WorldWideScience

Sample records for nanotube-enhanced non-invasive photoacoustic

  1. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qizhi; Carney, Paul R; Yuan Zhen; Jiang Huabei [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu Zhao [Department of Pediatrics, Division of Pediatric Neurology, University of Florida, Gainesville, FL 32610 (United States); Chen Huanxin; Roper, Steven N [Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265 (United States)], E-mail: hjiang@bme.ufl.edu

    2008-04-07

    Non-invasive laser-induced photoacoustic tomography (PAT) is an emerging imaging modality that has the potential to image the dynamic function of the brain due to its unique ability of imaging biological tissues with high optical contrast and ultrasound resolution. Here we report the first application of our finite-element-based PAT for imaging of epileptic seizures in an animal model. In vivo photoacoustic images were obtained in rats with focal seizures induced by microinjection of bicuculline, a GABA{sub A} antagonist, into the neocortex. The seizure focus was accurately localized by PAT as confirmed with gold-standard electroencephalogram (EEG). Compared to the existing neuroimaging modalities, PAT not only has the unprecedented advantage of high spatial and temporal resolution in a single imaging modality, but also is portable and low in cost, making it possible to bring brain imaging to the bedside.

  2. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products.

    Science.gov (United States)

    Sim, Joo Yong; Ahn, Chang-Geun; Jeong, Eun-Ju; Kim, Bong Kyu

    2018-01-18

    Photoacoustic spectroscopy has been shown to be a promising tool for non-invasive blood glucose monitoring. However, the repeatability of such a method is susceptible to changes in skin condition, which is dependent on hand washing and drying due to the high absorption of infrared excitation light to the skin secretion products or water. In this paper, we present a method to meet the challenges of mid-infrared photoacoustic spectroscopy for non-invasive glucose monitoring. By obtaining the microscopic spatial information of skin during the spectroscopy measurement, the skin region where the infrared spectra is insensitive to skin condition can be locally selected, which enables reliable prediction of the blood glucose level from the photoacoustic spectroscopy signals. Our raster-scan imaging showed that the skin condition for in vivo spectroscopic glucose monitoring had significant inhomogeneities and large variability in the probing area where the signal was acquired. However, the selective localization of the probing led to a reduction in the effects of variability due to the skin secretion product. Looking forward, this technology has broader applications not only in continuous glucose monitoring for diabetic patient care, but in forensic science, the diagnosis of malfunctioning sweat pores, and the discrimination of tumors extracted via biopsy.

  3. Miniature fibre optic probe for minimally invasive photoacoustic sensing

    Science.gov (United States)

    Mathews, Sunish J.; Zhang, Edward Z.; Desjardins, Adrien E.; Beard, Paul C.

    2016-03-01

    A miniature (175 μm) all-optical photoacoustic probe has been developed for minimally invasive sensing and imaging applications. The probe comprises a single optical fibre which delivers the excitation light and a broadband 50 MHz Fabry-Pérot (F-P) ultrasound sensor at the distal end for detecting the photoacoustic waves. A graded index lens proximal to the F-P sensor is used to reduce beam walk-off and thus increase sensitivity as well as confine the excitation beam in order to increase lateral spatial resolution. The probe was evaluated in non-scattering media and found to provide lateral and axial resolutions of < 100 μm and < 150 μm respectively for distances up to 1 cm from the tip of the probe. The ability of the probe to detect a blood vessel mimicking phantom at distances up to 7 mm from the tip was demonstrated in order to illustrate its potential suitability for needle guidance applications.

  4. Photoacoustic tomography and sensing in biomedicine

    International Nuclear Information System (INIS)

    Li Changhui; Wang, Lihong V

    2009-01-01

    Photoacoustics has been broadly studied in biomedicine, for both human and small animal tissues. Photoacoustics uniquely combines the absorption contrast of light or radio frequency waves with ultrasound resolution. Moreover, it is non-ionizing and non-invasive, and is the fastest growing new biomedical method, with clinical applications on the way. This review provides a brief recap of recent developments in photoacoustics in biomedicine, from basic principles to applications. The emphasized areas include the new imaging modalities, hybrid detection methods, photoacoustic contrast agents and the photoacoustic Doppler effect, as well as translational research topics. (topical review)

  5. Rationally encapsulated gold nanorods improving both linear and nonlinear photoacoustic imaging contrast in vivo.

    Science.gov (United States)

    Gao, Fei; Bai, Linyi; Liu, Siyu; Zhang, Ruochong; Zhang, Jingtao; Feng, Xiaohua; Zheng, Yuanjin; Zhao, Yanli

    2017-01-07

    Photoacoustic tomography has emerged as a promising non-invasive imaging technique that integrates the merits of high optical contrast with high ultrasound resolution in deep scattering medium. Unfortunately, the blood background in vivo seriously impedes the quality of imaging due to its comparable optical absorption with contrast agents, especially in conventional linear photoacoustic imaging modality. In this study, we demonstrated that two hybrids consisting of gold nanorods (Au NRs) and zinc tetra(4-pyridyl)porphyrin (ZnTPP) exhibited a synergetic effect in improving optical absorption, conversion efficiency from light to heat, and thermoelastic expansion, leading to a notable enhancement in both linear (four times greater) and nonlinear (more than six times) photoacoustic signals as compared with conventional Au NRs. Subsequently, we carefully investigated the interesting factors that may influence photoacoustic signal amplification, suggesting that the coating of ZnTPP on Au NRs could result in the reduction of gold interfacial thermal conductance with a solvent, so that the heat is more confined within the nanoparticle clusters for a significant enhancement of local temperature. Hence, both the linear and nonlinear photoacoustic signals are enhanced on account of better thermal confinement. The present work not only shows that ZnTPP coated Au NRs could serve as excellent photoacoustic nanoamplifiers, but also brings a perspective for photoacoustic image-guided therapy.

  6. Transurethral light delivery for prostate photoacoustic imaging

    OpenAIRE

    Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.

    2015-01-01

    Photoacoustic imaging has broad clinical potential to enhance prostate cancer detection and treatment, yet it is challenged by the lack of minimally invasive, deeply penetrating light delivery methods that provide sufficient visualization of targets (e.g., tumors, contrast agents, brachytherapy seeds). We constructed a side-firing fiber prototype for transurethral photoacoustic imaging of prostates with a dual-array (linear and curvilinear) transrectal ultrasound probe. A method to calculate ...

  7. In vivo photoacoustic monitoring of anti-obesity photothermal lipolysis

    Science.gov (United States)

    Lee, Donghyun; Lee, Jung Ho; Hahn, Sei Kwang; Kim, Chulhong

    2018-02-01

    Obesity with a body mass index is greater than 30 kg/m2 is one of the rapidly growing diseases in advanced societies and can lead to stroke, type 2 diabetes, and heart failure. Common methods of removing subcutaneous adipose tissues are liposuction and laser treatment. In this study, we used photoacoustic imaging to monitor the anti-obesity photothermal degradation process. To improve the photothermal lipid degradation efficiency without any invasive methods, we synthesized hyaluronic acid hollow hold nanosphere adipocyte targeting sequence peptide (HA-HAuNS-ATS) conjugates. The conjugate enhanced the skin penetration ability and biodegradability of the nanoparticles using hyaluronate and enhanced the targeting effect on adipose tissue with adipocyte targeting sequence peptide. Thus, the conjugate can be delivered to the adipose tissue by simply spreading the conjugate on the skin without any invasive method. Then, the photothermal lipolysis and delivery of the conjugate were photoacoustically monitored in vivo. These results demonstrate the potential for photoacoustic method to be applied for photothermal lipolysis monitoring.

  8. Non-invasive assessment of the liver using imaging

    Science.gov (United States)

    Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.

    2016-12-01

    Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.

  9. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    Science.gov (United States)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  10. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs). PMID:22808436

  11. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles.

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D; Chang, Huan-Cheng; Ye, Jing Yong

    2012-07-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).

  12. Quartz-Enhanced Photoacoustic Spectroscopy: A Review

    Science.gov (United States)

    Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo

    2014-01-01

    A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis. PMID:24686729

  13. Quartz-Enhanced Photoacoustic Spectroscopy: A Review

    Directory of Open Access Journals (Sweden)

    Pietro Patimisco

    2014-03-01

    Full Text Available A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis.

  14. Double Minimum Variance Beamforming Method to Enhance Photoacoustic Imaging

    OpenAIRE

    Paridar, Roya; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza; Orooji, Mahdi

    2018-01-01

    One of the common algorithms used to reconstruct photoacoustic (PA) images is the non-adaptive Delay-and-Sum (DAS) beamformer. However, the quality of the reconstructed PA images obtained by DAS is not satisfying due to its high level of sidelobes and wide mainlobe. In contrast, adaptive beamformers, such as minimum variance (MV), result in an improved image compared to DAS. In this paper, a novel beamforming method, called Double MV (D-MV) is proposed to enhance the image quality compared to...

  15. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  16. Differential photoacoustic spectroscopy with continuous wave lasers for non-invasive blood glucose monitoring

    Science.gov (United States)

    Tanaka, Y.; Tajima, T.; Seyama, M.

    2018-02-01

    We propose a differential photoacoustic spectroscopy (PAS), wherein two wavelengths of light with the same absorbance are selected, and differential signal is linearized by one of the two signals for a non-invasive blood glucose monitoring. PAS has the possibility to overcome the strong optical scattering in tissue, but there are still remaining issues: the water background and instability due to the variation in acoustic resonance conditions. A change in sample solution temperature is one of the causes of the variation in acoustic resonance conditions. Therefore, in this study, we investigated the sensitivity against glucose concentration under the condition where the temperature of the sample water solution ranges 30 to 40 °C. The glucose concentration change is simulated by shifting the wavelength of irradiated laser light, which can effectively change optical absorption. The temperature also affects optical absorption and the acoustic resonance condition (acoustic velocity). A distributed-feedback (DFB) laser, tunable wavelength laser (TWL) and an acoustic sensor were used to obtain the differential PAS signal. The wavelength of the DFB laser was 1.382 μm, and that of TWL was switched from 1.600 to 1.610 μm to simulate the glucose concentration change. Optical absorption by glucose occurs at around 1.600 μm. The sensitivities against temperature are almost the same: 1.9 and 1.8 %/°C for 1.600 and 1.610 μm. That is, the glucose dependence across the whole temperature range remains constant. This implies that temperature correction is available.

  17. Graphene-based ultrasonic detector for photoacoustic imaging

    Science.gov (United States)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  18. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas; Fokong, Stanley; Brand, Christian; Andreou, Chrysafis; Krä utler, Bernhard; Rueping, Magnus; Kiessling, Fabian

    2017-01-01

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents

  19. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model.

    Directory of Open Access Journals (Sweden)

    Mao Ouyang

    Full Text Available Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261 tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG.

  20. Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Andreas Pohlkötter

    2010-09-01

    Full Text Available Molecular oxygen is detected at low concentrations using photoacoustic spectroscopy despite its unfavorable photoacoustic properties. The system consists of a seed laser diode, a tapered amplifier and a quartz tuning fork based spectrophone, thus employing quartz enhanced photoacoustic spectroscopy (QEPAS. With this system a detection limit of 13 ppm is reached with a compact and long term stable setup. Further improvement of the detection limit is possible by adding suitable gases to the sample gas that promote the radiationless de-excitation of the oxygen molecules.

  1. Molecular photoacoustic imaging of follicular thyroid carcinoma

    DEFF Research Database (Denmark)

    Levi, Jelena; Kothapalli, Sri-Rajashekar; Bohndiek, Sarah

    2013-01-01

    in living mice optically, observing the increase in Alexa750 fluorescence, and photoacoustically, using a dual wavelength imaging method. Results Active forms of both MMP2 and MMP-9 enzymes were found in FTC133 tumor homogenates, with MMP-9 detected in greater amounts. The molecular imaging agent......Purpose To evaluate the potential of targeted photoacoustic imaging as a non-invasive method for detection of follicular thyroid carcinoma. Experimental Design We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers...... for malignant thyroid lesions, in FTC133 thyroid tumors subcutaneously implanted in nude mice. The imaging agent used to visualize tumors was MMP activatable photoacoustic probe, Alexa750-CXeeeeXPLGLAGrrrrrXK-BHQ3. Cleavage of the MMP activatable agent was imaged after intratumoral and intravenous injections...

  2. Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance

    International Nuclear Information System (INIS)

    Amama, Placidus B; Cola, Baratunde A; Sands, Timothy D; Xu, Xianfan; Fisher, Timothy S

    2007-01-01

    Multi-walled carbon nanotubes (MWCNTs) with systematically varied diameter distributions and defect densities were reproducibly grown from a modified catalyst structure templated in an amine-terminated fourth-generation poly(amidoamine) (PAMAM) dendrimer by microwave plasma-enhanced chemical vapor deposition. Thermal interface resistances of the vertically oriented MWCNT arrays as determined by a photoacoustic technique reveal a strong correlation with the quality as assessed by Raman spectroscopy. This study contributes not only to the development of an active catalyst via a wet chemical route for structure-controlled MWCNT growth, but also to the development of efficient and low-cost MWCNT-based thermal interface materials with thermal interface resistances ≤10 mm 2 K W -1

  3. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography

    Directory of Open Access Journals (Sweden)

    Buj C.

    2015-09-01

    Full Text Available A very fast innovative holographic off-axis non-contact detection method for Photoacoustic Tomography (PAT is introduced. It overcomes the main problems of most state-of-the-art photoacoustic imaging approaches that are long acquisition times and the requirement of acoustic contact. In order to increase the acquisition speed significantly, the surface displacements of the object, caused by the photoacoustic pressure waves, are measured interferometrically in two dimensions. Phase alterations in the observed speckle field are used to identify changes in the object’s topography. A sampling rate of up to 80 MHz is feasible, which reduces the occurrence of motion artefacts.

  4. In vivo photoacoustic imaging of mouse embryos

    Science.gov (United States)

    Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul

    2012-06-01

    The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.

  5. All-optical extravascular laser-ultrasound and photoacoustic imaging of calcified atherosclerotic plaque in excised carotid artery

    Directory of Open Access Journals (Sweden)

    Jami L. Johnson

    2018-03-01

    Full Text Available Photoacoustic (PA imaging may be advantageous as a safe, non-invasive imaging modality to image the carotid artery. However, calcification that accompanies atherosclerotic plaque is difficult to detect with PA due to the non-distinct optical absorption spectrum of hydroxyapatite. We propose reflection-mode all-optical laser-ultrasound (LUS imaging to obtain high-resolution, non-contact, non-ionizing images of the carotid artery wall and calcification. All-optical LUS allows for flexible acquisition geometry and user-dependent data acquisition for high repeatability. We apply all-optical techniques to image an excised human carotid artery. Internal layers of the artery wall, enlargement of the vessel, and calcification are observed with higher resolution and reduced artifacts with nonconfocal LUS compared to confocal LUS. Validation with histology and X-ray computed tomography (CT demonstrates the potential for LUS as a method for non-invasive imaging in the carotid artery. Keywords: Atherosclerosis, Photoacoustic imaging, Laser-ultrasound, Calcification, Reverse-time migration

  6. Photoacoustic imaging for assessing ischemic kidney damage in vivo

    Science.gov (United States)

    Berndl, Elizabeth S. L.; He, Xiaolin; Yuen, Darren A.; Kolios, Michael C.

    2018-02-01

    Ischemic reperfusion injuries (IRIs) occur after blood returns to a tissue or organ after a period without oxygen or nutrients, which causes an inflammatory response leading to heterogeneous scarring of the nearby tissue and vasculature. This is associated with long-term decreases blood flow, and necrosis. Although most commonly associated with heart attacks and strokes, IRIs are also a side effect of organ transplants, when the organ is reperfused in the recipient's body after being transported from the donor to the transplant hospital. Currently, the optimal method of monitoring for IRI is limited to biopsies, which are invasive and poorly monitor the spatial heterogeneity of the damage. To non-invasively identify changes in kidneys, the left renal artery in mice (n=3) was clamped for 45 minutes to create an IRI event. Both kidneys of each animal were monitored using photoacoustics (PA) with the VevoLAZR system (Fujifilm-VisualSonics, Toronto) three, four and eight weeks after surgery. IRI-treated kidneys show increased picosirius red staining, indicative of collagen (0.601 vs 0.042, p < 0.0001), decreased size as assessed by cross-sectional area (7.8 mm2 vs 35.9 mm2 , p < 0.0001), and decreased oxygen saturation (sO2; 62% vs 77%, p = 0.02). Analysis of the photoacoustic data shows that a two-point metric, the 715:930 nm ratio of the whole kidney (1.05 vs 0.57, p = 0.049) and the optical spectral slope (OSS) (0.8 * 10-3 vs 3.0 * 10-3, p = 0.013) are both able to differentiate between IRI-treated and healthy kidneys. These data suggest that photoacoustics can be used as a non-invasive method to observe in vivo changes in the kidney due to IRI.

  7. Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode

    Science.gov (United States)

    Zhao, Zuomin; Myllylae, Risto A.

    2001-06-01

    The near-infrared photoacoustic technique is recognized as a potential method for the non-invasive determination of human glucose, because near-infrared light can incident a few millimeters into human tissue, where it produces an acoustic wave capable of carrying information about the composition of the tissue. This paper demonstrates a photoacoustic glucose measurement in a blood sample as a step toward a non-invasive measurement. The experimental apparatus consists of a near-infrared laser diode operating with 4 micro joules pulse energy at 905 nm, a roller pump connected to a silicon plastic tube and a cuvette for circulating the blood sample. In addition, the apparatus comprises a PZT piezoelectric transducer integrated with a battery-powered preamplifier to receive the photoacoustic signal. During the experiment, a glucose solution is mixed into a human blood sample to change its concentration. Although the absorption coefficient of glucose is much smaller than that of blood in the near-infrared region, the osmotic and hydrophilic properties of glucose decrease the reduced scattering coefficient of blood caused by the dissolved glucose surrounding the blood cells. This changes the distribution of the absorbed optical energy in blood, which, in turn, produces a change in the photoacoustic signal. Our experiment demonstrates that signal amplitudes in fresh and stored blood samples in crease about 7% and 10%, respectively, when the glucose concentration reaches the upper limit of the physiological region (500 mg/dl).

  8. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    Science.gov (United States)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  9. The immunological response created by interstitial and non-invasive laser immunotherapy

    Science.gov (United States)

    Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; West, Connor L.; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is an innovative cancer modality that uses laser irradiation and immunological stimulation to treat late-stage, metastatic cancers. LIT can be performed through either interstitial or non-invasive laser irradiation. Although LIT is still in development, recent clinical trials have shown that it can be used to successfully treat patients with late-stage breast cancer and melanoma. The development of LIT has been focused on creating an optimal immune response created by irradiating the tumor. One important factor that could enhance the immune response is the duration of laser irradiation. Irradiating the tumor for a shorter or longer amount of time could weaken the immune response created by LIT. Another factor that could weaken this immune response is the proliferation of regulatory T cells (TRegs) in response to the laser irradiation. However, low dose cyclophosphamide (CY) can help suppress the proliferation of TRegs and help create a more optimal immune response. An additional factor that could weaken the effectiveness of LIT is the selectivity of the laser. If LIT is performed non-invasively, then deeply embedded tumors and highly pigmented skin could cause an uneven temperature distribution inside the tumor. To solve this problem, an immunologically modified carbon nanotube system was created by using an immunoadjuvant known as glycated chitosan (GC) as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. In this preliminary study, tumor-bearing rats were treated with LIT either interstitially by an 805-nm laser with GC and low-dose CY, or non-invasively by a 980-nm laser with SWNT-GC. The goal was to observe the effects of CY on the immune response induced by LIT and to also determine the effect of irradiation duration for

  10. Photoacoustic imaging in both soft and hard biological tissue

    International Nuclear Information System (INIS)

    Li, T; Dewhurst, R J

    2010-01-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  11. Toward in-vivo photoacoustic imaging of human ovarian tissue for cancer detection

    Science.gov (United States)

    Aguirre, Andres; Kumavor, Patrick; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2011-03-01

    Currently, most of the cancers in the ovary are detected when they have already metastasized to other parts of the body. As a result, ovarian cancer has the highest mortality of all gynecological cancers with a 5-year survival rate of 30% or less [1]. The reason is the lack of reliable symptoms as well as the lack of efficacious screening techniques [2,3]. Thus, there is an urgent need to improve the current diagnostic techniques. We have investigated the potential role of co-registered photoacoustic and ultrasound imaging in ovarian cancer detection. In an effort to bring this technique closer to clinical application, we have developed a co-registered ultrasound and photoacoustic transvaginal probe. A fiber coupling assembly has been developed to deliver the light from around the transducer for reflection geometry imaging. Co-registered ultrasound and photoacoustic images of swine ovaries through vagina wall muscle and human ovaries using the aforementioned probe, demonstrate the potential of photoacoustic imaging to non-invasively detect ovarian cancer in vivo.

  12. A photoacoustic technique to measure the properties of single cells

    Science.gov (United States)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  13. Photoacoustic spectroscopy as a non-invasive tool for farmacokinetic studies in blood

    International Nuclear Information System (INIS)

    Stolik, S.; Tomas, S. A.; Ramon-Gallegos, E.; Delgado-Atencio, J. A.

    2002-01-01

    Photodynamic Therapy (PDT) has become a successful method in the treatment of cancerous tumours. This therapy is based on the interaction of light of appropriate wavelength with a photosensitiser located in tumorous tissue. It is well known that the administration of aminolevulinic acid (ALA) induces the production of protoporphyrin IX (PpIX) in different organs at characteristic times. For instance, a maximum content of PpIX is observed in skin nearly 2-3 h after exposition to ALA, whereas in blood this process usually takes place in shorter times. In this work, a comparison has been made between the conventional fluorometric measurement of PpIX in mice blood and the determination of this compound by photoacoustic spectroscopy

  14. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    Science.gov (United States)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  15. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging.

    Science.gov (United States)

    Moon, Hyungwon; Kumar, Dinesh; Kim, Haemin; Sim, Changbeom; Chang, Jin-Ho; Kim, Jung-Mu; Kim, Hyuncheol; Lim, Dong-Kwon

    2015-03-24

    We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.

  16. Some actinide speciation using laser induced photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Pollard, P.M.; McMillan, J.W.; Phillips, G.; Thomason, H.P.; Ewart, F.T.

    1988-01-01

    Laser induced photoacoustic spectroscopy is an attractive method for the speciation of actinides in solutions from nuclear disposal studies because it is essentially non-invasive and has a reasonably high sensitivity, down to ca 10 -8 M. A novel true dual beam system has been constructed and commissioned at Harwell with a performance at least equal to any others in existence. It is based on a XeCl excimer laser and a dye laser, beam splitter, two laser power monitors and photoacoustic cells. The wavelength scanning, data collection, and spectra processing and display are controlled by an Apricot computer. The sample and reference cells are housed in an inert atmosphere glove box. Early applications of the equipment described include measurements of Am and Np species under varying conditions of pH, Eh and carbonate concentration. The observations show some correlation with predictions made using the geochemical modelling code PHREEQE. (orig.)

  17. A photoacoustic tomography system for imaging of biological tissues

    International Nuclear Information System (INIS)

    Su Yixiong; Zhang Fan; Xu Kexin; Yao Jianquan; Wang, Ruikang K

    2005-01-01

    Non-invasive laser-induced photoacoustic tomography (PAT) is a promising imaging modality in the biomedical optical imaging field. This technology, based on the intrinsic optical properties of tissue and ultrasonic detection, overcomes the resolution disadvantage of pure-optical imaging caused by strong light scattering and the contrast and speckle disadvantages of pure ultrasonic imaging. Here, we report a PAT experimental system constructed in our laboratory. In our system, a Q-switched Nd : YAG pulse laser operated at 532 nm with a 8 ns pulse width is used to generate a photoacoustic signal. By using this system, the two-dimensional distribution of optical absorption in the tissue-mimicking phantom is reconstructed and has an excellent agreement with the original ones. The spatial resolution of the imaging system approaches 100 μm through about 4 cm of highly scattering medium

  18. Quartz-Enhanced Photoacoustic Spectroscopy with Right-Angle Prism

    Directory of Open Access Journals (Sweden)

    Yongning Liu

    2016-02-01

    Full Text Available A right-angle prism was used to enhance the acoustic signal of a quartz-enhanced photoacoustic spectroscopy (QEPAS system. The incident laser beam was parallelly inverted by the right-angle prism and passed through the gap between two tuning fork prongs again to produce another acoustic excitation. Correspondingly, two pairs of rigid metal tubes were used as acoustic resonators with resonance enhancement factors of 16 and 12, respectively. The QEPAS signal was enhanced by a factor of 22.4 compared with the original signal, which was acquired without resonators or a prism. In addition, the system noise was reduced a little with double resonators due to the Q factor decrease. The signal-to-noise ratio (SNR was greatly improved. Additionally, a normalized noise equivalent absorption coefficient (NNEA of 5.8 × 10−8 W·cm−1·Hz−1/2 was achieved for water vapor detection in the atmosphere.

  19. Quartz-enhanced photo-acoustic spectroscopy for breath analyses

    Science.gov (United States)

    Petersen, Jan C.; Lamard, Laurent; Feng, Yuyang; Focant, Jeff-F.; Peremans, Andre; Lassen, Mikael

    2017-03-01

    An innovative and novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for highly sensitive and selective breath gas analysis is introduced. The QEPAS sensor consists of two acoustically coupled micro- resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF). The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. Due to the very low fabrication costs the QEPAS sensor presents a clear breakthrough in the field of photoacoustic spectroscopy by introducing novel disposable gas chambers in order to avoid cleaning after each test. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). Spectroscopic measurements of methane and methanol in the 3.1 μm to 3.7 μm wavelength region is conducted. Demonstrating a resolution bandwidth of 1 cm-1. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s for methane and that the background noise is solely due to the thermal noise of the QTF. Spectra of both individual molecules as well as mixtures of molecules were measured and analyzed. The molecules are representative of exhaled breath gasses that are bio-markers for medical diagnostics.

  20. Deep neural network-based bandwidth enhancement of photoacoustic data.

    Science.gov (United States)

    Gutta, Sreedevi; Kadimesetty, Venkata Suryanarayana; Kalva, Sandeep Kumar; Pramanik, Manojit; Ganapathy, Sriram; Yalavarthy, Phaneendra K

    2017-11-01

    Photoacoustic (PA) signals collected at the boundary of tissue are always band-limited. A deep neural network was proposed to enhance the bandwidth (BW) of the detected PA signal, thereby improving the quantitative accuracy of the reconstructed PA images. A least square-based deconvolution method that utilizes the Tikhonov regularization framework was used for comparison with the proposed network. The proposed method was evaluated using both numerical and experimental data. The results indicate that the proposed method was capable of enhancing the BW of the detected PA signal, which inturn improves the contrast recovery and quality of reconstructed PA images without adding any significant computational burden. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects.

    Science.gov (United States)

    Wang, Depeng; Lee, Dong Hyeun; Huang, Haoyuan; Vu, Tri; Lim, Rachel Su Ann; Nyayapathi, Nikhila; Chitgupi, Upendra; Liu, Maggie; Geng, Jumin; Xia, Jun; Lovell, Jonathan F

    2018-08-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality. While many contrast agents have been developed for PACT, these typically cannot immediately be used in humans due to the lengthy regulatory process. We screened two hundred types of ingestible foodstuff samples for photoacoustic contrast with 1064 nm pulse laser excitation, and identified roasted barley as a promising candidate. Twenty brands of roasted barley were further screened to identify the one with the strongest contrast, presumably based on complex chemical modifications incurred during the roasting process. Individual roasted barley particles could be detected through 3.5 cm of chicken-breast tissue and through the whole hand of healthy human volunteers. With PACT, but not ultrasound imaging, a single grain of roasted barley was detected in a field of hundreds of non-roasted particles. Upon oral administration, roasted barley enabled imaging of the gut and peristalsis in mice. Prepared roasted barley tea could be detected through 2.5 cm chicken breast tissue. When barley tea was administered to humans, photoacoustic imaging visualized swallowing dynamics in healthy volunteers. Thus, roasted barley represents an edible foodstuff that should be considered for photoacoustic contrast imaging of swallowing and gut processes, with immediate potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Non-invasive optical detection of HBV based on serum surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zheng, Zuci; Wang, Qiwen; Weng, Cuncheng; Lin, Xueliang; Lin, Yao; Feng, Shangyuan

    2016-10-01

    An optical method of surface-enhanced Raman spectroscopy (SERS) was developed for non-invasive detection of hepatitis B surface virus (HBV). Hepatitis B virus surface antigen (HBsAg) is an established serological marker that is routinely used for the diagnosis of acute or chronic hepatitis B virus(HBV) infection. Utilizing SERS to analyze blood serum for detecting HBV has not been reported in previous literature. SERS measurements were performed on two groups of serum samples: one group for 50 HBV patients and the other group for 50 healthy volunteers. Blood serum samples are collected from healthy control subjects and patients diagnosed with HBV. Furthermore, principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to differentiate HBV patients from healthy volunteer and achieved sensitivity of 80.0% and specificity of 74.0%. This exploratory work demonstrates that SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of HBV.

  3. Photoacoustic and ultrasound characterization of bone composition

    Science.gov (United States)

    Lashkari, Bahman; Yang, Lifeng; Liu, Lixian; Tan, Joel W. Y.; Mandelis, Andreas

    2015-02-01

    This study examines the sensitivity and specificity of backscattered ultrasound (US) and backscattering photoacoustic (PA) signals for bone composition variation assessment. The conventional approach in the evaluation of bone health relies on measurement of bone mineral density (BMD). Although, a crucial and probably the most important parameter, BMD is not the only factor defining the bone health. New trends in osteoporosis research, also pursue the changes in collagen content and cross-links with bone diseases and aging. Therefore, any non-invasive method that can assess any of these parameters can improve the diagnostic tools and also can help with the biomedical studies on the diseases themselves. Our previous studies show that both US and PA are responsive to changes in the BMD, PA is, in addition, sensitive to changes in the collagen content of the bone. Measurements were performed on bone samples before and after mild demineralization and decollagenization at the exact same points. Results show that combining both modalities can enhance the sensitivity and specificity of diagnostic tool.

  4. Feasibility evaluation of 3D photoacoustic imaging of blood vessel structure using multiple wavelengths with a handheld probe

    Science.gov (United States)

    Uchimoto, Yo; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2018-02-01

    Photoacoustic imaging is anticipated for use in portraying blood vessel structures (e.g. neovascularization in inflamed regions). To reduce invasiveness and enhance ease handling, we developed a handheld photoacoustic imaging system using multiple wavelengths. The usefulness of the proposed system was investigated in phantom experiments and in vivo measurements. A silicon tube was embedded into chicken breast meat to simulate the blood vessel. The tube was filled with ovine blood. Then laser light was guided to the phantom surface by an optical fiber bundle close to the linear ultrasound probe. Photoacoustic images were obtained at 750-950 nm wavelengths. Strong photoacoustic signals from the boundary between blood and silicon tube are observed in these images. The shape of photoacoustic spectrum at the boundary resembles that of the HbO2 absorption spectrum at 750-920 nm. In photoacoustic images, similarity between photoacoustic spectrum and HbO2 absorption spectrum was evaluated by calculating the normalized correlation coefficient. Results show high correlation in regions of strong photoacoustic signals in photoacoustic images. These analyses demonstrate the feasibility of portraying blood vessel structures under practical conditions. To evaluate the feasibility of three-dimensional vascular imaging, in vivo experiments were conducted using three wavelengths. A right hand and ultrasound probe were set in degassed water. By scanning a probe, cross-sectional ultrasound and photoacoustic images were obtained at each location. Then, all ultrasound or photoacoustic images were piled up respectively. Then three-dimensional images were constructed. Resultant images portrayed blood vessel-like structures three-dimensionally. Furthermore, to distinguish blood vessels from other tissues (e.g. skin), distinguishing images of them were constructed by comparing photoacoustic signal intensity among three wavelengths. The resultant image portrayed blood vessels as

  5. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  6. Bone assessment via thermal photoacoustic measurements

    Science.gov (United States)

    Feng, Ting; Kozloff, Kenneth M.; Hsiao, Yi-Sing; Tian, Chao; Perosky, Joseph; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    The feasibility of an innovative biomedical diagnostic technique, thermal photoacoustic (TPA) measurement, for nonionizing and non-invasive assessment of bone health is investigated. Unlike conventional photoacoustic PA methods which are mostly focused on the measurement of absolute signal intensity, TPA targets the change in PA signal intensity as a function of the sample temperature, i.e. the temperature dependent Grueneisen parameter which is closely relevant to the chemical and molecular properties in the sample. Based on the differentiation measurement, the results from TPA technique is less susceptible to the variations associated with sample and system, and could be quantified with improved accurately. Due to the fact that the PA signal intensity from organic components such as blood changes faster than that from non-organic mineral under the same modulation of temperature, TPA measurement is able to objectively evaluate bone mineral density (BMD) and its loss as a result of osteoporosis. In an experiment on well established rat models of bone loss and preservation, PA measurements of rat tibia bones were conducted over a temperature range from 370 C to 440 C. The slope of PA signal intensity verses temperature was quantified for each specimen. The comparison among three groups of specimens with different BMD shows that bones with lower BMD have higher slopes, demonstrating the potential of the proposed TPA technique in future clinical management of osteoporosis.

  7. Molecular photoacoustic imaging

    Directory of Open Access Journals (Sweden)

    Frogh Jafarian Dehkordi

    2015-04-01

    Full Text Available Background: Hybrid imaging modalities which simultaneously benefit from capabilities of combined modalities provides an opportunity to modify quality of the images which can be obtained by each of the combined imaging systems. One of the imaging modalities, emerged in medical research area as a hybrid of ultrasound imaging and optical imaging, is photoacoustic imaging which apply ultrasound wave generated by tissue, after receiving laser pulse, to produce medical images. Materials and Methods: In this review, using keywords such as photoacoustic, optoacoustic, laser-ultrasound, thermoacoustic at databases such as PubMed and ISI, studies performed in the field of photoacoustic and related findings were evaluated. Results: Photoacoustic imaging, acquiring images with high contrast and desired resolution, provides an opportunity to perform physiologic and anatomic studies. Because this technique does not use ionizing radiation, it is not restricted by the limitation of the ionizing-based imaging systems therefore it can be used noninvasively to make images from cell, vessels, whole body imaging of the animal and distinguish tumor from normal tissue. Conclusion: Photoacoustic imaging is a new method in preclinical researches which can be used in various physiologic and anatomic studies. This method, because of application of non-ionizing radiation, may resolve limitation of radiation based method in diagnostic assessments.

  8. In vivo 3-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models

    OpenAIRE

    Ogunlade, O.; Connell, J. J.; Huang, J. L.; Zhang, E.; Lythgoe, M. F.; Long, D. A.; Beard, P.

    2017-01-01

    Non-invasive imaging of the kidney vasculature in preclinical murine models is important for studying renal development, diseases and evaluating new therapies, but is challenging to achieve using existing imaging modalities. Photoacoustic imaging is a promising new technique that is particularly well suited to visualising the vasculature and could provide an alternative to existing preclinical imaging methods for studying renal vascular anatomy and function. To investigate this, an all-optica...

  9. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong

    2014-11-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.

  10. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Huang, Shaohua; Wang, Lan; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong; Chen, Weisheng

    2014-01-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA–LDA multivariate analysis has potential for non-invasive detection of esophagus cancer. (letter)

  11. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    Directory of Open Access Journals (Sweden)

    Akinori Miyata

    Full Text Available Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10 under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases, photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical

  12. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    Science.gov (United States)

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed

  13. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: the added value of using iodine mapping

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ji Ye; Lee, Ho Yun; Kim, Jae-Hun; Lee, Kyung Soo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul (Korea, Republic of); Han, Joungho [Sungkyunkwan University School of Medicine, Department of Pathology, Samsung Medical Center, Seoul (Korea, Republic of); Jeong, Ji Yun [Sungkyunkwan University School of Medicine, Department of Pathology, Samsung Medical Center, Seoul (Korea, Republic of); Kyungpook National University Medical Center, Kyungpook National University School of Medicine, Department of Pathology, Daegu (Korea, Republic of); Kwon, O.J. [Sungkyunkwan University School of Medicine, Division of Respiratory and Critical Medicine of the Department of Internal Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Shim, Young Mog [Sungkyunkwan University School of Medicine, Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul (Korea, Republic of)

    2016-01-15

    To determine whether quantitative analysis of iodine-enhanced images generated from dual-energy CT (DECT) have added value in distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma (MIA) showing ground-glass nodule (GGN). Thirty-four patients with 39 GGNs were enrolled in this prospective study and underwent DECT followed by complete tumour resection. Various quantitative imaging parameters were assessed, including virtual non-contrast (VNC) imaging and iodine-enhanced imaging. Of all 39 GGNs, four were adenocarcinoma in situ (AIS) (10 %), nine were MIA (23 %), and 26 were invasive adenocarcinoma (67 %). When assessing only VNC imaging, multivariate analysis revealed that mass, uniformity, and size-zone variability were independent predictors of invasive adenocarcinoma (odds ratio [OR] = 19.92, P = 0.02; OR = 0.70, P = 0.01; OR = 16.16, P = 0.04, respectively). After assessing iodine-enhanced imaging with VNC imaging, both mass on the VNC imaging and uniformity on the iodine-enhanced imaging were independent predictors of invasive adenocarcinoma (OR = 5.51, P = 0.04 and OR = 0.67, P < 0.01). The power of diagnosing invasive adenocarcinoma was improved after adding the iodine-enhanced imaging parameters versus VNC imaging alone, from 0.888 to 0.959, respectively (P = 0.029). Quantitative analysis using iodine-enhanced imaging metrics versus VNC imaging metrics alone generated from DECT have added value in distinguishing invasive adenocarcinoma from AIS or MIA. (orig.)

  14. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: the added value of using iodine mapping

    International Nuclear Information System (INIS)

    Son, Ji Ye; Lee, Ho Yun; Kim, Jae-Hun; Lee, Kyung Soo; Han, Joungho; Jeong, Ji Yun; Kwon, O.J.; Shim, Young Mog

    2016-01-01

    To determine whether quantitative analysis of iodine-enhanced images generated from dual-energy CT (DECT) have added value in distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma (MIA) showing ground-glass nodule (GGN). Thirty-four patients with 39 GGNs were enrolled in this prospective study and underwent DECT followed by complete tumour resection. Various quantitative imaging parameters were assessed, including virtual non-contrast (VNC) imaging and iodine-enhanced imaging. Of all 39 GGNs, four were adenocarcinoma in situ (AIS) (10 %), nine were MIA (23 %), and 26 were invasive adenocarcinoma (67 %). When assessing only VNC imaging, multivariate analysis revealed that mass, uniformity, and size-zone variability were independent predictors of invasive adenocarcinoma (odds ratio [OR] = 19.92, P = 0.02; OR = 0.70, P = 0.01; OR = 16.16, P = 0.04, respectively). After assessing iodine-enhanced imaging with VNC imaging, both mass on the VNC imaging and uniformity on the iodine-enhanced imaging were independent predictors of invasive adenocarcinoma (OR = 5.51, P = 0.04 and OR = 0.67, P < 0.01). The power of diagnosing invasive adenocarcinoma was improved after adding the iodine-enhanced imaging parameters versus VNC imaging alone, from 0.888 to 0.959, respectively (P = 0.029). Quantitative analysis using iodine-enhanced imaging metrics versus VNC imaging metrics alone generated from DECT have added value in distinguishing invasive adenocarcinoma from AIS or MIA. (orig.)

  15. Photoacoustic Detection of Terahertz Radiation for Chemical Sensing and Imaging Applications

    Science.gov (United States)

    2013-03-01

    ISSN 2229-5518 [39] Jingle Liu, Benjamin Clough, and X. C. Zhang, “Enhancement of photoacoustic emission through terahertz-field driven electron...materials,” Journal of Electroceramics, vol. 2: p. 257-272, 2009. [47] Jingle Liu, Benjamin Clough, and X. C. Zhang, “Enhancement of photoacoustic

  16. A review of the potential of photoacoustic and photothermal spectroscopy for the characterisation of actinide solid phases

    International Nuclear Information System (INIS)

    Liezers, M.; McMillan, J.W.; Pollard, P.M.

    1988-09-01

    As the solid actinide compounds encountered in radioactive wastes have widely differing aqueous solubilities, methods are required to determine their composition. Analytical methods with the potential to characterise solid actinide compounds in equilibrium with an aqueous phase are reviewed. 'Direct', essentially non-invasive methods were sought. The most promising were identified as photoacoustic and photothermal spectroscopies. A programme is suggested for their study and exploitation. (author)

  17. Multifunctional BSA-Au nanostars for photoacoustic imaging and X-ray computed tomography.

    Science.gov (United States)

    Zu, Lihui; Liu, Lin; Qin, Yeshan; Liu, Hongguang; Yang, Haishan

    2016-10-01

    We report the synthesis and characterization of bovine serum albumin-capped Au nanostars (BSA-AuNSs) for dual-modal computed tomography (CT)/photoacoustic (PA) imaging application. The BSA-AuNSs have an average size of 85nm, and a surface plasmon resonance (SPR) peak at approximately 770nm. They have excellent biocompatibility, good X-ray attenuation, and great PA contrast enhancement properties. When injected intravenously, liver signal markedly increases in both CT and PA modalities. The in vivo biodistribution studies and pathology results showed that the BSA-AuNSs were mainly excreted through the liver and intestines with no obvious biotoxicity. These results indicate that BSA-AuNSs have high potential to be used as dual-modal CT/PA imaging contrast agents or further used to develop targeted probes. This preliminary study suggests that PA tomography may be used to non-invasively trace the kinetics and biodistribution of the nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: the added value of using iodine mapping.

    Science.gov (United States)

    Son, Ji Ye; Lee, Ho Yun; Kim, Jae-Hun; Han, Joungho; Jeong, Ji Yun; Lee, Kyung Soo; Kwon, O Jung; Shim, Young Mog

    2016-01-01

    To determine whether quantitative analysis of iodine-enhanced images generated from dual-energy CT (DECT) have added value in distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma (MIA) showing ground-glass nodule (GGN). Thirty-four patients with 39 GGNs were enrolled in this prospective study and underwent DECT followed by complete tumour resection. Various quantitative imaging parameters were assessed, including virtual non-contrast (VNC) imaging and iodine-enhanced imaging. Of all 39 GGNs, four were adenocarcinoma in situ (AIS) (10 %), nine were MIA (23 %), and 26 were invasive adenocarcinoma (67 %). When assessing only VNC imaging, multivariate analysis revealed that mass, uniformity, and size-zone variability were independent predictors of invasive adenocarcinoma (odds ratio [OR] = 19.92, P = 0.02; OR = 0.70, P = 0.01; OR = 16.16, P = 0.04, respectively). After assessing iodine-enhanced imaging with VNC imaging, both mass on the VNC imaging and uniformity on the iodine-enhanced imaging were independent predictors of invasive adenocarcinoma (OR = 5.51, P = 0.04 and OR = 0.67, P VNC imaging alone, from 0.888 to 0.959, respectively (P = 0.029). Quantitative analysis using iodine-enhanced imaging metrics versus VNC imaging metrics alone generated from DECT have added value in distinguishing invasive adenocarcinoma from AIS or MIA. Quantitative analysis using DECT was used to distinguish invasive adenocarcinoma. Tumour mass and uniformity were independent predictors of invasive adenocarcinoma. Diagnostic performance was improved after adding iodine parameters to VNC parameters.

  19. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    International Nuclear Information System (INIS)

    Li, T.; Dewhurst, R. J.

    2010-01-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  20. Recent research findings on non-invasive diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    WU Qiong

    2015-02-01

    Full Text Available Early diagnosis of liver fibrosis and dynamic monitoring of relevant changes have great implications for the treatment and prognosis improvement of chronic liver diseases. So far, liver biopsy remains the “golden standard” for the diagnosis and staging of liver fibrosis. However, due to its inherent limitations, a great effort has been made to develop more accurate non-invasive diagnostic methods, including serum fibrosis markers and mathematical models, ultrasound, contrast-enhanced ultrasonography, ultrasonic elastography, computed tomography, magnetic resonance imaging, and nuclear medicine. The advantages and disadvantages of relevant methods are discussed. Furthermore, proper selection of the non-invasive diagnostic methods for clinical application and the means for mutual verification are analyzed. As for the future direction, it is expected to employ the above methods for combined analysis and comprehensive assessment, in order to enhance the clinical value of non-invasive liver fibrosis diagnosis.

  1. In-vivo continuous monitoring of mixed venous oxygen saturation by photoacoustic transesophageal echocardiography (Conference Presentation)

    Science.gov (United States)

    Li, Li; Subramaniam, Balachundhar; Aguirre, Aaron D.; Andrawes, Michael N.; Tearney, Guillermo J.

    2016-02-01

    Mixed venous oxygen saturation (SvO2), measured from pulmonary arteries, is a gold-standard measure of the dynamic balance between the oxygen supply and demand in the body. In critical care, continuous monitoring of SvO2 plays a vital role in early detection of circulatory shock and guiding goal-oriented resuscitation. In current clinical practice, SvO2 is measured by invasive pulmonary artery catheters (PAC), which are associated with a 10% risk of severe complications. To address the unmet clinical need for a non-invasive SvO2 monitor, we are developing a new technology termed photoacoustic transesophageal echocardiography (PA-TEE). PA-TEE integrates transesophageal echocardiography with photoacoustic oximetry, and enables continuous assessment of SvO2 through an esophageal probe that can be inserted into the body in a minimally invasive manner. We have constructed a clinically translatable PA-TEE prototype, which features a mobile OPO laser, a modified ultrasonography console and a dual-modality esophageal probe. Comprised of a rotatable acoustic array detector, a flexible optical fiber bundle and a light-integrating acoustic lens, the oximetric probe has an outer diameter smaller than 15 mm and will be tolerable for most patients. Through custom-made C++/Qt software, our device acquires and displays ultrasonic and photoacoustic images in real time to guide the deployment of the probe. SvO2 is calculated on-line and updated every second. PA-TEE has now been used to evaluate SvO2 in living swine. Our findings show that changing the fraction of oxygen in the inspired gas modulates SvO2 measured by PA-TEE. Statistic comparison between SvO2 measurements from PA-TEE in vivo the gold-standard laboratorial analysis on blood samples drawn from PACs will be presented.

  2. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas

    2017-06-27

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the \\'quinone-fusing\\' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.

  3. Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis

    Science.gov (United States)

    Zheng, Huadan; Dong, Lei; Wu, Hongpeng; Yin, Xukun; Xiao, Liantuan; Jia, Suotang; Curl, Robert F.; Tittel, Frank K.

    2018-01-01

    During the past 15 years since the first report of quartz enhanced photoacoustic spectroscopy (QEPAS), QEPAS has become one of the leading optical techniques for trace chemical gas sensing. This paper is a review of the current state-of-the art of QEPAS. QEPAS based spectrophones with different acoustic micro-resonators (AmR) configurations employing both standard quartz tuning forks (QTFs) and custom-made QTFs are summarized and discussed in detail.

  4. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    Directory of Open Access Journals (Sweden)

    Vincenzo Spagnolo

    2009-12-01

    Full Text Available The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques.

  5. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano; Lamberti, Andrea; Roppolo, Ignazio; Casu, Alberto; Bianco, Stefano; Scaiola, Davide; Falqui, Andrea; Pirri, Candido Fabrizio; Ricciardi, Carlo

    2017-01-01

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect

  6. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging

    Directory of Open Access Journals (Sweden)

    Ali Hariri

    2018-03-01

    Full Text Available Photoacoustic imaging (PAI is a non-invasive, high-resolution hybrid imaging modality that combines optical excitation and ultrasound detection. PAI can image endogenous chromophores (melanin, hemoglobin, etc. and exogenous contrast agents in different medical applications. However, most current equipment uses sophisticated and complicated OPO lasers with tuning and stability features inconsistent with broad clinical deployment. As the number of applications of PAI in medicine increases, there is an urgent need to make the imaging equipment more compact, portable, and affordable. Here, portable light emitting diode – based photoacoustic imaging (PLED-PAI was introduced and characterized in terms of system specifications, light source characterizations, photoacoustic spatial/temporal resolution, and penetration. The system uses two LED arrays attached to the sides of a conventional ultrasound transducer. The LED pulse repetition rate is tunable between 1 K Hz, 2 K Hz, 3 K Hz, and 4 K Hz. The axial resolution was 0.268 mm, and the lateral resolution was between 0.55 and 0.59 mm. The system could detect optical absorber (pencil lead at a depth of 3.2 cm and the detection limits of indocyanine green (ICG and methylene blue (MB were 9 μM and 0.78 mM. In vivo imaging of labeled human mesenchymal stem cells was achieved to confirm compatibility with small animal imaging. The characterization we report here may have value to other groups evaluating commercially available photoacoustic imaging equipment. Keywords: Portable photoacoustic imaging, LED, Optoacoustic imaging, Molecular imaging

  7. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  8. Photoacoustic Tomography

    Science.gov (United States)

    Wang, Lihong V.

    Photoacoustic tomography (PAT) refers to imaging that is based on the photoacoustic effect. Although the photoacoustic effect as a physical phenomenon was first reported on by Alexander Graham Bell in 1880 [1], PAT as an imaging technology was developed only after the advent of ultrasonic transducers, computers, and lasers [2-31]. A review on biomedical photoacoustics is available [32]. The motivation for PAT is to combine optical-absorption contrast with ultrasonic spatial resolution for deep imaging in the optical quasi-diffusive or diffusive regime. In PAT, the tissue is irradiated by usually a short-pulsed laser beam to achieve a thermal and acoustic impulse response (Fig. 19.1). Locally absorbed light is converted into heat, which is further converted to a pressure rise via thermo-elastic expansion. The initial pressure rise - determined by the local optical absorption coefficient (μ â ), fluence (ψ) and other thermal and mechanical properties - propagates as an ultrasonic wave, which is referred to as a photoacoustic wave.

  9. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    International Nuclear Information System (INIS)

    Zhang, E Z; Laufer, J G; Beard, P C; Pedley, R B

    2009-01-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  10. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, E Z; Laufer, J G; Beard, P C [Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Pedley, R B [UCL Cancer Institute, Paul O' Gorman Building, University College London, 72 Huntley St, London WC1E 6BT (United Kingdom)

    2009-02-21

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  11. Radio frequency energy for non-invasive and minimally invasive skin tightening.

    Science.gov (United States)

    Mulholland, R Stephen

    2011-07-01

    This article reviews the non-invasive and minimally invasive options for skin tightening, focusing on peer-reviewed articles and presentations and those technologies with the most proven or promising RF non-excisional skin-tightening results for excisional surgeons. RF has been the mainstay of non-invasive skin tightening and has emerged as the "cutting edge" technology in the minimally invasive skin-tightening field. Because these RF skin-tightening technologies are capital equipment purchases with a significant cost associated, this article also discusses some business issues and models that have proven to work in the plastic surgeon's office for non-invasive and minimally invasive skin-tightening technologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging.

    Science.gov (United States)

    Hariri, Ali; Lemaster, Jeanne; Wang, Junxin; Jeevarathinam, AnanthaKrishnan S; Chao, Daniel L; Jokerst, Jesse V

    2018-03-01

    Photoacoustic imaging (PAI) is a non-invasive, high-resolution hybrid imaging modality that combines optical excitation and ultrasound detection. PAI can image endogenous chromophores (melanin, hemoglobin, etc.) and exogenous contrast agents in different medical applications. However, most current equipment uses sophisticated and complicated OPO lasers with tuning and stability features inconsistent with broad clinical deployment. As the number of applications of PAI in medicine increases, there is an urgent need to make the imaging equipment more compact, portable, and affordable. Here, portable light emitting diode - based photoacoustic imaging (PLED-PAI) was introduced and characterized in terms of system specifications, light source characterizations, photoacoustic spatial/temporal resolution, and penetration. The system uses two LED arrays attached to the sides of a conventional ultrasound transducer. The LED pulse repetition rate is tunable between 1 K Hz, 2 K Hz, 3 K Hz, and 4 K Hz. The axial resolution was 0.268 mm, and the lateral resolution was between 0.55 and 0.59 mm. The system could detect optical absorber (pencil lead) at a depth of 3.2 cm and the detection limits of indocyanine green (ICG) and methylene blue (MB) were 9 μM and 0.78 mM. In vivo imaging of labeled human mesenchymal stem cells was achieved to confirm compatibility with small animal imaging. The characterization we report here may have value to other groups evaluating commercially available photoacoustic imaging equipment.

  13. High-speed photoacoustic imaging using an LED-based photoacoustic imaging system

    Science.gov (United States)

    Sato, Naoto; Kuniyil Ajith Singh, Mithun; Shigeta, Yusuke; Hanaoka, Takamitsu; Agano, Toshitaka

    2018-02-01

    Recently we developed a multispectral LED-based photoacoustic/ultrasound imaging system (AcousticX) and have been continuously working on its technical/functional improvements. AcousticX is a linear array ultrasound transducer (128 elements, 10 MHz)-based system in which LED arrays (selectable wavelengths, pulse repetition frequency: 4 kHz, pulse width: tunable from 40 - 100 ns) are fixed on both sides of the transducer to illuminate the tissue for photoacoustic imaging. The ultrasound/photoacoustic data from all 128 elements can be simultaneously acquired, processed and displayed. We already demonstrated our system's capability to perform photoacoustic/ultrasound imaging for dynamic imaging of the tissue at a frame rate of 10 Hz (for example to visualize the pulsation of arteries in vivo in human subjects). In this work, we present the development of a new high-speed imaging mode in AcousticX. In this mode, instead of toggling between ultrasound and photoacoustic measurements, it is possible to continuously acquire only photoacoustic data for 1.5 seconds with a time interval of 1 ms. With this improvement, we can record photoacoustic signals from the whole aperture (38 mm) at fast rate and can be reviewed later at different speeds for analyzing dynamic changes in the photoacoustic signals. We believe that AcousticX with this new high-speed mode opens up a feasible technical path for multiple dynamic studies, for example one which focus on imaging the response of voltage sensitive dyes. We envisage to improve the acquisition speed further in future for exploring ultra-high-speed applications.

  14. Allan Deviation Plot as a Tool for Quartz-Enhanced Photoacoustic Sensors Noise Analysis.

    Science.gov (United States)

    Giglio, Marilena; Patimisco, Pietro; Sampaolo, Angelo; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo

    2016-04-01

    We report here on the use of the Allan deviation plot to analyze the long-term stability of a quartz-enhanced photoacoustic (QEPAS) gas sensor. The Allan plot provides information about the optimum averaging time for the QEPAS signal and allows the prediction of its ultimate detection limit. The Allan deviation can also be used to determine the main sources of noise coming from the individual components of the sensor. Quartz tuning fork thermal noise dominates for integration times up to 275 s, whereas at longer averaging times, the main contribution to the sensor noise originates from laser power instabilities.

  15. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Non-invasive terahertz field imaging inside parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    2011-01-01

    We present a non-invasive broadband air photonic method of imaging of the electric field of THz pulses propagating inside a tapered parallel plate waveguide. The method is based on field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We apply...

  17. Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability

    Science.gov (United States)

    Zhao, Wenqi; Wang, Shanshan; Wang, Chunhui; Wu, Shiting; Xu, Wenjing; Zou, Mingchu; Ouyang, An; Cao, Anyuan; Li, Yibin

    2015-12-01

    Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices.Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05978j

  18. Histone methylation-mediated silencing of miR-139 enhances invasion of non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Watanabe, Kousuke; Amano, Yosuke; Ishikawa, Rie; Sunohara, Mitsuhiro; Kage, Hidenori; Ichinose, Junji; Sano, Atsushi; Nakajima, Jun; Fukayama, Masashi; Yatomi, Yutaka; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-01-01

    MicroRNA expression is frequently altered in human cancers, and some microRNAs act as oncogenes or tumor suppressors. MiR-139-5p (denoted thereafter as miR-139) has recently been reported to function as a tumor suppressor in several types of human cancer (hepatocellular carcinoma, colorectal cancer, breast cancer, and gastric cancer), but its function in non-small-cell lung cancer (NSCLC) and the mechanism of its suppression have not been studied in detail. MiR-139 was suppressed frequently in primary NSCLCs. MiR-139 is located within the intron of PDE2A and its expression was significantly correlated with the expression of PDE2A. A chromatin immunoprecipitation assay revealed that miR-139 was epigenetically silenced by histone H3 lysine 27 trimethylation (H3K27me3) of its host gene PDE2A and this process was independent of promoter DNA methylation. Pharmacological inhibition of both histone methylation and deacetylation-induced miR-139 with its host gene PDE2A. Ectopic expression of miR-139 in lung cancer cell lines did not affect the proliferation nor the migration but significantly suppressed the invasion through the extracellular matrix. In primary NSCLCs, decreased expression of miR-139 was significantly associated with distant lymph node metastasis and histological invasiveness (lymphatic invasion and vascular invasion) on both univariate and multivariate analyses. Collectively, these results suggest that H3K27me3-mediated silencing of miR-139 enhances an invasive and metastatic phenotype of NSCLC

  19. Whole-body and multispectral photoacoustic imaging of adult zebrafish

    Science.gov (United States)

    Huang, Na; Xi, Lei

    2016-10-01

    Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.

  20. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Science.gov (United States)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO2) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO2 and HHb, total haemoglobin concentration and SO2. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l-1 (±58 µM) and ±4

  1. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, London WC1E 6BT (United Kingdom)

    2007-01-07

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO{sub 2}) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO{sub 2}) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO{sub 2} and HHb, total haemoglobin concentration and SO{sub 2}. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of {+-}3

  2. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    International Nuclear Information System (INIS)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO 2 ) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO 2 ) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO 2 and HHb, total haemoglobin concentration and SO 2 . The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l -1 (±58

  3. Alignment enhanced photoconductivity in single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Liu Ye; Lu Shaoxin; Panchapakesan, Balaji

    2009-01-01

    In this paper we report, for the first time, the alignment enhanced photoconductivity of single wall carbon nanotube films upon laser illumination. The photoconductivity exhibited an increase, decrease or even 'negative' values when the laser spot was on different positions between contact electrodes, showing a 'position' dependent photoconductivity of partially aligned films of carbon nanotubes. Photon induced charge carrier generation in single wall carbon nanotubes and subsequent charge separation across the metal-carbon nanotube contacts is believed to cause the photoconductivity changes. A net photovoltage of ∼4 mV and a photocurrent of ∼10 μA were produced under the laser intensity of ∼273 mW with a quantum efficiency of ∼7.8% in vacuum. The photocurrent was observed to be in the direction of nanotube alignment. Finally, there was a strong dependence of the polarization of the incident light on the photocurrent and the orientation of the films influenced the dynamics of the rise and fall of the photocurrent. All of these phenomena clearly have significance in the area of design and fabrication of solar cells, micro-opto-mechanical systems and photodetectors based on carbon nanotubes.

  4. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging

    Science.gov (United States)

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L.; Leung, Ben Y. C.; Goertz, David E.; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F.; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  5. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy.

    Science.gov (United States)

    Wang, Yu-Hsin; Liao, Ai-Ho; Chen, Jui-Hao; Wang, Churng-Ren Chris; Li, Pai-Chi

    2012-04-01

    This study investigates a photoacoustic/ultrasound dual-modality contrast agent, including extending its applications from image-contrast enhancement to combined diagnosis and therapy with site-specific targeting. The contrast agent comprises albumin-shelled microbubbles with encapsulated gold nanorods (AuMBs). The gas-filled microbubbles, whose diameters range from submicrometer to several micrometers, are not only echogenic but also can serve as drug-delivery vehicles. The gold nanorods are used to enhance the generation of both photoacoustic and photothermal signals. The optical absorption peak of the gold nanorods is tuned to 760 nm and is invariant after microbubble encapsulation. Dual-modality contrast enhancement is first described here, and the applications to cellular targeting and laser-induced thermotherapy in a phantom are demonstrated. Photoacoustic imaging can be used to monitor temperature increases during the treatment. The targeting capability of AuMBs was verified, and the temperature increased by 26°C for a laser power of 980 mW, demonstrating the potential of combined diagnosis and therapy with the dual-modality agent. Targeted photo- or acoustic-mediated delivery is also possible.

  6. Photoacoustic Point Source

    International Nuclear Information System (INIS)

    Calasso, Irio G.; Craig, Walter; Diebold, Gerald J.

    2001-01-01

    We investigate the photoacoustic effect generated by heat deposition at a point in space in an inviscid fluid. Delta-function and long Gaussian optical pulses are used as sources in the wave equation for the displacement potential to determine the fluid motion. The linear sound-generation mechanism gives bipolar photoacoustic waves, whereas the nonlinear mechanism produces asymmetric tripolar waves. The salient features of the photoacoustic point source are that rapid heat deposition and nonlinear thermal expansion dominate the production of ultrasound

  7. Application of non-invasive low strength pulsed electric field to EGCG treatment synergistically enhanced the inhibition effect on PANC-1 cells.

    Science.gov (United States)

    Hsieh, Chih-Hsiung; Lu, Chueh-Hsuan; Chen, Wei-Ting; Ma, Bo-Lun; Chao, Chih-Yu

    2017-01-01

    Traditional therapies for pancreatic cancer are usually expensive and likely to cause side effects, and most patients have the risk of recurrence and suffering pain. Here, we investigated combination treatment of epigallocatechin-3-gallate (EGCG) and non-invasive low strength pulsed electric field (PEF) on the human pancreatic cell line PANC-1. Cells were cultured in various concentrations of EGCG and exposed to trains of PEF. The results showed that the low strength PEF alone or single treatment with low concentration of EGCG did not obviously affect the cell proliferation and migration in PANC-1. However, the EGCG-induced inhibitions of cell viability and migration ability in PANC-1 were dramatically enhanced by the further exposure of low strength PEF (60 V/cm). In particular, the same combination treatment caused less inhibition of cell viability in non-malignant HEK293 cells. We also found the combination treatment significantly decreased the ratio of Bcl-2/Bax protein and increased caspase activity in PANC-1 cells, resulting in the promotion of apoptotic responses, evidenced by chromatin condensation. The findings of the present study reveal the synergistic reactions in the combination treatment may severely disturb mitochondria, enhance the intrinsic pathway transduction, and effectively induce apoptosis; moreover, the migration and invasion of PANC-1 cancer cells were also significantly suppressed. Since normal cells are less sensitive to this combination treatment, and the non-invasive PEF could be modified to focus on a specific location, this treatment may serve as a promising method for anti-cancer therapy.

  8. Reflection-artifact-free photoacoustic imaging using PAFUSion (photoacoustic-guided focused ultrasound)

    Science.gov (United States)

    Kuniyil Ajith Singh, Mithun; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt

    2016-03-01

    Reflection artifacts caused by acoustic inhomogeneities are a main challenge to deep-tissue photoacoustic imaging. Photoacoustic transients generated by the skin surface and superficial vasculature will propagate into the tissue and reflect back from echogenic structures to generate reflection artifacts. These artifacts can cause problems in image interpretation and limit imaging depth. In its basic version, PAFUSion mimics the inward travelling wave-field from blood vessel-like PA sources by applying focused ultrasound pulses, and thus provides a way to identify reflection artifacts. In this work, we demonstrate reflection artifact correction in addition to identification, towards obtaining an artifact-free photoacoustic image. In view of clinical applications, we implemented an improved version of PAFUSion in which photoacoustic data is backpropagated to imitate the inward travelling wave-field and thus the reflection artifacts of a more arbitrary distribution of PA sources that also includes the skin melanin layer. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. We present a phantom experiment and initial in vivo measurements on human volunteers where we demonstrate significant reflection artifact reduction using our technique. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can reduce these artifacts significantly to improve the deep-tissue photoacoustic imaging.

  9. Tuning the carbon nanotube photoluminescence enhancement at addition of cysteine through the change of external conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, N.V.; Karachevtsev, M.V.; Leontiev, V.S.; Karachevtsev, V.A., E-mail: karachevtsev@ilt.kharkov.ua

    2017-01-15

    The enhancement of the photoluminescence (PL) from the semiconducting single-walled carbon nanotubes suspended with single-stranded DNA (ssDNA) in water observed after amino acids doping is the largest at cysteine addition. The PL intensity increased through the passivation of p-defects on the carbon nanotube sidewall by the cysteine molecules due to thiol group. The effect of several external factors on the cysteine-induced enhancement of PL from carbon nanotubes covered with ssDNA was studied: UV irradiation, tip or bath sonication treatment of the suspension, the ionic strength and pH of aqueous suspension. It turned out that all these factors have an essential influence on the dependence of the PL enhancement on the cysteine concentration through inducing of additional defects on nanotube as well as a change of the nanotube surface coverage with polymer. The obtained experimental results demonstrated that PL from carbon nanotubes can be exploited successfully for the monitoring of cysteine concentration in aqueous solution. - Highlights: • Cysteine doping enhances carbon nanotube emission more than other amino acids do. • SWNT emission dependence on cysteine concentration is tuned by UV irradiation and pH. • Type of sonication treatment influences SWNT PL dependence on cysteine concentration. • Polymer coverage and defectiveness of nanotubes effect on nanotube emission. • Graphic abstract.

  10. Elastography methods for the non-invasive assessment of portal hypertension.

    Science.gov (United States)

    Roccarina, Davide; Rosselli, Matteo; Genesca, Joan; Tsochatzis, Emmanuel A

    2018-02-01

    The gold standard to assess the presence and severity of portal hypertension remains the hepatic vein pressure gradient, however the recent development of non-invasive assessment using elastography techniques offers valuable alternatives. In this review, we discuss the diagnostic accuracy and utility of such techniques in patients with portal hypertension due to cirrhosis. Areas covered: A literature search focused on liver and spleen stiffness measurement with different elastographic techniques for the assessment of the presence and severity of portal hypertension and oesophageal varices in people with chronic liver disease. The combination of elastography with parameters such as platelet count and spleen size is also discussed. Expert commentary: Non-invasive assessment of liver fibrosis and portal hypertension is a validated tool for the diagnosis and follow-up of patients. Baveno VI recommended the combination of transient elastography and platelet count for ruling out varices needing treatment in patients with compensated advanced chronic liver disease. Assessment of aetiology specific cut-offs for ruling in and ruling out clinically significant portal hypertension is an unmet clinical need. The incorporation of spleen stiffness measurements in non-invasive algorithms using validated software and improved measuring scales might enhance the non-invasive diagnosis of portal hypertension in the next 5 years.

  11. Diagnostic value of Gd-EOB-DTPA-enhanced MR cholangiography in non-invasive detection of postoperative bile leakage.

    Science.gov (United States)

    Kul, Melahat; Erden, Ayşe; Düşünceli Atman, Ebru

    2017-04-01

    To assess the diagnostic value of dynamic T 1 weighted (T1w) gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid (Gd-EOB-DTPA)-enhanced MR cholangiography (MRC) for the detection of active bile leaks. A total of 28 patients with suspected biliary leakage who underwent routine T 2 weighted (T2w) MRC and T1w GD-EOB-DTPA-enhanced MRC at our institution from February 2013 to June 2016 were included in this study. The image sets were retrospectively analyzed in consensus by three radiologists. T1w Gd-EOB-DTPA-enhanced MRC findings were correlated with clinical data, follow-up examinations and findings of invasive/surgical procedures. Patients with positive bile leak findings in Gd-EOB-DTPA-enhanced MRC were divided into hepatobiliary phase (HBP) (20-30 min) and delayed phase (DP) (60-390 min) group according to elapsed time between Gd-EOB-DTPA injection and initial bile leak findings in MRC images. These groups were compared in terms of laboratory test results (total bilirubin, liver enzymes) and the presence of bile duct dilatation in T2w MRC images. In each patient, visualization of bile ducts was sufficient in the HBP. The accuracy, sensitivity and specificity of dynamic Gd-EOB-DTPA-enhanced T1w MRC in the detection of biliary leaks were 92.9%, 90.5% and 100%, respectively (p  0.05). Three patients, each of them in DP group, showed normal laboratory test results and bile duct diameters. Dynamic T1w Gd-EOB-DTPA-enhanced MRC is a useful non-invasive diagnostic tool to detect bile leak. Advances in knowledge: Prolonged DP imaging may be required for bile leak detection even if visualization of biliary tree is sufficient in HBP and liver function tests, total bilirubin levels and bile duct diameters are normal.

  12. Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents.

    Science.gov (United States)

    Gethard, Ken; Mitra, Somenath

    2011-06-21

    Carbon nanotube enhanced membrane distillation (MD) is presented as a novel, online analytical preconcentration method for removing polar solvents thereby concentrating the analytes, making this technique an alternate to conventional thermal evaporation. In a carbon nanotube immobilized membrane (CNIM), the CNTs serve as sorbent sites and provide additional pathways for enhanced solvent vapor transport, thus enhancing preconcentration. Enrichment using CNIM doubled compared to membranes without CNTs, while the methanol flux and mass transfer coefficients increased by 61% and 519% respectively. The carbon nanotube enhanced MD process showed excellent precision (RSD of 3-5%), linearity, and the detection limits were in the range of 0.001 to 0.009 mg L(-1) by HPLC analysis.

  13. Simultaneous synthesis of single-walled carbon nanotubes and graphene in a magnetically-enhanced arc plasma.

    Science.gov (United States)

    Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael

    2012-02-02

    Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices(1-4). Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT (5), narrow the diameter distribution of metallic catalyst particles and carbon nanotubes (6), and change the ratio of metallic and semiconducting carbon nanotubes (7), as well as lead to graphene synthesis (8). Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the

  14. Patterns of malignant non-mass enhancement on 3-T breast MRI help predict invasiveness: using the BI-RADS lexicon fifth edition.

    Science.gov (United States)

    Lee, Seung Min; Nam, Kyung Jin; Choo, Ki Seok; Kim, Jin You; Jeong, Dong Wook; Kim, Hyun Yul; Kim, Jee Yeon

    2018-01-01

    Background Non-mass enhancements (NME) with invasive components account for 10-42% of total malignant NMEs. The factors associated with invasiveness on magnetic resonance imaging (MRI) could be useful for clinical assessment and treatment. Purpose To evaluate the clinical significances of the distributions and internal enhancement patterns (IEP) of malignant NMEs on 3-T breast MRI. Material and Methods A total of 448 consecutive women with newly diagnosed breast cancer that had undergone preoperative MRI and surgery between February 2013 and March 2016 were identified. After exclusions, 72 malignant NMEs without a mass in 72 women (mean age = 51.5 years) were included. Two readers independently assessed distributions and IEPs of NME, according to the Breast Imaging Reporting and Data System lexicon fifth edition. Collected data included the presence of invasion and histopathologic factors. Results A clustered ring IEP was significantly associated with invasive cancer (75.0%, P = 0.001, Reader1; 72.9%, P IEP was related to ductal carcinoma in situ (33.3%, P = 0.025; 50.0%, P = 0.001, respectively), absence of lymph node metastasis (24.1%, P = 0.029; 31.5%, P = 0.030, respectively), and presence of necrosis (34.5%, P = 0.003; 44.8%, P = 0.001, respectively). Conclusion The presence of a clustered ring IEP in patients with breast cancer was found to be significantly associated with invasive breast cancer and high Ki-67 expression.

  15. Non-invasive brain stimulation enhances the effects of Melodic Intonation Therapy

    Directory of Open Access Journals (Sweden)

    Bradley W. Vines

    2011-09-01

    Full Text Available Research has suggested that a fronto-temporal network in the right hemisphere may be responsible for mediating Melodic Intonation Therapy’s positive effects on speech recovery. We investigated the potential for a non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS, to augment the benefits of MIT in patients with non-fluent aphasia by modulating neural activity in the brain during treatment with MIT. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. We applied anodal tDCS to the posterior inferior frontal gyrus (IFG of the right hemisphere, an area that has been shown to both contribute to singing through the mapping of sounds to ariculatory actions and serve as a key region in the process of recovery from aphasia, particularly in patients with large left hemispheric lesions. The stimulation was applied while patients were treated with MIT by a trained therapist. Six patients with moderate to severe non-fluent aphasia underwent three consecutive days of anodal-tDCS+MIT, and an equivalent series of sham-tDCS+MIT. The two treatment series were separated by one week, and the order in which the treatments were administered was randomized. Compared to the effects of sham-tDCS+MIT, anodal-tDCS+MIT led to significant improvements in fluency of speech. These results support the hypothesis that, as the brain seeks to reorganize and compensate for damage to left-hemisphere language centers, combining anodal-tDCS with MIT may further recovery from post-stroke aphasia by enhancing activity in a right-hemisphere sensorimotor network for articulation.

  16. Enhancement in ballistic performance of composite hard armor through carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Jason Gibson

    2013-12-01

    Full Text Available The use of carbon nanotubes in composite hard armor is discussed in this study. The processing techniques to make various armor composite panels consisting of Kevlar®29 woven fabric in an epoxy matrix and the subsequent V50 test results for both 44 caliber soft-point rounds and 30 caliber FSP (fragment simulated projectile threats are presented. A 6.5% improvement in the V50 test results was found for a combination of 1.65 wt% loading of carbon nanotubes and 1.65 wt% loading of milled fibers. The failure mechanism of carbon nanotubes during the ballistic event is discussed through scanning electron microscope images of the panels after the failure. Raman Spectroscopy was also utilized to evaluate the residual strain in the Kevlar®29 fibers post shoot. The Raman Spectroscopy shows a Raman shift of 25 cm−1 for the Kevlar®29 fiber utilized in the composite panel that had an enhancement in the V50 performance by using milled fiber and multi-walled carbon nanotubes. Evaluating both scenarios where an improvement was made and other panels without any improvement allows for understanding of how loading levels and synergistic effects between carbon nanotubes and milled fibers can further enhance ballistic performance.

  17. Intraspecies differenes in phenotypic plasticity: Invasive versus non-invasive populations of Ceratophyllum demersum

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Brix, Hans

    2012-01-01

    High phenotypic plasticity has been hypothesized to affect the invasiveness of plants, as high plasticity may enlarge the breath of environments in which the plants can survive and reproduce. Here we compare the phenotypic plasticity of invasive and non-invasive populations of the same species...... hypothesized that the phenotypic plasticity in fitness-related traits like growth and photosynthesis were higher in the invasive than in the non-invasive population. The invasive population acclimated to elevated temperatures through increased rates of photosynthesis (range: Pamb: 8–452 mol O2 g−1 DM h−1......-harvesting complex. Hence, the invasive population of C. demersum from New Zealand had higher phenotypic plasticity in response to temperature than the non-invasive Danish population. This might be the result of genetic evolution since its introduction to New Zealand five decades ago, but further studies are needed...

  18. Comparative anatomy of invasive and non-invasive species in the ...

    African Journals Online (AJOL)

    The foliar and stem micromorphological study of the invasive and non-invasive species were undertaken using Light Microscope (LM). The occurrence of vessels in the pillar of the abundant sclerenchyma tissues are important component of the skeletal system in the invasive species. The prominent tiles of parenchymatous ...

  19. Recording human cortical population spikes non-invasively--An EEG tutorial.

    Science.gov (United States)

    Waterstraat, Gunnar; Fedele, Tommaso; Burghoff, Martin; Scheer, Hans-Jürgen; Curio, Gabriel

    2015-07-30

    Non-invasively recorded somatosensory high-frequency oscillations (sHFOs) evoked by electric nerve stimulation are markers of human cortical population spikes. Previously, their analysis was based on massive averaging of EEG responses. Advanced neurotechnology and optimized off-line analysis can enhance the signal-to-noise ratio of sHFOs, eventually enabling single-trial analysis. The rationale for developing dedicated low-noise EEG technology for sHFOs is unfolded. Detailed recording procedures and tailored analysis principles are explained step-by-step. Source codes in Matlab and Python are provided as supplementary material online. Combining synergistic hardware and analysis improvements, evoked sHFOs at around 600 Hz ('σ-bursts') can be studied in single-trials. Additionally, optimized spatial filters increase the signal-to-noise ratio of components at about 1 kHz ('κ-bursts') enabling their detection in non-invasive surface EEG. sHFOs offer a unique possibility to record evoked human cortical population spikes non-invasively. The experimental approaches and algorithms presented here enable also non-specialized EEG laboratories to combine measurements of conventional low-frequency EEG with the analysis of concomitant cortical population spike responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.

    Science.gov (United States)

    Esplandiu, M J; Pacios, M; Cyganek, L; Bartroli, J; del Valle, M

    2009-09-02

    In this paper, the electrochemical behavior of different myoglobin-modified carbon electrodes is evaluated. In particular, the performance of voltammetric biosensors made of forest-like carbon nanotubes, carbon nanotube composites and graphite composites is compared by monitoring mainly the electrocatalytic reduction of H(2)O(2) by myoglobin and their corresponding electroanalytical characteristics. Graphite composites showed the worst electroanalytical performance, exhibiting a small linear range, a limit of detection (LOD) of 9 x 10(-5) M and low sensitivity. However, it was found that the electrochemical response was enhanced with the use of carbon nanotube-based electrodes with LOD up to 5 x 10(-8) M, higher sensitivities and wider linear range response. On the one hand, in the case of the CNT epoxy composite, the improvement in the response can be mainly attributed to its more porous surface which allows the immobilization of higher amounts of the electroactive protein. On the other hand, in the case of the forest-like CNT electrodes, the enhancement is due to an increase in the electron transfer kinetics. These findings encourage the use of myoglobin-modified carbon nanotube electrodes as potential (bio)sensors of H(2)O(2) or O(2) in biology, microbiology and environmental fields.

  1. Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring

    International Nuclear Information System (INIS)

    Talbert, Robert J; Holan, Scott H; Viator, John A

    2007-01-01

    Discriminating viable from thermally coagulated blood in a burn wound can be used to profile burn depth, thus aiding the removal of necrotic tissue. In this study, we used a two-wavelength photoacoustic imaging method to discriminate coagulated and non-coagulated blood in a dermal burn phantom. Differences in the optical absorption spectra of coagulated and non-coagulated blood produce different values of the ratio of peak photoacoustic amplitude at 543 and 633 nm. The absorption values obtained from spectroscopic measurements indicate that the ratio of photoacoustic pressure for 543 and 633 nm for non-coagulated blood was 15.7:1 and 1.6:1 for coagulated blood. Using planar blood layers, we found the photoacoustic ratios to be 13.5:1 and 1.6:1, respectively. Using the differences in the ratios of coagulated and non-coagulated blood, we propose a scheme using statistical classification analysis to identify the different blood samples. Based upon these distinctly different ratios, we identified the planar blood samples with an error rate of 0%. Using a burn phantom with cylindrical vessels containing coagulated and non-coagulated blood, we achieved an error rate of 11.4%. These results have shown that photoacoustic imaging could prove to be a valuable tool in the diagnosis of burns

  2. Quartz-Enhanced Photoacoustic Spectroscopy Sensor with a Small-Gap Quartz Tuning Fork

    Directory of Open Access Journals (Sweden)

    Yu-Fei Ma

    2018-06-01

    Full Text Available A highly sensitive quartz-enhanced photoacoustic spectroscopy (QEPAS sensor based on a custom quartz tuning fork (QTF with a small-gap of 200 μm was demonstrated. With the help of the finite element modeling (FEM simulation software COMSOL, the change tendency of the QEPAS signal under the influence of the laser beam vertical position and the length of the micro-resonator (mR were calculated theoretically. Water vapor (H2O was selected as the target analyte. The experimental results agreed well with those of the simulation, which verified the correctness of the theoretical model. An 11-fold signal enhancement was achieved with the addition of an mR with an optimal length of 5 mm in comparison to the bare QTF. Finally, the H2O-QEPAS sensor, which was based on a small-gap QTF, achieved a minimum detection limit (MDL of 1.3 ppm, indicating an improvement of the sensor performance when compared to the standard QTF that has a gap of 300 μm.

  3. Recording membrane potential changes through photoacoustic voltage sensitive dye

    Science.gov (United States)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping; Abou, Diane S.; Le, Hanh N. D.; Thorek, Daniel L. J.; Kang, Jin U.; Gjedde, Albert; Rahmim, Arman; Wong, Dean F.; Loew, Leslie M.; Boctor, Emad M.

    2017-03-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. Based on this concept, we synthesized a novel near infrared photoacoustic VSD (PA-VSD) whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. With a 3-9 μM VSD concentration, we measured a PA signal increase in the range of 5.3 % to 18.1 %, and observed a corresponding signal reduction in fluorescence emission of 30.0 % to 48.7 %. A theoretical model successfully accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize the characteristics of improved photoacoustic probes. Together, our results demonstrate photoacoustic sensing as a potential new modality for sub-second recording and external imaging of electrophysiological and neurochemical events in the brain.

  4. Non-invasive detection of the early phase of kidney injury by photoacoustic/computed tomography imaging

    Science.gov (United States)

    Pan, Wanma; Peng, Wen; Ning, Fengling; Zhang, Yu; Zhang, Yunfei; Wang, Yinhang; Xie, Weiyi; Zhang, Jing; Xin, Hong; Li, Cong; Zhang, Xuemei

    2018-06-01

    The early diagnosis of kidney diseases, which can remarkably impair the quality of life and are costly, has encountered great difficulties. Therefore, the development of methods for early diagnosis has great clinical significance. In this study, we used an emerging technique of photoacoustic (PA) imaging, which has relatively high spatial resolution and good imaging depth. Two kinds of PA gold nanoparticle (GNP)-based bioprobes were developed based on their superior photo detectability, size controllability and biocompatibility. The kidney injury mouse model was developed by unilateral ureteral obstruction for 96 h and the release of obstruction model). Giving 3.5 and 5.5 nm bioprobes by tail vein injection, we found that the 5.5 nm probe could be detected in the bladder in the model group, but not in the control group. These results were confirmed by computed tomography imaging. Furthermore, the model group did not show changes in the blood biochemical indices (BUN and Scr) and histologic examination. The 5.5 nm GNPs were found to be the critical point for early diagnosis of kidney injury. This new method was faster and more sensitive and accurate for the detection of renal injury, compared with conventional methods, and can be used for the development of a PA GNP-based bioprobe for diagnosing renal injury.

  5. A comparison of non-invasive versus invasive methods of ...

    African Journals Online (AJOL)

    Puneet Khanna

    for Hb estimation from the laboratory [total haemoglobin mass (tHb)] and arterial blood gas (ABG) machine (aHb), using ... A comparison of non-invasive versus invasive methods of haemoglobin estimation in patients undergoing intracranial surgery. 161 .... making decisions for blood transfusions based on these results.

  6. Accuracy of a novel photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot

    Science.gov (United States)

    Gandhi, Neeraj; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2017-03-01

    Minimally invasive surgery carries the deadly risk of rupturing major blood vessels, such as the internal carotid arteries hidden by bone in endonasal transsphenoidal surgery. We propose a novel approach to surgical guidance that relies on photoacoustic-based vessel separation measurements to assess the extent of safety zones during these type of surgical procedures. This approach can be implemented with or without a robot or navigation system. To determine the accuracy of this approach, a custom phantom was designed and manufactured for modular placement of two 3.18-mm diameter vessel-mimicking targets separated by 10-20 mm. Photoacoustic images were acquired as the optical fiber was swept across the vessels in the absence and presence of teleoperation with a research da Vinci Surgical System. When the da Vinci was used, vessel positions were recorded based on the fiber position (calculated from the robot kinematics) that corresponded to an observed photoacoustic signal. In all cases, compounded photoacoustic data from a single sweep displayed the four vessel boundaries in one image. Amplitude- and coherence-based photoacoustic images were used to estimate vessel separations, resulting in 0.52-0.56 mm mean absolute errors, 0.66-0.71 mm root mean square errors, and 65-68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Results indicate that with further development, photoacoustic image-based measurements of anatomical landmarks could be a viable method for real-time path planning in multiple interventional photoacoustic applications.

  7. Characterization of seeds with different moisture content by photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Pacheco, Arturo; Hernandez Aguilar, Claudia; Marinez Ortiz, Efrain [Instituto Politecnico Nacional, Sepi-Esime, Zacatenco. Unidad Profesional ' Adolfo Lopez Mateos' . Col. Lindavista. Mexico D.F., CP 07738 (Mexico); Cruz-Orea, Alfredo; Ayala-Maycotte, Esther, E-mail: fartur@hotmail.co [Departamento de Fisica, CINVESTAV - IPN, A. P. 14-740, Mexico D.F., C.P. 07360 (Mexico)

    2010-03-01

    Photoacoustic (PA) technique has important applications for material characterization and nondestructive evaluation of opaque solid materials. PA microscopy allows the acquisition of information of samples with inhomogeneous structures as agricultural seeds. A determining factor for seed safe storage is their moisture content. Seeds stored at high moisture content exhibit increased respiration, heating, and fungal invasion resulting in poor seed vigor and viability. Low moisture content, in the seed to be stored, is the best prevention for these problems. In this study, Photoacoustic Microscopy (PAM) was used to characterize seeds with different moisture content. In the PAM experimental setup the photoacoustic cell and its sensor, an electret microphone, are mounted on an x-y stage of mobile axes, with spatial resolution of 70 {mu}m. The excitation light source is a fiber coupled laser diode, at 650 nm wavelength, modulated in intensity at 1 Hz of frequency, by the reference oscillator of a lock-in amplifier. By using a microscope objective the laser beam was focused on the seed surface. The resolution was enough to obtain differences in the obtained images, which are dependent on the moisture content. This method, to study differences in the seed moisture content, is nondestructive and could be useful for a sustainable Agriculture.

  8. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke

    Directory of Open Access Journals (Sweden)

    Maximilian Jonas Wessel

    2015-05-01

    Full Text Available Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current (tDCS, transcranial magnetic (TMS and paired associative (PAS stimulation are noninvasive brain stimulation techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.

  9. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke.

    Science.gov (United States)

    Wessel, Maximilian J; Zimerman, Máximo; Hummel, Friedhelm C

    2015-01-01

    Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation (NIBS) techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current, transcranial magnetic, and paired associative (PAS) stimulation are NIBS techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.

  10. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    NARCIS (Netherlands)

    Avti, P.K.; Hu, S.; Favazza, C.; Mikos, A.G.; Jansen, J.A.; Shroyer, K.R.; Wang, L.V.; Sitharaman, B.

    2012-01-01

    AIMS: In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (microg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies

  11. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  12. Photoacoustic imaging and spectroscopy

    CERN Document Server

    Wang, Lihong

    2009-01-01

    Photoacoustics promises to revolutionize medical imaging and may well make as dramatic a contribution to modern medicine as the discovery of the x-ray itself once did. Combining electromagnetic and ultrasonic waves synergistically, photoacoustics can provide deep speckle-free imaging with high electromagnetic contrast at high ultrasonic resolution and without any health risk. While photoacoustic imaging is probably the fastest growing biomedical imaging technology, this book is the first comprehensive volume in this emerging field covering both the physics and the remarkable noninvasive applic

  13. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano

    2017-12-29

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect of post-grown thermal treatments on nanotube mechanical properties was investigated and carefully correlated to the chemico-physical parameters evolution. The Young\\'s modulus of TiO2 nanotube linearly rises from 57 GPa up to 105 GPa for annealing at 600°C depending on the compositional and crystallographic evolution of the nanostructure. Considering the growing interest in single nanostructure devices, the reported findings allow a deeper understanding of the properties of individual titanium dioxide nanotubes extrapolated from their standard arrayed architecture.

  14. Importance of the alignment of polar π conjugated molecules inside carbon nanotubes in determining second-order non-linear optical properties.

    Science.gov (United States)

    Yumura, Takashi; Yamamoto, Wataru

    2017-09-20

    We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the

  15. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    OpenAIRE

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photo...

  16. Enhanced electroluminescence of organic light-emitting diodes by using halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mondragón, Margarita, E-mail: mmondragon@ipn.mx [Instituto Politécnico Nacional, ESIME Azcapotzalco, Av. de las Granjas 682, 02250 México D.F. (Mexico); Moggio, Ivana; León, Arxel de; Arias, Eduardo [Centro de Investigación en Química Aplicada, CIQA, Blvd. Enrique Reyna 140, 25253 Saltillo, Coahuila (Mexico)

    2013-12-15

    The effect of halloysite clay nanotubes (HNTs) on the optical and electronic properties of poly(2-methoxy-5-[2′-ethylhexyloxy]-1,4-phenylenevinylene) (MEH-PPV) have been investigated. The UV–vis absorption band of the conjugated polymer remains unchanged upon the incorporation of halloysite nanotubes (HNTs). Photoluminescence (PL) measurements reveal a decreased quantum yield in the MEH-PPV/HNTs nanocomposites, compared with bulk MEH-PPV. Improvement of the electroluminescence of organic light-emitting diodes (OLEDs) was achieved by incorporating high contents of HNTs. The nanotubes act to enhanced polymer aggregates, as revealed by AFM analysis, thus increasing charge transport and therefore electroluminescence but also decreasing PL quantum yield. -- Highlights: • Thin films of nanocomposites of MEH-PPV/HNTs were prepared by spin coating. • Quantum yield in the nanocomposites was decreased compared with bulk MEH-PPV. • Improvement of the EL of OLEDs was achieved by incorporating high contents of HNTs. • The HNTs act to enhanced polymer aggregates, as revealed by AFM.

  17. Enhanced electroluminescence of organic light-emitting diodes by using halloysite nanotubes

    International Nuclear Information System (INIS)

    Mondragón, Margarita; Moggio, Ivana; León, Arxel de; Arias, Eduardo

    2013-01-01

    The effect of halloysite clay nanotubes (HNTs) on the optical and electronic properties of poly(2-methoxy-5-[2′-ethylhexyloxy]-1,4-phenylenevinylene) (MEH-PPV) have been investigated. The UV–vis absorption band of the conjugated polymer remains unchanged upon the incorporation of halloysite nanotubes (HNTs). Photoluminescence (PL) measurements reveal a decreased quantum yield in the MEH-PPV/HNTs nanocomposites, compared with bulk MEH-PPV. Improvement of the electroluminescence of organic light-emitting diodes (OLEDs) was achieved by incorporating high contents of HNTs. The nanotubes act to enhanced polymer aggregates, as revealed by AFM analysis, thus increasing charge transport and therefore electroluminescence but also decreasing PL quantum yield. -- Highlights: • Thin films of nanocomposites of MEH-PPV/HNTs were prepared by spin coating. • Quantum yield in the nanocomposites was decreased compared with bulk MEH-PPV. • Improvement of the EL of OLEDs was achieved by incorporating high contents of HNTs. • The HNTs act to enhanced polymer aggregates, as revealed by AFM

  18. Enhanced Photocurrent Efficiency of a Carbon Nanotube Embedded in a Photonic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bryan M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Science

    2008-08-01

    One of the most rapidly-growing areas in nanoscience is the ability to artificially manipulate optical and electrical properties at the nanoscale. In particular, nanomaterials such as single-wall carbon nanotubes offer enhanced methods for converting infrared light to electrical energy due to their unique one-dimensional electronic properties. However, in order for this energy conversion to occur, a realistic nanotube device would require high-intensity light to be confined on a nanometer scale. This arises from the fact that the diameter of a single nanotube is on the order of a nanometer, and infrared light from an external source must be tightly focused on the narrow nanotube for efficient energy conversion. To address this problem, I calculate the theoretical photocurrent of a nanotube p-n junction illuminated by a highly-efficient photonic structure. These results demonstrate the utility of using a photonic structure to couple large-scale infrared sources with carbon nanotubes while still retaining all the unique optoelectronic properties found at the nanoscale.

  19. Photoacoustic detection of CO2 based on LABVIEW at 10.303 μm.

    Science.gov (United States)

    Zhao, Junjuan; Zhao, Zhan; Du, Lidong; Geng, Daoqu; Wu, Shaohua

    2011-04-01

    A detailed study on a photoacoustic carbon dioxide detection system, through sound card based on virtual instrument, is presented in this paper. In this system, the CO(2) concentration was measured with the non-resonant photoacoustic cell technique through measuring the photoacoustic signal caused by the CO(2). In order to obtain small photoacoustic signals buried in noise, a measurement software was designed with LABVIEW. It has functions of Lock-in Amplifier, digital filter, and signal generator; can also be used to achieve spectrum analysis and signal recovery; has been provided with powerful function for data processing and communication with other measuring instrument. The test results show that the entire system has an outstanding measuring performance with the sensitivity of 10 μv between 10-44 KHz. The non-resonance test of the trace gas analyte CO(2) conducted at 100 Hz demonstrated large signals (15.89 mV) for CO(2) concentrations at 600 ppm and high signal-to-noise values (∼85:1). © 2011 American Institute of Physics

  20. Multispectral photoacoustic characterization of ICG and porcine blood using an LED-based photoacoustic imaging system

    Science.gov (United States)

    Shigeta, Yusuke; Sato, Naoto; Kuniyil Ajith Singh, Mithun; Agano, Toshitaka

    2018-02-01

    Photoacoustic imaging is a hybrid biomedical imaging modality that has emerged over the last decade. In photoacoustic imaging, pulsed-light absorbed by the target emits ultrasound that can be detected using a conventional ultrasound array. This ultrasound data can be used to reconstruct the location and spatial details of the intrinsic/extrinsic light absorbers in the tissue. Recently we reported on the development of a multi-wavelength high frame-rate LED-based photoacoustic/ultrasound imaging system (AcousticX). In this work, we photoacoustically characterize the absorption spectrum of ICG and porcine blood using LED arrays with multiple wavelengths (405, 420, 470, 520, 620, 660, 690, 750, 810, 850, 925, 980 nm). Measurements were performed in a simple reflection mode configuration in which LED arrays where fixed on both sides of the linear array ultrasound probe. Phantom used consisted of micro-test tubes filled with ICG and porcine blood, which were placed in a tank filled with water. The photoacoustic spectrum obtained from our measurements matches well with the reference absorption spectrum. These results demonstrate the potential capability of our system in performing clinical/pre-clinical multispectral photoacoustic imaging.

  1. Fleshy fruit removal and nutritional composition of winter-fruiting plants: a comparison of non-native invasive and native species

    Science.gov (United States)

    Cathryn H. Greenberg; Scott T. Walter

    2010-01-01

    Invasive, non-native plants threaten forest ecosystems by reducing native plant species richness and potentially altering ecosystem processes. Seed dispersal is critical for successful invasion and range expansion by non-native plants; dispersal is likely to be enhanced if they can successfully compete with native plants for disperser services. Fruit production by non-...

  2. Enhancement of the solubility, thermal stability, and electronic properties of carbon nanotubes functionalized with MEH-PPV: A combined experimental and computational study

    International Nuclear Information System (INIS)

    Prajongtat, P.; Suramitr, S.; Hannongbua, S.; Gleeson, M.P.; Mitsuke, K.

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) functionalized with poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MWCNT-f-MEH-PPV) nanocomposites were successfully prepared by employing a “grafting from” approach. The content of the functionalizing MEH-PPV in the composites was observed as 76 wt.%. Compared with pristine MWCNTs (p-MWCNT), the aqueous solubility and thermal stability of the former are significantly enhanced. The effect of covalently and non-covalently functionalized nanotubes on dye-sensitized solar cell performance was also studied. Solar cells were successfully fabricated from isolated MEH-PPV, p-MWCNT/MEH-PPV, and MWCNT-f-MEH-PPV/MEH-PPV counter electrodes. The devices based on a MWCNT-f-MEH-PPV/MEH-PPV counter electrode demonstrated the best photovoltaic performance as observed by higher J SC, V OC, and fill factor (FF) values. The experimental phenomena can be explained by quantum-chemical calculations: Charge transfer from MEH-PPV oligomers to nanotubes is greater when covalently functionalized compared with non-covalently functionalized. This suggests that the improvement in the photovoltaic parameters of the cells containing covalently functionalized nanotubes results not only from the higher concentration present in the nanotube films of the counter electrode, but also from the greater electron delocalization between the oligomers and nanotubes. (author)

  3. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    International Nuclear Information System (INIS)

    Martinez, D S T; Alves, O L; Barbieri, E

    2013-01-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO 3 -MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO 3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO 3 -treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO 3 -MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO 3 -MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO 3 -MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  4. Invasive v non-invasive assessment of the carotid arteries prior to trans-sphenoidal surgery

    International Nuclear Information System (INIS)

    Macpherson, P.; Teasdale, E.; Hadley, D.M.; Teasdale, G.

    1987-01-01

    Imaging studies in 47 patients who were to undergo trans-sphenoidal surgery were analysed with reference to the vascular structures in the parasellar region. The results of cavernous sinography, dynamic contrast enhanced computed tomography (CT) and magnetic resonance imaging (MRI) showed good correlation with each other and with the appearances found at operation. CT and MRI, both non-invasive investigations, are therefore reliable preliminary screening methods for identifying the small proportion of patients on whom other imaging techniques need to be performed. (orig.)

  5. Updated Scar Management Practical Guidelines: Non-invasive and invasive measures

    NARCIS (Netherlands)

    Monstrey, S.; Middelkoop, E.; Vranckx, J.J.; Bassetto, F.; Ziegler, U.E.; Meaume, S.; Teot, L.

    2014-01-01

    Hypertrophic scars and keloids can be aesthetically displeasing and lead to severe psychosocial impairment. Many invasive and non-invasive options are available for the plastic (and any other) surgeon both to prevent and to treat abnormal scar formation. Recently, an updated set of practical

  6. Photoacoustic signal amplification through plasmonic nanoparticle aggregation

    OpenAIRE

    Bayer, Carolyn L.; Nam, Seung Yun; Chen, Yun-Sheng; Emelianov, Stanislav Y.

    2013-01-01

    Photoacoustic imaging, using targeted plasmonic metallic nanoparticles, is a promising noninvasive molecular imaging method. Analysis of the photoacoustic signal generated by plasmonic metallic nanoparticles is complex because of the dependence upon physical properties of both the nanoparticle and the surrounding environment. We studied the effect of the aggregation of gold nanoparticles on the photoacoustic signal amplitude. We found that the photoacoustic signal from aggregated silica-coate...

  7. Dry coupling for whole-body small-animal photoacoustic computed tomography

    Science.gov (United States)

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-04-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.

  8. Nonlinear photoacoustic spectroscopy of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V., E-mail: LHWANG@WUSTL.EDU [Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130 (United States)

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  9. Nonlinear photoacoustic spectroscopy of hemoglobin.

    Science.gov (United States)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P; Xia, Jun; Wang, Lihong V

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  10. Nonlinear photoacoustic spectroscopy of hemoglobin

    International Nuclear Information System (INIS)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-01-01

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography

  11. Improved functionality of graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment

    Science.gov (United States)

    Wang, Wei; Ruiz, Isaac; Lee, Ilkeun; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2015-04-01

    Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability.Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06795a

  12. Quantitative ultrasound and photoacoustic imaging for the assessment of vascular parameters

    CERN Document Server

    Meiburger, Kristen M

    2017-01-01

    This book describes the development of quantitative techniques for ultrasound and photoacoustic imaging in the assessment of architectural and vascular parameters. It presents morphological vascular research based on the development of quantitative imaging techniques for the use of clinical B-mode ultrasound images, and preclinical architectural vascular investigations on quantitative imaging techniques for ultrasounds and photoacoustics. The book is divided into two main parts, the first of which focuses on the development and validation of quantitative techniques for the assessment of vascular morphological parameters that can be extracted from B-mode ultrasound longitudinal images of the common carotid artery. In turn, the second part highlights quantitative imaging techniques for assessing the architectural parameters of vasculature that can be extracted from 3D volumes, using both contrast-enhanced ultrasound (CEUS) imaging and photoacoustic imaging without the addition of any contrast agent. Sharing and...

  13. Non-invasive spectroscopic techniques in the diagnosis of non-melanoma skin cancer

    Science.gov (United States)

    Drakaki, E.; Sianoudis, IA; Zois, EN; Makropoulou, M.; Serafetinides, AA; Dessinioti, C.; Stefanaki, E.; Stratigos, AJ; Antoniou, C.; Katsambas, A.; Christofidou, E.

    2017-11-01

    The number of non-melanoma skin cancers is increasing worldwide and has become an important health and economic issue. Early detection and treatment of skin cancer can significantly improve patient outcome. Therefore there is an increase in the demand for proper management and effective non-invasive diagnostic modalities in order to avoid relapses or unnecessary treatments. Although the gold standard of diagnosis for non-melanoma skin cancers is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of non-melanoma skin cancers include high-definition optical coherence tomography, fluorescence spectroscopy, oblique incidence diffuse reflectance spectrometry among others spectroscopic techniques. Our findings establish how those spectrometric techniques can be used to more rapidly and easily diagnose skin cancer in an accurate and automated manner in the clinic.

  14. On image quality enhancement in photoacoustic image reconstruction by motion compensation

    NARCIS (Netherlands)

    Willemink, Rene; Slump, Cornelis H.; van der Heijden, Ferdinand

    2006-01-01

    Photoacoustic (PA) imaging is a relatively new noninvasive medical imaging modality. It is a tech- nique which is harmless for the human body and uses pulsed optical energy. The process is based on the ab- sorption of the pulse of optical energy by an object leading to local temperature increases.

  15. Photoacoustic spectroscopy of β-hematin

    International Nuclear Information System (INIS)

    Samson, Edward B; Goldschmidt, Benjamin S; Whiteside, Paul J D; Sudduth, Amanda S M; Custer, John R; Viator, John A; Beerntsen, Brenda

    2012-01-01

    Malaria affects over 200 million individuals annually, resulting in 800 000 fatalities. Current tests use blood smears and can only detect the disease when 0.1–1% of blood cells are infected. We are investigating the use of photoacoustic flowmetry to sense as few as one infected cell among 10 million or more normal blood cells, thus diagnosing infection before patients become symptomatic. Photoacoustic flowmetry is similar to conventional flow cytometry, except that rare cells are targeted by nanosecond laser pulses to induce ultrasonic responses. This system has been used to detect single melanoma cells in 10 ml of blood. Our objective is to apply photoacoustic flowmetry to detection of the malaria pigment hemozoin, which is a byproduct of parasite-digested hemoglobin in the blood. However, hemozoin is difficult to purify in quantities greater than a milligram, so a synthetic analog, known as β-hematin was derived from porcine hemin. The specific purpose of this study is to establish the efficacy of using β-hematin, rather than hemozoin, for photoacoustic measurements. We characterized β-hematin using UV–vis spectroscopy, TEM, and FTIR, then tested the effects of laser irradiation on the synthetic product. We finally determined its absorption spectrum using photoacoustic excitation. UV–vis spectroscopy verified that β-hematin was distinctly different from its precursor. TEM analysis confirmed its previously established nanorod shape, and comparison of the FTIR results with published spectroscopy data showed that our product had the distinctive absorbance peaks at 1661 and 1206 cm −1 . Also, our research indicated that prolonged irradiation dramatically alters the physical and optical properties of the β-hematin, resulting in increased absorption at shorter wavelengths. Nevertheless, the photoacoustic absorption spectrum mimicked that generated by UV–vis spectroscopy, which confirms the accuracy of the photoacoustic method and strongly suggests

  16. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    Science.gov (United States)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin I.; Nasiriavanaki, Mohammadreza; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2012-01-01

    We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively decoupled by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area had a clear vascular pattern and spread wider than the somatosensory region. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism. PMID:22940116

  17. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  18. A novel fiber laser development for photoacoustic microscopy

    Science.gov (United States)

    Yavas, Seydi; Aytac-Kipergil, Esra; Arabul, Mustafa U.; Erkol, Hakan; Akcaalan, Onder; Eldeniz, Y. Burak; Ilday, F. Omer; Unlu, Mehmet B.

    2013-03-01

    Photoacoustic microscopy, as an imaging modality, has shown promising results in imaging angiogenesis and cutaneous malignancies like melanoma, revealing systemic diseases including diabetes, hypertension, tracing drug efficiency and assessment of therapy, monitoring healing processes such as wound cicatrization, brain imaging and mapping. Clinically, photoacoustic microscopy is emerging as a capable diagnostic tool. Parameters of lasers used in photoacoustic microscopy, particularly, pulse duration, energy, pulse repetition frequency, and pulse-to-pulse stability affect signal amplitude and quality, data acquisition speed and indirectly, spatial resolution. Lasers used in photoacoustic microscopy are typically Q-switched lasers, low-power laser diodes, and recently, fiber lasers. Significantly, the key parameters cannot be adjusted independently of each other, whereas microvasculature and cellular imaging, e.g., have different requirements. Here, we report an integrated fiber laser system producing nanosecond pulses, covering the spectrum from 600 nm to 1100 nm, developed specifically for photoacoustic excitation. The system comprises of Yb-doped fiber oscillator and amplifier, an acousto-optic modulator and a photonic-crystal fiber to generate supercontinuum. Complete control over the pulse train, including generation of non-uniform pulse trains, is achieved via the AOM through custom-developed field-programmable gate-array electronics. The system is unique in that all the important parameters are adjustable: pulse duration in the range of 1-3 ns, pulse energy up to 10 μJ, repetition rate from 50 kHz to 3 MHz. Different photocoustic imaging probes can be excited with the ultrabroad spectrum. The entire system is fiber-integrated; guided-beam-propagation rendersit misalignment free and largely immune to mechanical perturbations. The laser is robust, low-cost and built using readily available components.

  19. Techniques for Non-Invasive Monitoring of Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Agnes S. Meidert

    2018-01-01

    Full Text Available Since both, hypotension and hypertension, can potentially impair the function of vital organs such as heart, brain, or kidneys, monitoring of arterial blood pressure (BP is a mainstay of hemodynamic monitoring in acutely or critically ill patients. Arterial BP can either be obtained invasively via an arterial catheter or non-invasively. Non-invasive BP measurement provides either intermittent or continuous readings. Most commonly, an occluding upper arm cuff is used for intermittent non-invasive monitoring. BP values are then obtained either manually (by auscultation of Korotkoff sounds or palpation or automatically (e.g., by oscillometry. For continuous non-invasive BP monitoring, the volume clamp method or arterial applanation tonometry can be used. Both techniques enable the arterial waveform and BP values to be obtained continuously. This article describes the different techniques for non-invasive BP measurement, their advantages and limitations, and their clinical applicability.

  20. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive).

    Science.gov (United States)

    Lakhal, Karim; Ehrmann, Stephan; Perrotin, Dominique; Wolff, Michel; Boulain, Thierry

    2013-11-01

    To assess whether invasive and non-invasive blood pressure (BP) monitoring allows the identification of patients who have responded to a fluid challenge, i.e., who have increased their cardiac output (CO). Patients with signs of circulatory failure were prospectively included. Before and after a fluid challenge, CO and the mean of four intra-arterial and oscillometric brachial cuff BP measurements were collected. Fluid responsiveness was defined by an increase in CO ≥10 or ≥15% in case of regular rhythm or arrhythmia, respectively. In 130 patients, the correlation between a fluid-induced increase in pulse pressure (Δ500mlPP) and fluid-induced increase in CO was weak and was similar for invasive and non-invasive measurements of BP: r² = 0.31 and r² = 0.29, respectively (both p area under the receiver-operating curve (AUC) of 0.82 (0.74-0.88), similar (p = 0.80) to that of non-invasive Δ500mlPP [AUC of 0.81 (0.73-0.87)]. Outside large gray zones of inconclusive values (5-23% for invasive Δ500mlPP and 4-35% for non-invasive Δ500mlPP, involving 35 and 48% of patients, respectively), the detection of responsiveness or unresponsiveness to fluid was reliable. Cardiac arrhythmia did not impair the performance of invasive or non-invasive Δ500mlPP. Other BP-derived indices did not outperform Δ500mlPP. As evidenced by large gray zones, BP-derived indices poorly reflected fluid responsiveness. However, in our deeply sedated population, a high increase in invasive pulse pressure (>23%) or even in non-invasive pulse pressure (>35%) reliably detected a response to fluid. In the absence of a marked increase in pulse pressure (<4-5%), a response to fluid was unlikely.

  1. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  2. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.

    Science.gov (United States)

    Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K

    2015-03-27

    A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  3. Quartz Enhanced Photoacoustic Spectroscopy Based Trace Gas Sensors Using Different Quartz Tuning Forks

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2015-03-01

    Full Text Available A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS is reported. A 1.395 μm continuous wave (CW, distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs with a resonant frequency (f0 of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  4. Evolution of a MEMS Photoacoustic Chemical Sensor

    National Research Council Canada - National Science Library

    Pellegrino, Paul M; Polcawich, Ronald G

    2003-01-01

    .... Initial MEMS work is centered on fabrication of a lead zirconate titanate (PZT) microphone subsystem to be incorporated in the full photoacoustic device. Preliminary results were very positive for the macro-photoacoustic cell, PZT membrane microphones design / fabrication and elementary monolithic MEMS photoacoustic cavity.

  5. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling; Xu, Liang; Luo, Kai-Wu

    2014-01-01

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics

  6. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  7. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis.

    Science.gov (United States)

    Yagnik, Bhrugu; Padh, Harish; Desai, Priti

    2016-04-01

    Use of food grade Lactococcus lactis (L. lactis) is fast emerging as a safe alternative for delivery of DNA vaccine. To attain efficient DNA delivery, L. lactis, a non-invasive bacterium is converted to invasive strain either by expressing proteins like Internalin A (InlA) or Fibronectin binding protein A (FnBPA) or through chemical treatments. However the safety status of invasive L. lactis is questionable. In the present report, we have shown that non-invasive L. lactis efficiently delivered the newly constructed reporter plasmid pPERDBY to mammalian cells without any chemical enhancers. The salient features of the vector are; I) Ability to replicate in two different hosts; Escherichia coli (E. coli) and Lactic Acid Bacteria (LAB), II) One of the smallest reporter plasmid for DNA vaccine, III) Enhanced Green Fluorescence Protein (EGFP) linked to Multiple Cloning Site (MCS), IV) Immunostimulatory CpG motifs functioning as an adjuvant. Expression of EGFP in pPERDBY transfected CHO-K1 and Caco-2 cells demonstrates its functionality. Non-invasive r-L. lactis was found efficient in delivering pPERDBY to Caco-2 cells. The in vitro data presented in this article supports the hypothesis that in the absence of invasive proteins or relevant chemical treatment, L. lactis was found efficient in delivering DNA to mammalian cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    Science.gov (United States)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  9. Resonant Absorption in GaAs-Based Nanowires by Means of Photo-Acoustic Spectroscopy

    Science.gov (United States)

    Petronijevic, E.; Leahu, G.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Guina, M.; Sibilia, C.

    2018-03-01

    Semiconductor nanowires made of high refractive index materials can couple the incoming light to specific waveguide modes that offer resonant absorption enhancement under the bandgap wavelength, essential for light harvesting, lasing and detection applications. Moreover, the non-trivial ellipticity of such modes can offer near field interactions with chiral molecules, governed by near chiral field. These modes are therefore very important to detect. Here, we present the photo-acoustic spectroscopy as a low-cost, reliable, sensitive and scattering-free tool to measure the spectral position and absorption efficiency of these modes. The investigated samples are hexagonal nanowires with GaAs core; the fabrication by means of lithography-free molecular beam epitaxy provides controllable and uniform dimensions that allow for the excitation of the fundamental resonant mode around 800 nm. We show that the modulation frequency increase leads to the discrimination of the resonant mode absorption from the overall absorption of the substrate. As the experimental data are in great agreement with numerical simulations, the design can be optimized and followed by photo-acoustic characterization for a specific application.

  10. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    Science.gov (United States)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  11. A meta-analysis of trait differences between invasive and non-invasive plant species

    OpenAIRE

    van Kleunen, Mark; Weber, Ewald; Fischer, Markus

    2010-01-01

    A major aim in ecology is identifying determinants of invasiveness. We performed a meta-analysis of 117 field or experimental-garden studies that measured pair-wise trait differences of a total of 125 invasive and 196 non-invasive plant species in the invasive range of the invasive species. We tested whether invasiveness is associated with performance-related traits (physiology, leaf-area allocation, shoot allocation, growth rate, size and fitness), and whether such associations depend on typ...

  12. Carbon nanotubes as in vivo bacterial probes.

    Science.gov (United States)

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-09-17

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F'-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  13. Carbon nanotubes as in vivo bacterial probes

    Science.gov (United States)

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-09-01

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F‧-positive and F‧-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F‧-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  14. From mini-invasive to non-invasive treatment using monopolar radiofrequency: the next orthopaedic frontier.

    Science.gov (United States)

    Whipple, Terry L

    2009-10-01

    Tendinopathy arises from a failed tendon healing process. Current non-invasive therapeutic alternatives are anti-inflammatory in nature, and outcomes are unpredictable. The benefit of invasive alternatives resides in the induction of the healing response. A new technology that uses non-invasive monopolar capacitive coupled radiofrequency has demonstrated the ability to raise temperatures in tendons and ligaments above 50 degrees C, the threshold for collagen modulation, tissue shrinkage and recruitment of macrophages, fibroblasts, and heat shock protein factors, without damaging the overlying structures, resulting in activation of the wound healing response. Monopolar capacitive-coupled radiofrequency offers a new non-invasive choice for tendinopathies and sprained ligaments. It does not interfere with subsequent surgical procedures should they become necessary.

  15. Non-covalent and reversible functionalization of carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Antonello Di Crescenzo

    2014-09-01

    Full Text Available Carbon nanotubes (CNTs have been proposed and actively explored as multipurpose innovative nanoscaffolds for applications in fields such as material science, drug delivery and diagnostic applications. Their versatile physicochemical features are nonetheless limited by their scarce solubilization in both aqueous and organic solvents. In order to overcome this drawback CNTs can be easily non-covalently functionalized with different dispersants. In the present review we focus on the peculiar hydrophobic character of pristine CNTs that prevent them to easily disperse in organic solvents. We report some interesting examples of CNTs dispersants with the aim to highlight the essential features a molecule should possess in order to act as a good carbon nanotube dispersant both in water and in organic solvents. The review pinpoints also a few examples of dispersant design. The last section is devoted to the exploitation of the major quality of non-covalent functionalization that is its reversibility and the possibility to obtain stimuli-responsive precipitation or dispersion of CNTs.

  16. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H. [Materials Synthesis Laboratory, Departments of Physics and Chemistry, and Center for Advanced Photonic and Electronic Materials (CAPEM), State University of New York at Buffalo, Buffalo, New York 14260 (United States); Siegal, M.P.; Provencio, P.N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States)

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  17. Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging

    KAUST Repository

    Liu, Yijing

    2015-11-11

    The stepwise self-assembly of hollow plasmonic vesicles with vesicular membranes containing strings of gold nanoparticles (NPs) is reported. The formation of chain vesicles can be controlled by tuning the density of the polymer ligands on the surface of the gold NPs. The strong absorption of the chain vesicles in the near-infrared (NIR) region leads to a much higher efficiency in photoacoustic (PA) imaging than for non-chain vesicles. The chain vesicles were further employed for the encapsulation of drugs and the NIR light triggered release of payloads. This work not only offers a new platform for controlling the hierarchical self-assembly of NPs, but also demonstrates that the physical properties of the materials can be tailored by controlling the spatial arrangement of NPs within assemblies to achieve a better performance in biomedical applications.

  18. [Non-invasive assessment of fatty liver].

    Science.gov (United States)

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-04-05

    As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response.

  19. Photoacoustic and spectroscopic characterization of the ablation process in orthogonal double-pulse configuration

    International Nuclear Information System (INIS)

    Sobral, H; Sanchez-Ake, C; Sangines, R; Alvarez-Zauco, E; Jimenez-Duran, K

    2011-01-01

    A photoacoustic technique was used as an alternative method to monitor the crater volume and its role in the emission line intensification in double-pulse pre-ablation configuration. The crater volume was measured using confocal microscopy and correlated with the changes in the photoacoustic signal. Laser emission spectroscopy was used to characterize the emission enhancement as a function of the delay between lasers and the first pulse energy. Optimum delay was found to be in the microsecond timescale corresponding to the maximum of the crater volume and the largest change between the single- and the double-pulse photoacoustic signals. Only a slight intensification was detected with increasing first pulse energy above the first pulse ablation threshold; however, the crater volume did not significantly change and the possible involved mechanisms are discussed.

  20. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  1. Clinical photoacoustic imaging of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Valluru, Keerthi S.; Willmann, Juergen K. [Dept. of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford (United States)

    2016-08-15

    Photoacoustic imaging is a hybrid technique that shines laser light on tissue and measures optically induced ultrasound signal. There is growing interest in the clinical community over this new technique and its possible clinical applications. One of the most prominent features of photoacoustic imaging is its ability to characterize tissue, leveraging differences in the optical absorption of underlying tissue components such as hemoglobin, lipids, melanin, collagen and water among many others. In this review, the state-of-the-art photoacoustic imaging techniques and some of the key outcomes pertaining to different cancer applications in the clinic are presented.

  2. Invasive versus Non Invasive Methods Applied to Mummy Research: Will This Controversy Ever Be Solved?

    Science.gov (United States)

    Day, Jasmine; Bianucci, Raffaella

    2015-01-01

    Advances in the application of non invasive techniques to mummified remains have shed new light on past diseases. The virtual inspection of a corpse, which has almost completely replaced classical autopsy, has proven to be important especially when dealing with valuable museum specimens. In spite of some very rewarding results, there are still many open questions. Non invasive techniques provide information on hard and soft tissue pathologies and allow information to be gleaned concerning mummification practices (e.g., ancient Egyptian artificial mummification). Nevertheless, there are other fields of mummy studies in which the results provided by non invasive techniques are not always self-explanatory. Reliance exclusively upon virtual diagnoses can sometimes lead to inconclusive and misleading interpretations. On the other hand, several types of investigation (e.g., histology, paleomicrobiology, and biochemistry), although minimally invasive, require direct contact with the bodies and, for this reason, are often avoided, particularly by museum curators. Here we present an overview of the non invasive and invasive techniques currently used in mummy studies and propose an approach that might solve these conflicts. PMID:26345295

  3. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    Science.gov (United States)

    Avti, Pramod K; Hu, Song; Favazza, Christopher; Mikos, Antonios G; Jansen, John A; Shroyer, Kenneth R; Wang, Lihong V; Sitharaman, Balaji

    2012-01-01

    In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  4. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    Directory of Open Access Journals (Sweden)

    Pramod K Avti

    Full Text Available In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM was investigated to detect, map, and quantify trace amounts [nanograms (ng to micrograms (µg] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds.Optical-resolution (OR and acoustic-resolution (AR--Photoacoustic microscopy (PAM was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR fluorescence microscopy.Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections.The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  5. Phase transition of TiO{sub 2} thin films detected by the pulsed laser photoacoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Pacheco, A.; Castaneda-Guzman, R.; Oliva Montes de Oca, C.; Esparza-Garcia, A. [Universidad Nacional Autonoma de Mexico, CCADET-UNAM, Laboratorio de Fotofisica y Peliculas Delgadas, Cd. Universitaria, A.P. 70-186, Mexico D.F. (Mexico); Perez Ruiz, S.J. [CCADET-UNAM, Acustica y Vibraciones, Mexico D.F. (Mexico)

    2011-03-15

    In this work, we present characterization of titanium oxide thin films by photoacoustic measurements to determine the ablation threshold and phase transitions from amorphous to crystalline states. The important advantages of this method are that it does not require amplification at the detection stage and that it is a non-destructive technique. The correlation analysis of the photoacoustic signals allows us to visualize the ablation threshold and the phase transitions with enhanced sensitivity. This correlation analysis clearly exhibits the changes in the thin-film morphology due to controlled variations of the fluence (energy/area) and the temperature of the surrounding medium. This is particularly important for those cases where the crystalline changes caused by temperature variations need to be monitored. The thin-film samples were prepared by the sputtering technique at room temperature in the amorphous state. The phase transformations were induced by controlled temperature scanning and then corroborated with Raman spectroscopy measurements. (orig.)

  6. Non-invasive physical treatments for chronic/recurrent headache.

    NARCIS (Netherlands)

    Bronfort, G.; Nilsson, N.; Haas, M.; Evans, R.; Goldsmith, C. H.; Assendelft, W. J.; Bouter, L. M.

    2004-01-01

    BACKGROUND: Non-invasive physical treatments are often used to treat common types of chronic/recurrent headache. OBJECTIVES: To quantify and compare the magnitude of short- and long-term effects of non-invasive physical treatments for chronic/recurrent headaches. SEARCH STRATEGY: We searched the

  7. Non-invasive physical treatments for chronic/recurrent headache

    NARCIS (Netherlands)

    Brønfort, Gert; Haas, Mitchell; Evans, Roni L.; Goldsmith, Charles H.; Assendelft, Willem J.J.; Bouter, Lex M.

    2014-01-01

    Background: Non-invasive physical treatments are often used to treat common types of chronic/recurrent headache. Objectives: To quantify and compare the magnitude of short- and long-term effects of non-invasive physical treatments for chronic/recurrent headaches. Search methods: We searched the

  8. Spectroscopic photoacoustics for assessing ischemic kidney damage

    Science.gov (United States)

    Berndl, Elizabeth S. L.; He, Xiaolin; Yuen, Darren A.; Kolios, Michael C.

    2018-02-01

    Ischemic reperfusion injuries (IRIs) are caused by return of blood to a tissue or organ after a period without oxygen or nutrients. Damage in the microvasculature causes an inflammatory response and heterogeneous scarring, which is associated with an increase in collagen in the extracellular matrix. Although most often associated with heart attacks and strokes, IRI also occurs when blood reperfuses a transplanted organ. Currently, monitoring for IRI is limited to biopsies, which are invasive and sample a limited area. In this work, we explored photoacoustic (PA) biomarkers of scarring. IRI events were induced in mice (n=2) by clamping the left renal artery, then re-establishing flow. At 53 days post-surgery, kidneys were saline perfused and cut in half laterally. One half was immediately imaged with a VevoX system (Fujifilm-VisualSonics, Toronto) in two near infrared ranges - 680 to 970 nm (NIR), and 1200 to 1350 nm (NIR II). The other half was decellularized and then imaged at NIR and NIR II. Regions of interest were manually identified and analyzed for each kidney. For both cellularized and decellularized samples, the PA signal ratio based on irradiation wavelengths of 715:930 nm was higher in damaged kidneys than for undamaged kidneys (p collagen in the NIR II range, while healthy kidneys did not. Collagen rich spectra were more apparent in decellularized kidneys, suggesting that in the cellularized samples, other components may be contributing to the signal. PA imaging using spectral ratios associated with collagen signatures may provide a non-invasive tool to determine areas of tissue damage due to IRIs.

  9. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  10. Imaging the pancreas: from ex vivo to non-invasive technology

    DEFF Research Database (Denmark)

    Holmberg, D; Ahlgren, U

    2008-01-01

    While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real-time monit......While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real...

  11. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    Science.gov (United States)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  12. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    Science.gov (United States)

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  13. The relation between invasive and non-invasive tear break-up time ...

    African Journals Online (AJOL)

    Tear stability normal to Nigerians with consideration of gender and age has not been reported. Tear stability in young adults was measured using invasive and non-invasive tear break-up time (TBUT and NIBUT). Forty –five subjects aged 20 to 30 years were selected from among the students of University of. Benin, Edo ...

  14. Converting sunlight into audible sound by means of the photoacoustic effect: The Heliophone.

    Science.gov (United States)

    Roozen, N B; Glorieux, C; Liu, L; Rychtáriková, M; Van der Donck, T; Jacobs, A

    2016-09-01

    One hundred and thirty-five years after Alexander Graham Bell and his assistant Charles Sumner Tainter explored the photoacoustic effect, and about 40 years after Rosencwaig and Gersho modeled the effect in a photoacoustic cell configuration, the phenomenon is revisited in a "Heliophone" device that converts sunlight into sound. The light is focused on a carbon blackened copper coated Kapton foil in an acoustic cell by means of a compound parabolic collimator, and its intensity is modulated by a mechanical chopper. A horn is employed to make the sound audible without electronic amplification. The description of the photoacoustic effect that was introduced by Rosencwaig and Gersho is extended to a cell-horn configuration, in which the periodically heated air above the foil acts as an oscillating piston, driving acoustic waves in the horn. The pressure in the cavity-horn assembly is calculated by considering the air layer piston as an equivalent volume velocity source. The importance of the carbon black (soot) layer to enhance light absorption, but above all to enhance the photothermal excitation efficiency, is elucidated by means of an experimentally supported physical model.

  15. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  16. Adsorption of multimeric T cell antigens on carbon nanotubes

    DEFF Research Database (Denmark)

    Fadel, Tarek R; Li, Nan; Shah, Smith

    2013-01-01

    Antigen-specific activation of cytotoxic T cells can be enhanced up to three-fold more than soluble controls when using functionalized bundled carbon nanotube substrates ((b) CNTs). To overcome the denaturing effects of direct adsorption on (b) CNTs, a simple but robust method is demonstrated...... to stabilize the T cell stimulus on carbon nanotube substrates through non-covalent attachment of the linker neutravidin....

  17. Origin of enhancement in Raman scattering from Ag-dressed carbon-nanotube antennas : experiment and modelling

    NARCIS (Netherlands)

    Raziman, T.V.; Duenas, J.A.; Milne, W.I.; Martin, O.J.F.; Dawson, P.

    2018-01-01

    The D- and G-band Raman signals from random arrays of vertically aligned, multi-walled carbon nanotubes are significantly enhanced (up to ∼14×) while the signal from the underlying Si substrate is simultaneously attenuated (up to ∼6×) when the nanotubes are dressed, either capped or coated, with Ag.

  18. Photoacoustic Spectroscopy Analysis of Traditional Chinese Medicine

    Science.gov (United States)

    Chen, Lu; Zhao, Bin-xing; Xiao, Hong-tao; Tong, Rong-sheng; Gao, Chun-ming

    2013-09-01

    Chinese medicine is a historic cultural legacy of China. It has made a significant contribution to medicine and healthcare for generations. The development of Chinese herbal medicine analysis is emphasized by the Chinese pharmaceutical industry. This study has carried out the experimental analysis of ten kinds of Chinese herbal powder including Fritillaria powder, etc., based on the photoacoustic spectroscopy (PAS) method. First, a photoacoustic spectroscopy system was designed and constructed, especially a highly sensitive solid photoacoustic cell was established. Second, the experimental setup was verified through the characteristic emission spectrum of the light source, obtained by using carbon as a sample in the photoacoustic cell. Finally, as the photoacoustic spectroscopy analysis of Fritillaria, etc., was completed, the specificity of the Chinese herb medicine analysis was verified. This study shows that the PAS can provide a valid, highly sensitive analytical method for the specificity of Chinese herb medicine without preparing and damaging samples.

  19. Photoacoustic imaging of lymphatic pumping

    Science.gov (United States)

    Forbrich, Alex; Heinmiller, Andrew; Zemp, Roger J.

    2017-10-01

    The lymphatic system is responsible for fluid homeostasis and immune cell trafficking and has been implicated in several diseases, including obesity, diabetes, and cancer metastasis. Despite its importance, the lack of suitable in vivo imaging techniques has hampered our understanding of the lymphatic system. This is, in part, due to the limited contrast of lymphatic fluids and structures. Photoacoustic imaging, in combination with optically absorbing dyes or nanoparticles, has great potential for noninvasively visualizing the lymphatic vessels deep in tissues. Multispectral photoacoustic imaging is capable of separating the components; however, the slow wavelength switching speed of most laser systems is inadequate for imaging lymphatic pumping without motion artifacts being introduced into the processed images. We investigate two approaches for visualizing lymphatic processes in vivo. First, single-wavelength differential photoacoustic imaging is used to visualize lymphatic pumping in the hindlimb of a mouse in real time. Second, a fast-switching multiwavelength photoacoustic imaging system was used to assess the propulsion profile of dyes through the lymphatics in real time. These approaches may have profound impacts in noninvasively characterizing and investigating the lymphatic system.

  20. Wavelength-Modulated Differential Photoacoustic (WM-DPA) imaging: a high dynamic range modality towards noninvasive diagnosis of cancer

    Science.gov (United States)

    Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas

    2016-03-01

    This study explores wavelength-modulated differential photo-acoustic (WM-DPA) imaging for non-invasive early cancer detection via sensitive characterization of functional information such as hemoglobin oxygenation (sO2) levels. Well-known benchmarks of tumor formation such as angiogenesis and hypoxia can be addressed this way. While most conventional photo-acoustic imaging has almost entirely employed high-power pulsed lasers, frequency-domain photo-acoustic radar (FD-PAR) has seen significant development as an alternative technique. It employs a continuous wave laser source intensity-modulated and driven by frequency-swept waveforms. WM-DPA imaging utilizes chirp modulated laser beams at two distinct wavelengths for which absorption differences between oxy- and deoxygenated hemoglobin are minimum (isosbestic point, 805 nm) and maximum (680 nm) to simultaneously generate two signals detected using a standard commercial array transducer as well as a single-element transducer that scans the sample. Signal processing is performed using Lab View and Matlab software developed in-house. Minute changes in total hemoglobin concentration (tHb) and oxygenation levels are detectable using this method since background absorption is suppressed due to the out-of-phase modulation of the laser sources while the difference between the two signals is amplified, thus allowing pre-malignant tumors to become identifiable. By regulating the signal amplitude ratio and phase shift the system can be tuned to applications like cancer screening, sO2 quantification and hypoxia monitoring in stroke patients. Experimental results presented demonstrate WM-DPA imaging of sheep blood phantoms in comparison to single-wavelength FD-PAR imaging. Future work includes the functional PA imaging of small animals in vivo.

  1. Non-Invasive Brain Stimulation to Enhance Upper Limb Motor Practice Poststroke: A Model for Selection of Cortical Site

    Directory of Open Access Journals (Sweden)

    Michelle L. Harris-Love

    2017-05-01

    Full Text Available Motor practice is an essential part of upper limb motor recovery following stroke. To be effective, it must be intensive with a high number of repetitions. Despite the time and effort required, gains made from practice alone are often relatively limited, and substantial residual impairment remains. Using non-invasive brain stimulation to modulate cortical excitability prior to practice could enhance the effects of practice and provide greater returns on the investment of time and effort. However, determining which cortical area to target is not trivial. The implications of relevant conceptual frameworks such as Interhemispheric Competition and Bimodal Balance Recovery are discussed. In addition, we introduce the STAC (Structural reserve, Task Attributes, Connectivity framework, which incorporates patient-, site-, and task-specific factors. An example is provided of how this framework can assist in selecting a cortical region to target for priming prior to reaching practice poststroke. We suggest that this expanded patient-, site-, and task-specific approach provides a useful model for guiding the development of more successful approaches to neuromodulation for enhancing motor recovery after stroke.

  2. Herbivory enhances the resistance of mangrove forest to cordgrass invasion.

    Science.gov (United States)

    Zhang, Yihui; Meng, Hanyu; Wang, Yi; He, Qiang

    2018-06-01

    The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions. © 2018 by the Ecological Society of America.

  3. An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells

    Directory of Open Access Journals (Sweden)

    Rafael Pérez Solano

    2012-03-01

    Full Text Available The distinctive spectral absorption characteristics of cancer cells make photoacoustic techniques useful for detection in vitro and in vivo. Here we report on our evaluation of the photoacoustic signal produced by a series of monolayers of different cell lines in vitro. Only the melanoma cell line HS936 produced a detectable photoacoustic signal in which amplitude was dependent on the number of cells. This finding appears to be related to the amount of melanin available in these cells. Other cell lines (i.e. HL60, SK-Mel-1, T47D, Hela, HT29 and PC12 exhibited values similar to a precursor of melanin (tyrosinase, but failed to produce sufficient melanin to generate a photoacoustic signal that could be distinguished from background noise. To better understand this phenomenon, we determined a formula for the time-domain photoacoustic wave equation for a monolayer of cells in a non-viscous fluid on the thermoelastic regime. The theoretical results showed that the amplitude and profile of the photoacoustic signal generated by a cell monolayer depended upon the number and distribution of the cells and the location of the point of detection. These findings help to provide a better understanding of the factors involved in the generation of a photoacoustic signal produced by different cells in vitro and in vivo.

  4. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr

    2014-02-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue–implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. - Highlights: • Titanium surfaces were anodized and a nanotubular titania layer was obtained. • Drug eluting time was found to be increasing with anodizaton time. • Varying nanotube diameters has no effect in drug elution time but amount of incorporated drug.

  5. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion

    International Nuclear Information System (INIS)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki

    2014-01-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue–implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. - Highlights: • Titanium surfaces were anodized and a nanotubular titania layer was obtained. • Drug eluting time was found to be increasing with anodizaton time. • Varying nanotube diameters has no effect in drug elution time but amount of incorporated drug

  6. Clinical role of non-invasive assessment of portal hypertension.

    Science.gov (United States)

    Bolognesi, Massimo; Di Pascoli, Marco; Sacerdoti, David

    2017-01-07

    Measurement of portal pressure is pivotal in the evaluation of patients with liver cirrhosis. The measurement of the hepatic venous pressure gradient represents the reference method by which portal pressure is estimated. However, it is an invasive procedure that requires significant hospital resources, including experienced staff, and is associated with considerable cost. Non-invasive methods that can be reliably used to estimate the presence and the degree of portal hypertension are urgently needed in clinical practice. Biochemical and morphological parameters have been proposed for this purpose, but have shown disappointing results overall. Splanchnic Doppler ultrasonography and the analysis of microbubble contrast agent kinetics with contrast-enhanced ultrasonography have shown better accuracy for the evaluation of patients with portal hypertension. A key advancement in the non-invasive evaluation of portal hypertension has been the introduction in clinical practice of methods able to measure stiffness in the liver, as well as stiffness/congestion in the spleen. According to the data published to date, it appears to be possible to rule out clinically significant portal hypertension in patients with cirrhosis ( i.e ., hepatic venous pressure gradient ≥ 10 mmHg) with a level of clinically-acceptable accuracy by combining measurements of liver stiffness and spleen stiffness along with Doppler ultrasound evaluation. It is probable that the combination of these methods may also allow for the identification of patients with the most serious degree of portal hypertension, and ongoing research is helping to ensure progress in this field.

  7. Photoacoustic thermal flowmetry with a single light source

    Science.gov (United States)

    Liu, Wei; Lan, Bangxin; Hu, Leo; Chen, Ruimin; Zhou, Qifa; Yao, Junjie

    2017-09-01

    We report a photoacoustic thermal flowmetry based on optical-resolution photoacoustic microscopy (OR-PAM) using a single laser source for both thermal tagging and photoacoustic excitation. When an optically absorbing medium is flowing across the optical focal zone of OR-PAM, a small volume of the medium within the optical focus is repeatedly illuminated and heated by a train of laser pulses with a high repetition rate. The average temperature of the heated volume at each laser pulse is indicated by the photoacoustic signal excited by the same laser pulse due to the well-established linear relationship between the Grueneisen coefficient and the local temperature. The thermal dynamics of the heated medium volume, which are closely related to the flow speed, can therefore be measured from the time course of the detected photoacoustic signals. Here, we have developed a lumped mathematical model to describe the time course of the photoacoustic signals as a function of the medium's flow speed. We conclude that the rising time constant of the photoacoustic signals is linearly dependent on the flow speed. Thus, the flow speed can be quantified by fitting the measured photoacoustic signals using the derived mathematical model. We first performed proof-of-concept experiments using defibrinated bovine blood flowing in a plastic tube. The experiment results have demonstrated that the proposed method has high accuracy (˜±6%) and a wide range of measurable flow speeds. We further validated the method by measuring the blood flow speeds of the microvasculature in a mouse ear in vivo.

  8. Non-invasive Markers of Liver Fibrosis: Adjuncts or Alternatives to Liver Biopsy?

    Science.gov (United States)

    Chin, Jun L.; Pavlides, Michael; Moolla, Ahmad; Ryan, John D.

    2016-01-01

    Liver fibrosis reflects sustained liver injury often from multiple, simultaneous factors. Whilst the presence of mild fibrosis on biopsy can be a reassuring finding, the identification of advanced fibrosis is critical to the management of patients with chronic liver disease. This necessity has lead to a reliance on liver biopsy which itself is an imperfect test and poorly accepted by patients. The development of robust tools to non-invasively assess liver fibrosis has dramatically enhanced clinical decision making in patients with chronic liver disease, allowing a rapid and informed judgment of disease stage and prognosis. Should a liver biopsy be required, the appropriateness is clearer and the diagnostic yield is greater with the use of these adjuncts. While a number of non-invasive liver fibrosis markers are now used in routine practice, a steady stream of innovative approaches exists. With improvement in the reliability, reproducibility and feasibility of these markers, their potential role in disease management is increasing. Moreover, their adoption into clinical trials as outcome measures reflects their validity and dynamic nature. This review will summarize and appraise the current and novel non-invasive markers of liver fibrosis, both blood and imaging based, and look at their prospective application in everyday clinical care. PMID:27378924

  9. Photoacoustic spectra of rare earth pentaphosphates

    International Nuclear Information System (INIS)

    Strek, W.; Lukowiak, E.; Marchewka, M.; Ratajczak, H.

    1987-01-01

    The photoacoustic (PA) spectra of raee earth pentaphosphates of the general formula REP 5 O 14 , where RE = Pr,Nd,Ho,Er,Tm, are reported. The photoacoustic bands were identified and compared with the absorption spectra. For quantitative analysis of PA bands of lanthanide (III) ions, the intensity ratio vector is introduced characterizing the intensity distribution of f-f transitions. It was found that the relative intensities of photoacoustic bands are comparable with the intensities of absorption bands. It is concluded that the nonradiative relaxation mechanism leading to the PA signal is independent of the manifold-to-manifold J-J' radiationless transitions

  10. Photoacoustic Imaging in Oxygen Detection

    Directory of Open Access Journals (Sweden)

    Fei Cao

    2017-12-01

    Full Text Available Oxygen level, including blood oxygen saturation (sO2 and tissue oxygen partial pressure (pO2, are crucial physiological parameters in life science. This paper reviews the importance of these two parameters and the detection methods for them, focusing on the application of photoacoustic imaging in this scenario. sO2 is traditionally detected with optical spectra-based methods, and has recently been proven uniquely efficient by using photoacoustic methods. pO2, on the other hand, is typically detected by PET, MRI, or pure optical approaches, yet with limited spatial resolution, imaging frame rate, or penetration depth. Great potential has also been demonstrated by employing photoacoustic imaging to overcome the existing limitations of the aforementioned techniques.

  11. Single-wavelength functional photoacoustic microscopy in biological tissue.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2011-03-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple-laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multiwavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy.

  12. Impact of gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance on the non-invasive diagnosis of small hepatocellular carcinoma: a prospective study.

    Science.gov (United States)

    Granito, A; Galassi, M; Piscaglia, F; Romanini, L; Lucidi, V; Renzulli, M; Borghi, A; Grazioli, L; Golfieri, R; Bolondi, L

    2013-02-01

    Gadoxetic acid (Gd-EOB-DTPA) is a 'hepatocyte-specific' contrast agent for magnetic resonance (MR) in both the vascular and the hepatobiliary phases. To evaluate the contribution of the hepatobiliary phase of Gd-EOB-DTPA MR in the diagnosis of small hepatocellular carcinoma (HCC) in cirrhotic patients under surveillance. Between 2008 and 2011, 48 consecutive small (10-30 mm) liver nodules were detected in 33 patients, who prospectively underwent contrast-enhanced ultrasound (CEUS), Gd-EOB-DTPA-enhanced MR and helical-computed tomography (CT) in a blind study. The diagnosis of HCC was established according to AASLD 2005 criteria. Of the 48 nodules, 38 (79%) were diagnosed as HCC, 24 (63%) of them based on AASLD non-invasive criteria, 11 diagnosed at histology and 3 during follow-up. The typical vascular pattern (arterial hypervascularisation and venous/late washout) was detected in 30 (79%) HCC nodules by MR, in 22 (58%) by CT and in 17 (45%) by CEUS. Hypointensity during the MR hepatobiliary phase was observed in all HCC nodules and in 3 nonmalignant nodules (sensitivity 100%, specificity 70%, positive predictive value 93%, negative predictive value 100%, positive likelihood ratio 3.33, negative likelihood ratio 0). Eight (21%) of the 38 HCC nodules, 7 of which lacked the typical vascular features at any of the imaging modalities, showed washout in the portal/venous phase and hypointensity in the hepatobiliary phase at MRI, while this pattern was not detected in any nonmalignant lesion. Gadoxetic acid magnetic resonance may enhance the sensitivity of the non-invasive diagnosis of small hepatocellular carcinoma nodules in cirrhotic patients under surveillance. Double hypointensity in the portal/venous and hepatobiliary phases could be considered a new magnetic resonance pattern, highly suggestive of hypovascular hepatocellular carcinoma. © 2012 Blackwell Publishing Ltd.

  13. Theranostic probe for simultaneous in vivo photoacoustic imaging and confined photothermolysis by pulsed laser at 1064 nm in 4T1 breast cancer model

    Science.gov (United States)

    Zhou, Min; Ku, Geng; Pageon, Laura; Li, Chun

    2014-11-01

    Here, we report that polyethylene glycol (PEG)-coated copper(ii) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were taken up in each gram of tumor tissue at 24 h after intravenous injection of 64Cu-labeled PEG-CuS NPs. For both photoacoustic imaging and therapeutic studies, nanosecond (ns)-pulsed laser was delivered with Q-switched Nd:YAG at a wavelength of 1064 nm. Unlike conventional photothermal ablation therapy mediated by continuous wave laser with which heat could spread to the surrounding normal tissue, interaction of CuS NPs with short pulsed laser deliver heat rapidly to the treatment volume keeping the thermal damage confined to the target tissues. Our data demonstrated that it is possible to use a single-compartment nanoplatform to achieve both photoacoustic tomography and highly selective tumor destruction at 1064 nm in small animals.Here, we report that polyethylene glycol (PEG)-coated copper(ii) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were

  14. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  15. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    Science.gov (United States)

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  16. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.

    Science.gov (United States)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki

    2014-02-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The first biopolymer-wrapped non-carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shamsi, Mohtashim H; Geckeler, Kurt E [Laboratory of Applied Macromolecular Chemistry, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261-Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)], E-mail: keg@gist.ac.kr

    2008-02-20

    DNA-wrapped halloysite nanotubes were obtained by a mechanochemical reaction in the solid state. The characterization by scanning electron microscopy showed that the nanotubes were cut into shorter lengths and were completely covered with DNA. This resulted in a high aqueous solubility of the product with stability of the solution for about 6 weeks. The nanotubes were cut to different fractions with lengths of 200-400 nm (30-40%), 400-600 nm (10-20%) and 600-800 nm (5-10%) after ball milling. FTIR spectroscopic analysis shows that the DNA in the product remained intact. This straightforward technique for obtaining water-soluble halloysite nanotubes by a solid-state reaction has great potential for biomedical applications of nanotubes.

  18. The first biopolymer-wrapped non-carbon nanotubes

    International Nuclear Information System (INIS)

    Shamsi, Mohtashim H; Geckeler, Kurt E

    2008-01-01

    DNA-wrapped halloysite nanotubes were obtained by a mechanochemical reaction in the solid state. The characterization by scanning electron microscopy showed that the nanotubes were cut into shorter lengths and were completely covered with DNA. This resulted in a high aqueous solubility of the product with stability of the solution for about 6 weeks. The nanotubes were cut to different fractions with lengths of 200-400 nm (30-40%), 400-600 nm (10-20%) and 600-800 nm (5-10%) after ball milling. FTIR spectroscopic analysis shows that the DNA in the product remained intact. This straightforward technique for obtaining water-soluble halloysite nanotubes by a solid-state reaction has great potential for biomedical applications of nanotubes

  19. Single-wavelength functional photoacoustic microscopy in biological tissue

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2011-01-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required ima...

  20. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    Science.gov (United States)

    Zhang, Zhiqiang [Lexington, KY; Lockwood, Frances E [Georgetown, KY

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  1. Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblast-like cells.

    Science.gov (United States)

    Giannona, Suna; Firkowska, Izabela; Rojas-Chapana, José; Giersig, Michael

    2007-01-01

    In this study, we describe the spatial organization of CAL-72 osteoblast-like cells on arrays of vertically aligned multi-walled carbon nanotubes (VACNTs). It was observed that, unlike cell growth on non-patterned surfaces, the cell attachment and spreading process on VACNTs was significantly enhanced. Additionally, since carbon nanotubes are known to possess resilient mechanical properties and are chemically stable, the effect of periodic arrays of VACNTs on CAL-72 osteoblast-like cells was also studied. The periodicity and alignment of VACNTs considerably influenced growth, shape and orientation of the cells by steering toward the nanopattern. This situation is of great interest for the potential application of VACNTs in bone bioenginnering. This data provides evidence that CAL-72 osteoblast-like cells can sense physical features at the nanoscale. These results give a fascinating insight into the ways in which cell growth can be influenced by man-made nanostructures and could provide a framework for achieving controlled cell guidance with controlled organization and special physical properties.

  2. Enhanced electrochemical activity using vertically aligned carbon nanotube electrodes grown on carbon fiber

    Directory of Open Access Journals (Sweden)

    Evandro Augusto de Morais

    2011-09-01

    Full Text Available Vertically aligned carbon nanotubes were successfully grown on flexible carbon fibers by plasma enhanced chemical vapor deposition. The diameter of the CNT is controllable by adjusting the thickness of the catalyst Ni layer deposited on the fiber. Vertically aligned nanotubes were grown in a Plasma Enhanced Chemical Deposition system (PECVD at a temperature of 630 ºC, d.c. bias of -600 V and 160 and 68 sccm flow of ammonia and acetylene, respectively. Using cyclic voltammetry measurements, an increase of the surface area of our electrodes, up to 50 times higher, was observed in our samples with CNT. The combination of VACNTs with flexible carbon fibers can have a significant impact on applications ranging from sensors to electrodes for fuel cells.

  3. Non-invasive optical detection of esophagus cancer based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong

    2014-09-01

    A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.

  4. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    Science.gov (United States)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  5. Delayed contrast enhancement imaging of a murine model for ischemia reperfusion with carbon nanotube micro-CT.

    Directory of Open Access Journals (Sweden)

    Laurel M Burk

    Full Text Available We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8-12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300 mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic

  6. Antibiofouling polymer coated gold nanoparticles as a dual modal contrast agent for X-ray and photoacoustic imaging

    International Nuclear Information System (INIS)

    Guojia Huang; Yi Yuan; Xing Da

    2011-01-01

    X-ray is one of the most useful diagnostic tools in hospitals in terms of frequency of use and cost, while photoacoustic (PA) imaging is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. In this study, for the first time, we used gold nanoparticles (GNPs) as a dual modal contrast agent for X-ray and PA imaging. Soft gelatin phantoms with embedded tumor simulators of GNPs in various concentrations are clearly shown in both X-ray and PA imaging. With GNPs as a dual modal contrast agent, X-ray can fast detect the position of tumor and provide morphological information, whereas PA imaging has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.

  7. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    Science.gov (United States)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  8. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.

    Science.gov (United States)

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto

    2015-12-01

    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Single-cell photoacoustic thermometry

    Science.gov (United States)

    Gao, Liang; Wang, Lidai; Li, Chiye; Liu, Yan; Ke, Haixin; Zhang, Chi

    2013-01-01

    Abstract. A novel photoacoustic thermometric method is presented for simultaneously imaging cells and sensing their temperature. With three-seconds-per-frame imaging speed, a temperature resolution of 0.2°C was achieved in a photo-thermal cell heating experiment. Compared to other approaches, the photoacoustic thermometric method has the advantage of not requiring custom-developed temperature-sensitive biosensors. This feature should facilitate the conversion of single-cell thermometry into a routine lab tool and make it accessible to a much broader biological research community. PMID:23377004

  10. Intrauterine photoacoustic and ultrasound imaging probe

    Science.gov (United States)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara S.

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm.

  11. Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity

    International Nuclear Information System (INIS)

    Ye-Lin, Y; Garcia-Casado, J; Prats-Boluda, G; Martinez-de-Juan, J L; Ponce, J L

    2009-01-01

    Surface recording of electroenterogram (EEnG) is a non-invasive method for monitoring intestinal myoelectrical activity. However, surface EEnG is seriously affected by a variety of interferences: cardiac activity, respiration, very low frequency components and movement artefacts. The aim of this study is to eliminate respiratory interference and very low frequency components from external EEnG recording by means of empirical mode decomposition (EMD), so as to obtain more robust indicators of intestinal pacemaker activity from the external EEnG signal. For this purpose, 11 recording sessions were performed in an animal model under fasting conditions and in each individual session the myoelectrical signal was recorded simultaneously in the intestinal serosa and the external abdominal surface in physiological states. Various parameters have been proposed for evaluating the efficacy of the method in reducing interferences: the signal-to-interference ratio (S/I ratio), attenuation of the target and interference signals, the normal slow wave percentage and the stability of the dominant frequency (DF) of the signal. The results show that the S/I ratio of the processed signals is significantly greater than the original values (9.66 ± 4.44 dB versus 1.23 ± 5.13 dB), while the target signal was barely attenuated (−0.63 ± 1.02 dB). The application of the EMD method also increased the percentage of the normal slow wave to 100% in each individual session and enabled the stability of the DF of the external signal to be increased considerably. Furthermore, the variation coefficient of the DF derived from the external processed signals is comparable to the coefficient obtained using internal recordings. Therefore, the EMD method could be a very useful tool to improve the quality of external EEnG recording in the low frequency range and therefore to obtain more robust indicators of the intestinal pacemaker activity from non-invasive EEnG recordings

  12. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Agarwala, S.; Ho, G.W.

    2012-01-01

    In the present work, electrochemical anodization has been used to prepare uniform TiO 2 nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is ∼180 nm, 14 μm and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO 2 nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO 2 nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO 2 nanotube array with Ag nanoparticles. Highlights: ► Uniform array of TiO 2 nanotubes synthesized via electrochemical anodization. ► Back illuminated DSSC gave a cell performance of 4.5%. ► TiO 2 nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  13. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    Science.gov (United States)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-18

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  14. Non-muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Malmström, Per-Uno; Agrawal, Sachin; Bläckberg, Mats

    2017-01-01

    The management of non-muscle-invasive bladder cancer (NMIBC) has evolved from the first reports on bladder endoscopy and transurethral resection to the introduction of adjuvant intravesical treatment. However, disease recurrence and progression remain an ongoing risk, placing a heavy burden...

  15. Listening to membrane potential: photoacoustic voltage-sensitive dye recording

    Science.gov (United States)

    Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.

    2017-04-01

    Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.

  16. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE

    International Nuclear Information System (INIS)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-01-01

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths

  17. Surface modification of TiO{sub 2} nanotubes with osteogenic growth peptide to enhance osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Min, E-mail: minlai@jsnu.edu.cn [School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Jin, Ziyang [School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Su, Zhiguo [Department of Pharmacy, The Affiliated hospital of Qingdao University, Qingdao, Shandong 266555 (China)

    2017-04-01

    To investigate the influence of surface-biofunctionalized substrates on osteoblast behavior, a layer of aligned TiO{sub 2} nanotubes with a diameter of around 70 nm was fabricated on titanium surface by anodization, and then osteogenic growth peptide (OGP) was conjugated onto TiO{sub 2} nanotubes through the intermediate layer of polydopamine. The morphology, composition and wettability of different surfaces were characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements, respectively. The effects of OGP-modified TiO{sub 2} nanotube substrates on the morphology, proliferation and differentiation of osteoblasts were examined in vitro. Immunofluorescence staining revealed that the OGP-functionalized TiO{sub 2} nanotubes were favorable for cell spreading. However, there was no significant difference in cell proliferation observed among the different groups. Cells grown onto OGP-functionalized TiO{sub 2} nanotubes showed significantly higher (p < 0.05 or p < 0.01) levels of alkaline phosphatase (ALP) and mineralization after 4, 7 and 14 days of culture, respectively. Cells grown on OGP-functionalized TiO{sub 2} nanotubes had significantly higher (p < 0.05 or p < 0.01) expression of osteogenic-related genes including runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN) and osteocalcin (OC) after 14 days of culture. These data suggest that surface functionalization of TiO{sub 2} nanotubes with OGP was beneficial for cell spreading and differentiation. This study provides a novel platform for the development and fabrication of titanium-based implants that enhance the propensity for osseointegration between the native tissue and implant interface. - Highlights: • The OGP functionalized TiO{sub 2} nanotube substrates were successfully fabricated through a direct and effective method. • The OGP functionalized substrates

  18. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    Science.gov (United States)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  19. Blue-green photoluminescence in MCM-41 mesoporous nanotubes

    CERN Document Server

    Shen, J L; Lui, Y L; Cheng, P W; Cheng, C F

    2003-01-01

    Different photoluminescence (PL) techniques have been used to study the blue-green emission from siliceous MCM-41 nanotubes. It was found that the intensity of the blue-green PL is enhanced by rapid thermal annealing (RTA). This enhancement is explained by the generation of twofold-coordinated Si centres and non-bridging oxygen hole centres, in line with the surface properties of MCM-41. On the basis of the analysis of the PL following RTA, polarized PL, and PL excitation, we suggest that the triplet-to-singlet transition of twofold-coordinated silicon centres is responsible for the blue-green PL in MCM-41 nanotubes. (letter to the editor)

  20. Genomic comparison of invasive and rare non-invasive strains reveals Porphyromonas gingivalis genetic polymorphisms

    Directory of Open Access Journals (Sweden)

    Svetlana Dolgilevich

    2011-03-01

    Full Text Available Porphyromonas gingivalis strains are shown to invade human cells in vitro with different invasion efficiencies, varying by up to three orders of magnitude.We tested the hypothesis that invasion-associated interstrain genomic polymorphisms are present in P. gingivalis and that putative invasion-associated genes can contribute to P. gingivalis invasion.Using an invasive (W83 and the only available non-invasive P. gingivalis strain (AJW4 and whole genome microarrays followed by two separate software tools, we carried out comparative genomic hybridization (CGH analysis.We identified 68 annotated and 51 hypothetical open reading frames (ORFs that are polymorphic between these strains. Among these are surface proteins, lipoproteins, capsular polysaccharide biosynthesis enzymes, regulatory and immunoreactive proteins, integrases, and transposases often with abnormal GC content and clustered on the chromosome. Amplification of selected ORFs was used to validate the approach and the selection. Eleven clinical strains were investigated for the presence of selected ORFs. The putative invasion-associated ORFs were present in 10 of the isolates. The invasion ability of three isogenic mutants, carrying deletions in PG0185, PG0186, and PG0982 was tested. The PG0185 (ragA and PG0186 (ragB mutants had 5.1×103-fold and 3.6×103-fold decreased in vitro invasion ability, respectively.The annotation of divergent ORFs suggests deficiency in multiple genes as a basis for P. gingivalis non-invasive phenotype. Access the supplementary material to this article: Supplement, table (see Supplementary files under Reading Tools online.

  1. Molecular dynamics investigation of carbon nanotube junctions in non-aqueous solutions

    KAUST Repository

    Gkionis, Konstantinos

    2014-07-23

    The properties of liquids in a confined environment are known to differ from those in the bulk. Extending this knowledge to geometries defined by two metallic layers in contact with the ends of a carbon nanotube is important for describing a large class of nanodevices that operate in non-aqueous environments. Here we report a series of classical molecular dynamics simulations for gold-electrode junctions in acetone, cyclohexane and N,N-dimethylformamide solutions and analyze the structure and the dynamics of the solvents in different regions of the nanojunction. The presence of the nanotube has little effect on the ordering of the solvents along its axis, while in the transversal direction deviations are observed. Importantly, the orientational dynamics of the solvents at the electrode-nanotube interface differ dramatically from that found when only the electrodes are present.

  2.  Invasibility of three major non-native invasive shrubs and associated factors in Upper Midwest U.S. forest lands

    Science.gov (United States)

    W. Keith Moser; Zhaofei Fan; Mark H. Hansen; Michael K. Crosby; Shirley X. Fan

    2016-01-01

    We used non-native invasive plant data from the US Forest Service’s Forest Inventory and Analysis (FIA) program, spatial statistical methods, and the space (cover class)-for-time approach to quantify the invasion potential and success ("invasibility") of three major invasive shrubs (multiflora rose, non-native bush honeysuckles, and common buckthorn...

  3. Towards optimized naphthalocyanines as sonochromes for photoacoustic imaging in vivo

    Directory of Open Access Journals (Sweden)

    Mitchell J. Duffy

    2018-03-01

    Full Text Available In this paper we establish a methodology to predict photoacoustic imaging capabilities from the structure of absorber molecules (sonochromes. The comparative in vitro and in vivo screening of naphthalocyanines and cyanine dyes has shown a substitution pattern dependent shift in photoacoustic excitation wavelength, with distal substitution producing the preferred maximum around 800 nm. Central ion change showed variable production of photoacoustic signals, as well as singlet oxygen photoproduction and fluorescence with the optimum for photoacoustic imaging being nickel(II. Our approach paves the way for the design, evaluation and realization of optimized sonochromes as photoacoustic contrast agents. Keywords: Naphthalocyanines, Spectroscopy

  4. Applicability of non-invasively collected matrices for human biomonitoring

    Directory of Open Access Journals (Sweden)

    Nickmilder Marc

    2009-03-01

    Full Text Available Abstract With its inclusion under Action 3 in the Environment and Health Action Plan 2004–2010 of the European Commission, human biomonitoring is currently receiving an increasing amount of attention from the scientific community as a tool to better quantify human exposure to, and health effects of, environmental stressors. Despite the policy support, however, there are still several issues that restrict the routine application of human biomonitoring data in environmental health impact assessment. One of the main issues is the obvious need to routinely collect human samples for large-scale surveys. Particularly the collection of invasive samples from susceptible populations may suffer from ethical and practical limitations. Children, pregnant women, elderly, or chronically-ill people are among those that would benefit the most from non-invasive, repeated or routine sampling. Therefore, the use of non-invasively collected matrices for human biomonitoring should be promoted as an ethically appropriate, cost-efficient and toxicologically relevant alternative for many biomarkers that are currently determined in invasively collected matrices. This review illustrates that several non-invasively collected matrices are widely used that can be an valuable addition to, or alternative for, invasively collected matrices such as peripheral blood sampling. Moreover, a well-informed choice of matrix can provide an added value for human biomonitoring, as different non-invasively collected matrices can offer opportunities to study additional aspects of exposure to and effects from environmental contaminants, such as repeated sampling, historical overview of exposure, mother-child transfer of substances, or monitoring of substances with short biological half-lives.

  5. Intrauterine photoacoustic and ultrasound imaging probe.

    Science.gov (United States)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Photoacoustic projection imaging using an all-optical detector array

    Science.gov (United States)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  7. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol.

    Science.gov (United States)

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.

  8. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwala, S., E-mail: agarwala.shweta@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore); Ho, G.W. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore)

    2012-05-15

    In the present work, electrochemical anodization has been used to prepare uniform TiO{sub 2} nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is {approx}180 nm, 14 {mu}m and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO{sub 2} nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO{sub 2} nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO{sub 2} nanotube array with Ag nanoparticles. Highlights: Black-Right-Pointing-Pointer Uniform array of TiO{sub 2} nanotubes synthesized via electrochemical anodization. Black-Right-Pointing-Pointer Back illuminated DSSC gave a cell performance of 4.5%. Black-Right-Pointing-Pointer TiO{sub 2} nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  9. Methods Reduce Cost, Enhance Quality of Nanotubes

    Science.gov (United States)

    2009-01-01

    For all the challenges posed by the microgravity conditions of space, weight is actually one of the more significant problems NASA faces in the development of the next generation of U.S. space vehicles. For the Agency s Constellation Program, engineers at NASA centers are designing and testing new vessels as safe, practical, and cost-effective means of space travel following the eventual retirement of the space shuttle. Program components like the Orion Crew Exploration Vehicle, intended to carry astronauts to the International Space Station and the Moon, must be designed to specific weight requirements to manage fuel consumption and match launch rocket capabilities; Orion s gross liftoff weight target is about 63,789 pounds. Future space vehicles will require even greater attention to lightweight construction to help conserve fuel for long-range missions to Mars and beyond. In order to reduce spacecraft weight without sacrificing structural integrity, NASA is pursuing the development of materials that promise to revolutionize not only spacecraft construction, but also a host of potential applications on Earth. Single-walled carbon nanotubes are one material of particular interest. These tubular, single-layer carbon molecules - 100,000 of them braided together would be no thicker than a human hair - display a range of remarkable characteristics. Possessing greater tensile strength than steel at a fraction of the weight, the nanotubes are efficient heat conductors with metallic or semiconductor electrical properties depending on their diameter and chirality (the pattern of each nanotube s hexagonal lattice structure). All of these properties make the nanotubes an appealing material for spacecraft construction, with the potential for nanotube composites to reduce spacecraft weight by 50 percent or more. The nanotubes may also feature in a number of other space exploration applications, including life support, energy storage, and sensor technologies. NASA s various

  10. Indocyanine green loaded graphene oxide for high-efficient photoacoustic tumor therapy

    Directory of Open Access Journals (Sweden)

    Baoyun Yan

    2016-07-01

    Full Text Available Photoacoustic therapy, using the photoacoustic effect of agents for selectively killing tumor cells, has shown promising for treating tumor. Utilization of high optical absorption probes can help to effectively improve the photoacoustic therapy efficiency. Herein, we report a novel high-absorption photoacoustic probe that is composed of indocyanine green (ICG and graphene oxide (GO, entitled GO-ICG, for photoacoustic therapy. The attached ICG with narrow absorption spectral profile has strong optical absorption in the infrared region. The absorption spectrum of the GO-ICG solution reveals that the GO-ICG particles exhibited a 10-fold higher absorbance at 780nm (its peak absorbance as compared with GO. Importantly, ICG’s fluorescence is quenched by GO via fluorescence resonance energy transfer. As a result, GO-ICG can high-efficiently convert the absorbed light energy to acoustic wave under pulsed laser irradiation. We further demonstrate that GO-ICG can produce stronger photoacoustic wave than the GO and ICG alone. Moreover, we conjugate this contrast agent with integrin αvβ3 mono-clonal antibody to molecularly target the U87-MG human glioblastoma cells for selective tumor cell killing. Finally, our results testify that the photoacoustic therapy efficiency of GO-ICG is higher than the existing photoacoustic therapy agent. Our work demonstrates that GO-ICG is a high-efficiency photoacoustic therapy agent. This novel photoacoustic probe is likely to be an available candidate for tumor therapy.

  11. Effects of non-invasive neurostimulation on craving: a meta-analysis

    NARCIS (Netherlands)

    Jansen, Jochem M.; Daams, Joost G.; Koeter, Maarten W. J.; Veltman, Dick J.; van den Brink, Wim; Goudriaan, Anna E.

    2013-01-01

    This meta-analysis was conducted to evaluate the available evidence regarding the effects of non-invasive neurostimulation of the dorsolateral prefrontal cortex (DLPFC), on craving in substance dependence and craving for high palatable food. Non-invasive neurostimulation techniques were restricted

  12. Effects of non-invasive neurostimulation on craving: A meta-analysis

    NARCIS (Netherlands)

    Jansen, J.M.; Daams, J.G.; Koeter, M.W.; Veltman, D.J.; van den Brink, W.; Goudriaan, A.E.

    2013-01-01

    This meta-analysis was conducted to evaluate the available evidence regarding the effects of non-invasive neurostimulation of the dorsolateral prefrontal cortex (DLPFC), on craving in substance dependence and craving for high palatable food. Non-invasive neurostimulation techniques were restricted

  13. Enhanced near-infrared photoacoustic imaging of silica-coated rare-earth doped nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Yang [Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372 (Singapore); School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Liao, Lun-De [Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County 35053, Taiwan, ROC (China); Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Bandla, Aishwarya [Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077 (Singapore); Liu, Yu-Hang [Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077 (Singapore); Yuan, Jun [Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Thakor, Nitish [Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077 (Singapore); Tan, Mei Chee, E-mail: meichee.tan@sutd.edu.sg [Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372 (Singapore)

    2017-01-01

    Near-infrared photoacoustic (PA) imaging is an emerging diagnostic technology that utilizes the tissue transparent window to achieve improved contrast and spatial resolution for deep tissue imaging. In this study, we investigated the enhancement effect of the SiO{sub 2} shell on the PA property of our core/shell rare-earth nanoparticles (REs) consisting of an active rare-earth doped core of NaYF{sub 4}:Yb,Er (REDNPs) and an undoped NaYF{sub 4} shell. We observed that the PA signal amplitude increased with SiO{sub 2} shell thickness. Although the SiO{sub 2} shell caused an observed decrease in the integrated fluorescence intensity due to the dilution effect, fluorescence quenching of the rare earth emitting ions within the REDNPs cores was successfully prevented by the undoped NaYF{sub 4} shell. Therefore, our multilayer structure consisting of an active core with successive functional layers was demonstrated to be an effective design for dual-modal fluorescence and PA imaging probes with improved PA property. The result from this work addresses a critical need for the development of dual-modal contrast agent that advances deep tissue imaging with high resolution and signal-to-noise ratio. - Graphical abstract: Illustration of multilayer structured imaging probe with REDNPs as active core, undoped NaYF{sub 4} as intermediate layer and SiO{sub 2} as outer shell. The PA signal amplitude of REs/SiO{sub 2} was increased with the SiO{sub 2} shell thickness. - Highlights: • Silica coating was demonstrated to be much more effective in enhancing the PA signal amplitude comparing to soft polymer. • PA enhancement was attributed to the increased phonon modes and phonon energy with the introduction of the SiO{sub 2} coating. • Multilayer structure was an effective design for dual-modal fluorescence and PA imaging probes with improved PA property.

  14. Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound : comparison between plane-wave and element-by-element synthetic backpropagation approach

    NARCIS (Netherlands)

    Kuniyil Ajith Singh, M.; Jaeger, M.; Frenz, M.; Steenbergen, Wiendelt

    2017-01-01

    Reflection artifacts caused by acoustic inhomogeneities constitute a major problem in epi-mode biomedical photoacoustic imaging. Photoacoustic transients from the skin and superficial optical absorbers traverse into the tissue and reflect off echogenic structures to generate reflection artifacts.

  15. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus.

    Science.gov (United States)

    Yang, Joon Mo; Favazza, Christopher; Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy.

  16. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus.

    Directory of Open Access Journals (Sweden)

    Joon Mo Yang

    Full Text Available We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy.

  17. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  18. Real-time Near-infrared Virtual Intraoperative Surgical Photoacoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Changho Lee

    2015-09-01

    Full Text Available We developed a near infrared (NIR virtual intraoperative surgical photoacoustic microscopy (NIR-VISPAM system that combines a conventional surgical microscope and an NIR light photoacoustic microscopy (PAM system. NIR-VISPAM can simultaneously visualize PA B-scan images at a maximum display rate of 45 Hz and display enlarged microscopic images on a surgeon's view plane through the ocular lenses of the surgical microscope as augmented reality. The use of the invisible NIR light eliminated the disturbance to the surgeon's vision caused by the visible PAM excitation laser in a previous report. Further, the maximum permissible laser pulse energy at this wavelength is approximately 5 times more than that at the visible spectral range. The use of a needle-type ultrasound transducer without any water bath for acoustic coupling can enhance convenience in an intraoperative environment. We successfully guided needle and injected carbon particles in biological tissues ex vivo and in melanoma-bearing mice in vivo.

  19. Assessment of the added value of the Twente Photoacoustic Mammoscope in breast cancer diagnosis

    NARCIS (Netherlands)

    Hilgerink, Marjolein P.; Hummel, J. Marjan; Manohar, Srirang; Vaartjes, Simon R.; IJzerman, Maarten Joost

    2011-01-01

    Purpose: Photoacoustic (PA) imaging is a recently developed breast cancer imaging technique. In order to enhance successful clinical implementation, we quantified the potential clinical value of different scenarios incorporating PA imaging by means of multi-criteria analysis. From this analysis, the

  20. State-of-the-art sensor technology in Spain: invasive and non-invasive techniques for monitoring respiratory variables.

    Science.gov (United States)

    Domingo, Christian; Blanch, Lluis; Murias, Gaston; Luján, Manel

    2010-01-01

    The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables.

  1. Thermoviscous analysis of open photoacoustic cells

    Science.gov (United States)

    Mannoor, Madhusoodanan; Kang, Sangmo

    2017-11-01

    Open photoacoustic cells, apart from the conventional spectroscopic applications, are increasingly useful in bio medical applications such as in vivo blood sugar measurement. Maximising the acoustic pressure amplitude and the quality factor are major design considerations associated with open cells.Conventionaly, resonant photoacoustic cells are analyzed by either transmission line analogy or Eigen mode expansion method. In this study, we conducted a more comprehensive thermo viscous analysis of open photoacoustic cells. A Helmholtz cell and a T-shaped cell, which are acoustically different, are considered for analysis. Effect of geometrical dimensions on the acoustic pressure, quality factor and the intrusion of noise are analyzed and compared between these cells. Specific attention is given to the sizing of the opening and fixtures on it to minimize the radiational losses and the intrusion of noise. Our results are useful for proper selection of the type of open photoacoustic cells for in vivo blood sugar measurement and the optimization of geometric variables of such cells. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future planning (2017R1A2B4005006).

  2. Polymer fiber detectors for photoacoustic imaging

    Science.gov (United States)

    Grün, Hubert; Berer, Thomas; Pühringer, Karoline; Nuster, Robert; Paltauf, Günther; Burgholzer, Peter

    2010-02-01

    Photoacoustic imaging is a novel imaging method for medical and biological applications, combining the advantages of Diffuse Optical Imaging (high contrast) and Ultrasonic Imaging (high spatial resolution). A short laser pulse hits the sample. The absorbed energy causes a thermoelastic expansion and thereby launches a broadband ultrasonic wave (photoacoustic signal). The distribution of absorbed energy density is reconstructed from measurements of the photoacoustic signals around the sample. For collecting photoacoustic signals either point like or extended, integrating detectors can be used. The latter integrate the pressure at least in one dimension, e.g. along a line. Thereby, the three dimensional imaging problem is reduced to a two dimensional problem. For a tomography device consisting of a scanning line detector and a rotating sample, fiber-based detectors made of polymer have been recently introduced. Fiber-based detectors are easy to use and possess a constant, high spatial resolution over their entire active length. Polymer fibers provide a better impedance matching and a better handling compared with glass fibers which were our first approach. First measurement results using polymer fiber detectors and some approaches for improving the performance are presented.

  3. Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite

    International Nuclear Information System (INIS)

    Cendrowski, Krzysztof; Jedrzejczak, Malgorzata; Peruzynska, Magdalena; Dybus, Andrzej; Drozdzik, Marek; Mijowska, Ewa

    2014-01-01

    Graphical abstract: Scheme demonstrating the experimental steps toward the formation of titania/multiwalled carbon nanotubes (TiO 2 -MWCNTs) from multiwalled carbon nanotubes (MWCNT). - Highlights: • Easy and efficient method of impregnation carbon nanotubes with titania. • High photoactivity. • Correlation between the interaction of carbon nanotubes with titania on the photocatalytic properties. • High biocompatibility of the nanotubes. - Abstract: Recent research is focused on the enhancement in photoactivity of titanium dioxide/carbon nanotubes through formation of novel nanocomposites that exhibit a high specific surface area, remarkable electron transfer and biocompatibility. Here, we explore a new synthesis route in the system composed of nanocrystalline titanium dioxide supported on external walls and inner space of multiwalled carbon nanotubes (MWCNT). The advantages of this method are: its simplicity, direct fusion of titanium dioxide particles on the carbon material, and formation of chemical bond Ti–O–C between TiO 2 and MWCNT. Photocatalytic performance of this system has been compared to a commercial catalyst (Degussa P25) in a model reaction of phenol decomposition in/under UV light. The efficiency of the process increased by the factor of 2.5 when the TiO 2 –MWCNT photocatalyst was utilized. Further, the photoactive nanocomposite was analysed towards its biocompatibility in order to establish a safe dose of the catalyst. Its influence on the cells viability was studied on mouse fibroblasts and human liver tissue cells, in the range from 0 to 100 μg/mL. This has revealed that the composite in concentrations up to 25 μg/mL exerted low toxicity, which allowed for finding a compromise between the highest safe dose and acceptable photoactivity of the catalyst

  4. Orbital invasion routes of non-melanoma skin cancers and survival outcomes.

    Science.gov (United States)

    Dundar, Yusuf; Cannon, Richard; Wiggins, Richard; Monroe, Marcus M; Buchmann, Luke O; Hunt, Jason P

    2018-02-21

    Overall non-melanoma head and neck skin cancer has a good prognosis; however, rarely patients have an aggressive variant which results in orbital invasion via perineural spread or direct extension. Despite these consequences, there are limited published studies defining this clinical entity. The main objectives of the current study are to describe orbital invasion patterns of non-melanoma head and neck skin cancers and their impact on survival. Retrospective case series from a tertiary-care, academic institution performed between 2004 and 2014. Demographic and tumour characteristics are reported as well as patterns of orbital invasion, types of treatments received, and survival outcomes. There were 17 consecutive patients with non-melanoma skin cancer and orbital invasion who met inclusion criteria. Average age at orbital invasion diagnosis was 70.8 years old. 76% were male. Mean follow-up time was 28.5 months. Of these patients, 71% had squamous cell carcinoma and 29% had basal cell carcinoma. Brow (41%) was the most common primary sub-site followed by cheek (23%) and temple (12%). 76% of patients had a history of prior treatment. The lateral orbital wall (41%) was the most common site of invasion, followed by the medial orbital wall (29%) and antero-superior invasion (23%). Age, histology, and location of orbital invasion were associated with disease-specific and overall survival. Orbital invasion for non-melanoma head and neck skin cancers creates a treatment dilemma and the patterns of invasion are described. In addition, the location of orbital invasion is associated with survival outcomes.

  5. Contacts, non-linear transport effects and failure in multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Berger, C; Yi, Y; Gezo, J; Poncharal, P; Heer, W A de

    2003-01-01

    Pristine arc-produced multi-walled carbon nanotubes are contacted to liquid mercury in situ in a transmission electron microscope. The conductance G(V) for all tubes increases with increasing bias voltage V. This is related to the electronic density of the nanotubes. Similar G(V) behaviour is observed for HOPG-graphite contacted in air with Hg, with dG(V)/dV∼0.3G 0 . Variations observed in the conductance are related to nanotube-Hg contact effects. For tubes barely touching the Hg surface, the conductance is low (typically G(V=0)∼0.1-0.5G 0 ); G(V) may maximize around V=1.5-2 V or continue to increase linearly depending on the MWNT-Hg contact. For good contacts the maximum low-bias conductance is 1G 0 . Non-conducting tubes are observed having a low-bias conductance smaller than 10 -3 G 0 . High-voltage tube failure usually occurs at the contact with Hg for clean tubes, or at tube defects. An important phenomenon is the formation of a Hg bubble near the contact nanotube-Hg surface when the nanotube is negatively biased, under high bias current conditions, indicating the heating effect of hot electrons injected into the mercury

  6. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  7. Original Research. Photoacoustic Microscopy in Dental Medicine

    Directory of Open Access Journals (Sweden)

    Stan Adrian Tudor

    2017-03-01

    Full Text Available Introduction: Photoacoustic microscopy, also known as optoacoustic imaging, is a comparatively new method of investigation in dental medicine, which uses a laser-generated ultrasound (short laser pulses to achieve images for interpretation. Photoacoustic microscopy can be used in a broad spectrum, from detecting tooth decay at its earliest stages to dental anatomy analysis. Material and methods: The energy emitted by the photoacoustic pulse is moderately absorbed by the target and exchanged into heat, leading to a local transitory temperature upsurge. The tension propagates and grows as ultrasonic waves, distinguished by the ultrasonic transducers which are planted apart from the tissue. The photoacoustic microscope has a tunable dye laser which passes through a condensing lens, an objective and ultimately an ultrasonic transducer attached to an acoustic lens to capture and receive information about the scanned probe from a sample moved on the X, Y dimensions. Results: The precise anatomy of layered concentric structures can be clearly observed in photoacoustic microscopy. The image value of the inner layer can be higher, indicating strong optical absorption, while the image value of the outer layer is lower, indicating weaker optical absorption. Meanwhile, the inner layer has the exact same size as the dentin structure and the outer layer has the exact same size as the enamel structure in this cross-section. Conclusions: The photoacoustic microscope (all-optical comes out to be a future and promising tool for detecting early-stage caries and lesions on the surface of the teeth, where micro-leakage occurs at the interface of tooth restoration, and also the anatomy of dental tissues.

  8. [Macrophage colony stimulating factor enhances non-small cell lung cancer invasion and metastasis by promoting macrophage M2 polarization].

    Science.gov (United States)

    Li, Y J; Yang, L; Wang, L P; Zhang, Y

    2017-06-23

    Objective: To investigate the key cytokine which polarizes M2 macrophages and promotes invasion and metastasis in non-small cell lung cancer (NSCLC). Methods: After co-culture with A549 cells in vitro, the proportion of CD14(+) CD163(+) M2 macrophages in monocytes and macrophage colony stimulating factor (M-CSF) levels in culture supernatant were detected by flow cytometry, ELISA assay and real-time qPCR, respectively. The effects of CD14(+) CD163(+) M2 macrophages on invasion of A549 cells and angiogenesis of HUVEC cells were measured by transwell assay and tubule formation assay, respectively. The clinical and prognostic significance of M-CSF expression in NSCLC was further analyzed. Results: The percentage of CD14(+) CD163(+) M2 macrophages in monocytes and the concentration of M-CSF in the supernatant followed by co-culture was (12.03±0.46)% and (299.80±73.76)pg/ml, respectively, which were significantly higher than those in control group [(2.80±1.04)% and (43.07±11.22)pg/ml, respectively, P macrophages in vitro . M2 macrophages enhanced the invasion of A549 cells (66 cells/field vs. 26 cells/field) and the angiogenesis of HUVEC cells (22 tubes/field vs. 8 tubes/field). The mRNA expression of M-CSF in stage Ⅰ-Ⅱ patients (16.23±4.83) was significantly lower than that in stage Ⅲ-Ⅳ (53.84±16.08; P macrophages, which can further promote the metastasis and angiogenesis of NSCLC. M-CSF could be used as a potential therapeutic target of NSCLC.

  9. Plasma-induced synthesis of Pt nanoparticles supported on TiO{sub 2} nanotubes for enhanced methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan [College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); The Synergetic Innovation Center for Advanced Materials, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Hu, Xiulan, E-mail: whoxiulan@163.com [College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); The Synergetic Innovation Center for Advanced Materials, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao [College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China)

    2017-03-31

    Highlights: • Pt nanoparticles are synthesized by plasma sputtering in water. • Pt/C/TiO{sub 2} nanotubes shows better mass activity and CO-poisoning tolerance than Pt/C. • TiO{sub 2} nanotubes are more suitable for support materials than TiO{sub 2} small particles. • The metal-support interactions between Pt and TiO{sub 2} nanotubes are detected by XPS. - Abstract: A Pt/C/TiO{sub 2} nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO{sub 2} nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO{sub 2} synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO{sub 2} catalysts for methanol oxidation showed that TiO{sub 2} nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO{sub 2} short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO{sub 2} nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO{sub 2} nanotubes, which could mitigate the poisoning of the Pt catalyst by CO{sub ads}, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO{sub 2} nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  10. Comparison of non-invasive tear film stability measurement techniques.

    Science.gov (United States)

    Wang, Michael Tm; Murphy, Paul J; Blades, Kenneth J; Craig, Jennifer P

    2018-01-01

    Measurement of tear film stability is commonly used to give an indication of tear film quality but a number of non-invasive techniques exists within the clinical setting. This study sought to compare three non-invasive tear film stability measurement techniques: instrument-mounted wide-field white light clinical interferometry, instrument-mounted keratoscopy and hand-held keratoscopy. Twenty-two subjects were recruited in a prospective, randomised, masked, cross-over study. Tear film break-up or thinning time was measured non-invasively by independent experienced examiners, with each of the three devices, in a randomised order, within an hour. Significant correlation was observed between instrument-mounted interferometric and keratoscopic measurements (p 0.05). Tear film stability values obtained from the hand-held device were significantly shorter and demonstrated narrower spread than the other two instruments (all p 0.05). Good clinical agreement exists between the instrument-mounted interferometric and keratoscopic measurements but not between the hand-held device and either of the instrument-mounted techniques. The results highlight the importance of specifying the instrument employed to record non-invasive tear film stability. © 2017 Optometry Australia.

  11. Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser

    Directory of Open Access Journals (Sweden)

    Xukun Yin

    2016-01-01

    Full Text Available A near-IR CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS is evaluated using humidified nitrogen samples. Relaxation processes in the CO-N2-H2O system are investigated. A simple kinetic model is used to predict the sensor performance at different gas pressures. The results show that CO has a ~3 and ~5 times slower relaxation time constant than CH4 and HCN, respectively, under dry conditions. However, with the presence of water, its relaxation time constant can be improved by three orders of magnitude. The experimentally determined normalized detection sensitivity for CO in humid gas is 1.556 × 10 − 8   W ⋅ cm − 1 / Hz 1 / 2 .

  12. Carbon nanotube forests: a non-stick workbench for nanomanipulation

    International Nuclear Information System (INIS)

    Gjerde, Kjetil; Kjelstrup-Hansen, Jakob; Clausen, Casper H; Teo, Kenneth B K; Milne, William I; Rubahn, Horst-Guenter; Boeggild, Peter

    2006-01-01

    The ubiquitous static friction (stiction) and adhesion forces comprise a major obstacle in the manipulation of matter at the nanoscale (Falvo et al 1999 Nature 397 236; Urbakh M et al 2004 Nature 430 525). In this work it is shown that a surface coated with vertically aligned carbon nanotubes-a nanotube forest-acts as an effective non-stick workbench for the manipulation of micro-objects and fibres/wires with one or more dimensions in the nano-range. These include organic nanofibres (Balzer and Rubahn 2001 Appl. Phys. Lett. 79 3860) and microsized latex beads, which adhere strongly even to a conventional low surface-energy material like Teflon. Although organic nanofibres are attractive as device components due to their chemical adaptability, adhesion forces nearly always rule out manipulation as a route to assembly of prototype devices based on such materials, because organic materials are soft and fragile, and tend to stick to any surface. We demonstrate here that the nanotube forest due to its roughness not only exhibits very low stiction and dynamic friction; it also acts as a springy and mechanically compliant surface, making it possible to lift up and manipulate delicate nanostructures such as organic nanofibres in ways not possible on planar, rigid surfaces

  13. Photoacoustic absorption spectroscopy of single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul A.; Cremer, Johannes W.; Signorell, Ruth

    2017-08-01

    Photoacoustics have been widely used for the study of aerosol optical properties. To date, these studies have been performed on particle ensembles, with minimal ability to control for particle size. Here, we present our singleparticle photoacoustic spectrometer. The sensitivity and stability of the instrument is discussed, along with results from two experiments that illustrate the unique capabilities of this instrument. In the first experiment, we present a measurement of the particle size-dependence of the photoacoustic response. Our results confirm previous models of aerosol photoacoustics that had yet to be experimentally tested. The second set of results reveals a size-dependence of photochemical processes within aerosols that results from the nanofocusing of light within individual droplets.

  14. Facile template-directed synthesis of carbon-coated SnO2 nanotubes with enhanced Li-storage capabilities

    International Nuclear Information System (INIS)

    Zhu, Xiaoshu; Zhu, Jingyi; Yao, Yinan; Zhou, Yiming; Tang, Yawen; Wu, Ping

    2015-01-01

    Herein, a novel type of carbon-coated SnO 2 nanotubes has been designed and synthesized through a facile two-step hydrothermal approach by using ZnO nanorods as templates. During the synthetic route, SnO 2 nanocrystals and carbon layer have been uniformly deposited on the rod-like templates in sequence, meanwhile ZnO nanorods could be in situ dissolved owing to the generated alkaline and acidic environments during hydrothermal coating of SnO 2 nanocrystals and hydrothermal carbonization of glucose, respectively. When utilized as an anode material in lithium-ion batteries, the carbon-coated SnO 2 nanotubes manifests markedly enhanced Li-storage capabilities in terms of specific capacity and cycling stability in comparison with bare SnO 2 nanocrystals. - Graphical abstract: Display Omitted - Highlights: • C-coated SnO 2 nanotubes prepared via facile ZnO-nanorod-templated hydrothermal route. • Unique morphological and structural features toward lithium storage. • Enhanced Li-storage performance in terms of specific capacity and cycling stability

  15. Zinc oxide nanotubes decorated with silver nanoparticles as an ultrasensitive substrate for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Gao, M.; Feng, B.; Sun, Y.; Xing, G.; Li, S.; Yang, J.; Yang, L.; Zhang, Y.; Liu, H.; Fan, H.; Sui, Y.; Zhang, Z.; Liu, S.; Song, H.

    2012-01-01

    We report on the fabrication of a highly aligned silver-decorated array of zinc oxide nanotubes for use in surface-enhanced Raman spectroscopy (SERS). The ZnO nanotube array was first prepared by chemical etching, and the silver nanoparticles (AgNPs) were then deposited on their surface by magnetron sputtering. Such ZnO/Ag hybrid structures are shown to act as SERS-active substrates with remarkable sensitivity. The enhancement factor can be as high as 10 5 when using 4-mercaptopyridine in solution as a SERS probe. The synergistic combination between SERS 'hot spots' and the formation of an interfacial electric field between the zinc oxide nanotubes and the AgNPs in our opinion contribute to the high sensitivity. The relative standard deviations of signal intensities for the major SERS peaks are <7 %. This demonstrates that the optimized ZnO/Ag hybrid represents an excellent SERS substrate that may be used in trace analysis and ultrasensitive molecular sensing. (author)

  16. Non-invasive beamforming add-on module

    KAUST Repository

    Bader, Ahmed; Alouini, Mohamed-Slim

    2017-01-01

    An embodiment of a non-invasive beamforming add-on apparatus couples to an existing antenna port and rectifies the beam azimuth in the upstream and downstream directions. The apparatus comprises input circuitry that is configured to receive one

  17. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting

    Science.gov (United States)

    Chen, Yingzhi; Li, Aoxiang; Yue, Xiaoqi; Wang, Lu-Ning; Huang, Zheng-Hong; Kang, Feiyu; Volinsky, Alex A.

    2016-07-01

    Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration.Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi

  18. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations

    Science.gov (United States)

    Sokoloff, J. B.

    2018-03-01

    Secchi et al. [Nature (London) 537, 210 (2016), 10.1038/nature19315] observed a large enhancement of the permeability and slip length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall, resulting from the dependence of the electron energy band gap on the tube radius.

  19. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment.

    Science.gov (United States)

    Seo, Sang-Hee; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-03-01

    Titanium oxide nanotube layer formed by plasma electrolytic oxidation (PEO) is known to be excellent in biomaterial applications. However, the annealing process which is commonly performed on the TiO2 nanotubes cause defects in the nanotubular structure. The purpose of this work was to apply a non-thermal atmospheric pressure plasma jet on diameter-controlled TiO2 nanotubes to mimic the effects of annealing while maintaining the tubular structure for use as biomaterial. Diameter-controlled nanotube samples fabricated by plasma electrolytic oxidation were dried and prepared under three different conditions: untreated, annealed at 450 °C for 1 h in air with a heating rate of 10 °C/min, and treated with an air-based non-thermal atmospheric pressure plasma jet for 5 minutes. The contact angle measurement was investigated to confirm the enhanced hydrophilicity of the TiO2 nanotubes. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy, and the morphology of TiO2 nanotubes was examined by field emission scanning electron microscopy. For the viability of the cell, the attachment of the osteoblastic cell line MC3T3-E1 was determined using the water-soluble tetrazolium salt assay. We found that there are no morphological changes in the TiO2 nanotubular structure after the plasma treatment. Also, we investigated a change in the chemical composition and enhanced hydrophilicity which result in improved cell behavior. The results of this study indicated that the non-thermal atmospheric pressure plasma jet results in osteoblast functionality that is comparable to annealed samples while maintaining the tubular structure of the TiO2 nanotubes. Therefore, this study concluded that the use of a non-thermal atmospheric pressure plasma jet on nanotube surfaces may replace the annealing process following plasma electrolytic oxidation.

  20. Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite

    Energy Technology Data Exchange (ETDEWEB)

    Cendrowski, Krzysztof, E-mail: kcendrowski@zut.edu.pl [West Pomeranian University of Technology Szczecin, Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Pulaskiego 10, Szczecin 70-322 (Poland); Jedrzejczak, Malgorzata [West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Science, Laboratory of Molecular Cytogenetic, Dr Judyma 10, Szczecin 71-460 (Poland); Peruzynska, Magdalena [Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, al. Powstancow Wielkopolskich 72, Szczecin 70-111 (Poland); Dybus, Andrzej [West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Science, Laboratory of Molecular Cytogenetic, Dr Judyma 10, Szczecin 71-460 (Poland); Drozdzik, Marek [Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, al. Powstancow Wielkopolskich 72, Szczecin 70-111 (Poland); Mijowska, Ewa [West Pomeranian University of Technology Szczecin, Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Pulaskiego 10, Szczecin 70-322 (Poland)

    2014-08-25

    Graphical abstract: Scheme demonstrating the experimental steps toward the formation of titania/multiwalled carbon nanotubes (TiO{sub 2}-MWCNTs) from multiwalled carbon nanotubes (MWCNT). - Highlights: • Easy and efficient method of impregnation carbon nanotubes with titania. • High photoactivity. • Correlation between the interaction of carbon nanotubes with titania on the photocatalytic properties. • High biocompatibility of the nanotubes. - Abstract: Recent research is focused on the enhancement in photoactivity of titanium dioxide/carbon nanotubes through formation of novel nanocomposites that exhibit a high specific surface area, remarkable electron transfer and biocompatibility. Here, we explore a new synthesis route in the system composed of nanocrystalline titanium dioxide supported on external walls and inner space of multiwalled carbon nanotubes (MWCNT). The advantages of this method are: its simplicity, direct fusion of titanium dioxide particles on the carbon material, and formation of chemical bond Ti–O–C between TiO{sub 2} and MWCNT. Photocatalytic performance of this system has been compared to a commercial catalyst (Degussa P25) in a model reaction of phenol decomposition in/under UV light. The efficiency of the process increased by the factor of 2.5 when the TiO{sub 2}–MWCNT photocatalyst was utilized. Further, the photoactive nanocomposite was analysed towards its biocompatibility in order to establish a safe dose of the catalyst. Its influence on the cells viability was studied on mouse fibroblasts and human liver tissue cells, in the range from 0 to 100 μg/mL. This has revealed that the composite in concentrations up to 25 μg/mL exerted low toxicity, which allowed for finding a compromise between the highest safe dose and acceptable photoactivity of the catalyst.

  1. Enhanced shoot investment makes invasive plants exhibit growth advantages in high nitrogen conditions.

    Science.gov (United States)

    Liu, X A; Peng, Y; Li, J J; Peng, P H

    2018-03-12

    Resource amendments commonly promote plant invasions, raising concerns over the potential consequences of nitrogen (N) deposition; however, it is unclear whether invaders will benefit from N deposition more than natives. Growth is among the most fundamental inherent traits of plants and thus good invaders may have superior growth advantages in response to resource amendments. We compared the growth and allocation between invasive and native plants in different N regimes including controls (ambient N concentrations). We found that invasive plants always grew much larger than native plants in varying N conditions, regardless of growth- or phylogeny-based analyses, and that the former allocated more biomass to shoots than the latter. Although N addition enhanced the growth of invasive plants, this enhancement did not increase with increasing N addition. Across invasive and native species, changes in shoot biomass allocation were positively correlated with changes in whole-plant biomass; and the slope of this relationship was greater in invasive plants than native plants. These findings suggest that enhanced shoot investment makes invasive plants retain a growth advantage in high N conditions relative to natives, and also highlight that future N deposition may increase the risks of plant invasions.

  2. Photoacoustic detection of NH3 in power plant emissions

    International Nuclear Information System (INIS)

    Rassmussen, O.

    1991-01-01

    The paper describes a photoacoustic spectrometer initially designed for detection of NH 3 in power plant emission with a detection limit below 1 ppm. The radiation source is a high tunable CO 2 waveguide laser emitting its own frequency standard in one of 90 laserlines. The detection is performed at reduced pressure where the vibration-rotation transitions give an unambiguous fingerprint for each trace gas. Immunity against interference is ensured by recording this characteristic spectral fingerprint over the tuning range of the laser, and problems associated with the high concentration of CO 2 or other interfering molecules are further eliminated by utilizing the effect of kinetic cooling in the photoacoustic phase. The use of a CO 2 laser as radiation source combined with the highly sensitive photoacoustic detection provides a great possibility of measuring a wide range of air pollutants in the range down to ppt concentrations. Experimental measurements have been carried out on gases like sulfur dioxide, ethylene, sulfur hexafluoride, vinylchloride, ozone, etc., and many others have been theoretically examined to give a high response in the CO 2 laser frequency range. A computerized NH 3 spectrometer has been constructed and tested under realistic conditions at a Danish power plant operating a test facility for selective non-catalytic reduction of NO x . Results of this test will be presented

  3. Magneto-Plasmonic Janus Vesicles for Magnetic Field-Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors

    KAUST Repository

    Liu, Yijing; Yang, Xiangyu; Huang, Zhiqi; Huang, Peng; Zhang, Yang; Deng, Lin; Wang, Zhantong; Zhou, Zijian; Liu, Yi; Kalish, Heather; Khachab, Niveen M.; Chen, Xiaoyuan; Nie, Zhihong

    2016-01-01

    Magneto-plasmonic Janus vesicles (JVs) integrated with gold nanoparticles (AuNPs) and magnetic NPs (MNPs) were prepared asymmetrically in the membrane for in vivo cancer imaging. The hybrid JVs were produced by coassembling a mixture of hydrophobic MNPs, free amphiphilic block copolymers (BCPs), and AuNPs tethered with amphiphilic BCPs. Depending on the size and content of NPs, the JVs acquired spherical or hemispherical shapes. Among them, hemispherical JVs containing 50 nm AuNPs and 15 nm MNPs showed a strong absorption in the near-infrared (NIR) window and enhanced the transverse relaxation (T2) contrast effect, as a result of the ordering and dense packing of AuNPs and MNPs in the membrane. The magneto-plasmonic JVs were used as drug delivery vehicles, from which the release of a payload can be triggered by NIR light and the release rate can be modulated by a magnetic field. Moreover, the JVs were applied as imaging agents for in vivo bimodal photoacoustic (PA) and magnetic resonance (MR) imaging of tumors by intravenous injection. With an external magnetic field, the accumulation of the JVs in tumors was significantly increased, leading to a signal enhancement of approximately 2–3 times in the PA and MR imaging, compared with control groups without a magnetic field.

  4. Magneto-Plasmonic Janus Vesicles for Magnetic Field-Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors

    KAUST Repository

    Liu, Yijing

    2016-11-10

    Magneto-plasmonic Janus vesicles (JVs) integrated with gold nanoparticles (AuNPs) and magnetic NPs (MNPs) were prepared asymmetrically in the membrane for in vivo cancer imaging. The hybrid JVs were produced by coassembling a mixture of hydrophobic MNPs, free amphiphilic block copolymers (BCPs), and AuNPs tethered with amphiphilic BCPs. Depending on the size and content of NPs, the JVs acquired spherical or hemispherical shapes. Among them, hemispherical JVs containing 50 nm AuNPs and 15 nm MNPs showed a strong absorption in the near-infrared (NIR) window and enhanced the transverse relaxation (T2) contrast effect, as a result of the ordering and dense packing of AuNPs and MNPs in the membrane. The magneto-plasmonic JVs were used as drug delivery vehicles, from which the release of a payload can be triggered by NIR light and the release rate can be modulated by a magnetic field. Moreover, the JVs were applied as imaging agents for in vivo bimodal photoacoustic (PA) and magnetic resonance (MR) imaging of tumors by intravenous injection. With an external magnetic field, the accumulation of the JVs in tumors was significantly increased, leading to a signal enhancement of approximately 2–3 times in the PA and MR imaging, compared with control groups without a magnetic field.

  5. Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging.

    Science.gov (United States)

    Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile

    2017-07-01

    Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    Science.gov (United States)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  7. An optimized ultrasound detector for photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, Wenfeng; Piras, Daniele; van Hespen, Johan C. G.; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Photoacoustic imaging has proven to be able to detect vascularization-driven optical absorption contrast associated with tumors. In order to detect breast tumors located a few centimeter deep in tissue, a sensitive ultrasound detector is of crucial importance for photoacoustic mammography. Further,

  8. New trend in non-invasive prenatal diagnosis.

    Science.gov (United States)

    Ferrari, M; Carrera, P; Lampasona, V; Galbiati, S

    2015-12-07

    The presence of fetal DNA in maternal plasma represents a source of genetic material which can be obtained non-invasively. To date, the translation of noninvasive prenatal diagnosis from research into clinical practice has been rather fragmented, and despite the advances in improving the analytical sensitivity of methods, distinguishing between fetal and maternal sequences remains very challenging. Thus, the field of noninvasive prenatal diagnosis of genetic diseases has yet to attain a routine application in clinical diagnostics. On the contrary, fetal sex determination in pregnancies at high risk of sex-linked disorders, tests for fetal RHD genotyping and non-invasive assessment of chromosomal aneuploidies are now available worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    Science.gov (United States)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  10. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    Science.gov (United States)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  11. High quantum yield graphene quantum dots decorated TiO_2 nanotubes for enhancing photocatalytic activity

    International Nuclear Information System (INIS)

    Qu, Ailan; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-01-01

    Highlights: • High concentration yellow GQDs and TiO_2 nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO_2 nanotube. • The catalytic performance of GQDs/TiO_2 depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO_2 was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO_2 nanotubes (GQDs/TiO_2 NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO_2 NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO_2 nanotubes (TiO_2 NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO_2 NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO_2 NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO_2 composite.

  12. Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity

    Science.gov (United States)

    Huang, Jing; Ding, Lei; Xi, Yaoning; Shi, Liang; Su, Ge; Gao, Rongjie; Wang, Wei; Dong, Bohua; Cao, Lixin

    2018-06-01

    In this paper, Ag(CH3NH2)2+, Ag(NH3)2+ and Ag+ with different radii have been used as silver sources to find out the distribution of Ag ions on the H-TNT surface, which is critical to the final performance. The influence of this distribution on visible photocatalytic activity is further studied. The results indicate that, when Ag+ used as silver source with low concentration, these small sized silver ions mainly distribute on interlayer spacing of H-TNT. After heat-treatment and photo-reduction, the generated silver nanoparticles uniformly embed in the anatase TiO2 nanotube walls, and bring large interfacial area between Ag particles and TiO2 nanotubes. The separation effect of photogenerated electron-hole pair in TiO2 is enhanced by Ag particles, and achieves the best at 0.15 g/L, much higher than P25, TiO2/0, Ag-N@TiO2 and Ag-C-N@TiO2. This paper provides new ideas for the modification of TiO2 nanotubes.

  13. Enhancement of adhesion between carbon nanotubes and polymer substrates using microwave irradiation

    International Nuclear Information System (INIS)

    Shim, Hyung Cheoul; Kwak, Yoon Keun; Han, Chang-Soo; Kim, Soohyun

    2009-01-01

    This paper reports the enhancement of adhesive strength between single-walled carbon nanotubes (SWNTs) and polymer substrates using microwave irradiation of 0-5 min duration at 2.45 GHz and 800 W. Field emission scanning electron microscopy images, ultraviolet-visible data and four-point probe sheet resistance measurement data indicate that microwave irradiation is effective for enhancement of adhesion between SWNTs and polymer substrates. SWNTs could be locally welded onto a polymer substrate due to their active response to microwave irradiation.

  14. Dry coupling for whole-body small-animal photoacoustic computed tomography

    OpenAIRE

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-01-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using ...

  15. Application of Carbon Nanotube Assemblies for Sound Generation and Heat Dissipation

    Science.gov (United States)

    Kozlov, Mikhail; Haines, Carter; Oh, Jiyoung; Lima, Marcio; Fang, Shaoli

    2011-03-01

    Nanotech approaches were explored for the efficient transformation of an electrical signal into sound, heat, cooling action, and mechanical strain. The studies are based on the aligned arrays of multi-walled carbon nanotubes (MWNT forests) that can be grown on various substrates using a conventional CVD technique. They form a three-dimensional conductive network that possesses uncommon electrical, thermal, acoustic and mechanical properties. When heated with an alternating current or a near-IR laser modulated in 0.01--20 kHz range, the nanotube forests produce loud, audible sound. High generated sound pressure and broad frequency response (beyond 20 kHz) show that the forests act as efficient thermo-acoustic (TA) transducers. They can generate intense third and fourth TA harmonics that reveal peculiar interference-like patterns from ac-dc voltage scans. A strong dependence of the patterns on forest height can be used for characterization of carbon nanotube assemblies and for evaluation of properties of thermal interfaces. Because of good coupling with surrounding air, the forests provide excellent dissipation of heat produced by IC chips. Thermoacoustic converters based on forests can be used for thermo- and photo-acoustic sound generation, amplification and noise cancellation.

  16. Review of invasive urodynamics and progress towards non-invasive measurements in the assessment of bladder outlet obstruction

    Directory of Open Access Journals (Sweden)

    C J Griffiths

    2009-01-01

    Full Text Available Objective: This article defines the need for objective measurements to help diagnose the cause of lower urinary tract symptoms (LUTS. It describes the conventional techniques available, mainly invasive, and then summarizes the emerging range of non-invasive measurement techniques. Methods: This is a narrative review derived form the clinical and scientific knowledge of the authors together with consideration of selected literature. Results: Consideration of measured bladder pressure urinary flow rate during voiding in an invasive pressure flow study is considered the gold standard for categorization of bladder outlet obstruction (BOO. The diagnosis is currently made by plotting the detrusor pressure at maximum flow (p detQmax and maximum flow rate (Q max on the nomogram approved by the International Continence Society. This plot will categorize the void as obstructed, equivocal or unobstructed. The invasive and relatively complex nature of this investigation has led to a number of inventive techniques to categorize BOO either by measuring bladder pressure non-invasively or by providing a proxy measure such as bladder weight. Conclusion: Non-invasive methods of diagnosing BOO show great promise and a few have reached the stage of being commercially available. Further studies are however needed to validate the measurement technique and assess their worth in the assessment of men with LUTS.

  17. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Xiao, Yonghao; Zhan, Guohe; Fu, Zhenggao; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  18. NH4HCO3 gas-generating liposomal nanoparticle for photoacoustic imaging in breast cancer

    Directory of Open Access Journals (Sweden)

    Xia J

    2017-03-01

    Full Text Available Jizhu Xia, Gang Feng, Xiaorong Xia, Lan Hao, Zhigang Wang Chongqing Key Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Abstract: In this study, we have developed a biodegradable nanomaterial for photoacoustic imaging (PAI. Its biodegradation products can be fully eliminated from a living organism. It is a gas-generating nanoparticle of liposome-encapsulating ammonium bicarbonate (NH4HCO3 solution, which is safe, effective, inexpensive, and free of side effects. When lasers irradiate these nanoparticles, NH4HCO3 decomposes to produce CO2, which can absorb much of the light energy under laser irradiation with a specific wavelength, and then expand under heat to generate a thermal acoustic wave. An acoustic detector can detect this wave and show it as a photoacoustic signal on a display screen. The intensity of the photoacoustic signal is enhanced corresponding to an increase in time, concentration, and temperature. During in vivo testing, nanoparticles were injected into tumor-bearing nude mice through the caudal vein, and photoacoustic signals were detected from the tumor, reaching a peak in 4 h, and then gradually disappearing. There was no damage to the skin or subcutaneous tissue from laser radiation. Our developed gas-generating nanomaterial, NH4HCO3 nanomaterial, is feasible, effective, safe, and inexpensive. Therefore, it is a promising material to be used in clinical PAI. Keywords: Photoacoustic tomography, CO2, NH4HCO3, contrast agent, cancer

  19. Multiple speckle illumination for optical-resolution photoacoustic imaging

    Science.gov (United States)

    Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2017-03-01

    Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2

  20. The effects of non-uniform flow velocity on vibrations of single-walled carbon nanotube conveying fluid

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi-Goughari, Moslem [Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Hosseini, Mohammad [Sirjan University of Technology, Sirjan (Iran, Islamic Republic of)

    2015-02-15

    The vibrational behavior of a viscous nanoflow-conveying single-walled carbon nanotube (SWCNT) was investigated. The nonuniformity of the flow velocity distribution caused by the viscosity of fluid and the small-size effects on the flow field was considered. Euler-Bernoulli beam model was used to investigate flow-induced vibration of the nanotube, while the non-uniformity of the flow velocity and the small-size effects of the flow field were formulated through Knudsen number (Kn), as a discriminant parameter. For laminar flow in a circular nanotube, the momentum correction factor was developed as a function of Kn. For Kn = 0 (continuum flow), the momentum correction factor was found to be 1.33, which decreases by the increase in Kn may even reach near 1 for the transition flow regime. We observed that for passage of viscous flow through a nanotube with the non-uniform flow velocity, the critical continuum flow velocity for divergence decreased considerably as opposed to those for the uniform flow velocity, while by increasing Kn, the difference between the uniform and non-uniform flow models may be reduced. In the solution part, the differential transformation method (DTM) was used to solve the governing differential equations of motion.

  1. The effects of non-uniform flow velocity on vibrations of single-walled carbon nanotube conveying fluid

    International Nuclear Information System (INIS)

    Sadeghi-Goughari, Moslem; Hosseini, Mohammad

    2015-01-01

    The vibrational behavior of a viscous nanoflow-conveying single-walled carbon nanotube (SWCNT) was investigated. The nonuniformity of the flow velocity distribution caused by the viscosity of fluid and the small-size effects on the flow field was considered. Euler-Bernoulli beam model was used to investigate flow-induced vibration of the nanotube, while the non-uniformity of the flow velocity and the small-size effects of the flow field were formulated through Knudsen number (Kn), as a discriminant parameter. For laminar flow in a circular nanotube, the momentum correction factor was developed as a function of Kn. For Kn = 0 (continuum flow), the momentum correction factor was found to be 1.33, which decreases by the increase in Kn may even reach near 1 for the transition flow regime. We observed that for passage of viscous flow through a nanotube with the non-uniform flow velocity, the critical continuum flow velocity for divergence decreased considerably as opposed to those for the uniform flow velocity, while by increasing Kn, the difference between the uniform and non-uniform flow models may be reduced. In the solution part, the differential transformation method (DTM) was used to solve the governing differential equations of motion.

  2. Photoacoustically-guided photothermal killing of mosquitoes targeted by nanoparticles.

    Science.gov (United States)

    Foster, Stephen R; Galanzha, Ekaterina I; Totten, Daniel C; Beneš, Helen; Shmookler Reis, Robert J; Zharov, Vladimir P

    2014-07-01

    In biomedical applications, nanoparticles have demonstrated the potential to eradicate abnormal cells in small localized pathological zones associated with cancer or infections. Here, we introduce a method for nanotechnology-based photothermal (PT) killing of whole organisms considered harmful to humans or the environment. We demonstrate that laser-induced thermal, and accompanying nano- and microbubble phenomena, can injure or kill C. elegans and mosquitoes fed carbon nanotubes, gold nanospheres, gold nanoshells, or magnetic nanoparticles at laser energies that are safe for humans. In addition, a photoacoustic (PA) effect was used to control nanoparticle delivery. Through the integration of this technique with molecular targeting, nanoparticle clustering, magnetic capturing and spectral sharpening of PA and PT plasmonic resonances, our laser-based PA-PT nano-theranostic platform can be applied to detection and the physical destruction of small organisms and carriers of pathogens, such as malaria vectors, spiders, bed bugs, fleas, ants, locusts, grasshoppers, phytophagous mites, or other arthropod pests, irrespective of their resistance to conventional treatments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Korvala, Johanna, E-mail: johanna.korvala@oulu.fi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Jee, Kowan [Department of Pathology, University of Turku, Turku University Hospital, Turku (Finland); Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Porkola, Emmi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Almangush, Alhadi [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Mosakhani, Neda [Department of Pathology, HUSLAB, Helsinki (Finland); Bitu, Carolina [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Cervigne, Nilva K. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); Department of Clinical and Pathology, Faculty of Medicine of Jundiai - FMJ, Jundiai, SP (Brazil); Zandonadi, Flávia S.; Meirelles, Gabriela V.; Leme, Adriana Franco Paes [Laboratório Nacional de Biociências, LNBio, CNPEM, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas/SP, P.O.Box 6192, CEP 13083-970 Campinas, São Paulo (Brazil); Coletta, Ricardo D. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); and others

    2017-01-01

    Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.

  4. Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles

    International Nuclear Information System (INIS)

    Gutrath, Benjamin S; Buchkremer, Anne; Timper, Jan; Leifert, Annika; Simon, Ulrich; Beckmann, Martin F; Schmitz, Georg; Eckert, Thomas; Richtering, Walter

    2012-01-01

    Photoacoustic (PA) imaging attracts a great deal of attention as an innovative modality for longitudinal, non-invasive, functional and molecular imaging in oncology. Gold nanoparticles (AuNPs) are identified as superior, NIR-absorbing PA contrast agents for biomedical applications. Until now, no systematic comparison of the optical extinction and PA efficiency of water-soluble AuNPs of various geometries and small sizes has been performed. Here spherical AuNPs with core diameters of 1.0, 1.4 and 11.2 nm, nanorods with longitudinal/transversal elongation of 38/9 and 44/12 nm and hollow nanospheres with outer/inner diameters of 33/19, 57/30, 68/45 and 85/56 nm were synthesized. The diode laser set-up with excitations at 650, 808, 850 and 905 nm allowed us to correlate the molar PA signal intensity with the molar extinction of the respective AuNPs. Deviations were explained by differences in heat transfer from the particle to the medium and, for larger particles, by the scattering of light. The molar PA intensity of 1.0 nm AuNPs was comparable to the commonly used organic dye methylene blue, and rapidly increased with the lateral size of AuNPs. (paper)

  5. Defect-induced Catalysis toward the Oxygen Reduction Reaction in Single-walled Carbon Nanotube: Nitrogen doped and Non-nitrogen doped

    International Nuclear Information System (INIS)

    Lu, Di; Wu, Dan; Jin, Jian; Chen, Liwei

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) are post-treated by argon (Ar) or ammonia (NH 3 ) plasma irradiation to introduce defects that are potentially related to catalysis towards the oxygen reduction reaction (ORR). Electrochemical characterization in alkali medium suggests that the plasma irradiated SWNTs demonstrate enhanced catalytic activity toward the ORR with a positively shifted threshold potential. Moreover the enhanced desired four-electron pathway catalytic activity, which exhibited as the positive shifted threshold potential, is independent of the nitrogen dopant. The nature of the defects is probed with Raman and X-ray photoelectron spectroscopy. The results indicate that the non-nitrogen doped defects of SWNTs contribute to the actual active site for the ORR.

  6. Highly ordered Ni–Ti–O nanotubes for non-enzymatic glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Yanlian [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, Ang [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Lin, Naiming [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Tang, Bin, E-mail: tangbin@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-06-01

    Anodization is used to fabricate Ni–Ti–O nanotube (NT) electrodes for non-enzymatic glucose detection. The morphology, microstructure and composition of the materials are characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Our results show amorphous and highly ordered NTs with diameter of 50 nm, length of 800 nm, and Ni/Ti ratio (at %) of 0.35 can be fabricated in ethylene glycol electrolyte supplemented with 0.2 wt.% NH{sub 4}F and 0.5 vol.% H{sub 2}O at 30 °C and 25 V for 1 h. Electrochemical experiments indicate that at an applied potential of 0.60 V vs. Ag/AgCl, the electrode exhibits a linear response window for glucose concentrations from 0.002 mM to 0.2 mM with a response time of 10 s, detection limit of 0.13 μM (S/N = 3), and sensitivity of 83 μA mM{sup −1} cm{sup −2}. The excellent performance of the electrode is attributed to its large specific area and fast electron transfer between the NT walls. The good electrochemical performance of the Ni–Ti–O NTs as well as their simple and low-cost preparation method make the strategy promising in non-enzymatic glucose detection. - Highlights: • Highly ordered Ni–Ti–O nanotubes have been fabricated by one-step anodization. • We find H{sub 2}O contents in the electrolyte is critical to successful fabrication of the NTs. • The Ni–Ti–O nanotubes are ideal electrode materials for non-enzymatic glucose detection.

  7. A review of invasive and non-invasive sensory feedback in upper limb prostheses.

    Science.gov (United States)

    Svensson, Pamela; Wijk, Ulrika; Björkman, Anders; Antfolk, Christian

    2017-06-01

    The constant challenge to restore sensory feedback in prosthetic hands has provided several research solutions, but virtually none has reached clinical fruition. A prosthetic hand with sensory feedback that closely imitates an intact hand and provides a natural feeling may induce the prosthetic hand to be included in the body image and also reinforces the control of the prosthesis. Areas covered: This review presents non-invasive sensory feedback systems such as mechanotactile, vibrotactile, electrotactile and combinational systems which combine the modalities; multi-haptic feedback. Invasive sensory feedback has been tried less, because of the inherent risk, but it has successfully shown to restore some afferent channels. In this review, invasive methods are also discussed, both extraneural and intraneural electrodes, such as cuff electrodes and transverse intrafascicular multichannel electrodes. The focus of the review is on non-invasive methods of providing sensory feedback to upper-limb amputees. Expert commentary: Invoking embodiment has shown to be of importance for the control of prosthesis and acceptance by the prosthetic wearers. It is a challenge to provide conscious feedback to cover the lost sensibility of a hand, not be overwhelming and confusing for the user, and to integrate technology within the constraint of a wearable prosthesis.

  8. Ultrasound to video registration using a bi-plane transrectal probe with photoacoustic markers

    Science.gov (United States)

    Cheng, Alexis; Kang, Hyun Jae; Zhang, Haichong K.; Taylor, Russell H.; Boctor, Emad M.

    2016-03-01

    Modern surgical scenarios typically provide surgeons with additional information through fusion of video and other imaging modalities. To provide this information, the tools and devices used in surgery must be registered together with interventional guidance equipment and surgical navigation systems. In this work, we focus explicitly on registering ultrasound with a stereo camera system using photoacoustic markers. Previous work has shown that photoacoustic markers can be used in this registration task to achieve target registration errors lower than the current available systems. Photoacoustic markers are defined as a set of non-collinear laser spots projected onto some surface. They can be simultaneously visualized by a stereo camera system and an ultrasound transducer because of the photoacoustic effect. In more recent work, the three-dimensional ultrasound volume was replaced by images from a single ultrasound image pose from a convex array transducer. The feasibility of this approach was demonstrated, but the accuracy was lacking due to the physical limitations of the convex array transducer. In this work, we propose the use of a bi-plane transrectal ultrasound transducer. The main advantage of using this type of transducer is that the ultrasound elements are no longer restricted to a single plane. While this development would be limited to prostate applications, liver and kidney applications are also feasible if a suitable transducer is built. This work is demonstrated in two experiments, one without photoacoustic sources and one with. The resulting target registration error for these experiments were 1.07mm±0.35mm and 1.27mm+/-0.47mm respectively, both of which are better than current available navigation systems.

  9. Blood biomarkers for the non-invasive diagnosis of endometriosis

    NARCIS (Netherlands)

    Nisenblat, Vicki; Bossuyt, Patrick M. M.; Shaikh, Rabia; Farquhar, Cindy; Jordan, Vanessa; Scheffers, Carola S.; Mol, Ben Willem J.; Johnson, Neil; Hull, M. Louise

    2016-01-01

    About 10% of reproductive-aged women suffer from endometriosis, a costly chronic disease causing pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but is expensive and carries surgical risks. Currently, there are no non-invasive or minimally invasive

  10. Non-drug Non-invasive Treatment in the Management of Low Back ...

    African Journals Online (AJOL)

    ... of functional independence and quality of life. Aim: The main purpose of this study was to assess the results of non-drug non-invasive treatment in the management of LBP. Subjects and Methods: This was prospective study conducted in the Department of Orthopedics in M. M. Medical College, Mullana, Ambala, Haryana, ...

  11. WE-EF-210-07: Development of a Minimally Invasive Photo Acoustic Imaging System for Early Prostate Cancer Detection

    Energy Technology Data Exchange (ETDEWEB)

    Sano, M; Yousefi, S; Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: The objective of this work is to design, implement and characterize a catheter-based ultrasound/photoacoustic imaging probe for early-diagnosis of prostate cancer and to aid in image-guided radiation therapy. Methods: The need to image across 6–10cm of tissue to image the whole prostate gland limits the resolution achievable with a transrectal ultrasound approach. In contrast, the urethra bisects the prostate gland, providing a minimally invasive pathway for deploying a high resolution ultrasound transducer. Utilizing a high-frequency (20MHz) ultrasound/photoacoustic probe, high-resolution structural and molecular imaging of the prostate tissue is possible. A custom 3D printed probe containing a high-frequency single-element ultrasound transducer is utilized. The diameter of the probe is designed to fit inside a Foley catheter and the probe is rotated around the central axis to achieve a circular B-scan. A custom ultrasound amplifier and receiver was set up to trigger the ultrasound pulse transmission and record the reflected signal. The reconstructed images were compared to images generated by traditional 5 MHz ultrasound transducers. Results: The preliminary results using the high-frequency ultrasound probe show that it is possible to resolve finely detailed information in a prostate tissue phantom that was not achievable with previous low-frequency ultrasound systems. Preliminary ultrasound imaging was performed on tissue mimicking phantom and sensitivity and signal-to-noise ratio of the catheter was measured. Conclusion: In order to achieve non-invasive, high-resolution, structural and molecular imaging for early-diagnosis and image-guided radiation therapy of the prostate tissue, a transurethral catheter was designed. Structural/molecular imaging using ultrasound/photoacoustic of the prostate tissue will allow for localization of hyper vascularized areas for early-stage prostate cancer diagnosis.

  12. Multi-source quantitative photoacoustic tomography in a diffusive regime

    International Nuclear Information System (INIS)

    Bal, Guillaume; Ren, Kui

    2011-01-01

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that aims to combine the large contrast of optical coefficients with the high-resolution capabilities of ultrasound. We assume that the first step of PAT, namely the reconstruction of a map of absorbed radiation from ultrasound boundary measurement, has been done. We focus on quantitative photoacoustic tomography, which aims at quantitatively reconstructing the optical coefficients from knowledge of the absorbed radiation map. We present a non-iterative procedure to reconstruct such optical coefficients, namely the diffusion and absorption coefficients, and the Grüneisen coefficient when the propagation of radiation is modeled by a second-order elliptic equation. We show that PAT measurements allow us to uniquely reconstruct only two out of the above three coefficients, even when data are collected using an arbitrary number of radiation illuminations. We present uniqueness and stability results for the reconstructions of two such parameters and demonstrate the accuracy of the reconstruction algorithm with numerical reconstructions from two-dimensional synthetic data

  13. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    Science.gov (United States)

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  14. Disturbance promotes non-indigenous bacterial invasion in soil microcosms

    DEFF Research Database (Denmark)

    Liu, Manqiang; Strandmark, Lisa Bjørnlund; Rønn, Regin

    2012-01-01

    Invasion-biology is largely based on non-experimental observation of larger organisms. Here, we apply an experimental approach to the subject. By using microbial-based microcosm-experiments, invasion-biology can be placed on firmer experimental, and hence, less anecdotal ground. A better...... understanding of the mechanisms that govern invasion-success of bacteria in soil communities will provide knowledge on the factors that hinder successful establishment of bacteria artificially inoculated into soil, e.g. for remediation purposes. Further, it will yield valuable information on general principles...... of invasion biology in other domains of life....

  15. Minimally invasive esthetic ridge preservation with growth-factor enhanced bone matrix.

    Science.gov (United States)

    Nevins, Marc L; Said, Sherif

    2017-12-28

    Extraction socket preservation procedures are critical to successful esthetic implant therapy. Conventional surgical approaches are technique sensitive and often result in alteration of the soft tissue architecture, which then requires additional corrective surgical procedures. This case series report presents the ability of flapless surgical techniques combined with a growth factor-enhanced bone matrix to provide esthetic ridge preservation at the time of extraction for compromised sockets. When considering esthetic dental implant therapy, preservation, or further enhancement of the available tissue support at the time of tooth extraction may provide an improved esthetic outcome with reduced postoperative sequelae and decreased treatment duration. Advances in minimally invasive surgical techniques combined with recombinant growth factor technology offer an alternative for bone reconstruction while maintaining the gingival architecture for enhanced esthetic outcome. The combination of freeze-dried bone allograft (FDBA) and rhPDGF-BB (platelet-derived growth factor-BB) provides a growth-factor enhanced matrix to induce bone and soft tissue healing. The use of a growth-factor enhanced matrix is an option for minimally invasive ridge preservation procedures for sites with advanced bone loss. Further studies including randomized clinical trials are needed to better understand the extent and limits of these procedures. The use of minimally invasive techniques with growth factors for esthetic ridge preservation reduces patient morbidity associated with more invasive approaches and increases the predictability for enhanced patient outcomes. By reducing the need for autogenous bone grafts the use of this technology is favorable for patient acceptance and ease of treatment process for esthetic dental implant therapy. © 2017 Wiley Periodicals, Inc.

  16. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    Science.gov (United States)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  17. Markers for the non-invasive diagnosis of mesothelioma: a systematic review

    NARCIS (Netherlands)

    van der Bij, S.; Schaake, E.; Koffijberg, H.; Burgers, J. A.; de Mol, B. A. J. M.; Moons, K. G. M.

    2011-01-01

    BACKGROUND: Numerous markers have been evaluated to facilitate the non-invasive diagnostic work-up of mesothelioma. The purpose of this study was to conduct a structured review of the diagnostic performance of non-invasive marker tests for the detection of mesothelioma in patients with suspected

  18. Markers for the non-invasive diagnosis of mesothelioma : A systematic review

    NARCIS (Netherlands)

    van der Bij, S.; Schaake, E.; Koffijberg, H.; Burgers, J. A.; De Mol, B. A J M; Moons, K.G.M.

    2011-01-01

    Background: Numerous markers have been evaluated to facilitate the non-invasive diagnostic work-up of mesothelioma. The purpose of this study was to conduct a structured review of the diagnostic performance of non-invasive marker tests for the detection of mesothelioma in patients with suspected

  19. Early invasive versus non-invasive treatment in patients with non-ST-elevation acute coronary syndrome (FRISC-II): 15 year follow-up of a prospective, randomised, multicentre study.

    Science.gov (United States)

    Wallentin, Lars; Lindhagen, Lars; Ärnström, Elisabet; Husted, Steen; Janzon, Magnus; Johnsen, Søren Paaske; Kontny, Frederic; Kempf, Tibor; Levin, Lars-Åke; Lindahl, Bertil; Stridsberg, Mats; Ståhle, Elisabeth; Venge, Per; Wollert, Kai C; Swahn, Eva; Lagerqvist, Bo

    2016-10-15

    The FRISC-II trial was the first randomised trial to show a reduction in death or myocardial infarction with an early invasive versus a non-invasive treatment strategy in patients with non-ST-elevation acute coronary syndrome. Here we provide a remaining lifetime perspective on the effects on all cardiovascular events during 15 years' follow-up. The FRISC-II prospective, randomised, multicentre trial was done at 58 Scandinavian centres in Sweden, Denmark, and Norway. Between June 17, 1996, and Aug 28, 1998, we randomly assigned (1:1) 2457 patients with non-ST-elevation acute coronary syndrome to an early invasive treatment strategy, aiming for revascularisation within 7 days, or a non-invasive strategy, with invasive procedures at recurrent symptoms or severe exercise-induced ischaemia. Plasma for biomarker analyses was obtained at randomisation. For long-term outcomes, we linked data with national health-care registers. The primary endpoint was a composite of death or myocardial infarction. Outcomes were compared as the average postponement of the next event, including recurrent events, calculated as the area between mean cumulative count-of-events curves. Analyses were done by intention to treat. At a minimum of 15 years' follow-up on Dec 31, 2014, data for survival status and death were available for 2421 (99%) of the initially recruited 2457 patients, and for other events after 2 years for 2182 (89%) patients. During follow-up, the invasive strategy postponed death or next myocardial infarction by a mean of 549 days (95% CI 204-888; p=0·0020) compared with the non-invasive strategy. This effect was larger in non-smokers (mean gain 809 days, 95% CI 402-1175; p interaction =0·0182), patients with elevated troponin T (778 days, 357-1165; p interaction =0·0241), and patients with high concentrations of growth differentiation factor-15 (1356 days, 507-1650; p interaction =0·0210). The difference was mainly driven by postponement of new myocardial infarction

  20. Non-invasive or minimally invasive autopsy compared to conventional autopsy of suspected natural deaths in adults: a systematic review.

    Science.gov (United States)

    Blokker, Britt M; Wagensveld, Ivo M; Weustink, Annick C; Oosterhuis, J Wolter; Hunink, M G Myriam

    2016-04-01

    Autopsies are used for healthcare quality control and improving medical knowledge. Because autopsy rates are declining worldwide, various non-invasive or minimally invasive autopsy methods are now being developed. To investigate whether these might replace the invasive autopsies conventionally performed in naturally deceased adults, we systematically reviewed original prospective validation studies. We searched six databases. Two reviewers independently selected articles and extracted data. Methods and patient groups were too heterogeneous for meaningful meta-analysis of outcomes. Sixteen of 1538 articles met our inclusion criteria. Eight studies used a blinded comparison; ten included less than 30 appropriate cases. Thirteen studies used radiological imaging (seven dealt solely with non-invasive procedures), two thoracoscopy and laparoscopy, and one sampling without imaging. Combining CT and MR was the best non-invasive method (agreement for cause of death: 70 %, 95%CI: 62.6; 76.4), but minimally invasive methods surpassed non-invasive methods. The highest sensitivity for cause of death (90.9 %, 95%CI: 74.5; 97.6, suspected duplicates excluded) was achieved in recent studies combining CT, CT-angiography and biopsies. Minimally invasive autopsies including biopsies performed best. To establish a feasible alternative to conventional autopsy and to increase consent to post-mortem investigations, further research in larger study groups is needed. • Health care quality control benefits from clinical feedback provided by (alternative) autopsies. • So far, sixteen studies investigated alternative autopsy methods for naturally deceased adults. • Thirteen studies used radiological imaging modalities, eight tissue biopsies, and three CT-angiography. • Combined CT, CT-angiography and biopsies were most sensitive diagnosing cause of death.

  1. Semiconducting polymer dot as a highly effective contrast agent for photoacoustic imaging

    Science.gov (United States)

    Yuan, Zhen; Zhang, Jian

    2018-02-01

    In this study, we developed a novel PIID-DTBT based semiconducting polymer dots (Pdots) that have broad and strong optical absorption in the visible-light region (500 nm - 700 nm). Gold nanoparticles (GNPs) and gold nanorods (GNRs) that have been verified as an excellent photoacoustic contrast agent were compared with Pdots based on photoacoustic imaging method. Both ex vivo and in vivo experiment demonstrated Pdots have a better photoacoustic conversion efficiency at 532 nm than GNPs and similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Our work demonstrates the great potential of Pdots as a highly effective contrast agent for precise localization of lesions relative to the blood vessels based on photoacoustic tomography imaging.

  2. Purification of carbon nanotubes via selective heating

    Science.gov (United States)

    Rogers, John A.; Wilson, William L.; Jin, Sung Hun; Dunham, Simon N.; Xie, Xu; Islam, Ahmad; Du, Frank; Huang, Yonggang; Song, Jizhou

    2017-11-21

    The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.

  3. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    Science.gov (United States)

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  4. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9.

    Directory of Open Access Journals (Sweden)

    Justin V Joseph

    Full Text Available Glioblastoma (GBM is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs, have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In this study, we addressed the question whether the differentiation status of GBM cells is associated with their invasive capacity. For this, several primary GBM cell lines were used, cultured either as neurospheres known to enrich for GSCs or in medium supplemented with 10% FCS that promotes differentiation. The differentiation state of the cells was confirmed by determining the expression of stem cell and differentiation markers. The migration/invasion potential of these cells was tested using in vitro assays and intracranial mouse models. Interestingly, we found that serum-induced differentiation enhanced the invasive potential of GBM cells, which was associated with enhanced MMP9 expression. Chemical inhibition of MMP9 significantly reduced the invasive potential of differentiated cells in vitro. Furthermore, the serum-differentiated cells could revert back to an undifferentiated/stem cell state that were able to form neurospheres, although with a reduced efficiency as compared to non-differentiated counterparts. We propose a model in which activation of the differentiation program in GBM cells enhances their infiltrative potential and that depending on microenvironmental cues a significant portion of these cells are able to revert back to an undifferentiated state with enhanced tumorigenic potential. Thus, effective therapy should target both GSCs and differentiated offspring and targeting of differentiation-associated pathways may offer therapeutic opportunities to reduce invasive growth of GBM.

  5. Filling the gap: using non-invasive geophysical methods to monitor the processes leading to enhanced carbon turnover induced by periodic water table fluctuations

    Science.gov (United States)

    Mellage, A.; Pronk, G.; Atekwana, E. A.; Furman, A.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Subsurface transition environments such as the capillary fringe are characterized by steep gradients in redox conditions. Spatial and temporal variations in electron acceptor and donor availability - driven by hydrological changes - may enhance carbon turnover, in some cases resulting in pulses of CO2-respiration. Filling the mechanistic knowledge gap between the hydrological driver and its biogeochemical effects hinges on our ability to monitor microbial activity and key geochemical markers at a high spatial and temporal resolution. However, direct access to subsurface biogeochemical processes is logistically difficult, invasive and usually expensive. In-line, non-invasive geophysical techniques - Spectral Induced Polarization (SIP) and Electrodic Potential (EP), specifically - offer a comparatively inexpensive alternative and can provide data with high spatial and temporal resolution. The challenge lies in linking electrical responses to specific changes in biogeochemical processes. We conducted SIP and EP measurements on a soil column experiment where an artificial soil mixture was subjected to monthly drainage and imbibition cycles. SIP responses showed a clear dependence on redox zonation and microbial abundance. Temporally variable responses exhibited no direct moisture dependence suggesting that the measured responses recorded changes in microbial activity and coincided with the depth interval over which enhanced carbon turnover was observed. EP measurements detected the onset of sulfate mineralization and mapped its depth zonation. SIP and EP signals thus detected enhanced microbial activity within the water table fluctuation zone as well as the timing of the development of specific reactive processes. These findings can be used to relate measured electrical signals to specific reaction pathways and help inform reactive transport models, increasing their predictive capabilities.

  6. Non-invasive mechanical ventilation with spinal anesthesia for cesarean delivery.

    Science.gov (United States)

    Erdogan, G; Okyay, D Z; Yurtlu, S; Hanci, V; Ayoglu, H; Koksal, B; Turan, I O

    2010-10-01

    We present the successful use of perioperative non-invasive mechanical ventilation in a morbidly obese pregnant woman with bronchial asthma, severe preeclampsia and pulmonary edema undergoing an emergency cesarean delivery with spinal anesthesia. The combination of non-invasive mechanical ventilation with neuraxial anesthesia may be of value in selected parturients with acute or chronic respiratory insufficiency requiring surgery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    KAUST Repository

    Hanna, Amir; Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2015-01-01

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET.

  8. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    KAUST Repository

    Hanna, Amir

    2015-04-29

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET.

  9. Detrusor wall thickness compared to other non-invasive methods in ...

    African Journals Online (AJOL)

    W. ElSaied

    invasive tests. Abbreviations: ... obstruction, non-invasively in men with lower urinary tract symptoms, with an accuracy approaching that ..... gies such as infection or tumor [15]. .... diagnosis of infravesical obstruction in children: evaluation of blad-.

  10. Combining portable Raman probes with nanotubes for theranostic applications.

    Science.gov (United States)

    Bhirde, Ashwinkumar A; Liu, Gang; Jin, Albert; Iglesias-Bartolome, Ramiro; Sousa, Alioscka A; Leapman, Richard D; Gutkind, J Silvio; Lee, Seulki; Chen, Xiaoyuan

    2011-01-01

    Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple

  11. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets

    NARCIS (Netherlands)

    Best, Myron G.; Sol, Nik; In ‘t Veld, Sjors G.J.G.; Vancura, Adrienne; Muller, Mirte; Niemeijer, Anna Larissa N.; Fejes, Aniko V.; Tjon Kon Fat, Lee Ann; Huis in 't Veld, Anna E; Leurs, Cyra; Le Large, Tessa Y.; Meijer, Laura L.; Kooi, Irsan E.; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Wedekind, Laurine E.; Bracht, Jillian; Esenkbrink, Michelle; Wils, Leon; Favaro, Francesca; Schoonhoven, Jilian D.; Tannous, Jihane; Meijers-Heijboer, Hanne; Kazemier, Geert; Giovannetti, Elisa; Reijneveld, Jaap C.; Idema, Sander; Killestein, Joep; Heger, Michal; de Jager, Saskia C.; Urbanus, Rolf T.; Hoefer, Imo E.; Pasterkamp, Gerard; Mannhalter, Christine; Gomez-Arroyo, Jose; Bogaard, Harm-Jan; Noske, David P.; Vandertop, W. Peter; van den Broek, Daan; Ylstra, Bauke; Nilsson, R. Jonas A; Wesseling, Pieter; Karachaliou, Niki; Rosell, Rafael; Lee-Lewandrowski, Elizabeth; Lewandrowski, Kent B.; Tannous, Bakhos A.; de Langen, Adrianus J.; Smit, Egbert F.; van den Heuvel, Michel M; Wurdinger, Thomas

    2017-01-01

    Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from

  12. Hybrid membrane using polyethersulfone-modification of multiwalled carbon nanotubes with silane agent to enhance high performance oxygen separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-04-01

    Full Text Available Mixed matrix membrane comprising carbon nanotubes embedded in polymer matrix have become one of the emerging technologies. This study was investigated in order to study the effect of silane agent modification towards carbon nanotubes (CNT surface at different concentration on oxygen enrichment performances of asymmetric mixed matrix membrane. The modified carbon nanotubes were prepared by treating the carbon nanotubes with chemical modification using Dynasylan Ameo (DA silane agent to allow PES chains to be grafted on carbon nanotubes surface. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The gas separation performance of the asymmetric flat sheet mixed matrix membranes with modified CNT were relatively higher compared to the unmodified CNT. Hence, coated hollow fiber mixed matrix membrane with chemical modification on CNT surface using (3-aminopropyl-triethoxy methyl silane agent can potentially enhance the gas separation performance of O2 and N2.

  13. Time reversal in photoacoustic tomography and levitation in a cavity

    International Nuclear Information System (INIS)

    Palamodov, V P

    2014-01-01

    A class of photoacoustic acquisition geometries in R n is considered such that the spherical mean transform admits an exact filtered back projection reconstruction formula. The reconstruction is interpreted as a time reversion mirror that reproduces exactly an arbitrary source distribution in the cavity. A series of examples of non-uniqueness of the inverse potential problem is constructed based on the same geometrical technique. (paper)

  14. Modeling skull's acoustic attenuation and dispersion on photoacoustic signal

    Science.gov (United States)

    Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.

    2017-03-01

    Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.

  15. Dynamic contrast-enhanced magnetic resonance imaging: a non-invasive method to evaluate significant differences between malignant and normal tissue

    International Nuclear Information System (INIS)

    Rudisch, Ansgar; Kremser, Christian; Judmaier, Werner; Zunterer, Hildegard; DeVries, Alexander F.

    2005-01-01

    Purpose: An ever recurring challenge in diagnostic radiology is the differentiation between non-malignant and malignant tissue. Based on evidence that microcirculation of normal, non-malignant tissue differs from that of malignant tissue, the goal of this study was to assess the reliability of dynamic contrast-enhanced Magnetic Resonance Imaging (dcMRI) for differentiating these two entities. Materials and methods: DcMRI data of rectum carcinoma and gluteus maximus muscles were acquired in 41 patients. Using an fast T1-mapping sequence on a 1.5-T whole body scanner, T1-maps were dynamically retrieved before, during and after constant rate i.v. infusion of a contrast medium (CM). On the basis of the acquired data sets, PI-values were calculated on a pixel-by-pixel basis. The relevance of spatial heterogeneities of microcirculation was investigated by relative frequency histograms of the PI-values. Results: A statistically significant difference between malignant and normal tissue was found for the mean PI-value (P < 0.001; 8.95 ml/min/100 g ± 2.45 versus 3.56 ml/min/100 g ± 1.20). Additionally relative frequency distributions of PI-values with equal class intervals of 2.5 ml/min/100 g revealed significant differences between the histograms of muscles and rectum carcinoma. Conclusion: We could show that microcirculation differences between malignant and normal, non-malignant tissue can be reliably assessed by non-invasive dcMRI. Therefore, dcMRI holds great promise in the aid of cancer assessment, especially in patients where biopsy is contraindicated

  16. Plant invasions in China: an emerging hot topic in invasion science

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2012-12-01

    Full Text Available China has shown a rapid economic development in recent decades, and several drivers of this change are known to enhance biological invasions, a major cause of biodiversity loss. Here we review the current state of research on plant invasions in China by analyzing papers referenced in the ISI Web of Knowledge. Since 2001, the number of papers has increased exponentially, indicating that plant invasions in China are an emerging hot topic in invasion science. The analyzed papers cover a broad range of methodological approaches and research topics. While more that 250 invasive plant species with negative impacts have been reported from China, only a few species have been considered in more than a handful of papers (in order of decreasing number of references: Spartina alterniflora, Ageratina adenophora, Mikania micrantha, Alternanthera philoxeroides, Solidago canadensis, Eichhornia crassipes. Yet this selection might rather reflect the location of research teams than the most invasive plant species in China. Considering the previous achievements in China found in our analysis research in plant invasions could be expanded by (1 compiling comprehensive lists of non-native plant species at the provincial and national scales and to include species that are native to one part of China but non-native to others in these lists; (2 strengthening pathways studies (primary introduction to the country, secondary releases within the country to enhance prevention and management; and (3 assessing impacts of invasive species at different spatial scales (habitats, regions and in relation to conservation resources.

  17. Optimizing the optical wavelength for the photoacoustic imaging of inflammatory arthritis

    Science.gov (United States)

    Jo, Janggun; Xu, Guan; Hu, Jack; Francis, Sheeja; Marquardt, April; Yuan, Jie; Girish, Gandikota; Wang, Xueding

    2015-03-01

    With the capability of assessing high resolution optical information in soft tissues at imaging depth up to several centimeters, innovative biomedical photoacoustic imaging (PAI) offers benefits to diagnosis and treatment monitoring of inflammatory arthritis, particularly in combination with more established ultrasonography (US). In this work, a PAI and US dual-modality system facilitating both imaging functions in a real-time fashion was developed and initially tested for its clinical performance on patients with active inflammatory arthritis. Photoacoustic (PA) images of metacarpophalangeal (MCP) joints were acquired at 580-nm wavelength that provides a desired balance between optical absorption of blood and attenuation in background tissue. The results from six patients and six normal volunteers used as a control demonstrated the satisfactory sensitivity of PAI in assessing the physiological changes in the joints, specifically enhanced blood flow as a result of active synovitis. This preliminary study suggests that PAI, by revealing vascular features suggestive of joint inflammation, could be a valuable supplement to musculoskeletal US for rheumatology clinic.

  18. Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo.

    Science.gov (United States)

    Servant, Ania; Methven, Laura; Williams, Rhodri P; Kostarelos, Kostas

    2013-06-01

    Drug release triggered by an external non-invasive stimulus is of great interest for the development of new drug delivery systems. The preparation of an electroresponsive multiwalled carbon nanotube/poly(methylacrylic acid) (MWNT/PMAA)-based hybrid material is reported. The hydrogel hybrids achieve a controlled drug release upon the ON/OFF application of an electric field, giving rise to in vitro and in vivo pulsatile release profiles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Label-free photoacoustic microscopy of peripheral nerves

    Science.gov (United States)

    Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies.

  1. DFB laser diodes for sensing applications using photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Koeth, J; Fischer, M; Legge, M; Seufert, J; Roessner, K; Groninga, H

    2010-01-01

    We present typical device characteristics of novel DFB laser diodes which are employed in various sensing applications including high resolution photoacoustic spectroscopy. The laser diodes discussed are based on a genuine fabrication technology which allows for the production of ultra stable devices within a broad spectral range from 760 nm up to 3000 nm wavelength. The devices exhibit narrow linewidths down to <1 MHz which makes them ideally suited for all photoacoustic sensing applications where a high spectral purity is required. As an example we will focus on a typical medical application where these diodes are used for breath analysis using photoacoustic spectroscopy.

  2. Inhibition of proliferation, migration and invasion of human non ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of phlomisoside F (PMF) on the proliferation, migration and invasion of human non-small cell lung cancer cell line A549 and explore the possible mechanisms. Methods: The anti-proliferative effect of PMF on A549 cells was determined by CCK-8. Subsequently, migration and invasion were ...

  3. Current methods of non-invasive ventilatory support for neonates.

    Science.gov (United States)

    Mahmoud, Ramadan A; Roehr, Charles Christoph; Schmalisch, Gerd

    2011-09-01

    Non-invasive ventilatory support can reduce the adverse effects associated with intubation and mechanical ventilation, such as bronchopulmonary dysplasia, sepsis, and trauma to the upper airways. In the last 4 decades, nasal continuous positive airway pressure (CPAP) has been used to wean preterm infants off mechanical ventilation and, more recently, as a primary mode of respiratory support for preterm infants with respiratory insufficiency. Moreover, new methods of respiratory support have been developed, and the devices used to provide non-invasive ventilation (NIV) have improved technically. Use of NIV is increasing, and a variety of equipment is available in different clinical settings. There is evidence that NIV improves gas exchange and reduces extubation failure after mechanical ventilation in infants. However, more research is needed to identify the most suitable devices for particular conditions; the NIV settings that should be used; and whether to employ synchronized or non-synchronized NIV. Furthermore, the optimal treatment strategy and the best time for initiation of NIV remain to be identified. This article provides an overview of the use of non-invasive ventilation (NIV) in newborn infants, and the clinical applications of NIV. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Photoacoustic CO2-Sensor for Automotive Applications

    OpenAIRE

    Huber, J.; Weber, C.; Eberhardt, A.; Wöllenstein, J.

    2016-01-01

    We present a field-tested miniaturized spectroscopic CO2 sensor which is based on the photoacoustic effect. The sensor is developed for automotive applications and considers the requirements for the usage in vehicles. The sensor measures two measurement ranges simultaneously: The monitoring of the indoor air quality and the detection of possible leakages of the coolant in CO2 air-conditioning systems. The sensor consists of a miniaturized innovative photoacoustic sensor unit with integrated e...

  5. Photoacoustic imaging driven by an interstitial irradiation source

    Directory of Open Access Journals (Sweden)

    Trevor Mitcham

    2015-06-01

    Full Text Available Photoacoustic (PA imaging has shown tremendous promise in providing valuable diagnostic and therapy-monitoring information in select clinical procedures. Many of these pursued applications, however, have been relatively superficial due to difficulties with delivering light deep into tissue. To address this limitation, this work investigates generating a PA image using an interstitial irradiation source with a clinical ultrasound (US system, which was shown to yield improved PA signal quality at distances beyond 13 mm and to provide improved spectral fidelity. Additionally, interstitially driven multi-wavelength PA imaging was able to provide accurate spectra of gold nanoshells and deoxyhemoglobin in excised prostate and liver tissue, respectively, and allowed for clear visualization of a wire at 7 cm in excised liver. This work demonstrates the potential of using a local irradiation source to extend the depth capabilities of future PA imaging techniques for minimally invasive interventional radiology procedures.

  6. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  7. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-01-01

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392

  8. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Jonghyun Eom

    2016-05-01

    Full Text Available We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT and optical coherence tomography (OCT. The PAT remotely measures photoacoustic (PA signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF and a large-core multimode fiber (MMF. The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  9. Pokemon promotes the invasiveness of hepatocellular carcinoma by enhancing MEF2D transcription.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Li, Xiangqian; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2016-05-01

    Pokemon, a master oncogene crucial for the tumorigenicity and progression of a variety of cancers, has been demonstrated to enhance the proliferation and survival of hepatocellular carcinoma (HCC). However, the contribution of Pokemon to the invasiveness of HCC has not yet been studied. In this study, we employed HCC cells to investigate the role of Pokemon in the invasion of HCC with multidisciplinary approaches. Pokemon overexpression was found to be closely associated with invasion and intrahepatic metastasis of HCC in clinical specimens. Suppression of Pokemon attenuated the invasion of HCC cells by in vitro transwell and wound-healing assays. Myocyte enhancer factor 2D (MEF2D), an oncogene that can promote the invasiveness of HCC, was found to be underexpressed during Pokemon silencing in HCC cells. Restoration of MEF2D abolished the effect of Pokemon downregulation on the migration of HCC cells. Further experiments verified that Pokemon binds two putative recognition sites located within the upstream region of the MEF2D promoter and enhances its transcription. The association between Pokemon and MEF2D was further confirmed in HCC specimens. Animal experiments further confirmed that Pokemon downregulation attenuated the metastasis of HCC cells in mice. Collectively, Pokemon was found to enhance the migration and invasion of HCC by increasing MEF2D expression. Thus, targeting Pokemon and MEF2D may be an effective strategy to suppress the metastasis of HCC.

  10. Near infrared photoacoustic detection of heptane in synthetic air

    DEFF Research Database (Denmark)

    Duggen, Lars; Albu, Mihaela; Willatzen, Morten

    2013-01-01

    Trace contaminations of n-heptane in synthetic air is measured in the parts-per-billion (ppb) range using near infrared photoacoustic detection. We describe the fundamental theory used in the design of the photoacoustic cell for trace gas analysis and determine the detection limit of the cell...

  11. Design of a multifiber light delivery system for photoacoustic-guided surgery

    Science.gov (United States)

    Eddins, Blackberrie; Bell, Muyinatu A. Lediju

    2017-04-01

    This work explores light delivery optimization for photoacoustic-guided minimally invasive surgeries, such as the endonasal transsphenoidal approach. Monte Carlo simulations were employed to study three-dimensional light propagation in tissue, comprising one or two 4-mm diameter arteries located 3 mm below bone, an absorbing metallic drill contacting the bone surface, and a single light source placed next to the 2.4-mm diameter drill shaft with a 2.9-mm diameter spherical drill tip. The optimal fiber distance from the drill shaft was determined from the maximum normalized fluence to the underlying artery. Using this optimal fiber-to-drill shaft distance, Zemax simulations were employed to propagate Gaussian beams through one or more 600 micron-core diameter optical fibers for detection on the bone surface. When the number of equally spaced fibers surrounding the drill increased, a single merged optical profile formed with seven or more fibers, determined by thresholding the resulting light profile images at 1/e times the maximum intensity. We used these simulations to inform design requirements, build a one to seven multifiber light delivery prototype to surround a surgical drill, and demonstrate its ability to simultaneously visualize the tool tip and blood vessel targets in the absence and presence of bone. The results and methodology are generalizable to multiple interventional photoacoustic applications.

  12. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    International Nuclear Information System (INIS)

    Patheja, Pooja; Sahu, Khageswar

    2017-01-01

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.

  13. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Patheja, Pooja, E-mail: pooja.patheja8@gmail.com [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra (India); Sahu, Khageswar [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India)

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.

  14. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, TingXian; Lee, Ju-Hyuk; Wang, RuZhu; Kang, Yong Tae

    2013-01-01

    A latent heat storage nanocomposite made of stearic acid (SA) and multi-walled carbon nanotube (MWCNT) is prepared for thermal energy storage application. The thermal properties of the SA/MWCNT nanocomposite are characterized by SEM (scanning electron microscopy) and DSC (differential scanning calorimeter) analysis techniques, and the effects of different volume fractions of MWCNT on the heat transfer enhancement and thermal performance of stearic acid are investigated during the charging and discharging phases. The SEM analysis shows that the additive of MWCNT is uniformly distributed in the phase change material of stearic acid, and the DSC analysis reveals that the melting point of SA/MWCNT nanocomposite shifts to a lower temperature during the charging phase and the freezing point shifts to a higher temperature during the discharging phase when compared with the pure stearic acid. The experimental results show that the addition of MWCNT can improve the thermal conductivity of stearic acid effectively, but it also weakens the natural convection of stearic acid in liquid state. In comparison with the pure stearic acid, the charging rate can be decreased by about 50% while the discharging rate can be improved by about 91% respectively by using the SA/5.0% MWCNT nanocomposite. It appears that the MWCNT is a promising candidate for enhancing the heat transfer performance of latent heat thermal energy storage system. - Highlights: • A nanocomposite made of stearic acid and multi-walled carbon nanotube is prepared for thermal energy storage application. • Effects of multi-walled carbon nanotube on the thermal performance of the nanocomposite are investigated. • Multi-walled carbon nanotube enhances the thermal conductivity but weakens the natural convection of stearic acid. • Discharging/charging rates of stearic acid are increased/decreased by using multi-walled carbon nanotube

  15. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo.

    Science.gov (United States)

    Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2012-08-01

    At present, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures that provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high-resolution images, but also is safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically relevant depths, ideal for imaging soft tissues. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, thereby enabling multimodality imaging with complementary contrast. Here we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and show its ability to image internal organs in vivo, thus illustrating its potential clinical application.

  16. Automation, development and performance of a photoacoustic spectrometer

    International Nuclear Information System (INIS)

    Cavalheiro, F.R.F.

    1985-01-01

    This work consists in the development of a circuit to interface a photoacoustic spectrometer with a microcomputer. The obtained spectra are identical to those obtained in commercial photoacoustic spectrometers. The system permits a great versatility and it has possibilities to automatize other types of experiments. The system can be duplicated from national components and at a relatively low coast. (author)

  17. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  18. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    International Nuclear Information System (INIS)

    Assali, Mohyeddin; Leal, Manuel Pernía; Khiar, Noureddine; Fernández, Inmaculada

    2013-01-01

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar–supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane. (paper)

  19. Non-invasive measurements of carboxyhemoglobin and methemoglobin in children with sickle cell disease.

    Science.gov (United States)

    Caboot, Jason B; Jawad, Abbas F; McDonough, Joseph M; Bowdre, Cheryl Y; Arens, Raanan; Marcus, Carole L; Mason, Thornton B A; Smith-Whitley, Kim; Ohene-Frempong, Kwaku; Allen, Julian L

    2012-08-01

    Assessment of oxyhemoglobin saturation in patients with sickle cell disease (SCD) is vital for prompt recognition of hypoxemia. The accuracy of pulse oximeter measurements of blood oxygenation in SCD patients is variable, partially due to carboxyhemoglobin (COHb) and methemoglobin (MetHb), which decrease the oxygen content of blood. This study evaluated the accuracy and reliability of a non-invasive pulse co-oximeter in measuring COHb and MetHb percentages (SpCO and SpMet) in children with SCD. We hypothesized that measurements of COHb and MetHb by non-invasive pulse co-oximetry agree within acceptable clinical accuracy with those made by invasive whole blood co-oximetry. Fifty children with SCD-SS underwent pulse co-oximetry and blood co-oximetry while breathing room air. Non-invasive COHb and MetHb readings were compared to the corresponding blood measurements. The pulse co-oximeter bias was 0.1% for COHb and -0.22% for MetHb. The precision of the measured SpCO was ± 2.1% within a COHb range of 0.4-6.1%, and the precision of the measured SpMet was ± 0.33% within a MetHb range of 0.1-1.1%. Non-invasive pulse co-oximetry was useful in measuring COHb and MetHb levels in children with SCD. Although the non-invasive technique slightly overestimated the invasive COHb measurements and slightly underestimated the invasive MetHb measurements, there was close agreement between the two methods. Copyright © 2012 Wiley Periodicals, Inc.

  20. Non-native plant invasions of United States National parks

    Science.gov (United States)

    Allen, J.A.; Brown, C.S.; Stohlgren, T.J.

    2009-01-01

    The United States National Park Service was created to protect and make accessible to the public the nation's most precious natural resources and cultural features for present and future generations. However, this heritage is threatened by the invasion of non-native plants, animals, and pathogens. To evaluate the scope of invasions, the USNPS has inventoried non-native plant species in the 216 parks that have significant natural resources, documenting the identity of non-native species. We investigated relationships among non-native plant species richness, the number of threatened and endangered plant species, native species richness, latitude, elevation, park area and park corridors and vectors. Parks with many threatened and endangered plants and high native plant species richness also had high non-native plant species richness. Non-native plant species richness was correlated with number of visitors and kilometers of backcountry trails and rivers. In addition, this work reveals patterns that can be further explored empirically to understand the underlying mechanisms. ?? Springer Science+Business Media B.V. 2008.

  1. High quantum yield graphene quantum dots decorated TiO{sub 2} nanotubes for enhancing photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ailan, E-mail: qal67@163.com; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-07-01

    Highlights: • High concentration yellow GQDs and TiO{sub 2} nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO{sub 2} nanotube. • The catalytic performance of GQDs/TiO{sub 2} depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO{sub 2} was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO{sub 2} nanotubes (GQDs/TiO{sub 2} NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO{sub 2} NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO{sub 2} nanotubes (TiO{sub 2} NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO{sub 2} NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO{sub 2} NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO{sub 2} composite.

  2. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    Science.gov (United States)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  3. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Cheng, Q.J. [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Chen, X. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Ostrikov, K., E-mail: kostya.ostrikov@csiro.au [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-09-22

    Highlights: > A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. > The carbon nanotubes are later treated with nitrogen plasmas. > The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. > A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 {mu}A/cm{sup 2}) achieved at a low applied field (3.50 V/{mu}m) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  4. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Wang, B.B.; Cheng, Q.J.; Chen, X.; Ostrikov, K.

    2011-01-01

    Highlights: → A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. → The carbon nanotubes are later treated with nitrogen plasmas. → The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. → A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm 2 ) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  5. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    Science.gov (United States)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  6. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    Science.gov (United States)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  7. Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms

    NARCIS (Netherlands)

    Manohar, Srirang; Kharine, Alexei; van Hespen, Johan C. G.; Steenbergen, Wiendelt; van Leeuwen, Ton G.

    2004-01-01

    We present a laboratory version of a photoacoustic mammoscope, based on a parallel plate geometry. The instrument is built around a flat high-density ultrasound detector matrix. The light source is a Q-switched Nd:YAG laser with a pulse duration of 5 ns. To test the instrument, a novel photoacoustic

  8. Photoacoustic imaging of hidden dental caries by using a fiber-based probing system

    Science.gov (United States)

    Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji

    2017-04-01

    Photoacoustic method to detect hidden dental caries is proposed. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating laser light to occlusal surface of model tooth. By making a map of intensity of these high frequency components, photoacoustic images of hidden caries were successfully obtained. A photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for using clinical application, and clear photoacoustic image of hidden caries was also obtained by this system.

  9. Photoacoustic microscopy enables multilayered histological imaging of human breast cancer without staining

    Science.gov (United States)

    Wong, Terence T. W.; Zhang, Ruiying; Hai, Pengfei; Aft, Rebecca L.; Novack, Deborah V.; Wang, Lihong V.

    2018-02-01

    In 2016, an estimated 250,000 new cases of invasive and non-invasive breast cancer were diagnosed in US women. About 60-75% of these cases were treated with breast conserving surgery (BCS) as the initial therapy. To reduce the local recurrence rate, the goal of BCS is to excise the tumor with a rim of normal surrounding tissue, so that no cancer cells remain at the cut margin, while preserving as much normal breast tissue as possible. Therefore, patients with remaining cancer cells at the cut margin commonly require a second surgical procedure to obtain clear margins. Different approaches have been used to decrease the positive margin rate to avoid re-excision. However, these techniques are variously ineffective in reducing the re-operative rate, difficult to master by surgeons, or time-consuming for large specimens. Thus, 20-60% of patients undergoing BCS still require second surgeries due to positive surgical margins. The ideal tool for margin assessment would provide the same information as histological analysis, without the need for processing specimens. To achieve this goal, we have developed and refined label-free photoacoustic microscopy (PAM) for breast specimens. Exploiting the intrinsic optical contrast of tissue, ultraviolet (UV) laser illumination can highlight cell nuclei, thus providing the same contrast as hematoxylin labeling used in conventional histology and measuring features related to the histological landscape without the need for labels. We demonstrate that our UV-PAM system can provide label-free, high-resolution, and histology-like imaging of fixed, unprocessed breast tissue.

  10. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  11. Carbon Nanotubes and Modern Nanoagriculture

    KAUST Repository

    Serag, Maged F.

    2015-01-27

    Since their discovery, carbon nanotubes have been prominent members of the nanomaterial family. Owing to their extraordinary physical, chemical, and mechanical properties, carbon nanotubes have been proven to be a useful tool in the field of plant science. They were frequently perceived to bring about valuable biotechnological and agricultural applications that still remain beyond experimental realization. An increasing number of studies have demonstrated the ability of carbon nanotubes to traverse different plant cell barriers. These studies, also, assessed the toxicity and environmental impacts of these nanomaterials. The knowledge provided by these studies is of practical and fundamental importance for diverse applications including intracellular labeling and imaging, genetic transformation, and for enhancing our knowledge of plant cell biology. Although different types of nanoparticles have been found to activate physiological processes in plants, carbon nanotubes received particular interest. Following addition to germination medium, carbon nanotubes enhanced root growth and elongation of some plants such as onion, cucumber and rye-grass. They, also, modulated the expression of some genes that are essential for cell division and plant development. In addition, multi-walled carbon nanotubes were evidenced to penetrate thick seed coats, stimulate germination, and to enhance growth of young tomato seedlings. Multi-walled carbon nanotubes can penetrate deeply into the root system and further distribute into the leaves and the fruits. In recent studies, carbon nanotubes were reported to be chemically entrapped into the structure of plant tracheary elements. This should activate studies in the fields of plant defense and wood engineering. Although, all of these effects on plant physiology and plant developmental biology have not been fully understood, the valuable findings promises more research activity in the near future toward complete scientific understanding of

  12. Non-invasive Oil-Based Method to Increase Topical Delivery of Nucleic Acids to Skin.

    Science.gov (United States)

    Vij, Manika; Alam, Shamshad; Gupta, Nidhi; Gotherwal, Vishvabandhu; Gautam, Hemlata; Ansari, Kausar M; Santhiya, Deenan; Natarajan, Vivek T; Ganguli, Munia

    2017-06-07

    Topical delivery of nucleic acids to skin has huge prospects in developing therapeutic interventions for cutaneous disorders. In spite of initial success, clinical translation is vastly impeded by the constraints of bioavailability as well as stability in metabolically active environment of skin. Various physical and chemical methods used to overcome these limitations involve invasive procedures or compounds that compromise skin integrity. Hence, there is an increasing demand for developing safe skin penetration enhancers for efficient nucleic acid delivery to skin. Here, we demonstrate that pretreatment of skin with silicone oil can increase the transfection efficiency of non-covalently associated peptide-plasmid DNA nanocomplexes in skin ex vivo and in vivo. The method does not compromise skin integrity, as indicated by microscopic evaluation of cellular differentiation, tissue architecture, enzyme activity assessment, dye penetration tests using Franz assay, and cytotoxicity and immunogenicity analyses. Stability of nanocomplexes is not hampered on pretreatment, thereby avoiding nuclease-mediated degradation. The mechanistic insights through Fourier transform infrared (FTIR) spectroscopy reveal some alterations in the skin hydration status owing to possible occlusion effects of the enhancer. Overall, we describe a topical, non-invasive, efficient, and safe method that can be used to increase the penetration and delivery of plasmid DNA to skin for possible therapeutic applications. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  13. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    Science.gov (United States)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.

  14. Ultrasound-guided photoacoustic imaging of lymph nodes with biocompatible gold nanoparticles as a novel contrast agent (Conference Presentation)

    Science.gov (United States)

    Sun, In-Cheol; Dumani, Diego; Emelianov, Stanislav Y.

    2017-02-01

    A key step in staging cancer is the diagnosis of metastasis that spreads through lymphatic system. For this reason, researchers develop various methods of sentinel lymph node mapping that often use a radioactive tracer. This study introduces a safe, cost-effective, high-resolution, high-sensitivity, and real-time method of visualizing the sentinel lymph node: ultrasound-guided photoacoustic (US/PA) imaging augmented by a contrast agent. In this work, we use clearable gold nanoparticles covered by a biocompatible polymer (glycol chitosan) to enhance cellular uptake by macrophages abundant in lymph nodes. We incubate macrophages with glycol-chitosan-coated gold nanoparticles (0.05 mg Au/ml), and then fix them with paraformaldehyde solution for an analysis of in vitro dark-field microscopy and cell phantom. The analysis shows enhanced cellular uptake of nanoparticles by macrophages and strong photoacoustic signal from labeled cells in tissue-mimicking cell phantoms consisting gelatin solution (6 %) with silica gel (25 μm, 0.3%) and fixed macrophages (13 X 105 cells). The in-vivo US/PA imaging of cervical lymph nodes in healthy mice (nu/nu, female, 5 weeks) indicates a strong photoacoustic signal from a lymph node 10 minutes post-injection (2.5 mg Au/ml, 80 μl). The signal intensity and the nanoparticle-labeled volume of tissue within the lymph node continues to increase until 4 h post-injection. Histological analysis further confirms the accumulation of gold nanoparticles within the lymph nodes. This work suggests the feasibility of molecular/cellular US/PA imaging with biocompatible gold nanoparticles as a photoacoustic contrast agent in the diagnosis of lymph-node-related diseases.

  15. Two non-invasive diagnostic tools for invasive aspergilosis: (1-3)-beta-D-glucan and the galactomannan assay.

    Science.gov (United States)

    Kelaher, Amy

    2006-01-01

    Invasive aspergillosis (IA) is a serious cause of morbidity and mortality among immunocompromised patients. Prompt and non-invasive methods for diagnosing IA are needed to improve the management of this life-threatening infection in patients with hematological disorders. In summary, this retrospective review of studies performed on the two assays finds that both assays have high sensitivity and specificity but are more useful when used together as a diagnostic strategy for patients with invasive aspergillosis.

  16. Non-invasive vascular imaging: assessing tumour vascularity

    International Nuclear Information System (INIS)

    Delorme, S.; Knopp, M.V.

    1998-01-01

    Non-invasive assessment of vascularity is a new diagnostic approach to characterise tumours. Vascular assessment is based on the pathophysiology of tumour angiogenesis and its diagnostic implications for tumour biology, prognosis and therapy response. Two current techniques investigating vascular features in addition to morphology are Doppler ultrasonography and contrast-enhanced MRI. Diagnostic differentiation has been shown to be possible with Doppler, and a high degree of observed vascularity could be linked to an aggressive course of the disease. Dynamic MRI using gadolinium chelates is already used clinically to detect and differentiate tumours. The histological correlation shows that capillary permeability is increased in malignant tumours and is the best criterion for differentiation from benign processes. Permeability and perfusion factors seem to be more diagnostic than overall vessel density. New clinical applications are currently being established for therapy monitoring. Further instrumental developments will bring harmonic imaging in Doppler, and faster imaging techniques, higher spatial resolution and novel pharmacokinetic concepts in MRI. Upcoming contrast agents for both Doppler and MRI will further improve estimation of intratumoural blood volume and vascular permeability. (orig.)

  17. Measurement of airway function using invasive and non-invasive methods in mild and severe models for allergic airway inflammation in mice

    NARCIS (Netherlands)

    Verheijden, Kim A T; Henricks, Paul A J; Redegeld, Frank A.; Garssen, Johan; Folkerts, Gert

    2014-01-01

    In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anesthetized animals) in both mild and severe allergic airway inflammation models. Mild

  18. Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids

    Science.gov (United States)

    Vidrine, D. Warren

    1981-10-01

    After discovering the photoacoustic effect, Alexander Graham Bell predicted its use in spectrometers, and that it would find its greatest utility "in the ultra-red." More than ninety years were required to fulfil his first prediction, and the second is still a prophecy. There is no record whether he ever imagined that an invention being developed that same winter by a young protege of his named Albert Michelson would ever be combined with his photoacoustic effect. A century later, the combination was made by Farrow Burnham, and Eyring, using a visible-range interferometer spectrometer of their own design. Soon afterwards, Rockley and myself, working independently, applied the technique to infrared measurements of solid samples. Photoacoustic cells are now commercially available as FT-IR accessories, and the technique is in use in the field.

  19. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    International Nuclear Information System (INIS)

    Najam-ul-Haq, M.; Rainer, M.; Schwarzenauer, T.; Huck, C.W.; Bonn, G.K.

    2006-01-01

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  20. Functionalization of carbon nanotubes/graphene by polyoxometalates and their enhanced photo-electrical catalysis

    International Nuclear Information System (INIS)

    Zhang Shuang-Shuang; Liu Rong-Ji; Zhang Guang-Jin; Gu Zhan-Jun

    2014-01-01

    Carbon nanotubes and graphene are carbon-based materials, which possess not only unique structure but also properties such as high surface area, extraordinary mechanical properties, high electronic conductivity, and chemical stability. Thus, they have been regarded as an important material, especially for exploring a variety of complex catalysts. Considerable efforts have been made to functionalize and fabricate carbon-based composites with metal nanoparticles. In this review, we summarize the recent progress of our research on the decoration of carbon nanotubes/graphene with metal nanoparticles by using polyoxometalates as key agents, and their enhanced photo-electrical catalytic activities in various catalytic reactions. The polyoxometalates play a key role in constructing the nanohybrids and contributing to their photo-electrical catalytic properties. (invited review — international conference on nanoscience and technology, china 2013)

  1. On the relative merits of invasive and non-invasive pre-surgical brain mapping: New tools in ablative epilepsy surgery.

    Science.gov (United States)

    Papanicolaou, Andrew C; Rezaie, Roozbeh; Narayana, Shalini; Choudhri, Asim F; Abbas-Babajani-Feremi; Boop, Frederick A; Wheless, James W

    2018-05-01

    Cortical Stimulation Mapping (CSM) and the Wada procedure have long been considered the gold standard for localizing motor and language-related cortical areas and for determining the language and memory-dominant hemisphere, respectively. In recent years, however, non-invasive methods such as magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS) have emerged as promising alternatives to the aforementioned procedures, particularly in cases where the invasive localization of eloquent cortex has proven to be challenging. To illustrate this point, we will first introduce the evidence of the compatibility of invasive and non-invasive methods and subsequently outline the rationale and the conditions where the latter methods are applicable. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cellulose nanoparticles: photoacoustic contrast agents that biodegrade to simple sugars

    Science.gov (United States)

    Jokerst, Jesse V.; Bohndiek, Sarah E.; Gambhir, Sanjiv S.

    2014-03-01

    In photoacoustic imaging, nanoparticle contrast agents offer strong signal intensity and long-term stability, but are limited by poor biodistribution and clearance profiles. Conversely, small molecules offer renal clearance, but relatively low photoacoustic signal. Here we describe a cellulose-based nanoparticle with photoacoustic signal superior to gold nanorods, but that undergoes enzymatic cleavage into constituent glucose molecules for renal clearance. Cellulose nanoparticles (CNPs) were synthesized through acidic cleavage of cellulose linters and purified with centrifugation. TEM indicated that the nanoparticles were 132 +/- 46 nm; the polydispersity index was 0.138. Ex vivo characterization showed a photoacoustic limit of detection of 0.02 mg/mL CNPs, and the photoacoustic signal of CNPs was 1.5- to 3.0-fold higher than gold nanorods (also at 700 nm resonance) on a particle-to-particle basis. Cell toxicity assays suggested that overnight doses below 0.31 mg/mL CNPs produced no significant (p>0.05) impact on cell metabolism. Intravenous doses up to 0.24 mg were tolerated well in nude mice. Subcutaneous and orthotopic tumor xenografts of the OV2008 ovarian cancer cell line were then created in nude mice. Data was collected with a Nexus128 scanner from Endra LifeSciences. Spectral data used a LAZR system from Visualsonics both at 700 nm excitation. We injected CNPs (0.024 mg, 0.048 mg, and 0.80 mg) via tail vein and showed that the tumor photoacoustic signal reached maximum increase between 10 and 20 minutes. All injected concentrations were statistically (p0.96 suggesting quantitative signal. CNP biodegradation was demonstrated ex vivo with a glucose assay. CNPs in the presence of cellulase were reduced to free glucose in under than four hours. The glucose concentration before addition of cellulase was not detectable, but increased to 92.1 μg/mL in four hours. CNPs in the absence of cellulase did not produce glucose. Small fragments of nanoparticle in the

  3. A High Sensitivity Preamplifier for Quartz Tuning Forks in QEPAS (Quartz Enhanced PhotoAcoustic Spectroscopy Applications

    Directory of Open Access Journals (Sweden)

    Tomasz Starecki

    2017-11-01

    Full Text Available All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude.

  4. A High Sensitivity Preamplifier for Quartz Tuning Forks in QEPAS (Quartz Enhanced PhotoAcoustic Spectroscopy) Applications.

    Science.gov (United States)

    Starecki, Tomasz; Wieczorek, Piotr Z

    2017-11-03

    All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude.

  5. Intravascular photoacoustic imaging of human coronary atherosclerosis

    Science.gov (United States)

    Jansen, Krista; van der Steen, Antonius F. W.; Springeling, Geert; van Beusekom, Heleen M. M.; Oosterhuis, J. Wolter; van Soest, Gijs

    2011-03-01

    We demonstrate intravascular photoacoustic imaging of human coronary atherosclerotic plaque. We specifically imaged lipid content, a key factor in vulnerable plaques that may lead to myocardial infarction. An integrated intravascular photoacoustics (IVPA) and ultrasound (IVUS) catheter with an outer diameter of 1.25 mm was developed. The catheter comprises an angle-polished optical fiber adjacent to a 30 MHz single-element transducer. The ultrasonic transducer was optically isolated to eliminate artifacts in the PA image. We performed measurements on a cylindrical vessel phantom and isolated point targets to demonstrate its imaging performance. Axial and lateral point spread function widths were 110 μm and 550 μm, respectively, for PA and 89 μm and 420 μm for US. We imaged two fresh human coronary arteries, showing different stages of disease, ex vivo. Specific photoacoustic imaging of lipid content, is achieved by spectroscopic imaging at different wavelengths between 1180 and 1230 nm.

  6. Non-invasive ambient pressure estimation using non-linear ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup

    Many attempts to find a non-invasive procedure to measure the blood pressure locally in the body have been made. This dissertation focuses on the approaches which utilize highly compressible ultrasound contrast agents as ambient pressure sensors. The literature within the topic has been reviewed...

  7. Photoacoustic imaging of teeth for dentine imaging and enamel characterization

    Science.gov (United States)

    Periyasamy, Vijitha; Rangaraj, Mani; Pramanik, Manojit

    2018-02-01

    Early detection of dental caries, cracks and lesions is needed to prevent complicated root canal treatment and tooth extraction procedures. Resolution of clinically used x-ray imaging is low, hence optical imaging techniques such as optical coherence tomography, fluorescence imaging, and Raman imaging are widely experimented for imaging dental structures. Photoacoustic effect is used in photon induced photoacoustic streaming technique to debride the root canal. In this study, the extracted teeth were imaged using photoacoustic tomography system at 1064 nm. The degradation of enamel and dentine is an indicator of onset of dental caries. Photoacoustic microscopy (PAM) was used to study the tooth enamel. Images were acquired using acoustic resolution PAM system. This was done to identify microscopic cracks and dental lesion at different anatomical sites (crown and cementum). The PAM tooth profile is an indicator of calcium distribution which is essential for demineralization studies.

  8. Comparison of different models for non-invasive FFR estimation

    Science.gov (United States)

    Mirramezani, Mehran; Shadden, Shawn

    2017-11-01

    Coronary artery disease is a leading cause of death worldwide. Fractional flow reserve (FFR), derived from invasively measuring the pressure drop across a stenosis, is considered the gold standard to diagnose disease severity and need for treatment. Non-invasive estimation of FFR has gained recent attention for its potential to reduce patient risk and procedural cost versus invasive FFR measurement. Non-invasive FFR can be obtained by using image-based computational fluid dynamics to simulate blood flow and pressure in a patient-specific coronary model. However, 3D simulations require extensive effort for model construction and numerical computation, which limits their routine use. In this study we compare (ordered by increasing computational cost/complexity): reduced-order algebraic models of pressure drop across a stenosis; 1D, 2D (multiring) and 3D CFD models; as well as 3D FSI for the computation of FFR in idealized and patient-specific stenosis geometries. We demonstrate the ability of an appropriate reduced order algebraic model to closely predict FFR when compared to FFR from a full 3D simulation. This work was supported by the NIH, Grant No. R01-HL103419.

  9. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Cong Du

    2018-04-01

    Full Text Available This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

  10. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  11. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam

    International Nuclear Information System (INIS)

    Khosravian, N; Rafii-Tabar, H

    2008-01-01

    In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities

  12. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam

    Energy Technology Data Exchange (ETDEWEB)

    Khosravian, N; Rafii-Tabar, H [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: rafii-tabar@nano.ipm.ac.ir

    2008-07-09

    In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities.

  13. Photoacoustic Sounds from Meteors

    Czech Academy of Sciences Publication Activity Database

    Spalding, R.; Tencer, J.; Sweatt, W.; Conley, B.; Hogan, R.; Boslough, M.B.; Gonzales, G.; Spurný, Pavel

    2017-01-01

    Roč. 7, February (2017), 41251/1-41251/6 ISSN 2045-2322 Institutional support: RVO:67985815 Keywords : photoacoustic coupling * experimental results * numerical models Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.259, year: 2016

  14. Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges

    Directory of Open Access Journals (Sweden)

    Carmelo Mario Vicario

    2013-11-01

    Full Text Available In the last decades interest in application of non-invasive brain stimulation for enhancing neural functions is growing continuously. However, the use of such techniques in pediatric populations remains rather limited and mainly confined to the treatment of severe neurological and psychiatric diseases. In this article we provide a complete review of non-invasive brain stimulation studies conducted in pediatric populations. We also provide a brief discussion about the current limitations and future directions in a field of research still very young and full of issues to be explored.

  15. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    International Nuclear Information System (INIS)

    Zhang, Xiao-Long; Zheng, Cheng; Zhang, Yun; Yang, Huang-Hao; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.Graphical AbstractGold nanostars (AuNSs) are synthesized by a simple seedless route using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  16. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Long [Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province (China); Zheng, Cheng [Fuzhou University, The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry (China); Zhang, Yun [Chinese Academy of Sciences, Xiamen Institute of Rare Earth Materials, Haixi Institute (China); Yang, Huang-Hao [Fuzhou University, The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry (China); Liu, Xiaolong, E-mail: xiaoloong.liu@gmail.com; Liu, Jingfeng, E-mail: drjingfeng@126.com [Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province (China)

    2016-07-15

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.Graphical AbstractGold nanostars (AuNSs) are synthesized by a simple seedless route using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  17. Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo.

    Science.gov (United States)

    Cash, Kevin J; Li, Chiye; Xia, Jun; Wang, Lihong V; Clark, Heather A

    2015-02-24

    Personalized medicine could revolutionize how primary care physicians treat chronic disease and how researchers study fundamental biological questions. To realize this goal, we need to develop more robust, modular tools and imaging approaches for in vivo monitoring of analytes. In this report, we demonstrate that synthetic nanosensors can measure physiologic parameters with photoacoustic contrast, and we apply that platform to continuously track lithium levels in vivo. Photoacoustic imaging achieves imaging depths that are unattainable with fluorescence or multiphoton microscopy. We validated the photoacoustic results that illustrate the superior imaging depth and quality of photoacoustic imaging with optical measurements. This powerful combination of techniques will unlock the ability to measure analyte changes in deep tissue and will open up photoacoustic imaging as a diagnostic tool for continuous physiological tracking of a wide range of analytes.

  18. Realistic tissue visualization using photoacoustic image

    Science.gov (United States)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  19. Fabrication and characterization of composite TiO{sub 2} nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sobaszek, M. [Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk (Poland); Siuzdak, K.; Sawczak, M. [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk (Poland)

    2016-02-29

    The composite TiO{sub 2} nanotubes/boron-doped diamond electrodes were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition resulting in the improved electrochemical performance. This composite electrode can deliver high specific capacitance of 7.46 mF cm{sup −2} comparing to boron-doped diamond (BDD) deposited onto flat Ti plate (0.11 mF cm{sup −2}).The morphology and composition of composite electrode were characterized by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques. According to XPS and Raman analyses, the structure of TiO{sub 2} was greatly changed during Chemical Vapor Deposition process: formation of Ti{sup 3+} sites, partial anatase to rutile transformation and titanium carbide phase formation. This effect is attributed to the simultaneous presence of activated hydrogen and carbon in the plasma leading to enhanced dehydration of NTs (nanotubes) followed by carbon bonding. The enhanced capacitive effect of TiO{sub 2} NT/BDD could be recognized as: (1) the unique synergistic morphology of NTs and BDD providing more efficient conducting pathway for the diffusion of ions and (2) partial decomposition of NTs and transformation towards to TiC and Ti{sub 2}O{sub 3} fractions. Finally, highly ordered titania nanotubes produced via simply, quick and controllable method — anodization, could act as promising substrate for conductive BDD layer deposition and further application of such composites for supercapacitor construction. - Highlights: • The TiO{sub 2} nanotube (NT)/diamond electrode delivers capacitance of 7.46 mF cm{sup −2}. • The NTs are not affected by diamond growth process and keep their pristine shape. • The BDD overlayer fully encapsulates TiO{sub 2} NTs exhibiting typical columnar growth. • The activated hydrogen and carbon in the plasma lead to enhanced dehydration of NTs. • The presence of TiC and Ti{sub 2}O{sub 3} fractions introducing additional capacitance.

  20. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  1. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms

    Science.gov (United States)

    Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben

    2017-12-01

    As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.

  2. Discrimination of the glucose and the white sugar based on the pulsed laser-induced photoacoustic technique

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong

    2017-08-01

    In this study, to discriminate the glucose and the white sugar gradient in the food, a noninvasive optical detection system based on pulsed laser-induced photoacoustic technique was developed. Meanwhile, the Nd: YAG 532nm pumped OPO pulsed laser was used as the excitation light source to generate of the photoacoustic signals of the glucose and white sugar. The focused ultrasonic transducer with central detection frequency of 1MHz was used to capture the photoacoustic signals. In experiments, the real-time photoacoustic signals of the glucose and the white sugar aqueous solutions were gotten and compared with each other. In addition, to discriminate the difference of the characteristic photoacoustic signals between both of them, the difference spectrum and the first order derivative technique between the peak-to-peak photoacoustic signals of the water and that of the glucose and white sugar were employed. The difference characteristic photoacoustic wavelengths between the glucose and the white sugar were found based on the established photoacoustic detection system. This study provides the potential possibility for the discrimination of the glucose and the white sugar by using the photoacoustic detection method.

  3. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.

    Science.gov (United States)

    Aw, Moom Sinn; Losic, Dusan

    2013-02-25

    A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    Science.gov (United States)

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  5. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo

    Science.gov (United States)

    Downs, Matthew E.; Lee, Stephen A.; Yang, Georgiana; Kim, Seaok; Wang, Qi; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.

  6. Numerical Study of Photoacoustic Pressure for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Thomas Grosges

    2016-11-01

    Full Text Available A commonly used therapy for cancer is based on the necrosis of cells induced by heating through the illumination of nanoparticles embedded in cells. Recently, the photoacoustic pressure shock induced by the illumination pulse was proved and this points to another means of cell destruction. The purpose of this study is to propose a model of the photoacoustic pressure in cells. The numerical resolution of the problem requires the accurate computation of the electromagnetism, the temperature and the pressure around the nanostructures embedded in a cell. Here, the problem of the interaction between an electromagnetic excitation and a gold nanoparticle embedded in a cell domain is solved. The variations of the thermal and photoacoustic pressures are studied in order to analyze the pressure shock wave inducing the collapse of the cell’s membrane in cancer therapy.

  7. Emerging non-invasive Raman methods in process control and forensic applications.

    Science.gov (United States)

    Macleod, Neil A; Matousek, Pavel

    2008-10-01

    This article reviews emerging Raman techniques (Spatially Offset and Transmission Raman Spectroscopy) for non-invasive, sub-surface probing in process control and forensic applications. New capabilities offered by these methods are discussed and several application examples are given including the non-invasive detection of counterfeit drugs through blister packs and opaque plastic bottles and the rapid quantitative analysis of the bulk content of pharmaceutical tablets and capsules without sub-sampling.

  8. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds.

    Science.gov (United States)

    Köker, Tuğba; Tang, Nathalie; Tian, Chao; Zhang, Wei; Wang, Xueding; Martel, Richard; Pinaud, Fabien

    2018-02-09

    The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.

  9. Electrospinning direct synthesis of magnetic ZnFe{sub 2}O{sub 4}/ZnO multi-porous nanotubes with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunlei [College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Tan, Xing [College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Yan, Juntao, E-mail: yanjuntaonihao@163.com [College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Chai, Bo [College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Li, Jianfen, E-mail: lijfen@163.com [College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Chen, Shizhong [College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023 (China)

    2017-02-28

    Highlights: • ZnFe2O4/ZnO heterojunctions are firstly fabricated by electrospinning method. • ZnFe{sub 2}O{sub 4}/ZnO heterojunctions possess multi-porous nanotube structure. • ZnFe{sub 2}O{sub 4}/ZnO heterojunctions can significantly enhance photocatalytic activity. - Abstract: Magnetic ZnFe{sub 2}O{sub 4}/ZnO (ZFO/ZnO) multi-porous nanotubes have been first fabricated via a facile electrospinning and subsequent calcination process. A series of ZFO/ZnO photocatalysts with different ZFO molar content and morphologies are also obtained by varying the molar ratio of Zn/Fe metal salt and its dosage. The morphology, composition, crystal structure and specific surface area of achieved photocatalysts are systematically examined. TEM images demonstrate ZFO/ZnO-3 multi-porous nanotubes possess perfect 1D nanotube profile with hierarchical pores. HRTEM images confirm the formation of ZFO/ZnO heterojunctions. DRS spectra show that ZFO/ZnO-3 multi-porous nanotubes exhibit an enhanced absorption both in UV and visible-light region. PL spectra and photocurrent responses of ZFO/ZnO-3 multi-porous nanotube demonstrated that the photogenerated electrons and holes are effectively separated. Above all, ZFO/ZnO-3 multi-porous nanotubes photocatalysts with a larger specific surface area of 57.79 m{sup 2} g{sup −1} exhibit the best photocatalytic efficiency of 99% after 150 min under the solar irradiation for the decolorization of RhB. Moreover, ZFO/ZnO photocatalysts not only possess magnetic separation property, but also keep a relatively high photocatalytic efficiency even after four cycles, which is beneficial for practical application. In addition, both the formation and potential photocatalytic mechanisms of ZFO/ZnO-3 multi-porous nanotubes are proposed in detail.

  10. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Yang, Hui-ting; Chao, Pei-chun; Yin, Mei-chin

    2013-02-01

    The influence of riboflavin (vitamin B(2) ) upon growth, invasion, and migration in non-small cell lung cancer cell lines was evaluated. Riboflavin at 1, 10, 25, 50, 100, 200, or 400 μmol/L was added into A549, H3255, or Calu-6 cells. The effects of this compound upon level and/or expression of reactive oxygen species (ROS), inflammatory cytokines, intercellular adhesion molecule (ICAM)-1, fibronectin, matrix metalloproteinase (MMP)-9, MMP-2, focal adhesion kinase (FAK), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) were examined. Results showed that riboflavin at test doses did not affect the level of ROS and glutathione. Riboflavin at 200 and 400 μmol/L significantly enhanced cell growth in test lung cancer cell lines, and at 400 μmol/L significantly increased the release of interleukin-6, tumor necrosis factor-alpha, and vascular endothelial growth factor. This agent at 200 and 400 μmol/L also upregulated protein production of ICAM-1, fibronectin, MMP-9, MMP-2, NF-κB p50, p-p38 MAPK, and FAK; and at 400 μmol/L enhanced invasion and migration in test cell lines. These findings suggested that riboflavin at high doses might promote lung cancer progression. © 2013 Institute of Food Technologists®

  11. Photoacoustic technique for the characterization of plasmonic properties of 2D periodic arrays of gold nanoholes

    Directory of Open Access Journals (Sweden)

    E. Petronijevic

    2017-02-01

    Full Text Available We apply photo-acoustic (PA technique to examine plasmonic properties of 2D periodic arrays of nanoholes etched in gold/chromium layer upon a glass substrate. The pitch of these arrays lies in the near IR, and this, under appropriate wave vector matching conditions in the visible region, allows for the excitation of surface plasmon polaritons (SPP guided along a dielectric – metal surface. SPP offered new approaches in light guiding and local field intensity enhancement, but their detection is often difficult due to the problematic discrimination of their contribution from the overall scattering. Here PA measures the energy absorbed due to the non-radiative decay of SPPs. We report on the absorption enhancement by presenting the spatial mapping of absorption under the incidence angles and wavelength that correspond to the efficient excitation of SPPs. Moreover, a comparison with optical transmission measurements is carried out, underlining the applicability and sensitivity of PA technique.

  12. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  13. Alteration of political belief by non- invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Caroline eChawke

    2016-01-01

    Full Text Available People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing and reduced affiliation with opposing political candidates. As such, this study used a method of non- invasive brain simulation (tRNS to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant’s initial political orientation and the political campaign advertisement they were exposed to.

  14. Alteration of Political Belief by Non-invasive Brain Stimulation

    Science.gov (United States)

    Chawke, Caroline; Kanai, Ryota

    2016-01-01

    People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing) and reduced affiliation with opposing political candidates. As such, this study used a method of non-invasive brain simulation (tRNS) to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant's initial political orientation and the political campaign advertisement they were exposed to. PMID:26834603

  15. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds

    OpenAIRE

    Lediju Bell, Muyinatu A.; Kuo, Nathanael; Song, Danny Y.; Boctor, Emad M.

    2013-01-01

    Prostate brachytherapy, administered by implanting tiny radioactive seeds to treat prostate cancer, currently relies on transrectal ultrasound imaging for intraoperative visualization of the metallic seeds. Photoacoustic (PA) imaging has been suggested as a feasible alternative to ultrasound imaging due to its superior sensitivity to metal surrounded by tissue. However, PA images suffer from poor contrast when seeds are distant from the light source. We propose a transperineal light delivery ...

  16. Quartz enhanced photoacoustic H{sub 2}S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongpeng; Liu, Xiaoli; Zheng, Huadan; Yin, Xukun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Jia, Suotang [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China); Sampaolo, Angelo [Dipartimento Interateneo di Fisica, Università degli Studi di Bari and Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, Bari 70126 (Italy); Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Dong, Lei, E-mail: donglei@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China); Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Patimisco, Pietro; Spagnolo, Vincenzo [Dipartimento Interateneo di Fisica, Università degli Studi di Bari and Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, Bari 70126 (Italy); Tittel, Frank K. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States)

    2015-09-14

    A quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplified laser source and a custom quartz tuning fork (QTF) with its two prongs spaced ∼800 μm apart, is reported. The sensor employs an acoustic micro-resonator (AmR) which is assembled in an “on-beam” QEPAS configuration. Both length and vertical position of the AmR are optimized in terms of signal-to-noise ratio, significantly improving the QEPAS detection sensitivity by a factor of ∼40, compared to the case of a sensor using a bare custom QTF. The fiber-amplifier-enhanced QEPAS sensor is applied to H{sub 2}S trace gas detection, reaching a sensitivity of ∼890 ppb at 1 s integration time, similar to those obtained with a power-enhanced QEPAS sensor equipped with a standard QTF, but with the advantages of easy optical alignment, simple installation, and long-term stability.

  17. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography.

    LENUS (Irish Health Repository)

    Weisz, Dany E

    2012-01-01

    Non-invasive cardiac output monitoring is a potentially useful clinical tool in the neonatal setting. Our aim was to evaluate a new method of non-invasive continuous cardiac output (CO) measurement (NICOM™) based on the principle of bioreactance in neonates.

  18. Modification of a commercial spectrophotometer for photoacoustic measurement

    International Nuclear Information System (INIS)

    Bandyopadhyay, S.; Harris, J.M.; Eyring, E.M.

    1983-01-01

    This note describes how a commercial UV-VIS-NIR spectrophotometer may be adapted to function as a double beam photoacoustic spectrophotometer operating at visible wavelengths. Modification of a Varian Cary 17 spectrophotometer was carried out first by dismounting the photomultiplier tube detector module and the cell compartment of the spectrophotometer. The sample and the reference beams were focused through two externally mounted quartz lenses onto the sample and reference photoacoustic cells, respectively

  19. Functional photoacoustic tomography for neonatal brain imaging: developments and challenges

    Science.gov (United States)

    Hariri, Ali; Tavakoli, Emytis; Adabi, Saba; Gelovani, Juri; Avanaki, Mohammad R. N.

    2017-03-01

    Transfontanelle ultrasound imaging (TFUSI) is a routine diagnostic brain imaging method in infants who are born prematurely, whose skull bones have not completely fused together and have openings between them, so-called fontanelles. Open fontanelles in neonates provide acoustic windows, allowing the ultrasound beam to freely pass through. TFUSI is used to rule out neurological complications of premature birth including subarachnoid hemorrhage (SAH), intraventricular (IVH), subependimal (SEPH), subdural (SDH) or intracerebral (ICH) hemorrhages, as well as hypoxic brain injuries. TFUSI is widely used in the clinic owing to its low cost, safety, accessibility, and noninvasive nature. Nevertheless, the accuracy of TFUSI is limited. To address several limitations of current clinical imaging modalities, we develop a novel transfontanelle photoacoustic imaging (TFPAI) probe, which, for the first time, should allow for non-invasive structural and functional imaging of the infant brain. In this study, we test the feasibility of TFPAI for detection of experimentally-induced intra ventricular and Intraparenchymal hemorrhage phantoms in a sheep model with a surgically-induced cranial window which will serve as a model of neonatal fontanelle. This study is towards using the probe we develop for bedside monitoring of neonates with various disease conditions and complications affecting brain perfusion and oxygenation, including apnea, asphyxia, as well as for detection of various types of intracranial hemorrhages (SAH, IVH, SEPH, SDH, ICH).

  20. Singular value decomposition analysis of a photoacoustic imaging system and 3D imaging at 0.7 FPS.

    Science.gov (United States)

    Roumeliotis, Michael B; Stodilka, Robert Z; Anastasio, Mark A; Ng, Eldon; Carson, Jeffrey J L

    2011-07-04

    Photoacoustic imaging is a non-ionizing imaging modality that provides contrast consistent with optical imaging techniques while the resolution and penetration depth is similar to ultrasound techniques. In a previous publication [Opt. Express 18, 11406 (2010)], a technique was introduced to experimentally acquire the imaging operator for a photoacoustic imaging system. While this was an important foundation for future work, we have recently improved the experimental procedure allowing for a more densely populated imaging operator to be acquired. Subsets of the imaging operator were produced by varying the transducer count as well as the measurement space temporal sampling rate. Examination of the matrix rank and the effect of contributing object space singular vectors to image reconstruction were performed. For a PAI system collecting only limited data projections, matrix rank increased linearly with transducer count and measurement space temporal sampling rate. Image reconstruction using a regularized pseudoinverse of the imaging operator was performed on photoacoustic signals from a point source, line source, and an array of point sources derived from the imaging operator. As expected, image quality increased for each object with increasing transducer count and measurement space temporal sampling rate. Using the same approach, but on experimentally sampled photoacoustic signals from a moving point-like source, acquisition, data transfer, reconstruction and image display took 1.4 s using one laser pulse per 3D frame. With relatively simple hardware improvements to data transfer and computation speed, our current imaging results imply that acquisition and display of 3D photoacoustic images at laser repetition rates of 10Hz is easily achieved.

  1. Non-Invasive Mechanic Ventilation Using in Flail Chest, Caused By Blunt Chest Trauma

    Directory of Open Access Journals (Sweden)

    Serdar Onat

    2008-01-01

    Full Text Available A 75-year-old woman admitted our faculty emergency room with shortness of breath, and chest pain after traffic accident’s second hour. She was diagnosed as bilateral multipl rib fractures, left clavicula fracture, and left flail chest by phsical and radiological examinations. She was transfered to Chest Surgery Depatment’s intensive care unit. The patient was undergone non-invasive mask mechanic ventilation support, because of the decreasing of blood oxygen saturation and increasing of arteriel blood partial carbondioxide pressure. The treatment of non-invasive mechanic ventilation was succesfull for ventilation support. With this report, we would like to attentioned that non-invasive mechanic ventilation for blunt chest trauma patients could be used succesfully and could be used instead of endotracheal invasive mechanic ventilation.

  2. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: a review.

    Science.gov (United States)

    Nardone, Raffaele; Höller, Yvonne; Leis, Stefan; Höller, Peter; Thon, Natasha; Thomschewski, Aljoscha; Golaszewski, Stefan; Brigo, Francesco; Trinka, Eugen

    2014-01-01

    Past evidence has shown that invasive and non-invasive brain stimulation may be effective for relieving central pain. To perform a topical review of the literature on brain neurostimulation techniques in patients with chronic neuropathic pain due to traumatic spinal cord injury (SCI) and to assess the current evidence for their therapeutic efficacy. A MEDLINE search was performed using following terms: "Spinal cord injury", "Neuropathic pain", "Brain stimulation", "Deep brain stimulation" (DBS), "Motor cortex stimulation" (MCS), "Transcranial magnetic stimulation" (TMS), "Transcranial direct current stimulation" (tDCS), "Cranial electrotherapy stimulation" (CES). Invasive neurostimulation therapies, in particular DBS and epidural MCS, have shown promise as treatments for neuropathic and phantom limb pain. However, the long-term efficacy of DBS is low, while MCS has a relatively higher potential with lesser complications that DBS. Among the non-invasive techniques, there is accumulating evidence that repetitive TMS can produce analgesic effects in healthy subjects undergoing laboratory-induced pain and in chronic pain conditions of various etiologies, at least partially and transiently. Another very safe technique of non-invasive brain stimulation - tDCS - applied over the sensory-motor cortex has been reported to decrease pain sensation and increase pain threshold in healthy subjects. CES has also proved to be effective in managing some types of pain, including neuropathic pain in subjects with SCI. A number of studies have begun to use non-invasive neuromodulatory techniques therapeutically to relieve neuropathic pain and phantom phenomena in patients with SCI. However, further studies are warranted to corroborate the early findings and confirm different targets and stimulation paradigms. The utility of these protocols in combination with pharmacological approaches should also be explored.

  3. Multi-Walled Carbon Nanotube Coating on Alkali Treated TiO2 Nanotubes Surface for Improvement of Biocompatibility

    Directory of Open Access Journals (Sweden)

    Jung-Eun Park

    2018-04-01

    Full Text Available The aim of this study is to enhance the bioactivity of pure titanium using multiple surface treatments for the application of the implant. To form the biofunctional multilayer coating on pure titanium, anodization was conducted to make titanium dioxide nanotubes, then multi-walled carbon nanotubes were coated using a dipping method after an alkali treatment. The surface characteristics at each step were analyzed using a field emission scanning electron microscope and X-ray diffractometer. The effect of the multilayer coating on the biocompatibility was identified using immersion and cytotoxicity tests. Better hydroxyapatite formation was observed on the surface of multilayer-coated pure titanium compared to non-treated pure titanium after immersion in the simulated body fluid. Improvement of biocompatibility by multiple surface treatments was identified through various cytotoxicity tests using osteoblast cells.

  4. Enhanced Carbon Nanotube Ultracapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  5. Retracted-Enhanced X-Ray Absorption Property of Gold-Doped Single Wall Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Alimin Alimin

    2015-11-01

    Full Text Available Enhanced X-ray absorption property of single wall carbon nanotube (SWCNT through gold (Au doping (Au@SWCNT has been studied. Mass attenuation coefficient of SWCNT increased 5.2-fold after Au doping treatment. The use of ethanol in the liquid phase adsorption could produce Au nanoparticles as confirmed by the X-ray Diffraction (XRD patterns. The possibility of gold nanoparticles encapsulated in the internal tube space of SWCNT was observed by transmission electron microscope technique. A significant decrease of nitrogen uptakes and upshifts of Radial Breathing Mode (RBM of Au@SWCNT specimen suggest that the nanoparticles might be encapsulated in the internal tube spaces of the nanotube. In addition, a decrease intensity of XRD pattern of Au@SWCNT at around 2θ ≈ 2.6° supports the suggestion that Au nanoparticles are really encapsulated into SWCNT.

  6. Sensitive Detection: Photoacoustics, Thermography, and Optical Radiation Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, Gerald J. [Brown Univ., Providence, RI (United States)

    2017-04-21

    Research during the granting period has been carried out in several areas concerned with sensitive detection. An infrared pyrometer based on the photoacoustic effect has been developed. The sensitivity of this instrument to temperature differentials has been shown to be 50 mK. An investigation of transients that accompany photoacoustic waves generated by pulsed lasers has been carried out. Experiments have shown the existence of the transients, and a theory based on rapid heat diffusion has been developed. The photoacoustic effect in one dimension is known to increase without bound (in the linear acoustics regime) when an optical beam moves in a fluid at the sound speed. A solution to the wave equation for pressure has been found that describes the photoacoustic effect in a cell where an infrared optical grating moves at the sound speed. It was shown that the amplification effect exists along with a cavity resonance that can be used to great advantage in trace gas detection. The theory of the photoacoustic effect in a structure where the acoustic properties periodically vary in a one-dimensional based has been formulated based on solutions to a Mathieu equation. It was found that it is possible to excite photoacoustic waves within the band gaps to produce large amplitude acoustic waves. The idea of self-oscillation in a photoacoustic cell using a continuous laser has been investigated. A theory has been completed showing that in a compressive wave, the absorption increases as a result of the density increase leading to further absorption and hence an increased amplitude photoacoustic effect with the result that in a resonator, self-oscillation can place. Experiments have been carried out where irradiation of a suspension of absorbing carbon particles with a high power laser has been shown to result in cavitation luminescence. That is, following generation of CO and H2 from the carbon particles through the carbon-steam reaction, an expanding gas bubble is

  7. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments.

    Science.gov (United States)

    Patheja, Pooja; Sahu, Khageswar

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MɸCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MɸCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Enhanced Photocatalytic Properties of Ag-Loaded N-Doped Tio2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Gao Dawei

    2018-03-01

    Full Text Available Highly ordered TiO2 nanotube (TiO2 NT arrays were prepared by anodic oxidizing method on the surface of the Ti substrate. Nitrogen-doped TiO2 nanotube (N-TiO2 NT arrays were carried out by ammonia solution immersion, and Ag nanoparticles loaded N-doped TiO2 nanotube (Ag/N-TiO2 NT arrays were obtained by successive ionic layer adsorption and reaction (SILAR technique. The samples were characterized by the X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FESEM, high-resolution transmission electron microscopy (HRTEM, photoluminescence (PL emission spectra, ultraviolet–visible (UV–vis diffuse reflectance spectroscopy (DRS. The result indicated that the diameter and wall thickness of the TiO2 NT are 100–120 and 20–30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs were not affected by N-doping. Furthermore, Ag nanoparticles were evenly deposited on the surface of TiO2 NTs in the form of elemental silver. Finally, the photocatalytic activity of Ag/N-TiO2 NTs was evaluated by degradation of methyl orange (MO under visible-light irradiation. The Ag/N-TiO2 NTs exhibited enhanced photocatalytic properties, which could reach 95% after 90-min irradiation.

  9. Photoacoustics: a historical review

    NARCIS (Netherlands)

    Manohar, Srirang; Razansky, D.

    2016-01-01

    We review the history of photoacoustics from the discovery in 1880 that modulated light produces acoustic waves to the current time, when the pulsed variant of the discovery is fast developing into a powerful biomedical imaging modality. We trace the meandering and fascinating passage of the effect

  10. Effects of the gate dielectric on the subthreshold transport of carbon nanotube network transistors grown by using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Jeong, Seung Geun; Park, Wan Jun

    2010-01-01

    In this study, we investigated the subthreshold slope of random network carbon nanotube transistors with different geometries and passivations. Single-wall carbon nanotubes with lengths of 1-2 m were grown by using plasma-enhanced chemical vapor deposition to form the transistor channels. A critical channel length, where the subthreshold slope was saturated, of 7 μm was obtained. This was due to the percolational behavior of the nanotube random networks. With the dielectric passivation, the subthreshold slope was dramatically reduced from 9 V/decade to 0.9 V/decade by reducing interfacial trap sites, which then reduced the interface capacitance between the nanotube network and the gate dielectric.

  11. All-optical photoacoustic imaging and detection of early-stage dental caries

    Science.gov (United States)

    Sampathkumar, Ashwin; Hughes, David A.; Longbottom, Chris; Kirk, Katherine J.

    2015-02-01

    Dental caries remain one of the most common oral diseases in the world. Current detection methods, such as dental explorer and X-ray radiography, suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease because of the small size (tooth decay. This AOPAI system provides a non-contact, non-invasive and non-ionizing means of detecting early-stage dental caries. Ex-vivo teeth exhibiting early-stage, white-spot lesions were imaged using AOPAI. Experimental scans targeted each early-stage lesion and a reference healthy enamel region. Photoacoustic (PA) signals were generated in the tooth using a 532-nm pulsed laser and the light-induced broadband ultrasound signal was detected at the surface of the tooth with an optical path-stabilized Michelson interferometer operating at 532 nm. The measured time-domain signal was spatially resolved and back-projected to form 2D and 3D maps of the lesion using k-wave reconstruction methods. Experimental data collected from areas of healthy and diseased enamel indicate that the lesion generated a larger PA response compared to healthy enamel. The PA-signal amplitude alone was able to detect a lesion on the surface of the tooth. However, time- reversal reconstructions of the PA scans also quantitatively depicted the depth of the lesion. 3D PA reconstruction of the diseased tooth indicated a sub-surface lesion at a depth of 0.6 mm, in addition to the surface lesion. These results suggest that our AOPAI system is well suited for rapid clinical assessment of early-stage dental caries. An overview of the AOPAI system, fine-resolution PA and histology results of diseased and healthy teeth will be presented.

  12. Non-carbon titanium cobalt nitride nanotubes supported platinum catalyst with high activity and durability for methanol oxidation reaction

    Science.gov (United States)

    Chen, Xiaoxiang; Li, Wuyi; Pan, Zhanchang; Xu, Yanbin; Liu, Gen; Hu, Guanghui; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng

    2018-05-01

    Titanium cobalt nitride nanotubes (Ti0.95Co0.05N NTs) hybrid support, a novel robust non-carbon support material prepared by solvothermal and post-nitriding processes, is further decorated with Pt nanoparticles for the electrooxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The morphology, structure and composition of the synthesized Ti0.95Co0.05N NTs suggest that the nanotube wall is porous and consists of homogeneous cohesively attached nitrides nanocube particles. Notable, Ti0.95Co0.05N NTs supported Pt catalyst exhibits significantly improved catalytic activity and durability for methanol electrooxidation compared with the conventional JM Pt/C catalyst. The experimental data indicate that enhanced catalytic activity and stability of Pt/Ti0.95Co0.05N NTs towards methanol electrooxidation might be mainly attributed to the tubular nanostructures and synergistic effect introduced by the Co doping. Both of them are playing an important role in improving the activity and durability of the Ti0.95Co0.05N NTs catalyst.

  13. Pneumococci in biofilms are non-invasive: implications on nasopharyngeal colonization

    Directory of Open Access Journals (Sweden)

    Ryan Paul Gilley

    2014-11-01

    Full Text Available Streptococcus pneumoniae (the pneumococcus is an opportunistic pathogen that colonizes the human nasopharynx asymptomatically. Invasive pneumococcal disease develops following bacterial aspiration into the lungs. Pneumococci within the nasopharynx exist as biofilms, a growth phenotype characterized by surface attachment, encasement within an extracellular matrix, and antimicrobial resistance. Experimental evidence indicates that biofilm pneumococci are attenuated versus their planktonic counterpart. Biofilm pneumococci failed to cause invasive disease in experimentally challenged mice and in vitro were shown to be non-invasive despite being hyper-adhesive. This attenuated phenotype corresponds with observations that biofilm pneumococci elicit significantly less cytokine and chemokine production from host cells than their planktonic counterparts. Microarray and proteomic studies show that pneumococci within biofilms have decreased metabolism, less capsular polysaccharide, and reduced production of the pore-forming toxin pneumolysin. Biofilm pneumococci are predominately in the transparent phenotype, which has elevated cell wall phosphorylcholine, an adhesin subject to C-reactive protein mediated opsonization. Herein, we review these changes in virulence, interpret their impact on colonization and transmission, and discuss the notion that non-invasive biofilms are principal lifestyle of S. pneumoniae.

  14. Non-invasive means of measuring hepatic fat content.

    Science.gov (United States)

    Mehta, Sanjeev-R; Thomas, E-Louise; Bell, Jimmy-D; Johnston, Desmond-G; Taylor-Robinson, Simon-D

    2008-06-14

    Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1)H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo (1)H MRS is a fast, safe, non-invasive method for the quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis (e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.

  15. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG

    NARCIS (Netherlands)

    Kamat, A.M.; Colombel, M.; Sundi, D.; Lamm, D.; Boehle, A.; Brausi, M.; Buckley, R.; Persad, R.; Palou, J.; Soloway, M.; Witjes, J.A.

    2017-01-01

    Intravesical immunotherapy with live attenuated BCG remains the standard of care for patients with high-risk and intermediate-risk non-muscle-invasive bladder cancer (NMIBC). Most patients initially respond, but recurrence is frequent and progression to invasive cancer is a concern. No established

  16. Epilepsy surgery in children and non-invasive evaluation

    International Nuclear Information System (INIS)

    Hashizume, Kiyotaka; Sawamura, Atsushi; Yoshida, Katsunari; Tsuda, Hiroshige; Tanaka, Tatsuya; Tanaka, Shigeya

    2001-01-01

    The technique of EEG recording using subdural and depth electrodes has became established, and such invasive EEG is available for epilepsy surgery. However, a non-invasive procedure is required for evaluation of surgical indication for epilepsy patients, particular for children. We analyzed the relationship between the results of presurgical evaluation and seizure outcome, and investigated the role of invasive EEG in epilepsy surgery for children. Over the past decade, 22 children under 16 years of age have been admitted to our hospital for evaluation of surgical indication. High-resolution MR imaging, MR spectroscopy, video-EEG monitoring, and ictal and interictal SPECT were used for presurgical evaluation. Organic lesions were found on MR images from 19 patients. Invasive EEG was recorded in only one patient with occipital epilepsy, who had no lesion. Surgical indication was determined in 17 children, and 6 temporal lobe and 11 extratemporal lobe resections were performed under intraoperative electrocorticogram monitoring. The surgical outcome was excellent in 14 patients who had Engel's class I or II. Surgical complications occurred in two children who had visual field defects. The results showed that a good surgical outcome could be obtained using an intraoperative electrocorticogram, without presurgical invasive EEG, for localization-related epilepsy in children. The role of invasive EEG should be reevaluated in such children. (author)

  17. Epilepsy surgery in children and non-invasive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Kiyotaka; Sawamura, Atsushi; Yoshida, Katsunari; Tsuda, Hiroshige; Tanaka, Tatsuya [Asahikawa Medical Coll., Hokkaido (Japan); Tanaka, Shigeya

    2001-04-01

    The technique of EEG recording using subdural and depth electrodes has became established, and such invasive EEG is available for epilepsy surgery. However, a non-invasive procedure is required for evaluation of surgical indication for epilepsy patients, particular for children. We analyzed the relationship between the results of presurgical evaluation and seizure outcome, and investigated the role of invasive EEG in epilepsy surgery for children. Over the past decade, 22 children under 16 years of age have been admitted to our hospital for evaluation of surgical indication. High-resolution MR imaging, MR spectroscopy, video-EEG monitoring, and ictal and interictal SPECT were used for presurgical evaluation. Organic lesions were found on MR images from 19 patients. Invasive EEG was recorded in only one patient with occipital epilepsy, who had no lesion. Surgical indication was determined in 17 children, and 6 temporal lobe and 11 extratemporal lobe resections were performed under intraoperative electrocorticogram monitoring. The surgical outcome was excellent in 14 patients who had Engel's class I or II. Surgical complications occurred in two children who had visual field defects. The results showed that a good surgical outcome could be obtained using an intraoperative electrocorticogram, without presurgical invasive EEG, for localization-related epilepsy in children. The role of invasive EEG should be reevaluated in such children. (author)

  18. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo

    Science.gov (United States)

    Zhao, Huangxuan; Wang, Guangsong; Lin, Riqiang; Gong, Xiaojing; Song, Liang; Li, Tan; Wang, Wenjia; Zhang, Kunya; Qian, Xiuqing; Zhang, Haixia; Li, Lin; Liu, Zhicheng; Liu, Chengbo

    2018-04-01

    For the diagnosis and evaluation of ophthalmic diseases, imaging and quantitative characterization of vasculature in the iris are very important. The recently developed photoacoustic imaging, which is ultrasensitive in imaging endogenous hemoglobin molecules, provides a highly efficient label-free method for imaging blood vasculature in the iris. However, the development of advanced vascular quantification algorithms is still needed to enable accurate characterization of the underlying vasculature. We have developed a vascular information quantification algorithm by adopting a three-dimensional (3-D) Hessian matrix and applied for processing iris vasculature images obtained with a custom-built optical-resolution photoacoustic imaging system (OR-PAM). For the first time, we demonstrate in vivo 3-D vascular structures of a rat iris with a the label-free imaging method and also accurately extract quantitative vascular information, such as vessel diameter, vascular density, and vascular tortuosity. Our results indicate that the developed algorithm is capable of quantifying the vasculature in the 3-D photoacoustic images of the iris in-vivo, thus enhancing the diagnostic capability of the OR-PAM system for vascular-related ophthalmic diseases in vivo.

  19. Validation of non-invasive haemodynamic methods in patients with liver disease

    DEFF Research Database (Denmark)

    Brittain, Jane M; Busk, Troels M; Møller, Søren

    2018-01-01

    Patients with advanced cirrhosis often present a hyperdynamic circulation characterized by a decrease in systolic and diastolic blood pressure (SBP and DBP), and an increase in heart rate (HR) and cardiac output (CO). Accurate assessment of the altered circulation can be performed invasively......; however, due to the disadvantages of this approach, non-invasive methods are warranted. The purpose of this study was to compare continuous non-invasive measurements of haemodynamic variables by the Finometer and the Task Force Monitor with simultaneous invasive measurements. In 25 patients with cirrhosis......, respectively; and CO: 0·1 ± 1·6 and -1·0 ± 2·0 L min(-1) , respectively. The study demonstrates that the overall performances of the Finometer and the Task Force Monitor in estimating absolute values of SBP, DBP, HR and CO in patients with cirrhosis are not equivalent to the gold standard, but may have...

  20. Non-invasive genetic censusing and monitoring of primate populations.

    Science.gov (United States)

    Arandjelovic, Mimi; Vigilant, Linda

    2018-03-01

    Knowing the density or abundance of primate populations is essential for their conservation management and contextualizing socio-demographic and behavioral observations. When direct counts of animals are not possible, genetic analysis of non-invasive samples collected from wildlife populations allows estimates of population size with higher accuracy and precision than is possible using indirect signs. Furthermore, in contrast to traditional indirect survey methods, prolonged or periodic genetic sampling across months or years enables inference of group membership, movement, dynamics, and some kin relationships. Data may also be used to estimate sex ratios, sex differences in dispersal distances, and detect gene flow among locations. Recent advances in capture-recapture models have further improved the precision of population estimates derived from non-invasive samples. Simulations using these methods have shown that the confidence interval of point estimates includes the true population size when assumptions of the models are met, and therefore this range of population size minima and maxima should be emphasized in population monitoring studies. Innovations such as the use of sniffer dogs or anti-poaching patrols for sample collection are important to ensure adequate sampling, and the expected development of efficient and cost-effective genotyping by sequencing methods for DNAs derived from non-invasive samples will automate and speed analyses. © 2018 Wiley Periodicals, Inc.

  1. Non-invasive ventilation after surgery in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Olivieri, C; Castioni, C A; Livigni, S; Bersano, E; Cantello, R; Della Corte, F; Mazzini, L

    2014-04-01

    Surgery in patients affected by amyotrophic lateral sclerosis (ALS) presents a particular anesthetic challenge because of the risk of post-operative pulmonary complications. We report on the use of non-invasive ventilation (NIV) to prevent post-operative pulmonary complications (PPCs) in nine patients affected by ALS enrolled in a phase-1 clinical trial with stem cell transplantation. All patients were treated with autologous mesenchymal stem cells implanted into the spinal cord with a surgical procedure. Anesthesia was induced with propofol and maintained with remifentanil and sevoflurane. No muscle relaxant was used. After awakening and regain of spontaneous breathing, patients were tracheally extubated. Non-invasive ventilation through nasal mask was delivered and non-invasive positive pressure ventilation and continuous positive pressure ventilation were started. The average time on NIV after surgery was 3 h and 12 min. All patients regained stable spontaneous breathing after NIV discontinuation and had no episodes of respiratory failure until the following day. Our case series suggest that the use of NIV after surgery can be a safe strategy to prevent PPCs in patients affected by ALS. The perioperative procedure we chose for these patients appeared safe even in patients with advanced functional stage of the disease. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Photoacoustic technique applied to the study of skin and leather

    International Nuclear Information System (INIS)

    Vargas, M.; Varela, J.; Hernandez, L.; Gonzalez, A.

    1998-01-01

    In this paper the photoacoustic technique is used in bull skin for the determination of thermal and optical properties as a function of the tanning process steps. Our results show that the photoacoustic technique is sensitive to the study of physical changes in this kind of material due to the tanning process

  3. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass

    Science.gov (United States)

    Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron

    2015-11-01

    Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.

  4. Non-Invasive Radiofrequency-Induced Targeted Hyperthermia for the Treatment of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mustafa Raoof

    2011-01-01

    Full Text Available Targeted biological therapies for hepatocellular cancer have shown minimal improvements in median survival. Multiple pathways to oncogenesis leading to rapid development of resistance to such therapies is a concern. Non-invasive radiofrequency field-induced targeted hyperthermia using nanoparticles is a radical departure from conventional modalities. In this paper we underscore the need for innovative strategies for the treatment of hepatocellular cancer, describe the central paradigm of targeted hyperthermia using non-invasive electromagnetic energy, review the process of characterization and modification of nanoparticles for the task, and summarize data from cell-based and animal-based models of hepatocellular cancer treated with non-invasive RF energy. Finally, future strategies and challenges in bringing this modality from bench to clinic are discussed.

  5. Detection of Melanoma Metastases in Resected Human Lymph Nodes by Noninvasive Multispectral Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Gerrit Cornelis Langhout

    2014-01-01

    Full Text Available Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR© multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes.

  6. Studies on selected polymeric materials using the photoacoustic spectroscopic technique

    International Nuclear Information System (INIS)

    Singh, Hukum

    2011-01-01

    Polymethylmethacrylate—graft—polybisphenol—A-carbonate (PMMA-G-PC) with 50% grafting is synthesized. The graft co-polymerization of methylmethacrylate (0.036 mol · lit −1 ) onto polybisphenol—A-carbonate (0.5 g) in the presence of a redox couple formed from potassium persulphate (40 mol · lit −1 ) and thio-urea (30 mmol · lit −1 ) in aqueous nitric acid (0.18 M, 100 ml) in air at (45±2) °C for 3.0 h. Condensation of (PMMA-G-PC) with N- [p-(carboxyl phenyl amino acetic acid)] hydrazide (PCPH) affords polybisphenol-A-carbonate-graft-polymethylmethacrylate hydrazide (PCGH). The photoacoustic (PA) spectra of (PCGH) are recorded in a wavelength range from 200 nm to 800 nm at a modulation frequency of 22 Hz, and compared with those of pure polybisphenol-A-carbonate (PC), (PMMA-G-PC) and (PCPH). In the present work, a non-destructive and non-contact analytical method, namely the photoacoustic technique, is successfully implemented for optical and thermal characterization of selected polymeric materials. The indigenous PA spectrometer used in the present study consists of a 300-W xenon arc lamp, a lock-in amplifier, a chopper, a (1/8)-m monochromator controlled by computer and a home-made PA cell. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. In vivo virtual intraoperative surgical photoacoustic microscopy

    International Nuclear Information System (INIS)

    Han, Seunghoon; Kim, Sehui; Kim, Jeehyun; Lee, Changho; Jeon, Mansik; Kim, Chulhong

    2013-01-01

    We developed a virtual intraoperative surgical photoacoustic microscopy system by combining with a commercial surgical microscope and photoacoustic microscope (PAM). By sharing the common optical path in the microscope and PAM system, we could acquire the PAM and microscope images simultaneously. Moreover, by employing a beam projector to back-project 2D PAM images onto the microscope view plane as augmented reality, the conventional microscopic and 2D cross-sectional PAM images are concurrently mapped on the plane via an ocular lens of the microscope in real-time. Further, we guided needle insertion into phantom ex vivo and mice skins in vivo

  8. In vivo virtual intraoperative surgical photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghoon, E-mail: hsh860504@gmail.com; Kim, Sehui, E-mail: sehui0916@nate.com; Kim, Jeehyun, E-mail: jeehk@knu.ac.kr, E-mail: chulhong@postech.edu [School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Changho, E-mail: ch31037@postech.edu; Jeon, Mansik, E-mail: msjeon@postech.edu [Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Kim, Chulhong, E-mail: jeehk@knu.ac.kr, E-mail: chulhong@postech.edu [Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14221 (United States)

    2013-11-11

    We developed a virtual intraoperative surgical photoacoustic microscopy system by combining with a commercial surgical microscope and photoacoustic microscope (PAM). By sharing the common optical path in the microscope and PAM system, we could acquire the PAM and microscope images simultaneously. Moreover, by employing a beam projector to back-project 2D PAM images onto the microscope view plane as augmented reality, the conventional microscopic and 2D cross-sectional PAM images are concurrently mapped on the plane via an ocular lens of the microscope in real-time. Further, we guided needle insertion into phantom ex vivo and mice skins in vivo.

  9. Influence of hemoglobin on non-invasive optical bilirubin sensing

    Science.gov (United States)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  10. Functionalized carbon nanotube doping of P3HT:PCBM photovoltaic devices for enhancing short circuit current and efficiency

    Directory of Open Access Journals (Sweden)

    Rohit Bhatia

    2017-03-01

    Full Text Available We have successfully functionalized multiwalled carbon nanotubes (MWCNTs using nitrene approach employing the two aryl azides as a precursor for nitrene generation. The dispersion of functionalized MWCNTs has been enhanced in various organic solvents. These functionalized MWCNTs have been successfully doped in various concentrations in the bulk heterojunction (BHJ organic photovoltaic (OPV cells with a poly (3-hexyl thiophene (P3HT and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM photoactive blended layer. The incorporation of MWCNTs with aryl functional groups, in active the layer, results in enhanced performance with respect to a reference cell. The maximum power conversion efficiency of 1.86% is achieved with adduct I while in the case of adduct II it gets double to 2.0% in comparison with a reference cell. This improvement in the device performance is attributed to enhanced exciton dissociation and improved charge transport properties due to the formation of a nanotube percolation network in the photoactive composite layer.

  11. Enhanced linear-array photoacoustic beamforming using modified coherence factor

    Science.gov (United States)

    Mozaffarzadeh, Moein; Yan, Yan; Mehrmohammadi, Mohammad; Makkiabadi, Bahador

    2018-02-01

    Photoacoustic imaging (PAI) is a promising medical imaging modality providing the spatial resolution of ultrasound imaging and the contrast of optical imaging. For linear-array PAI, a beamformer can be used as the reconstruction algorithm. Delay-and-sum (DAS) is the most prevalent beamforming algorithm in PAI. However, using DAS beamformer leads to low-resolution images as well as high sidelobes due to nondesired contribution of off-axis signals. Coherence factor (CF) is a weighting method in which each pixel of the reconstructed image is weighted, based on the spatial spectrum of the aperture, to mainly improve the contrast. We demonstrate that the numerator of the formula of CF contains a DAS algebra and propose the use of a delay-multiply-and-sum beamformer instead of the available DAS on the numerator. The proposed weighting technique, modified CF (MCF), has been evaluated numerically and experimentally compared to CF. It was shown that MCF leads to lower sidelobes and better detectable targets. The quantitative results of the experiment (using wire targets) show that MCF leads to for about 45% and 40% improvement, in comparison with CF, in the terms of signal-to-noise ratio and full-width-half-maximum, respectively.

  12. Non-muscle invasive bladder cancer risk stratification

    Directory of Open Access Journals (Sweden)

    Sumit Isharwal

    2015-01-01

    Conclusion: EORTC and CUETO risk tables are the two best-established models to predict recurrence and progression in patients with NMIBC though they tend to overestimate risk and have poor discrimination for prognostic outcomes in external validation. Future research should focus on enhancing the predictive accuracy of risk assessment tools by incorporating additional prognostic factors such as depth of lamina propria invasion and molecular biomarkers after rigorous validation in multi-institutional cohorts.

  13. Non-invasive diagnosis and management of ectopic pregnancy

    NARCIS (Netherlands)

    van Mello, N.M.

    2013-01-01

    The work presented in this thesis begins with a focus on non-invasive diagnostic methods for ectopic pregnancy. The heterogeneity found in studies on diagnostic tests for ectopic pregnancy has led to an international recommendation on uniform definitions of early pregnancy complications. Hereafter,

  14. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  15. Non-invasive Morphological and Elemental Analysis of Ivory Plate for Artworks\

    Czech Academy of Sciences Publication Activity Database

    Tihlaříková, Eva; Neděla, Vilém; Hradilová, J.; Hradil, David

    2017-01-01

    Roč. 23, S1 (2017), s. 1832-1833 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA ČR(CZ) GA17-25687S Institutional support: RVO:68081731 ; RVO:61388980 Keywords : ESEM * EDS * non-invasive morphological analysis * non-invasive elemental analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Microbiology; Inorganic and nuclear chemistry (UACH-T) Impact factor: 1.891, year: 2016

  16. Photo-acoustic sensor based on an inexpensive piezoelectric film transducer and an amplitude-stabilized single-mode external cavity diode laser for in vitro measurements of glucose concentration

    Science.gov (United States)

    Bayrakli, Ismail; Erdogan, Yasar Kemal

    2018-06-01

    The present paper focuses on development of a compact photo-acoustic sensor using inexpensive components for glucose analysis. An amplitude-stabilized wavelength-tunable single-mode external cavity diode laser operating around 1050 nm was realized and characterized for the use of laser beam as an excitation light source. In the established setup, a fine tuning range of 9 GHz was achieved. The glucose solution was obtained by diluting D-glucose in sterile water. The acoustic signal generated by the optical excitation was detected via a chip piezoelectric film transducer. A detection limit of 50 mM (900 mg/dl) was achieved. The device may be of great interest for its applications in medicine and health monitoring. The sensor is promising for non-invasive in vivo glucose measurements from interstitial fluid.

  17. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  18. Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency

    Science.gov (United States)

    Kosterev, Anatoliy (Inventor)

    2010-01-01

    A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.

  19. The use of non-invasive fetal electrocardiography in diagnosing second-degree fetal atrioventricular block.

    Science.gov (United States)

    Lakhno, Igor; Behar, Joachim A; Oster, Julien; Shulgin, Vyacheslav; Ostras, Oleksii; Andreotti, Fernando

    2017-01-01

    Complete atrioventricular block in fetuses is known to be mostly associated with autoimmune disease and can be irreversible if no steroids treatment is provided. Conventional methods used in clinical practice for diagnosing fetal arrhythmia are limited since they do not reflect the primary electrophysiological conduction processes that take place in the myocardium. The non-invasive fetal electrocardiogram has the potential to better support fetal arrhythmias diagnosis through the continuous analysis of the beat to beat variation of the fetal heart rate and morphological analysis of the PQRST complex. We present two retrospective case reports on which atrioventricular block diagnosis could have been supported by the non-invasive fetal electrocardiogram. The two cases comprised a 22-year-old pregnant woman with the gestational age of 31 weeks and a 25-year-old pregnant woman with the gestational age of 41 weeks. Both women were admitted to the Department of Maternal and Fetal Medicine at the Kyiv and Kharkiv municipal perinatal clinics. Patients were observed using standard fetal monitoring methods as well as the non-invasive fetal electrocardiogram. The non-invasive fetal electrocardiographic recordings were analyzed retrospectively, where it is possible to identify the presence of the atrioventricular block. This study demonstrates, for the first time, the feasibility of the non-invasive fetal electrocardiogram as a supplementary method to diagnose of the fetal atrioventricular block. Combined with current fetal monitoring techniques, non-invasive fetal electrocardiography could support clinical decisions.

  20. Transport properties of field effect transistors with randomly networked single walled carbon nanotubes grown by plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Park, Wanjun

    2009-01-01

    The transport properties of randomly networked single walled carbon nanotube (SWNT) transistors with different channel lengths of L c = 2-10 μm were investigated. Randomly networked SWNTs were directly grown for the two different densities of ρ ∼ 25 μm -2 and ρ ∼ 50 μm -2 by water plasma enhanced chemical vapour deposition. The field effect transport is governed mainly by formation of the current paths that is related to the nanotube density. On the other hand, the off-state conductivity deviates from linear dependence for both nanotube density and channel length. The field effect mobility of holes is estimated as 4-13 cm 2 V -1 s -1 for the nanotube transistors based on the simple MOS theory. The mobility is increased for the higher density without meaningful dependence on the channel lengths.

  1. A novel non-invasive diagnostic sampling technique for cutaneous leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Yasaman Taslimi

    2017-07-01

    Full Text Available Accurate diagnosis of cutaneous leishmaniasis (CL is important for chemotherapy and epidemiological studies. Common approaches for Leishmania detection involve the invasive collection of specimens for direct identification of amastigotes by microscopy and the culturing of promastigotes from infected tissues. Although these techniques are highly specific, they require highly skilled health workers and have the inherent risks of all invasive procedures, such as pain and risk of bacterial and fungal super-infection. Therefore, it is essential to reduce discomfort, potential infection and scarring caused by invasive diagnostic approaches especially for children. In this report, we present a novel non-invasive method, that is painless, rapid and user-friendly, using sequential tape strips for sampling and isolation of DNA from the surface of active and healed skin lesions of CL patients. A total of 119 patients suspected of suffering from cutaneous leishmaniasis with different clinical manifestations were recruited and samples were collected both from their lesions and from uninfected areas. In addition, 15 fungal-infected lesions and 54 areas of healthy skin were examined. The duration of sampling is short (less than one minute and species identification by PCR is highly specific and sensitive. The sequential tape stripping sampling method is a sensitive, non-invasive and cost-effective alternative to traditional diagnostic assays and it is suitable for field studies as well as for use in health care centers.

  2. Opticofiber photoacoustic spectrometry in single-ray two-cell grouping for analytical determination of actinoids in solutions of reprocessing

    International Nuclear Information System (INIS)

    Yin'kov, S.I.; Myasoedov, B.F.; Kikhara, T.; Fuine, S.; Maeda, M.

    1996-01-01

    Single-ray two-cell version of photoacoustic spectrometry with laser excitation (Laser Induced Photoacoustic Spectroscopy, LIPAS) for remote determination of actinoids ions in solutions is developed. The spectrometer characteristics were specified by means of uranium-containing solutions, including a great number of non-radioactive ions, the absorption bonds where of imitated the absorption of Pu(3) and Pu(4). The possibilities of the LIPAS technique were studied by analysis of ions, imitating plutonium within the range of 650-724 nm on synthetic solutions with high uranium(6) content and a great number of nonradioactive isotopes of fragmentation-type elements. 8 refs., 9 figs., 1 tab

  3. Non-Invasive Radiofrequency Field Treatment of 4T1 Breast Tumors Induces T-cell Dependent Inflammatory Response.

    Science.gov (United States)

    Newton, Jared M; Flores-Arredondo, Jose H; Suki, Sarah; Ware, Matthew J; Krzykawska-Serda, Martyna; Agha, Mahdi; Law, Justin J; Sikora, Andrew G; Curley, Steven A; Corr, Stuart J

    2018-02-22

    Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.

  4. Targeted Nanodiamonds as Phenotype Specific Photoacoustic Contrast Agents for Breast Cancer

    Science.gov (United States)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2015-01-01

    Aim The aim is to develop irradiated nanodiamonds (INDs) as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. Materials & Methods The surface of acid treated radiation-damaged nanodiamonds was grafted with polyethylene glycol (PEG) to improve its stability and circulation time in blood, followed by conjugation to an anti-Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) with a final nanoparticle size of ca. 92 nm. Immunocompetent mice bearing orthotopic HER2 positive or negative tumors were administered INDs and PA imaged using an 820-nm near infrared laser. Results PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 hours. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are non-toxic. Conclusions PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high resolution (sub-mm) and phenotype specific monitoring of cancer growth. PMID:25723091

  5. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    OpenAIRE

    Yao, Junjie; Xia, Jun; Maslov, Konstantin I.; Nasiriavanaki, Mohammadreza; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2012-01-01

    We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood–brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for ...

  6. [Photoacoustic spectroscopy evaluation of the impact of smoking on the composition of exhaled air in patients with bronchopulmonary diseases].

    Science.gov (United States)

    Bukreeva, E B; Bulanova, A A; Kistenev, Yu V; Nikiforova, O Yu

    To investigate the impact of smoking on the air exhaled by patients with chronic obstructive pulmonary disease (COPD) and asthmatics, by applying photoacoustic spectroscopy. The exhaled air absorption spectra (EAAS) were analyzed in healthy volunteers and patients with COPD and asthmatics, by applying an ILPA-1 CO2 laser photoacoustic gas analyzer. The procedure based on the calculation of an integrated estimate (IE) of the state of the object was used to assess the findings. Comparison of the IE of EAAS in COPD patients and non-smoking healthy individuals showed that spectra of the compounds, the formation of which was associated with smoking, were recorded in the range of wavelengths corresponding to the 10R branch of CO2 laser generation. This also provided evidence indicating that the exhaled air of asthmatics differed from that of both smoking and non-smoking healthy individuals. The calculations yielded the threshold values of EAAS IE in the range of wavelengths corresponding to the 10P branche of CO2 laser generation, which made it possible to distinguish non-smoking healthy individuals from asthmatics and COPD patients in 94 and 89% of cases, respectively. The investigation has confirmed that smoking substantially impacts the composition of the air exhaled by healthy individuals. It has been shown that the use of reference groups formed from non-smoking healthy individuals can improve the accuracy of photoacoustic spectroscopy in detecting COPD and asthma. A further development in this direction will open up new prospects for a new method to diagnose COPD and asthma.

  7. Non-invasive mechanical ventilation and mortality in elderly immunocompromised patients hospitalized with pneumonia: a retrospective cohort study.

    Science.gov (United States)

    Johnson, Christopher S; Frei, Christopher R; Metersky, Mark L; Anzueto, Antonio R; Mortensen, Eric M

    2014-01-27

    Mortality after pneumonia in immunocompromised patients is higher than for immunocompetent patients. The use of non-invasive mechanical ventilation for patients with severe pneumonia may provide beneficial outcomes while circumventing potential complications associated with invasive mechanical ventilation. The aim of our study was to determine if the use of non-invasive mechanical ventilation in elderly immunocompromised patients with pneumonia is associated with higher all-cause mortality. In this retrospective cohort study, data were obtained from the Department of Veterans Affairs administrative databases. We included veterans age ≥65 years who were immunocompromised and hospitalized due to pneumonia. Multilevel logistic regression analysis was used to determine the relationship between the use of invasive versus non-invasive mechanical ventilation and 30-day and 90-day mortality. Of 1,946 patients in our cohort, 717 received non-invasive mechanical ventilation and 1,229 received invasive mechanical ventilation. There was no significant association between all-cause 30-day mortality and non-invasive versus invasive mechanical ventilation in our adjusted model (odds ratio (OR) 0.85, 95% confidence interval (CI) 0.66-1.10). However, those patients who received non-invasive mechanical ventilation had decreased 90-day mortality (OR 0.66, 95% CI 0.52-0.84). Additionally, receipt of guideline-concordant antibiotics in our immunocompromised cohort was significantly associated with decreased odds of 30-day mortality (OR 0.31, 95% CI 0.24-0.39) and 90-day mortality (OR 0.41, 95% CI 0.31-0.53). Our findings suggest that physicians should consider the use of non-invasive mechanical ventilation, when appropriate, for elderly immunocompromised patients hospitalized with pneumonia.

  8. Impact of Reclassification on Thyroid Nodules with Architectural Atypia: From Non-Invasive Encapsulated Follicular Variant Papillary Thyroid Carcinomas to Non-Invasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features.

    Directory of Open Access Journals (Sweden)

    Min Ji Jeon

    Full Text Available The follicular variant of papillary thyroid cancer (FVPTC, especially the encapsulated non-invasive subtype, is a controversial entity. Recent study suggested using 'non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP' for these indolent carcinomas. We evaluated the impact of reclassification from non-invasive encapsulated FVPTCs (EFVPTCs to NIFTPs in the diagnosis of thyroid nodules with architectural atypia.We reviewed 1301 thyroid nodules with architectural atypia in core needle biopsy (CNB specimens obtained from March 2012 to February 2013. Nodules were classified into atypia of undetermined significance with architectural atypia (AUS-A, 984, 76% or follicular neoplasm/suspicious for a follicular neoplasm (FN/SFN, 317, 24%. Among them, diagnostic surgery was performed in 384 nodules (30%.In total, 160 nodules (42% presented final malignant diagnoses including 39 non-invasive encapsulated FVPTCs (10%. The malignancy rate was estimated to be 7-35% in AUS-A nodules and 28-49% in FN/SFN nodules. After reclassification, the malignancy rate was much decreased and estimated to be 5-24% in AUS-A nodules, and 23-39% in FN/SFN nodules. Thyroid nodules with final malignant diagnoses were significantly more likely to have a FN/SFN CNB diagnosis, malignant US features and concomitant nuclear atypia in CNB specimens. However, these factors could not differentiate NIFTPs from other malignancies.After reclassification of non-invasive EFVPTCs to NIFTPs, the malignancy rate of thyroid nodules with architectural atypia in CNB specimens was decreased. However, there were no preoperative factors differentiating other malignancies from NIFTPs. The presence of malignant US features or concomitant nuclear atypia might help clinicians deciding diagnostic surgery but, these features also might indicate NIFTPs.

  9. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    Joensson, M; Nerushev, O A; Campbell, E E B

    2007-01-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 μm min -1 ) and then drops off rapidly to reach a steady level (2 μm min -1 ) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  10. Non-Invasive Brain Stimulation to Enhance Post-Stroke Recovery.

    Science.gov (United States)

    Kubis, Nathalie

    2016-01-01

    Brain plasticity after stroke remains poorly understood. Patients may improve spontaneously within the first 3 months and then more slowly in the coming year. The first day, decreased edema and reperfusion of the ischemic penumbra may possibly account for these phenomena, but the improvement during the next weeks suggests plasticity phenomena and cortical reorganization of the brain ischemic areas and of more remote areas. Indeed, the injured ischemic motor cortex has a reduced cortical excitability at the acute phase and a suspension of the topographic representation of affected muscles, whereas the contralateral motor cortex has an increased excitability and an enlarged somatomotor representation; furthermore, contralateral cortex exerts a transcallosal interhemispheric inhibition on the ischemic cortex. This results from the imbalance of the physiological reciprocal interhemispheric inhibition of each hemisphere on the other, contributing to worsening of neurological deficit. Cortical excitability is measurable through transcranial magnetic stimulation (TMS) and prognosis has been established according to the presence of motor evoked potentials (MEP) at the acute phase of stroke, which is predictive of better recovery. Conversely, the lack of response to early stimulation is associated with a poor functional outcome. Non-invasive stimulation techniques such as repetitive TMS (rTMS) or transcranial direct current stimulation (tDCS) have the potential to modulate brain cortical excitability with long lasting effects. In the setting of cerebrovascular disease, around 1000 stroke subjects have been included in placebo-controlled trials so far, most often with an objective of promoting motor recovery of the upper limb. High frequency repetitive stimulation (>3 Hz) rTMS, aiming to increase excitability of the ischemic cortex, or low frequency repetitive stimulation (≤1 Hz), aiming to reduce excitability of the contralateral homonymous cortex, or combined therapies

  11. Non invasive brain stimulation to enhance post-stroke recovery

    Directory of Open Access Journals (Sweden)

    Nathalie Kubis

    2016-07-01

    Full Text Available Brain plasticity after stroke remains poorly understood. Patients may improve spontaneously within the first 3 months and then more slowly in the coming year. The first days, decreased edema and reperfusion of the ischemic penumbra may possibly account for these phenomena, but the improvement during the next weeks suggests plasticity phenomena and cortical reorganization of the brain ischemic areas and of more remote areas. Indeed, the injured ischemic motor cortex has a reduced cortical excitability at the acute phase and a suspension of the topographic representation of affected muscles, whereas the contralateral motor cortex has an increased excitability and an enlarged somatomotor representation; furthermore, contralateral cortex exerts a transcallosal interhemispheric inhibition on the ischemic cortex. This results from the imbalance of the physiological reciprocal interhemispheric inhibition of each hemisphere on the other, contributing to worsening of neurological deficit. Cortical excitability is measurable through transcranial magnetic stimulation (TMS and prognosis has been established according to the presence of motor evoked potentials (MEP at the acute phase of stroke, which is predictive of better recovery. Conversely, the lack of response to early stimulation is associated with a poor functional outcome. Non-invasive stimulation techniques such as repetitive TMS (rTMS or transcranial direct current stimulation (tDCS have the potential to modulate brain cortical excitability with long lasting effects. In the setting of cerebrovascular disease, around 1000 stroke subjects have been included in placebo-controlled trials so far, most often with an objective of promoting motor recovery of the upper limb. High frequency repetitive stimulation (> 3 Hz rTMS, aiming to increase excitability of the ischemic cortex, or low frequency repetitive stimulation (≤ 1 Hz, aiming to reduce excitability of the contralateral homonymous cortex, or

  12. Photoacoustic and photothermal spectroscopies

    International Nuclear Information System (INIS)

    Sawada, Tsuguo; Kitamori, Takehiko; Nakamura, Masato

    1995-01-01

    Photoacoustic and photothermal spectroscopy methods can be effectively applied to the analysis of microparticles in condensed matter. A more violent photothermal conversion phenomenon of a particle, laser breakdown and accompanying plasma and acoustic emission, was applied to individual detection and analysis of ultrafine particles in ultrapure water. Laser-like nonlinear emission from the plasma was observed. (author)

  13. Use of ECG and Other Simple Non-Invasive Tools to Assess Pulmonary Hypertension.

    Directory of Open Access Journals (Sweden)

    Gabor Kovacs

    Full Text Available There is a broad consensus that pulmonary hypertension (PH is to be diagnosed by right heart catheterization (RHC and that the most important non-invasive tool is echocardiography. However, the role of simple non-invasive tools in the work-up of PH is not clearly defined. We hypothesized that the use of simple non-invasive techniques may help to guide important decisions in the diagnostics of pulmonary hypertension.We aimed to develop an algorithm with the use of simple, non-invasive tools in order to identify patients with very high or very low likelihood of PH.We retrospectively analyzed all consecutive patients undergoing RHC between 2005 and 2010 in our center and performed logistic regression of simple non-invasive parameters regarding detection and exclusion of PH and derived a two-step algorithm. In a prospective study we evaluated this algorithm between 2011 and 2013.The retrospective cohort consisted of n = 394 patients of which 49% presented with PH. Right axis deviation in the ECG was present in 90/394 patients and had a positive predictive value (PPV of 93% for PH. The combination of non-right axis deviation, N-terminal pro brain natriuretic peptide (NT-proBNP<333pg/ml, arterial oxygen saturation (SO2≥95.5% and WHO functional class I-II was present in 69/394 patients and excluded PH with a negative predictive value (NPV of 96%. The prospective study confirmed these results in a cohort of n = 168 patients (PPV:92%, NPV:97%. Taken together, simple non-invasive tools allowed a prediction regarding the presence or absence of PH in 42% of patients with suspected PH.ECG, NT-proBNP, SO2 and WHO functional class may predict the presence or absence of PH in almost half of the patients with suspected PH, suggesting an important role for these variables in the work-up of patients at risk for PH.NCT01607502.

  14. Non-invasive measurement of adrenocortical activity in a ...

    African Journals Online (AJOL)

    Measuring physiological stress reactions through the quantification of plasma cortisol often involves physical restraint, which acts as a stressor itself. Here, we present the validation of a non-invasive method for assessing adrenocortical activity as an indicator of stress in the bat-eared fox (Otocyon megalotis). By conducting ...

  15. Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Shang-Chao, E-mail: schung99@gmail.com [Department of Information Technology & Communication, Shih Chien University Kaohsiung Campus, Neimen, Kaohsiung 845, Taiwan (China); Chen, Yu-Jyun [Graduate Institute of Electro-Optical Engineering & Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China)

    2016-07-15

    Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure, and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.

  16. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    Science.gov (United States)

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  17. Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kiessling, Fabian; Jugold, Manfred; Woenne, Eva C.; Brix, Gunnar

    2007-01-01

    The switch to an angiogenic phenotype is an important precondition for tumor growth, invasion and spread. Since newly formed vessels are characterized by structural, functional and molecular abnormalities, they offer promising targets for tumor diagnosis and therapy. Previous studies indicate that MRI is valuable to assess vessel morphology and function. It can be used to distinguish between benign and malignant lesions and to improve delineation of proliferating areas within heterogeneous tumors. In addition, tracer kinetic analysis of contrast-enhanced image series allows the estimation of well-defined physiological parameters such as blood volume, blood flow and vessel permeability. Frequently, changes of these parameters during cytostatic, anti-angiogenic and radiation therapy precede tumor volume reduction. Moreover, target-specific MRI techniques can be used to elucidate the expression of angiogenic markers at the molecular level. This review summarizes strategies for non-invasive characterization of tumor vascularization by functional and molecular MRI, hereby introducing representative preclinical and clinical applications. (orig.)

  18. Photoacoustic spectroscopic differences between normal and malignant thyroid tissues

    Science.gov (United States)

    Li, Li; Xie, Wengming; Li, Hui

    2012-12-01

    The thyroid is one of the main endocrine glands of human body, which plays a crucial role in the body's metabolism. Thyroid cancer mortality ranks only second to ovarian cancer in endocrine cancer. Routine diagnostic methods of thyroid diseases in present clinic exist misdiagnosis and missed diagnosis to varying degrees. Those lead to miss the best period of cancer treatment--early. Photoacoustic spectroscopy technology is a new tool, which provides an effective and noninvasive way for biomedical materials research, being highly sensitive and without sample pretreatment. In this paper, we use photoacoustic spectroscopy technology (PAST) to detect the absorption spectrum between normal and malignant thyroid tissues. The result shows that the photoacoustic spectroscopy technology (PAST) could differentiate malignant thyroid tissue from normal thyroid tissue very well. This technique combined with routine diagnostic methods has the potential to increase the diagnostic accuracy in clinical thyroid cancer diagnosis.

  19. An alternative non-invasive treatment for Peyronie's disease

    Directory of Open Access Journals (Sweden)

    Joaquim A. Claro

    2004-06-01

    Full Text Available OBJECTIVE: Surgical correction of the deformity and plaque caused by Peyronie's disease has some important disadvantages and extracorporeal shockwave therapy (ESWT emerged as a new promising therapy. We evaluated prospectively the efficacy and safety of the association of high dose vitamin E and ESWT as a non-invasive treatment for the disease. MATERIALS AND METHODS: Twenty-five patients 42 to 68 years old (mean = 54 presenting penile deviation and sexual distress caused by Peyronie's disease were treated in a non-invasive manner. The time of penile deviation ranged from 16 to 52 months (mean = 30. All patients had previous unsuccessful treatment for Peyronie's disease. The angulation's deformity of the penis was assessed by photography at home. The patients received vitamin E (l.200 mg daily during 3 months and underwent 3 to 6 sessions (mean = 3 of ESWT (3,000 to 4,000 shockwaves at a power level of l to 2 at 1-week intervals. RESULTS: From 25 patients treated, 16 (64% reported an improvement in penile angulation, with a mean reduction of 21 degrees (10 to 40. Eight patients reported improvement in their spontaneous erections. Overall, the patients presented only minimal bruising at the site of treatment and skin hematoma. Four patients presented urethral bleeding. The mean angulation after treatment in the control group was 48.67 degrees (30 - 70 and in the study group was 24.42 degrees (0 - 70, statistically significant. CONCLUSION: Considering the common complications and the unsatisfactory outcome of the surgical correction for Peyronie's disease, the association of high dose vitamin E and ESWT represents a good option for a non-invasive, effective and safe treatment of the penile deformity.

  20. Enhancement of pool boiling heat transfer coefficients using carbon nanotubes

    International Nuclear Information System (INIS)

    Park, Ki Jung; Jung, Dong Soo

    2007-01-01

    In this study, the effect of carbon nanotubes (CNTs) on nucleate boiling heat transfer is investigated. Three refrigerants of R22, R123, R134a, and water were used as working fluids and 1.0 vol.% of CNTs was added to the working fluids to examine the effect of CNTs. Experimental apparatus was composed of a stainless steel vessel and a plain horizontal tube heated by a cartridge heater. All data were obtained at the pool temperature of 7 .deg. C for all refrigerants and 100 .deg. C for water in the heat flux range of 10∼80 kW/m 2 . Test results showed that CNTs increase nucleate boiling heat transfer coefficients for all fluids. Especially, large enhancement was observed at low heat fluxes of less than 30 kW/m 2 . With increasing heat flux, however, the enhancement was suppressed due to vigorous bubble generation. Fouling on the heat transfer surface was not observed during the course of this study. Optimum quantity and type of CNTs and their dispersion should be examined for their commercial application to enhance nucleate boiling heat transfer in many applications

  1. Polyaniline/carbon nanotube/CdS quantum dot composites with enhanced optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Mrinmoy [Department of Physics, National Institute of Technology, Durgapur, 713209 (India); Ghosh, Ranajit, E-mail: ghosh.ranajit@gmail.com [CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 (India); Maruyama, Takahiro [Department of Applied Chemistry, Meijo University, Nagoya, 4688502 (Japan); Meikap, Ajit Kumar [Department of Physics, National Institute of Technology, Durgapur, 713209 (India)

    2016-02-28

    Graphical abstract: - Highlights: • A new kind of polyaniline/carbon nanotube/CdS quantum dot composites have been synthesized via in-situ polymerization of aniline monomer. • A degree of increase in conductivity. • Size-dependent optical properties of CdS quantum dots have been observed. - Abstract: A new kind of polyaniline/carbon nanotube/CdS quantum dot composites have been developed via in-situ polymerization of aniline monomer in the presence of dispersed CdS quantum dots (size: 2.7–4.8 nm) and multi-walled carbon nanotubes (CNT), which exhibits enhanced optical and electrical properties. The existences of 1st order, 2nd order, and 3rd order longitudinal optical phonon modes, strongly indicate the high quality of synthesized CdS quantum dots. The occurrence of red shift of free exciton energy in photoluminescence is due to size dependent quantum confinement effect of CdS. The conductivity of the composites (for example PANI/CNT/CdS (2 wt.% CdS)) is increased by about 7 of magnitude compared to that of pure PANI indicating a charge transfer between CNT and polymer via CdS quantum dots. This advanced material has a great potential for high-performance of electro-optical applications.

  2. Synthesis and growth mechanism of Fe-catalyzed carbon nanotubes by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Jiang Jun; Feng Tao; Cheng Xinhong; Dai Lijuan; Cao Gongbai; Jiang Bingyao; Wang Xi; Liu Xianghuai; Zou Shichang

    2006-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) was used to grow Fe-catalyzed carbon nanotubes (CNTs). The nanotubes had a uniform diameter in the range of about 10-20 nm. A base growth mode was responsible for the CNTs growth using a mixture of H 2 (60 sccm) and C 2 H 2 (15 sccm). For a mixture of H 2 (100 sccm) and C 2 H 2 (25 sccm), a complicated growth mechanism took place involving both the base growth and the tip growth. X-ray photoelectron spectroscopy measurements revealed that the grown CNTs contained C-H covalent bonds and Fe-C bonds located at the interface between them and the substrates. The factors determining the growth mechanism of CNTs are discussed and their growth mechanisms with the different gas ratios are suggested

  3. Quantum cascade laser-based photoacoustic sulfuryl fluoride sensing

    Science.gov (United States)

    Minini, Kariza Mayra Silva; Bueno, Sâmylla Cristina Espécie; da Silva, Marcelo Gomes; Sthel, Marcelo Silva; Vargas, Helion; Angster, Judit; Miklós, András

    2017-02-01

    Although sulfuryl fluoride (SO2F2) is an efficient fumigant that does not react with the surface of indoor materials and does not reduce the stratospheric ozone shield, there are some concerns about its use. It is a toxic gas that attacks the central nervous system, and its global warming potential (GWP) value is 4780 for 100 years' time. Therefore, it is a clear necessity of implementing detection methods for tracing such a molecule. In this work a sensitive photoacoustic setup was built to detect SO2F2 at concentrations of parts per billion by volume (ppbv). The symmetric S-O stretching mode was excited by a continuous-wave quantum cascade laser with radiation wavenumber ranging from 1275.7 to 1269.3 cm-1. The photoacoustic signal was generated by modulating the laser wavenumber at the first longitudinal mode of the photoacoustic cell with amplitude depth of 5 × 10-3 cm-1. The detection of a minimum SO2F2 concentration of 20 ppbv was achieved.

  4. Novel applications of photoacoustic spectroscopy in life sciences

    Science.gov (United States)

    Stolik, S.

    2004-10-01

    The Photoacoustic Spectroscopy, based on the generation of acoustic waves following the absorption of the modulated light by an enclosed material, was discovered in 1880 by Alexander Graham Bell. There are a lot of remarkable achievements in this topic since those days. It has been intended to present a relatively new tool to the researchers in biological areas and, simultaneously, to propose new fields of investigation to those who have been attracted by physics. The application of Photoacoustic trace gas detection to the determination of ethylene content in mice exhalation is described as a biomarker of free radicals production. It has been demonstrated the feasibility of studying the lipid peroxidation in vivo by this technique. Specifically, the results of δ-aminolevulinic acid administration in mice are presented. This drug has been used to induce Protoporphyrin IX production and ultimately to apply the Photodynamic Therapy, a recent method in cancer treatment. A kinetic study of Protoporphyrin IX production in mice skin and blood after δ-aminolevulinic acid administration in different doses is also shown. This study was performed using Photoacoustic Spectroscopy in solids.

  5. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells

    Science.gov (United States)

    Okumura, Takashi; Ohuchida, Kenoki; Sada, Masafumi; Abe, Toshiya; Endo, Sho; Koikawa, Kazuhiro; Iwamoto, Chika; Miura, Daisuke; Mizuuchi, Yusuke; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Oda, Yoshinao; Hashizume, Makoto; Nakamura, Masafumi

    2017-01-01

    Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells. PMID:28407685

  6. Enhanced fire-related traits may contribute to the invasiveness of Downy Brome (Bromus tectorum)

    Science.gov (United States)

    Although several invasive species have induced changes to the fire regime of invaded ecosystems, potential intraspecific shifts in fire-related traits that might enhance their invasion success, have never been addressed. We assumed that traits conferring persistence and competitiveness in post-fire ...

  7. Field emission properties of the graphenated carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudson.zanin@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Ceragioli, H.J.; Peterlevitz, A.C.; Baranauskas, Vitor [Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Marciano, F.R.; Lobo, A.O. [Laboratory of Biomedical Nanotechnology/Institute of Research and Development at UNIVAP, Av. Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, SP (Brazil)

    2015-01-01

    Graphical abstract: - Highlights: • Facile method to prepare graphenated carbon nanotubes (g-CNTs). • The electric field emission behaviour of g-CNTs was studied. • g-CNTs show better emission current stability than non-graphenated CNTs. - Abstract: Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.

  8. Enhanced linear-array photoacoustic beamforming using modified coherence factor.

    Science.gov (United States)

    Mozaffarzadeh, Moein; Yan, Yan; Mehrmohammadi, Mohammad; Makkiabadi, Bahador

    2018-02-01

    Photoacoustic imaging (PAI) is a promising medical imaging modality providing the spatial resolution of ultrasound imaging and the contrast of optical imaging. For linear-array PAI, a beamformer can be used as the reconstruction algorithm. Delay-and-sum (DAS) is the most prevalent beamforming algorithm in PAI. However, using DAS beamformer leads to low-resolution images as well as high sidelobes due to nondesired contribution of off-axis signals. Coherence factor (CF) is a weighting method in which each pixel of the reconstructed image is weighted, based on the spatial spectrum of the aperture, to mainly improve the contrast. We demonstrate that the numerator of the formula of CF contains a DAS algebra and propose the use of a delay-multiply-and-sum beamformer instead of the available DAS on the numerator. The proposed weighting technique, modified CF (MCF), has been evaluated numerically and experimentally compared to CF. It was shown that MCF leads to lower sidelobes and better detectable targets. The quantitative results of the experiment (using wire targets) show that MCF leads to for about 45% and 40% improvement, in comparison with CF, in the terms of signal-to-noise ratio and full-width-half-maximum, respectively. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus.

    Science.gov (United States)

    Favazza, Christopher P; Jassim, Omar; Cornelius, Lynn A; Wang, Lihong V

    2011-01-01

    In several human volunteers, photoacoustic microscopy (PAM) has been utilized for noninvasive cutaneous imaging of the skin microvasculature and a melanocytic nevus. Microvascular networks in both acral and nonacral skin were imaged, and multiple features within the skin have been identified, including the stratum corneum, epidermal-dermal junction, and subpapillary vascular plexus. Several vascular and structural differences between acral and nonacral skin were also observed in the photoacoustic images. In addition, a nevus was photoacoustically imaged, excised, and histologically analyzed. The photoacoustic images allowed for in vivo measurement of tumor thickness, depth, and microvasculature-values confirmed by histologic examination. The presented images demonstrate the potential of PAM to aid in the study and evaluation of cutaneous microcirculation and analysis of pigmented lesions. Through its ability to three-dimensionally image the structure and function of the microvasculature and pigmented lesions, PAM can have a clinical impact in diagnosis and assessment of systemic diseases that affect the microvasculature such as diabetes and cardiovascular disease, cutaneous malignancies such as melanoma, and potentially other skin disorders.

  10. British Thoracic Society Quality Standards for acute non-invasive ventilation in adults

    Science.gov (United States)

    Davies, Michael; Allen, Martin; Bentley, Andrew; Bourke, Stephen C; Creagh-Brown, Ben; D’Oliveiro, Rachel; Glossop, Alastair; Gray, Alasdair; Jacobs, Phillip; Mahadeva, Ravi; Moses, Rachael; Setchfield, Ian

    2018-01-01

    Introduction The purpose of the quality standards document is to provide healthcare professionals, commissioners, service providers and patients with a guide to standards of care that should be met for the provision of acute non-invasive ventilation in adults together with measurable markers of good practice. Methods Development of British Thoracic Society (BTS) Quality Standards follows the BTS process of quality standard production based on the National Institute for Health and Care Excellence process manual for the development of quality standards. Results 6 quality statements have been developed, each describing a standard of care for the provision of acute non-invasive ventilation in the UK, together with measurable markers of good practice. Conclusion BTS Quality Standards for acute non-invasive ventilation in adults form a key part of the range of supporting materials that the Society produces to assist in the dissemination and implementation of guideline’s recommendations. PMID:29636979

  11. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency.

    Science.gov (United States)

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2015-03-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.

  12. Thiomers: potential excipients for non-invasive peptide delivery systems.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas; Krauland, Alexander H; Leitner, Verena M; Palmberger, Thomas

    2004-09-01

    In recent years thiolated polymers or so-called thiomers have appeared as a promising alternative in the arena of non-invasive peptide delivery. Thiomers are generated by the immobilisation of thiol-bearing ligands to mucoadhesive polymeric excipients. By formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of these polymers are improved up to 130-fold. Due to formation of inter- and intramolecular disulfide bonds within the thiomer itself, dosage forms such as tablets or microparticles display strong cohesive properties resulting in comparatively higher stability, prolonged disintegration times and a more controlled release of the embedded peptide drug. The permeation of peptide drugs through mucosa can be improved by the use of thiolated polymers. Additionally some thiomers exhibit improved inhibitory properties towards peptidases. The efficacy of thiomers in non-invasive peptide delivery could be demonstrated by various in vivo studies. Tablets comprising a thiomer and pegylated insulin, for instance, resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Furthermore, a pharmacological efficacy of 1.3% was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Human growth hormone in a thiomer-gel was applied nasally to rats and led to a bioavailability of 2.75%. In all these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. According to these results drug carrier systems based on thiomers seem to be a promising tool for non-invasive peptide drug delivery.

  13. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  14. Facilitate insight by non-invasive brain stimulation.

    Directory of Open Access Journals (Sweden)

    Richard P Chi

    Full Text Available Our experiences can blind us. Once we have learned to solve problems by one method, we often have difficulties in generating solutions involving a different kind of insight. Yet there is evidence that people with brain lesions are sometimes more resistant to this so-called mental set effect. This inspired us to investigate whether the mental set effect can be reduced by non-invasive brain stimulation. 60 healthy right-handed participants were asked to take an insight problem solving task while receiving transcranial direct current stimulation (tDCS to the anterior temporal lobes (ATL. Only 20% of participants solved an insight problem with sham stimulation (control, whereas 3 times as many participants did so (p = 0.011 with cathodal stimulation (decreased excitability of the left ATL together with anodal stimulation (increased excitability of the right ATL. We found hemispheric differences in that a stimulation montage involving the opposite polarities did not facilitate performance. Our findings are consistent with the theory that inhibition to the left ATL can lead to a cognitive style that is less influenced by mental templates and that the right ATL may be associated with insight or novel meaning. Further studies including neurophysiological imaging are needed to elucidate the specific mechanisms leading to the enhancement.

  15. Defining Priorities to Improve Patient Experience in Non-Muscle Invasive Bladder Cancer.

    Science.gov (United States)

    Garg, Tullika; Connors, Jill Nault; Ladd, Ilene G; Bogaczyk, Tyler L; Larson, Sharon L

    2018-01-20

    Although approximately 75% of bladder cancers are non-muscle invasive (NMIBC) at diagnosis, most research tends to focus on invasive disease (e.g., experiences related to radical cystectomy and urinary diversion). There is a lack of studies on quality of life, and especially qualitative research, in bladder cancer generally. As a result, relatively little is known about the experiences and needs of NMIBC patients. To understand patient experience, define care priorities, and identify targets for care improvement in NMIBC across the cancer continuum. Through focus groups, patients treated for NMIBC (stage influences on decision-making, and role of social support. Patients with NMIBC desired timely access to care and honest and caring provider communication. They described urinary function and emotional quality of life changes resulting from diagnosis and treatment. Avoiding cystectomy and being alive for family were the major decision influencers. In this qualitative study, we identified access to care, provider characteristics and communication, quality of life, values/influences on decision-making, and social support as priority areas to improve patient experience in NMIBC. Care redesign efforts should focus on improving access, enhancing provider communication, reducing side effects, and supporting caregiver roles.

  16. Photoacoustic imaging in scattering media by combining a correlation matrix filter with a time reversal operator.

    Science.gov (United States)

    Rui, Wei; Tao, Chao; Liu, Xiaojun

    2017-09-18

    Acoustic scattering medium is a fundamental challenge for photoacoustic imaging. In this study, we reveal the different coherent properties of the scattering photoacoustic waves and the direct photoacoustic waves in a matrix form. Direct waves show a particular coherence on the antidiagonals of the matrix, whereas scattering waves do not. Based on this property, a correlation matrix filter combining with a time reversal operator is proposed to preserve the direct waves and recover the image behind a scattering layer. Both numerical simulations and photoacoustic imaging experiments demonstrate that the proposed approach effectively increases the image contrast and decreases the background speckles in a scattering medium. This study might improve the quality of photoacoustic imaging in an acoustic scattering environment and extend its applications.

  17. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    International Nuclear Information System (INIS)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao; Song, Yenan; Li, Zhenhua; Zhao, Pei; Shang, Xuefu

    2015-01-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm 2 , and field enhancement factor of ∼1.3 × 10 4 . The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport

  18. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  19. Research Report Non-invasive DNA-based species and sex ...

    Indian Academy of Sciences (India)

    shrushti modi

    Non-invasive DNA-based species and sex identification of Asiatic wild dog (Cuon alpinus) .... We did not find any cross-gender amplification with any of the reference or field-collected samples. Success rate for sex discrimination for all field-.

  20. Non-invasive markers of atherosclerosis and their correlation with ...

    African Journals Online (AJOL)

    McRoy

    2014-07-26

    Jul 26, 2014 ... Study of non- invasive markers in patients with type 2 diabetes mellitus. Int J Med Biomed Res ... hypertension, smoking, and alcohol intake were documented for .... The risk of general CVD and hard CVD was significantly ...

  1. A sulfur hexafluoride sensor using quantum cascade and CO2 laser-based photoacoustic spectroscopy.

    Science.gov (United States)

    Rocha, Mila; Sthel, Marcelo; Lima, Guilherme; da Silva, Marcelo; Schramm, Delson; Miklós, András; Vargas, Helion

    2010-01-01

    The increase in greenhouse gas emissions is a serious environmental problem and has stimulated the scientific community to pay attention to the need for detection and monitoring of gases released into the atmosphere. In this regard, the development of sensitive and selective gas sensors has been the subject of several research programs. An important greenhouse gas is sulphur hexafluoride, an almost non-reactive gas widely employed in industrial processes worldwide. Indeed it is estimated that it has a radiative forcing of 0.52 W/m(2). This work compares two photoacoustic spectrometers, one coupled to a CO(2) laser and another one coupled to a Quantum Cascade (QC) laser, for the detection of SF(6). The laser photoacoustic spectrometers described in this work have been developed for gas detection at small concentrations. Detection limits of 20 ppbv for CO(2) laser and 50 ppbv for quantum cascade laser were obtained.

  2. Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-01

    The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).

  3. An underwater ranging system based on photoacoustic effect occurring on target surface

    Science.gov (United States)

    Ni, Kai; Hu, Kai; Li, Xinghui; Wang, Lidai; Zhou, Qian; Wang, Xiaohao

    2016-11-01

    In this paper, an underwater ranging system based on photoacoustic effect occurring on target surface is proposed. In this proposal, laser pulse generated by blue-green laser is directly incident on target surface, where the photoacoustic effect occurs and a sound source is formed. And then the sound wave which is also called photoacoustic signal is received by the ultrasonic receiver after passing through water. According to the time delay between transmitting laser and receiving photoacoustic signal, and sound velocity in water, the distance between the target and the ultrasonic receiver can be calculated. Differing from underwater range finding by only laser, this approach can avoid backscattering of laser beam, so easier to implement. Experimental system according to this principle has been constructed to verify the feasibility of this technology. The experimental results showed that a ranging accuracy of 1 mm can be effectively achieved when the target is close to the ultrasonic receiver.

  4. Enhancing quality of carbon nanotubes through a real-time controlled CVD process with application to next-generation nanosystems

    Science.gov (United States)

    Laxminarayana, Karthik; Jalili, Nader

    2004-07-01

    Nanocrystals and nanostructures will be the building blocks for future materials that will exhibit enhanced or entirely new combinations of properties with tremendous opportunity for novel technologies that can have far-reaching impact on our society. It is, however, realized that a major challenge for the near future is the design, synthesis and integration of nanostructures to develop functional nanosystems. In view of this, this exploratory research seeks to facilitate the development of a controlled and deterministic framework for nanomanufacturing of nanotubes as the most suitable choice among nanostructures for a plethora of potential applications in areas such as nanoelectronic devices, biological probes, fuel cell electrodes, supercapacitors and filed emission devices. Specifically, this paper proposes to control and maintain the most common nanotube growth parameters (i.e., reaction temperature and gas flow rate) through both software and hardware modifications. The influence of such growth parameters in a CVD process on some of the most vital and crucial aspects of nanotubes (e.g., length, diameter, yield, growth rate and structure) can be utilized to arrive at some unique and remarkable properties for the nanotubes. The objective here is, therefore, to control the process parameters to pinpoint accuracy, which would enable us to fabricate nanotubes having the desired properties and thereby maximize their ability to function at its fullest potential. To achieve this and in order to provide for experimental validation of the proposed research program, an experimental test-bed using the nanotube processing test chamber and a mechatronics workstation are being constructed.

  5. Non-invasive assessment of gastric activity

    International Nuclear Information System (INIS)

    Smallwood, R.H.; Brown, B.H.

    1983-01-01

    There have been many suggestions for the routine clinical use of the electro-enterogram, but with the exception of the reported usage in the USSR no significant penetration into medical practice has been reported elsewhere. Amongst the many suggestions have been the possible application of electrical stimulation via surface electrodes to overcome post-operative inhibition of intestinal electrical activity, which can be recorded via surface electrodes. Gastric emptying studies have shown that duodenal ulceration is associated with changes in the rate and pattern of emptying of solid meals. Identifiable patterns in the electro-gastrogram following a metal might have diagnostic application. There is some evidence of correlations of electrical activity and pathology in the large intestine. In the colon diverticular disease has been shown to change the frequency content of the slow wave electrical activity and there is some evidence that this might be recorded from surface electrodes. A major obstacle to progress remains the inability to relate non-invasive recordings to intestinal motility. The best hope may be the use of direct and yet non-invasive methods of obtaining motility and in this context real-time ultrasound imaging is probably the most promising technique. The electro-gastrogram has certainly been shown to allow recording of gastric slow wave activity and there is a reasonable hope that further methods of analysis will allow inferential information on motility to be obtained. The following section makes brief mention of these techniques

  6. Carbon nanotubes-assisted polyacrylamide gel electrophoresis for enhanced separation of human serum proteins and application in liverish diagnosis.

    Science.gov (United States)

    Jiang, Fubin; Wang, Yanan; Hu, Xinfang; Shao, Na; Na, Na; Delanghe, Joris R; Ouyang, Jin

    2010-11-01

    The application of pore-gradient polyacrylamide gel electrophoresis (PG-PAGE) incorporated with carbon nanotube modified by Triton X-100 and carboxylation so as to improve the separation of human serum proteins is reported. The novel PG-PAGE was made by adding water-soluble single-walled carbon nanotubes (CNTs) when preparing the polyacrylamide gel. Significant improvements in separation of complement C3 protein and haptoglobin (Hp) in human serum were achieved. It was estimated that the interactions between the hydrophilic groups on the proteins and the surface of the CNTs result in different adsorption kinetics of complement C3 and Hp subtype on the nanoparticles incorporated in the gel, thus enhancing the separation of the two proteins in serum. This new CNT matrix-assisted PG-PAGE method for enhanced separation of complement C3 and Hp in human serum was successfully applied to distinguish the samples from liverish patients and healthy people.

  7. Laser Fluence Recognition Using Computationally Intelligent Pulsed Photoacoustics Within the Trace Gases Analysis

    Science.gov (United States)

    Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.

    2017-11-01

    In this paper, the possibilities of computational intelligence applications for trace gas monitoring are discussed. For this, pulsed infrared photoacoustics is used to investigate SF6-Ar mixtures in a multiphoton regime, assisted by artificial neural networks. Feedforward multilayer perceptron networks are applied in order to recognize both the spatial characteristics of the laser beam and the values of laser fluence Φ from the given photoacoustic signal and prevent changes. Neural networks are trained in an offline batch training regime to simultaneously estimate four parameters from theoretical or experimental photoacoustic signals: the laser beam spatial profile R(r), vibrational-to-translational relaxation time τ _{V-T} , distance from the laser beam to the absorption molecules in the photoacoustic cell r* and laser fluence Φ . The results presented in this paper show that neural networks can estimate an unknown laser beam spatial profile and the parameters of photoacoustic signals in real time and with high precision. Real-time operation, high accuracy and the possibility of application for higher intensities of radiation for a wide range of laser fluencies are factors that classify the computational intelligence approach as efficient and powerful for the in situ measurement of atmospheric pollutants.

  8. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents

    Directory of Open Access Journals (Sweden)

    Eli Fine

    2009-04-01

    Full Text Available Eli Fine1, Lijie Zhang1, Hicham Fenniri2, Thomas J Webster1 1Department of Engineering, Brown University, Providence, RI, USA; 2National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, AB, CanadaAbstract: One of the main problems with current vascular stents is a lack of endothelial cell interactions, which if sufficient, would create a uniform healthy endothelium masking the underlying foreign metal from inflammatory cell interference. Moreover, if endothelial cells from the arterial wall do not adhere to the stent, the stent can become loose and dislodge. Therefore, the objective of this in vitro study was to design a novel biomimetic nanostructured coating (that does not contain drugs on conventional vascular stent materials (specifically, titanium for improving vascular stent applications. Rosette nanotubes (RNTs are a new class of biomimetic nanotubes that self-assemble from DNA base analogs and have been shown in previous studies to sufficiently coat titanium and enhance osteoblast cell functions. RNTs have many desirable properties for use as vascular stent coatings including spontaneous self-assembly in body fluids, tailorable surface chemistry for specific implant applications, and nanoscale dimensions similar to those of the natural vascular extracellular matrix. Importantly, the results of this study provided the first evidence that RNTs functionalized with lysine (RNT–K, even at low concentrations, significantly increase endothelial cell density over uncoated titanium. Specifically, 0.01 mg/mL RNT–K coated titanium increased endothelial cell density by 37% and 52% compared to uncoated titanium after 4 h and three days, respectively. The excellent cytocompatibility properties of RNTs (as demonstrated here for the first time for endothelial cells suggest the need for the further exploration of these novel nanostructured materials for vascular stent applications.Keywords: stents

  9. Influence of the Particle Length of Carbon Nanotube for Pool Boiling Critical Heat Flux Enhancement of Nanofluids

    International Nuclear Information System (INIS)

    Park, Sung Seek; Kim, Yong Hwan; Kim, Nam Jin

    2013-01-01

    The results of this experiment were that the CHF of the two nanofluids increased along with the volumetric fraction until 0.001 vol%, and the two types of nanofluids are the highest CHF at 0.001 vol%. Also, the results show clearly that the rate of CHF increase of the CM-100 MWCNT nanofluid with longer-length nanoparticles is higher than that of the CM-95 MWNCT nanofluid. These results indicate that the length of carbon nanotube influences the pool boiling CHF of carbon nanotube nanofluid and that long-length MWCNT, as above-noted, offers a superior effect in this regard. Boiling heat transfer is used in a variety of industrial processes and applications, such as refrigeration, power generation, heat exchangers, cooling of high-power electronics components and cooling of nuclear reactors. The critical heat flux (CHF) phenomenon is the thermal limit during a boiling heat transfer phase change; at the CHF point the heat transfer is maximised, followed by a drastic degradation after the CHF point. The consequence is a substantial increase in wall temperature which may result in physical failure phenomenon of heat transfer systems. Therefore, the CHF is important being considered in the cooling device design, such as nuclear reactor and nuclear fuels, steam generators, high-density electronic component, etc. And, CHF enhancement is essential for safety of heat transfer system. Recently, CHF reported increased when applied to the nanofluids, with its high (higher-than-base-fluid) thermal characteristic in the nuclear power plant system. Therefore, in this study, carried out the pool boiling CHF experiments by the particle length using carbon nanotube nanofluids, and the results are compared and analyzed for the CHF enhancement. The pool boiling CHF of experiments of carbon nanotube nanofluids carried out by the length of particles and the various concentrations

  10. Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer.

    Science.gov (United States)

    Namura, Kyoko; Suzuki, Motofumi; Nakajima, Kaoru; Kimura, Kenji

    2013-04-08

    Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.

  11. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  12. Measurement of non-invasive X-ray measuring instruments

    International Nuclear Information System (INIS)

    Abe, Shinji

    2013-01-01

    Described are the history, measuring system, characteristics and present state of the instruments in the title (NXMI). NXMI, non-invasive to the inner circuit of X-ray generator, is now essential for the quality control of generator with reference to definitions by International Electrotechnical Commission (IEC) and Japan Industrial Standards (JIS). Non-invasive measurement of the generator's tube voltage in 1944 is the first report where the absorption difference of Cu plates with different thickness is used. At present, NXMI, being compact, can measure multiple properties of X-ray generated, such as the tube voltage (TV), current (TC), imaging time, dose/dose rate, total filtration, half value layer, and TV/output waveform. TV is measurable by the penetration difference of X-rays through Cu filters of different thickness, which is a linear function of TV; TC, with the clamp-type ammeter placed at the generator high voltage cable; and the dose, with the semiconductor detector. Characteristics can be evaluable within the upper trigger level of the detector (radiation time, dose measured here), in which measured are the irradiation (imaging) time, delay time, and TV (within the window width). Authors' practical quality control of the generator is conducted through calibration for which data are obtained by invasive (direct) precise measurement of TV, TC, imaging time and dose with reference to JIS. Periodical calibration and consequent quality control of NXMI are essential for the maintenance of precision of the generator. (T.T.)

  13. Non-invasive blood glucose monitor based on spectroscopy using a smartphone.

    Science.gov (United States)

    Dantu, Vishnu; Vempati, Jagannadh; Srivilliputhur, Srinivasan

    2014-01-01

    Development of a novel method for non-invasive measurement of blood glucose concentration using smartphone is discussed. Our research work has three major contributions to society and science. First, we modified and extended the Beer-Lambert's law in physics to accommodate for multiple wavelengths. This extension can aid researchers who wish to perform optical spectroscopy. Second, we successfully developed a creative and non-invasive way for diabetic patients to measure glucose levels via a smartphone. Researchers and chemists can now use their smartphones to determine the absorbance and, therefore, concentration of a chemical. Third, we created an inexpensive way to perform optical spectroscopy by using a smartphone. Monitoring blood glucose using a smartphone application that simply uses equipment already available on smartphones will improve the lives of diabetic patients who can continuously check their blood glucose levels while avoiding the current inconvenient, unhygienic, and costly invasive glucose meters.

  14. Intercellular Communication in Malignant Pleural Mesothelioma: Properties of Tunneling Nanotubes

    Directory of Open Access Journals (Sweden)

    Justin William Ady

    2014-10-01

    Full Text Available Malignant pleural mesothelioma is a particularly aggressive and locally invasive malignancy with a poor prognosis despite advances in understanding of cancer cell biology and development of new therapies. At the cellular level, cultured mesothelioma cells present a mesenchymal appearance and a strong capacity for local cellular invasion. One important but underexplored area of mesothelioma cell biology is intercellular communication. Our group has previously characterized in multiple histological subtypes of mesothelioma a unique cellular protrusion known as tunneling nanotubes (TnTs. TnTs are long, actin filament-based, narrow cytoplasmic extensions that are non-adherent when cultured in vitro and are capable of shuttling cellular cargo between connected cells. Our prior work confirmed the presence of nanotube structures in tumors resected from patients with human mesothelioma. In our current study, we quantified the number of TnTs/cell among various mesothelioma subtypes and normal mesothelial cells using confocal microscopic techniques. We also examined TnT length among adherent cells and cells in suspension. We further examined potential approaches to the in vivo study of TnTs in animal models of cancer. We have developed novel approaches to study TnTs in aggressive solid tumor malignancies and define fundamental characteristics of TnTs in malignant mesothelioma. There is mounting evidence that TnTs play an important role in intercellular communication in mesothelioma and thus merit further investigation of their role in vivo.

  15. Surfactant-nanotube interactions in water and nanotube separation by diameter: atomistic simulations

    Science.gov (United States)

    Carvalho, E. J. F.; Dos Santos, M. C.

    2010-05-01

    A non-destructive sorting method to separate single-walled carbon nanotubes (SWNTs) by diameter was recently proposed. By this method, SWNTs are suspended in water by surfactant encapsulation and the separation is carried out by ultracentrifugation in a density gradient. SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic surfactants, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. Unexpectedly, small diameter nanotubes are found at the low density part of the centrifuge tube. We present molecular dynamics studies of the water-surfactant-SWNT system to investigate the role of surfactants in the sorting process. We found that surfactants can actually be attracted towards the interior of the nanotube cage, depending on the relationship between the surfactant radius of gyration and the nanotube diameter. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.

  16. Advanced signal processing theory and implementation for sonar, radar, and non-invasive medical diagnostic systems

    CERN Document Server

    Stergiopoulos, Stergios

    2009-01-01

    Integrates topics of signal processing from sonar, radar, and medical system technologies by identifying their concept similarities. This book covers non-invasive medical diagnostic system applications, including intracranial ultrasound, a technology that attempts to address non-invasive detection on brain injuries and stroke.

  17. Photoacoustical and pyroelectric dosimetry of X-ray radiation in diagnostic region

    International Nuclear Information System (INIS)

    Carvalho, A.A. de.

    1987-01-01

    Three new types of radiation dosimeters, designed to measure X rays in its diagnostic region are described: the pulsed photoacoustical radiation dosimeter, the pyroelectric radiation dosimeter and the pulsed pyroelectric radiation dosimeter. The photoacoustical radiation dosimeter with the scope of to compare its carachteristics with the carachteristics of the new developed dosimeters is also studied. A methodology for calibration of a photoacoustical dosimeter which doesn't require the calibration of its response in a known field of ionizing radiation is proposed. A theoretical model to explain the results produced by the pulsed pyroelectric radiation dosimeter is presented. The obtained results show that the developed dosimeters are of calorimetric type, being linear its response with the X ray energy fluence rate. (author) [pt

  18. Imaging modalities for the non-invasive diagnosis of endometriosis

    NARCIS (Netherlands)

    Nisenblat, Vicki; Bossuyt, Patrick M. M.; Farquhar, Cindy; Johnson, Neil; Hull, M. Louise

    2016-01-01

    About 10% of women of reproductive age suffer from endometriosis. Endometriosis is a costly chronic disease that causes pelvic pain and subfertility. Laparoscopy, the gold standard diagnostic test for endometriosis, is expensive and carries surgical risks. Currently, no non-invasive tests that can

  19. Blood biomarkers for the non-invasive diagnosis of endometriosis

    NARCIS (Netherlands)

    Nisenblat, Vicki; Bossuyt, Patrick M. M.; Shaikh, Rabia; Farquhar, Cindy; Jordan, Vanessa; Scheffers, Carola S.; Mol, Ben Willem J.; Johnson, Neil; Hull, M. Louise

    2016-01-01

    Background About 10% of reproductive-aged women suffer from endometriosis, a costly chronic disease causing pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but is expensive and carries surgical risks. Currently, there are no non-invasive or minimally

  20. Double-walled ZrO{sub 2} nanotube array. Preparation and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chaorui; Hu, Shengliang; Chang, Qing; Wang, Yanzhong [School of Materials Science and Engineering, North University of China, Taiyuan (China); Yang, Jinlong [School of Materials Science and Engineering, North University of China, Taiyuan (China); School of Materials Science and Engineering, Tsinghua University, Beijing (China)

    2017-11-15

    This work demonstrates the formation of self-ordered double-walled ZrO{sub 2} nanotube array via electrochemical anodization in glycerol-based electrolyte. Compared with its counterpart of single-walled ZrO{sub 2} nanotube array, the tube wall of double-walled ZrO{sub 2} nanotube split into outer and inner layers for the decomposition of glycerol during anodization process. Moreover, the double-walled structure showed its advantage of achieving improved utilization of light and higher specific surface area of nanotube array. Due to the unique double-walled structure, the double-walled ZrO{sub 2} nanotube array exhibited better photocatalytic activity than the single-walled ZrO{sub 2} nanotube array. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)