WorldWideScience

Sample records for naphthalocyanine crystals hollow

  1. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    Science.gov (United States)

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  2. A dark hollow beam from a selectively liquid-filled photonic crystal fibre

    International Nuclear Information System (INIS)

    Mei-Yan, Zhang; Shu-Guang, Li; Yan-Yan, Yao; Bo, Fu; Lei, Zhang

    2010-01-01

    This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Towards optimized naphthalocyanines as sonochromes for photoacoustic imaging in vivo

    Directory of Open Access Journals (Sweden)

    Mitchell J. Duffy

    2018-03-01

    Full Text Available In this paper we establish a methodology to predict photoacoustic imaging capabilities from the structure of absorber molecules (sonochromes. The comparative in vitro and in vivo screening of naphthalocyanines and cyanine dyes has shown a substitution pattern dependent shift in photoacoustic excitation wavelength, with distal substitution producing the preferred maximum around 800 nm. Central ion change showed variable production of photoacoustic signals, as well as singlet oxygen photoproduction and fluorescence with the optimum for photoacoustic imaging being nickel(II. Our approach paves the way for the design, evaluation and realization of optimized sonochromes as photoacoustic contrast agents. Keywords: Naphthalocyanines, Spectroscopy

  4. Control of Dispersion in Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner.......The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner....

  5. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  6. Photothermal sensitization of amelanotic melanoma cells by Ni(II)-octabutoxy-naphthalocyanine.

    Science.gov (United States)

    Busetti, A; Soncin, M; Reddi, E; Rodgers, M A; Kenney, M E; Jori, G

    1999-01-01

    Incubation of B78H1 amelanotic melanoma cells with a potential photothermal sensitizer, namely, liposome-incorporated Ni(II)-octabutoxy-naphthalocyanine (NiNc), induces an appreciable cellular accumulation of the naphthalocyanine, which is dependent on both the NiNc concentration and the incubation time. No detectable decrease in cell survival occurs upon red-light irradiation (corresponding to the longest-wavelength absorption bands of NiNc) in a continuous-wave (c.w.) regime of the naphthalocyanine-loaded cells. On the other hand, 850 nm irradiation with a Q-switched Ti:sapphire laser operating in a pulsed mode (30 ns pulses, 10 Hz, 200 mJ/pulse) induces an efficient cell death. Thus, ca. 98% decrease in cell survival is obtained upon 5 min irradiation of cells that have been incubated for 48 h with 5.1 microM NiNc. The efficiency of the photoprocess is strongly influenced by the NiNc cell incubation time prior to irradiation. Photothermal sensitization with NiNc appears to open new perspectives for therapeutic applications, as suggested by preliminary in vivo studies with C57/BL6 mice bearing a subcutaneously implanted amelanotic melanoma.

  7. Dynamical propagation of nanosecond pulses in Naphthalocyanines and Phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Quan, E-mail: qmiao2013@yahoo.com [College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); Liang, Min; Liu, Qixin [College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); Wang, Jing-Jing [College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); Sun, Erping; Xu, Yan [College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong (China)

    2016-11-30

    Highlights: • We study the dynamical processes of nanoseconds lasers in Naphthalocyanines and Phthalocyanines. • We provide theoretical evidences of the main mechanism of optical power limiting. • The central metals play more important roles in the dynamical processes. • The main reason is the central metals enhance the spin–orbit coupling. - Abstract: Dynamical propagation and optical limiting of nanosecond pulses in peripherally substituted Naphthalocyanines (Npcs) and Phthalocyanines (Pcs) with central metals gallium and indium were theoretically studied using paraxial field and rate equations. The results demonstrated that both Npcs and Pcs have good optical limiting performances, and Npc with heavier central mental indium shows better optical limiting properities due to the stronger reverse saturable absorption, which is mainly strengthened by the larger one-photo absorption cross section of excited state and the faster intersystem crossing rate.

  8. Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Roberts, P. John; Williams, D.P.; Mangan, Brian J.

    2006-01-01

    A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core.......A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core....

  9. Fabrication of naphthalocyanine nanoparticles by laser ablation in liquid and application to contrast agents for photoacoustic imaging

    Science.gov (United States)

    Yanagihara, Ryuga; Asahi, Tsuyoshi; Ishibashi, Yukihide; Odawara, Osamu; Wada, Hiroyuki

    2018-03-01

    Naphthalocyanine nanoparticles were prepared by laser ablation in liquid using second-harmonics of nanosecond Nd:YAG laser as an excitation light sauce at various laser fluence, and the properties of naphthalocyanine nanoparticles, such as shape, size, zeta potential, chemical structure and optical absorption were examined. The scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements showed that the particle size of the nanoparticles could be controlled by the laser fluence. The IR spectra of the nanoparticles indicated the formation of carboxylate anion species at laser fluences above 100 mJ/cm2, which will result the zeta potential of the nanoparticles depending on the laser fluence. We also examined the potential application to contrast agents for photoacoustic, and confirmed that the naphthalocyanine nanoparticles generated a strong photoacoustic signal.

  10. Dissolution enhancement of Deflazacort using hollow crystals prepared by antisolvent crystallization process.

    Science.gov (United States)

    Paulino, A S; Rauber, G; Campos, C E M; Maurício, M H P; de Avillez, R R; Capobianco, G; Cardoso, S G; Cuffini, S L

    2013-05-13

    Deflazacort (DFZ), a derivate of prednisolone, is a poorly soluble drug which has been proposed to have major advantages over other corticosteroids. Poorly soluble drugs present limited bioavailability due to their low solubility and dissolution rate and several strategies have been developed in order to find ways to improve them. In general, pharmaceutical laboratories use a micronized process to reduce the particle size in order to increase the dissolution of the drugs. However, this process causes changes such as polymorphic transitions, particle agglomeration and a reduction in fluidity and wettability. These solid-state properties affect the dissolution behavior and stability performance of drugs. Crystallization techniques are widely used in the pharmaceutical industry and antisolvent crystallization has been used to obtain ultrafine particles. In this study, DFZ was investigated in terms of its antisolvent crystallization in different solvents and under various preparation conditions (methanol/water ratio, stirring and evaporation rate, etc.), in order to compare the physicochemical properties between crystallized samples and raw materials available on the Brazilian market with and without micronization. Crystalline structure, morphology, and particle size, and their correlation with the Intrinsic Dissolution Rate (IDR) and dissolution profile as relevant biopharmaceutical properties were studied. Crystallization conditions were achieved which provided crystalline samples of hollow-shaped crystals with internal channels, which increased the dissolution rate of DFZ. The antisolvent crystallization process allowed the formation of hollow crystals, which demonstrated a better dissolution profile than the raw material (crystalline and micronized), making this a promising technique as a crystallization strategy for improving the dissolution and thus the bioavailability of poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  12. Preparation and crystallization of hollow α-Fe2O3 microspheres following the gas-bubble template method

    International Nuclear Information System (INIS)

    Valladares, L. de los Santos; León Félix, L.; Espinoza Suarez, S.M.; Bustamante Dominguez, A.G.; Mitrelias, T.; Holmes, S.; Moreno, N.O.; Albino Aguiar, J.; Barnes, C.H.W.

    2016-01-01

    In this work we report the formation of hollow α-Fe 2 O 3 (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO 3 ) 3 .9H 2 O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  13. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    DEFF Research Database (Denmark)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan

    2016-01-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal...... and acoustic metamaterial applications. These modes can be used as narrow pass bands for which the quality factor can be greatly enhanced by the introduction of an additional cylinder between the hollow cylinder and the plate. We discuss some functionalities of these confined WGM in both Bragg and low...

  14. Square-lattice large-pitch hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Couny, F.; Roberts, John; Birks, T.A.

    2008-01-01

    We report on the design, fabrication and characterization of silica square-lattice hollow core photonic crystal fibers optimized for low loss guidance over an extended frequency range in the mid-IR region of the optical spectrum. The fiber's linear optical properties include an ultra-low group...... velocity dispersion and a polarization cross-coupling as low as -13.4dB over 10m of fiber....

  15. Naphthalocyanine-based time reversal mirror at 800 nm

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre; Fraigne, Sebastien; Le Goueet, Jean-Louis; Likforman, Jean-Pierre; Joffre, Manuel

    2004-01-01

    We performed pulse shaping and time reversal experiments using spectral holography based on persistent spectral hole burning in free-base naphthalocyanine-doped films. The application of a new pulse re-compression scheme based on a programmable hole burning material acting as a time reversal mirror is considered. In this work, we adapted the Fourier transform spectral interferometry technique for measuring the amplitude and phase of photon echo signals produced by diffraction of femtosecond pulses on a spectral hologram. We therefore demonstrated that we could control the pulses diffracted from the hologram by shaping and then characterizing these pulses in both amplitude and phase by spectral interferometry

  16. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    Science.gov (United States)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  17. Preparation and crystallization of hollow α-Fe{sub 2}O{sub 3} microspheres following the gas-bubble template method

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, L. de los Santos, E-mail: ld301@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); León Félix, L. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, DF 70910-900, Brasilia (Brazil); Espinoza Suarez, S.M.; Bustamante Dominguez, A.G. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Mitrelias, T.; Holmes, S. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Sao Cristóvao, Sergipe (Brazil); Albino Aguiar, J. [Laboratório de Supercondutividade e Materiais Avançados, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife (Brazil); Barnes, C.H.W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom)

    2016-02-01

    In this work we report the formation of hollow α-Fe{sub 2}O{sub 3} (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO{sub 3}){sub 3}.9H{sub 2}O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  18. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated.......17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers....

  19. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    Science.gov (United States)

    Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo

    2016-11-01

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer-Emmett-Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher -OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV-vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less -OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  20. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  1. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    International Nuclear Information System (INIS)

    Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo

    2016-01-01

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer–Emmett–Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher –OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV–vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less –OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  2. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Han; Jin, Tingting [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China); Zheng, Xing, E-mail: znhk113@163.com [Beijing ZNHK Science and Technology Development Co., Ltd. (China); Jiang, Bo; Zhu, Chaosheng [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China); Yuan, Xiangdong [Baotou Light Industry and Vocational Technical College (China); Zheng, Jingtang, E-mail: jtzheng03@163.com; Wu, Mingbo [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China)

    2016-11-15

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer–Emmett–Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher –OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV–vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less –OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  3. Radiolytic syntheses of hollow UO2 nanospheres in Triton X-100-based lyotropic liquid crystals

    International Nuclear Information System (INIS)

    Wang, Yongming; Chen, Qingde; Shen, Xinghai

    2017-01-01

    Hollow nanospheres (φ: 60-80 nm, wall thickness: 10-20 nm), consisted of UO 2 nanoparticles (φ: 3-5 nm), were successfully prepared in a Triton X-100-water (50:50, w/w) hexagonal lyotropic liquid crystal (LLC) by γ-irradiation, where water soluble ammonium uranyl tricarbonate was added as precursor. The product was stable at least up to 300 C. Furthermore, whether the nanospheres were hollow or not, and the wall thickness of the hollow nanospheres could be easily controlled via adjusting dose rate. While in the Triton X-100 based micellar systems, only solid nanospheres were obtained. At last, a possible combination mechanism containing adsorption, aggregation and fracturing processes was proposed.

  4. Acousto-optic mode coupling excited by flexural waves in simplified hollow-core photonic crystal fibers

    International Nuclear Information System (INIS)

    Zhang, Hao; Qiu, Minghui; Wu, Zhifang; Dong, Hongguang; Liu, Bo; Miao, Yinping

    2013-01-01

    We have demonstrated the formation of an acoustic grating in a simplified hollow-core photonic crystal fiber, which consists of a hollow hexagonal core and six crown-like air holes, by applying flexural acoustic waves along the fiber axis. The dependence of the resonance wavelength on the applied acoustic frequency has been acquired on the basis of the theoretical calculation of the phase matching curve; it is in good agreement with our experimental observation of the transmission spectral evolution as the applied acoustic frequency varies. Experimental results show that the acoustic grating resonance peak possesses acoustic frequency and strain dependences of 728 nm MHz −1 and −6.98 pm με −1 , respectively, based on which high-performance acousto-optic tunable filters and fiber-optic strain sensors with high sensitivity could be achieved. And furthermore, the research work presented in this paper indicates that microbending rather than physical deformation is the main physical mechanism that leads to the formation of equivalent long-period gratings, which would be of significance for developing related grating devices based on simplified hollow-core photonic crystal fibers. (paper)

  5. Radiolytic syntheses of hollow UO{sub 2} nanospheres in Triton X-100-based lyotropic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongming; Chen, Qingde; Shen, Xinghai [Peking Univ., Beijing (China). Fundamental Science on Radiochemistry and Radiation Chemistry Lab.

    2017-08-01

    Hollow nanospheres (φ: 60-80 nm, wall thickness: 10-20 nm), consisted of UO{sub 2} nanoparticles (φ: 3-5 nm), were successfully prepared in a Triton X-100-water (50:50, w/w) hexagonal lyotropic liquid crystal (LLC) by γ-irradiation, where water soluble ammonium uranyl tricarbonate was added as precursor. The product was stable at least up to 300 C. Furthermore, whether the nanospheres were hollow or not, and the wall thickness of the hollow nanospheres could be easily controlled via adjusting dose rate. While in the Triton X-100 based micellar systems, only solid nanospheres were obtained. At last, a possible combination mechanism containing adsorption, aggregation and fracturing processes was proposed.

  6. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  7. Enhancement of photovoltaic characteristics of nanocrystalline 2,3-naphthalocyanine thin film-based organic devices

    International Nuclear Information System (INIS)

    Farag, A.A.M.; Osiris, W.G.; Ammar, A.H.

    2012-01-01

    Graphical abstract: Scanning electron microscopy (SEM) image of NPC films: (a) cross section view, (b) surface morphology of the film at 300 K, (c) surface morphology of the annealed film at 350 K, (d) surface morphology of the annealed film at 400 K, (e) surface morphology of the annealed film at 450 K, and (f) surface morphology of the annealed film at 500 K. Highlights: ► The absorption edge shifts to the lower energy for the annealed NPC film. ► The device of Au/NPC/ITO exhibit rectifying characteristics. ► The devices show improvement in photovoltaic parameters. ► The power conversion efficiency of the devices show enhancement under annealing. - Abstract: In this work, nanocrystalline thin films of 2,3-naphthalocyanine (NPC) were successfully deposited by a thermal evaporation technique at room temperature under high vacuum (∼10 −4 Pa). The crystal structure and surface morphology were measured using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. A preferred orientation along the (0 0 1) direction was observed in all the studied films and the average crystallite size was calculated. Scanning electron miscroscopy (SEM) images of NPC films at different thermal treatment indicated significant changes on surface level patterns and gave clear evidence of agglomeration of nanocrystalline structures. The molecular structural properties of the thin films were characterized using Fourier transform infrared spectroscopy (FTIR), which revealed the stability of the chemical bonds of the compound under thermal treatment. The dark electrical conductivity of the films at various heat treatment stages showed that NPC films have a better conductivity than that of its earlier reported naphthalocyanine films and the activation energy was found to decrease with annealing temperature. The absorption edge shifted to the lower energy as a consequence of the thermal annealing of the film and the fundamental absorption edges correspond to a

  8. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  9. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu; Li, Ming; Ren, Zhaohui; Zhu, Yihan; Han, Gaorong

    2017-01-01

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers

  10. Synthesis of NaCl Single Crystals with Defined Morphologies as Templates for Fabricating Hollow Nano/micro-structures

    DEFF Research Database (Denmark)

    Wang, B.B.; Jin, P.; Yue, Yuanzheng

    2015-01-01

    . These naturally abundant NaCl single crystal templates are water-soluble, environmentally-friendly and uniform in both geometry and size, and hence are ideal for preparing high quality hollow nano/micro structures. The new approach may have the potential to replace the conventional hard or soft template...... approaches. Furthermore, this work has revealed the formation mechanism of nano/micron NaCl crystals with different sizes and geometries....

  11. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    Science.gov (United States)

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Research on Distributed Gas Detection Based on Hollow-core Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Gui XIN

    2014-07-01

    Full Text Available We have demonstrated a distributed gas detection system by using hollow-core photonic crystal fiber (HC-PCF as a gas chamber. The HC-PCF gas chamber has several lateral micro- channels fabricated by the femtosecond laser. The HC-PCF is connected to the single mode fiber by thermal splicing, and gas can diffuse in hollow-core of PCF via micro-channels. Compared to the traditional gas chamber, the HC-PCF gas chamber has relatively simpler construction and quite stability. According to experiment results, the system response time of 15 s has been achieved for a 5 cm HC-PCF which has ten channels with 4mm channel distance. It would construct long sensing length fiber gas sensor that the side holes and the splicer have introduced very little loss. Thus make it possible to achieve highly sensitive sensing system without influencing the response time. By using self-reference demodulation algorithm and space division multiplexing technique, distributed gas detection system with fast response was achieved.

  13. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...... length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives...

  14. Design of low-loss and highly birefringent hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, Peter John; Williams, D.P.; Sabert, H.

    2006-01-01

    A practical hollow-core photonic crystal fiber design suitable for attaining low-loss propagation is analyzed. The geometry involves a number of localized elliptical features positioned on the glass ring that surrounds the air core and separates the core and cladding regions. The size of each...... feature is tuned so that the composite core-surround geometry is antiresonant within the cladding band gap, thus minimizing the guided mode field intensity both within the fiber material and at material / air interfaces. A birefringent design, which involves a 2-fold symmetric arrangement of the features...

  15. Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells

    DEFF Research Database (Denmark)

    Benabid, F.; Roberts, John; Couny, F.

    2009-01-01

    guides via a photonic bandgap and the other guides by virtue of an inhibited coupling between core and cladding mode constituents. For the former fibre type, we explore how the bandgap is formed using a photonic analogue of the tight-binding model and how it is related to the anti-resonant reflection...... on electromagnetically induced transparency in a rubidium filled hollow-core photonic crystal fibre, the CW-pumped hydrogen Raman laser and the generation of multi-octave spanning stimulated Raman scattering spectral combs....

  16. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Directory of Open Access Journals (Sweden)

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  17. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions

    Directory of Open Access Journals (Sweden)

    Masego Dibetsoe

    2015-08-01

    Full Text Available The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1, 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine (Pc2, 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3 and 29H,31H-phthalocyanine (Pc4, and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1, 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2 and 2,3-naphthalocyanine (nP3 were investigated on the corrosion of aluminium (Al in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR. Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I− ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR

  18. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...

  19. Evolution of nickel sulfide hollow spheres through topotactic transformation

    Science.gov (United States)

    Wei, Chengzhen; Lu, Qingyi; Sun, Jing; Gao, Feng

    2013-11-01

    In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment.In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment. Electronic supplementary information (ESI) available: XRD patterns; SEM images and TEM images. See DOI: 10.1039/c3nr03371f

  20. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  1. Hollow-core photonic band gap fibers for particle acceleration

    Directory of Open Access Journals (Sweden)

    Robert J. Noble

    2011-12-01

    Full Text Available Photonic band gap (PBG dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency passbands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially made fibers, we perform a simulation analysis of prototype PBG fibers with dimensions appropriate for speed-of-light TM modes.

  2. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  3. Hydrothermal synthesis of lindgrenite with a hollow and prickly sphere-like architecture

    International Nuclear Information System (INIS)

    Xu Jiasheng; Xue Dongfeng

    2007-01-01

    Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a simple and mild hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous small crystal strips that are aligned perpendicularly to the spherical surface. Two factors are important for the formation of hollow and prickly architecture in the present process. One is the general phenomenon of Ostwald ripening in solution, which can be responsible for the hollow structure; the other is that lindgrenite crystals have a rhombic growth habit, which plays an important role in the formation of prickly surface. Furthermore, Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a simple thermal treatment of the as-prepared lindgrenite in air atmosphere. - Graphical abstract: Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a hydrothermal route. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous crystal strips that are aligned perpendicularly to the spherical surface. Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a thermal treatment of the as-prepared lindgrenite

  4. Effects of Au nanoparticle addition to hole transfer layer in organic solar cells based on copper naphthalocyanine and fullerene

    Institute of Scientific and Technical Information of China (English)

    Akihiko Nagata; Takeo Okun; Tsuyoshi Akiyaman; Atsushi Suzuki

    2014-01-01

    Organic solar cells based on copper naphthalocyanine (CuNc) and fullerene (C60) were fabricated, and their photovoltaic properties were investigated. C60 and CuNc were used as n-type and p-type semiconductors, respectively. In addition, the effect of Au nanoparticle addition on a hole transfer layer was investigated, and the power conversion efficiency of the devices was improved after blending the Au nanoparticles into the hole transport layer. Nanostructures of Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructure and electronic properties were discussed.

  5. Etched glass self-assembles into micron-size hollow platonic solids

    KAUST Repository

    Boukhalfa, Sofiane

    2012-10-03

    The interaction between the spreading of a hydrofluoric acid-based drop on a glass surface and its etching rate gives rise to hollow crystals of various shapes, including cubes, triangles, and icosahedra. These geometries are dependent on their position with respect to the contact line, where a rim forms by agglutination, similar to the formation of a coffee stain. Atomic force microscopy indentation and transmission electron microscopy observations revealed that these crystals are hollow ammonium-fluosilicate-based cryptohalite shells. © 2012 American Chemical Society.

  6. Etched glass self-assembles into micron-size hollow platonic solids

    KAUST Repository

    Boukhalfa, Sofiane; Chaieb, Saharoui

    2012-01-01

    The interaction between the spreading of a hydrofluoric acid-based drop on a glass surface and its etching rate gives rise to hollow crystals of various shapes, including cubes, triangles, and icosahedra. These geometries are dependent on their position with respect to the contact line, where a rim forms by agglutination, similar to the formation of a coffee stain. Atomic force microscopy indentation and transmission electron microscopy observations revealed that these crystals are hollow ammonium-fluosilicate-based cryptohalite shells. © 2012 American Chemical Society.

  7. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus, E-mail: markus.aspelmeyer@univie.ac.at [Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna (Austria)

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  8. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zeltner, R.; Russell, P. St.J. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Bykov, D. S.; Xie, S. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Euser, T. G. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-06-06

    We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  9. Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect

    Science.gov (United States)

    Chen, Xuncai; Im, SangHyuk; Kim, Jinsoo; Kim, Woo-Sik

    2018-02-01

    (BaSr)TiO3 hexagonal hollow tubes was fabricated by a solid-state interfacial reaction including a Kirkendall diffusion. Using a co-precipitation and sol-gel process, a core@shell structure of (BaSr)CO3@TiO2 rods were prepared, and then converted to (BaSr)TiO3 hollow tubes at 750 °C. This was a first achievement of single-phase crystal hollow tube. Here, the inner diameter and wall thickness of hollow tube were about 700 nm and 130 nm, respectively. The fabrication of (BaSr)TiO3 hollow tubes was monitored with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to investigate their formation mechanism. The present synthetic approach would provide a new insight into the design and fabrication of hollow architectures of many perovskite oxides.

  10. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Van Cleuvenbergen, Stijn; Song, Kai; Clays, Koen

    2018-05-04

    The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  12. Agile Photonic Crystals

    Science.gov (United States)

    2011-01-03

    75, pp. 3253-3256, Oct. 1995. [24] F. Benabid, J. C. Knight, and P. S. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal...B. Mizaikoff, “Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides

  13. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    Science.gov (United States)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  14. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Directory of Open Access Journals (Sweden)

    Zhong Kuo

    2018-03-01

    Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  15. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Science.gov (United States)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  16. A facile one-pot hydrothermal method to prepare europium-doped titania hollow phosphors and their sensitized luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xuan; Yang Ling; Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Western Huangpu Road, Guangzhou 510632 (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.c [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Western Huangpu Road, Guangzhou 510632 (China)

    2010-09-17

    Research highlights: {yields} The strongest emission intensity was observed with TiO{sub 2}:Eu{sub 0.2} hollow spheres and TiO{sub 2}:Eu{sub 0.2} hollow spheres calcining at 550 {sup o}C. Moreover, the strongest excitation of TiO{sub 2}:Eu{sub 0.2} hollow spheres transferred from 400 to 500 {sup o}C and the effective nonradiative energy transfer from the TiO{sub 2} hollow spheres host matrix to Eu{sup 3+} ions crystal field states was realized due to changes of crystalline field in the environment around Eu{sup 3+} ions occupying Ti{sup 4+} sites. The proposed energy transfer mechanism was that UV light is absorbed in the band of TiO{sub 2} hollow spheres crystal and then the energy is relaxed to the defect states of TiO{sub 2} host. The energy can transfer to the crystal states of Eu{sup 3+} ions ({sup 7}F{sub j}, j = 0, 1, 2, 3 and 4), which results in efficient photoluminescence. The fluorescent intensity of TiO{sub 2}:Eu{sub 0.2} hollow spheres was 2.2 times as strong as that of TiO{sub 2}:Eu{sub 0.2} bulk material. - Abstract: Monodisperse europium-activated titania hollow phosphors had been synthesized by a facile one-pot hydrothermal method using carbon spheres as hard templates. Samples were characterized by X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive spectrometer and photoluminescence spectrum. The strongest emission intensity was observed with TiO{sub 2}:Eu{sub 0.2} hollow spheres and TiO{sub 2}:Eu{sub 0.2} hollow spheres calcining at 550 {sup o}C. Moreover, the strongest excitation of TiO{sub 2}:Eu{sub 0.2} hollow spheres transferred from 400 to 500 {sup o}C and the effective nonradiative energy transfer from the TiO{sub 2} hollow spheres host matrix to Eu{sup 3+} ions crystal field states was realized due to changes of crystalline field in the environment around Eu{sup 3+} ions occupying Ti{sup 4+} sites. The proposed energy transfer mechanism was that UV light is absorbed in the band

  17. A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Junjie, E-mail: yuanjunjie@tongji.edu.c [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433 (China); Zhang Xiong; Qian He [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China)

    2010-08-15

    We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe{sub 3}O{sub 4} nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe{sub 3}O{sub 4} nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe{sup 2+} and Fe{sup 3+} and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.

  18. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  19. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 mu m

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, B.J.; Jakobsen, C.

    2009-01-01

    Several 7 cell core hollow-core photonic crystal fibers with bandgaps in the spectral range of 1.4 μm to 2.3 μm have been fabricated. The transmission loss follows the ≈ λ−3 dependency previously reported, with a minimum measured loss of 9.5 dB/km at 1.99 μm. One fiber with a transmission loss...... of 26 dB/km at 2.3 μm is reported, which is significantly lower than the transmission loss of solid silica fibers at this wavelength....

  20. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres

    KAUST Repository

    Sarawade, Pradip; Tan, Hua; Anjum, Dalaver H.; Cha, Dong Kyu; Polshettiwar, Vivek

    2013-01-01

    We report an efficient protocol for the synthesis of monodisperse crystals of an aluminum (Al)-based metal organic framework (MOF) while obtaining excellent control over the size and shape solely by tuning of the reaction parameters without the use of a template or structure-directing agent. The size of the hexagonal crystals of the Al-MOF can be selectively varied from 100 nm to 2000 nm by simply changing the reaction time and temperature via its nucleation-growth mechanism. We also report a self-assembly phenomenon, observed for the first time in case of Al-MOF, whereby hollow spheres of Al-MOF were formed by the spontaneous organization of triangular sheet building blocks. These MOFs showed broad hysteresis loops during the CO2 capture, indicating that the adsorbed CO2 is not immediately desorbed upon decreasing the external pressure and is instead confined within the framework, which allows for the capture and subsequent selective trapping of CO2 from gaseous mixtures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu

    2017-12-11

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers in length by adjusting the concentration of PVA to 0.8 g L. Microstructure characterization of the samples at different reaction times revealed that PP-PTF were formed via a three-dimensional (3D) hierarchical oriented attachment (OA) growth process. The initial growth units were determined to be single-crystal pre-perovskite PbTiO fibers with a diameter of 10-20 nm. Zeta potential measurement suggested that the main driving force of the OA process is the surface electrostatic force, which is induced by the incompletely bonded Pb and O atomic layers on the surface of the {110} plane. Moreover, molecular dynamics simulations have been employed to reveal a stable configuration of the initial pre-perovskite PbTiO growth units, agreeing well with the experimental results.

  2. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres

    KAUST Repository

    Sarawade, Pradip

    2013-11-25

    We report an efficient protocol for the synthesis of monodisperse crystals of an aluminum (Al)-based metal organic framework (MOF) while obtaining excellent control over the size and shape solely by tuning of the reaction parameters without the use of a template or structure-directing agent. The size of the hexagonal crystals of the Al-MOF can be selectively varied from 100 nm to 2000 nm by simply changing the reaction time and temperature via its nucleation-growth mechanism. We also report a self-assembly phenomenon, observed for the first time in case of Al-MOF, whereby hollow spheres of Al-MOF were formed by the spontaneous organization of triangular sheet building blocks. These MOFs showed broad hysteresis loops during the CO2 capture, indicating that the adsorbed CO2 is not immediately desorbed upon decreasing the external pressure and is instead confined within the framework, which allows for the capture and subsequent selective trapping of CO2 from gaseous mixtures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence

    Science.gov (United States)

    Belli, F.; Abdolvand, A.; Travers, J. C.; Russell, P. St. J.

    2018-01-01

    We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ˜300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.

  4. Facile and green fabrication of organic single-crystal hollow micro/nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Chen Yingzhi; Ou Xuemei; Zhang Xiaohong [Nano-organic Photoelectronic Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Xiujuan, E-mail: xjzhang@suda.edu.cn, E-mail: xhzhang@mail.ipc.ac.cn [Functional Nano and Soft Materials Laboratory (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2011-07-15

    Under high humidity and appropriate temperature, tris (8-hydroxyquinoline) aluminum (Alq3) solid micro/nanostructures may be etched into hollow structures and still retain their crystalline structures and surface morphologies. The shapes and sizes of the hollow structures are easily adjusted by varying the experimental parameters. Throughout the entire process, water is introduced into the system instead of organic or corrosive solvents, making this method convenient and environmentally friendly; it can also be extended to application in other materials such as TCNQ.

  5. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    Science.gov (United States)

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  6. Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates

    Science.gov (United States)

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2006-03-01

    A facile strategy for fabricating polypyrrole-chitosan (PPy-CS) hollow nanostructures with different shapes (sphere, cube and plate) and a wide range of sizes (from 35 to 600 nm) is described. These hollow structures have been fabricated using silver bromide as a single template material for polymer nucleation and growth. PPy-CS hollow nanostructures are formed by reaction with an etching agent to remove the core. These hollow nanostructures have been extensively characterized using various techniques such as TEM, FT-IR, UV-vis, and XRD.

  7. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  8. Realization of low loss and polarization maintaining hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Mangan, Brian Joseph; Lyngsøe, Jens Kristian; Roberts, John

    2008-01-01

    Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm......Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm...

  9. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths

    International Nuclear Information System (INIS)

    Jin-Hui, Yuan; Chong-Xiu, Yu; Xin-Zhu, Sang; Wen-Jing, Li; Gui-Yao, Zhou; Shu-Guang, Li; Lan-Tian, Hou

    2009-01-01

    Guided-mode characteristics of hollow-core photonic crystal fibre (HC-PCF) are experimentally and theoretically investigated. The transmission spectrum in the range from 755 to 845 nm is observed and the loss is measured to be 0.12 dB/m at 800 nm by cut-back method. Based on the full-vector beam propagation method and the full-vector plane-wave method, the characteristics of mode field over propagation distance 1 m are simulated, and the results show that the propagation efficiency can be above 80%. Compared with the fundamental guided mode well confined in air core within shorter propagation distance, the second-order guided mode leaks into the cladding region and gradually attenuates due to larger refractive index difference. The primary loss factors in HC-PCF and the corresponding solutions are elementarily discussed. (fundamental areas of phenomenology (including applications))

  10. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  11. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  12. High performance yttrium-doped BSCF hollow fibre membranes

    DEFF Research Database (Denmark)

    Haworth, P.; Smart, S.; Glasscock, Julie

    2012-01-01

    measurements in air was similar for both compositions, suggesting that the higher oxygen fluxes obtained for BSCFY hollow fibres could be attributed to the higher non-stoichiometry due to yttrium addition to the BSCF crystal structure. In addition, the improvement of oxygen fluxes for small wall thickness (∼0...

  13. Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber.

    Science.gov (United States)

    Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M

    2008-05-01

    Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.

  14. Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Habib, Selim

    Invention of hollow-core fiber has been proven an ideal medium to study light-gas interaction. Tight confinement of light inside hollowcore fiber allows unremitting and tailored interaction between light and gas over long distances. In this work, we used a special kind of hollowcore fiber − hollow......-core anti-resonant (HC-AR) fiber to study the various nonlinear effects filled with Raman free noble gas. One of the main striking features of HC-AR fiber is that ∼99.99% light can be guided inside the central hollow-core region, which significantly enhances damage threshold level. HC-AR fiber can sustain...... be tuned by simply changing the pressure of the gas while at the same time providing extremely wide transparency ranges. In this thesis, we propose several low-loss broadband guidance HC-AR fibers and investigate soliton-plasma dynamics using HC-AR fiber filled with noble gas in the mid-IR. The combined...

  15. Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre

    CERN Document Server

    Konorov, S O; Kolevatova, O A; Beloglasov, V I; Skibina, N B; Shcherbakov, A V; Wintner, E; Zheltikov, A M

    2003-01-01

    Sequences of picosecond pulses with a total energy in the pulse train of about 1 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 mu m. The fluence of laser radiation coupled into the core of the fibre under these conditions exceeds the breakdown threshold of fused silica by nearly an order of magnitude. The laser beam coming out of the fibre is then focused to produce a breakdown on a solid surface. Parameters of laser radiation were chosen in such a way as to avoid effects related to the excitation of higher order waveguide modes and ionization of the gas filling the fibre in order to provide the possibility to focus the output beam into a spot with a minimum diameter, thus ensuring the maximum spatial resolution and the maximum power density in the focal spot.

  16. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  17. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    2012-01-01

    structure resembling a star- of- David pattern can clearly be seen surrounding the hollow core region. The fiber’s hollow core is created by leaving out...O.R. Wood, An optically pumped CO2 laser. IEEE Journal of Quantum Electronics, 1972. 8(6): p. 598. 19. Schlossberg, H.R. and H.R. Fetterman

  18. Hollow ZSM-5 encapsulated Pt nanoparticles for selective catalytic reduction of NO by hydrogen

    Science.gov (United States)

    Hong, Zhe; Wang, Zhong; Chen, Dan; Sun, Qiang; Li, Xuebing

    2018-05-01

    Pt nanoparticles were successfully encapsulated in hollow ZSM-5 single crystals by tetrapropylammonium hydroxide (TPAOH) hydrothermal treatment with an "dissolution-recrystallization" process. The prepared Pt/hollow ZSM-5 (Pt/h-ZSM-5re) sample exhibited the best activity and a maximum NO conversion of 84% can be achieved at 90 °C with N2 selectivity of 92% (GHSV = 50,000 h-1). Meanwhile, Pt/h-ZSM-5re catalyst exhibited excellent SO2, H2O resistance and durability, which was related to the stabilization of Pt active sites by hollow structure during H2-SCR. It was found that the increase of NO2 concentration in the feed gas mixture led to an activity decline. In addition, the H2-SCR reaction routes over Pt/hollow ZSM-5 catalyst at different temperature were investigated.

  19. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    Science.gov (United States)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  20. Sputter deposition of BSCCO films from a hollow cathode

    International Nuclear Information System (INIS)

    Lanagan, M.T.; Kampwirth, R.T.; Doyle, K.; Kowalski, S.; Miller, D.; Gray, K.E.

    1991-01-01

    High-T c superconducting thin films were deposited onto MgO single crystal substrates from a hollow cathode onto ceramic targets with the nominal composition of Bi 2 Sr 2 CaCu 2 O x . Films similar in composition to those used for the targets were deposited on MgO substrates by rf sputtering. The effects of sputtering time, rf power, and post-annealing on film microstructure and properties were studied in detail. Substrate temperature was found to have a significant influence on the film characteristics. Initial results show that deposition rates from a hollow cathode are an order of magnitude higher than those of a planar magnetron source at equivalent power levels. Large deposition rates allow for the coating of long lengths of wire

  1. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  2. Synthesis of CdS hollow/solid nanospheres and their chain-structures by membrane technique

    International Nuclear Information System (INIS)

    Duan Shumin; Wu Qingsheng; Jia Runping; Liu Xinbo

    2008-01-01

    CdS hollow/solid nanospheres and their chain-structures were successfully synthesized through supporting liquid membrane (SLM) system with bio-membrane. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy, and photoluminescence (PL) spectroscopy have been used for the characterization of the products. The average diameters of CdS solid/hollow spheres are about 10, 40 nm, respectively. The wall of the hollow spheres is about 5 nm. CdS products are all cubic face-centered structure with the cell constant a = 5.830 A. We also explore the morphology, structure and possible synthesis mechanism. A possible template mechanism has been proposed for the production of the hollow CdS nanocrystals, that is, CdS nanoparticles grow along the non-soakage interface between CHCl3 and reactant solution. During this process, the organic functional groups were crucial to the control of crystal morphologies

  3. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  4. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin

    2008-01-01

    of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond......We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 ± 0.24 dB, and polarization extinction ratio of 19 ± 0.68 d...... pulse delivery...

  5. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  6. Efficient all-optical switching using slow light within a hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic-crys......-crystal fiber and using quantum optical techniques for generating slow light propagation and large nonlinear interaction between light beams.......We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic...

  7. Synthesis and luminescence of CePO4 and CePO4:Tb hollow and core-shell microspheres composed of single-crystal nanorods

    International Nuclear Information System (INIS)

    Guan Mingyun; Sun Jianhua; Han Min; Xu Zheng; Tao Feifei; Yin Gui; Wei Xianwen; Zhu Jianmin; Jiang Xiqun

    2007-01-01

    Lanthanide phosphate microspheres composed of single-crystal CePO 4 and CePO 4 :Tb nanorods were successfully synthesized, respectively, using the functionalized composite aggregate as a template, which is composed of P123, H 6 P 4 O 13 and Ce 3+ , and also as a resource of reaction species with high chemical potential. The shape and the phase structure of the CePO 4 nanocrystal can be easily controlled via adjusting reaction temperature, monomer concentration and annealing temperature. SEM images show the spherical superstructure composed of nanorods. HRTEM and SAED images reveal the single-crystalline nature of nanorod and TEM images show the hollow interiors of the superstructure. XRD patterns indicate that the crystal structure of the nanorods is hexagonal before and monoclinic after annealing. The formation mechanism was proposed. Strong UV and green luminescence were observed for the CePO 4 and CePO 4 :Tb microspheres, respectively. The synthesis method can be extended to the fabrication of NRHS and core-shell microspheres of other rare-earth or doped LnPO 4 materials for wide applications

  8. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    Science.gov (United States)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  9. Synthesis and characterization of Mg-doped ZnO hollow spheres

    International Nuclear Information System (INIS)

    Hammad, Talaat M.; Salem, Jamil K.

    2011-01-01

    Mg-doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Mg:Zn atomic ratio from 0 to 7%. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and magnesium acetate tetrahydrate were heated under refluxing at 65 °C using methanol as a solvent. X-ray diffraction analysis reveals that the Mg-doped ZnO crystallizes in a wurtzite structure with crystal size of 5–12 nm. These nanocrystals self-aggregated themselves into hollow spheres of size of 800–1100 nm. High resolution transmission electron microscopy images show that each sphere is made up of numerous nanoparticles of average diameter 5–11 nm. The XRD patterns, SEM and TEM micrographs of doping of Mg in ZnO confirmed the formation of hollow spheres indicating that the Mg 2+ is successfully substituted into the ZnO host structure of the Zn 2+ site. Furthermore, the UV–Vis spectra and photoluminescence (PL) spectra of the ZnO nanoparticles were also investigated. The band gap of the nanoparticles can be tuned in the range of 3.36–3.55 eV by the use of the dopants.

  10. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  11. Hollow-in-Hollow Carbon Spheres for Lithium-ion Batteries with Superior Capacity and Cyclic Performance

    International Nuclear Information System (INIS)

    Zang, Jun; Ye, Jianchuan; Fang, Xiaoliang; Zhang, Xiangwu; Zheng, Mingsen; Dong, Quanfeng

    2015-01-01

    Highlights: • Hollow-in-hollow structured HIHCS was synthesized via a facile templating strategy. • The HCS core and hollow carbon shell constitute the hollow-in-hollow structure. • The HIHCS exhibited superior rate capability and cycle stability as anode material. • The excellent performance is attributed to the unique hollow-in-hollow structure. - Abstract: Hollow spheres structured materials have been intensively pursued due to their unique properties for energy storage. In this paper, hollow-in-hollow carbon spheres (HIHCS) with a multi-shelled structure were successfully synthesized using a facile hard-templating procedure. When evaluated as anode material for lithium-ion batteries, the resultant HIHCS anode exhibited superior capacity and cycling stability than HCS. It could deliver reversible capacities of 937, 481, 401, 304 and 236 mAh g −1 at current densities of 0.1 A g −1 , 1 A g −1 , 2 A g −1 , 5 A g −1 and 10 A g −1 , respectively. And capacity fading is not apparent in 500 cycles at 5 A g −1 . The excellent performance of the HIHCS anode is ascribed to its unique hollow-in-hollow structure and high specific surface area.

  12. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  13. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  14. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-03-24

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  15. Hollow crystalline straws of diclofenac for high-dose and carrier-free dry powder inhaler formulations.

    Science.gov (United States)

    Yazdi, Ashkan K; Smyth, Hugh D C

    2016-04-11

    To crystallize diclofenac (DF) from diclofenac sodium (DFNa), to micronize DF and DFNa, and to evaluate in vitro aerodynamic performance of the jet-milled formulations From the acidic titration of aqueous DFNa, DF crystals were formed and were identified using thermal analysis, spectroscopy, and X-ray powder diffraction. Following the micronization of the DF and DFNa powders, the recovered samples were imaged, and their particle size distributions were evaluated. Samples before and after jet millings were characterized, and in vitro aerodynamic performance testing was performed on the DF sample before jet milling and the DF and DFNa samples following jet milling. Hollow needles of DF were precipitated. With similar particle size distributions, the jet-milled DFNa sample from the collection bag, and the DF sample from the cyclone were used for further characterization. Despite different deposition patterns in the Next Generation Impactor, the DF hollow needles had a comparable respirable fraction percentage to the jet-milled DF and DFNa particles. However, the jet-milled DF formulation had the best in vitro aerodynamic performance. Hollow, crystalline needles of DF were formed and possessed promising aerosol performance in comparison with the jet-milled powders. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Kam Kong; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Short, Michael; Lam, Stephen; McWilliams, Annette [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada)

    2014-09-15

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm{sup −1}. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  17. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  18. Templateless Synthesis and Characterization of Hollow Gadolinium Doped Cerium Oxide Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Chutima Thiabdokmai

    2014-01-01

    Full Text Available The hollow nanofibers of Ce0.8Gd0.2O2−δ (GDC20 were electrospun from the PVP and nitrate precursors. The evolution of hollow channel was investigated by TG-DTA and ex situ TEM for the fibers heated at 250–300°C for 1–5 h. The hollow cores were revealed during the crystallization of nano-GDC20 and the PVP decomposition stage. The structural and morphological properties of GDC20 fibers before and after being calcined at 500–900°C for 8 h were investigated by FTIR, FE-SEM, TEM, EDS, XRD, and Raman spectroscopy. The results from XRD and Raman scattering verify the successful doping of Gd3+ ions into the CeO2 host lattice. The conductivity of the cold-pressed GDC 20 pellet sintered at 1400°C is more than 0.01 S/cm at and above 600°C.

  19. Switching of light with light using cold atoms inside a hollow optical fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2010-01-01

    We demonstrate a fiber-optical switch that operates with a few hundred photons per switching pulse. The light-light interaction is mediated by laser-cooled atoms. The required strong interaction between atoms and light is achieved by simultaneously confining photons and atoms inside the microscopic...... hollow core of a single-mode photonic-crystal fiber....

  20. Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe

    Science.gov (United States)

    Zhang, Ziyue; haq, Mahmood; Wen, Zhen; Ye, Zhizhen; Zhu, Liping

    2018-03-01

    WO3 mesoporous hollow nanospheres doped with Fe synthesized by a facile method have mesoporous hollow nanospherical like morphology, small grain size (10 nm), high crystalline quality and ultrahigh surface area (165 m2/g). XRD spectra and Raman spectra indicate the Fe doping leading to the smaller cell parameters as compared to pure WO3, and the slight distortion in the crystal lattice produces a number of defects, making it a better candidate for gas sensing. XPS analysis shows that Fe-doped WO3 mesoporous hollow nanospheres have more oxygen vacancies than pure WO3, which is beneficial to the adsorption of oxygen and NO2 and its surface reaction. The gas sensor based on Fe-WO3 exhibited excellent low ppb-level (10 ppb) NO2 detecting performance and outstanding selectivity.

  1. Ultrafast Raman scattering in gas-filled hollow-core fibers

    OpenAIRE

    Belli, Federico

    2017-01-01

    The experimental and numerical work reported here is rooted in ultrafast molecular phenomena and nonlinear fiber optics, which are brought together in a deceptively simple system: a homo-nuclear molecular gas (e.g. H2,D2) loaded in the hollow-core of a broad-band guiding photonic crystal fiber (PCF) and exposed to ultrashort pulses of moderate energies (∼ μJ). On one hand, the choice of a molecular gas as the nonlinear medium provides a rich playground for light-matter interactions. ...

  2. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries

    Science.gov (United States)

    Wu, Ling; Hu, Yong; Zhang, Xiaoping; Liu, Jiequn; Zhu, Xing; Zhong, Shengkui

    2018-01-01

    Hollow sphere structure Na2MnPO4F/C composite is synthesized through spray drying, following in-situ pyrolytic carbon coating process. XRD results indicate that the well crystallized composite can be successfully synthesized, and no other impurity phases are detected. SEM and TEM results reveal that the Na2MnPO4F/C samples show intact hollow spherical architecture, and the hollow spherical shells with an average thickness of 150 nm-250 nm are composed of nanosized primary particles. Furthermore, the amorphous carbon layer is uniformly coated on the surface of the hollow sphere, and the nanosized Na2MnPO4F particles are well embedded in the carbon networks. Consequently, the hollow sphere structure Na2MnPO4F/C shows enhanced electrochemical performance. Especially, it is the first time that the obvious potential platforms (∼3.6 V) are observed during the charge and discharge process at room temperature.

  3. Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Kishore, S.; Anandhakumar, S.; Sasidharan, M., E-mail: sasidharan.m@res.srmuniv.ac.in

    2017-04-01

    Highlights: • Hollow and solid carbon nanospheres were synthesized by CVD method. • NaCl was used as template for direct growth of carbon nanospheres. • Separation of NaCl from the mixture is made easy by dissolving in water. • The hollow carbon nanospheres exhibit high specific capacity in Li-ion batteries than the graphite anodes. - Abstract: Carbon nanospheres (CNS) with hollow and solid morphologies have been synthesised by a simple chemical vapour deposition method using acetylene as a carbon precursor. Sodium chloride (NaCl) powder as a template was used for the direct growth of CNS via facile and low-cost approach. The effect of various temperatures (500 °C, 600 °C and 700 °C) and acetylene flow rates were investigated to study the structural evolution on the carbon products. The purified CNS thus obtained was characterized by various physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and cyclicvoltametry. The synthesised hollow nanospheres were investigated as anode materials for Li-ion batteries. After 25 cycles of repeated charge/discharge cycles, the discharge and charge capacities were found to be 574 mAh/g and 570 mAh/g, respectively which are significantly higher than the commercial graphite samples.

  4. Few photon switching with slow light in hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited...... by diffraction are some of the unique features of this system. Here, we present the results of our first nonlinear optics experiments in this system including a demonstration of an all-optical switch that is activated at energies corresponding to few hundred optical photons per pulse....

  5. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  6. Numerical simulation of terahertz-wave propagation in photonic crystal waveguide based on sapphire shaped crystal

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Katyba, Gleb M; Mukhina, Elena E; Kudrin, Konstantin G; Karasik, Valeriy E; Yurchenko, Stanislav O; Kurlov, Vladimir N; Shikunova, Irina A; Reshetov, Igor V

    2016-01-01

    Terahertz (THz) waveguiding in sapphire shaped single crystal has been studied using the numerical simulations. The numerical finite-difference analysis has been implemented to characterize the dispersion and loss in the photonic crystalline waveguide containing hollow cylindrical channels, which form the hexagonal lattice. Observed results demonstrate the ability to guide the THz-waves in multi-mode regime in wide frequency range with the minimal power extinction coefficient of 0.02 dB/cm at 1.45 THz. This shows the prospectives of the shaped crystals for highly-efficient THz waveguiding. (paper)

  7. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers

    Directory of Open Access Journals (Sweden)

    Ciprian Dumitrache

    2014-08-01

    Full Text Available This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs, the hollow core kagome fibers have larger core diameter (~50 µm, which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25. We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine.

  8. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC Porto—Instituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Física, da Faculdade de Ciências, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2014-02-17

    Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 × 10{sup −5} nm/psi at 1480 nm to 1.3 × 10{sup −3} nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from −3.4 × 10{sup −6} 1/psi to −1.3 × 10{sup −6} 1/psi and from −5 × 10{sup −6} 1/psi to −1.8 × 10{sup −6} 1/psi, respectively, which were in a good accordance with each other.

  9. Molecular Gas-Filled Hollow Optical Fiber Lasers in the Near Infrared

    Science.gov (United States)

    2012-01-12

    Benabid, F., Roberts , P. J., Light, P. S., and Raymer , M. G., “Generation and photonic guidance of multi-octave optical-frequency combs,” Science, 318...scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004). 16. F. Couny, F. Benabid, P. J. Roberts , P. S. Light, and M. G. Raymer ...Couny, F., Wang, Y. Y., Wheeler, N. V., Roberts , P. J., and Benabid, F., “Double photonic bandgap hollow-core photonic crystal fiber,” Opt

  10. Hollow ZIF-8 Nanoworms from Block Copolymer Templates

    Science.gov (United States)

    Yu, Haizhou; Qiu, Xiaoyan; Neelakanda, Pradeep; Deng, Lin; Khashab, Niveen M.; Nunes, Suzana P.; Peinemann, Klaus-Viktor

    2015-10-01

    Recently two quite different types of “nano-containers” have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles (“filomicelles”) on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework nanotubes with a hollow core. These worm-like tubes are about 200 nm thick and several μm long. The preparation is simple: we first produce long and flexible filament-shaped micelles by block copolymer self-assembly. These filomicelles serve as templates to grow a very thin layer of interconnected ZIF-8 crystals on their surface. Finally the block copolymer is removed by solvent extraction and the hollow ZIF-8 nanotubes remain. These ZIF-NTs are surprisingly stable and withstand purification by centrifugation. The synthesis method is straightforward and can easily be applied for other metal organic framework materials. The ZIF-8 NTs exhibit high loading capacity for the model anti cancer drug doxorubicin (DOX) with a pH-triggered release. Hence, a prolonged circulation in the blood stream and a targeted drug release behavior can be expected.

  11. Hollow ZIF-8 Nanoworms from Block Copolymer Templates

    KAUST Repository

    Yu, Haizhou; Qiu, Xiaoyan; Neelakanda, Pradeep; Deng, Lin; Khashab, Niveen M.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2015-01-01

    Recently two quite different types of “nano-containers” have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles (“filomicelles”) on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework nanotubes with a hollow core. These worm-like tubes are about 200 nm thick and several μm long. The preparation is simple: we first produce long and flexible filament-shaped micelles by block copolymer self-assembly. These filomicelles serve as templates to grow a very thin layer of interconnected ZIF-8 crystals on their surface. Finally the block copolymer is removed by solvent extraction and the hollow ZIF-8 nanotubes remain. These ZIF-NTs are surprisingly stable and withstand purification by centrifugation. The synthesis method is straightforward and can easily be applied for other metal organic framework materials. The ZIF-8 NTs exhibit high loading capacity for the model anti cancer drug doxorubicin (DOX) with a pH-triggered release. Hence, a prolonged circulation in the blood stream and a targeted drug release behavior can be expected.

  12. Hollow ZIF-8 Nanoworms from Block Copolymer Templates

    KAUST Repository

    Yu, Haizhou

    2015-10-16

    Recently two quite different types of “nano-containers” have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles (“filomicelles”) on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework nanotubes with a hollow core. These worm-like tubes are about 200 nm thick and several μm long. The preparation is simple: we first produce long and flexible filament-shaped micelles by block copolymer self-assembly. These filomicelles serve as templates to grow a very thin layer of interconnected ZIF-8 crystals on their surface. Finally the block copolymer is removed by solvent extraction and the hollow ZIF-8 nanotubes remain. These ZIF-NTs are surprisingly stable and withstand purification by centrifugation. The synthesis method is straightforward and can easily be applied for other metal organic framework materials. The ZIF-8 NTs exhibit high loading capacity for the model anti cancer drug doxorubicin (DOX) with a pH-triggered release. Hence, a prolonged circulation in the blood stream and a targeted drug release behavior can be expected.

  13. Hybrid photonic-crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Travers, John C.; Abdolvand, Amir

    2017-01-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various...... is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated...... with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse...

  14. Laser guiding of cold atoms in photonic crystals

    International Nuclear Information System (INIS)

    Tarasishin, A V; Magnitskiy, Sergey A; Shuvaev, V A; Zheltikov, Aleksei M

    2000-01-01

    The possibility of using photonic crystals with a lattice defect for the laser guiding of cold atoms is analysed. We have found a configuration of a photonic-crystal lattice and a defect ensuring the distribution of a potential in the defect mode of the photonic crystal allowing the guiding of cold atoms along the defect due to the dipole force acting on atoms. Based on quantitative estimates, we have demonstrated that photonic crystals with a lattice defect permit the guiding of atoms with much higher transverse temperatures and a much higher transverse localisation degree than in the case of hollow-core fibres. (laser applications and other topics in quantum electronics)

  15. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  16. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    Science.gov (United States)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2016-03-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  17. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    International Nuclear Information System (INIS)

    Yuan, J H; Sang, X Z; Wu, Q; Yu, C X; Shen, X W; Wang, K R; Yan, B B; Teng, Y L; Farrell, G; Zhou, G Y; Xia, C M; Han, Y; Li, S G; Hou, L T

    2013-01-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1–3, the conversion efficiency η uv−v of 11% and bandwidth B uv−v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV–visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV–visible resonant Raman scattering. (letter)

  18. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-01-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal...

  19. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  20. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    Science.gov (United States)

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-06-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H+ or Fe3+) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H2-production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H2-production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption.

  1. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    International Nuclear Information System (INIS)

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-01-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO 2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H + or Fe 3+ ) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H 2 -production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H 2 -production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption

  2. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  3. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mohammed F.; Biancalana, Fabio [Max Planck Institute for the Science of Light, Guenther-Scharowsky Str. 1, DE-91058 Erlangen (Germany)

    2011-12-15

    We present the details of our previously formulated model [Saleh et al., Phys. Rev. Lett. 107, 203902 (2011)] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizable gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency redshift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107, 203901 (2011)]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blueshift in the frequency domain. By applying the Gagnon-Belanger gauge transformation, multipeak ''inverted gravitylike'' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range nonlocal interactions between temporally distant solitons, unique of gas plasma systems, are predicted and studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics are investigated, showing that the conversion efficiency of resonant radiation into the deep UV can be improved via plasma formation.

  4. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  5. Method for the production of fabricated hollow microspheroids

    Science.gov (United States)

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  6. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ultrastructural studies of synthetic apatite crystals.

    Science.gov (United States)

    Arends, J; Jongebloed, W L

    1979-03-01

    In this paper a survey is given of some ultrastructural properties of synthetic hydroxyapatite. The preparation method by which single crystals with a length in the range of 0.1-3.0mm and a defined purity and stoïchiometry can be produced is given. Two groups of materials are considered in detail: carbonate-rich (greater than 0.1% CO3) and low-carbonate hydroxyapatites. The experiments on carbonate-rich material, being the most interesting from a biological point of view, show that acids attack at an active site in the hexagonal basal-plane of the crystals. Later on the crystals dissolve in the center of the crystal parallel to the c-axis forming tube-like structures. The active site can be protected from dissolution if the crystals are pretreated by EHDP or MFP. A comparison with lattice defect theory shows that most likely dislocations of the "hollow-core" type are responsible for the preferential dissolution.

  8. Hollow bunches production

    CERN Document Server

    Hancock, S

    2017-01-01

    Hollow bunches address the issue of high-brightnessbeams suffering from transverse emittance growth in a strongspace charge regime. During the Proton Synchrotron (PS)injection plateau, the negative space charge tune shift canpush the beam onto theQy=6integer resonance. Modify-ing the longitudinal bunch profile in order to reduce the peakline charge density alleviates the detrimental impact of spacecharge. To this end we first produce longitudinally hollowphase space distributions in the PS Booster by exciting aparametric resonance with the phase loop feedback system.These inherently flat bunches are then transferred to the PS,where the beam becomes less prone to the emittance growthcaused by the integer resonance.During the late 2016 machine development sessions inthe PS Booster we profited from solved issues from 2015and managed to reliably extract hollow bunches of1.3eVsmatched longitudinal area. Furthermore, first results to cre-ate hollow bunches with larger longitudinal emittances to-wards the LHC Inject...

  9. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO{sub 2} for efficient photocatalytic H{sub 2} production under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jinwen, E-mail: jinwen-shi@mail.xjtu.edu.cn; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin [Xi’an Jiaotong University (XJTU), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy IRCRE (China)

    2015-06-15

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO{sub 2} was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H{sup +} or Fe{sup 3+}) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H{sub 2}-production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H{sub 2}-production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption.

  10. Method to fabricate hollow microneedle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  11. Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Ermolov, A.; Mak, K. F.; Tani, F.; Hölzer, P.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Russell, P. St. J. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany)

    2013-12-23

    A technique for optically accessing ultra-high vacuum environments, via a photonic-crystal fiber with a long small hollow core, is described. The small core and the long bore enable a pressure ratio of over 10{sup 8} to be maintained between two environments, while permitting efficient and unimpeded delivery of light, including ultrashort optical pulses. This delivery can be either passive or can encompass nonlinear optical processes such as optical pulse compression, deep UV generation, supercontinuum generation, or other useful phenomena.

  12. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...

  13. The Electrospun Ceramic Hollow Nanofibers

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2017-11-01

    Full Text Available Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate. In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use.

  14. Facile Template-Free Fabrication of the hollow sea cucumber-like TbF{sub 3} and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yu, E-mail: gaoy777@126.com [College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, 100142 (China); Shi, Shan; Fang, Qinghong; Yang, Feng [College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, 100142 (China); Xu, Zhenhe [College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, 100142 (China)

    2014-12-15

    Graphical abstract: Hollow sea cucumber-like TbF{sub 3} has been prepared via a facile hydrothermal route. The possible growth mechanism and the luminescent properties of the as-prepared sample have been discussed. - Highlights: • TbF3 particles were prepared by a facile hydrothermal route. • TbF3 product show strong green emission. • This method may be more widely applicable in the design of other rare-earth compounds. - Abstract: Hollow sea cucumber-like TbF{sub 3} was successfully fabricated by a self-assembled hydrothermal method. The crystal structure, morphology and photoluminescence properties of the as-prepared TbF{sub 3} crystals were investigated. The results revealed that the as-prepared TbF{sub 3} sample has orthorhombic structure and composed of monodispersed 3D hollow sea cucumber-like particles. The possible formation mechanism for sea cucumber-like TbF{sub 3} is presented in detail. Additionally, the as-prepared sample possesses property of down-conversion photoluminescence. The excitation spectrum of TbF{sub 3} sample was obtained by monitoring the emission of Tb{sup 3+} at 545 nm was composed of the characteristics f–f transition lines within the Tb{sup 3+} 4f{sup 8} configuration. Under the UV light irradiation, the emission spectrum exhibited four obvious lines centered at 491, 545, 588, and 620 nm, which was corresponding to the {sup 5}D{sub 4} → {sup 7}F{sub J} (J = 6, 5, 4, 3) transitions of the Tb{sup 3+} ions in the TbF{sub 3} nanoparticles.

  15. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser

    International Nuclear Information System (INIS)

    Chen Xiao-Dong; Mao Qing-He; Sun Qing; Zhao Jia-Sheng; Li Pan; Feng Su-Juan

    2011-01-01

    A gas Raman light source based on a H 2 -filled hollow-core photonic-crystal-fiber cell with a Q-switched fiber laser followed by a fiber amplifier as the Raman pump source is demonstrated. The Stokes frequency-shift lasing line is observed at 1135.7 nm with the Q-switched pump pulses at 1064.7 nm. Our experimental results show that the generated Stokes pulse is much narrower than the pump pulse, and the generated Stokes pulse duration is increased with the single pulse energy for the same duration pump pulses. For the 125 ns pump pulses with a repetition rate of 5 kHz, the Raman threshold pump energy and the conversion efficiency at the Raman threshold are 2.13 μJ and 9.82%. Moreover, by choosing narrower pump pulses, the Raman threshold pump energy may be reduced and the conversion efficiency may be improved. (fundamental areas of phenomenology(including applications))

  16. Hollow core plasma channel generation

    International Nuclear Information System (INIS)

    Quast, Heinrich Martin

    2018-03-01

    The use of a hollow plasma channel in plasma-based acceleration has beneficial properties for the acceleration of electron and positron bunches. In the scope of the FLASHForward facility at DESY, the generation of such a plasma structure is examined. Therefore, the generation of a ring-shaped laser intensity profile with different techniques is analyzed. From the obtained intensity profiles the electron density of a hollow plasma channel is simulated in the focal region. Different parameters are scanned to understand their influence on the electron density distribution - an important parameter being, for example, the radius of the central region of the channel. In addition to the simulations, experiments are presented, during which a laser pulse is transformed into a hollow beam with a spiral phase plate. Subsequently, it forms a plasma during the interaction with hydrogen, where the plasma is imaged with interferometry. For energies above 0.9 mJ a hollow plasma structure can be observed at the location of first plasma formation.

  17. Preparation of Pr-doped SnO{sub 2} hollow nanofibers by electrospinning method and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.Q.; Ma, S.Y., E-mail: lwq19891013@126.com; Li, Y.F.; Li, X.B.; Wang, C.Y.; Yang, X.H.; Cheng, L.; Mao, Y.Z.; Luo, J.; Gengzang, D.J.; Wan, G.X.; Xu, X.L.

    2014-08-25

    Highlights: • Pr-doped SnO{sub 2} hollow nanofibers were fabricated by electrospinning. • The crystal structures, surface morphology, chemical state and gas sensing performance were investigated. • The Pr-doped SnO{sub 2} hollow structure exhibited good gas-sensing properties to ethanol at 300 °C. • The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. • A sensor mechanism of hollow nanofibers depend on temperature was discussed. - Abstract: Pure and Pr-doped SnO{sub 2} hollow nanofibers were fabricated through a facile single capillary electrospinning and followed by calcination. The properties of as-synthesized nanofibers were characterized by scanning electron microscopy, Brunauer–Emmett–Teller, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Compared with pure fibers, Pr-doped SnO{sub 2} nanofibers exhibited excellent ethanol sensing properties at the optimum temperature of 300 °C. Maximum sensing response to ethanol was received in the fibers with 0.6 wt% Pr. The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. The results demonstrated that the high response and relatively short response/recovery time were related to surface area, adsorbed oxygen species and oxygen vacancies.

  18. 2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF

    Science.gov (United States)

    Maurel, M.; Chafer, M.; Delahaye, F.; Amrani, F.; Debord, B.; Gerome, F.; Benabid, F.

    2018-02-01

    We report on the design and fabrication of inhibited-coupling guiding hollow-core photonic crystal fiber with a transmission band optimized for low loss guidance around 2 μm. Two fibers design based on a Kagome-lattice cladding have been studied to demonstrate a minimum loss figure of 25 dB/km at 2 μm associated to an ultra-broad transmission band spanning from the visible to our detection limit of 3.4 μm. Such fibers could be an excellent tool to deliver and compress ultra-short pulse laser systems, especially for the emerging 2-3 μm spectral region.

  19. Photonic Crystal Fibres for Dispersion and Sensor Applications

    DEFF Research Database (Denmark)

    Sørensen, Thorkild

    2005-01-01

    of the involved nonlinear processes. A hollow-core photonic crystal fibre (HC-PCF) is used as a sensor for gas. It is filled with two gasses, 12C2H2 acetylene, and H13CN hydrogen cyanide, and the transmission spectra are subject for a discussion. A model for infusion speed of fluids to a capillary presented...

  20. Hollow rods for the oil producing industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalimova, L M; Elyasheva, M A

    1970-01-01

    Hollow sucker rods have several advantages over conventional ones. The hollow rods actuate the well pump and at the same time conduct produced fluids to surface. When paraffin deposition occurs, it can be minimized by injecting steam, hot oil or hot water into the hollow rod. Other chemicals, such as demulsifiers, scale inhibitors, corrosion inhibitors, etc., can also be placed in the well through the hollow rods. This reduces cost of preventive treatments, reduces number of workovers, increases oil production, and reduces cost of oil. Because the internal area of the rod is small, the passing liquids have a high velocity and thereby carry sand and dirt out of the well. This reduces pump wear between the piston and the plunger. Specifications of hollow rods, their operating characteristics, and results obtained with such rods under various circumstances are described.

  1. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  2. A novel synthesis of micrometer silica hollow sphere

    International Nuclear Information System (INIS)

    Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing

    2009-01-01

    Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented

  3. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  4. Fabrication of hollow-sphere films of wurtzite CuInS{sub 2} on copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Shuijin, E-mail: shjlei@ncu.edu.cn [School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Wang, Chunying [School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Qiang [School of Electromechanical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Liu, Lei; Ge, Yang; Tang, Qingliu; Cheng, Baochang; Xiao, Yanhe; Zhou, Lang [School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China)

    2013-12-16

    As important semiconductors, I–III–VI{sub 2} compounds have attracted wide attention, among which the wurtzite structured CuInS{sub 2} has been the research focus due to its metastable phase. In this paper, the wurtzite CuInS{sub 2} hollow-sphere films have been successfully prepared on copper substrate in a self-designed solvothermal detached system. The films of Cu(OH){sub 2} one-dimensional nanostructure arrays and thioacetamide were used as the precursors and triethylene glycol was used as the solvent. Experiments showed that the amount of indium trichloride played a determinative role in the final morphology of the products. Meanwhile, the one-dimensional nanostructure arrays and the detached solvothermal system have great influences on the crystal shape as well. Based on the experimental results, a possible formation mechanism for the CuInS{sub 2} hollow spheres was also proposed. The UV–Vis absorption spectrum showed a broad absorption over the entire visible light and extending into the near-infrared region and presented the band gap of 1.53 eV for the as-prepared wurtzite CuInS{sub 2}, which indicates the potential applications in solar cells. - Highlights: • A self-designed detached system along with solvothermal treatment was developed. • Wurtzite CuInS{sub 2} hollow-sphere films were successfully fabricated on Cu substrate. • The detached system and InCl{sub 3} usage were crucial for the hollow spheres. • The broadband absorption and 1.53 eV band-gap indicates its potentials in PV.

  5. Hollow nanocrystals and method of making

    Science.gov (United States)

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  6. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Science.gov (United States)

    Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu

    2017-01-01

    To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814

  7. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-11-01

    Full Text Available To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG as the solvent medium and cetyltrimethylammonium bromide (CTAB as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C, good high-rate discharge capacity (118 mAh g−1 at 10 C, and fine cycling stability (99.2% after 200 cycles at 0.1 C. The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure.

  8. Formation of Uniform Hollow Silica microcapsules

    Science.gov (United States)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  9. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  10. Glucose assisted synthesis of hollow spindle LiMnPO_4/C nanocomposites for high performance Li-ion batteries

    International Nuclear Information System (INIS)

    Fu, Xiaoning; Chang, Zhaorong; Chang, Kun; Li, Bao; Tang, Hongwei; Shangguan, Enbo; Yuan, Xiao-Zi; Wang, Haijiang

    2015-01-01

    Graphical abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure exhibits a high specific capacity and cycling performance. - Highlights: • A pure and well-crystallized LiMnPO_4 are synthesized via a solution-phase method. • The LiMnPO_4/C composite constitutes highly and uniformly distributed hollow spindles. • The LiMnPO_4/C composite exhibits a high specific capacity and cycling performance. • The growth process of the hollow spindle LiMnPO_4 particles is revealed. - Abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure was synthesized with the assistance of glucose in dimethyl sulfoxide (DMSO)/H_2O under ambient pressure and 108 °C. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images show that the LiMnPO_4 particles consist of hollow spindles with a mean width of 200 nm, length of 500-700 nm, and wall thickness of about 30-60 nm. The LiMnPO_4/C nanocomposite was obtained by sintering nano-sized LiMnPO_4 with glucose at 650 °C under an inert atmosphere for 4 h. With a coated carbon thickness of about 10 nm, the obtained composite maintained the morphology and size of the hollow spindle. The electrochemical tests show the specific capacity of LiMnPO_4/C nanocomposite is 161.8 mAh g"−"1 at 0.05C, 137.7 mAh g"−"1 at 0.1C and 110.8 mAh g"−"1 at 0.2 C. The retention of discharge capacity maintains 92% after 100 cycles at 0.2 C. After different rate cycles the high capacity of the LiMnPO_4/C nanocomposite can be recovered. This high performance is attributed to the composite material's hollow spindle structure, which facilitates the electrolyte infiltration, resulting in an increased solid-liquid interface. The carbon layer covering the hollow spindle also contributes to the high performance of the LiMnPO_4/C material as the carbon layer improves its electronic conductivity and the nano-scaled wall thickness decreases the paths of Li

  11. Facile synthesis and enhanced visible-light photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001 (China); Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2015-03-15

    Graphical abstract: - Highlights: • Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were synthesized by a facile method. • The formation mechanism for the Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated. • The catalyst exhibited an enhanced visible-light photocatalytic activity. • The reactive species in the photocatalytic process were studied. - Abstract: Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were successfully synthesized by a one-step and low-temperature route under ambient pressure. The micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres have a diameter of 1–2 μm and their shells are composed of numerous nanoparticles and nanorods. The growth process of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated in detail. The results indicated that the morphologies and composition of Ag{sub 2}ZnGeO{sub 4} samples were strongly dependent on the dose of the AgNO{sub 3} and reaction time. Excessive AgNO{sub 3} was favorable for the nucleation and growth rate of Ag{sub 2}ZnGeO{sub 4} crystals and the formation of pure Ag{sub 2}ZnGeO{sub 4}. Moreover, the formation mechanism of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is related to the Ostwald ripening. Under the same conditions, the photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is about 1.7 times and 11 times higher than that of bulk Ag{sub 2}ZnGeO{sub 4} and Degussa P25, respectively. These interesting findings could provide new insight on the synthesis of micro/nanostructured ternary-metal oxides with enhanced photocatalytic activity.

  12. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Multimedia

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  13. Hollow nanotubular toroidal polymer microrings.

    Science.gov (United States)

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  14. Development of tree hollows in pedunculate oak (Quercus robur)

    OpenAIRE

    Ranius, Thomas; Niklasson, Mats; Berg, Niclas

    2009-01-01

    Many invertebrates, birds and mammals are dependent on hollow trees. For landscape planning that aims at persistence of species inhabiting hollow trees it is crucial to understand the development of such trees. In this study we constructed an individual-based simulation model to predict diameter distribution and formation of hollows in oak tree populations. Based on tree-ring data from individual trees, we estimated the ages when hollow formation commences for pedunculate oak (Quercus robur) ...

  15. Box-like gel capsules from heterostructures based on a core-shell MOF as a template of crystal crosslinking.

    Science.gov (United States)

    Ishiwata, Takumi; Michibata, Ayano; Kokado, Kenta; Ferlay, Sylvie; Hosseini, Mir Wais; Sada, Kazuki

    2018-02-06

    New polymer capsules (PCs) were obtained using a crystal crosslinking (CC) method on core-shell MOF crystals. The latter are based on the epitaxial growth of two isostructural coordination polymers which are then selectively crosslinked. Decomposition of the non-reticulated phase leads to new PCs, possessing a well-defined hollow cubic shape reflecting the heterostructure of the template.

  16. Method for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  17. Facile one-step template-free synthesis of uniform hollow microstructures of cryptomelane-type manganese oxide K-OMS-2.

    Science.gov (United States)

    Galindo, Hugo M; Carvajal, Yadira; Njagi, Eric; Ristau, Roger A; Suib, Steven L

    2010-08-17

    Hollow microstructures of cryptomelane-type manganese oxide were produced in a template-free one-step process based on the fine-tuning of the oxidation rate of manganese species during the synthesis. The tuning of the reaction rate brought about by a mixture of the oxidants oxone and potassium nitrate becomes apparent from the gradual physical changes taking place in the reaction medium at early times of the synthesis. The successful synthesis of the hollow uniform structures could be performed in the ranges 120-160 degrees C and 8.2-10.7 for temperature and mass ratio oxone/potassium nitrate, respectively. Independent of the conditions of the synthesis, all of the complex microstructures showed the same pattern for the array of very long nanofibers in which some of these elongated around the surface confining the cavity and the other fibers grew normal to the surface created by the previous arrangement. A mechanism based on the heterogeneous nucleation of the cryptomelane phase on the surface of an amorphous precursor and the growth of the nanoscale fibers by processes such as dissolution-crystallization and lateral attachment of primary nanocrystalline fibers is proposed to explain the formation of the hollow structures.

  18. The Riddle of the Apparently Hollow Himalaya

    Indian Academy of Sciences (India)

    The Riddle of the Apparently Hollow Himalaya. Ramesh .... It was as if the Himalayas were hollow inside. ... block would be consistent with the ground elevation in such a ... Alternative models and possible preference: Many refinements of.

  19. Enhanced microwave absorption properties of MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons synthesized by a facile hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Han, Bingqian; Chen, Nan; Deng, Dongyang; Guan, Hongtao [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091, Kunming (China)

    2016-08-15

    MnO{sub 2} hollow microspheres consisted of nanoribbons were successfully fabricated via a facile hydrothermal method with SiO{sub 2} sphere templates. The crystal structure, morphology and microwave absorption properties in X and Ku band of the as-synthesized samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and a vector network analyzer. The results show that the three-dimensional (3D) hollow microspheres are assembled by ultra thin and narrow one-dimensional (1D) nanoribbons. A rational process for the formation of hollow microspheres is proposed. The 3D MnO{sub 2} hollow microspheres possess improved dielectric and magnetic properties than the 1D nanoribbons prepared by the same procedures with the absence of SiO{sub 2} hard templates, which are closely related to their special nanostructures. The MnO{sub 2} microspheres also show much better microwave absorption properties in X (8–12 GHz) and Ku (12–18 GHz) microwave band compared with 1D MnO{sub 2} nanoribbons. The minimum reflection loss of −40 dB for hollow microsphere can be observed at 14.2 GHz and reflection loss below −10 dB is 3.5 GHz with a thickness of only 4 mm. The possible mechanism for the enhanced microwave absorption properties is also discussed. - Graphical abstract: MnO{sub 2} hollow microspheres composed of nanoribbons show the excellent microwave absorption properties in X and Ku band. - Highlights: • MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons were successfully prepared. • MnO{sub 2} hollow microspheres possess good microwave absorption performances. • The excellent microwave absorption properties are in X and Ku microwave band. • Electromagnetic impedance matching is great contribution to absorption properties.

  20. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers

    KAUST Repository

    Pang, Maolin

    2010-08-11

    Ag2S and Ag are important functional materials that have received considerable research interest in recent years. In this work, we develop a solution-based synthetic method to combine these two materials into hollow/solid Ag2S/Ag heterodimers at room temperature. Starting from monodisperse Cu2O solid spheres, CuS hollow spheres can be converted from Cu2O through a modified Kirkendall process, and the obtained CuS can then be used as a solid precursor for preparation of the Ag2S/Ag heterodimers through ion exchange and photo-assisted reduction. We have found that formation of the Ag2S/Ag heterodimers is instantaneous, and the size of Ag nanocrystals on the hollow spheres of Ag2S can be controlled by changing the concentration and power of reducing agents in the synthesis. The growth of Ag nanoparticles on hollow spheres of Ag2S in the dimers is along the [111] direction of the silver crystal; the light absorption properties have also been investigated. Furthermore, coupling or tripling of Ag2S/Ag heterodimers into dumbbell-like trimers ((Ag 2S)2/Ag, linear) and triangular tetramers ((Ag 2S)3/Ag, coplanar) can also be attained at 60°C by adding the bidentate ligand ethylenediamine as a cross-linking agent. To test the applicability of this highly asymmetric dipolar composite, photocatalytic inactivation of Escherichia coli K-12 in the presence of the as-prepared Ag 2S/Ag heterodimers has been carried out under UV irradiation. The added Ag2S/Ag heterodimers show good chemical stability under prolonged UV irradiation, and no appreciable solid dissolution is found. Possible mechanisms regarding the enhanced antibacterial activity have also been addressed. © 2010 American Chemical Society.

  1. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    Science.gov (United States)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  2. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  3. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres

    International Nuclear Information System (INIS)

    Jiao, Yan; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2013-01-01

    Hydroxyapatite (HA) and HA coated microcarriers for cell culture and delivery have attracted more attention recently, owing to the rapid progress in the field of tissue engineering. In this research, a dense and uniform HA coating with the thickness of about 2 μm was successfully deposited on hollow glass microspheres (HGM) by biomimetic process. The influences of SBF concentration, immersion time, solid/liquid ratio and activation of HGM on the deposition rate and coating characteristics were discussed. X-ray diffraction (XRD) and Fourier transform infrared spectrum (FTIR) analyses revealed that the deposited HA is poorly crystalline. The thickness of HA coating showed almost no increase after immersion in 1.5SBF for more than 15 days with the solid/liquid ratio of 1:150. At the same time, SBF concentration, solid/liquid ratio and activation treatment played vital roles in the formation of HA coating on HGM. This poorly crystallized HA coated HGM could have potential use as microcarrier for cell culture. Highlights: • HA coatings were deposited on hollow glass microspheres by biomimetic process. • The obtained HA coating was poorly crystalline and carbonated. • The influencing factors of deposition rate and coating characteristics were studied. • The thickness of HA coating showed almost no increase after immersion for 15 days

  4. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Directory of Open Access Journals (Sweden)

    Bidhan Shrestha

    2015-01-01

    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  5. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    Science.gov (United States)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  6. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  7. Long-term evaluation of hollow screw and hollow cylinder dental implants : Clinical and radiographic results after 10 years

    NARCIS (Netherlands)

    Telleman, Gerdien; Meijer, Henny J. A.; Raghoebar, Gerry M.

    Background: In 1988, an implant manufacturer offered a new dental implant system, with a wide choice of hollow cylinder (HC) and hollow screw (HS) implants. The purpose of this retrospective study of HS and HC implants was to evaluate clinical and radiographic parameters of peri-implant tissue and

  8. Synthesis of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres via homogeneous precipitation route

    Directory of Open Access Journals (Sweden)

    Peng-Fei Ai, Ying-Liang Liu, Li-Yuan Xiao, Hou-Jin Wang and Jian-Xin Meng

    2010-01-01

    Full Text Available A phosphorescent material in the form of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres was prepared by homogeneous precipitation using monodispersed carbon spheres as hard templates. Y2O3:Eu3+ hollow microspheres were first synthesized to serve as the precursor. Y2O2S:Eu3+, Mg2+, Ti4+ powders were obtained by calcinating the precursor in a CS2 atmosphere. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction measurements confirmed the purity of the Y2O2S phase. Electron microscopy observations revealed that the Y2O2S:Eu3+, Mg2+, Ti4+ particles inherited the hollow spherical shape from the precursor after being calcined in a CS2 atmosphere and that they had a diameter of 350–450 nm and a wall thickness of about 50–80 nm. After ultraviolet radiation at 265 or 325 nm for 5 min, the particles emitted strong red long-lifetime phosphorescence originating from Eu3+ ions. This phosphorescence is associated with the trapping of charge carriers by Ti4+ and Mg2+ ions.

  9. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    Science.gov (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  10. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  11. Hollow proppants and a process for their manufacture

    Science.gov (United States)

    Jones, A.H.; Cutler, R.A.

    1985-10-15

    Hollow, fine-grained ceramic proppants are less expensive and improve fracture control when compared to conventional proppants (dense alumina, mullite, bauxite, zirconia, etc.). Hollow proppants of the present invention have been fabricated by spray drying, followed by sintering in order to obtain a dense case and a hollow core. These proppants generally have high sphericity and roundness (Krumbein sphericity and roundness greater than 0.8), have diameters on average between 2,250 and 125 [mu]m, depending on proppant size required, and have strength equal to or greater than that of sand. The hollow core, the size of which can be controlled, permits better fracture control in hydraulic fracturing treatments since the proppant can be transported in lower viscosity fluids. Hollow proppants produced at the same cost/weight as conventional proppants also provide for lower costs, since less weight is required to fill the same volume. The fine-grained (preferably less than 5 [mu]m in diameter) ceramic case provides the strength necessary to withstand closure stresses and prevent crushing. 6 figs.

  12. Wave propagation in a strongly nonlinear locally resonant granular crystal

    Science.gov (United States)

    Vorotnikov, K.; Starosvetsky, Y.; Theocharis, G.; Kevrekidis, P. G.

    2018-02-01

    In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference "distills" a weakly nonlocal solitary wave (a "nanopteron"). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.

  13. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  14. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  15. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  16. Enhanced performance of a biomimetic membrane for Na2CO3 crystallization in the scenario of CO2 capture

    DEFF Research Database (Denmark)

    Ye, Wenyuan; Lin, Jiuyang; Tækker Madsen, Henrik

    2016-01-01

    membrane (0.21Lm-2h-1 in FO mode and 0.16Lm-2h-1 in PRO mode) and a porous hydrophobic hollow fiber membrane (0.08Lm-2h-1) under the same operating conditions.Crystallization utilizing the AIM60 membrane in an osmotic crystallizer was achieved without noticeable membrane scaling or degradation. Furthermore...

  17. Hollow-duct radiation delivery system investigation

    Directory of Open Access Journals (Sweden)

    Kramer D.

    2013-05-01

    Full Text Available Investigation of hollow-duct structure for high-power laser-diode-array radiation delivery into the end-pumped large-aperture gain media is reported. A ray tracing method has been used to evaluate the performance of the structure designed for maximum transmission efficiency and output beam profile homogeneity. Variable hollow-duct lengths as well as emanating angles of laser-diode-array have been taken into account.

  18. Hollow fiber liquid supported membranes

    International Nuclear Information System (INIS)

    Violante, V.

    1987-01-01

    The hollow fiber system are well known and developed in the scientific literature because of their applicability in the process separation units. The authors approach to a mathematical model for a particular hollow fiber system, usin liquid membranes. The model has been developed in order to obtain a suitable tool for a sensitivy analysis and for a scaling-up. This kind of investigation is very usefull from an engineering point of view, to get a spread range of information to build up a pilot plant from the laboratory scale

  19. Experimental study on hollow structural component by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Mianjun, E-mail: dmjwl@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Wei, Ling, E-mail: 386006087@qq.com [Tongda College, Nanjing University of Posts and Telecommunication, Nanjing 210007 (China); Hong, Jin [PLA University of Science and Technology, Nanjing 210007 (China); Ran, Hong [Southwestern Institute of Physics, Chengdu 610041 (China); Ma, Rui; Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China)

    2014-12-15

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property.

  20. Experimental study on hollow structural component by explosive welding

    International Nuclear Information System (INIS)

    Duan, Mianjun; Wei, Ling; Hong, Jin; Ran, Hong; Ma, Rui; Wang, Yaohua

    2014-01-01

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property

  1. Novel Crystal Structure C60 Nanowire

    Science.gov (United States)

    Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex

    2003-03-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.

  2. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.

    Science.gov (United States)

    He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A

    2017-05-17

    Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.

  3. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Madeline T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-13

    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  4. Hollow cathode for positive ion sources

    International Nuclear Information System (INIS)

    Schechter, D.E.; Kim, J.; Tsai, C.C.

    1979-01-01

    Development to incorporate hollow cathodes into high power ion sources for neutral beam injection systems is being pursued. Hollow tube LaB 6 -type cathodes, similar to a UCLA design, have been constructed and tested in several ORNL ion source configurations. Results of testing include arc discharge parameters of >1000 and 500 amps for 0.5 and 10 second pulse lengths, respectively. Details of cathode construction and additional performance results are discussed

  5. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  6. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  7. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Tang, X.H. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhang, X.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, C.J. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  8. High performance methanol-oxygen fuel cell with hollow fiber electrode

    Science.gov (United States)

    Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)

    1983-01-01

    A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.

  9. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning.

    Science.gov (United States)

    Miao, Yue-E; Fan, Wei; Chen, Dan; Liu, Tianxi

    2013-05-22

    Hollow polyaniline (PANI) nanofibers with controllable wall thickness are fabricated by in situ polymerization of aniline using the electrospun poly(amic acid) fiber membrane as a template. A maximum specific capacitance of 601 F g(-1) has been achieved at 1 A g(-1), suggesting the potential application of hollow PANI nanofibers for supercapacitors. The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge-discharge processes. Furthermore, the high flexibility of the self-standing fiber membrane template provides possibilities for the facile construction and fabrication of conducting polymers with hollow nanostructures, which may find potential applications in various high-performance electrochemical devices.

  10. Mercury - the hollow planet

    Science.gov (United States)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  11. One-pot synthesis of hollow structured upconversion luminescent β-NaYF4:Yb0.2Er0.02 nanoparticles

    International Nuclear Information System (INIS)

    Wu, Qinglong; Pei, Jianfeng; De, Gejihu

    2014-01-01

    Monodisperse, uniform, and hollow structured hexagonal sodium yttrium fluoride nanoparticles co-doped with Yb 3+ and Er 3+ (NaYF 4 :Yb 3+ , Er 3+ ) were successfully prepared by a facile one-pot thermal decomposition route. The crystal structure, morphology and upconversion spectra of the sample were investigated using X-ray powder diffractometer, transmission electron microscope, and fluorescence spectrophotometer with an external 980 nm single-wavelength diode laser. The synthesized nanoparticles were easily dispersed in nonpolar solvents, showed an extremely narrow particle distribution, and were determined to have a diameter about (14.3)±(1.1) nm. Moreover, the nanoparticles were dispersed in water via modification of the capping oleic acid ligand by HCl. To the synthesis of such monidisperse, water-soluble, hollow structured lanthanide-doped upconversion nanoparticles may lead to potential applications in drug delivery and bioimaging. - Highlights: • Hollow structured hexagonal NaYF 4 :Yb 0.2 Er 0.02 luminescent nanoparticles were prepared by a facile one-pot thermal decomposition route. • HCl was used to render the nanoparticles to water solubility. • The bright green light and transparent solution indicate that as-treated water-soluble nanoparticles may lead to potential applications in drug delivery and bioimaging

  12. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  13. Plasma generation using the hollow cathod

    International Nuclear Information System (INIS)

    Moon, K.J.

    1983-01-01

    A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)

  14. Hollow density profile on electron cyclotron resonance heating JFT-2M plasma

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Hoshino, Katsumichi; Kawashima, Hisato; Ogawa, Toshihide; Kawakami, Tomohide; Shiina, Tomio; Ishige, Youichi

    1998-01-01

    The first hollow electron density profile in the central region on the JAERI Fusion Torus-2M (JFT-2M) is measured during electron cyclotron resonance heating (ECRH) with a TV Thomson scattering system (TVTS). The peripheral region is not hollow but is accumulated due to pump-out from the central region. The hollowness increases with time but is saturated at ∼40 ms and maintains a constant hollow ratio. The hollowness is strongly related to the steep temperature gradient of the heated zone. (author)

  15. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui

    2018-01-16

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  16. Ordered macro-microporous metal-organic framework single crystals

    Science.gov (United States)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  17. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  18. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  19. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  20. Coprecipitation-assisted hydrothermal synthesis of PLZT hollow nanospheres

    International Nuclear Information System (INIS)

    Zhu, Renqiang; Zhu, Kongjun; Qiu, Jinhao; Bai, Lin; Ji, Hongli

    2010-01-01

    Lanthanum-modified lead zirconate titanate Pb 1-x La x (Zr 1-y Ti y )O 3 (PLZT) hollow nanospheres have been successfully prepared via a template-free hydrothermal method using the well-mixed coprecipitated precursors and the KOH mineralizer. The structure, composition, and morphology of the PLZT hollow nanospheres were characterized by XRD (X-ray diffraction), ICP (inductive coupled plasma emission spectrometer), FTIR (Fourier transform infrared spectra), TG/DTA (thermogravimetric analysis and differential thermal analysis), TEM (transmission electron microscopy) and SEAD (selected area diffraction). The results show that the composition and the morphology control of the PLZT products are determined by the KOH concentration. The PLZT hollow nanospheres with uniform size of about 4 nm were synthesized in the presence of 5 M KOH. The crystalline nanoparticles can be prepared at dilute KOH, in contrast to the amorphous powders prepared at concentrated KOH. Formation mechanisms of the PLZT hollow nanospheres are also discussed.

  1. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles.

    Science.gov (United States)

    Hong, Yayun; Zhan, Qiliang; Pu, Chenlu; Sheng, Qianying; Zhao, Hongli; Lan, Minbo

    2018-09-01

    In this work, hollow magnetic macro/mesoporous TiO 2 nanoparticles (denoted as Fe 3 O 4 @H-fTiO 2 ) were synthesized by a facile "hydrothermal etching assisted crystallization" route to improve the phosphopeptide enrichment efficiency. The porous nanostructure of TiO 2 shell and large hollow space endowed the Fe 3 O 4 @H-fTiO 2 with a high surface area (144.71 m 2 g -1 ) and a large pore volume (0.52 cm 3 g -1 ), which could provide more affinity sites for phosphopeptide enrichment. Besides, the large pore size of TiO 2 nanosheets and large hollow space could effectively prevent the "shadow effect", thereby facilitating the diffusion and release of phosphopeptides. Compared with the hollow magnetic mesoporous TiO 2 with small and deep pores (denoted as Fe 3 O 4 @H-mTiO 2 ) and solid magnetic macro/mesoporous TiO 2 , the Fe 3 O 4 @H-fTiO 2 nanoparticles showed a better selectivity (molar ratio of α-casein/BSA up to 1:10000) and a higher sensitivity (0.2 fmol/μL α-casein) for phosphopeptide enrichment. Furthermore, 1485 unique phosphopeptides derived from 660 phosphoproteins were identified from HeLa cell extracts after enrichment with Fe 3 O 4 @H-fTiO 2 nanoparticles, further demonstrating that the Fe 3 O 4 @H-fTiO 2 nanoparticles had a high-efficiency performance for phosphopeptide enrichment. Taken together, the Fe 3 O 4 @H-fTiO 2 nanoparticles will have unique advantages in phosphoproteomics analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  3. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  4. Methodology for construction of hollow spheres for use in physical phantoms

    International Nuclear Information System (INIS)

    Oliveira, A.C.H.; Lima, F.R.A.; Oliveira, F.; Vieira, J.W.

    2015-01-01

    In positron emission tomography (PET), quantitative evaluation of spatial resolution/object size, attenuation and scatter effects is often performed using phantoms with hollow spheres. Fillable, plastic-walled spheres are commercially available in several sizes. Radioactive solutions in any concentration can be injected into the spheres. Hollow spheres have several desirable traits, including repeatable, consistent use, and standardization across measurements at different institutions, since identical items are distributed by a single manufacturer. The objective of this work is to describe a methodology for construction of hollow spheres using rapid prototyping. It was used the software SolidWork (2014) to create five 3D models of the hollow spheres with inner diameters of 10 mm, 13 mm, 17 mm, 22 mm, and 28 mm. These models were based on hollow spheres of NEMA/IEC PET body phantom. It was used a Cubex Duo 3D printer (3D Systems) to build the hollow spheres. The material used was the ABS (acrylonitrile butadiene styrene) resin. (authors)

  5. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2016-05-01

    Full Text Available A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe, compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ∼14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  6. Adsorption characteristics of activated carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    B. V. Kaludjerović

    2009-01-01

    Full Text Available Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  7. Manufacturing hollow obturator with resilient denture liner on post hemimaxillectomy

    Directory of Open Access Journals (Sweden)

    Michael Josef Kridanto Kamadjaja

    2006-03-01

    Full Text Available A resilient denture liner is placed in the part of the hollow obturator base that contacts to post hemimaxillectomy mucosa. Replacing the resilient denture liner can makes the hollow obturator has an intimate contact with the mucosa, so it can prevents the mouth liquid enter to the cavum nasi and sinus, also eliminates painful because of using the hollow obturator. Resilient denture liner is a soft and resilient material that applied to the fitting surface of a denture in order to allow a more distribution of load. A case was reported about using the hollow obturator with resilient denture liner on post hemimaxillectomy to overcome these problems.

  8. Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Jerome; Light, Philip S.; Kashyap, Raman; Luiten, Andre N. [Frequency Standards and Metrology Group, School of Physics, University of Western Australia, Western Australia 6009, Perth (Australia); Department of Engineering Physics, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada H3C 3A7 (Canada); Frequency Standards and Metrology, School of Physics, University of Western Australia, Western Australia 6009, Perth (Australia)

    2011-11-15

    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow beam can confine cold atoms to the darkest regions of the beam, thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and a guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{mu}m-radius core hollow fiber, it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When the MOT is positioned farther away, coupling efficiencies over 50% can be achieved with larger core fibers.

  9. Hollow fiber membranes and methods for forming same

    Science.gov (United States)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward; Narang, Kristi Jean; Koros, William

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer which includes the polysiloxane of the second composition.

  10. Hybrid photonic-crystal fiber

    Science.gov (United States)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  11. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-01-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called hollow atoms must be taken into account for adequate description of plasma radiation

  12. Study of the hollow cathode plasma electron-gun

    International Nuclear Information System (INIS)

    Zhang Yonghui; Jiang Jinsheng; Chang Anbi

    2003-01-01

    For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond

  13. RGO/InVO4 hollowed-out nanofibers: Electrospinning synthesis and its application in photocatalysis

    International Nuclear Information System (INIS)

    Ma, Dong; Zhang, Yanxiang; Gao, Mengchun; Xin, Yanjun; Wu, Juan; Bao, Nan

    2015-01-01

    Graphical abstract: - Highlights: • RGO/InVO 4 hollow-out nanofibers were obtained by electrospinning method. • The properties of InVO 4 hollow-out nanofibers were deeply influenced by RGO. • RGO could reduce recombination of e − –h + pairs to improve photocatalytic activity. • Photo-induced h + and e − are the two main reactive species for RhB degradation. - Abstract: A composite of reduced graphene oxide (RGO) and InVO 4 nanofiber was successfully synthesized by an electrospinning technique. The as-collected fibers were calcined at 420 °C in air and then calcined at 550 °C in nitrogen gas to remove polyvinyl pyrrolidone (PVP), which could enable InVO 4 to crystallize and protect the RGO from oxidation. The InVO 4 in the composite illustrated a hollowed-out fibrous morphology and orthorhombic phase, and RGO nanosheets were nested in the InVO 4 nanofibers. The hybrid RGO could produce more hydroxyl groups and a higher oxygen vacancy density on the surface of RGO/InVO 4 composite. Compared with pure InVO 4 , the light absorption range of the as-prepared RGO/InVO 4 composite was expanded. In Rh B degradation, the RGO/InVO 4 hybrid nanofibers displayed a higher photocatalytic activity than pure InVO 4 nanofibers. The enhanced photocatalytic activity might be ascribed to the role of RGO as an electron transporter and acceptor in the composite, which could effectively inhibit the charge recombination and facilitate the charge transfer. The exported electron could attack an O 2 molecule to facilitate the generation of • O 2 − and • OH for the photodegradation process of Rh B.

  14. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    Science.gov (United States)

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  15. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    Science.gov (United States)

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  16. Recovery of uranium from seawater using amidoxime hollow fibers

    International Nuclear Information System (INIS)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-01-01

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days

  17. A hollow definitive obturator fabrication technique for management of partial maxillectomy.

    Science.gov (United States)

    Patil, Pravinkumar Gajanan; Patil, Smita Pravinkumar

    2012-11-01

    Maxillary obturator prosthesis is the most frequent treatment option for management of partial or total maxillectomy. Heavy weight of the obturators is often a dislocating factor. Hollowing the prosthesis to reduce its weight is the well established fact. The alternate technique to hollow-out the prosthesis has been described in this article which is a variation of previously described processing techniques. A pre-shaped wax-bolus was incorporated inside the flasks during packing of the heat-polymerized acrylic resin to automatically create the hollow space. The processing technique described is a single step flasking procedure to construct a closed-hollow-obturator prosthesis as a single unit. To best understand the technique, this article describes management of a patient who had undergone partial maxillectomy secondary to squamous cell carcinoma rehabilitated with a hollow-obturator prosthesis.

  18. Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays

    International Nuclear Information System (INIS)

    Zhao Qian; Tan Tingfeng; Qi Peng; Wang Shirong; Bian Shuguang; Li Xianggao; An Yong; Liu Zhaojun

    2011-01-01

    Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu) 4 as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.

  19. Ice crystal precipitation at Dome C site (East Antarctica)

    Science.gov (United States)

    Santachiara, G.; Belosi, F.; Prodi, F.

    2016-01-01

    For the first time, falling ice crystals were collected on glass slides covered with a thin layer of 2% formvar in chloroform at the Dome Concordia site (Dome C), Antarctica. Samplings were performed in the framework of the 27th Italian Antarctica expedition of the Italian National Program for Research in Antarctica in the period 21 February-6 August 2012. Events of clear-sky precipitations and precipitations from clouds were considered and the replicas obtained were examined under Scanning Electron Microscope (SEM). Several shapes of ice crystals were identified, including ;diamond dust; (plates, pyramids, hollow and solid columns), and crystal aggregates varying in complexity. Single events often contained both small (10 μm to 50 μm) and large (hundreds of microns) crystals, suggesting that crystals can form simultaneously near the ground (height of a few hundred metres) and at higher layers (height of thousands of metres). Images of sampled crystal replicas showed that single bullets are not produced separately, but by the disintegration of combinations of bullets. Rimed ice crystals were absent in the Dome C samples, i.e. the only mode of crystal growth was water vapour diffusion. On considering the aerosol in the sampled crystals, we reached the conclusion that inertial impaction, interception and Brownian motion were insufficient to explain the scavenged aerosol. We therefore presume that phoretic forces play a role in scavenging during the crystal growth process.

  20. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    Science.gov (United States)

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  1. Application of a probabilistic model of rainfall-induced shallow landslides to complex hollows

    Directory of Open Access Journals (Sweden)

    A. Talebi

    2008-07-01

    Full Text Available Recently, D'Odorico and Fagherazzi (2003 proposed "A probabilistic model of rainfall-triggered shallow landslides in hollows" (Water Resour. Res., 39, 2003. Their model describes the long-term evolution of colluvial deposits through a probabilistic soil mass balance at a point. Further building blocks of the model are: an infinite-slope stability analysis; a steady-state kinematic wave model (KW of hollow groundwater hydrology; and a statistical model relating intensity, duration, and frequency of extreme precipitation. Here we extend the work of D'Odorico and Fagherazzi (2003 by incorporating a more realistic description of hollow hydrology (hillslope storage Boussinesq model, HSB such that this model can also be applied to more gentle slopes and hollows with different plan shapes. We show that results obtained using the KW and HSB models are significantly different as in the KW model the diffusion term is ignored. We generalize our results by examining the stability of several hollow types with different plan shapes (different convergence degree. For each hollow type, the minimum value of the landslide-triggering saturated depth corresponding to the triggering precipitation (critical recharge rate is computed for steep and gentle hollows. Long term analysis of shallow landslides by the presented model illustrates that all hollows show a quite different behavior from the stability view point. In hollows with more convergence, landslide occurrence is limited by the supply of deposits (supply limited regime or rainfall events (event limited regime while hollows with low convergence degree are unconditionally stable regardless of the soil thickness or rainfall intensity. Overall, our results show that in addition to the effect of slope angle, plan shape (convergence degree also controls the subsurface flow and this process affects the probability distribution of landslide occurrence in different hollows. Finally, we conclude that

  2. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...

  3. Method and apparatus for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  4. Hollow mesoporous titania microspheres: New technology and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenliang; Wei, Wenrui; Wang, Litong [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Hong, Ruoyu, E-mail: rhong@suda.edu.cn [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); College of Chemistry, Chemical Engineering and Materials Science & Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China)

    2015-12-01

    Graphical abstract: Schematic of the formation process of HTS. - Highlights: • Amino modified porous PS-DVB microspheres were used as templates to coat TiO{sub 2.} • The coating of TiO{sub 2} was conducted under regular changing atmospheric pressure. • The PS-DVB@TiO{sub 2} was calcinated first under nitrogen and then under air to get HTS. • The resultant products were provided with high surface area and excellent photocatalytic activity under UV irradiation. - Abstract: Hollow titania microspheres (HTS) were fabricated via a sol–gel process by coating the hydrolysis product of titanium tetrabutoxide (TBOT) onto the amino (–NH{sub 2}) modified porous polystyrene cross-linked divinyl benzene (PS-DVB) microspheres under changing atmospheric pressure, followed by calcination in nitrogen and air atmosphere. Particularly, the atmospheric pressure was continuously and regularly changed during the formation process of PS-DVB@TiO{sub 2} microspheres. Then the TiO{sub 2} particles were absorbed into the pores and onto the surface of PS-DVB as well. The resultant HTS (around 2 μm in diameter) featured a high specific surface area (84.37 m{sup 2}/g), anatase crystal and stable hollow microsphere structure, which led to high photocatalysis activity. The photocatalytic degradation of malachite green (MG) organic dye solution was conducted under ultraviolet (UV) light irradiation, which showed a high photocatalytic ability (81% of MG was degraded after UV irradiation for 88 min). Therefore, it could be potentially applied for the treatment of wastewater contaminated by organic pollutants.

  5. One–step preparation of CNTs/InVO_4 hollow nanofibers by electrospinning and its photocatalytic performance under visible light

    International Nuclear Information System (INIS)

    , Jinan 250100 (China))" data-affiliation=" (College of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100 (China))" >Zhang, Yanxiang; Ma, Dong; Wu, Juan; , Jinan 250100 (China))" data-affiliation=" (College of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100 (China))" >Zhang, Qingzhe; Xin, Yanjun; , Jinan 250100 (China))" data-affiliation=" (College of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100 (China))" >Bao, Nan

    2015-01-01

    Graphical abstract: - Highlights: • CNTs/InVO_4 hollow nanofibers were obtained by electrospinning method. • The properties of InVO_4 hollow nanofibers were deeply influenced by CNTs. • CNTs could reduce recombination of e"−–h"+ pairs to improve photocatalytic activity. - Abstract: A series of InVO_4 incorporated with multi-wall carbon nanotubes (CNTs) composite nanofibers were successfully synthesized by an electrospinning technique. The as-collected nanofibers were calcined at 550 °C in air to remove polyvinyl pyrrolidone (PVP), which could enable InVO_4 to crystallize. InVO_4 in the composite illustrated a hollow fibrous morphology and orthorhombic phase, and CNTs were embedded or coated on the InVO_4 hollow nanofibers. High-resolution transmission emission microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) spectra illustrated that CNTs were existed in the composites. The optical properties measured using UV–Vis diffuse reflectance spectroscopy (DRS) confirmed that the absorbance of InVO_4 nanofibers increased in the visible light region with the incorporation of CNTs. The photocatalytic performance of the samples was investigated by the degradation rhodamine B (Rh B) under visible light irradiation. The CNTs/InVO_4 nanofibers in Rh B degradation displayed a higher photocatalytic activity than pure InVO_4 nanofibers and 10%CNTs/InVO_4 nanoparticles. The degradation showed an optimized photocatalytic oxidation for InVO_4 nanofibers incorporated with 10wt% CNTs. The enhanced photocatalytic activity might be ascribed to the role of CNTs as an electron transporter and acceptor in the composites, which could effectively inhibit the charge recombination and facilitate the charge transfer.

  6. Mercury's Hollows: New Information on Distribution and Morphology from MESSENGER Observations at Low Altitude

    Science.gov (United States)

    Blewett, D. T.; Stadermann, A. C.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.; Peplowski, P. N.

    2014-12-01

    MESSENGER's orbital mission at Mercury led to the discovery of an unusual landform not known from other airless rocky bodies of the Solar System. Hollows are irregularly shaped, shallow, rimless depressions, often occurring in clusters and with high-reflectance interiors and halos. The fresh appearance of hollows suggests that they are relatively young features. For example, hollows are uncratered, and talus aprons downslope of hollows in certain cases appear to be covering small impact craters (100-200 in diameter). Hence, some hollows may be actively forming at present. The characteristics of hollows are suggestive of formation via destruction of a volatile-bearing phase (possibly one or more sulfides) through solar heating, micrometeoroid bombardment, and/or ion impact. Previous analysis showed that hollows are associated with low-reflectance material (LRM), a color unit identified from global color images. The material hosting hollows has often been excavated from depth by basin or crater impacts. Hollows are small features (tens of meters to several kilometers), so their detection and characterization with MESSENGER's global maps have been limited. MESSENGER's low-altitude orbits provide opportunities for collection of images at high spatial resolutions, which reveal new occurrences of hollows and offer views of hollows with unprecedented detail. As of this writing, we have examined more than 21,000 images with pixel sizes Shadow-length measurements were made on 280 images, yielding the depths of 1343 individual hollows. The mean depth is 30 m, with a standard deviation of 17 m. We also explored correlations between the geographic locations of hollows and maps provided by the MESSENGER geochemical sensors (X-Ray, Gamma-Ray, and Neutron Spectrometers), including the abundances of Al/Si, Ca/Si, Fe/Si, K, Mg/Si, and S/Si, as well as total neutron cross-section. No clear compositional trends emerged; it is likely that any true compositional preference for terrain

  7. Research on bandgaps in two-dimensional phononic crystal with two resonators.

    Science.gov (United States)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie

    2015-02-01

    In this paper, the bandgap properties of a two-dimensional phononic crystal with the two resonators is studied and embedded in a homogenous matrix. The resonators are not connected with the matrix but linked with connectors directly. The dispersion relationship, transmission spectra, and displacement fields of the eigenmodes of this phononic crystal are studied with finite-element method. In contrast to the phononic crystals with one resonators and hollow structure, the proposed structures with two resonators can open bandgaps at lower frequencies. This is a very interesting and useful phenomenon. Results show that, the opening of the bandgaps is because of the local resonance and the scattering interaction between two resonators and matrix. An equivalent spring-pendulum model can be developed in order to evaluate the frequencies of the bandgap edge. The study in this paper is beneficial to the design of opening and tuning bandgaps in phononic crystals and isolators in low-frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fundamental investigation on the impact strength of hollow fan blades

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T; Miyachi, T; Sofue, Y

    1985-01-01

    Models of hollow fan blades were made and tested to prove that their strength is sufficient for use in real engines. The hollow blades were fabricated by diffusion bonding of two titanium alloy (6Al-4V-Ti) plates, one of which had three spanwise stiffners and the other being flat plate. The model as a nontwisted tapered blade. Impact tests were carried out on the hollow fan blade models in which the ingestion of a 1.5 pounds bird was simulated. Solid blades with the same external form were also tested by similar methods for comparison. The results of these tests show that properly designed hollow blades have sufficient stiffness and strength for use as fan blades in the turbo-fan engine.

  9. Sensing Features of Long Period Gratings in Hollow Core Fibers

    Directory of Open Access Journals (Sweden)

    Agostino Iadicicco

    2015-04-01

    Full Text Available We report on the investigation of the sensing features of the Long-Period fiber Gratings (LPGs fabricated in hollow core photonic crystal fibers (HC-PCFs by the pressure assisted Electric Arc Discharge (EAD technique. In particular, the characterization of the LPG in terms of shift in resonant wavelengths and changes in attenuation band depth to the environmental parameters: strain, temperature, curvature, refractive index and pressure is presented. The achieved results show that LPGs in HC-PCFs represent a novel high performance sensing platform for measurements of different physical parameters including strain, temperature and, especially, for measurements of environmental pressure. The pressure sensitivity enhancement is about four times greater if we compare LPGs in HC and standard fibers. Moreover, differently from LPGs in standard fibers, these LPGs realized in innovative fibers, i.e., the HC-PCFs, are not sensitive to surrounding refractive index.

  10. The Nature of Mercury's Hollows, and Space Weathering Close to the Sun

    Science.gov (United States)

    Blewett, D. T.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.

    2018-05-01

    Hollows are a landform that appear to form by loss of a volatile-bearing phase from silicate rock. Hollows are very young and are likely to be forming in the present day. Hollows may be an analog for extreme weathering on near-Sun asteroids.

  11. Realization of 7-cell hollow-core photonic crystal fibers with low loss in the region between 1.4 μm and 2.3 μm

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, Brian Joseph; Jakobsen, C.

    2009-01-01

    Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm.......Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm....

  12. Generation and propagation characteristics of a localized hollow beam

    Science.gov (United States)

    Xia, Meng; Wang, Zhizhang; Yin, Yaling; Zhou, Qi; Xia, Yong; Yin, Jianping

    2018-05-01

    A succinct experimental scheme is demonstrated to generate a localized hollow beam by using a π-phase binary bitmap and a convergent thin lens. The experimental results show that the aspect ratio of the dark-spot size of the hollow beam can be effectively controlled by the focal length of the lens. The measured beam profiles in free space also agree with the theoretical modeling. The studies hold great promise that such a hollow beam can be used to cool trapped atoms (or molecules) by Sisyphus cooling and to achieve an optically-trapped Bose–Einstein condensate by optical-potential evaporative cooling.

  13. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.

    Science.gov (United States)

    Yu, Ya-Dong; Zhu, Ying-Jie; Qi, Chao; Jiang, Ying-Ying; Li, Heng; Wu, Jin

    2017-06-15

    Hydroxyapatite (HAP) with a porous hollow structure is an ideal biomaterial owing to its excellent biocompatibility and unique architecture. In this study, HAP nanorod-assembled porous hollow polyhedra, consisting of nanorod building blocks, have been successfully prepared at room temperature or under hydrothermal circumstances using a self-sacrificing Ca(OH) 2 template strategy. The hydrothermal treatment (at 180°C for 1h) can promote the HAP nanorods to be arranged with their axial direction normal to the polyhedron surface. The HAP nanorod-assembled porous hollow polyhedra have been explored for the potential application in drug/protein delivery, using ibuprofen (IBU) as a model drug and hemoglobin (Hb) as a model protein. The experimental results indicate that the HAP nanorod-assembled porous hollow polyhedra have a relatively high drug loading capacity and protein adsorption ability, and sustained drug and protein release. The HAP nanorod-assembled porous hollow polyhedra have promising applications in various biomedical fields such as the drug and protein delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Malakhova Anna Nikolaevna

    2016-06-01

    Full Text Available One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor slabs. The article provides constructive solutions of precast hollow core floor slabs and solid monolithic slabs that were used in the construction of buildings before wide use of large precast hollow core floor slabs. The article considers the application of caisson hollow core floor slabs for modern monolithic multi-storeyed buildings. The design solutions of such floor slabs, experimental investigations and computer modeling of their operation under load were described in this article. The comparative analysis of the calculation results of computer models of a hollow slabs formed of rod or plastic elements showed the similarity of calculation results.

  15. The crazy hollow formation (Eocene) of central Utah

    Science.gov (United States)

    Weiss, M.P.; Warner, K.N.

    2001-01-01

    The Late Eocene Crazy Hollow Formation is a fluviatile and lacustrine unit that was deposited locally in the southwest arm of Lake Uinta during and after the last stages of the lake the deposited the Green River Formation. Most exposures of the Crazy Hollow are located in Sanpete and Sevier Counties. The unit is characterized by a large variety of rock types, rapid facies changes within fairly short distances, and different lithofacies in the several areas where outcrops of the remnants of the formation are concentrated. Mudstone is dominant, volumetrically, but siltstone, shale, sandstone, conglomerate and several varieties of limestone are also present. The fine-grained rocks are mostly highly colored, especially in shades of yellow, orange and red. Sand grains, pebbles and small cobbles of well-rounded black chert are widespread, and "salt-and-pepper sandstone" is the conspicuous characteristic of the Crazy Hollow. The salt-and-pepper sandstone consists of grains of black chert, white chert, quartz and minor feldspar. The limestone beds and lenses are paludal and lacustrine in origin; some are fossiliferous, and contain the same fauna found in the Green River Formation. With trivial exceptions, the Crazy Hollow Formation lies on the upper, limestone member of the Green River Formation, and the beds of the two units are always accordant in attitude. The nature of the contact differs locally: at some sites there is gradation from the Green River to the Crazy Hollow; at others, rocks typical of the two units intertongue; elsewhere there is a disconformity between the two. A variety of bedrock units overlie the Crazy Hollow at different sites. In the southeasternmost districts it is overlain by the late Eocene formation of Aurora; in western Sevier County it is overlain by the Miocene-Pliocene Sevier River Formation; in northernmost Sanpete County it is overlain by the Oligocene volcanics of the Moroni Formation. At many sites bordering Sanpete and Sevier Valleys

  16. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Krishnan, M.

    1976-01-01

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10 -3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  17. Quantitative analysis of screw dislocations in 6H-SiC single crystals

    International Nuclear Information System (INIS)

    Dudley, M.; Si, W.; Wang, S.

    1997-01-01

    Screw dislocations along the [0001[ axis in 6H-SiC single crystals have been studied extensively by Synchrotron White-Beam X-ray Topography (SWBXT), Scanning Electron Microscopy (SEM), and Nomarski Optical Microscopy (NOM). Using SWBXT, the magnitude of the Burgers vector of screw dislocations has been determined by measuring the following four parameters: 1) the diameter of dislocation images in back-reflection topographs; 2) the width of bimodal dislocation images in transmission topographs; 3) the magnitude of the tilt of lattice planes on both sides of dislocation core in projection topographs; and 4) the magnitude of the tilt of lattice planes in section topographs. The four methods show good agreement. SEM results reveal that micropipes in the form of hollow tubes run through the crystal emerging as holes on the as-grown surface, with their diameters ranging from about 0.1 to a few micrometers. Correlation between topographic images and SEM micrographs shows that micropipes are screw dislocations with Burgers vector magnitudes from 2c to 7c (c is the lattice constant along the [0001[ axis). There is no empirical evidence that 1c dislocations have hollow cores. The Burgers vector magnitude of screw dislocations, b, and the diameter of associated micropipes, D, were fitted to Frank's prediction for hollow-core screw dislocations: D = μb 2 / 4π 2 γ, where μ is the shear modulus and γ is the specific surface energy. Statistical analysis of the relationship between D and b 2 shows that it is approximately linear, and the constant, γ / μ ranges from 1.1 x 10 -3 to 1.6 x 10 -3 nm

  18. Evolution of ESR Technology and Equipment for Long Hollow Ingots Manufacture

    Science.gov (United States)

    Medovar, Lev; Stovpchenko, Ganna; Dudka, Grigory; Kozminskiy, Alexander; Fedorovskii, Borys; Lebid, Vitalii; Gusiev, Iaroslav

    In this paper development of both ESR technology and equipment for hollow ingot manufacture review and analysis are presented. The real complications of hollow ingot manufacture and some tendentious issues which restrict process dissemination are discussed. An actual data of modern manufacture of as-cast pipes for heat and power engineering by traditional ESR with consumable electrode are given. Results of microstructure and nonmetal inclusion investigations have shown the high quality of as-cast ESR pipes. On the basis of these results the possibility to produce huge ESR hollows (up 5000 mm in dia) with final goal drastically to reduce setting ratio on forged shells and rings or even replace it by ESR hollows as-cast is grounded. Two new ESR technologies — consumable electrodes change and liquid metal usage — have passed pilot tests for heavy hollow production and shown very prospective results to be presented.

  19. Method for selecting hollow microspheres for use in laser fusion targets

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  20. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and

  1. Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents

    Science.gov (United States)

    Huang, Chienwen

    Hollow gold nanoparticle with a sub-30nm polycrystalline shell and a 50 nm hollow core has been successfully synthesized through the reduction of sodium gold sulfite by electrochemically evolved hydrogen. Such hollow gold nanoparticles exhibit unique plasmonic properties. They strongly scatter and absorb near infrared light. In this thesis we seek to understand the formation mechanism of hollow gold nanoparticles in this new synthesis process and their plasmonic properties. Also, we explore their biomedical applications as theranostic agents (therapeutic and diagnostic imaging). A lithographically patterned electrode consisting of Ag stripes on a glass substrate was used to investigate the formation process of hollow gold nanoparticles. Ag stripes served as working electrode for electrochemically evolution of hydrogen, and adjacent glass areas provided supporting surface for hydrogen nanobubbles nucleation and growth. Hydrogen nanobubbles served as both templates and reducing agents to trigger the autocatalytic disproportionation reaction of sodium gold sulfite. The effects of applied potential and the additives in the electrolyte have been studied. It has been found that the size and size distribution of hollow gold nanoparticle are directly relative to the applied potential, i.e. the hydrogen evolution rate. It has also been found the addition of Ni2+ ions can greatly improve the size distribution of hollow gold nanoparticles that can be contributed to that the newly electrodeposited nickel metal can enhance the hydrogen evolution efficiency. Another additive, ethylenediamine (EDA) can suppress the autocatalytic reaction of gold sulfite to increase the stability of sodium gold sulfite electrolyte. To capture such electrochemically evolved hydrogen nanobubbles, and subsequently to generate hollow gold nanoparticles in large numbers, alumina membranes were placed on the top of the working electrode. Anodic alumina membrane consists of ~200 nm pores, which provides

  2. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jin Woo [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan [Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Park, O Ok, E-mail: oopark@kaist.ac.kr [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 50-1, Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 711-873 (Korea, Republic of)

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe–Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8–12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe–Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite. - Highlights: • The ultrafine hollow fibers consist of inner Ni layer (∼100 nm) and outer Fe or Fe–Co layer (500–700 nm). • Composites with the fibers show a high permittivity as well as permeability at low weight fractions (10–30 wt%). • The composites show a permittivity resonance and the resonance frequency can be controlled by fiber content and length. • The composite absorber exhibits a double

  3. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    Science.gov (United States)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  4. Porous-wall hollow glass microspheres as carriers for biomolecules

    Science.gov (United States)

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  5. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    Energy Technology Data Exchange (ETDEWEB)

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    2017-04-18

    A hollow fiber fluid separation device includes a hollow fiber cartridge, comprising a plurality of hollow fiber membranes arranged around a central tubular core, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fiber membrane. In at least one of the tubesheets, the boreholes are formed radially and are in communication with the central tubular core. The hollow fiber fluid separation device can be utilized in liquid separation applications such as ultrafiltration and in gas separation processes such as air separation. The design disclosed herein is light weight and compact and is particularly advantageous at high operating temperatures when the pressure of the feed fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.

  6. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  7. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy ...

    African Journals Online (AJOL)

    countries. The known alternative in such condition is ... Key words: Hollow mill, stripped screws, titanium locked plates ... used a locally manufactured stainless steel hollow mill, ... head ‑ plate hole” assembly as a mono‑block single unit. In.

  8. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  9. Evolution of radiation resistant hollow fibers membranes for nuclear

    International Nuclear Information System (INIS)

    Neelam Kumari; Raut, D.R.; Bhardwaj, Y.K.; Mohapatra, P.K.

    2014-01-01

    We have evaluated hollow fiber supported liquid membrane (HFSLM) technique for the separation of actinides, fission products and other valuables from the nuclear waste solutions. In this technique, ligand responsible for separation of metal ion is held in tiny pores of membrane. Any drastic change as a consequence of irradiation, like change in pore size, change in hydrophobicity of polymeric material can be fatal for separation process as it may lead dislodging of carrier ligands from the pores. It was therefore needed to study the irradiation stability of hollow fibers. We have earlier showed that polypropylene fibers were stable up to 500 radiation dose and we therefore need to look into other options. In the present work, hollow fiber membranes made from polyether ether ketone (PEEK), polysulphone (PS). Polymers were evaluated for their radiation stability after exposing to varying absorbed dose of gamma radiation. The hollow fibers were irradiated to 100 KGy, 200 KGy, 500 KGy and 1000 KGy and its changes in hydrophobicity were measured using contact angle measurement studies

  10. Polymer blends used to develop felodipine-loaded hollow microspheres for improved oral bioavailability.

    Science.gov (United States)

    Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng

    2018-06-01

    Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Method for sizing hollow microspheres

    Science.gov (United States)

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  12. Pressure effects in hollow and solid iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.J.O., E-mail: nunojoao@ua.pt [Departamento de Física and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Saisho, S.; Mito, M. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Millán, A.; Palacio, F. [Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza. Departamento de Física de la Materia Condensada, Facultad de Ciencias, 50009 Zaragoza (Spain); Cabot, A. [Universitat de Barcelona and Catalonia Energy Research Institute, Barcelona (Spain); Iglesias, Ò.; Labarta, A. [Departament de Física Fonamental, Universitat de Barcelona and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2013-06-15

    We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core. - Highlights: ► Study of the pressure response of core and shell magnetic anisotropy. ► Contrast between hollow and solid maghemite nanoparticles. ► Disentanglement of nanoparticles core and shell magnetic properties.

  13. Theoretical prediction of low-density hexagonal ZnO hollow structures

    Energy Technology Data Exchange (ETDEWEB)

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Huan, Tran Doan [Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136 (United States); Thao, Nguyen Thi [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam); Tuan, Le Manh [Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam)

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.

  14. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    Science.gov (United States)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  15. Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application

    International Nuclear Information System (INIS)

    Xi, Min; Zhang, Yulan; Long, Lizhen; Li, Xinjun

    2014-01-01

    Rutile TiO 2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl 4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO 2 nanorod arrays (H-TNRs). The TiCl 4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl 4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ∼1.5 μm and diameter of ∼200 nm, obtained on 0.15 M TiCl 4 pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl 4 -TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. - Graphical abstract: Rutile hollow TiO 2 nanorod array photoanode obtained from original TiO 2 nanorod array photoanode by hydrothermal etching demonstrates enhanced photoelectric efficiency of DSSC. - Highlights: • TiO 2 nanorods are prepared via hydrothermal process on TiCl 4 -pretreated Ti foil. • Hollow TiO 2 nanorods are obtained by hydrothermal etching of TiO 2 nanorods. • TiCl 4 pretreatment plays a key role in protecting Ti foil from chemical corrosion. • Hollow TiO 2 nanorods photoanode shows enhanced photoelectric efficiency for DSSC

  16. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  17. Biomimetic synthesis of hollow calcium carbonate with the existence of the agar matrix and bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jianhua, E-mail: fjh2008@126.com; Wu, Gang; Qing, Chengsong

    2016-01-01

    Proteins play important roles in the process of biomineralization. Vaterite and calcite have been synthesized by the reaction of Na{sub 2}CO{sub 3} and CaCl{sub 2} in the bovine serum albumin (BSA) and agar system. The samples have been characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The shape of CaCO{sub 3} crystal has been analyzed by scanning electronic microscopy (SEM). The results show that calcite is a single product in the absence of BSA, but the product is a mixture of calcite and vaterite in the presence of BSA. The spheral shell of CaCO{sub 3} crystal was obtained when the concentration of BSA increased to 9.0 mg/mL. - Highlights: • Biomimetic synthesis of hollow calcium carbonate • Calcification mechanisms in the presence of both protein and polysaccharides • Biomineralization under the action of protein and polysaccharides.

  18. Biomolecule-assisted construction of cadmium sulfide hollow spheres with structure-dependent photocatalytic activity.

    Science.gov (United States)

    Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng

    2013-02-25

    In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.

    2008-01-01

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  20. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2008-10-28

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  1. Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

    International Nuclear Information System (INIS)

    Sayed, Fatima; Labaye, Yvan; Sayed Hassan, Rodaina; El Haj Hassan, Fouad; Yaacoub, Nader; Greneche, Jean-Marc

    2016-01-01

    The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a “throttled” spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a “hedgehog” configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

  2. Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, Fatima; Labaye, Yvan, E-mail: yvan.labaye@univ-lemans.fr [Université du Maine, Institut des Molécules et Matériaux du Mans CNRS UMR-6283 (France); Sayed Hassan, Rodaina; El Haj Hassan, Fouad [Université Libanaise, Faculté des Sciences Section I, MPLAB (Lebanon); Yaacoub, Nader, E-mail: nader.yaacoub@univ-lemans.fr; Greneche, Jean-Marc [Université du Maine, Institut des Molécules et Matériaux du Mans CNRS UMR-6283 (France)

    2016-09-15

    The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a “throttled” spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a “hedgehog” configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

  3. Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening

    International Nuclear Information System (INIS)

    Zhang Lihui; Yang Heqing; Xie Xiaoli; Zhang Fenghua; Li Li

    2009-01-01

    Hollow ZnSe microspheres were prepared via a facile hydrothermal reaction of Zn(AC) 2 .2H 2 O with Na 2 SeO 3 and ethylene glycol in NaOH solution at 180 deg. C for 12 h. The products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectrum. The hollow microspheres with the diameters of about 2 μm are constructed from ZnSe nanoparticles with the cubic zinc blende structure, the size of hollow interiors and constituent ZnSe nanodots can be tuned by changing the reaction time. The hollow microspheres are formed via an Ostwald ripening process. Photoluminescence and photocatalytic activity of the hollow ZnSe microspheres were studied at room temperature. The results indicate that the hollow microspheres constructed from ZnSe nanoparticles display a strong near-band edge emission at 479 nm and a very weak deep defect (DD) related emission at 556 nm and a high photocatalytic activity in the photodegradation of methyl orange. The photodegradation of methyl orange catalyzed by the ZnSe microspheres is a pseudo first-order reaction

  4. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  5. A simple approach to hollow maxillary complete denture fabrication: An innovative technique

    Directory of Open Access Journals (Sweden)

    Kathleen Manuela D'souza

    2017-01-01

    Full Text Available A severely atrophic maxillary arch exhibits reduced denture bearing area and increased inter-ridge distance, thus, affecting retention of the complete denture. Such clinical situations necessitate the fabrication of a hollow complete denture to reduce the weight of the prosthesis and increase retention. This article describes a simple technique to fabricate a hollow maxillary complete denture using salt and thermoplastic poly (methyl methacrylate sheet. The vacuum-formed thermoplastic matrix regulates the quantity of salt and determines its placement in the unpolymerized denture base material during the denture packing stage. The matrix lining the hollow cavity also aids to reinforce the hollow denture base.

  6. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  7. Synthesis and upconversion luminescence properties of YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers derived from Y{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Li Dan; Dong Xiangting, E-mail: dongxiangting888@163.com; Yu Wensheng; Wang Jinxian; Liu Guixia [Changchun University of Science and Technology, Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province (China)

    2013-06-15

    YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers were successfully fabricated via fluorination of the relevant Y{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers which were obtained by calcining the electrospun PVP/[Y(NO{sub 3}){sub 3} + Yb(NO{sub 3}){sub 3} + Er(NO{sub 3}){sub 3}] composite nanofibers. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope, transmission electron microscope, and fluorescence spectrometer. YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with mean diameter of 174 {+-} 22 nm, and YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers are composed of nanoparticles with size in the range of 30-60 nm. Upconversion emission spectrum analysis manifested that YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers emitted strong green and weak red upconversion emissions centering at 523, 545, and 654 nm, respectively. The green and red emissions were, respectively, originated from {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} {yields} {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} {yields} {sup 4}I{sub l5/2} energy levels transitions of the Er{sup 3+} ions. Moreover, the emitting colors of YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers were located in the green region in CIE chromaticity coordinates diagram. This preparation technique could be applied to prepare other rare earth fluoride upconversion luminescence hollow nanofibers.Graphical AbstractYF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers with orthorhombic structure were synthesized by fluorination of the electrospun Y{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers via a double-crucible method using NH{sub 4}HF{sub 2} as fluorinating agent. The mean diameter of YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers was 174 {+-} 22 nm. The fluorination method we proposed here has been proved to be an important method, as it can not only

  8. RGO/InVO{sub 4} hollowed-out nanofibers: Electrospinning synthesis and its application in photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dong [Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109 (China); Zhang, Yanxiang [College of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Mengchun, E-mail: mengchungao@outlook.com [Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Xin, Yanjun; Wu, Juan [College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109 (China); Bao, Nan [College of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2015-10-30

    Graphical abstract: - Highlights: • RGO/InVO{sub 4} hollow-out nanofibers were obtained by electrospinning method. • The properties of InVO{sub 4} hollow-out nanofibers were deeply influenced by RGO. • RGO could reduce recombination of e{sup −}–h{sup +} pairs to improve photocatalytic activity. • Photo-induced h{sup +} and e{sup −} are the two main reactive species for RhB degradation. - Abstract: A composite of reduced graphene oxide (RGO) and InVO{sub 4} nanofiber was successfully synthesized by an electrospinning technique. The as-collected fibers were calcined at 420 °C in air and then calcined at 550 °C in nitrogen gas to remove polyvinyl pyrrolidone (PVP), which could enable InVO{sub 4} to crystallize and protect the RGO from oxidation. The InVO{sub 4} in the composite illustrated a hollowed-out fibrous morphology and orthorhombic phase, and RGO nanosheets were nested in the InVO{sub 4} nanofibers. The hybrid RGO could produce more hydroxyl groups and a higher oxygen vacancy density on the surface of RGO/InVO{sub 4} composite. Compared with pure InVO{sub 4}, the light absorption range of the as-prepared RGO/InVO{sub 4} composite was expanded. In Rh B degradation, the RGO/InVO{sub 4} hybrid nanofibers displayed a higher photocatalytic activity than pure InVO{sub 4} nanofibers. The enhanced photocatalytic activity might be ascribed to the role of RGO as an electron transporter and acceptor in the composite, which could effectively inhibit the charge recombination and facilitate the charge transfer. The exported electron could attack an O{sub 2} molecule to facilitate the generation of • O{sub 2}{sup −} and • OH for the photodegradation process of Rh B.

  9. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    Science.gov (United States)

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  11. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  12. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  13. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  14. Sharp tipped plastic hollow microneedle array by microinjection moulding

    Science.gov (United States)

    Yung, K. L.; Xu, Yan; Kang, Chunlei; Liu, H.; Tam, K. F.; Ko, S. M.; Kwan, F. Y.; Lee, Thomas M. H.

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost.

  15. Sharp tipped plastic hollow microneedle array by microinjection moulding

    International Nuclear Information System (INIS)

    Yung, K L; Xu, Yan; Kang, Chunlei; Liu, H; Tam, K F; Ko, S M; Kwan, F Y; Lee, Thomas M H

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost. (paper)

  16. Forged hollows (alloy 617) for PNP-hot gas collectors

    International Nuclear Information System (INIS)

    Hofmann, F.

    1984-01-01

    When the partners in the PNP-Project decided to manufacture components, such as gas collectors, from material of type alloy 617, the problem arose that required semi-fabricated products, especially forged hollows weighing several tons each, were not available. As VDM (Vereinigte Deutsche Metallwerke AG) had already experience in production of other semi-fabricated products of this alloy, attempts were made based on this knowledge, to develop manufacturing methods for forged hollows. The aim was to produce hollows as long as possible, and to keep the welding cost minimum. Welded seams are always critical during fabrication, as well as during later inspection under actual operating conditions. The three stage plan used to perform the above task illustrates the development aims is described

  17. Monodisperse Hollow Tricolor Pigment Particles for Electronic Paper

    Directory of Open Access Journals (Sweden)

    Meng Xianwei

    2009-01-01

    Full Text Available Abstract A general approach has been designed to blue, green, and red pigments by metal ions doping hollow TiO 2. The reaction involves initial formation of PS at TiO2 core–shell nanoparticles via a mixed-solvent method, and then mixing with metal ions solution containing PEG, followed calcining in the atmosphere. The as-prepared hollow pigments exhibit uniform size, bright color, and tunable density, which are fit for electronic paper display.

  18. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    Science.gov (United States)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  19. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  20. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    Science.gov (United States)

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.

  1. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres.

    Science.gov (United States)

    Wu, Dazhen; Ge, Xuewu; Zhang, Zhicheng; Wang, Mozhen; Zhang, Songlin

    2004-06-22

    CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.

  2. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance

    International Nuclear Information System (INIS)

    Guan Xiangfeng; Li Liping; Li Guangshe; Fu Zhengwei; Zheng Jing; Yan Tingjiang

    2011-01-01

    Graphical abstract: Hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and these microspheres showed excellent cycle performance and enhanced lithium storage capacity. Display Omitted Research highlights: → Hierarchical CuO hollow microspheres were prepared by a hydrothermal method. → The CuO hollow microspheres were assembled from radically oriented nanorods. → The growth mechanism was proposed to proceed via self-assembly and Ostwald's ripening. → The microspheres showed good cycle performance and enhanced lithium storage capacity. → Hierarchical microstructures with hollow interiors promote electrochemical property. - Abstract: In this work, hierarchical CuO hollow microspheres were hydrothermally prepared without use of any surfactants or templates. By controlling the formation reaction conditions and monitoring the relevant reaction processes using time-dependent experiments, it is demonstrated that hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and that hierarchical spheres could be tuned to show different morphologies and microstructures. As a consequence, the formation mechanism was proposed to proceed via a combined process of self-assembly and Ostwald's ripening. Further, these hollow microspheres were initiated as the anode material in lithium ion batteries, which showed excellent cycle performance and enhanced lithium storage capacity, most likely because of the synergetic effect of small diffusion lengths in building blocks of nanorods and proper void space that buffers the volume expansion. The strategy reported in this work is reproducible, which may help to significantly improve the electrochemical performance of transition metal oxide-based anode materials via designing the hollow structures necessary for developing lithium ion batteries and the relevant

  3. Microfabricated hollow microneedle array using ICP etcher

    Science.gov (United States)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  4. Microfabricated hollow microneedle array using ICP etcher

    International Nuclear Information System (INIS)

    Ji Jing; Tay, Francis E H; Miao Jianmin

    2006-01-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF 6 /O 2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases

  5. Microfabricated hollow microneedle array using ICP etcher

    Energy Technology Data Exchange (ETDEWEB)

    Ji Jing [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, Francis E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF{sub 6}/O{sub 2} isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  6. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  7. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  8. Behavior of Hollow Thin Welded Tubes Filled with Sand Slag Concrete

    Directory of Open Access Journals (Sweden)

    Noureddine Ferhoune

    2016-01-01

    Full Text Available This paper presents the axial bearing capacity of thin welded rectangular steel stubs filled with concrete sand. A series of tests was conducted to study the behavior of short composite columns under axial compressive load; the cross section dimensions were 100 × 70 × 2 mm. A total of 20 stubs have been tested, as follows: 4 hollow thin welded tubes were tested to axial and eccentric load compression, 4 were filled with ordinary concrete appointed by BO columns, 6 were filled with concrete whose natural sand was completely substituted by a crystallized sand slag designated in this paper by BSI, and 6 were tucked in concrete whose natural sand was partially replaced by a crystallized sand slag called BSII. The main parameters studied are the height of the specimen (300 mm–500 mm, eccentricity of load and type of filling concrete. Based on test results obtained, it is confirmed that the length of the tubes has a considerable effect on the bearing capacity and the failure mode. In all test tubes, fracture occurred by the convex local buckling of steel section due to the outward thrust of the concrete; it was observed that the sand concrete improves the bearing capacity of tubes compounds compared to those filled with ordinary concrete.

  9. Predicting hollow viscus injury in blunt abdominal trauma with computed tomography.

    Science.gov (United States)

    Bhagvan, Savitha; Turai, Matthew; Holden, Andrew; Ng, Alexander; Civil, Ian

    2013-01-01

    Evaluation of blunt abdominal trauma is controversial. Computed tomography (CT) of the abdomen is commonly used but has limitations, especially in excluding hollow viscus injury in the presence of solid organ injury. To determine whether CT reports alone could be used to direct operative treatment in abdominal trauma, this study was undertaken. The trauma database at Auckland City Hospital was accessed for patients who had abdominal CT and subsequent laparotomy during a five-year period. The CT scans were reevaluated by a consultant radiologist who was blinded to operative findings. The CT findings were correlated with the operative findings. Between January 2002 and December 2007, 1,250 patients were evaluated for blunt abdominal injury with CT. A subset of 78 patients underwent laparotomy, and this formed the study group. The sensitivity and specificity of CT scan in predicting hollow viscus injury was 55.33 and 92.06 % respectively. The positive and negative predictive values were 61.53 and 89.23 % respectively. Presence of free fluid in CT scan was sensitive in diagnosing hollow viscus injury (90 %). Specific findings for hollow viscus injuries on CT scan were free intraperitoneal air (93 %), retroperitoneal air (100 %), oral contrast extravasation (100 %), bowel wall defect (98 %), patchy bowel enhancement (97 %), and mesenteric abnormality (94 %). CT alone cannot be used as a screening tool for hollow viscus injury. The decision to operate in hollow viscus injury has to be based on mechanism of injury and clinical findings together with radiological evidence.

  10. Guiding Properties of Silica/Air Hollow-Core Bragg Fibers

    DEFF Research Database (Denmark)

    Foroni, Matteo; Passaro, Davide; Poli, Federica

    2008-01-01

    The guiding properties of realistic silica/air hollow-core Bragg fibers have been investigated by calculating the dispersion curves, the confinement loss spectrum and the field distribution of the guided modes through a full-vector modal solver based on the finite element method. In particular, t...... the different possible applications, the feasibility of a DNA bio-sensor based on a hollow-core Bragg fiber has been demonstrated....

  11. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  12. Synthesis of ZnS hollow nanoneedles via the nanoscale Kirkendall effect

    International Nuclear Information System (INIS)

    Sun Hongyu; Chen Yan; Wang Xiaoliang; Xie Yanwu; Li Wei; Zhang Xiangyi

    2011-01-01

    The facile synthesis of one-dimensional II–VI semiconductor hollow nanostructures with sharp tips is of particular interest for their applications in novel nanodevices. In this study, by employing ZnO nanoneedles with lower symmetry structures as self-sacrificed templates, ZnS hollow nanoneedles with homogeneous thickness have been synthesized by a low temperature hydrothermal route through in situ chemical conversion manner and the nanoscale Kirkendall effect. The hollow needlelike structures obtained in the present study can be used as starting materials to create fantastic nanoarchitectures and may have important applications in optoelectronic nanodevices.

  13. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  14. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  15. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  16. Laser-driven ion acceleration with hollow laser beams

    International Nuclear Information System (INIS)

    Brabetz, C.; Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-01

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10 18  W cm −2 to 10 20  W cm −2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot

  17. Laser-driven ion acceleration with hollow laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Brabetz, C., E-mail: c.brabetz@gsi.de; Kester, O. [Goethe-Universität Frankfurt am Main, 60323 Frankfurt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Busold, S.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Cowan, T. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Deppert, O.; Jahn, D.; Roth, M. [Technische Universität Darmstadt, 64277 Darmstadt (Germany); Schumacher, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  18. Recent progress on the fabrication of hollow microspheres

    International Nuclear Information System (INIS)

    Wang Aijuan; Lu Yupeng; Sun Ruixue

    2007-01-01

    Hollow microspheres represent a special class of materials, on which intense interest has been paid in the fields of material science, medicine, chemistry and chromatography. Several methods, including templating method, emulsion processing, high temperature smelting and layer-by-layer self-assembly technique, have been used to produce this kind of materials. However, most of the current needs for hollow microspheres are limited because of the disadvantages of these fabricating methods, such as time-consuming and relatively complex fabricating process. Spray drying method, as a simple and feasible technology, has also been used to fabricate this kind of materials. This method can improve the efficiency and save the time to some extent, and thus gains more and more interest recently. The factors of influencing the product morphology, including inlet air temperature, atomized pressure, feed rate, initial slurry concentration, primary powders size and additives, are reviewed in this paper. In addition, several kinds of typical hollow microspheres fabricated by this method are also listed particularly

  19. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min

    2012-09-27

    Hybrid alloys among gold, palladium and platinum become a new category of catalysts primarily due to their enhanced catalytic effects. Enhancement means not only their effectiveness, but also their uniqueness as catalysts for the reactions that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au compared to Ag, Pd, and Pt helps to produce hollow Au cores first, followed by Pd or Pt shell growth. Continuous and highly crystalline shell growth was observed in Au@Pd core-shell NPs, but the sporadic and porous-like structure was observed in Au@Pt core-shell NPs. Along with hollow core-shell NPs, hollow porous Pt and hollow Au NPs are also prepared from Ag seed NPs. Twin boundaries which are typically observed in large size (>20 nm) Au NPs were not observed in hollow Au NPs. This absence is believed to be due to the role of the hollows, which significantly reduce the strain energy of edges where the two lattice planes meet. In ethanol oxidation reactions in alkaline medium, hollow Au@Pd core-shell NPs show highest current density in forward scan. Hollow Au@Pt core-shell NPs maintain better catalytic activities than metallic Pt, which is thought to be due to the better crystallinity of Pt shells as well as the alloy effect of Au cores. © 2012 The Royal Society of Chemistry.

  20. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  1. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Science.gov (United States)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  2. Synthesis of naturally cross-linked polycrystalline ZrO2 hollow nanowires using butterfly as templates

    International Nuclear Information System (INIS)

    Chen Yu; Gu Jiajun; Zhu Shenmin; Su Huilan; Zhang Di; Feng Chuanliang; Zhuang Leyan

    2012-01-01

    Highlights: ► Naturally cross-linked ZrO 2 nanotubes with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. ► The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. ► The achieved hollow ZrO 2 nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than ∼50 nm, which greatly hinders their applications in designing much smaller functional parts down to real “nano scale”. This work indicates, however, that hollow ZrO 2 nanowires with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO 2 nanotubes suggests a new optional approach in fabricating assembled nano systems.

  3. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    Science.gov (United States)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel; Jayaweera, Palitha; Bhamidi, Srinivas

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  4. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    International Nuclear Information System (INIS)

    Kwon, Yong Chul; Kang, Jong Hun; Kim, Sang Sik

    2016-01-01

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts

  5. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  6. A Prussian Blue-Based Core-Shell Hollow-Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH-Responsive Longitudinal Relaxivity.

    Science.gov (United States)

    Cai, Xiaojun; Gao, Wei; Ma, Ming; Wu, Meiying; Zhang, Linlin; Zheng, Yuanyi; Chen, Hangrong; Shi, Jianlin

    2015-11-04

    Novel core-shell hollow mesoporous Prussian blue @ Mn-containing Prussian blue analogue (HMPB@MnPBA) nanoparticles, designated as HMPB-Mn) as an intelligent theranostic nanoagent, are successfully constructed by coating a similarly crystal-structured MnPBA onto HMPB. This can be used as a pH-responsive T1 -weighted magnetic resonance imaging contrast agent with ultrahigh longitudinal relaxivity (r1 = 7.43 m m(-1) s(-1) ), and achieves the real-time monitoring of drug release. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hierarchical Ag/AgCl-TiO{sub 2} hollow spheres with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu Long; Yin, Hao Yong [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Nie, Qiu Lin, E-mail: nieqiulin@hdu.edu.cn [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Wei Wei [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Yang; LiYuan, Qiu [College of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-01-01

    The hierarchical Ag/AgCl-TiO{sub 2} hollow spheres were synthesized by depositing Ag/AgCl nanoparticles on TiO{sub 2} hollow spheres via a precipitation photoreduction method, and they were further characterized using TGA, SEM, TEM, XRD, XPS, UV–vis DRS and photoelectric chemical analysis. The analysis showed that the hierarchical Ag/AgCl-TiO{sub 2} hollow spheres exhibited the highest photocatalytic activity, which was approximately 13 times higher than that of TiO{sub 2} hollow spheres. The high photocatalytic activity of the composites is due to efficient electron-hole pairs separation at the photocatalyst interfaces, and localized surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction. - Highlights: • TiO{sub 2} hollow spheres were prepared by a sacrificial template method. • The hollow spheres were modified with Ag/AgCl to form the heterojunctions. • The modification may produce synergistic effect of LSPR and hollow structure. • Visible light photocatalytic activity was enhanced on this hollow catalyst. • The mechanism of the improved photocatalytic performance was discussed.

  8. High performance micro-engineered hollow fiber membranes by smart spinneret design

    NARCIS (Netherlands)

    de Jong, J.; Nijdam, W.; van Rijn, C.J.M.; Visser, Tymen; Bolhuis-Versteeg, Lydia A.M.; Kapantaidakis, G.; Koops, G.H.; Wessling, Matthias

    2005-01-01

    Can hollow fiber membranes be produced in other geometries than circular? If so, are membrane properties maintained and what could be the possible benefits of other geometries? This article gives answers and describes the fabrication of micro-structured hollow fiber membranes using micro-fabricated

  9. A method for manufacturing a hollow mems structure

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a method for manufacturing an at least partly hollow MEMS structure. In a first step one or more through-going openings is/are provided in core material. The one or more through-going openings is/are then covered by an etch-stop layer. After this step, a bottom...... further comprises the step of creating bottom and top conductors in the respective bottom and top layers. Finally, excess core material is removed in order to create the at least partly hollow MEMS structure which may include a MEMS inductor....

  10. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Seisno, Satoshi, E-mail: seino@mit.eng.osaka-u.ac.jp; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO{sub 2} nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO{sub 2} templates were fully coated with magnetite nanoparticles. Dissolution of the SiO{sub 2} core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe{sub 3}O{sub 4} grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO{sub 2} templates contributed to the adsorption of the Fe ion precursor and/or Fe{sub 3}O{sub 4} seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere. - Highlights: • A procedure to synthesize hollow magnetic nanospheres with Au inside was reported. • The Au nanoparticles inside the hollow showed high Au-S binding affinity. • The nanospheres are expected to be suitable as a new magnetic carrier for DDS.

  11. Synthesis and characterization of hollow spherical copper phosphide (Cu 3P) nanopowders

    Science.gov (United States)

    Liu, Shuling; Qian, Yitai; Xu, Liqiang

    2009-03-01

    In this paper, hollow spherical Cu 3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO 4ṡ5H 2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140-180 ∘C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu 3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu 3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu 3P hollow structure were also discussed.

  12. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  13. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  14. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  15. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  16. Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls

    Directory of Open Access Journals (Sweden)

    Chu Manh Hung

    2016-03-01

    Full Text Available The synthesis of porous metal-oxide semiconductors for gas-sensing application is attracting increased interest. In this study, α-Fe2O3 hollow balls were synthesized using an inexpensive, scalable, and template-free hydrothermal method. The gas-sensing characteristics of the semiconductors were systematically investigated. Material characterization by XRD, SEM, HRTEM, and EDS reveals that single-phase α-Fe2O3 hollow balls with an average diameter of 1.5 μm were obtained. The hollow balls were formed by self assembly of α-Fe2O3 nanoparticles with an average diameter of 100 nm. The hollow structure and nanopores between the nanoparticles resulted in the significantly high response of the α-Fe2O3 hollow balls to ethanol at working temperatures ranging from 250 °C to 450 °C. The sensor also showed good selectivity over other gases, such as CO and NH3 promising significant application.

  17. Mechanism of the formation of hollow spherical granules using a high shear granulator.

    Science.gov (United States)

    Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-05-30

    Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  19. Molecular beam sampling of a hollow cathode arc

    International Nuclear Information System (INIS)

    Theuws, P.

    1981-01-01

    This thesis deals with the description of the process of molecular beam sampling of a Hollow Cathode Arc. The aim of the study is twofold, i.e. investigation of the applicability of molecular beam sampling as a plasma diagnostic and the use of a Hollow Cathode Arc as a high intensity beam source for ground state atoms and metastable state atoms in the superthermal energy range. Suitable models are introduced, describing the process of molecular beam sampling of both ground state atoms and metastable state atoms. Fast ground state atoms produced by ion-atom collisions. The experimental facilities, i.e. the Hollow Cathode Arc, the time-of-flight machine and the dye laser system are described. And an alternative detection scheme for ground state atoms is presented and experimental results on the molecular beam sampling of a low density plasma (densities 10 19 -10 20 m -3 ) in the long arc configuration are reported. The results on the short arc configuration (densities 10 21 -10 22 m -3 ) are discussed. (Auth.)

  20. Enhancement of acoustical performance of hollow tube sound absorber

    International Nuclear Information System (INIS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-01-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  1. Enhancement of acoustical performance of hollow tube sound absorber

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my [Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal Melaka 76100 Malaysia (Malaysia)

    2016-03-29

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  2. Computational predictions of zinc oxide hollow structures

    Science.gov (United States)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  3. One-pot template-free synthesis of monodisperse hollow hydrogel microspheres and their resulting properties.

    Science.gov (United States)

    Lim, Hyung-Seok; Kwon, Eunji; Lee, Moonjoo; Moo Lee, Young; Suh, Kyung-Do

    2013-08-01

    Monodisperse poly(methacrylic acid/ethyleneglycoldimethacrylate) (MAA/EGDMA) hollow microcapsules, which exhibit pH-responsive behavior, are prepared by diffusion of cationic surfactants and hydrophobic interaction. During the association of the negatively charged hydrogel microspheres and an oppositely charged surfactant (cetyltrimethylammonium bromide, CTA(+)B), the hydrophobic polymer-surfactant complexes that form are separated from the internal water; consequently, a hollow structure can be formed. Confocal laser scanning microscopy, UV spectro-scopy and zeta potential are employed to study the formation of the hollow structure during the diffusion of the cationic surfactant. The controlled release behavior of methylene blue as a model drug from the as-prepared poly(MAA/EGDMA) microcapsules with a hollow structure is investigated under different pH conditions. The hollow structure can be retained, even during repetitive pH changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papotti, G [CERN; Redaelli, S. [CERN; Valentino, G. [Malta U.; Valentino, G. [CERN; Valuch, D. [CERN; Xu, C. [CERN

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  5. Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Hosoya, Tatsuya; Toyama, Naoki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-09-01

    Highlights: • Hollow silica–zirconia composite spheres were fabricated on polystyrene templates by the sol–gel method. • We study the effect of preparation conditions on the activity for hydrolytic dehydrogenation of ammonia borane. • The activity of hollow silica–zirconia composite spheres depends on wall thickness. - Abstract: In this paper, we report fabrication of hollow silica–zirconia composite spheres by polystyrene (PS) template method and control of wall thickness of the hollow spheres in nanoscale. Both the hollow spheres before and after calcination were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and powder X-ray diffraction analysis (XRD). Morphology of the hollow spheres does not significantly change after calcination from the results of SEM and TEM images, while the amount of residual PS templates drastically decreases via the calcination procedure from the results of FTIR and elemental analysis. The sample after calcination mainly includes amorphous silica from the results of XRD, indicating that the hollow silica–zirconia composite spheres consist of amorphous phases and/or fine particles. Wall thicknesses of the samples after calcination are controlled by adjusting the amount of PS template suspension, and hollow silica–zirconia composite spheres with the wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm are obtained using the PS template suspension of 25.0, 33.5, 100.0, and 400.0 g, respectively. The activities of the hollow spheres for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}) were compared. The evolutions of 2.0, 3.1, 5.0, and 8.0 mL hydrogen from aqueous NH{sub 3}BH{sub 3} solution were finished in about 4, 5, 3, and 7 min in the presence of the hollow spheres with wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm, respectively. The molar ratios of the hydrolytically generated hydrogen to

  6. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David); Archer, Lynden A.; Yang, Zichao

    2008-01-01

    for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic

  7. Tensile Strength of GFRP Reinforcing Bars with Hollow Section

    Directory of Open Access Journals (Sweden)

    Young-Jun You

    2015-01-01

    Full Text Available Fiber reinforced polymer (FRP has been proposed to replace steel as a reinforcing bar (rebar due to its high tensile strength and noncorrosive material properties. One obstacle in using FRP rebars is high price. Generally FRP is more expensive than conventional steel rebar. There are mainly two ways to reduce the cost. For example, one is making the price of each composition cost of FRP rebar (e.g., fibers, resin, etc. lower than steel rebar. Another is making an optimized design for cross section and reducing the material cost. The former approach is not easy because the steel price is very low in comparison with component materials of FRP. For the latter approach, the cost could be cut down by reducing the material cost. Therefore, an idea of making hollow section over the cross section of FRP rebar was proposed in this study by optimizing the cross section design with acceptable tensile performance in comparison with steel rebar. In this study, glass reinforced polymer (GFRP rebars with hollow section and 19 mm of outer diameter were manufactured and tested to evaluate the tensile performance in accordance with the hollowness ratio. From the test results, it was observed that the tensile strength decreased almost linearly with increase of hollowness ratio and the elastic modulus decreased nonlinearly.

  8. Formation of hollow atoms above a surface

    Science.gov (United States)

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  9. Synthesis of naturally cross-linked polycrystalline ZrO{sub 2} hollow nanowires using butterfly as templates

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yu, E-mail: chenyu_8323@csu.edu.cn [School of Physics Science and Electronics Central South University, Changsha, Hunan 410083 (China); Gu Jiajun, E-mail: gujiajun@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu Shenmin; Su Huilan [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Di, E-mail: zhangdi@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng Chuanliang [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhuang Leyan [Measurement Center of Anti-Counterfeiting Technical Products, Shanghai (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Naturally cross-linked ZrO{sub 2} nanotubes with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Black-Right-Pointing-Pointer The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. Black-Right-Pointing-Pointer The achieved hollow ZrO{sub 2} nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than {approx}50 nm, which greatly hinders their applications in designing much smaller functional parts down to real 'nano scale'. This work indicates, however, that hollow ZrO{sub 2} nanowires with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO{sub 2} nanotubes suggests a new optional approach in fabricating assembled nano systems.

  10. Rotary compression process for producing toothed hollow shafts

    Directory of Open Access Journals (Sweden)

    J. Tomczak

    2014-10-01

    Full Text Available The paper presents the results of numerical analyses of the rotary compression process for hollow stepped shafts with herringbone teeth. The numerical simulations were performed by Finite Element Method (FEM, using commercial software package DEFORM-3D. The results of numerical modelling aimed at determining the effect of billet wall thickness on product shape and the rotary compression process are presented. The distributions of strains, temperatures, damage criterion and force parameters of the process determined in the simulations are given, too. The numerical results obtained confirm the possibility of producing hollow toothed shafts from tube billet by rotary compression methods.

  11. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  12. Antiresonant hollow core fiber with seven nested capillaries

    DEFF Research Database (Denmark)

    Antonio-Lopez, Jose E.; Habib, Selim; Van Newkirk, Amy

    2016-01-01

    We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.......We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth....

  13. Catalyst-Free Synthesis of Hollow-Sphere-Like ZnO and Its Photoluminescence Property

    Directory of Open Access Journals (Sweden)

    Junye Cheng

    2014-01-01

    Full Text Available Hollow-sphere-like ZnO was successfully prepared by a facile combustion route at 950°C, and no external catalysts or additives were introduced. The morphology and structure of the hollow-sphere-like ZnO were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, and energy dispersive spectrometer (EDS. The possible growth mechanism was discussed in detail. In addition, the as-obtained hollow-sphere-like ZnO exhibited a strong green emission at 518 nm and a weak UV emission at 385 nm. We believe that the hollow-sphere-like ZnO material may be a good candidate for application in optical devices and catalyst systems.

  14. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber

    International Nuclear Information System (INIS)

    Shen Chong; Zhang Guoliang; Meng Qin

    2010-01-01

    Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

  15. Synthesis of solid and hollow ATO spheres by carbothermal reduction of ATO nanoparticles

    International Nuclear Information System (INIS)

    Chai Chunfang; Huang Zaiyin; Liao Dankui; Tan Xuecai; Wu Jian; Yuan Aiqun

    2007-01-01

    Solid and hollow ATO spheres were fabricated by heating ATO nanoparticles and graphite mixture in a tube furnace. The as-synthesized samples were characterized by EDS, XRD, FE-SEM, TEM and HRTEM. The size of the solid spheres could be controlled by adjusting the rate of Ar flow and deposition positions. The hollow spheres were synthesized in an alumina tube system under conditions of a relatively high oxygen concentration. The growth mechanism of solid and hollow spheres was analysed

  16. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  17. Facile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries

    Science.gov (United States)

    Yao, Ran-Ran; Zhao, Dong-Lin; Bai, Li-Zhong; Yao, Ning-Na; Xu, Li

    2014-07-01

    The hollow graphene oxide spheres have been successfully fabricated from graphene oxide nanosheets utilizing a water-in-oil emulsion technique, which were prepared from natural flake graphite by oxidation and ultrasonic treatment. The hollow graphene oxide spheres were reduced to hollow graphene spheres at 500°C for 3 h under an atmosphere of Ar(95%)/H2(5%). The first reversible specific capacity of the hollow graphene spheres was as high as 903 mAh g-1 at a current density of 50 mAh g-1. Even at a high current density of 500 mAh g-1, the reversible specific capacity remained at 502 mAh g-1. After 60 cycles, the reversible capacity was still kept at 652 mAh g-1 at the current density of 50 mAh g-1. These results indicate that the prepared hollow graphene spheres possess excellent electrochemical performances for lithium storage. The high rate performance of hollow graphene spheres thanks to the hollow structure, thin and porous shells consisting of graphene sheets.

  18. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    Science.gov (United States)

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

  19. Two-stream sausage and hollowing instabilities in high-intensity particle beams

    International Nuclear Information System (INIS)

    Uhm, Han S.; Davidson, Ronald C.; Kaganovich, Igor

    2001-01-01

    Axisymmetric two-stream instabilities in high-intensity particle beams are investigated analytically by making use of the Vlasov-Maxwell equations in the smooth-focusing approximation. The eigenfunctions for the axisymmetric radial modes are calculated self-consistently in order to determine the dispersion relation describing collective stability properties. Stability properties for the sausage and hollowing modes, characterized by radial mode numbers n=1 and n=2, respectively, are investigated, and the dispersion relations are obtained for the complex eigenfrequency ω in terms of the axial wavenumber k and other system parameters. The eigenfunctions obtained self-consistently for the sausage and hollowing modes indicate that the perturbations exist only inside the beam. Therefore, the location of the conducting wall does not have an effect on stability behavior. The growth rates of the sausage and hollowing modes are of the same order of magnitude as that of the hose (dipole-mode) instability. Therefore, it is concluded that the axisymmetric sausage and hollowing instabilities may also be deleterious to intense ion beam propagation when a background component of electrons is presented

  20. Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO

    Science.gov (United States)

    He, Gege; Tian, Liangliang; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Pu, Wanrong; Zhang, Jinkun; Li, Lu

    2018-01-01

    Transition metal oxides (TMOs) have attracted extensive research attentions as promising electrocatalytic materials. Despite low cost and high stability, the electrocatalytic activity of TMOs still cannot satisfy the requirements of applications. Inspired by kinetics, the design of hollow porous structure is considered as a promising strategy to achieve superior electrocatalytic performance. In this work, cubic NiO hollow porous architecture (NiO HPA) was constructed through coordinating etching and precipitating (CEP) principle followed by post calcination. Being employed to detect glucose, NiO HPA electrode exhibits outstanding electrocatalytic activity in terms of high sensitivity (1323 μA mM-1 cm-2) and low detection limit (0.32 μM). The excellent electrocatalytic activity can be ascribed to large specific surface area (SSA), ordered diffusion channels, and accelerated electron transfer rate derived from the unique hollow porous features. The results demonstrate that the NiO HPA could have practical applications in the design of nonenzymatic glucose sensors. The construction of hollow porous architecture provides an effective nanoengineering strategy for high-performance electrocatalysts.

  1. Controllable hydrothermal synthesis of rutile TiO{sub 2} hollow nanorod arrays on TiCl{sub 4} pretreated Ti foil for DSSC application

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Min [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhang, Yulan; Long, Lizhen [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xinjun, E-mail: lixj@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2014-11-15

    Rutile TiO{sub 2} nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl{sub 4} pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO{sub 2} nanorod arrays (H-TNRs). The TiCl{sub 4} pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl{sub 4} concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ∼1.5 μm and diameter of ∼200 nm, obtained on 0.15 M TiCl{sub 4} pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl{sub 4}-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. - Graphical abstract: Rutile hollow TiO{sub 2} nanorod array photoanode obtained from original TiO{sub 2} nanorod array photoanode by hydrothermal etching demonstrates enhanced photoelectric efficiency of DSSC. - Highlights: • TiO{sub 2} nanorods are prepared via hydrothermal process on TiCl{sub 4}-pretreated Ti foil. • Hollow TiO{sub 2} nanorods are obtained by hydrothermal etching of TiO{sub 2} nanorods. • TiCl{sub 4} pretreatment plays a key role in protecting Ti foil from chemical corrosion. • Hollow TiO{sub 2} nanorods photoanode shows enhanced photoelectric efficiency for DSSC.

  2. Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-06

    Porous hollow Co₃O₄ with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co₃O₄ rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g(-1) and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co₃O₄ with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.

  3. Modeling of formation of binary-phase hollow nanospheres from metallic solid nanospheres

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Vollath, D.

    2009-01-01

    Spontaneous formation of binary-phase hollow nanospheres by reaction of a metallic nanosphere with a non-metallic component in the surrounding atmosphere is observed for many systems. The kinetic model describing this phenomenon is derived by application of the thermodynamic extremal principle. The necessary condition of formation of the binary-phase hollow nanospheres is that the diffusion coefficient of the metallic component in the binary phase is higher than that of the non-metallic component (Kirkendall effect occurs in the correct direction). The model predictions of the time to formation of the binary-phase hollow nanospheres agree with the experimental observations

  4. Synthesis of Hollow Silica by Stober Method with Double Polymers as Templates

    International Nuclear Information System (INIS)

    Nguyen, Anhthu; Park, Chang Woo; Kim, Sang Hern

    2014-01-01

    The hollow SiO 2 spheres with uniform size were synthesized by a modified stoeber method under the control of polyelectrolytes (PSS and PAA) as templates. This synthetic route includes the formation of spherical colloid micelle in ethanol solution, hydrolysis of TEOS under control of ammonia, and the removal of polyelectrolyte by washing or calcination. Hollow silica spheres with controllable core diameters between 100 and 270 nm and wall thickness between 15 and 50 nm have been synthesized. The influence of template solution concentration and solvent and dispersant on the formation of silica hollow spheres is studied and reported in detail

  5. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load......-bearing capacity are identified and test results and calculation approach are for the first time Applied in accordance with each other for assessment of fire resistance of the structure....

  6. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    Science.gov (United States)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  7. Modeling High Pressure Micro Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  8. optimizing compressive strength characteristics of hollow building

    African Journals Online (AJOL)

    eobe

    Keywords: hollow building Blocks, granite dust, sand, partial replacement, compressive strength. 1. INTRODUCTION ... exposed to extreme climate. The physical ... Sridharan et al [13] conducted shear strength studies on soil-quarry dust.

  9. Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS Derivatives

    Directory of Open Access Journals (Sweden)

    Xiong Cao

    2018-05-01

    Full Text Available The spherization of nanoenergetic materials is the best way to improve the sensitivity and increase loading densities and detonation properties for weapons and ammunition, but the preparation of spherical nanoenergetic materials with high regularization, uniform size and monodispersity is still a challenge. In this paper, nanoenergetic hollow spherical hexanitrostibene (HNS derivatives were fabricated via a one-pot copolymerization strategy, which is based on the reaction of HNS and piperazine in acetonitrile solution. Characterization results indicated the as-prepared reaction nanoenergetic products were HNS-derived oligomers, where a free radical copolymerization reaction process was inferred. The hollow sphere structure of the HNS derivatives was characterized by scanning electron microscopy (SEM, transmission electron microscope (TEM, and synchrotron radiation X-ray imaging technology. The properties of the nanoenergetic hollow spherical derivatives, including thermal decomposition and sensitivity are discussed in detail. Sensitivity studies showed that the nanoenergetic derivatives exhibited lower impact, friction and spark sensitivity than raw HNS. Thermogravimetric-differential scanning calorimeter (TG-DSC results showed that continuous exothermic decomposition occurred in the whole temperature range, which indicated that nanoenergetic derivatives have a unique role in thermal applications. Therefore, nanoenergetic hollow spherical HNS derivatives could provide a new way to modify the properties of certain energetic compounds and fabricate spherical nanomaterials to improve the charge configuration.

  10. Silicon-Encapsulated Hollow Carbon Nanofiber Networks as Binder-Free Anodes for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Ding Nan

    2014-01-01

    Full Text Available Silicon-encapsulated hollow carbon nanofiber networks with ample space around the Si nanoparticles (hollow Si/C composites were successfully synthesized by dip-coating phenolic resin onto the surface of electrospun Si/PVA nanofibers along with the subsequent solidification and carbonization. More importantly, the structure and Si content of hollow Si/C composite nanofibers can be effectively tuned by merely varying the concentration of dip solution. As-synthesized hollow Si/C composites show excellent electrochemical performance when they are used as binder-free anodes for Li-ion batteries (LIBs. In particular, when the concentration of resol/ethanol solution is 3.0%, the product exhibits a large capacity of 841 mAh g−1 in the first cycle, prominent cycling stability, and good rate capability. The discharge capacity retention of it was ~90%, with 745 mAh g−1 after 50 cycles. The results demonstrate that the hollow Si/C composites are very promising as alternative anode candidates for high-performance LIBs.

  11. Nanosized aluminum nitride hollow spheres formed through a self-templating solid-gas interface reaction

    International Nuclear Information System (INIS)

    Zheng Jie; Song Xubo; Zhang Yaohua; Li Yan; Li Xingguo; Pu Yikang

    2007-01-01

    Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 deg. C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 deg. C, exhibiting excellent thermal stability. - Graphical abstract: Nanosized aluminum nitride hollow spheres were synthesized by nitridation of aluminum nanoparticles at 1000 deg. C using ammonia

  12. Metallic double shell hollow nanocages: the challenges of their synthetic techniques.

    Science.gov (United States)

    Mahmoud, M A; El-Sayed, M A

    2012-03-06

    Hollow metallic nanoparticles have been attracting the attention of many researchers in the past five years due to their new properties and potential applications. The unique structure of the hollow nanoparticles; presence of two surfaces (internal and external), and the presence of both cavities and pores in the wall surfaces of these nanoparticles are responsible for their unique properties and applications. Here the galvanic replacement technique is used to prepare nanocages made of gold, platinum, and palladium. In addition, hollow double shell nanoparticles are made of two metal shells like Au-Pt, Pt-Au, Au-Pd, Pd-Au, Pd-Pt, and Pt-Pd. Silver nanocubes are used as templates during the synthesis of hollow nanoparticles with single metal shell or double shell nanocages. Most of the problems that could affect the synthesis of solid Silver nanocubes used as template as well as the double shell nanocages and their possible solutions are discussed in a detail. The sizes and shapes of the single-shell and double-shell nanocages were characterized by a regular and high-resolution TEM. A SEM mapping technique is also used to image the surface atoms for the double shell hollow nanoparticles in order to determine the thickness of the two metal shells. In addition, optical studies are used to monitor the effect of the dielectric properties of the other metals on the plasmonic properties of the gold nanoshell in these mixed nanoparticles.

  13. Hollow volcanic tumulus caves of Kilauea Caldera, Hawaii County, Hawaii

    Directory of Open Access Journals (Sweden)

    William R. Halliday

    1998-01-01

    Full Text Available In addition to lava tube caves with commonly noted features, sizable subcrustal spaces of several types exist on the floor of Kilauea Caldera. Most of these are formed by drainage of partially stabilized volcanic structures enlarged or formed by injection of very fluid lava beneath a plastic crust. Most conspicuous are hollow tumuli, possibly first described by Walker in 1991. Walker mapped and described the outer chamber of Tumulus E-I Cave. Further exploration has revealed that it has a hyperthermic inner room beneath an adjoining tumulus with no connection evident on the surface. Two lengthy, sinuous hollow tumuli also are present in this part of the caldera. These findings support Walkers conclusions that hollow tumuli provide valuable insights into tumulus-forming mechanisms, and provide information about the processes of emplacement of pahoehoe sheet flows.

  14. Nb2O5 hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    International Nuclear Information System (INIS)

    Sasidharan, Manickam; Gunawardhana, Nanda; Yoshio, Masaki; Nakashima, Kenichi

    2012-01-01

    Graphical abstract: Nb 2 O 5 hollow nanosphere constructed electrode delivers high capacity of 172 mAh g −1 after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb 2 O 5 hollow nanospheres synthesis was synthesized by soft-template. ► Nb 2 O 5 hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g −1 after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb 2 O 5 hollow nanospheres of average diameter ca. ∼29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb 2 O 5 hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g −1 after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g −1 . The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb 2 O 5 shell domain that facilitates fast lithium intercalation/deintercalation kinetics.

  15. Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with a single ring of circular antiresonant tubes as the cladding provide a simple way of getting a negative-curvature hollow core, resulting in broadband low-loss transmission with little power overlap in the glass. These fibers show a significant improvement in loss performan...

  16. Sweep gas membrane distillation in a membrane contactor with metallic hollow fibers

    NARCIS (Netherlands)

    Shukla, Sushumna; Benes, Nieck Edwin; Vankelecom, I.F.J.; Mericq, J.P.; Belleville, M.P.; Hengl, N.; Sanchez Marcano, Jose

    2015-01-01

    This work revolves around the use of porous metal hollow fibers in membrane distillation. Various stages are covered, starting from membrane synthesis up to the testing of a pilot scale membrane module. Mechanically stable metal hollow fibers have been synthesized by phase inversion of a stainless

  17. The Legend of Sleepy Hollow

    Institute of Scientific and Technical Information of China (English)

    Washington; Irving

    1987-01-01

    Part Ⅰ On the Eastern shore of the Hudson River there was a little valley, among high hills, which was one of the quietest places in the whole world. This little valley had long been known by the name of SIeepy Hollow. Many strange stories about ghosts were told and retold in the village situated there.

  18. Numerical simulation of the sustaining discharge in radio frequency hollow cathode discharge in argon

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin-Xian; He, Feng, E-mail: hefeng@bit.edu.cn; Ouyang, Ji-Ting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Chen, Qiang, E-mail: lppmchenqiang@hotmail.com; Ge, Teng [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 10081 (China)

    2014-03-15

    In this paper, a two-dimensional fluid model was developed to study the radio frequency (RF) hollow cathode discharge (HCD) in argon at 1 Torr. The evolutions of the particle density distribution and the ionization rate distribution in RF HCD at 13.56 MHz indicate that the discharge mainly occurs inside the hollow cathode. The spatio-temporal distributions of the ionization rate and the power deposition within the hollow cathode imply that sheath oscillation heating is the primary mechanism to sustain the RF HCD, whereas secondary electron emission plays a negligible role. However, as driving frequency decreases, secondary electron heating becomes a dominant mechanism to sustain the discharge in RF hollow cathode.

  19. Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber

    DEFF Research Database (Denmark)

    Ho, Bo-Yan; Su, Hsien-Pin; Tseng, Yu-Pei

    2015-01-01

    We demonstrated a simple and cost-effective method to fabricate all fiber Mach-Zehnder interferometer (MZI) based on cascading a short section of liquid crystal (LC)-filled hollow-optic fiber (HOF) between two single mode fibers by using automatically splicing technique. The transmission spectra...... of the proposed MZI with different LC-infiltrated length were measured and the temperature-induced wavelength shifts of the interference fringes were recorded. Both blue shift and red shift were observed, depending the temperature range. Based on our experimental results, interference fringe was observed...

  20. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  1. Hollow micro string based calorimeter device

    DEFF Research Database (Denmark)

    2014-01-01

    positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...

  2. Hollow Amorphous MnSnO3 Nanohybrid with Nitrogen-Doped Graphene for High-Performance Lithium Storage

    International Nuclear Information System (INIS)

    Liu, Peng; Hao, Qingli; Xia, Xifeng; Lei, Wu; Xia, Hui; Chen, Ziyang; Wang, Xin

    2016-01-01

    Graphical abstract: A novel hybrid of hollow amorphous MnSnO 3 nanoparticles and nitrogen-doped reduced graphene oxide was fabricated. The unique structure and well-combination of both components account for the ultra long-term cyclic life with high reversible capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . - Highlights: • Novel hybrid of MnSnO 3 and nitrogen-doped reduced graphene oxide was fabricated. • The MnSnO 3 nanoparticles possess amorphous and hollow structure in the composite. • The excellent electrochemical performance benefits from unique nanostructure. • The reversible capacity of as-prepared hybrid is 610 mAh g −1 after 1000 cycles. • A long-term life with 97.3% capacity retention over 1000 cycles was obtained. - Abstract: Tin-based metal oxides usually suffer from severe capacity fading resulting from aggregation and considerable volume variation during the charge/discharge process in lithium ion batteries. In this work, a novel nanocomposite (MTO/N-RGO) of hollow amorphous MnSnO 3 (MTO) nanoparticles and nitrogen-doped reduced graphene oxide (N-RGO) has been designed and synthesized by a two-step method. Firstly, the nitrogen-doped graphene nanocomposite (MTO/N-RGO-P) with MnSn(OH) 6 crystal nanoparticles was synthesized by a facile solvothermal method. Subsequently, the MTO/N-RGO nanocomposite was obtained through the post heat treatment of MTO/N-RGO-P. The designed heterostructure and well-combination of the hollow amorphous MTO and N-RGO matrix can accelerate the ionic and electronic transport, and simultaneously accommodate the aggregation and volume variation of MTO nanoparticles during the lithiation–delithiation cycles. The as-prepared hybrid of MTO and N-RGO (MTO/N-RGO) exhibits a high reversible capacity of 707 mAh g −1 after 110 cycles at 200 mA g −1 , superior rate capability, and long-term cyclic life with high capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . Superior capacity retention of

  3. Transformation from hollow carbon octahedra to compressed octahedra and their use in lithium-ion batteries

    International Nuclear Information System (INIS)

    Mei, Tao; Li, Na; Li, Qianwen; Xing, Zheng; Tang, Kaibin; Zhu, Yongchun; Qian, Yitai; Shen, Xiaoyan

    2012-01-01

    Graphical abstract: Schematic illustration of the transformation process from hollow carbon octahedra into deflated balloon-like compressed hollow carbon octahedra ▪. Highlights: ► We demonstrate the in situ template synthesis of hollow carbon octahedra. ► The shell thickness of hollow carbon octahedra is only 2.5 nm. ► Morphology transformation could be realized by extending of reaction time. ► The hollow structures show reversible capacity as 353 mAh g −1 after 100 cycles. -- Abstract: Hollow carbon octahedra with an average size of 300 nm and a shell thickness of 2.5 nm were prepared by a reaction starting from ferrocene and Mg(CH 3 COO) 2 ·4H 2 O at 700 °C for 10 h. They became compressed and turned into deflated balloon-like octahedra when the reaction time was increased to 16 h. It was proposed that the gas pressure generated during the reaction process induced the transformation from broken carbon hollow octahedra into deflated balloon-like compressed octahedra. X-ray powder diffraction and Raman spectroscopy indicate that the as-obtained carbon products possess a graphitic structure and high-resolution transmission electron microscopy images indicate that they have low crystallinity. Their application as an electrode shows reversible capacity of 353 mAh g −1 after 100 cycles in the charge/discharge experiments of secondary lithium ion batteries.

  4. Hollow organ perforation in blunt abdominal trauma: the role of diagnostic peritoneal lavage.

    Science.gov (United States)

    Wang, Yu-Chun; Hsieh, Chi-Hsun; Fu, Chih-Yuan; Yeh, Chun-Chieh; Wu, Shih-Chi; Chen, Ray-Jade

    2012-05-01

    With recent advances in radiologic diagnostic procedures, the use of diagnostic peritoneal lavage (DPL) has markedly declined. In this study, we reviewed data to reevaluate the role of DPL in the diagnosis of hollow organ perforation in patients with blunt abdominal trauma. Adult patients who had sustained blunt abdominal trauma and who were hemodynamically stable after initial resuscitation underwent an abdominal computed tomographic (CT) scan. Diagnostic peritoneal lavage was performed for patients who were indicated to receive nonoperative management and where hollow organ perforation could not be ruled out. During a 60-month period, 64 patients who had received abdominal CT scanning underwent DPL. Nineteen patients were diagnosed as having a positive DPL based on cell count ratio of 1 or higher. There were 4 patients who sustained small bowel perforation. The sensitivity and specificity of the cell count ratio for a hollow organ perforation in this study were 100% and 75%, respectively. No missed hollow organ perforations were detected. For patients with blunt abdominal trauma and hemoperitoneum who plan to receive nonoperative management, DPL is still a useful tool to exclude hollow organ perforation that is undetected by CT. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. MoS2 coated hollow carbon spheres for anodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yufei; Wang, Ye; Shi, Wenhui; Yang, Huiying; Yang, Jun; Huang, Wei; Dong, Xiaochen

    2016-01-01

    With the assistance of resorcinol–formaldehyde, MoS 2 coated hollow carbon spheres (C@MoS 2 ) were synthesized through a facile hydrothermal route followed by heat and alkali treatments. The measurements indicate that the hollow carbon spheres with an average diameter of 300 nm and shell thickness of 20 nm. And the hollow core are uniformly covered by ultrathin MoS 2 nanosheets with a length increased to 400 nm. The unique hollow structure and the synergistic effect between carbon layer and MoS 2 nanosheets significantly enhance the rate capability and electrochemical stability of C@MoS 2 spheres as anode material of lithium-ion battery. The synthesized C@MoS 2 delivered a capacity of 750 mAh g −1 at a current density of 100 mA g −1 . More importantly, the C@MoS 2 maintained a reversible capacity of 533 mAh g −1 even at a high current density of 1000 mA g −1 . The study indicated that MoS 2 coated hollow carbon spheres can be promising anode material for next generation high-performance lithium-ion batteries. (paper)

  6. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

    KAUST Repository

    Zhang, Chen

    2014-05-29

    ZIF-8/6FDA-DAM, a proven mixed-matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual-layer ZIF-8/6FDA-DAM mixed-matrix hollow fiber membranes with ZIF-8 nanoparticle loading up to 30 wt % using the conventional dry-jet/wet-quench fiber spinning technique. The mixed-matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed-matrix dense films. Critical variables controlling successful formation of mixed-matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high-loading mixed-matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed-matrix membranes. © 2014 American Institute of Chemical Engineers.

  7. Measurement of noise in YBCO bi-crystal junctions

    International Nuclear Information System (INIS)

    Kuznik, J.; Hao, L.; Macfarlane, J.C.; Pegrum, C.M.; Fischer, G.M.; Mygind, J.; Pedersen, N.F.; Beck, A.; Gross, R.

    1993-01-01

    This paper describes collaborative work between three institutions as part of an ESPRIT programme to fabricate and characterise grain-boundary junctions. Bi-crystal junctions were fabricated at Tuebingen on SrTiO 3 substrates with a 24 misorientation angle and a-b tilt. 200nm of c-axis YBCO was sputter-deposited using a hollow-cathode magnetron, and the films patterned with optical lithography and Ar ion beam etching (3). For test purposes junctions with a range of sizes were made, with widths between 4 and 20μm. These have been characterised for noise properties at 0.3 - 1kHz and 60kHz at Strathclyde, and at 70GHz at Lyngby. (orig.)

  8. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    Science.gov (United States)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  9. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  10. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin; Khanh, Vu Bao

    2017-01-01

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  11. All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application

    DEFF Research Database (Denmark)

    Passaro, Davide; Foroni, Matteo; Poli, Federica

    2008-01-01

    The possibility to exploit all-silica hollow-core-microstructured Bragg fibers to realize a biosensor useful to detect the DNA hybridization process has been investigated. A Bragg fiber recently fabricated has been considered for the analysis performed by means of a full-vector modal solver based...... layer on the inner surface of the fiber holes can modify the fundamental mode properties. The numerical analysis results have successfully demonstrated the DNA bio-sensor feasibility in hollow-core Bragg fibers....

  12. Fabrication and characterization of functionally graded poly(vinylidine fluoride)-silver nanocomposite hollow fibers for sustainable water recovery

    KAUST Repository

    Francis, Lijo

    2014-12-01

    Poly(vinylidine fluoride) (PVDF) asymmetric hydrophobic hollow fibers were fabricated successfully using dryjet wet spinning. Hydrophobic silver nanoparticles were synthesized and impregnated into the PVDF polymer matrix and functionally graded PVDF-silver nanocomposite hollow fibers are fabricated and tested in the direct contact membrane distillation (DCMD) process. The as-synthesized silver nanoparticles were characterized for Transmission Electron Microscopy (TEM), particle size distribution (PSD) and Ultra Violet (UV) visible spectroscopy. Both the PVDF and PVDF-silver nanocomposite asymmetric hollow fibers were characterized for their morphology, water contact angle and mechanical strength. Addition of hydrophobic silver nanoparticles was found to enhance the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules fabricated using PVDF hollow fibers; the water vapor flux was found to be increased by about 8% and to reach 34.6kg m-2 h-1 for the hollow fiber membrane modules fabricated from the PVDF-silver nanocomposite hollow fibers at the same operating conditions with 99.99% salt rejection.

  13. Management of maxillectomy defect with a hybrid hollow bulb obturator

    Science.gov (United States)

    Singh, Kamleshwar; Singh, Saumyendra V; Mishra, Niraj; Agrawal, Kaushal Kishor

    2013-01-01

    A woman having already undergone maxillectomy came to the department complaining of difficulty in eating and speech. During the construction of an obturator, the bulb area should be hollowed to reduce weight so that the teeth and supporting tissues are not stressed unnecessarily. The conventional open design drains fluid from the adjacent mucosa, possibly increasing the weight of the prosthesis, and is difficult to clean. The closed bulb design does not drain secretions and may cause obstruction and susceptibility to infection in the paranasal and pharyngeal regions, though it is easier to maintain. An alternative to the two designs, combining their advantages, is presented in this report. As the open hollow part of the obturator was shallow, it was easy to clean. Making the inferior part of the bulb hollow and closed led to a reduction in the overall weight of the prosthesis while increasing its resonance. PMID:23436886

  14. Preparation of Uniform Hexapod Cu{sub 2}O and Hollow Hexapod CuO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Youngsik; Huh, Youngduk [Dankook Univ., Yongin (Korea, Republic of)

    2013-10-15

    The filled hexapod Cu{sub 2}O precursors were also prepared under microwave irradiation for only 120 s using a commercial microwave oven. The optimal experimental conditions for the perfect and uniform hexapod-like Cu{sub 2}O precursors were examined. The control of the cooling rate by adding cold water was also examined for the elimination of further crystal growth at the end of the arm of the hexapod Cu{sub 2}O precursors due to the thermal diffusion in reaction medium. The uniform hollow structure and hexapod CuO products were also prepared from the direct thermal oxidation of the filled hexapod Cu{sub 2}O precursors. The morphology-dependent properties of inorganic materials, such as magnetic, photocatalytic, and antibacterial activities, is one of the most important experimental issues in inorganic technology. Many researchers have prepared uniform and specific shaped inorganic oxides to understand the morphology-dependent properties of inorganic oxides.

  15. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process

    International Nuclear Information System (INIS)

    Mao Baodong; Kang Zhenhui; Wang Enbo; Tian Chungui; Zhang Zhiming; Wang Chunlei; Song Yanli; Li Meiye

    2007-01-01

    Uniform hollow hematite (α-Fe 2 O 3 ) spheres with diameter of about 600-700 nm and shell thickness lower than 100 nm are obtained by direct hydrothermal treatment of dilute FeCl 3 and tungstophosphoric acid H 3 PW 12 O 40 solution at 180 deg. C. The hollow spheres are composed of robust shells with small nanoparticles standing out of the surface and present a high-surface area and a weak ferromagnetic behavior at room temperature. The effect of concentration of H 3 PW 12 O 40 , reaction time and temperature for the formation of the hollow spheres are investigated in series of experiments. The formation of the hollow spheres may be ascribed to a polyoxometalte-assisted forced hydrolysis and dissolution process. - Graphical abstract: Uniform hollow hematite (α-Fe 2 O 3 ) spheres with diameter of about 600-700 nm and shell thickness lower than 100 nm are obtained by direct hydrothermal treatment of dilute FeCl 3 and tungstophosphoric acid H 3 PW 12 O 40 solution at 180 deg. C. The hollow spheres present a high surface area and weak ferromagnetic behavior at room temperature

  16. Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gui-fang, E-mail: guifang777@163.com; Zhang, Zi-dong, E-mail: 1986zzd@163.com; Dang, Feng, E-mail: dangfeng@sdu.edu.cn; Cheng, Chuan-bing, E-mail: 807033063@qq.com; Hou, Chuan-xin, E-mail: 710313782@qq.com; Liu, Si-da, E-mail: superliustar@hotmail.com

    2016-08-15

    BaFe{sub 12}O{sub 19} fibers and hollow fibers were successfully prepared by electrospun and co-electrospun. A very interesting result appeared in this study that hollow fibers made by co-electrospun showed low coercivity values of a few hundred oersteds, compared with the coercivity values of more than thousand oersteds for the fibers made by electrospun. So the hollow fibers with high saturation magnetization (M{sub s}) and while comparatively low coercivity (H{sub c}) exhibited strong magnetism and basically showed soft character. And this character for hollow fibers will lead to increase of the permeability for the samples which is favorable for impedance matching in microwave absorption. So these hollow fibers are promised to have use in a number of applications, such as switching and sensing applications, electromagnetic materials, microwave absorber. - Highlights: • BaFe{sub 12}O{sub 19} fibers were prepared via electrospinning successfully. • The coercivity has a value of a few hundred oersteds for the hollow fibers made by coaxial electrospun. • BaFe{sub 12}O{sub 19} with high saturation magnetization and low coercivity shows great potential in microwave absorbing application.

  17. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  18. THE NATURAL ENVIRONMENT OF THE UBSUNUR HOLLOW AND ITS ANTHROPOGENIC CONDITIONALITY

    Directory of Open Access Journals (Sweden)

    T. N. Prudnikova

    2017-06-01

    Full Text Available Research of the early historical epochs anthropogenic activity impact on the environment proves its influence on ecosystems dynamics and its substantial role in changing natural and climatic conditions. Methods and results. With the help of remote sensing (deciphering space images (Google resources, free access and landscape observations on the area of Ubsunur Hollow, one of the largest arid hollows of Central Asia, in the neighbourhood of the Agar-Dag range numerous tracks of irrigation agriculture have been found. The absence of fresh water continuous supply in the area of ancient irrigation presupposes milder climatic conditions and the presence of forest flora maintaining the level of ground waters in the past. The presence of forest steppe landscapes on arid areas of Ubsunur Hollow in the recent past has been proved by the results of paleobotanic research on ancient agroirrigation landscapes to the south-west of Lake Shara Nur in the Upper Naryin Gol River. Conclusion. A big number of land allotments found in north-eastern part of Ubsunur Hollow near the Agar-Dag range (Lake Shara Nur allows us to speak about significant water reserves (and forestry area of this territory as well as about a big number of people living there in early epochs and who needed fuel, wood as a source of construction materials, etc., consequently forests were destroyed. They were also being destroyed during numerous wars: Central Asia is the region of constant battles between western and eastern civilizations. The conducted research proves the presence of forest flora (spruce-larch-grass-sedge communities, steppificated pine forests in the Late Quaternary period in the central part of Ubsunur Hollow on the area which is now deserted. The most probable reason of desertisation of the area is destruction of the forest. Forest devastation is the major reason of landscape degradation not only of Ubsunur Hollow but also of the whole steppe Asian belt.

  19. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  20. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors

    Science.gov (United States)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-01

    Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04782f

  1. Electrodepositing of Au on hollow PS micro-spheres

    International Nuclear Information System (INIS)

    Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing

    2010-01-01

    Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)

  2. Molecular motor transport through hollow nanowires

    DEFF Research Database (Denmark)

    Lard, Mercy; Ten Siethoff, Lasse; Generosi, Johanna

    2014-01-01

    -driven motion of fluorescent probes (actin filaments) through 80 nm wide, Al2O 3 hollow nanowires of micrometer length. The motor-driven transport is orders of magnitude faster than would be possible by passive diffusion. The system represents a necessary element for advanced devices based on gliding assays...

  3. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  4. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De; Malerba, Mario; Patrini, Maddalena; Miele, Ermanno; Das, Gobind; Toma, Andrea; Proietti Zaccaria, Remo; Di Fabrizio, Enzo M.

    2013-01-01

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  5. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De

    2013-08-14

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  6. Breaking the glass ceiling: hollow OmniGuide fibers

    Science.gov (United States)

    Johnson, Steven G.; Ibanescu, Mihai; Skorobogatiy, Maksim A.; Weisberg, Ori; Engeness, Torkel D.; Soljacic, Marin; Jacobs, Steven A.; Joannopoulos, John D.; Fink, Yoel

    2002-04-01

    We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers. We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical ('azimuthally' polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate linearly-polarized modes in silica fibers that are vulnerable to birefringence.

  7. Determination of corrosion potential of coated hollow spheres

    International Nuclear Information System (INIS)

    Fedorkova, Andrea; Orinakova, Renata; Orinak, Andrej; Dudrova, Eva; Kupkova, Miriam; Kalavsky, Frantisek

    2008-01-01

    Copper hollow spheres were created on porous iron particles by electro-less deposition. The consequent Ni plating was applied to improve the mechanical properties of copper hollow micro-particles. Corrosion properties of coated hollow spheres were investigated using potentiodynamic polarisation method in 1 mol dm -3 NaCl solution. Surface morphology and composition were studied by scanning electron microscopy (SEM), light microscopy (LM) and energy-dispersive X-ray spectroscopy (EDX). Original iron particles, uncoated copper spheres and iron particles coated with nickel were studied as the reference materials. The effect of particle composition, particularly Ni content on the corrosion potential value was investigated. The results indicated that an increase in the amount of Ni coating layer deteriorated corrosion resistivity of coated copper spheres. Amount of Ni coating layer depended on conditions of Ni electrolysis, mainly on electrolysis time and current intensity. Corrosion behaviour of sintered particles was also explored by potentiodynamic polarisation experiments for the sake of comparison. Formation of iron rich micro-volumes on the particle surface during sintering caused the corrosion potential shift towards more negative values. A detailed study of the morphological changes between non-sintered and sintered micro-particles provided explanation of differences in corrosion potential (E corr )

  8. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli; Moreno Chaparro, Nicolas; Nunes, Suzana Pereira

    2015-01-01

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  9. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices

    Science.gov (United States)

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  10. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli

    2015-10-08

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  11. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2015-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers......We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers...

  12. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    Science.gov (United States)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-09-01

    In this paper, we demonstrated a simple approach for preparing α-Fe2O3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe2O3 hollow spheres formation. Ag/α-Fe2O3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe2O3 hollow composites exhibited remarkable catalytic performance toward H2O2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe2O3/GCE were discussed toward the reduction of H2O2 in this paper.

  13. Preparation of carbon nanotubes/epoxy resin composites by using hollow glass beads as the carrier

    International Nuclear Information System (INIS)

    Wu, X.F.; Zhao, Y.K.; Zhang, D.; Chen, T.B.; Ma, L.Y.

    2012-01-01

    Hollow glass beads had been utilized as the carrier to assist dispersion of carbon nanotubes in epoxy resin. Hollow glass beads were firstly aminated with gamma-aminopropyl-triethoxysilane, sencondly reacted with carboxyl-functionalized carbon nanotubes via an amidation reaction and susequently mixed with epoxy resin and hardener. The experimental results showed that carbon nanotubes could be loaded on the surfaces of hollow glass beads and approximately a monolayer of carbon nanotubes was formed when the weight ratio of hollow glass beads to carbon nanotubes was 100:5. Moreover, the dispersity of carbon nanotubes in the matrix was improved as compared to the control samples prepared by using a conventional mixing method. (author)

  14. Testing and performance analysis of a hollow fiber-based core for evaporative cooling and liquid desiccant dehumidification

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2016-01-01

    In this study, an innovative heat and mass transfer core is proposed to provide thermal comfort and humidity control using a hollow fiber contactor with multiple bundles of micro-porous hollow fibers. The hollow fiberbased core utilizes 12 bundles aligned vertically, each with 1,000 packed...

  15. Hollow Microtube Resonators via Silicon Self-Assembly toward Subattogram Mass Sensing Applications.

    Science.gov (United States)

    Kim, Joohyun; Song, Jungki; Kim, Kwangseok; Kim, Seokbeom; Song, Jihwan; Kim, Namsu; Khan, M Faheem; Zhang, Linan; Sader, John E; Park, Keunhan; Kim, Dongchoul; Thundat, Thomas; Lee, Jungchul

    2016-03-09

    Fluidic resonators with integrated microchannels (hollow resonators) are attractive for mass, density, and volume measurements of single micro/nanoparticles and cells, yet their widespread use is limited by the complexity of their fabrication. Here we report a simple and cost-effective approach for fabricating hollow microtube resonators. A prestructured silicon wafer is annealed at high temperature under a controlled atmosphere to form self-assembled buried cavities. The interiors of these cavities are oxidized to produce thin oxide tubes, following which the surrounding silicon material is selectively etched away to suspend the oxide tubes. This simple three-step process easily produces hollow microtube resonators. We report another innovation in the capping glass wafer where we integrate fluidic access channels and getter materials along with residual gas suction channels. Combined together, only five photolithographic steps and one bonding step are required to fabricate vacuum-packaged hollow microtube resonators that exhibit quality factors as high as ∼ 13,000. We take one step further to explore additionally attractive features including the ability to tune the device responsivity, changing the resonator material, and scaling down the resonator size. The resonator wall thickness of ∼ 120 nm and the channel hydraulic diameter of ∼ 60 nm are demonstrated solely by conventional microfabrication approaches. The unique characteristics of this new fabrication process facilitate the widespread use of hollow microtube resonators, their translation between diverse research fields, and the production of commercially viable devices.

  16. Ultra-large bandwidth hollow-core guiding in all-silica bragg fibers with nano-supports

    DEFF Research Database (Denmark)

    Vienne, Guillaume; Xu, Yong; Jakobsen, Christian

    2004-01-01

    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in t...... in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m....

  17. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  18. Simple Synthesis of Molybdenum Disulfide/Reduced Graphene Oxide Composite Hollow Microspheres as Supercapacitor Electrode Material.

    Science.gov (United States)

    Xiao, Wei; Zhou, Wenjie; Feng, Tong; Zhang, Yanhua; Liu, Hongdong; Tian, Liangliang

    2016-09-20

    MoS₂/RGO composite hollow microspheres were hydrothermally synthesized by using SiO₂/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO₂ microspheres. The structure, morphology, phase, and chemical composition of MoS₂/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS₂/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m²·g -1 . When used as supercapacitor electrode material, MoS₂/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g -1 at the current density of 1 A·g -1 , which was much higher than that of contrastive bare MoS₂ microspheres developed in the present work and most of other reported MoS₂-based materials. The enhancement of supercapacitive behaviors of MoS₂/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS₂/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g -1 , showing excellent application potential.

  19. Simple Synthesis of Molybdenum Disulfide/Reduced Graphene Oxide Composite Hollow Microspheres as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2016-09-01

    Full Text Available MoS2/RGO composite hollow microspheres were hydrothermally synthesized by using SiO2/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO2 microspheres. The structure, morphology, phase, and chemical composition of MoS2/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS2/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m2·g−1. When used as supercapacitor electrode material, MoS2/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g−1 at the current density of 1 A·g−1, which was much higher than that of contrastive bare MoS2 microspheres developed in the present work and most of other reported MoS2-based materials. The enhancement of supercapacitive behaviors of MoS2/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS2/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g−1, showing excellent application potential.

  20. Southern Appalachian hillslope erosion rates measured by soil and detrital radiocarbon in hollows

    Science.gov (United States)

    T.C. Hales; K.M. Scharer; R.M. Wooten

    2012-01-01

    Understanding the dynamics of sediment generation and transport on hillslopes provides important constraints on the rate of sediment output from orogenic systems. Hillslope sediment fluxes are recorded by organic material found in the deposits infilling unchanneled convergent topographic features called hollows. This study describes the first hollow infilling rates...

  1. Synergistic effects of hollow structure and surface fluorination on the photocatalytic activity of titania

    International Nuclear Information System (INIS)

    Lv Kangle; Yu Jiaguo; Deng Kejian; Sun Jie; Zhao Yanxi; Du Dongyun; Li Mei

    2010-01-01

    To study the synergistic effects of hollow structure and surface fluorination on the photoactivity of TiO 2 , TiO 2 hollow microspheres were synthesized by a hydrolysis-precipitate method using sulfonated polystyrene (PS) as templates and tetrabutylorthotitanate (TBOT) as precursor, and then calcined at 500 o C for 2 h. The calcined samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N 2 sorption. Photocatalytic activity was evaluated using reactive brilliant red X3B, an anionic organic dye, as a model pollutant in water. The results show that the photocatalytic activity of TiO 2 hollow microspheres is significantly higher than that of TiO 2 nanoparticles prepared in the same experimental conditions. At pH 7 and 3, the apparent rate constants of the former exceed that of the latter by a factor of 3.38 and 3.15, respectively. After surface fluorination at pH 3, the photoactivity of hollow microspheres and nanoparticles further increases for another 1.61 and 2.19 times, respectively. The synergistic effect of surface fluorination and hollow structure can also be used to prepare other highly efficient photocatalyst.

  2. Hollow MEMS

    DEFF Research Database (Denmark)

    Larsen, Peter Emil

    Miniaturization of electro mechanical sensor systems to the micro range and beyond has shown impressive sensitivities measuring sample properties like mass, viscosity, acceleration, pressure and force just to name a few applications. In order to enable these kinds of measurements on liquid samples...... a hollow MEMS sensor has been designed, fabricated and tested. Combined density, viscosity, buoyant mass spectrometry and IR absorption spectroscopy are possible on liquid samples and micron sized suspended particles (e.g. single cells). Measurements are based on changes in the resonant behavior...... of these sensors. Optimization of the microfabrication process has led to a process yield of almost 100% .This is achieved despite the fact, that the process still offers a high degree of flexibility. By simple modifications the Sensor shape can be optimized for different size ranges and sensitivities...

  3. Evolution of transverse instability in a hollow cylindrical weakly-ionized plasma column

    International Nuclear Information System (INIS)

    Kuedyan, H.M.

    1978-01-01

    Having observed formation of plasma striations in an Electron Cyclotron Resonance Heating (ECRH) device, we have studied the conditions under which the hollow cylindrical plasma columns would develop into striations. We first present the observed conditions of the hollow cylindrical plasma which would develop into plasma striations, the measured characteristics of the transverse oscillations and a simple small signal model for a transverse instability in a weakly-ionized hollow cylindrical plasma. This linearized model, which assumes flowing cold ion fluid (T/sub i/ approximately < 0.1 eV) in warm electron fluid (T/sub e/ approximately 1 eV) and background neutrals, reveals a transverse flute-type electrostatic instability whose characteristics are in qualitative and quantitative agreement with the measured values of the oscillations in our experiment

  4. Fabrication of porous silver/titania composite hollow spheres with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Li, Sa; Halperin, Shakked O.; Wang, Chang-An

    2015-01-01

    Silver/titania composite hollow spheres were first synthesized through an in-situ chemical reaction using functional-grouped carbon spheres as the template in this study. The prepared samples were characterized through an X-ray diffraction, N 2 adsorption–desorption, scanning electron microscopy, transmission electron microscopy and UV–Vis spectrophotometer. The photocatalytic activity of as-prepared samples was evaluated by photocatalytic decolorization of Methyl orange (MO) aqueous solution at ambient temperature under UV light. We found a structure with an optimal Ag:TiO 2 composition that exhibited a photodecomposition rate constant more than twice as high as titania hollow spheres lacking silver, and over three times higher than a commercial photocatalyst. - Highlights: • Ag/silver composites. • Hollow spheres. • Photocatalysis enhancement

  5. SU-8 hollow cantilevers for AFM cell adhesion studies

    Science.gov (United States)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  6. SU-8 hollow cantilevers for AFM cell adhesion studies

    International Nuclear Information System (INIS)

    Martinez, Vincent; Behr, Pascal; Vörös, Janos; Zambelli, Tomaso; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva

    2016-01-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m −1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification. (paper)

  7. Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method

    Science.gov (United States)

    Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li

    2008-05-01

    CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.

  8. Air Separation Using Hollow Fiber Membranes

    Science.gov (United States)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  9. Synthesis of Hollow CdS-TiO2 Microspheres with Enhanced Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Yuning Huo

    2012-01-01

    Full Text Available CdS-TiO2 composite photocatalyst in the shape of hollow microsphere was successfully synthesized via the hard-template preparation with polystyrene microspheres followed by ion-exchange approach. The hollow CdS-TiO2 microspheres significantly extended the light adsorption into visible light region, comparing to TiO2 microspheres. It led to much higher photocatalytic activities of hollow CdS-TiO2 microspheres than that of TiO2 during the photodegradation of rhodamine B under visible light irradiations. Furthermore, the well-remained hollow structure could achieve light multireflection within the interior cavities and the separation of photo-induced electrons and holes is efficient in CdS-TiO2, which were facilitated to improving the photoactivity.

  10. High-frequency and microwave heating as a pretreatment to kiln drying of hollowed-out timber

    International Nuclear Information System (INIS)

    Yamada, N.; Okumura, S.; Taniguchi, Y.

    2001-01-01

    To dry hollowed-out timber without V-shaped drying checks, its inner part should be dried faster than the outer part. The feasibility of high frequency heating and microwave heating as a pretreatment of kiln drying of hollow timber was examined. During high frequency heating, the top and bottom parts of the timber were dried faster than the right and left parts because the central hollow acts as an air-gap. The outer part dried faster than the inner part during microwave heating, probably because of insufficient penetration of microwave energy into the inner part. The uneven heating of hollowed timber was improved by turning the specimen around its axis during high frequency heating and by setting the specimen upright in the microwave oven

  11. Fabricating process of hollow out-of-plane Ni microneedle arrays and properties of the integrated microfluidic device

    Science.gov (United States)

    Zhu, Jun; Cao, Ying; Wang, Hong; Li, Yigui; Chen, Xiang; Chen, Di

    2013-07-01

    Although microfluidic devices that integrate microfluidic chips with hollow out-of-plane microneedle arrays have many advantages in transdermal drug delivery applications, difficulties exist in their fabrication due to the special three-dimensional structures of hollow out-of-plane microneedles. A new, cost-effective process for the fabrication of a hollow out-of-plane Ni microneedle array is presented. The integration of PDMS microchips with the Ni hollow microneedle array and the properties of microfluidic devices are also presented. The integrated microfluidic devices provide a new approach for transdermal drug delivery.

  12. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  13. Ultrasonic/surfactant assisted of CdS nano hollow sphere synthesis and characterization

    International Nuclear Information System (INIS)

    Rafati, Amir Abbas; Borujeni, Ahmad Reza Afraz; Najafi, Mojgan; Bagheri, Ahmad

    2011-01-01

    CdS hollow nanospheres with diameters ranging from 40 to 150 nm have been synthesized by a surfactant-assisted sonochemical route. The successful vesicle templating indicates that the outer leaflet of the bilayer is the receptive surface in the controlled growth of CdS nanoparticles which provide the unique reactor for the nucleation and mineralization growth of CdS nanoparticles. The CdS nanostructures obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Structural characterization of hollow CdS nanospheres indicates that these products packed with square subunits having sizes between 5 and 7 nm in diameter. The formation of the hollow nanostructure was explained by a vesicle template mechanism, in which sonication and surfactant play important roles. The band-edge emission and surface luminescence of the CdS nanoparticles were observed. -Research Highlights: → CdS hollow nanospheres with diameters of 40-150 nm were synthesized. → Nanoparticles were characterized by UV/Vis and photoluminescence. → Nanospheres are composed of smaller nanocrystals with the average size of 6.8 nm. → The band gap energy of the CdS nanoparticles is higher than its bulk value.

  14. Three-dimensional interconnected cobalt oxide-carbon hollow spheres arrays as cathode materials for hybrid batteries

    Directory of Open Access Journals (Sweden)

    Jiye Zhan

    2016-06-01

    Full Text Available Hierarchical porous metal oxides arrays is critical for development of advanced energy storage devices. Herein, we report a facile template-assisted electro-deposition plus glucose decomposition method for synthesis of multilayer CoO/C hollow spheres arrays. The CoO/C arrays consist of multilayer interconnected hollow composite spheres with diameters of ∼350 nm as well as thin walls of ∼20 nm. Hierarchical hollow spheres architecture with 3D porous networks are achieved. As cathode of high-rate hybrid batteries, the multilayer CoO/C hollow sphere arrays exhibit impressive enhanced performances with a high capacity (73.5 mAh g−1 at 2 A g−1, and stable high-rate cycling life (70 mAh g−1 after 12,500 cycles at 2 A g−1. The improved electrochemical performance is owing to the composite hollow-sphere architecture with high contact area between the active materials and electrolyte as well as fast ion/electron transportation path.

  15. Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Mei, Riguo; Song, Xiaorui; Hu, Yan; Yang, Yanfeng; Zhang, Jingjie

    2015-01-01

    Hollow reduced graphene oxide (RGO) microspheres are successfully synthesized in large quantities through spray-drying suspension of graphene oxide (GO) nanosheets and subsequent carbothermal reduction. With this new procedure, blighted-microspherical GO precursor is synthesized through the process of spray drying, afterwards the GO precursor is subsequently calcined at 800 °C for 5 h to obtain hollow RGO microspheres. A series of analyses, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR) are performed to characterize the structure and morphology of intermediates and as-obtained product. The as-obtained hollow RGO microspheres provide a high specific surface area (175.5 m 2 g −1 ) and excellent electronic conductivity (6.3 S cm −1 ), and facilitated high electrochemical performance as anode material for Li-ion batteries (LIBs). Compared with the RGO nanosheets, the as-obtained hollow RGO microspheres exhibit superior specific capacity and outstanding cyclability. In addition, this spray drying and carbothermal reduction (SDCTR) method provided a facile route to prepare hollow RGO microspheres in large quantities

  16. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    Science.gov (United States)

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  17. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  18. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property

    International Nuclear Information System (INIS)

    Tian, Yu; Li, Jinchai; Xiong, Hui; Dai, Jiangnan

    2012-01-01

    Highlights: ► Zn powder as precursor template for synthesis ZnO hollow spheres. ► Different precursor templates result in different ZnO nanostructures. ► Different experimental conditions enable growth of different surface morphologies of ZnO sphere. ► ZnO hollow sphere materials have good gas sensing performance for detecting ethanol gas. - Abstract: Using Zn powder as precursor templates, ZnO hollow microspheres were successfully prepared by thermal evaporation method and characterized by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope. It was found that different size and shape of precursor resulted in different ZnO nanostructures. When varying experimental conditions, such as air flow rate and working pressure, ZnO hollow spheres with different surface morphologies could be obtained. The advantages of the present synthetic technology are simple, relatively low cost, and high reproducibility. A gas sensor was fabricated from the as-prepared ZnO hollow microspheres and tested to the ethanol gas at different operating temperatures.

  19. Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode

    International Nuclear Information System (INIS)

    Ren, Bo; Fan, Meiqing; Liu, Qi; Wang, Jun; Song, Dalei; Bai, Xuefeng

    2013-01-01

    Graphical abstract: The possible formation process of NiO nanofibers without citric acid (a), and modified by citric acid (b). When the nanofibers is modified by citric acid, the nickel citrate is produced by complexing action of citric acid and nickel nitrate. Because of the larger space steric hindrance, the structure is limited by the molecular geometry. Under high temperature, the hollow nanofibers composed of NiO slices formed after the removal of PVP. Highlights: ► The method of obtaining hollow nanofibers is raised for the first time. ► The prepared NiO nanofibers are hollow tube and comprised of many NiO sheets. ► The hollow structure facilitated the electrolyte penetration. ► The hollow NiO nanofibers have good electrochemical properties. -- Abstract: NiO nanofibers modified by citric acid (NiO/CA) for supercapacitor material have been fabricated by electrospinning process. The characterizations of the nanofibers are investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. Results show that the NiO/CA nanofibers are hollow tube and comprised of many NiO sheets. Furthermore, the NiO/CA nanofibers have good electrochemical reversibility and display superior capacitive performance with large capacitance (336 F g −1 ), which is 2.5 times of NiO electrodes. Moreover, the NiO/CA nanofibers show excellent cyclic performance after 1000 cycles

  20. The rheological responds of the superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Xiaohui; Pei, Lei; Xuan, Shouhu, E-mail: xuansh@ustc.edu.cn; Yan, Qifan; Gong, Xinglong, E-mail: gongxl@ustc.edu.cn

    2017-05-01

    In this work, a superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres was developed and the influence of the particle structure on the rheological properties was investigated. The Fe{sub 3}O{sub 4} hollow nanospheres which were prepared by using the hydrothermal method presented the superparamagnetic characteristic, and the magnetic fluid thereof showed well magnetorheological (MR) effect. The stable magnetic fluid had a high yield stress even at low shear rate and its maximal yield stress was dramatically influenced by the measurement gap. In comparison to the Fe{sub 3}O{sub 4} nanoparticles based magnetic fluid (MF), the Fe{sub 3}O{sub 4} hollow nanospheres based MF exhibited better MR effect and higher stability since the unique hollow nanostructure. The shear stress of the hollow nanospheres is about 1.85 times larger than the nanoparticles based MF because it formed stronger chains structure under applying a magnetic field. To further investigate the enhancing mechanism, a molecule dynamic simulation was conducted to analyze the shear stress and the structure evolution of the Fe{sub 3}O{sub 4} hollow nanospheres based MF and the simulation matched well with the experimental results. - Highlights: • A superparamagnetic fluid based on Fe{sub 3}O{sub 4} hollow nanospheres was investigated. • The stable magnetic fluid had a high yield stress even at low shear rate. • The shear stress of the hollow nanospheres is large. • A molecule dynamic simulation was conducted to analyze the shear stress.

  1. Synthesis of single-crystalline hollow β-FeOOH nanorods via a controlled incomplete-reaction course

    International Nuclear Information System (INIS)

    Yu Haiyun; Song Xinyu; Yin Zhilei; Fan Weiliu; Tan Xuejie; Fan Chunhua; Sun Sixiu

    2007-01-01

    The single-crystalline β-FeOOH hollow nanorods with a diameter ranging from 20∼30 nm and length in the range of 70-110 nm have been successfully synthesized through a two-step route in the solution. The phase transformation and the morphologies of the hollow β-FeOOH nanorods were investigated with X-ray powdered diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electric diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), infrared spectrum (IR) and thermo-gravimetric analysis (TGA). These studies indicate that the first step is an incomplete-reaction course. Furthermore, The formation mechanism of the hollow nanorods has been discussed. It is found that the mixed system including chitosan and n-propanol is essential for the final formation of the hollow β-FeOOH nanorods

  2. Ultraviolet Generation by Atmospheric Micro-Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Cooper, J

    2004-01-01

    Report developed under STTR contract for topic AFO3TOl9. This report documents the program objectives, work performed, results obtained, and future plans for a program to develop micro-hollow cathode discharge (MHCD...

  3. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  4. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2013-01-01

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  5. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  6. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kartsonakis, I. A., E-mail: ikartsonakis@ims.demokritos.gr; Kontogiani, P.; Pappas, G. S.; Kordas, G. [NCSR ' DEMOKRITOS' , Sol-Gel Laboratory, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems (Greece)

    2013-06-15

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 {+-} 15 and 221 {+-} 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  7. Hollow viscus injury in children: Starship Hospital experience

    Directory of Open Access Journals (Sweden)

    Upadhyay Vipul

    2007-06-01

    Full Text Available Abstract Starship Children's Hospital in Auckland, New Zealand, serves a population of 1.2 million people and is a tertiary institution for pediatric trauma. This study is designed to review all cases of abdominal injury (blunt and penetrating that resulted in injury of a hollow abdominal viscus including the stomach, duodenum, small intestine, large intestine and urinary bladder. The mechanism of injury; diagnosis and outcome were studied. This was done by retrospective chart review of patients admitted from January 1995 to December 2001. Thirty two injuries were found in 29 children. The age ranged from 7 months to 15 years with boys represented more commonly. Small bowel was the most frequently injured hollow viscus. Computerized Tomography (CT scan is an extremely useful tool for the diagnosis of HVI.

  8. Spectroscopy of Rb atoms in hollow-core fibers

    International Nuclear Information System (INIS)

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-01-01

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  9. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  10. Self-assembly of hollow MoS{sub 2} microflakes by one-pot hydrothermal synthesis for efficient electrocatalytic hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aishi; Cui, Renjie; He, Yanna; Wang, Qi [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Zhang, Jian, E-mail: iamjzhang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Yang, Jianping [School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Li, Xing’ao, E-mail: lxahbmy@126.com [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China)

    2017-07-31

    Highlights: • A new hollow MoS{sub 2} microflakes are prepared by hydrothermal synthesis firstly. • SEM and TEM study show the structural nature of hollow microflakes in depth. • The unique hollow structures have large surface area owing to the cavity. • The hollow microflakes show better HER performance than their solid counterparts. - Abstract: Molybdenum disulfide (MoS{sub 2}) has emerged as a promising non-precious metal catalyst for hydrogen evolution reaction (HER) in recent years. Some strategies including nanotechnology as well as atom doping have been employed in the preparing of electrocatalysts for high-activity and stability. To the best of our knowledge, hollow MoS{sub 2} microflakes assembled from ultrathin nanosheets have not been prepared previously. In this work, a simple, facile and environmentally friendly hydrothermal synthesis was utilized for the fabrication of hollow MoS{sub 2} microflakes for the first time. The unique hollow structures have fascinating properties, such as the large surface and low density. The morphology and structure of MoS{sub 2} microflakes were confirmed by XRD, SEM, TEM and Raman. The composition of these materials was identified by the X-ray photoelectron spectroscopy. Notably, the as-prepared hollow MoS{sub 2} microflakes showed better electrocatalytic activity than other samples. The hollow flake-like structure can not only increase the active edge sites owing to the large specific surface area, but also enhance the electron transport to improve the electrocatalytic activity. Benefiting from these factors, the hollow MoS{sub 2} microflakes exhibited electrocatalytic activity and excellent stability with a low overpotential about 85 mV and a Tafel slope of 59 mV per decade.

  11. Electrochemical performance of Ni/TiO_2 hollow sphere in proton exchange membrane water electrolyzers system

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar

    2013-01-01

    This work presents the electrocatalytic evaluation of Ni/TiO_2 hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm"−"2 peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO_2 electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm"−"2. In the anodic polarization curves, the performance of 15 wt% Ni/TiO_2 hollow sphere electrocatalyst was evaluated up to 140 mA cm"−"2 at comparatively lower over-potential value. 20 wt% Ni/TiO_2 hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer

  12. Droplets Behavior of Hollow-Cone Spray in a Non-Condensable Environment

    International Nuclear Information System (INIS)

    Minoru Takahashi; Shin-ichi Kitagawa; Suizheng Qiu

    2002-01-01

    The characteristics of droplets in a water hollow-cone spray from nozzles 1.1 mm and 3.6 mm in diameter in an air environment have been investigated experimentally. The dual phase Doppler anemometry (PDA) system was used to measure the size and two velocity components of individual spherical particles. The liquid spray geometry, including spray breakup length and spray angle were also obtained experimentally. The mechanism and the influence of these parameters on a hollow cone spray flow were described. (authors)

  13. Controlled synthesis and characterization of hollow flower-like silver nanostructures

    Directory of Open Access Journals (Sweden)

    Eid KAM

    2012-03-01

    Full Text Available Kamel AM Eid, Hassan ME AzzazyNovel Diagnostics and Therapeutics Group, Yousef Jameel Science and Technology Research Center, School of Sciences and Engineering, The American University in Cairo, New Cairo, EgyptBackground: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The authors have developed a fast and inexpensive method for the synthesis of three-dimensional hollow flower-like silver nanostructures without the use of toxic chemicals.Methods: In this method, silver nitrate was reduced using dextrose in presence of trisodium citrate as a capping agent. Sodium hydroxide was added to enhance reduction efficacy of dextrose and reduce time of synthesis. The effects of all four agents on the shape and size of silver nanostructures were investigated.Results: Robust hollow flower-like silver nanostructures were successfully synthesized and ranged in size from 0.2 µm to 5.0 µm with surface area between 25–240 m2/g. Changing the concentration of silver nitrate, dextrose, sodium hydroxide, and trisodium citrate affected the size and shape of the synthesized structures, while changing temperature had no effect.Conclusion: The proposed method is simple, safe, and allows controlled synthesis of anisotropic silver nanostructures, which may represent promising tools as effective antimicrobial agents and for in vitro diagnostics. The synthesized hollow nanostructures may be used for enhanced drug encapsulation and sustained release.Keywords: silver nanoparticles, 3D hollow, flower-like, green synthesis

  14. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon; Badra, Jihad; Elwardani, Ahmed Elsaid; Im, Hong G.

    2016-01-01

    linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide

  15. CNT-embedded hollow TiO{sub 2} nanofibers with high adsorption and photocatalytic activity under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin-Young; Lee, Dayoung; Lee, Young-Seak, E-mail: youngslee@cnu.ac.kr

    2015-02-15

    Highlights: • CNT-embedded hollow TiO{sub 2} nanofibers were successfully fabricated via electrospinning, impregnation, and calcination. • The highest degradation ratio achieved using the CNT-embedded hollow TiO{sub 2} nanofibers. • Incorporation of embedded CNTs both increased the adsorption capability and enhanced the photodegradation activity. - Abstract: Hollow TiO{sub 2} nanofibers with embedded carbon nanotubes (CNTs) were prepared for use as photocatalysts through electrospinning, impregnation, and calcination using multiwalled CNTs (MWCNTs) with various ratios of titanium tetraisopropoxide (TTIP), and further characterized by SEM, TGA, BET and XRD. The results demonstrated the successful fabrication of hollow TiO{sub 2} nanofibers with embedded CNTs. The CNT-embedded hollow TiO{sub 2} nanofibers prepared in this study exhibited improved photocatalytic activity compared to plain hollow TiO{sub 2} nanofibers based on the conversion of methylene blue (MB) in aqueous solution under UV irradiation. The highest degradation ratio produced by the CNT-embedded hollow TiO{sub 2} nanofibers was approximately 62% after 70 min, which represented an increase of more than 80% over that of TiO{sub 2}. It was found that the enhanced efficiency of MB removal could be attributed not only to the adsorption capability of the CNTs but also to electron transfer between the CNTs and the TiO{sub 2}.

  16. Ionization processes in a transient hollow cathode discharge before electric breakdown: statistical distribution

    International Nuclear Information System (INIS)

    Zambra, M.; Favre, M.; Moreno, J.; Wyndham, E.; Chuaqui, H.; Choi, P.

    1998-01-01

    The charge formation processes in a hollow cathode region (HCR) of transient hollow cathode discharge have been studied at the final phase. The statistical distribution that describe different processes of ionization have been represented by Gaussian distributions. Nevertheless, was observed a better representation of these distributions when the pressure is near a minimum value, just before breakdown

  17. Hollow fibre supported liquid membrane extraction of ...

    African Journals Online (AJOL)

    A simple sample pre-treatment method utilizing hollow fibre supported liquid membrane (HFSLM) was carried out on pharmaceuticals samples comprising of cough syrups (CS1 and CS2) and an anti-inflammatory product (AI). The active ingredients targeted in the extraction process were diphenylhydramine (DPH), ...

  18. Nb{sub 2}O{sub 5} hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Manickam [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan); Gunawardhana, Nanda [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki, E-mail: yoshio@cc.saga-u.ac.jp [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Nakashima, Kenichi, E-mail: nakashik@cc.saga-u.ac.jp [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan)

    2012-09-15

    Graphical abstract: Nb{sub 2}O{sub 5} hollow nanosphere constructed electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb{sub 2}O{sub 5} hollow nanospheres synthesis was synthesized by soft-template. ► Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb{sub 2}O{sub 5} hollow nanospheres of average diameter ca. ∼29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g{sup −1}. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb{sub 2}O{sub 5} shell domain that facilitates fast lithium intercalation/deintercalation kinetics.

  19. Self-assembly of calcium phosphate nanoparticles into hollow spheres induced by dissolved amino acids

    NARCIS (Netherlands)

    Hagmeyer, D.; Ganesan, K.; Ruesing, J.; Schunk, D.; Mayer, C.; Dey, A.; Sommerdijk, N.A.J.M.; Epple, M.

    2011-01-01

    Nanoparticles of calcium phosphate assemble spontaneously within a few seconds into hollow spheres with a diameter around 200–300 nm in the presence of dissolved amino acids and dipeptides. The process of formation was followed by cryo-transmission electron microscopy (cryoTEM), proving their hollow

  20. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency.

    Science.gov (United States)

    Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W

    2017-11-14

    Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.

  1. 3D-printed PMMA Preform for Hollow-core POF Drawing

    DEFF Research Database (Denmark)

    Zubel, M. G.; Fasano, Andrea; Woyessa, Getinet

    2016-01-01

    In this paper we report the first, to our knowledge, 3D-printed hollow-core poly(methyl methacrylate) (PMMA) preform for polymer optical fibre drawing. It was printed of commercial PMMA by means of fused deposition modelling technique. The preform was drawn to cane, proving good enough quality...... of drawing process and the PMMA molecular weight to be appropriate for drawing. This ascertains that the manufacturing process provides preforms suitable for hollow-core fibre drawing. The paper focuses on maximisation of transparency of PMMA 3D printouts by optimising printing process parameters: nozzle...... temperature, printing speed and infill...

  2. Rapid Temperature Swing Adsorption using Polymeric/Supported Amine Hollow Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chance, Ronald [Georgia Tech Research Corporation, Atlanta, GA (United States); Chen, Grace [Georgia Tech Research Corporation, Atlanta, GA (United States); Dai, Ying [Georgia Tech Research Corporation, Atlanta, GA (United States); Fan, Yanfang [Georgia Tech Research Corporation, Atlanta, GA (United States); Jones, Christopher [Georgia Tech Research Corporation, Atlanta, GA (United States); Kalyanaraman, Jayashree [Georgia Tech Research Corporation, Atlanta, GA (United States); Kawajiri, Yoshiaki [Georgia Tech Research Corporation, Atlanta, GA (United States); Koros, William [Georgia Tech Research Corporation, Atlanta, GA (United States); Lively, Ryan [Georgia Tech Research Corporation, Atlanta, GA (United States); McCool, Benjamin [Georgia Tech Research Corporation, Atlanta, GA (United States); Pang, Simon [Georgia Tech Research Corporation, Atlanta, GA (United States); Realff, Matthew [Georgia Tech Research Corporation, Atlanta, GA (United States); Rezaei, Fateme [Georgia Tech Research Corporation, Atlanta, GA (United States); Searcy, Katherine [Georgia Tech Research Corporation, Atlanta, GA (United States); Sholl, David [Georgia Tech Research Corporation, Atlanta, GA (United States); Subramanian, Swernath [Georgia Tech Research Corporation, Atlanta, GA (United States); Pang, Simon [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-03-31

    This project is a bench-scale, post-combustion capture project carried out at Georgia Tech (GT) with support and collaboration with GE, Algenol Biofuels, Southern Company and subcontract to Trimeric Corporation. The focus of the project is to develop a process based on composite amine-functionalized oxide / polymer hollow fibers for use as contactors in a rapid temperature swing adsorption post-combustion carbon dioxide capture process. The hollow fiber morphology allows coupling of efficient heat transfer with effective gas contacting, potentially giving lower parasitic loads on the power plant compared to traditional contacting strategies using solid sorbents.

  3. Transient phases during crystallization of solution-processed organic thin films

    Science.gov (United States)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffery; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam; Headrick, Randall

    We report an in-situ study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition from solution via hollow pen writing, which exhibits multiple transient phases during crystallization. Under high writing speed (25 mm/s) the films have an isotropic morphology, although the mobilities range up to 3.0 cm2/V.s. To understand the crystallization in this highly non-equilibrium regime, we employ in-situ microbeam grazing incidence wide-angle X-ray scattering combined with optical video microscopy at different deposition temperatures. A sequence of crystallization was observed in which a layered liquid-crystalline (LC) phase of C8-BTBT precedes inter-layer ordering. For films deposited above 80ºC, a transition from LC phase to a transient crystalline state that we denote as Cr1 occurs after a temperature-dependent incubation time, which is consistent with classical nucleation theory. After an additional ~ 0.5s, Cr1 transforms to the final stable structure Cr2. Based on these results, we demonstrate a method to produce large crystalline grain size and high carrier mobility during high-speed processing by controlling the nucleation rate during the transformation from the LC phase. Nsf DMR-1307017, NSF DMR-1332208.

  4. Hollow TiO2 modified reduced graphene oxide microspheres encapsulating hemoglobin for a mediator-free biosensor.

    Science.gov (United States)

    Liu, Hui; Guo, Kai; Duan, Congyue; Dong, Xiaonan; Gao, Jiaojiao

    2017-01-15

    Hollow TiO 2 modified reduced graphene oxide microspheres (hollow TiO 2 -rGO microspheres or H-TiO 2 -rGO MS) have been synthesized and then be used to immobilize hemoglobin (Hb) to fabricate a mediator-free biosensor. The morphology and structure of hollow TiO 2 -rGO microspheres were characterized by scanning electron microscopy, transmission electronic microscopy and X-ray diffraction. Results of spectroscopy and electrochemistry tests revealed that hollow TiO 2 -rGO microsphere is an excellent immobilization matrix with biocompatibility for redox protein, affording good protein bioactivity and stability. The hollow TiO 2 -rGO microspheres with special structure and component enhance the immobilization efficiency of proteins and facilitate the direct electron transfer, which result in the better H 2 O 2 detection performance-the wide linear range of 0.1-360μM for H 2 O 2 (sensitivity of 417.6 μA mM -1 cm -2 ) and the extremely low detection limit of 10nM for H 2 O 2 . Moreover, the hollow microsphere can provide a protective microenvironment for Hb to make the as-prepared biosensor improve long-term stability. The as-prepared biosensor retains 95.4% of the initial response to H 2 O 2 after 60-d storage. Hence, this work suggests that if can be fabricated a mediator-free biosensor, hollow TiO 2 -rGO microspheres will find wide potential applications in environmental analysis and biomedical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Behzad, Ali Reza; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2014-01-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene

  6. Intensity-gradient induced Sisyphus cooling of a single atom in a localized hollow-beam trap

    International Nuclear Information System (INIS)

    Yin, Yaling; Xia, Yong; Ren, Ruimin; Du, Xiangli; Yin, Jianping

    2015-01-01

    In order to realize a convenient and efficient laser cooling of a single atom, we propose a simple and promising scheme to cool a single neutral atom in a blue-detuned localized hollow-beam trap by intensity-gradient induced Sisyphus cooling, and study the dynamic process of the intensity-gradient cooling of a single 87 Rb atom in the localized hollow-beam trap by using Monte-Carlo simulations. Our study shows that a single 87 Rb atom with a temperature of 120 μK from a magneto-optical trap (MOT) can be directly cooled to a final temperature of 4.64 μK in our proposed scheme. We also investigate the dependences of the cooling results on the laser detuning δ of the localized hollow-beam, the power RP 0 of the re-pumping laser beam, the sizes of both the localized hollow-beam and the re-pumping beam, and find that there is a pair of optimal cooling parameters (δ and RP 0 ) for an expected lowest temperature, and the cooling results strongly depend on the size of the re-pumping beam, but weakly depend on the size of the localized hollow-beam. Finally, we further study the cooling potential of our localized hollow-beam trap for the initial temperature of a single atom, and find that a single 87 Rb atom with an initial temperature of higher than 1 mK can also be cooled directly to about 6.6 μK. (paper)

  7. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  8. Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity

    International Nuclear Information System (INIS)

    Li Xiaofang; Lv Kangle; Deng Kejian; Tang Junfeng; Su Rong; Sun Jie; Chen Lianqing

    2009-01-01

    To study the relationship between the morphology and the photoreactivity of the catalyst, hollow spheres of two semiconductors of ZnO and TiO 2 were synthesized by using sulfonated polystyrene (PS) as template. The catalyst samples were then characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), diffuse reflectance spectra (DRS), transmission electron microscopy (TEM) and N 2 sorption. Reactive brilliant red X3B, an anionic organic dye, was used in this study as a model chemical with the aim of organic pollutants control. The results show that, whatever the catalyst was, both the adsorptive ability and photoreactivity of the hollow spheres were much higher than that of nanoparticles. The adsorption and photoreactivity of ZnO hollow spheres increased by a factor of 7.36 and 4.66, respectively compared with ZnO nanoparticles, while 3.74 times increased in adsorption and 3.41 times increased in photoreactivity for TiO 2 hollow spheres compared with TiO 2 nanoparticles. Correlations between adsorption and photoreactivity reflected the importance of adsorption in the enhanced photoreactivity of ZnO and TiO 2 hollow spheres

  9. Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors.

    Science.gov (United States)

    Cao, Jie; Jafta, Charl J; Gong, Jiang; Ran, Qidi; Lin, Xianzhong; Félix, Roberto; Wilks, Regan G; Bär, Marcus; Yuan, Jiayin; Ballauff, Matthias; Lu, Yan

    2016-11-02

    In this study, dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new anisotropic carbon nanostructure using gibbsite nanoplates as templates. The gibbsite-silica core-shell nanoplates were first prepared before the gibbsite core was etched away. Dopamine as carbon precursor was self-polymerized on the hollow silica nanoplates surface assisted by sonification, which not only favors a homogeneous polymer coating on the nanoplates but also prevents their aggregation during the polymerization. Individual silica-polydopamine core-shell nanoplates were immobilized in a silica gel in an insulated state via a silica nanocasting technique. After pyrolysis in a nanoconfine environment and elimination of silica, discrete and dispersible hollow carbon nanoplates are obtained. The resulted hollow carbon nanoplates bear uniform hexagonal morphology with specific surface area of 460 m 2 ·g -1 and fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.

  10. Hollow magnetic nano-CO3O4/polystyrene microspheres synthesized through radiation induced interfacial polymerization

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Mozhen; Wang Shufeng; Zhang Zhicheng

    2010-01-01

    Co 3 O 4 nanoparticles (around 8 nm) were synthesized hydrothermally by dissolving Co 2+ in the mixture of ethanol and water, and then decorated with oleic acid to endow them with hydrophobic surface nature. After that, nano-particles were added into emulsion which consisted by sodium dodecyl sulfate, water, styrene and cetyl alcohol. Hollow magnetic composite spheres were prepared by irradiated the emulsion with γ-rays. The final products are thoroughly characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques, which showed the formation of hollow magnetic composite spheres. The influence of addition dosage of nano-particles, sodium dodecyl sulfate and the types of nano-particles on the average size and shape of hollow composites were studied. The effects of nano-particles to the polymerization of styrene were studied by kinetics. Nano-particles are capsulated by polystyrene to form hollow composites, which confirmed by XPS results. Finally, magnetic property of hollow composites is compared with pure nano-Co 3 O 4 . (authors)

  11. One-Step Synthesis of Hollow Titanate (Sr/Ba Ceramic Fibers for Detoxification of Nerve Agents

    Directory of Open Access Journals (Sweden)

    Satya R. Agarwal

    2012-01-01

    Full Text Available Poly(vinyl pyrrolidone(PVP/(strontium/barium acetate/titanium isopropoxide composite fibers were prepared by electrospinning technique via sol-gel process. Diameters of fibers prepared by calcinations of PVP composite fibers were 80–140 nm (solid and 1.2-2.2 μm (hollow fibers prepared by core-shell method. These fibers were characterized using scanning electron microscope (SEM, X-ray diffraction (XRD, and transmission electron microscope (TEM analytical techniques. XRD results showed better crystalline nature of the materials when calcined at higher temperatures. SEM and TEM results clearly showed the formation of hollow submicrometer tubes. The surface area of the samples determined by BET analysis indicated that hollow fibers have ~20% higher surface area than solid fibers. The UV studies indicate better detoxification properties of the hollow fibers compared to solid fibers.

  12. Charge exchange induced X-ray transitions of hollow ions in laser field ionized plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A. Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu.; Auguste, T.; D'Oliveira, P.; Hulin, S.; Monot, P.

    2000-01-01

    Double electron charge exchange is proposed for the formation of hollow He-like ions when laser field ionized nuclei penetrate into the residual gas. Using transitions from different configurations in hollow ions a method for the determination of the electron temperature in the long lasting recombination phase is developed

  13. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    Science.gov (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  14. Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres

    Science.gov (United States)

    Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui

    2017-05-01

    Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.

  15. Analytical approach of laser beam propagation in the hollow polygonal light pipe.

    Science.gov (United States)

    Zhu, Guangzhi; Zhu, Xiao; Zhu, Changhong

    2013-08-10

    An analytical method of researching the light distribution properties on the output end of a hollow n-sided polygonal light pipe and a light source with a Gaussian distribution is developed. The mirror transformation matrices and a special algorithm of removing void virtual images are created to acquire the location and direction vector of each effective virtual image on the entrance plane. The analytical method is demonstrated by Monte Carlo ray tracing. At the same time, four typical cases are discussed. The analytical results indicate that the uniformity of light distribution varies with the structural and optical parameters of the hollow n-sided polygonal light pipe and light source with a Gaussian distribution. The analytical approach will be useful to design and choose the hollow n-sided polygonal light pipe, especially for high-power laser beam homogenization techniques.

  16. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    Science.gov (United States)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  17. Protesa Maksilofasial Thermoplastic Nylon (Valplast dengan Hollow Bulb (Klas III Aramany palate schisis hereditary

    Directory of Open Access Journals (Sweden)

    A. Azhindra

    2012-06-01

    Full Text Available Latar Belakang: pada penderita palato schisis (celah langit-langityang disebkan hereditary atau bawaan lahir terlihat defect yang menyebabkan gangguan bicara (sengau, penelanan, pengunyahan, estetik, dan psikologis. Untuk dapat mencapai fungsi bicara, fungsi mengunyah dan fungsi estetika diperlukan protesa untuk menutup celah tersebut. Tujuan: untuk meninformasikan cara rehabilitas defect atau cacat pada wajah dengan protesa maksilofasial thermoplastic nylon dengan hollow buib yang berguna untuk mengembalikan fungsi bicara, penelanan, pengunyahan, estetik dan psikologis penderita. Kasus dan penanganan: pasien pria berusia 46 tahun dating ke RSGM Prof. Soedomo atas rujukan dari poli RS. Dr. Sardjito. Saat datang pasien terganggu berbicara, menguyah dan menelan disebkan adanya celah langit-langit terbuka dan merupakan kelainan bawaan. Pasien kehilangan banyak gigi terutama pada gigi posterior pada rahang atas dan ingin dibuatkan gigi tiruan. Obturator ini dibuat segera dengan mempertimbangkan penutupan celah langit-langit, menggunakan bahan yang lebih ringan (menggunakan hoolow bulb agar keluhan pasien dapat diatasi didesain alat yang mempunyai retensi maksimal dan mengembalikan pengunyahan, fungsi bicara, penelanan, estetis dan psikologis sehingga pasien akan akan mempunyai bentuk wajah yang mendekati normal. Hollow bulb adalah rongga yang dibuat pada protesa maksilofasial untuk menutup rongga mulut, rongga hidung dan defect. Pada waktu insersi diperiksa retensi, stabilisasi, oklusi, estetik dan pengucapan. Kontrol dilakukan 1 minggu dan 1 bulan setelah pemakaian. Hasil pemeriksaan dan evaluasi setelah 1 minggu dan 1 bulan setelah pemakaian protesa maksilofasial hollow bulb didapatkan hasil dengan retensi, stabilisasi, olusi dan pengucapan lebih baik. Kesimpulan: setelah menggunakan protesa maksilofasial thermoplastic nylon dengan hollow buib pada penderita palato scisis, pasien dapat berbicara dan mengunyah dengan normal. Protesa maksilofasial

  18. Urchin-Like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow.

    Science.gov (United States)

    Wei, Wutao; Cui, Shizhong; Ding, Luoyi; Mi, Liwei; Chen, Weihua; Hu, Xianluo

    2017-11-22

    Portable electronics and electric or hybrid electric vehicles are developing in the trend of fast charge and long electric mileage, which ask us to design a novel electrode with sufficient electronic and ionic transport channels at the same time. Herein, we fabricate a uniform hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material through an easy self-generated and resacrificial template method. The one-dimensional chain-like crystal structure unit containing the metallic bonding and the intercalated OH - and H 2 O endow this electrode material with abundant electronic and ionic transport channels. The hollow-urchin-like structure built by nanorods contributes to the large electrode-electrolyte contact area ensuring the supply of ions at high current. CNTs are employed to transport electrons between electrode material and current collector. The as-assembled NC-CNT-2//AC supercapacitor device exhibits a high specific capacitance of 108.3 F g -1 at 20 A g -1 , a capacitance retention ratio of 96.2% from 0.2 to 20 A g -1 , and long cycle life. Comprehensive investigations unambiguously highlight that the unique hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material would be the right candidate for advanced next-generation supercapacitors.

  19. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    International Nuclear Information System (INIS)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-01-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol–gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue–black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  20. Investigation of concrete mixtures incorporating hollow plastic microspheres.

    Science.gov (United States)

    1981-01-01

    This study investigated the potential of hollow plastic microspheres, HPM, for providing non-air-entrained portland cement concrete resistance to damage from cycles of freezing and thawing. In the study, a mixture with an air-entraining agent (vinsol...

  1. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life

    KAUST Repository

    Yao, Yan

    2011-07-13

    Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g-1 with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure. © 2011 American Chemical Society.

  2. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter

    2014-01-01

    Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...

  3. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  4. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.

    Science.gov (United States)

    Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel

    2016-03-22

    The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.

  5. 3D hollow framework of GeOx with ultrathin shell for improved anode performance in lithium-ion batteries

    International Nuclear Information System (INIS)

    Fang, Zhen; Qiang, Tingting; Fang, Jiaxin; Song, Yixuan; Ma, Qiuyang; Ye, Ming; Qiang, Feiqiang; Geng, Baoyou

    2015-01-01

    Highlights: • 3D hollow framework of GeO x was synthesized using hydrothermal procedure. • The obtained GeO x 3D hollow framework has large surface area and porous thin shell. • The structure improved the cycle and rate performances. - Abstract: In this paper, 3D hollow framework of GeO x is synthesized using a bubble-template hydrothermal procedure. The as-obtained hollow structure exhibits excellent cycling performance and rate capability in comparison with GeO x nanoparticles when used as an anode material in lithium ion batteries. The GeO x 3D hollow framework shows a high capacity of up to 1480 mAh·g −1 and 1109 mAh·g −1 at 80 mA·g −1 and 1600 mA·g −1 current density, respectively. The excellent lithium storage performance can be attributed to the unique 3D hollow framework. The framework not only acts as the buffer layer to alleviate the strain during lithiation, but also facilitates the electron transfer during the charge/discharge processes

  6. Reflection From Hollow Armour Units / by Fritz Büsching. - COPEDEC V, Cape Town, South Africa, 19-23 April 1999

    OpenAIRE

    Büsching, Fritz

    1999-01-01

    Model investigations are carried out in using irregular and monochromatic waves synchronously acting on 2 sloping structures 1:n = 1:2 in order to demonstrate the advantages of a new designed structure composed from hollow armour units (“Hollow Cubes”) versus a conventional smooth sloping structure. The energy of the water level deflections in front of the hollow armour units piled up to form a stepped-face hollow seawall structure appears to be reduced by about -65% with refer-ence to a smoo...

  7. Electrochemical properties of CuO hollow nanopowders prepared from formless Cu–C composite via nanoscale Kirkendall diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Min [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); Kim, Jong Hwa [Daegu Center, Korea Basic Science Institute, 80 Daehakro Bukgu, Daegu 702-701 (Korea, Republic of); Choi, Yun Ju [Suncheon Center, Korea Basic Science Institute, Suncheon 540-742 (Korea, Republic of); Cho, Jung Sang [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); Kang, Yun Chan, E-mail: yckang@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of)

    2016-06-25

    Hollow CuO nanopowders are prepared using a simple spray drying process that relied on nanoscale Kirkendall diffusion; these nanopowders have potential applications in lithium-ion batteries. Citric acid is used as both the carbon source material and chelating agent and plays a key role in the preparation of the hollow nanopowders. The formless Cu–C composite that formed as an intermediate product transforms into slightly aggregated CuO hollow nanopowders after post-treatment at 300 and 400 °C under an air atmosphere. The CuO hollow nanopowders exhibit higher initial discharge capacities and better cycling performances than those of the filled-structured CuO nanopowders, which are prepared at a post-treatment temperature of 500 °C under an air atmosphere. The discharge capacities of the CuO nanopowders post-treated at 300, 400, and 500 °C for the 150{sup th} cycle at a current density of 1 A g{sup −1} are 793, 632, and 464 mA h g{sup −1}, respectively, and their capacity retentions calculated from the maximum discharge capacities are 88, 80, and 73%, respectively. The CuO nanopowders with hollow structures exhibit better structural stability for repeated lithium insertion and desertion processes than those with filled structures. - Highlights: • Hollow CuO nanopowders are prepared using a simple spray drying process. • Cu–C composite transforms into CuO hollow nanopowders by Kirkendall diffusion. • Hollow CuO nanopowders show good electrochemical properties for lithium-ion storage.

  8. Determination of thermal characteristics of standard and improved hollow concrete blocks using different measurement techniques

    DEFF Research Database (Denmark)

    Caruana, C.; Yousif, C.; Bacher, Peder

    2017-01-01

    The lighter weight, improved thermal properties and better acoustic insulation of hollow-core concrete blocks are few of the characteristics that one encounters when comparing them to traditional Maltese globigerina limestone solid blocks. As a result, hollow concrete blocks have recently been...

  9. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min; Anjum, Dalaver H.; Sougrat, Rachid; Hedhili, Mohamed N.; Khashab, Niveen M.

    2012-01-01

    that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au

  10. Solvothermal synthesis and electrochemical performance of hollow LiFePO{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhenmiao [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Pang, Wei Kong [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Tang, Xincun, E-mail: tangxincun@163.com [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Jia, Dianzeng; Huang, Yudai [Institute of Applied Chemistry, Xinjiang University, Urumqi 840046 (China); Guo, Zaiping [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-08-15

    Highlights: • Hollow LiFePO{sub 4} nanoparticles were successfully synthesized via solvothermal method. • The shorter b lattice parameter allows the shorter diffusion path of lithium ion. • Hollow LiFePO{sub 4} nanoparticles show better rate capability than solid LiFePO{sub 4}. - Abstract: Hollow LiFePO{sub 4} nanoparticles were synthesized via a solvothermal technique, using ammonium tartrate as additive and carbon source, and ethylene glycol/water as solvent. The as-prepared samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning and transmission electron microscopies, and Brunauer–Emmett–Teller specific surface area measurements. The electrochemical properties of the LiFePO{sub 4} cathode were examined in coin-type cell configuration and the cathode exhibited excellent rate capability (i.e., discharge capacity of 120.9 mA h g{sup −1} at 10 C) and cycling performance (i.e., >98% of capacity retention rate after 50 cycles). It is believed that the enhanced performance is correlated to the hollow structure, small crystallite and particle sizes, and relatively shorter lattice parameter b.

  11. Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent.

    Science.gov (United States)

    Li, Yunqi; Tan, Haibo; Salunkhe, Rahul R; Tang, Jing; Shrestha, Lok Kumar; Bastakoti, Bishnu Prasad; Rong, Hongpan; Takei, Toshiaki; Henzie, Joel; Yamauchi, Yusuke; Ariga, Katsuhiko

    2016-12-20

    We introduce a simple method to prepare hollow carbon nanospheres (HCNs) by using triblock copolymer poly(styrene-b-2-vinylpyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) micelles as a new class of soft-templates. Simply by changing the solvent we can prepare ultra-small sized micelles of the triblock copolymer PS-b-P2VP-b-PEO soft template to obtain HCNs with ultra-small diameters (43 nm) and hollow cores (19 nm). Furthermore, we use these HCNs to make electric double-layer capacitors (EDLCs) that exhibit superior performance.

  12. Development of Novel ECTFE Coated PP Composite Hollow-Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Sergio Santoro

    2016-09-01

    Full Text Available In this work composite hollow-fibers were prepared by dip-coating of commercial polypropylene (PP with a thin layer of ethylene–chlorotrifluoroethylene copolymer (ECTFE. The employment of N-methyl pyrrolidone (NMP as solvent improved the polymer processability favoring dip-coating at lower temperature (135 °C. Scanning electron microscopy (SEM analyses showed that after dip-coating the PP support maintained its microstructure, whereas a thin coated layer of ECTFE on the external surface of the PP hollow-fiber was clearly distinguishable. Membrane characterization evidenced the effects of the concentration of ECTFE in the dope-solution and the time of dip-coating on the thickness of ECTFE layer and membrane properties (i.e., contact angle and pore size. ECTFE coating decreased the surface roughness reducing, as a consequence, the hydrophobicity of the membrane. Moreover, increasing the ECTFE concentration and dip-coating time enabled the preparation of a thicker layer of ECTFE with low and narrow pore size that negatively affected the water transport. On the basis of the superior chemical resistance of ECTFE, ECTFE/PP composite hollow fibers could be considered as very promising candidates to be employed in membrane processes involving harsh conditions.

  13. Hybrid welding of hollow section beams for a telescopic lifter

    Science.gov (United States)

    Jernstroem, Petteri

    2003-03-01

    Modern lifting equipment is normally constructed using hollow section beams in a telescopic arrangement. Telescopic lifters are used in a variety number of applications including e.g. construction and building maintenance. Also rescue sector is one large application field. It is very important in such applications to use a lightweight and stable beam construction, which gives a high degree of flexibility in working high and width. To ensure a high weld quality of hollow section beams, high efficiency and minimal distortion, a welding process with a high power density is needed. The alternatives, in practice, which fulfill these requirements, are laser welding and hybrid welding. In this paper, the use of hybrid welding process (combination of CO2 laser welding and GMAW) in welding of hollow section beam structure is presented. Compared to laser welding, hybrid welding allows wider joint tolerances, which enables joints to be prepared and fit-up less accurately, aving time and manufacturing costs. A prerequisite for quality and effective use of hybrid welding is, however, a complete understanding of the process and its capabilities, which must be taken into account during both product design and manufacture.

  14. Hollow-core infrared fiber incorporating metal-wire metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger

    2009-01-01

    Infrared (IR) light is considered important for short-range wireless communication, thermal sensing, spectroscopy, material processing, medical surgery, astronomy etc. However, IR light is in general much harder to transport than optical light or microwave radiation. Existing hollow-core IR...

  15. Method of altering the effective bulk density of solid material and the resulting product: hollow polymeric particles

    International Nuclear Information System (INIS)

    Kool, L.B.; Nolen, R.L.; Solomon, D.E.

    1981-01-01

    Hollow spherical particles are made by spraying a mixture of powdered solid material with a solution of a film-forming polymer in a solvent therefor into a heated chamber where the solvent evaporates. The powder is thereby captured in the wall of the hollow polymer particles formed. Such particles are used to form a suspension in a fluid material. The hollow particles are of such size and wall thickness, in relation to the bulk density of the powdered solid material, that the bulk density of each hollow spherical particle is commensurate with the density of the fluid material. The particles thereby remain in suspension over a substantial period of time with little or no agitation of the fluid. (author)

  16. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    Science.gov (United States)

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  17. Assessment of Cost Variation in Solid and Hollow Floor Construction in Lagos State

    Directory of Open Access Journals (Sweden)

    Oluwaseun Sunday Dosumu

    2013-12-01

    Full Text Available The differences in construction methods between different forms of slabs construction tend to result into variation in the cost of the slabs for any building project. Thus, this study aims at assessing the variation in construction cost among various construction methods available for hollow and solid floors in construction projects within Lagos State. The research design for this study was a survey design approach and the population of the study are active professionals (Architects, Civil Engineers, Builders, Quantity Surveyors, Consultant and contractors because they are the major participants in the construction activities of the construction industry in Lagos State, Nigeria. The research is based on 46 returned questionnaires out of the 60 that was administered. The data from the questionnaires were analyzed using descriptive tools such as frequencies, percentage and mean values. The hypotheses were tested with paired sample t-test and it was found that the system or method of slab construction well known to the respondents is cast in situ, precast and semi-precast. The study also shows that the cost of in-situ solid slabs are higher than that of hollow slab which is an indication that solid slab construction is more expensive than hollow slab construction provided the hollow slab is a one-way hollow floor and not waffle floor. In pre cast solid slab construction the cost of transportation of units to sites, cost of expertise required in the construction process and the cost of fabrication off site are the three highest and most expensive aspects of precast solid slab while cost of erection and placement and the cost of grouting and topping if required are less expensive. Therefore there is difference in the cost of construction between the solid and hollow slabs but the difference is not appreciable. The study's major recommendation is that, adequate and careful analysis must be done in the choice of floor system being adopted for any

  18. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Science.gov (United States)

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  19. Electrochemical performance of Ni/TiO{sub 2} hollow sphere in proton exchange membrane water electrolyzers system

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar [Birla Institute of Technology, Jharkhand (India)

    2013-08-15

    This work presents the electrocatalytic evaluation of Ni/TiO{sub 2} hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm{sup −2} peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO{sub 2} electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm{sup −2}. In the anodic polarization curves, the performance of 15 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst was evaluated up to 140 mA cm{sup −2} at comparatively lower over-potential value. 20 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer.

  20. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    Science.gov (United States)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  1. Current—voltage characteristics of lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composites

    International Nuclear Information System (INIS)

    De-An, Pan; Shen-Gen, Zhang; Jian-Jun, Tian; Li-Jie, Qiao; Jun-Sai, Sun; Volinsky, Alex A.

    2010-01-01

    Current–voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow cylinder circumference induces voltage across the lead zirconate titanate layer thickness. The current–voltage coefficient and the maximum induced voltage in lead zirconate titanate at 1 kHz and resonance (60.1 kHz) frequencies increased linearly with the number of the coil turns and the applied current. The resonance frequency corresponds to the electromechanical resonance frequency. The current–voltage coefficient can be significantly improved by optimizing the magnetoelectric structure geometry and/or increasing the number of coil turns. Hollow cylindrical lead zirconate titanate/nickel structures can be potentially used as current sensors. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    KAUST Repository

    Kalathil, Shafeer; Chaudhuri, Rajib Ghosh

    2016-01-01

    Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs) in the presence of solid and hollow palladium (Pd) nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  3. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    KAUST Repository

    Kalathil, Shafeer

    2016-08-04

    Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs) in the presence of solid and hollow palladium (Pd) nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  4. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    Directory of Open Access Journals (Sweden)

    Shafeer Kalathil

    2016-08-01

    Full Text Available Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs in the presence of solid and hollow palladium (Pd nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  5. theoretical investigation of stresses distributions in hollow sandcrete

    African Journals Online (AJOL)

    user

    The test thin plate distributes the load on the block and the hollow block is regarded as a two ... Some research works had been done on the relationship between cavity ... The results would help reduce the cost, labour and time necessary to.

  6. Er:YAG delamination of immersed biological membranes using sealed flexible hollow waveguides

    Science.gov (United States)

    Sagi-Dolev, A. M.; Dror, Jacob; Inberg, Alexandra; Ferencz, J. R.; Croitoru, Nathan I.

    1996-04-01

    The radiation of Er-YAG laser ((lambda) equals 2.94 micrometer) gives selective interaction with tissues. The extinction in soft tissues is only a few micrometers and in hard tissues is of the order of hundreds of micrometers. This makes this type of laser very suitable for treatments in dentistry, orthopedy, or ophthalmology. Because the usual silica fibers are not transmitting the radiation at lambda equals 2.94 micrometer of this laser, many applications cannot be presently performed. Fused silica hollow fibers for Er-YAG radiation were developed in our laboratory and several possible applications in dentistry, orthopedy and ophthalmology were indicated. Hole opening and implantation preparation of teeth were experimented, using Er-YAG laser and hollow plastic waveguide delivery systems. Hole drilling in cow bones was demonstrated for applications in orthopedy. A new procedure of delivering Er-YAG radiation on fibrotic membranes of inner eggshell as a model of the membranes in eyes was developed employing silica hollow waveguides of 0.5 and 0.7 mm ID or a plastic waveguide of 1.0 mm ID. For this purpose waveguides with sealed distal tip were employed to enable us to approach the delivery system through liquid media near to the membrane. This experiment demonstrates the possibility of surgical applications in vitectomy in ophthalmology using Er-YAG laser and silica hollow waveguides.

  7. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang; Zhang, Sui; Chung, Neal Tai-Shung

    2015-01-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  8. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  9. Fabrication of Nitrogen-Doped Hollow Mesoporous Spherical Carbon Capsules for Supercapacitors.

    Science.gov (United States)

    Chen, Aibing; Xia, Kechan; Zhang, Linsong; Yu, Yifeng; Li, Yuetong; Sun, Hexu; Wang, Yuying; Li, Yunqian; Li, Shuhui

    2016-09-06

    A novel "dissolution-capture" method for the fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules (N-HMSCCs) with high capability for supercapacitor is developed. The fabrication process is performed by depositing mesoporous silica on the surface of the polyacrylonitrile nanospheres, followed by a dissolution-capture process occurring in the polyacrylonitrile core and silica shell. The polyacrylonitrile core is dissolved by dimethylformamide treatment to form a hollow cavity. Then, the polyacrylonitrile is captured into the mesochannel of silica. After carbonization and etching of silica, N-HMSCCs with uniform mesopore size are produced. The N-HMSCCs show a high specific capacitance of 206.0 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH due to its unique hollow nanostructure, high surface area, and nitrogen content. In addition, 92.3% of the capacitance of N-HMSCCs still remains after 3000 cycles at 5 A g(-1). The "dissolution-capture" method should give a useful enlightenment for the design of electrode materials for supercapacitor.

  10. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Seki, Ayano [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-03-05

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica

  11. Morphology-controlled synthesis of SiO2 hollow microspheres using pollen grain as a biotemplate

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2009-01-01

    Hollow surface-structured silica microspheres, a potential candidate for drug delivery systems, were synthesized using the rape pollen grain as a biotemplate via a facile sol-gel coating followed by a calcination process. Different surface morphologies relating to the controllable release property were also achieved on the as-prepared silica hollow microspheres by changing the ratio of the tetraethyl orthosilicate (TEOS) and water in sols. Differential scanning calorimetry (DSC) and thermogravity (TG), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), as well as Fourier transform infrared spectroscopy (FT-IR) were utilized to characterize the original pollen grain, the silica sols-coated pollen grain and the as-prepared hollow silica microspheres, respectively. Results indicated that the pollen grain would be removed at around 500 deg. C, and the sol coating was kept to form hollow microspheres. Physical adsorption was proved to be the main effect in the sol coating. A speculation on the formation mechanism of different morphologies is also given.

  12. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-01-01

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were check...

  13. Hollow mandrin facilitates external ventricular drainage placement.

    Science.gov (United States)

    Heese, O; Regelsberger, J; Kehler, U; Westphal, M

    2005-07-01

    Placement of ventricular catheters is a routine procedure in neurosurgery. Ventricle puncture is done using a flexible ventricular catheter stabilised by a solid steel mandrin in order to improve stability during brain penetration. A correct catheter placement is confirmed after removing the solid steel mandrin by observation of cerebrospinal fluid (CSF) flow out of the flexible catheter. Incorrect placement makes further punctures necessary. The newly developed device allows CSF flow observation during the puncture procedure and in addition precise intracranial pressure (ICP) measurement. The developed mandrin is hollow with a blunt tip. On one side 4-5 small holes with a diameter of 0.8 mm are drilled corresponding exactly with the holes in the ventricular catheter, allowing CSF to pass into the hollow mandrin as soon as the ventricle is reached. By connecting a small translucent tube at the distal portion of the hollow mandrin ICP can be measured without loss of CSF. The system has been used in 15 patients with subarachnoid haemorrhage (SAH) or intraventricular haemeorrhage (IVH) and subsequent hydrocephalus. The new system improved the external ventricular drainage implantation procedure. In all 15 patients catheter placement was correct. ICP measurement was easy to perform immediately at ventricle puncture. In 4 patients at puncture no spontaneous CSF flow was observed, therefore by connecting a syringe and gentle aspiration of CSF correct placement was confirmed in this unexpected low pressure hydrocephalus. Otherwise by using the conventional technique further punctures would have been necessary. Advantages of the new technique are less puncture procedures with a lower risk of damage to neural structures and reduced risk of intracranial haemorrhages. Implantation of the ventricular catheter to far into the brain can be monitored and this complication can be overcome. Using the connected pressure monitoring tube an exact measurement of the opening

  14. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xingyuan Zhang

    2017-01-01

    Full Text Available Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

  15. Strength assessment of a cryostat used by the hollow electron test station.

    CERN Document Server

    Efremov, Filip

    2015-01-01

    The following report explains the work I have done on my summer student work project and the experience I have gained during the process. The work consisted of a strength assessment of a cryogenic vacuum insulated vessel according to European regulations. The cryogenic vacuum insulated vessel is used for the cooling of the solenoids. The solenoids are used in the hollow electron test station and create the magnetic fields used for testing electron guns and validating the concept of a hollow electron lens.

  16. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Nimai C [Singapore-MIT Alliance, Manufacturing Systems and Technology Programme, Nanyang Technological University, 65 Nanyang Drive, 637460 (Singapore); Shin, Kwanwoo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsoo-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of)], E-mail: ncnayak@gmail.com

    2008-07-02

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism.

  17. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    International Nuclear Information System (INIS)

    Nayak, Nimai C; Shin, Kwanwoo

    2008-01-01

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism

  18. Influence of preparation conditions of hollow titania–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Ohashi, Takato [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-04-01

    Highlights: • We study influence of preparation conditions on activity of hollow titania–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Ti + Ni content. • The activity depends on the amount of PS residue in the hollow spheres. - Abstract: The present work reports influence of preparation conditions of hollow titania–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}). The as-prepared hollow titania–nickel composite spheres were characterized by transmission electron microscopy (TEM). Catalytic activities of the hollow spheres for hydrolytic dehydrogenation of aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution improve with the decrease of Ti + Ni content. From the results of FTIR spectra and elemental analysis, the amount of residual polystyrene (PS) templates is able to be reduced by increasing aging time for the preparation, and the catalytic activity of the hollow spheres increases when the amount of residual PS templates decreases. The carbon content in the hollow spheres prepared with aging time = 24 h is 17.3 wt.%, and the evolution of 62 mL hydrogen is finished in about 22 min in the presence of the hollow spheres from aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution. The molar ratio of the hydrolytically generated hydrogen to the initial NH{sub 3}BH{sub 3} in the presence of the hollow spheres is 2.7.

  19. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon

    2016-04-05

    The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure. Spray injection was modeled using a Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the new model was implemented through the user-defined functions. A Siemens outwardly-opening hollow-cone spray injector was characterized and validated with existing experimental data at the injection pressure of 100 bar. It was found that the collision modeling becomes important in the current injector because of dense spray near nozzle. The injection distribution model showed insignificant effects on spray due to small initial droplets. It was demonstrated that the new model can predict the liquid penetration length and local SMD with improved accuracy for the injector under study.

  20. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries.

    Science.gov (United States)

    Xu, Xijun; Ji, Shaomin; Gu, Mingzhe; Liu, Jun

    2015-09-23

    Uniform MnS hollow microspheres in situ crystallized on reduced graphene oxide (RGO) nanosheets via a facile hydrothermal method. The MnS/RGO composite material was used as the anode for Na-ion batteries for the first time and exhibited excellent cycling performance, superior specific capacity, and great cycle stability and rate capability for both Li- and Na-ion batteries. Compared with nonencapsulated pure MnS hollow microspheres, these MnS/RGO nanocomposites demonstrated excellent charge-discharge stability and long cycle life. Li-ion storage testing revealed that these MnS/RGO nanocomposites deliver high discharge-charge capacities of 640 mAh g(-1) at 1.0 A g(-1) after 400 cycles and 830 mAh g(-1) at 0.5 A g(-1) after 100 cycles. The MnS/RGO nanocomposites even retained a specific capacity of 308 mAh g(-1) at a current density of 0.1 A g(-1) after 125 cycles as the anode for Na-ion batteries. The outstanding electrochemical performance of the MnS/RGO composite attributed to the RGO nanosheets greatly improved the electronic conductivity and efficiently mitigated the stupendous volume expansion during the progress of charge and discharge.