pirih, Primož; Wilts, Bodo D; Stavenga, Doekele G

    2011-10-01

    The males of many pierid butterflies have iridescent wings, which presumably function in intraspecific communication. The iridescence is due to nanostructured ridges of the cover scales. We have studied the iridescence in the males of a few members of Coliadinae, Gonepteryx aspasia, G. cleopatra, G. rhamni, and Colias croceus, and in two members of the Colotis group, Hebomoia glaucippe and Colotis regina. Imaging scatterometry demonstrated that the pigmentary colouration is diffuse whereas the structural colouration creates a directional, line-shaped far-field radiation pattern. Angle-dependent reflectance measurements demonstrated that the directional iridescence distinctly varies among closely related species. The species-dependent scale curvature determines the spatial properties of the wing iridescence. Narrow beam illumination of flat scales results in a narrow far-field iridescence pattern, but curved scales produce broadened patterns. The restricted spatial visibility of iridescence presumably plays a role in intraspecific signalling.

  9. Determination of Hydrodynamic Parameters on Two--Phase Flow Gas - Liquid in Pipes with Different Inclination Angles Using Image Processing Algorithm

    Montoya, Gustavo; Valecillos, María; Romero, Carlos; Gonzáles, Dosinda

    2009-11-01

    In the present research a digital image processing-based automated algorithm was developed in order to determine the phase's height, hold up, and statistical distribution of the drop size in a two-phase system water-air using pipes with 0 , 10 , and 90 of inclination. Digital images were acquired with a high speed camera (up to 4500fps), using an equipment that consist of a system with three acrylic pipes with diameters of 1.905, 3.175, and 4.445 cm. Each pipe is arranged in two sections of 8 m of length. Various flow patterns were visualized for different superficial velocities of water and air. Finally, using the image processing program designed in Matlab/Simulink^, the captured images were processed to establish the parameters previously mentioned. The image processing algorithm is based in the frequency domain analysis of the source pictures, which allows to find the phase as the edge between the water and air, through a Sobel filter that extracts the high frequency components of the image. The drop size was found using the calculation of the Feret diameter. Three flow patterns were observed: Annular, ST, and ST&MI.

  10. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  11. Azimuthal critical heat flux in narrow rectangular channels

    Kim, Yong Hoon; Noh, Sang Woo; Kim, Sung Joong; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2003-07-01

    Tests were conducted to examine the critical heat flux (CHF) on the one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under the atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10mm, and the surface orientation angles from the downward-facing position (180{sup o}) to the vertical position (90{sup o}), respectively. Also, the CHF experiments were performed for pool boiling with varying heater surface orientations in the unconfined space at the atmospheric pressure using the rectangular test section. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. In consistency with several studies reported in the literature, it was found that there exists a transition angle above which the CHF changes with a rapid slope. An engineering correlation is developed for the CHF during natural convective boiling in the inclined, confined rectangular channels with the aid of dimensional analysis.

  12. The anterior chamber angle width in adults in a tertiary eye hospital ...

    2011-03-25

    Mar 25, 2011 ... had visual acuity assessment, visual field analysis, ophthalmoscopy, intraocular pressure measurement, ... Peripheral anterior synechiae were observed in three eyes. ..... The high incidence of narrow angles with the near.

  13. Implant Angle Monitor System of MC3-II

    Sato, Fumiaki; Sano, Makoto; Nakaoka, Hiroaki; Fujii, Yoshito; Kudo, Tetuya; Nakanishi, Makoto; Koike, Masazumi; Fujino, Yasushi

    2008-01-01

    Precise implant angle control is required for the latest generation of ion implanters to meet further shrink semiconductor device requirements. Especially, the highest angle accuracy is required for Halo implant process of Logic devices. The Halo implant angle affects the device performance, because slight differences of beam divergence change the overlap profile towards the extension. Additionally, twist angle accuracy is demanded in case of channeling angle implant. Therefore monitoring beam angles and wafer twist angles is important. A new monitoring system for the MC3-II, SEN Corp.'s single wafer type medium current implanter has been developed. This paper describes the angle control performance and monitoring system of the MC3-II. For the twist angle control, we developed a wafer notch angle monitor. The system monitors the wafer notch image on the platen. And the notch angle variation is calculated by using image processing method. It is also able to adjust the notch angle according to the angle error. For the tilt angle control, we developed a vertical beam profile monitor. The monitor system can detect beam profile of vertical directions with horizontally scanning beam. It also measures beam angles of a tilt direction to a wafer. The system configuration and sample beam data are presented.

  14. 3-d chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope

    Hitchcock, A.P.; Johansson, G.A. [McMaster, BIMR, Hamilton (Canada); Mitchell, G.E. [Dow Chemical, Analytical Science, Midland, MI (United States); Keefe, M.H. [Dow Chemical, Dow Latex, Midland, MI (United States); Tyliszcak, T. [LBNL, Advanced Light Source, Berkeley, CA (United States)

    2008-08-15

    Three-dimensional chemical mapping using angle scan nanotomography in a soft X-ray scanning transmission X-ray microscope (STXM) has been used to investigate the spatial distributions of a low density polyacrylate polyelectrolyte ionomer inside submicron sized polystyrene microspheres. Acquisition of tomograms at multiple photon energies provides true, quantifiable 3-d chemical sensitivity. Both pre-O 1s and C 1s results are shown. The study reveals aspects of the 3-d distribution of the polyelectrolyte that were inferred indirectly or had not been known prior to this study. The potential and challenges for extension of the technique to studies of other polymeric and to biological systems is discussed. (orig.)

  15. Device Physics of Narrow Gap Semiconductors

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  16. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  17. ASSESSMENT OF LENS THICKNESS IN ANGLE CLOSURE DISEASE

    Nishat Sultana Khayoom

    2016-08-01

    Full Text Available BACKGROUND Anterior chamber depth and lens thickness have been considered as important biometric determinants in primary angle-closure glaucoma. Patients with primary narrow angle may be classified as a primary angle closure suspect (PACS, or as having primary angle closure (PAC or primary angle closure glaucoma (PACG. 23.9% of patients with primary angle closure disease are in India, which highlights the importance of understanding the disease, its natural history, and its underlying pathophysiology, so that we may try to establish effective methods of treatment and preventative measures to delay, or even arrest, disease progression, thereby reducing visual morbidity. AIM To determine the lens thickness using A-scan biometry and its significance in various stages of angle closure disease. MATERIALS AND METHODS Patients attending outpatient department at Minto Ophthalmic Hospital between October 2013 to May 2015 were screened for angle closure disease and subsequently evaluated at glaucoma department. In our study, lens thickness showed a direct correlation with shallowing of the anterior chamber by determining the LT/ ACD ratio. A decrease in anterior chamber depth is proportional to the narrowing of the angle which contributes to the progression of the angle closure disease from just apposition to occlusion enhancing the risk for optic nerve damage and visual field loss. Hence, if the lens thickness values are assessed earlier in the disease process, appropriate intervention can be planned. CONCLUSION Determination of lens changes along with anterior chamber depth and axial length morphometrically can aid in early detection of angle closure. The role of lens extraction for PACG is a subject of increased interest. Lens extraction promotes the benefits of anatomical opening of the angle, IOP reduction and improved vision. This potential intervention may be one among the armamentarium of approaches for PACG. Among the current treatment modalities

  18. Evaluation of the anterior chamber angle in Asian Indian eyes by ultrasound biomicroscopy and gonioscopy

    Kaushik Sushmita

    2006-01-01

    Full Text Available Purpose: To compare the ultrasound biomicroscopic measurement of the anterior chamber angle in Asian Indian eyes, with the angle width estimated by gonioscopy. Materials and Methods: Participants: Patients with open and closed angles attending a glaucoma clinic were recruited for the study. Observation Procedures: Temporal quadrants of the angles of patients were categorized by gonioscopy as Grade 0 to Grade 4, using Shaffer′s classification. These angles were quantified by ultrasound biomicroscopy (UBM using the following biometric characteristics: Angle opening distance at 250 µ (AOD 250 and 500 µ (AOD 500 from the scleral spur and trabecular meshwork-ciliary process distance (TCPD. The angles were further segregated as "narrow angles" (Schaffer′s Grade 2 or less and "open angles" (Schaffer′s Grade 3 and 4. Main Outcome Measures: The UBM measurements were computed in each case and analyzed in relation to the gonioscopic angle evaluation. Results: One hundred and sixty three eyes of 163 patients were analyzed. One hundred and six eyes had "narrow angles" and 57 eyes had "open angles" on gonioscopy. There was a significant difference among the mean UBM measurements of each angle grade estimated by gonioscopy ( P < 0.001. The Pearson correlation coefficient between all UBM parameters and gonioscopy grades was significant at the 0.01 level. The mean AOD 250, AOD 500 and TCPD in narrow angles were 58±49 µ, 102±84 µ and 653±124 respectively, while it was 176±47 µ, 291±62 µ and 883±94 µ in eyes with open angles ( P < 0.001 respectively. Conclusions: The angle width estimated by gonioscopy correlated significantly with the angle dimensions measured by UBM. Gonioscopy, though a subjective test, is a reliable method for estimation of the angle width.

  19. Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)

    Alamdar, K.; Ansari, A. H.; Ghorbani, A.

    2009-04-01

    Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which

  20. Optimal reconstruction angles

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  1. Mapping of low flip angles in magnetic resonance

    Balezeau, Fabien; Saint-Jalmes, Herve; Eliat, Pierre-Antoine; Cayamo, Alejandro Bordelois

    2011-01-01

    Errors in the flip angle have to be corrected in many magnetic resonance imaging applications, especially for T1 quantification. However, the existing methods of B1 mapping fail to measure lower values of the flip angle despite the fact that these are extensively used in dynamic acquisition and 3D imaging. In this study, the nonlinearity of the radiofrequency (RF) transmit chain, especially for very low flip angles, is investigated and a simple method is proposed to accurately determine both the gain of the RF transmitter and the B1 field map for low flip angles. The method makes use of the spoiled gradient echo sequence with long repetition time (TR), such as applied in the double-angle method. It uses an image acquired with a flip angle of 90 0 as a reference image that is robust to B1 inhomogeneity. The ratio of the image at flip angle alpha to the image at a flip angle of 90 0 enables us to calculate the actual value of alpha. This study was carried out at 1.5 and 4.7 T, showing that the linearity of the RF supply system is highly dependent on the hardware. The method proposed here allows us to measure the flip angle from 1 0 to 60 0 with a maximal uncertainty of 10% and to correct T1 maps based on the variable flip angle method.

  2. Model for diffusion of a narrow beam of charged particles

    Eisenhauer, C.

    1980-01-01

    A simple analytic expression is presented to describe the three-dimensioned spatial distribution of flux or energy deposition by a narrow beam of charged particles. In this expression distances are expressed in terms of a scaling parameter that is proportional to the mean square scattering angle in a single collision. Finite ranges are expressed in terms of the continuous-slowing-down range. Track-length distributions for one-velocity particles and energy deposition for electrons are discussed. Comparisons with rigorous Monte Carlo calculations show that departures from the analytic expression can be expressed as a slowly varying function of order unity. This function can be used as a basis for interpolation over a wide range of source energies and materials

  3. Digital breast tomosynthesis: studies of the effects of acquisition geometry on contrast-to-noise ratio and observer preference of low-contrast objects in breast phantom images

    Goodsitt, Mitchell M; Chan, Heang-Ping; Telang, Santosh; Hadjiiski, Lubomir; Helvie, Mark A; Paramagul, Chintana; Neal, Colleen; Christodoulou, Emmanuel; Larson, Sandra C; Carson, Paul L; Schmitz, Andrea; Zelakiewicz, Scott; Watcharotone, Kuanwong

    2014-01-01

    The effect of acquisition geometry in digital breast tomosynthesis was evaluated with studies of contrast-to-noise ratios (CNRs) and observer preference. Contrast-detail (CD) test objects in 5 cm thick phantoms with breast-like backgrounds were imaged. Twelve different angular acquisitions (average glandular dose for each ∼1.1 mGy) were performed ranging from narrow angle 16° with 17 projection views (16d17p) to wide angle 64d17p. Focal slices of SART-reconstructed images of the CD arrays were selected for CNR computations and the reader preference study. For the latter, pairs of images obtained with different acquisition geometries were randomized and scored by 7 trained readers. The total scores for all images and readings for each acquisition geometry were compared as were the CNRs. In general, readers preferred images acquired with wide angle as opposed to narrow angle geometries. The mean percent preferred was highly correlated with tomosynthesis angle (R = 0.91). The highest scoring geometries were 60d21p (95%), 64d17p (80%), and 48d17p (72%); the lowest scoring were 16d17p (4%), 24d9p (17%) and 24d13p (33%). The measured CNRs for the various acquisitions showed much overlap but were overall highest for wide-angle acquisitions. Finally, the mean reader scores were well correlated with the mean CNRs (R = 0.83). (paper)

  4. Digital breast tomosynthesis: Studies of the effects of acquisition geometry on contrast-to-noise ratio and observer preference of low-contrast objects in breast phantom images

    Goodsitt, Mitchell M.; Chan, Heang-Ping; Schmitz, Andrea; Zelakiewicz, Scott; Telang, Santosh; Hadjiiski, Lubomir; Watcharotone, Kuanwong; Helvie, Mark A.; Paramagul, Chintana; Neal, Colleen; Christodoulou, Emmanuel; Larson, Sandra C.; Carson, Paul L.

    2014-01-01

    The effect of acquisition geometry in digital breast tomosynthesis (DBT) was evaluated with studies of contrast-to-noise ratios (CNRs) and observer preference. Contrast-detail (CD) test objects in 5 cm thick phantoms with breast-like backgrounds were imaged. Twelve different angular acquisitions (average glandular dose for each ~1.1 mGy) were performed ranging from narrow angle 16° with 17 projection views (16d17p) to wide angle 64d17p. Focal slices of SART-reconstructed images of the CD arrays were selected for CNR computations and the reader preference study. For the latter, pairs of images obtained with different acquisition geometries were randomized and scored by 7 trained readers. The total scores for all images and readings for each acquisition geometry were compared as were the CNRs. In general, readers preferred images acquired with wide angle as opposed to narrow angle geometries. The mean percent preferred was highly correlated with tomosynthesis angle (R=0.91). The highest scoring geometries were 60d21p (95%), 64d17p (80%), and 48d17p (72%); the lowest scoring were 16d17p (4%), 24d9p (17%) and 24d13p (33%). The measured CNRs for the various acquisitions showed much overlap but were overall highest for wide-angle acquisitions. Finally, the mean reader scores were well correlated with the mean CNRs (R=0.83). PMID:25211509

  5. Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views.

    Chan, Heang-Ping; Goodsitt, Mitchell M; Helvie, Mark A; Zelakiewicz, Scott; Schmitz, Andrea; Noroozian, Mitra; Paramagul, Chintana; Roubidoux, Marilyn A; Nees, Alexis V; Neal, Colleen H; Carson, Paul; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun

    2014-12-01

    To investigate the dependence of microcalcification cluster detectability on tomographic scan angle, angular increment, and number of projection views acquired at digital breast tomosynthesis ( DBT digital breast tomosynthesis ). A prototype DBT digital breast tomosynthesis system operated in step-and-shoot mode was used to image breast phantoms. Four 5-cm-thick phantoms embedded with 81 simulated microcalcification clusters of three speck sizes (subtle, medium, and obvious) were imaged by using a rhodium target and rhodium filter with 29 kV, 50 mAs, and seven acquisition protocols. Fixed angular increments were used in four protocols (denoted as scan angle, angular increment, and number of projection views, respectively: 16°, 1°, and 17; 24°, 3°, and nine; 30°, 3°, and 11; and 60°, 3°, and 21), and variable increments were used in three (40°, variable, and 13; 40°, variable, and 15; and 60°, variable, and 21). The reconstructed DBT digital breast tomosynthesis images were interpreted by six radiologists who located the microcalcification clusters and rated their conspicuity. The mean sensitivity for detection of subtle clusters ranged from 80% (22.5 of 28) to 96% (26.8 of 28) for the seven DBT digital breast tomosynthesis protocols; the highest sensitivity was achieved with the 16°, 1°, and 17 protocol (96%), but the difference was significant only for the 60°, 3°, and 21 protocol (80%, P .99). The conspicuity of subtle and medium clusters with the 16°, 1°, and 17 protocol was rated higher than those with other protocols; the differences were significant for subtle clusters with the 24°, 3°, and nine protocol and for medium clusters with 24°, 3°, and nine; 30°, 3°, and 11; 60°, 3° and 21; and 60°, variable, and 21 protocols (P tomosynthesis provided higher sensitivity and conspicuity than wide-angle DBT digital breast tomosynthesis for subtle microcalcification clusters. © RSNA, 2014.

  6. Estimating Elevation Angles From SAR Crosstalk

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  7. Energy characteristics of the double slot in the narrow wall of a rectangular waveguide

    Martynenko, S. A.

    2005-01-01

    Based on approximation of the half-wave field distribution in the slots, an expression is derived for internal mutual conductance of closely-spaced slots, which form a double inclined slot in the narrow wall of a rectangular waveguide. The narrow wall has cut-outs reaching the broad wall. With the use of the method of induced magnetomotive forces, a mathematical model is devised for calculating the energy characteristics of the double slot. The impact of angle of inclination of the slots, dim...

  8. Wide and Narrow CMEs and Their Source Explosions Observed at the Spring 2003 SOHO-Sun-Ulysses Quadrature

    Suess, Steven; Corti, G.; Poletto, G.; Sterling, A.; Moore, R.

    2006-01-01

    At the time of the spring 2003 Ulysses-SOHO-Sun quadrature, Ulysses was off the East limb of the Sun at 14.5 degrees north latitude and 4.91 AU. LASCO/C2 images show small transient events that originated from near the limb on May 25, 26 and 27 in the north-east quadrant, along with a large Coronal Mass Ejection (CME) that originated from an active region near disk center on May 26. Ulysses data bear clear signatures of the large CME, specifically including an enhanced abundance of highly ionized Fe. SOHO/UVCS spectra at 1.75 solar radii, near the radial direction to Ulysses, give no evidence of emission from high temperature lines, even for the large CME: instead, for the small events, occasional transient high emission in cool lines was observed, such as the CIII 977 Angstrom line usually absent at coronal levels. Each of these events lasted ca. 1 hour or less and never affected lines from ions forming above ca. 106K. Compact eruptions in Helium 304 Angstrom EIT images, related to the small UVCS transients, were observed at the limb of the Sun over the same period. At least one of these surge events produced a narrow CME observed in LASCO/C2. Most probably all these events are compact magnetic explosions (surges/jets, from around a small island of included polarity) which ejected cool material from lower levels. Ulysses data have been analyzed to find evidence of the cool, narrow CME events, but none or little was found. This puzzling scenario, where events seen by UVCS have no in situ counterparts and vice versa, can be partially explained once the region where the large CME originated is recognized as being at the center of the solar disk so that the CME material was actually much further from the Sun than the 1.7 Rsun height of the UVCS slit off the limb. Conversely, the narrow events may simply have missed Ulysses or been too brief for reliable signatures in composition and ionization state. A basic feature demonstrated by these observations is that large

  9. A Frequency Splitting Method For CFM Imaging

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator......, a 5 MHz linear array transducer was used to scan a vessel situated at 30 mm depth with a maximum flow velocity of 0.1 m/s. The pulse repetition frequency was 1.8 kHz and the angle between the flow and the beam was 60 deg. A 15 mus chirp was used as excitation pulse and 40 independent velocity...

  10. Evaluation of the anterior chamber angle in Asian Indian eyes by ultrasound biomicroscopy and gonioscopy.

    Kaushik, Sushmita; Jain, Rajeev; Pandav, Surinder Singh; Gupta, Amod

    2006-09-01

    To compare the ultrasound biomicroscopic measurement of the anterior chamber angle in Asian Indian eyes, with the angle width estimated by gonioscopy. Patients with open and closed angles attending a glaucoma clinic were recruited for the study. Temporal quadrants of the angles of patients were categorized by gonioscopy as Grade 0 to Grade 4, using Shaffer's classification. These angles were quantified by ultrasound biomicroscopy (UBM) using the following biometric characteristics: Angle opening distance at 250 micro (AOD 250) and 500 micro (AOD 500) from the scleral spur and trabecular meshwork-ciliary process distance (TCPD). The angles were further segregated as "narrow angles" (Schaffer's Grade 2 or less) and "open angles" (Schaffer's Grade 3 and 4). The UBM measurements were computed in each case and analyzed in relation to the gonioscopic angle evaluation. One hundred and sixty three eyes of 163 patients were analyzed. One hundred and six eyes had "narrow angles" and 57 eyes had "open angles" on gonioscopy. There was a significant difference among the mean UBM measurements of each angle grade estimated by gonioscopy (P gonioscopy grades was significant at the 0.01 level. The mean AOD 250, AOD 500 and TCPD in narrow angles were 58+/-49 micro, 102+/-84 micro and 653+/-124 respectively, while it was 176+/-47 micro, 291+/-62 micro and 883+/-94 micro in eyes with open angles (P gonioscopy correlated significantly with the angle dimensions measured by UBM. Gonioscopy, though a subjective test, is a reliable method for estimation of the angle width.

  11. Evaluation of the relation between the horizontal condylar angle and the internal derangement of the TMJ - a magnetic resonance imaging study

    Crusoe-Rebello, Ieda Margarida Rocha [Fundacao de Amparo a Pesquisa do Estado da Bahia (FAPESB), Salvador (Brazil); Campos, Paulo Sergio Flores; Rubira, Izabel Regina Fischer [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. of Propedeutica e Clinica Integrada; Panella, Jurandyr [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. de Radiologia; Mendes, Carlos Mauricio Cardeal [Bahia Univ., Salvador, BA (Brazil). Faculdade de Medicine

    2003-06-01

    This research aimed at assessing the relation between the horizontal condylar angle (HCA) and the internal derangement (ID) of the temporomandibular joint (TMJ), as a result of interference by the T MJ disk, in individuals undergoing magnetic resonance (MR) scans. The sample included a total of 144 TMJs (sagittal and coronal views) of 72 subjects, 15 of whom were male and 57 female, with ages ranging from 15 to 70. The scans were made in a Signa system model at a magnetic field magnitude of 1.5 T. Sixty-eight TMJs were found to be normal, while 46 showed anterior displacement with reduction. Of these, 41 had some kind of adaptive change in the condyle, while 5 showed degenerative changes. Anterior displacement without reduction was found in 29 joints, 12 of which showed adaptive changes in the condyle, while 17 showed degenerative changes. Only one posterior displacement of the articular disk was recorded. For the TMJs in which disk displacement was found, such values achieved 24.69 deg on the right side, and 22.94 deg on the left side. Hence, it was possible for us to conclude that the HCA tends to increase in those TMJs where ID is present. For contralateral TMJs, a strong association was observed between HCA values (57.8%), state of normality (69.7%), and ID (66.7%). To corroborate such findings, a correlation between contralateral HCA values (63.31%) and the diagnosis for contralateral TMJs (68.05%) was determined. Thus, we could infer that there is a tendency between contralateral TMJs to share characteristics and conditions. (author)

  12. Evaluation of the relation between the horizontal condylar angle and the internal derangement of the TMJ - a magnetic resonance imaging study

    Crusoe-Rebello, Ieda Margarida Rocha; Campos, Paulo Sergio Flores; Rubira, Izabel Regina Fischer; Panella, Jurandyr; Mendes, Carlos Mauricio Cardeal

    2003-01-01

    This research aimed at assessing the relation between the horizontal condylar angle (HCA) and the internal derangement (ID) of the temporomandibular joint (TMJ), as a result of interference by the T MJ disk, in individuals undergoing magnetic resonance (MR) scans. The sample included a total of 144 TMJs (sagittal and coronal views) of 72 subjects, 15 of whom were male and 57 female, with ages ranging from 15 to 70. The scans were made in a Signa system model at a magnetic field magnitude of 1.5 T. Sixty-eight TMJs were found to be normal, while 46 showed anterior displacement with reduction. Of these, 41 had some kind of adaptive change in the condyle, while 5 showed degenerative changes. Anterior displacement without reduction was found in 29 joints, 12 of which showed adaptive changes in the condyle, while 17 showed degenerative changes. Only one posterior displacement of the articular disk was recorded. For the TMJs in which disk displacement was found, such values achieved 24.69 deg on the right side, and 22.94 deg on the left side. Hence, it was possible for us to conclude that the HCA tends to increase in those TMJs where ID is present. For contralateral TMJs, a strong association was observed between HCA values (57.8%), state of normality (69.7%), and ID (66.7%). To corroborate such findings, a correlation between contralateral HCA values (63.31%) and the diagnosis for contralateral TMJs (68.05%) was determined. Thus, we could infer that there is a tendency between contralateral TMJs to share characteristics and conditions. (author)

  13. Highly Tunable Narrow Bandpass MEMS Filter

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  14. Bubble departure diameter in narrow rectangular channel under rolling condition

    Xie, T.; Chen, B.; Yan, X.; Xu, J.; Huang, Y.; Xiao, Z. [Nuclear Power Inst. of China, Chengdu, Sichuan (China)

    2014-07-01

    Forced convective subcooled boiling flow experiments were conducted in a vertical upward narrow rectangular channel under rolling motion. A high-speed digital video camera was used to capture the dynamics of the bubble nucleation process. Bubble departure diameters were obtained from the images. A bubble departure model based on force balance analysis was proposed to predict the bubble departure size under rolling condition by considering the additional centrifugal, tangential and Coriolis force. The proposed model agreed well with the experimental data within the averaged relative deviation of 5%. (author)

  15. Longitudinal changes of angle configuration in primary angle-closure suspects: the Zhongshan Angle-Closure Prevention Trial.

    Jiang, Yuzhen; Chang, Dolly S; Zhu, Haogang; Khawaja, Anthony P; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M; He, Mingguang; Friedman, David S; Foster, Paul J

    2014-09-01

    To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Longitudinal cohort study. Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8-1.6) in treated eyes and 1.6°/year (95% CI, 1.3-2.0) in untreated eyes (P<0.001). Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the same time period. Copyright © 2014 American Academy of Ophthalmology. Published by

  16. Cancer of the colon spleen angle. Presentation of a case

    Martinez Sanchez, Yariana; De la Rosa Perez, Nereida; Barcelo Casanova, Renato E

    2010-01-01

    The colon cancer is currently an important public health problem in developed countries. It is the fourth most common cancer in the world. We report the case of a 65-years-old, black, female patient, assisting our consultation with dyspeptic disturbances as the unique symptom, without known risk factors. We indicated a colon by enema and a distal narrowing was observed at the colon spleen angle, at the same zone of the physiologic narrowing at that level. A colonoscopy was carried out diagnosing a left colon tumor near the spleen angle. It was operated with segmental resection of the spleen angle and a biopsy was made. Pathologic anatomy informed a well-differentiated colon adenocarcinoma

  17. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study.

    Zikou, A K; Kitsos, G; Tzarouchi, L C; Astrakas, L; Alexiou, G A; Argyropoulou, M I

    2012-01-01

    Neuropathologic studies in experimental and human glaucoma have demonstrated degenerative changes in the optic pathway. The purpose of this study was to assess the optic pathway in POAG by using VBM and DTI. Eighteen patients 57.05 ± 11.38 years of age with POAG of 8.30 ± 5.14 years' duration and 18 control subjects underwent a complete ophthalmologic examination, including quantification of the RNFLT by using Stratus OCT 3, and brain imaging. The imaging protocol consisted of a T1-weighted high-resolution 3D spoiled gradient-echo sequence and a multisection spin-echo- planar diffusion-weighted sequence. Data preprocessing and analysis were performed by using Matlab 7.0 and SPM 5. Left temporal and right nasal RNFLTs were significantly thinner than right temporal and left nasal RNFLTs. In patients, VBM revealed a significant reduction in the left visual cortex volume, the left lateral geniculate nucleus, and the intracranial part of the ONs and the chiasma. In addition, a significant decrease of FA was observed in the inferior fronto-occipital fasciculus, the longitudinal and inferior frontal fasciculi, the putamen, the caudate nucleus, the anterior and posterior thalamic radiations, and the anterior and posterior limbs of the internal capsule of the left hemisphere (P < .05). Neurodegenerative changes of the optic pathway and several brain areas associated with the visual system can be observed by using VBM and DTI in patients with POAG, suggesting that glaucoma is a complex neurologic disease.

  18. A low-angle detachment fault revealed: Three-dimensional images of the S-reflector fault zone along the Galicia passive margin

    Schuba, C. Nur; Gray, Gary G.; Morgan, Julia K.; Sawyer, Dale S.; Shillington, Donna J.; Reston, Tim J.; Bull, Jonathan M.; Jordan, Brian E.

    2018-06-01

    A new 3-D seismic reflection volume over the Galicia margin continent-ocean transition zone provides an unprecedented view of the prominent S-reflector detachment fault that underlies the outer part of the margin. This volume images the fault's structure from breakaway to termination. The filtered time-structure map of the S-reflector shows coherent corrugations parallel to the expected paleo-extension directions with an average azimuth of 107°. These corrugations maintain their orientations, wavelengths and amplitudes where overlying faults sole into the S-reflector, suggesting that the parts of the detachment fault containing multiple crustal blocks may have slipped as discrete units during its late stages. Another interface above the S-reflector, here named S‧, is identified and interpreted as the upper boundary of the fault zone associated with the detachment fault. This layer, named the S-interval, thickens by tens of meters from SE to NW in the direction of transport. Localized thick accumulations also occur near overlying fault intersections, suggesting either non-uniform fault rock production, or redistribution of fault rock during slip. These observations have important implications for understanding how detachment faults form and evolve over time. 3-D seismic reflection imaging has enabled unique insights into fault slip history, fault rock production and redistribution.

  19. A gallery approach for off-angle iris recognition

    Karakaya, Mahmut; Yoldash, Rashiduddin; Boehnen, Christopher

    2015-05-01

    It has been proven that hamming distance score between frontal and off-angle iris images of same eye differs in iris recognition system. The distinction of hamming distance score is caused by many factors such as image acquisition angle, occlusion, pupil dilation, and limbus effect. In this paper, we first study the effect of the angle variations between iris plane and the image acquisition systems. We present how hamming distance changes for different off-angle iris images even if they are coming from the same iris. We observe that increment in acquisition angle of compared iris images causes the increment in hamming distance. Second, we propose a new technique in off-angle iris recognition system that includes creating a gallery of different off-angle iris images (such as, 0, 10, 20, 30, 40, and 50 degrees) and comparing each probe image with these gallery images. We will show the accuracy of the gallery approach for off-angle iris recognition.

  20. Natural Convective Heat Transfer from Narrow Plates

    Oosthuizen, Patrick H

    2013-01-01

    Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.

  1. A naturally narrow positive-parity Θ+

    Carlson, Carl E.; Carone, Christopher D.; Kwee, Herry J.; Nazaryan, Vahagn

    2004-01-01

    We present a consistent color-flavor-spin-orbital wave function for a positive-parity Θ + that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive-parity Θ + lighter than its negative-parity counterpart. We consider decays of the Θ + and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths

  2. Narrow Escape of Interacting Diffusing Particles

    Agranov, Tal; Meerson, Baruch

    2018-03-01

    The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domain's boundary. Here we develop a formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting particles and thermal runaway in chemical reactors.

  3. Angles in hyperbolic lattices

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  4. Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.

    Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and

  5. Prediction of Weld Residual Stress of Narrow Gap Welds

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  6. Prognostic Significance of Frontal QRS-T Angle in Patients with Idiopathic Dilated Cardiomyopathy

    Sheng-Na Li

    2016-01-01

    Conclusions: The frontal QRS-T angle is a powerful predictor of all-cause mortality, cardiac mortality, and worsening heart failure in IDC patients, independent of well-established prognostic factors. Optimized therapy significantly narrows the QRS-T angle, which might be an indicator of medication compliance, but this requires further investigation.

  7. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    Richards, Joseph L.; Lister, Matthew L., E-mail: jlr@purdue.edu [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  8. Quasi-3-D Seismic Reflection Imaging and Wide-Angle Velocity Structure of Nearly Amagmatic Oceanic Lithosphere at the Ultraslow-Spreading Southwest Indian Ridge

    Momoh, Ekeabino; Cannat, Mathilde; Watremez, Louise; Leroy, Sylvie; Singh, Satish C.

    2017-12-01

    We present results from 3-D processing of 2-D seismic data shot along 100 m spaced profiles in a 1.8 km wide by 24 km long box during the SISMOSMOOTH 2014 cruise. The study is aimed at understanding the oceanic crust formed at an end-member mid-ocean ridge environment of nearly zero melt supply. Three distinct packages of reflectors are imaged: (1) south facing reflectors, which we propose correspond to the damage zone induced by the active axial detachment fault: reflectors in the damage zone have dips up to 60° and are visible down to 5 km below the seafloor; (2) series of north dipping reflectors in the hanging wall of the detachment fault: these reflectors may correspond to damage zone inherited from a previous, north dipping detachment fault, or small offset recent faults, conjugate from the active detachment fault, that served as conduits for isolated magmatic dykes; and (3) discontinuous but coherent flat-lying reflectors at shallow depths (serpentinization and fracturation of the exhumed mantle-derived peridotites in the footwall of active and past detachment faults.

  9. Extraction of Dysprosium Ions with DTPA Functionalized Superparamagnetic Nanoparticles Probed by Energy Dispersive X-ray Fluorescence and TEM/High-Angle Annular Dark Field Imaging.

    Melo, Fernando Menegatti de; Almeida, Sabrina da Nobrega; Uezu, Noemi Saori; Ramirez, Carlos Alberto Ospina; Santos, Antonio Domingues Dos; Toma, Henrique Eisi

    2018-06-01

    The extraction of dysprosium (Dy3+) ions from aqueous solution was carried out successfully, using magnetite (Fe3O4) nanoparticles functionalized with diethylenetriaminepentaacetic acid (MagNP@DTPA). The process was monitored by energy dispersive X-ray fluorescence spectroscopy, as a function of concentration, proceeding according to a Langmuir isotherm with an equilibrium constant of 2.57 × 10-3 g(MagNP) L-1 and a saturation limit of 63.2 mgDy/gMagNP. The presence of paramagnetic Dy3+ ions attached to the superparamagnetic nanoparticles led to an overall decrease of magnetization. By imaging the nanoparticles surface using scanning transmission electron microscopy equipped with high resolution elemental analysis, it was possible to probe the binding of the Dy3+ ions to DTPA, and to show their distribution in a region of negative magnetic field gradients. This finding is coherent with the observed decrease of magnetization, associated with the antiferromagnetic coupling between the lanthanide ions and the Fe3O4 core.

  10. Effects of pelvic rotation and needle angle on pubic arch interference during transperineal prostate implants

    Tincher, Sandra A.; Kim, Robert Y.; Ezekiel, Mark P.; Zinsli, Tom; Fiveash, John B.; Raben, David A.; Bueschen, Anton J.; Urban, Donald A.

    2000-01-01

    Purpose: Pubic arch interference due to an enlarged prostate gland or a narrow pubic arch is often a limiting factor in adequate prostate coverage during transperineal brachytherapy. The purpose of this study was to evaluate the effects of both pelvic rotation and needle angles on pubic arch interference using CT-based 3-D information. Methods and Materials: Seven patients had CT imaging in both supine and lithotomy positions and 3-D treatment planning was performed with three needle angles (20 downward, 0, 20 upward). The pubic arch interference was then measured and comparisons were made for each needle trajectory and pelvic position. Results: Increasing pelvic rotation from supine to lithotomy position shows less pubic arch interference. Directing the needle tip upward shows less pubic arch interference in both supine and lithotomy positions when compared to needle tips directed downward. Conclusions: Both pelvic position and needle angles are important factors influencing pubic arch interference. Preplanning CT-based 3-D information may assist for individualized treatment planning in patients with a significant bony interference, thus avoiding pubic arch interference during implantation

  11. Observations and computations of narrow Kelvin ship wakes

    Francis Noblesse

    2016-01-01

    Full Text Available Computations of far-field ship waves, based on linear potential flow theory and the Hogner approximation, are reported for monohull ships and catamarans. Specifically, far-field ship waves are computed for six monohull ships at four Froude numbers F≡V/gL=0.58, 0.68, 0.86, 1.58 and for six catamarans with nondimensional hull spacing s≡S/L=0.25 at two Froude numbers Fs≡V/gS=1 and 2.5. Here, g is the gravitational acceleration, V and L denote the ship speed and length, and S is the separation distance between the twin hulls of a catamaran. The computations show that, although the amplitudes of the waves created by a ship are strongly influenced by the shape of the ship hull, as well known, the ray angles where the largest waves are found are only weakly influenced by the hull shape and indeed are mostly a kinematic feature of the flow around a ship hull. An important practical consequence of this flow feature is that the apparent wake angle of general monohull ships or catamarans (with arbitrarily-shaped hulls can be estimated, without computations, by means of simple analytical relations; these relations, obtained elsewhere via parametric computations, are given here. Moreover, the influence of the two parameters Fs and s that largely determine the ray angles of the dominant waves created by a catamaran is illustrated via computations for three catamarans with hull spacings s=0.2, 0.35, 0.5 at four Froude numbers Fs=1, 1.5, 2, 2.5. These computations confirm that the largest waves created by wide and/or fast catamarans are found at ray angles that only depend on Fs (i.e. that do not depend on the hull spacing s in agreement with an elementary analysis of lateral interference between the dominant waves created by the bows (or sterns of the twin hulls of a catamaran. The dominant-waves ray angles predicted by the theory of wave-interference effects for monohull ships and catamarans are also compared with the observations of narrow Kelvin ship

  12. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites showed

  13. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    Haesung Yoon

    Full Text Available Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters.Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1 were suspicious for malignancy on mammography or ultrasound (US, 2 were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB 3 underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE and diffusion-weighted imaging (DWI and positron emission tomography-computed tomography (PET-CT, and 4 had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER, maximum standardized FDG uptake value (SUV max, apparent diffusion coefficient (ADC, and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters.In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites

  14. Evolution of deformation velocity in narrowing for Zircaloy 2

    Cetlin, P R [Minas Gerais Univ., Belo Horizonte (Brazil). Dept. de Engenharia Metalurgica; Okuda, M Y [Goias Univ., Goiania (Brazil). Inst. de Matematica e Fisica

    1980-09-01

    Some studies on the deformation instability in strain shows that the differences in this instability may lead to localized narrowing or elongated narrowing, for Zircaloy-2. The variation of velocity deformation with the narrowing evolution is expected to be different for these two cases. The mentioned variation is discussed, a great difference in behavior having been observed for the case of localized narrowing.

  15. Apparatus and method for variable angle slant hole collimator

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  16. Rapid flow imaging method

    Pelc, N.J.; Spritzer, C.E.; Lee, J.N.

    1988-01-01

    A rapid, phase-contrast, MR imaging method of imaging flow has been implemented. The method, called VIGRE (velocity imaging with gradient recalled echoes), consists of two interleaved, narrow flip angle, gradient-recalled acquisitions. One is flow compensated while the second has a specified flow encoding (both peak velocity and direction) that causes signals to contain additional phase in proportion to velocity in the specified direction. Complex image data from the first acquisition are used as a phase reference for the second, yielding immunity from phase accumulation due to causes other than motion. Images with pixel values equal to MΔΘ where M is the magnitude of the flow compensated image and ΔΘ is the phase difference at the pixel, are produced. The magnitude weighting provides additional vessel contrast, suppresses background noise, maintains the flow direction information, and still allows quantitative data to be retrieved. The method has been validated with phantoms and is undergoing initial clinical evaluation. Early results are extremely encouraging

  17. Scattering angle-based filtering via extension in velocity

    Kazei, Vladimir; Tessmer, Ekkehart; Alkhalifah, Tariq

    2016-01-01

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  18. Scattering angle-based filtering via extension in velocity

    Kazei, Vladimir

    2016-09-06

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  19. Analytical approximations for wide and narrow resonances

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2005-01-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U 238 were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  20. Analytical approximations for wide and narrow resonances

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2005-07-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U{sup 238} were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  1. Dose evaluation of narrow-beam

    Goto, Shinichi

    1999-01-01

    Reliability of the dose from the narrow photon beam becomes more important since the single high-dose rate radiosurgery becoming popular. The dose evaluation for the optimal dose is difficult due to absence of lateral electronic equilibrium. Data necessary for treatment regimen are TMR (tissue maximum ratio), OCR (off center ratio) and S c,p (total scatter factor). The narrow-beam was 10 MV X-ray from Varian Clinac 2100C equipped with cylindrical Fischer collimator CBI system. Detection was performed by Kodak XV-2 film, a PTW natural diamond detector M60003, Scanditronics silicon detector EDD-5 or Fujitec micro-chamber FDC-9.4C. Phantoms were the water equivalent one (PTW, RW3), water one (PTW, MP3 system) and Wellhofer WP600 system. Factors above were actually measured to reveal that in the dose evaluation of narrow photon beam, TMR should be measured by micro-chamber, OCR, by film, and S c,p , by the two. The use of diamond detector was recommended for more precise measurement and evaluation of the dose. The importance of water phantom in the radiosurgery system was also shown. (K.H.)

  2. Electron correlations in narrow band systems

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  3. Off-Angle Iris Correction Methods

    Santos-Villalobos, Hector J [ORNL; Thompson, Joseph T [ORNL; Karakaya, Mahmut [ORNL; Boehnen, Chris Bensing [ORNL

    2016-01-01

    In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not account for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.

  4. The quadriceps angle

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  5. open angle glaucoma (poag)?

    there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...

  6. The lateral angle revisited

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology....

  7. At Right Angles

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  8. Wide angle isotope separator

    Kantrowitz, A.

    1976-01-01

    A method and apparatus is described for particle separation. The method uses a wide angle radially expanding vapor of a particle mixture. In particular, selective ionization of one isotope type in the particle mixture is produced in a multichamber separator and the ionized isotope type is accelerated out of the path of the vapor expansion for separate collection

  9. Clinical relevance of narrow-band imaging in flexible cystoscopy

    Drejer, Ditte; Béji, Sami; Munk Nielsen, Anna

    2017-01-01

    urological departments. Patients had either hematuria (n = 483) or known recurrent non-muscle-invasive bladder cancer (NMIBC) (n = 472). High-definition (HD) cystoscopy was performed in white light (WL) and a preliminary clinical decision was made. Then, a second cystoscopy was performed in NBI...... in NBI compared to WL (NBI: 100.0% vs WL: 83.2%, p decision making as a supplement to WL because it yields a significantly higher...... and a conclusive clinical decision was made. A difference between the two decisions that had a clinical impact on the patient was considered clinically relevant. RESULTS: Pathology was found in 216 WL cystoscopies, and additional pathology in 15 NBI cystoscopies (6.9%). Based on NBI, pathology was suspected in 23...

  10. Qualitative Assessment of Ultrasound Biomicroscopic Images Using Standard Photographs: The Liwan Eye Study

    Jiang, Yuzhen; Huang, Wenyong; Huang, Qunxiao; Zhang, Jian; Foster, Paul J.

    2010-01-01

    Objective. To classify anatomic features related to anterior chamber angles by a qualitative assessment system based on ultrasound biomicroscopy (UBM) images. Methods. Cases of primary angle-closure suspect (PACS), defined by pigmented trabecular meshwork that is not visible in two or more quadrants on static gonioscopy (cases) and systematically selected subjects (1 of every 10) who did not meet this criterion (controls) were enrolled during a population-based survey in Guangzhou, China. All subjects underwent UBM examination. A set of standard UBM images was used to qualitatively classify anatomic features related to the angle configuration, including iris thickness, iris convexity, iris angulation, ciliary body size, and ciliary process position. All analysis was conducted on right eye images. Results. Based on the qualitative grades, the difference in overall iris thickness between gonioscopically narrow eyes (n = 117) and control eyes (n = 57) was not statistically significant. The peripheral one third of the iris tended to be thicker in all quadrants of the PACS eyes, although the difference was statistically significant only in the superior quadrant (P = 0.008). No significant differences were found in the qualitative classifications of iris insertion, iris angulation, ciliary body size, and ciliary process position. The findings were similar when compared with the control group of eyes with wide angles in all quadrants. Conclusions. Basal iris thickness seems to be more relevant to narrow angle configuration than to overall iris thickness. Otherwise, the anterior rotation and size of the ciliary body, the iris insertion, and the overall iris thickness are comparable in narrow- and wide-angle eyes. PMID:19834039

  11. Intraoperative panoramic image using alignment grid, is it accurate?

    Apivatthakakul, T; Duanghakrung, M; Luevitoonvechkit, S; Patumasutra, S

    2013-07-01

    Minimally invasive orthopedic trauma surgery relies heavily on intraoperative fluoroscopic images to evaluate the quality of fracture reduction and fixation. However, fluoroscopic images have a narrow field of view and often cannot visualize the entire long bone axis. To compare the coronal femoral alignment between conventional X-rays to that achieved with a new method of acquiring a panoramic intraoperative image. Twenty-four cadaveric femurs with simple diaphyseal fractures were fixed with an angulated broad DCP to create coronal plane malalignment. An intraoperative alignment grid was used to help stitch different fluoroscopic images together to produce a panoramic image. A conventional X-ray of the entire femur was then performed. The coronal plane angulation in the panoramic images was then compared to the conventional X-rays using a Wilcoxon signed rank test. The mean angle measured from the panoramic view was 173.9° (range 169.3°-178.0°) with median of 173.2°. The mean angle measured from the conventional X-ray was 173.4° (range 167.7°-178.7°) with a median angle of 173.5°. There was no significant difference between both methods of measurement (P = 0.48). Panoramic images produced by stitching fluoroscopic images together with help of an alignment grid demonstrated the same accuracy at evaluating the coronal plane alignment of femur fractures as conventional X-rays.

  12. Dilemma of gonial angle measurement: Panoramic radiograph or lateral cephalogram

    Radhakrishnan, Pillai Devu; Varma, Nilambur Kovilakam Sapna; Ajith, Vallikat Velath [Dept. of Orthodontics, Amrita School of Dentistry, Kochi (India)

    2017-06-15

    The purpose of this study was to evaluate the accuracy of panoramic imaging in measuring the right and left gonial angles by comparing the measured angles with the angles determined using a lateral cephalogram of adult patients with class I malocclusion. The gonial angles of 50 class I malocclusion patients (25 males and 25 females; mean age: 23 years) were measured using both a lateral cephalogram and a panoramic radiograph. In the lateral cephalograms, the gonial angle was measured at the point of intersection of the ramus plane and the mandibular plane. In the panoramic radiographs, the gonial angle was measured by drawing a line tangent to the lower border of the mandible and another line tangent to the distal border of the ascending ramus and the condyle on both sides. The data obtained from both radiographs were statistically compared. No statistically significant difference was observed between the gonial angle measured using the lateral cephalograms and that determined using the panoramic radiographs. Further, there was no statistically significant difference in the measured gonial angle with respect to gender. The results also showed a statistically insignificant difference in the mean of the right and the left gonial angles measured using the panoramic radiographs. As the gonial angle measurements using panoramic radiographs and lateral cephalograms showed no statistically significant difference, panoramic radiography can be considered in orthodontics for measuring the gonial angle without any interference due to superimposed images.

  13. PHYSICAL CONDITIONS IN THE INNER NARROW-LINE REGION OF THE SEYFERT 2 GALAXY MARKARIAN 573

    Kraemer, S. B.; Trippe, M. L.; Crenshaw, D. M.; Fischer, T. C.; Melendez, M.; Schmitt, H. R.

    2009-01-01

    We have examined the physical conditions within a bright emission-line knot in the inner narrow-line region (NLR) of the Seyfert 2 galaxy Mrk 573 using optical spectra and photoionization models. The spectra were obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph, through the 0.''2 x 52.''0 slit, at a position angle of -71. 0 2, with the G430L and G750M gratings. Comparing the spatial emission-line profiles, we found [Fe X] λ 6734 barely resolved, [O III] λ5007 centrally peaked, but broader than [Fe X], and [O II] λ3727 the most extended. Spectra of the central knot were extracted from a region 1.''1 in extent, corresponding to the full width at zero intensity in the cross-dispersion direction, of the knot. The spectra reveal that [Fe X] is broader in velocity width and blueshifted compared with lines from less ionized species. Our estimate of the bolometric luminosity indicates that the active galactic nucleus (AGN) is radiating at or above its Eddington luminosity, which is consistent with its identification as a hidden Narrow-Line Seyfert 1. We were able to successfully match the observed emission-line ratios with a three-component photoionization model. Two components, one to account for the [O III] emission and another in which the [Fe X] arises, are directly ionized by the AGN, while [O II] forms in a third component, which is ionized by a heavily absorbed continuum. Based on our assumed ionizing continuum and the model parameters, we determined that the two directly ionized components are ∼55 pc from the AGN. We have found similar radial distances for the central knots in the Seyfert 2 galaxies Mrk 3 and NGC 1068, but much smaller radial distances for the inner NLR in the Seyfert 1 galaxies NGC 4151 and NGC 5548. Although in general agreement with the unified model, these results suggest that the obscuring material in Seyfert galaxies extends out to at least tens of parsecs from the AGN.

  14. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  15. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  16. Three-dimensional double-echo steady-state (3D-DESS) magnetic resonance imaging of the knee. Establishment of flip angles for evaluation of cartilage at 1.5 T and 3.0 T

    Moriya, Susumu; Miki, Yukio; Matsuno, Yukako; Okada, Masayo

    2012-01-01

    Background: The effect of flip angle (FA) on synovial fluid and cartilage signal and on image contrast using three-dimensional double-echo steady-state (3D-DESS) sequence have only been performed with 1.0-T but not with 1.5-T or 3.0-T scanners. Purpose: To identify the FA that gives the maximum synovial fluid and cartilage values, and to identify the FA at which maximum values of synovial fluid-cartilage contrast-to-noise ratio (CNR) in 3D-DESS sequences when 1.5-T and 3.0-T scanners are used. Material and Methods: Using 3D-DESS with water-excitation pulse, mid-sagittal plane images of the knees of 10 healthy volunteers (5 men, 5 women; age range, 21-42 years) were obtained with FA varying from 10 deg to 90 deg. Synovial fluid signals, cartilage signals, and background were measured at each FA, and the FA that gave the highest synovial fluid and cartilage values was obtained. Synovial fluid-cartilage CNR was also calculated, and the FA that gave the largest CNR was obtained. Results: At 1.5 T, the maximum synovial fluid signal was at FA 90 deg, and the maximum cartilage signal was at FA 30 deg. Synovial fluid-cartilage CNR was highest at FA 90 deg (P < 0.05). At 3.0 T, the maximum synovial fluid signal was at FA 90 deg, and the maximum cartilage signal was at FA 20 deg. Synovial fluid-cartilage CNR was highest at FA 90 deg (P < 0.05). Conclusion: In order to improve the visibility of cartilage itself, FA settings of 30 deg at 1.5 T and 20 deg at 3.0 T are apparently ideal. For observing the cartilage surface, the most effective FA setting is 90 deg for both 1.5 T and 3.0 T

  17. High-Resolution Magic-Angle-Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of Maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi.

    Mazzei, Pierluigi; Cozzolino, Vincenza; Piccolo, Alessandro

    2018-03-21

    Both high-resolution magic-angle-spinning (HRMAS) and magnetic resonance imaging (MRI) NMR spectroscopies were applied here to identify the changes of metabolome, morphology, and structural properties induced in seeds (caryopses) of maize plants grown at field level under either mineral or compost fertilization in combination with the inoculation by arbuscular mycorrhizal fungi (AMF). The metabolome of intact caryopses was examined by HRMAS-NMR, while the morphological aspects, endosperm properties and seed water distribution were investigated by MRI. Principal component analysis (PCA) was applied to evaluate 1 H CPMG (Carr-Purcel-Meiboom-Gill) HRMAS spectra as well as several MRI-derived parameters ( T 1 , T 2 , and self-diffusion coefficients) of intact maize caryopses. PCA score-plots from spectral results indicated that both seeds metabolome and structural properties depended on the specific field treatment undergone by maize plants. Our findings show that a combination of multivariate statistical analyses with advanced and nondestructive NMR techniques, such as HRMAS and MRI, enables the evaluation of the effects induced on maize caryopses by different fertilization and management practices at field level. The spectroscopic approach adopted here may become useful for the objective appraisal of the quality of seeds produced under a sustainable agriculture.

  18. Renal artery origins: best angiographic projection angles.

    Verschuyl, E J; Kaatee, R; Beek, F J; Patel, N H; Fontaine, A B; Daly, C P; Coldwell, D M; Bush, W H; Mali, W P

    1997-10-01

    To determine the best projection angles for imaging the renal artery origins in profile. A mathematical model of the anatomy at the renal artery origins in the transverse plane was used to analyze the amount of aortic lumen that projects over the renal artery origins at various projection angles. Computed tomographic (CT) angiographic data about the location of 400 renal artery origins in 200 patients were statistically analyzed. In patients with an abdominal aortic diameter no larger than 3.0 cm, approximately 0.5 mm of the proximal part of the renal artery and origin may be hidden from view if there is a projection error of +/-10 degrees from the ideal image. A combination of anteroposterior and 20 degrees and 40 degrees left anterior oblique projections resulted in a 92% yield of images that adequately profiled the renal artery origins. Right anterior oblique projections resulted in the least useful images. An error in projection angle of +/-10 degrees is acceptable for angiographic imaging of the renal artery origins. Patients sex, site of interest (left or right artery), and local diameter of the abdominal aorta are important factors to consider.

  19. Interference-induced angle-independent acoustical transparency

    Qi, Lehua; Yu, Gaokun; Wang, Ning; Wang, Xinlong; Wang, Guibo

    2014-01-01

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtz resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves

  20. Ultrasonic imaging of material flaws exploiting multipath information

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  1. Small angle neutron scattering

    Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.

    1976-09-01

    A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope

  2. Determination of solid angle

    Qiu, S.; Amano, H.; Kasai, A.

    1988-01-01

    The solid angle in extended alpha source measurement for a series of counting geometries has been obtained by two methods: (1) calculated by means of the Nelson Blachmen series; (2) interpolated from the data table given by Gardner. A particular consequence of the application of the Nelson Blachmen series was deduced which was different from that given by the original author. The applicability of these two methods, as well as an experimentally measured method, is also evaluated. (author)

  3. Fast IMRT with narrow high energy scanned photon beams

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    beam spots resulting in a uniformity of collimated 80%-20% penumbra of 9 mm at a primary electron energy of 50 MeV. For the more complex cardioid shaped dose distribution, they used 270 spots, which at a pulse repetition frequency of 200 Hz is completed every 1.36 s. Conclusions: The present measurements indicate that the use of narrow scanned photon beams is a flexible and fast method to deliver advanced intensity modulated beams. Fast scanned photon IMRT should, therefore, be a very interesting modality in the delivery of biologically optimized radiation therapy with the possibility for in vivo treatment verification with PET-CT imaging.

  4. Volume dips; spot price ranges narrow

    Anon.

    1994-01-01

    This article is the September 1994 uranium market summary. Volume in the spot concentrates market fell below 1 million lbs U3O8. In total, twelve deals took place compared to 28 deals in August. Of the twelve deals, three took place in the spot concentrates market, two took place in the medium and long-term market, three in the conversion market, and four in the enrichment market. Restricted prices weakened, but unrestricted prices firmed slightly. The enrichment price range narrowed a bit

  5. f-band narrowing in uranium intermetallics

    Dunlap, B.D.; Litterst, F.J.; Malik, S.K.; Kierstead, H.A.; Crabtree, G.W.; Kwok, W.; Lam, D.J.; Mitchell, A.W.

    1987-01-01

    Although the discovery of heavy fermion behavior in uranium compounds has attracted a great deal of attention, relatively little work has been done which is sufficiently systematic to allow an assessment of the relationship of such behavior to more common phenomena, such as mixed valence, narrow-band effects, etc. In this paper we report bulk property measurements for a number of alloys which form a part of such a systematic study. The approach has been to take relatively simple and well-understood materials and alter their behavior by alloying to produce heavy fermion or Kondo behavior in a controlled way

  6. Itinerant ferromagnetism in the narrow band limit

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  7. Critical unpairing currents in narrow niobium films

    Gershenzon, M.E.; Gubankov, V.N.

    1979-01-01

    Investigated are the dependences of critical currents of narrow ( with the width of W=0.5-15 μm) superconducting niobium films on temperature and a magnetic field. The proposed method of film production with the width of the 1μm order and with small edge inhomogeneities ((<=500 A) permitted to realize the Ginsburg-Landau unpairing currents in the wide range of temperatures. The correct comparison with the theory showed that the unpairing currents are observed if W(< or approximately) 2delta, where delta is the effective depth of the penetration of the perpendicular magnetic field

  8. Narrow electron injector for ballistic electron spectroscopy

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  9. Narrow-Bicliques: Cryptanalysis of Full IDEA

    Khovratovich, D.; Leurent, G.; Rechberger, C.

    2012-01-01

    We apply and extend the recently introduced biclique framework to IDEA and for the first time describe an approach to noticeably speed-up key-recovery for the full 8.5 round IDEA.We also show that the biclique approach to block cipher cryptanalysis not only obtains results on more rounds, but also...... extended with ways to allow for a significantly reduced data complexity with everything else being equal. For this we use available degrees of freedom as known from hash cryptanalysis to narrow the relevant differential trails. Our cryptanalysis is of high computational complexity, and does not threaten...

  10. Longitudinal Changes of Angle Configuration in Primary Angle-Closure Suspects

    Jiang, Yuzhen; Chang, Dolly S.; Zhu, Haogang; Khawaja, Anthony P.; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M.

    2015-01-01

    Objective To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Design Longitudinal cohort study. Participants Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Methods Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Main Outcome Measures Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. Results No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8–1.6) in treated eyes and 1.6°/year (95% CI, 1.3–2.0) in untreated eyes (P<0.001). Conclusions Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the

  11. Current diagnosis of tumors developed in the internal auditory canal and cerebellopontine angle

    Vignaud, J.; Doyon, D.

    1988-01-01

    The introduction of CT scan and, more recently, magnetic resonance imaging, has radically changed the diagnostic approach to tumors developed in the internal auditory canal and cerebellopontine angle. CT scan with intravenous injection visualizes tumors lying in the cerebellopontine angle. Magnetic resonance imaging, especially using gadolinium, is a very accurate means for diagnosing tumors of both the auditory canal and cerebellopontine angle [fr

  12. Dosimetry of narrow band UVB treatments

    Goode, D.H.; Mannering, D.M.

    1996-01-01

    Full text: For many years psoriasis has been treated with broad band UVB lamps. These lamps have a bell shaped spectrum which peaks at 305 nm and extends from 280 nm to 350 nm. However research with monochromatic UV radiation has shown that wavelengths between 300 nm and 320 nm are the most efficacious for clearing psoriasis while wavelengths below 305 nm are most effective for producing the undesirable side effect of erythema (sunburn). In response to these findings Philips developed a narrow band UVB tube in which a large fraction of the output was confined to a narrow peak (bandwidth 2.5 nm) situated at 311 nm. Christchurch Hospital replaced broad band UVB with narrow band treatments in August 1995 and as this required UV exposures to be substantially increased new protocols had to be developed. Three aspects needed to be addressed. These were translating the dose from broad band to narrow band for current patients, determining the initial dose for new patients and developing a formula for increasing subsequent exposures to both types of patient. To translate doses the spectral irradiance (μW/cm 2 /nm) that would fall on the patient was measured in both the old broad band and the new narrow band treatment units and from this UV doses were calculated. All doses were expressed in mJ/cm 2 of unweighted UV over the range 250 nm to 400 nm. The erythemal effectiveness of the two units were compared by using the CIE 1987 curve to express doses in terms of the equivalent exposure of monochromatic 297 nm radiation. It was found that an exposure of 3.96 mJ/cm 2 from the broad band FS40 tubes and 12.79 mJ/cm 2 from the narrow band TL/01 tubes were both equivalent to 1.00 mJ/cm 2 of monochromatic 297 nm radiation so when transferring patients all broad band doses needed to be increased by a factor of 3.2. Before transferring any patients this factor was confirmed by conducting two minimal erythema dose (MED) tests on a normal subject, one in each unit. For new patients a

  13. A methodology to enlarge narrow stability windows

    Araujo, Ewerton M.P.; Pastor, Jorge A.S.C.; Fontoura, Sergio A.B. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo

    2004-07-01

    The stability window in a wellbore design is defined by the difference between fracture pressure and collapse pressure. Deep water environments typically present narrow stability windows, because rocks have low strength due to under-compaction process. Often also, horizontal wells are drilled to obtain a better development of reservoirs placed in thin layers of sandstone. In this scenario, several challenges are faced when drilling in deep water. The traditional approach for predicting instabilities is to determine collapses and fractures at borehole wall. However, the initiation of rupture does not indicate that the borehole fails to perform its function as a wellbore. Thus, a methodology in which the stability window may be enlarged is desirable. This paper presents one practical analytical methodology that consists in allowing wellbore pressures smaller than the conventional collapse pressure, i.e., based upon failure on the borehole wall. This means that a collapse region (shear failure) will be developed around the borehole wall. This collapse region is pre-defined and to estimate its size is used a failure criterion. The aforementioned methodology is implemented in a user-friendly software, which can perform analyses of stress, pore pressure, formation failure, mud weight and mud salinity design for drilling in shale formations. Simulations of a wellbore drilling in a narrow stability window environment are performed to demonstrate the improvements of using the methodology. (author)

  14. Narrow resonances and short-range interactions

    Gelman, Boris A.

    2009-01-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  15. Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle

    McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.

    2014-02-01

    The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.

  16. Dual-mode switching of a liquid crystal panel for viewing angle control

    Baek, Jong-In; Kwon, Yong-Hoan; Kim, Jae Chang; Yoon, Tae-Hoon

    2007-03-01

    The authors propose a method to control the viewing angle of a liquid crystal (LC) panel using dual-mode switching. To realize both wide viewing angle (WVA) characteristics and narrow viewing angle (NVA) characteristics with a single LC panel, the authors use two different dark states. The LC layer can be aligned homogeneously parallel to the transmission axis of the bottom polarizer for WVA dark state operation, while it can be aligned vertically for NVA dark state operation. The authors demonstrated that viewing angle control can be achieved with a single panel without any loss of contrast at the front.

  17. Variable angle correlation spectroscopy

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  18. GEOPOSITIONING PRECISION ANALYSIS OF MULTIPLE IMAGE TRIANGULATION USING LRO NAC LUNAR IMAGES

    K. Di

    2016-06-01

    Full Text Available This paper presents an empirical analysis of the geopositioning precision of multiple image triangulation using Lunar Reconnaissance Orbiter Camera (LROC Narrow Angle Camera (NAC images at the Chang’e-3(CE-3 landing site. Nine LROC NAC images are selected for comparative analysis of geopositioning precision. Rigorous sensor models of the images are established based on collinearity equations with interior and exterior orientation elements retrieved from the corresponding SPICE kernels. Rational polynomial coefficients (RPCs of each image are derived by least squares fitting using vast number of virtual control points generated according to rigorous sensor models. Experiments of different combinations of images are performed for comparisons. The results demonstrate that the plane coordinates can achieve a precision of 0.54 m to 2.54 m, with a height precision of 0.71 m to 8.16 m when only two images are used for three-dimensional triangulation. There is a general trend that the geopositioning precision, especially the height precision, is improved with the convergent angle of the two images increasing from several degrees to about 50°. However, the image matching precision should also be taken into consideration when choosing image pairs for triangulation. The precisions of using all the 9 images are 0.60 m, 0.50 m, 1.23 m in along-track, cross-track, and height directions, which are better than most combinations of two or more images. However, triangulation with selected fewer images could produce better precision than that using all the images.

  19. Application of narrow-band television to industrial and commercial communications

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  20. Analysis of narrow effects in pp annihilations

    Defoix, C

    1972-01-01

    The author describes briefly some methods of analysis that final states involving a number of like particles require. A first method consists of separating two competing channels to minimize the reflections due to the undesirable one. Later techniques of analysis lead to the isolation of the only channel of interest and circumvention of the problems of background and reflections due to irrelevant final states. Generally, all these processes are based on the presence of a narrow and identified resonance, for example the eta /sup 0/ or omega /sup 0/ ( to pi /sup +/ pi /sup -/ pi /sup 0/). To be efficient, it is necessary that the observed width of such a basic resonance not be increased too much by experimental errors. (6 refs).

  1. Search for narrow four-baryon states

    Badelek, B.

    1981-01-01

    Highly excited (4.10 2 ) four-baryon resonances have been searched for in the missing-mass spectrum of the reaction π - + 4 He → π - + X at 5 GeV/c in the region of small four-momentum transfer (0.005 2 ), where one of the decay products of the X is either proton or deuteron or triton. No resonance signal is seen in the mass spectrum of X. Within our limited acceptance, the cross section for the production of a narrow (GAMMA approx. 20 MeV/c 2 ) four-baryon state with mass 4.9 GeV/c 2 is estimated to be smaller than approx. 100 nb. (orig.)

  2. Active Brownian motion in a narrow channel

    Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.

    2014-12-01

    We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.

  3. Crustal Structure of the Ionian Basin and Eastern Sicily Margin: Results From a Wide-Angle Seismic Survey

    Dellong, David; Klingelhoefer, Frauke; Kopp, Heidrun; Graindorge, David; Margheriti, Lucia; Moretti, Milena; Murphy, Shane; Gutscher, Marc-Andre

    2018-03-01

    In the Ionian Sea (central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust of the subducting plate remains debated and could represent the last remnants of the Neo-Tethys ocean. The origin of the Ionian basin is also under discussion, especially concerning the rifting mechanisms as the Malta Escarpment could represent a remnant of this opening. This subduction retreats toward the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian basin. A major lateral slab tear fault is required to accommodate the slab roll-back. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the eastern Sicily margin and the Malta Escarpment. We present two two-dimensional P wave velocity models obtained from forward modeling of wide-angle seismic data acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment, which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.

  4. The effect of narrow provider networks on health care use.

    Atwood, Alicia; Lo Sasso, Anthony T

    2016-12-01

    Network design is an often overlooked aspect of health insurance contracts. Recent policy factors have resulted in narrower provider networks. We provide plausibly causal evidence on the effect of narrow network plans offered by a large national health insurance carrier in a major metropolitan market. Our econometric design exploits the fact that some firms offer a narrow network plan to their employees and some do not. Our results show that narrow network health plans lead to reductions in health care utilization and spending. We find evidence that narrow networks save money by selecting lower cost providers into the network. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Narrow linewidth operation of the RILIS titanium: Sapphire laser at ISOLDE/CERN

    Rothe, S; Wendt, K D A; Fedosseev, V N; Kron, T; Marsh, B A

    2013-01-01

    A narrow linewidth operating mode for the Ti:sapphire laser of the CERN ISOLDE Resonance Ionization Laser Ion Source (RILIS) has been developed. This satisfies the laser requirements for the programme of in-source resonance ionization spectroscopy measurements and improves the selectivity for isomer separation using RILIS. A linewidth reduction from typically 10 GHz down to 1 GHz was achieved by the intra-cavity insertion of a second (thick) Fabry-Perot etalon. Reliable operation during a laser scan was achieved through motorized control of the tilt angle of each etalon. A scanning, stabilization and mode cleaning procedure was developed and implemented in LabVIEW. The narrow linewidth operation was confirmed in a high resolution spectroscopy study of francium isotopes by the Collinear Resonance Ionization Spectroscopy experiment. The resulting laser scans demonstrate the suitability of the laser, in terms of linewidth, spectral purity and stability for high resolution in-source spectroscopy and isomer select...

  6. Assessment of atherosclerotic luminal narrowing of coronary arteries based on morphometrically generated visual guides.

    Barth, Rolf F; Kellough, David A; Allenby, Patricia; Blower, Luke E; Hammond, Scott H; Allenby, Greg M; Buja, L Maximilian

    Determination of the degree of stenosis of atherosclerotic coronary arteries is an important part of postmortem examination of the heart, but, unfortunately, estimation of the degree of luminal narrowing can be imprecise and tends to be approximations. Visual guides can be useful to assess this, but earlier attempts to develop such guides did not employ digital technology. Using this approach, we have developed two computer-generated morphometric guides to estimate the degree of luminal narrowing of atherosclerotic coronary arteries. The first is based on symmetric or eccentric circular or crescentic narrowing of the vessel lumen and the second on either slit-like or irregularly shaped narrowing of the vessel lumens. Using the Aperio ScanScope XT at a magnification of 20× we created digital whole-slide images of 20 representative microscopic cross sections of the left anterior descending (LAD) coronary artery, stained with either hematoxylin and eosin (H&E) or Movat's pentachrome stain. These cross sections illustrated a variety of luminal profiles and degrees of stenosis. Three representative types of images were selected and a visual guide was constructed with Adobe Photoshop CS5. Using the "Scale" and "Measurement" tools, we created a series of representations of stenosis with luminal cross sections depicting 20%, 40%, 60%, 70%, 80%, and 90% occlusion of the LAD branch. Four pathologists independently reviewed and scored the degree of atherosclerotic luminal narrowing based on our visual guides. In addition, digital technology was employed to determine the degree of narrowing by measuring the cross-sectional area of the 20 microscopic sections of the vessels, first assuming no narrowing and then comparing this to the percent of narrowing determined by precise measurement. Two of the observers were very experienced general autopsy pathologists, one was a first-year pathology resident on his first rotation on the autopsy service, and the fourth observer was a

  7. Non-contact measurement of rotation angle with solo camera

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  8. Equilibrium contact angle or the most-stable contact angle?

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  9. Iridoschisis: high frequency ultrasound imaging. Evidence for a genetic defect?

    Danias, J; Aslanides, I M; Eichenbaum, J W; Silverman, R H; Reinstein, D Z; Coleman, D J

    1996-01-01

    AIMS: To elucidate changes in the anatomy of the anterior chamber associated with iridoschisis, a rare form of iris atrophy, and their potential contribution to angle closure glaucoma. METHODS: Both eyes of a 71-year-old woman with bilateral iridoschisis and fibrous dysplasia and her asymptomatic 50-year-old daughter were scanned with a very high frequency (50 MHz) ultrasound system. RESULTS: The symptomatic patient exhibited diffuse changes in the iris stoma with an intact posterior iris pigmented layer in both eyes. These changes were clinically compatible with the lack of iris transillumination defects. Additionally, iris bowing with a resultant narrowing of the angle occurred. The asymptomatic daughter showed discrete, but less severe iris stromal changes. CONCLUSION: This is the first detailed study of high frequency ultrasonic imaging of the iris in iridoschisis. The observed structural changes suggest angle narrowing by forward bowing of the anterior iris stroma may be a mechanism of IOP elevation in this condition. The ultrasonic detection of iris changes in the asymptomatic daughter of the symptomatic patient and the association of iridoschisis with fibrous dysplasia suggest a possible genetic component in the pathogenesis of this condition. Images PMID:9059271

  10. Prospective case series on trabecular-iris angle status after an acute episode of phacomorphic angle closure

    Jacky Lee

    2013-02-01

    Full Text Available AIM:To investigate the trabecular-iris angle with ultrasound biomicroscopy (UBM post cataract extraction after an acute attack of phacomorphic angle closure.METHODS: This prospective study involved 10 cases of phacomorphic angle closure that underwent cataract extraction and intraocular lens insertion after intraocular pressure (IOP lowering. Apart from visual acuity and IOP, the trabecular-iris angle was measured by gonioscopy and UBM at 3 months post attack.RESULTS: In 10 consecutive cases of acute phacomorphic angle closure from December 2009 to December 2010, gonioscopic findings showed peripheral anterior synechiae (PAS ≤ 90° in 30% of phacomorphic patients and a mean Shaffer grading of (3.1±1.0. UBM showed a mean angle of (37.1°±4.5° in the phacomorphic eye with the temporal quadrant being the most opened and (37.1°±8.0° in the contralateral uninvolved eye. The mean time from consultation to cataract extraction was (1.4±0.7 days and the mean total duration of phacomorphic angle closure was (3.6±2.8 days but there was no correlation to the degree of angle closure on UBM (Spearman correlation P=0.7. The presenting mean IOP was (50.5±7.4 mmHg and the mean IOP at 3 months was (10.5±3.4 mmHg but there were no correlations with the degree of angle closure (Spearman correlations P=0.9.CONCLUSION:An open trabecular-iris angle and normal IOP can be achieved after an acute attack of phacomorphic angle closure if cataract extraction is performed within 1 day - 2 days after IOP control. Gonioscopic findings were in agreement with UBM, which provided a more specific and object angle measurement. The superior angle is relatively more narrowed compared to the other quadrants. All contralateral eyes in this series had open angles.

  11. Refining the Concept of Combining Hyperspectral and Multi-Angle Sensors for Land Surface Applications

    Simic, Anita

    Assessment of leaf and canopy chlorophyll content provides information on plant physiological status; it is related to nitrogen content and hence, photosynthesis process, net primary productivity and carbon budget. In this study, a method is developed for the retrieval of total chlorophyll content (Chlorophyll a+b) per unit leaf and per unit ground area based on improved vegetation structural parameters which are derived using multispectral multi-angle remote sensing data. Structural characteristics such as clumping and gaps within a canopy affect its solar radiation absorption and distribution and impact its reflected radiance acquired by a sensor. One of the main challenges for the remote sensing community is to accurately estimate vegetation structural parameters, which inevitably influence the retrieval of leaf chlorophyll content. Multi-angle optical measurements provide a means to characterize the anisotropy of surface reflectance, which has been shown to contain information on vegetation structural characteristics. Hyperspectral optical measurements, on the other hand, provide a fine spectral resolution at the red-edge, a narrow spectral range between the red and near infra-red spectra, which is particularly useful for retrieving chlorophyll content. This study explores a new refined measurement concept of combining multi-angle and hyperspectral remote sensing that employs hyperspectral signals only in the vertical (nadir) direction and multispectral measurements in two additional (off-nadir) directions within two spectral bands, red and near infra-red (NIR). The refinement has been proposed in order to reduce the redundancy of hyperspectral data at more than one angle and to better retrieve the three-dimensional vegetation structural information by choosing the two most useful angles of measurements. To illustrate that hyperspectral data acquired at multiple angles exhibit redundancy, a radiative transfer model was used to generate off-nadir hyperspectral

  12. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  13. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  14. On techniques for angle compensation in nonideal iris recognition.

    Schuckers, Stephanie A C; Schmid, Natalia A; Abhyankar, Aditya; Dorairaj, Vivekanand; Boyce, Christopher K; Hornak, Lawrence A

    2007-10-01

    The popularity of the iris biometric has grown considerably over the past two to three years. Most research has been focused on the development of new iris processing and recognition algorithms for frontal view iris images. However, a few challenging directions in iris research have been identified, including processing of a nonideal iris and iris at a distance. In this paper, we describe two nonideal iris recognition systems and analyze their performance. The word "nonideal" is used in the sense of compensating for off-angle occluded iris images. The system is designed to process nonideal iris images in two steps: 1) compensation for off-angle gaze direction and 2) processing and encoding of the rotated iris image. Two approaches are presented to account for angular variations in the iris images. In the first approach, we use Daugman's integrodifferential operator as an objective function to estimate the gaze direction. After the angle is estimated, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. The encoding technique developed for a frontal image is based on the application of the global independent component analysis. The second approach uses an angular deformation calibration model. The angular deformations are modeled, and calibration parameters are calculated. The proposed method consists of a closed-form solution, followed by an iterative optimization procedure. The images are projected on the plane closest to the base calibrated plane. Biorthogonal wavelets are used for encoding to perform iris recognition. We use a special dataset of the off-angle iris images to quantify the performance of the designed systems. A series of receiver operating characteristics demonstrate various effects on the performance of the nonideal-iris-based recognition system.

  15. Demonstration of angle widening using EyeCam after laser peripheral iridotomy in eyes with angle closure.

    Perera, Shamira A; Quek, Desmond T; Baskaran, Mani; Tun, Tin A; Kumar, Rajesh S; Friedman, David S; Aung, Tin

    2010-06-01

    To evaluate EyeCam in detecting changes in angle configuration after laser peripheral iridotomy (LPI) in comparison to gonioscopy, the reference standard. Prospective comparative study. Twenty-four subjects (24 eyes) with primary angle-closure glaucoma (PACG) were recruited. Gonioscopy and EyeCam (Clarity Medical Systems) imaging of all 4 angle quadrants were performed, before and 2 weeks after LPI. Images were graded according to angle structures visible by an observer masked to clinical data or the status of LPI, and were performed in a random order. Angle closure in a quadrant was defined as the inability to visualize the posterior trabecular meshwork. We determined the number of quadrants with closed angles and the mean number of clock hours of angle closure before and after LPI in comparison to gonioscopy. Using EyeCam, all 24 eyes showed at least 1 quadrant of angle widening after LPI. The mean number of clock hours of angle closure decreased significantly, from 8.15 +/- 3.47 clock hours before LPI to 1.75 +/- 2.27 clock hours after LPI (P gonioscopy showed 1.0 +/- 1.41 (95% CI, 0.43-1.57) quadrants opening from closed to open after LPI compared to 2.0 +/- 1.28 (95% CI, 1.49-2.51, P = .009) quadrants with EyeCam. Intra-observer reproducibility of grading the extent of angle closure in clock hours in EyeCam images was moderate to good (intraclass correlation coefficient 0.831). EyeCam may be used to document changes in angle configuration after LPI in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Properties of Narrow line Seyfert 1 galaxies

    Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang

    2018-04-01

    Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line 10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.

  17. Thermoelectricity in correlated narrow-gap semiconductors

    Tomczak, Jan M.

    2018-05-01

    We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class—such as FeSi and FeSb2—display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie–Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators—such as Ce3Bi4Pt3 for which we present new results—and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.

  18. Thermal tuning On narrow linewidth fiber laser

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  19. Study of human interface for narrow road drive assist system considered characteristic of driver; Driver no tokusei wo koryoshita kyoro soko shien system no human interface no kenkyu

    Ikeda, A [Subaru Research Center Co., Tokyo (Japan); Amada, N; Kawashima, H [Keio University, Tokyo (Japan)

    1997-10-01

    The measurement of driver`s watching point, driving time on narrow road and the evaluation of stress etc. were conducted in order to construct the narrow road drive assist system using the stereo image recognition system. Consequently, the driver`s thinking process, stress factor and the indispensable information for this system were clarified. 4 refs., 8 figs., 3 tabs.

  20. Ceres Photometry and Albedo from Dawn Framing Camera