WorldWideScience

Sample records for nanostructured surface layer

  1. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers

    Science.gov (United States)

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-03-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  2. Characterization and Properties of Nanostructured Surface Layer in a Low Carbon Steel Subjected to Surface Mechanical Attrition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A nanostructured surface layer was synthesized on a Iow carbon steel by using surface mechanical attrition (SMA)technique. The refined microstructure of the surface layer was characterized by means of different techniques,and the hardness variation along the depth was examined. Experimental results show that the microstructure isinhomogeneous along the depth. In the region from top surface to about 40μm deep, the grain size increases fromabout 10 nm to 100 nm. In the adjacent region of about 40~80μm depth, the grain size increases from about 100nm to 1000 nm. The grain refinement can be associated with the activity of dislocations. After the SMA treatment,the hardness of the surface layer is enhanced significantly compared with that of the original sample, which canprimarily be attributed to the grain refinement.

  3. Fabrication and characterization of PbSe nanostructures on van der Waals surfaces of GaSe layered semiconductor crystals

    Science.gov (United States)

    Kudrynskyi, Z. R.; Bakhtinov, A. P.; Vodopyanov, V. N.; Kovalyuk, Z. D.; Tovarnitskii, M. V.; Lytvyn, O. S.

    2015-11-01

    The growth morphology, composition and structure of PbSe nanostructures grown on the atomically smooth, clean, nanoporous and oxidized van der Waals (0001) surfaces of GaSe layered crystals were studied by means of atomic force microscopy, x-ray diffractometry, photoelectron spectroscopy and Raman spectroscopy. Semiconductor heterostructures were grown by the hot-wall technique in vacuum. Nanoporous GaSe substrates were fabricated by the thermal annealing of layered crystals in a molecular hydrogen atmosphere. The irradiation of the GaSe(0001) surface by UV radiation was used to fabricate thin Ga2O3 layers with thickness clusters with a square or rectangular symmetry on the clean low-energy (0001) GaSe surface, and (001)-oriented growth of PbSe thin films takes place on this surface. Using this growth technique it is possible to grow PbSe nanostructures with different morphologies: continuous epitaxial layers with thickness quantum dots with a high lateral density (more than 1011 cm-2) on the oxidized van der Waals (0001) surfaces and faceted square pillar-like nanostructures with a low lateral density (˜108 cm-2) on the nanoporous GaSe substrates. We exploit the ‘vapor-liquid-solid’ growth with low-melting metal (Ga) catalyst of PbSe crystalline branched nanostructures via a surface-defect-assisted mechanism.

  4. Study of the Mechanical Properties of a Nanostructured Surface Layer on 316L Stainless Steel

    Directory of Open Access Journals (Sweden)

    F. C. Lang

    2016-01-01

    Full Text Available A nanostructured surface layer (NSSL was generated on a 316L stainless steel plate through surface nanocrystallization (SNC. The grains of the surface layer were refined to nanoscale after SNC treatment. Moreover, the microstructure and mechanical properties of NSSL were analyzed with a transmission electron microscope (TEM and scanning electron microscope (SEM, through nanoindentation, and through reverse analysis of finite element method (FEM. TEM results showed that the grains in the NSSL measured 8 nm. In addition, these nanocrystalline grains took the form of random crystallographic orientation and were roughly equiaxed in shape. In situ SEM observations of the tensile process confirmed that the motions of the dislocations were determined from within the material and that the motions were blocked by the NSSL, thus improving overall yielding stress. Meanwhile, the nanohardness and the elastic modulus of the NSSL, as well as those of the matrix, were obtained with nanoindentation technology. The reverse analysis of FEM was conducted with MARC software, and the process of nanoindentation on the NSSL and the matrix was simulated. The plastic mechanical properties of NSSL can be derived from the simulation by comparing the results of the simulation and of actual nanoindentation.

  5. Nanostructured Hardening of Hard Alloys Surface Layers Through Electron Irradiation in Heavy Inert Gas Plasma Conditions

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, Yu F.; Ivanov, K. V.; Mokhovikov, A. A.; Baohai, Yu; Hua, Xu Yun

    2016-08-01

    The paper presents research and experimental findings which prove that metal ceramic composite surface layer contains micro constituents’ hierarchies in the form of secondary nano sized inclusions inside ceramic phases. These inclusions have typical dimensions from several tens to several hundreds of nano meters. It has been shown that multi level structure-phase condition, developed in a nano sized area, effects physical and tribological properties of a metal ceramic composite surface layer.

  6. Enhanced bonding property of cold-sprayed Zn-Al coating on interstitial-free steel substrate with a nanostructured surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Y.L. [University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Advanced Technology Division, Research Institute, Baoshan Iron & Steel Co., Ltd., 655 Fujin Road, Shanghai 201900 (China); Wang, Z.B., E-mail: zbwang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, J. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, J.B. [Advanced Technology Division, Research Institute, Baoshan Iron & Steel Co., Ltd., 655 Fujin Road, Shanghai 201900 (China); Lu, K. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-11-01

    Highlights: • A nanostructured surface layer was produced on hot-rolled interstitial-free steel. • Zn-Al coating was cold-sprayed on the steel plate with nanostructured surface layer. • Bonding strength of the coating on the nanostructured surface increases ∼30%. • Improved bonding property was due to promoted diffusion and hardness in surface layer. • No further increase in bonding property was achieved after annealing at 400 °C. - Abstract: By means of surface mechanical attrition treatment (SMAT), a gradient nanostructured surface layer was fabricated on a hot-rolled interstitial-free steel plate. A Zn-Al coating was subsequently deposited on the SMAT sample by using cold spray process. The bonding property of the coating on the SMAT substrate was compared with that on the coarse-grained (CG) sample. Stud-pull tests showed that the bonding strength in the as-sprayed SMAT sample is ∼30% higher than that in the as-sprayed CG sample. No further improvement in bonding strength was achieved in the coated SMAT sample after annealing at 400 °C, mostly due to the formation of cracks and intermetallic compounds at the coating/substrate interface in an earlier stage (<30 min) and in a final stage (>90 min), respectively. The enhanced bonding property of the Zn-Al coating on the SMAT sample might be related with the promoted atomic diffusion and hardness in the nanostructured surface layer.

  7. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  8. Surface preparation of gold nanostructures on glass by ultraviolet ozone and oxygen plasma for thermal atomic layer deposition of Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, Cady A., E-mail: lancaster@chem.utah.edu; Shumaker-Parry, Jennifer S., E-mail: shumaker-parry@chem.utah.edu

    2016-08-01

    Thin film deposition to create robust plasmonic nanomaterials is a growing area of research. Plasmonic nanomaterials have tunable optical properties and can be used as substrates for surface-enhanced spectroscopies. Due to the surface sensitivity and the dependence of the near-field behavior on structural details, degradation from cleaning or spectroscopic interrogation causes plasmonic nanostructures to lose distinctive localized surface plasmon resonances or exhibit diminished optical near-field enhancements over time. To decrease degradation, conformal thin films of alumina are deposited on nanostructured substrates using atomic layer deposition. While film growth on homogenous surfaces has been studied extensively, atomic layer deposition-based film growth on heterogeneous nanostructured surfaces is not well characterized. In this report, we have evaluated the impact of oxygen plasma and ultraviolet ozone pre-treatments on Au nanoparticle substrates for thin film growth by monitoring changes in plasmonic response and nanostructure morphology. We have found that ultraviolet ozone is more effective than oxygen plasma for cleaning gold nanostructured surfaces, which is in contrast to bulk films of the same material. Our results show that oxygen plasma treatment negatively impacts the nanostructure and alumina coating based on both scanning electron microscopy analysis of morphology and changes in the plasmonic response. - Highlights: • Plasmonic response indicates oxygen plasma damages Au structures and Al{sub 2}O{sub 3} films. • Ultraviolet ozone (UVO) re-activates aged Al{sub 2}O{sub 3}-coated Au nanostructures. • UVO treatments do not damage Au or Al{sub 2}O{sub 3}-coated nanostructures.

  9. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was information (ESI) available. See DOI: 10.1039/c5nr06157a

  10. PREFACE: Nanostructured surfaces

    Science.gov (United States)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  11. Atomic layer deposition of nanostructured materials

    CERN Document Server

    Pinna, Nicola

    2012-01-01

    Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (du

  12. Structure and the catalysis mechanism of oxidative chlorination in nanostructural layers of a surface of alumina

    OpenAIRE

    Kurta, Sergiy A; Mykytyn, Igor M; Tatarchuk, Tetiana R

    2014-01-01

    On the basis of X-ray diffraction and mass spectrometric analysis of carrier γ-Al2O3 and catalysts CuCl2/CuCl on its surface, the chemical structure of the active centers of two types oxidative chlorination catalysts applied and permeated type of industrial brands “Harshow” and “MEDС-B” was investigated. On the basis of quantum-mechanical theory of the crystal, field complexes were detected by the presence of CuCl2 cation stoichiometry and structure of the proposed model crystal quasichemical...

  13. Structure and the catalysis mechanism of oxidative chlorination in nanostructural layers of a surface of alumina.

    Science.gov (United States)

    Kurta, Sergiy A; Mykytyn, Igor M; Tatarchuk, Tetiana R

    2014-01-01

    On the basis of X-ray diffraction and mass spectrometric analysis of carrier γ-Al2O3 and catalysts CuCl2/CuCl on its surface, the chemical structure of the active centers of two types oxidative chlorination catalysts applied and permeated type of industrial brands "Harshow" and "MEDС-B" was investigated. On the basis of quantum-mechanical theory of the crystal, field complexes were detected by the presence of CuCl2 cation stoichiometry and structure of the proposed model crystal quasichemical industrial catalyst permeated type MEDС-B for oxidative chlorination of ethylene. On the basis of quantum-mechanical calculations, we propose a new mechanism of catalysis crystal quasichemical oxidative chlorination of ethylene reaction for the catalysts of this type (MEDС-B) and confirmed the possibility of such a mechanism after the analysis of mass spectrometric studies of the active phase (H2 [CuCl4]) catalyst oxidative chlorination of ethylene. The possibility of the formation of atomic and molecular chlorine on the oxidative chlorination of ethylene catalyst surface during Deacon reaction was displaying, which may react with ethylene to produce 1,2-dichloroethane. For the active phase (H [CuCl2]), catalyst offered another model of the metal complex catalyst oxidative chlorination of ethylene deposited type (firm 'Harshow,' USA) and the mechanism of catalysis of oxidative chlorination of ethylene with this catalyst.

  14. Solar Cells Having a Nanostructured Antireflection Layer

    DEFF Research Database (Denmark)

    2013-01-01

    An solar cell having a surface in a first material is provided, the optical device having a non-periodic nanostructure formed in the surface, the nanostructure comprising a plurality of cone -haped structures wherein the cones are distributed non-periodically on the surface and have a random heig...

  15. Investigation of the Temperature Field of Coolant in the Installations for Obtaining 3D Nanostructured Porous Surface Layer on the Granules of Ammonium Nitrate

    Directory of Open Access Journals (Sweden)

    A.E. Artyukhov

    2017-02-01

    Full Text Available The paper is devoted to the study of thermodynamic indicators of the granulator’s work and intensity of directed vortex motion of heat transfer agent influence on structure and quality of porous surface layer of ammonium nitrate granules. Field heat transfer agent temperature in time in vortex granulator was obtained. The results of heat transfer agent temperatures fields at different its circumferential speed (spin degree study are presented. The surface structure granules obtained in the vortex gas flow with different spins intensities was studied. The obtained findings are base for vortex granulators engineering calculation technique development in the composition of devices for producing of 3-D nanostructured porous surface layer on ammonium nitrate granule.

  16. Nanostructured Dielectric Layer for Ultrathin Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yusi Chen

    2017-01-01

    Full Text Available Nanostructures have been widely used in solar cells due to their extraordinary photon management properties. However, due to poor pn junction quality and high surface recombination velocity, typical nanostructured solar cells are not efficient compared with the traditional commercial solar cells. Here, we demonstrate a new approach to design, simulate, and fabricate whole-wafer nanostructures on dielectric layer on thin c-Si for solar cell light trapping. The optical simulation results show that the periodic nanostructure arrays on dielectric materials could suppress the reflection loss over a wide spectral range. In addition, by applying the nanostructured dielectric layer on 40 μm thin c-Si, the reflection loss is suppressed to below 5% over a wide spectra and angular range. Moreover, a c-Si solar cell with 2.9 μm ultrathin absorber layer demonstrates 32% improvement in short circuit current and 44% relative improvement in energy conversion efficiency. Our results suggest that nanostructured dielectric layer has the potential to significantly improve solar cell performance and avoid typical problems of defects and surface recombination for nanostructured solar cells, thus providing a new pathway towards realizing high-efficiency and low-cost c-Si solar cells.

  17. Feasibility study of SWIR light absorption enhancement in PbS and PbSe nano-structure layers using surface plasmon polariton

    Directory of Open Access Journals (Sweden)

    Nimrod Nissim

    2017-03-01

    Full Text Available We present a theoretical feasibility study of the use of reflection grating couplers in order to harness the Surface Plasmon Polariton (SPP to increase the absorption efficiency in the short wavelength infrared (SWIR spectral range of a novel SWIR to visible (VIS direct up-conversion imaging device. This device detects the SWIR spectral band photons using high absorption PbSe/CdSe core-shell, PbS nano-spheres or PbSe nano-columns. In order to further enhance the absorption of the SWIR light within the nano-structure layer we propose to add another light absorption enhancement, known as SPP enhanced absorption. The idea is to cover the absorber layer surface with a structured metal layer that will ignite SPPs on the metal – dielectric interface, by coupling between the incident TM polarized photons and the SPP modes; this results in better field confinement at the interface that will further increase the SWIR absorption of this thin layer. Calculation of the field profile of the surface plasmon (SP in the SWIR range shows perpendicular dominance of the SP’s electrical field direction on the dielectric layer side (the PbS or PbSe/CdSe absorption layer side. Based on this result, it was found that, due to the use of quantum confined and, thus, high oscillator strength nanostructures, there is only a marginal increase in the absorption and, hence, in the quantum efficiency when using the SPP enhancement technique. Nevertheless, we show that one of the proposed configurations of the metal grating coupler, having a lamellar structure with a pitch of 1.38μm, a duty cycle (DC of 0.12μm and a height of 60nm, is predicted to increase the total layer’s absorption by 9.5%, mainly due to efficient light scattering rather than to SPP enhanced absorption.

  18. Photosensitive n-In2O3 / p-InSe Heterojunctions with Nanostructured Surface of the Frontal Layer

    Directory of Open Access Journals (Sweden)

    Z.D. Kovalyuk

    2013-10-01

    Full Text Available We report on photosensitive n-In2O3 / p-InSe heterojunctions with nanostructured In2O3 frontal layer. It was established that photoresponse spectra of the heterojunctions significantly depend on the surface topology of the oxide. this means that the oxide with semiconductor substrate is not only an active component of the structure, but also serves as a cell diffraction material. Surface topology of the oxide was studied by means of the atomic force microscope. At various conditions of oxidation of InSe the surface of the samples contained nanoformations preferably in the form of nanoneedles. Their location has both a disordered and ordered character. A dimensional optical effect in the oxide was revealed due to the anisotropic light absorption in InSe. The higher deviation of incident light from its normal direction due to a nano-structured surface is, the higher variation in the generation of carriers in the semiconductor is. These changes consist in the energy broadening of the heterojunction photoresponse spectrum as well as in the peculiarities of the excitonic line. The higher density and ordering of the nanoneedles on the oxide surface is, the higher long-wave shift and more intensive excitonic peak in the spectrum takes place.

  19. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.

    Science.gov (United States)

    Suresh Kumar, P; Sundaramurthy, J; Mangalaraj, D; Nataraj, D; Rajarathnam, D; Srinivasan, M P

    2011-11-01

    A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows.

  20. Nanostructure of Poly(Acrylic Acid) Adsorption Layer on the Surface of Activated Carbon Obtained from Residue After Supercritical Extraction of Hops

    Science.gov (United States)

    Wiśniewska, M.; Nosal-Wiercińska, A.; Ostolska, I.; Sternik, D.; Nowicki, P.; Pietrzak, R.; Bazan-Wozniak, A.; Goncharuk, O.

    2017-01-01

    The nanostructure of poly(acrylic acid) (PAA) adsorption layer on the surface of mesoporous-activated carbon HPA obtained by physical activation of residue after supercritical extraction of hops was characterized. This characterization has been done based on the analysis of determination of adsorbed polymer amount, surface charge density, and zeta potential of solid particles (without and in the PAA presence). The SEM, thermogravimetric, FTIR, and MS techniques have allowed one to examine the solid surface morphology and specify different kinds of HPA surface groups. The effects of solution pH, as well as polymer molecular weight and concentration, were studied. The obtained results indicated that the highest adsorption on the activated carbon surface was exhibited by PAA with lower molecular weight (i.e., 2000 Da) at pH 3. Under such conditions, polymeric adsorption layer is composed of nanosized PAA coils (slightly negatively charged) which are densely packed on the positive surface of HPA. Additionally, the adsorption of polymeric macromolecules into solid pores is possible.

  1. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth

    Science.gov (United States)

    Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.

    2017-01-01

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  2. The Study of Surfaces' Micro- and Nanostructure on Interlayer Cleavages of InSe Layered Crystals Intercalated by Nickel

    Directory of Open Access Journals (Sweden)

    P.V. Galiy

    2016-03-01

    Full Text Available This paper presents the results of experimental study concerning element-phase composition, crystallographic structure, topography and electron-energy structure of interlayer cleavage (0001 surfaces, obtained for nickel intercalated (Ni3dInSe intercalate InSe layered crystals, by means of qualitative and quantitative X-ray photoelectron spectroscopy (XPS, low energy electron diffraction (LEED and scanning tunneling microscopy/spectroscopy (STM/STS. It was established that for all layered crystals' intercalates with different concentrations of nickel in initial synthesized InSe + x at.% Ni (x ≤ 10,0 % alloys and layered crystals further grown from them by Bridgman-Stockbarger method and subjected to intercalation, the maximum concentration of nickel on the cleavage (0001 surfaces of NiхInSe intercalates and, accordingly, in the interlayer gaps of up to 7.67 at. % is observed at 0.75 at. % of nickel in synthesized alloys. Nickel doesn't interact with selenium and indium and there are also no interaction with oxygen and carbon. It is established that nickel is placed in the interlayer gaps of NiхInSe intercalates and, accordingly, appears on the interlayer cleavage (0001 surfaces as fine-phase metal nickel clusters. The studied NiхInSe intercalate system is the perfect hybrid structure with the ability to use in magnetoelectronics.

  3. Surface Oxidation and Fast 18O Implant Diffusion in Nanostructured Layers of Ti-6Al-4V Alloy

    OpenAIRE

    S.M. Duvanov; A.G. Balogh

    2015-01-01

    A formation of the near surface barrier composite oxide film and two-stage 18O implant diffusion in modified layers of Ti-6Al-4V alloy were observed in the present work. Fast and super fast regimes occur during second stage of the diffusion. Sample modification was performed using ion implantation and subsequent thermal annealing in ultra-high vacuum (UHV) atmosphere. Parameters of ion implantation are the following: 18O+ ion energy of 30 keV; fluence of 3 × 1017 ion/cm2; RT. Post-implantatio...

  4. Studies of surface morphology and optical properties of ZnO nanostructures grown on different molarities of TiO2 seed layer

    Science.gov (United States)

    Asib, N. A. M.; Afaah, A. N.; Aadila, A.; Rusop, M.; Khusaimi, Z.

    2016-07-01

    Titanium dioxide (TiO2) seed layer was prepared by using sol-gel spin-coating technique, followed by growth of 0.01 M of Zinc oxide (ZnO) nanostructures by solution-immersion. The molarities of TiO2 seed layer were varied from 1.1 M to 0.100 M on glass substrates. The nanostructures thin films were characterized by Field Emission Scanning Electrons Microscope (FESEM), Photoluminescence (PL) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy. FESEM images demonstrate that needle-like ZnO nanostructures are formed on all TiO2 seed layer. The smallest diameter of needle-like ZnO nanostructures (90.3 nm) were deposited on TiO2 seed layer of 0.100 M. PL spectra of the TiO2: ZnO nanostructures thin films show the blue shifted emissions in the UV regions compared to the ZnO thin film. Meanwhile, UV-vis spectra of films display high absorption in the UV region and high trasparency in the visible region. The highest absorbance at UV region was recorded for sample which has 0.100 M of TiO2 seed layer.

  5. Hemocompatibility of polymeric nanostructured surfaces.

    Science.gov (United States)

    Leszczak, Victoria; Smith, Barbara S; Popat, Ketul C

    2013-01-01

    Tissue integration is an important property when inducing transplant tolerance, however, the hemocompatibility of the biomaterial surface also plays an important role in the ultimate success of the implant. Therefore, in order to induce transplant tolerance, it is critical to understand the interaction of blood components with the material surfaces. In this study, we have investigated the adsorption of key blood serum proteins, in vitro adhesion and activation of platelets and clotting kinetics of whole blood on flat polycaprolactone (PCL) surfaces, nanowire (NW) surfaces and nanofiber (NF) surfaces. Previous studies have shown that polymeric nanostructured surfaces improve cell adhesion, proliferation and viability; however it is unclear how these polymeric nanostructured surfaces interact with the blood and its components. Protein adsorption results indicate that while there were no significant differences in total albumin (ALB) adsorption on PCL, NW and NF surfaces, NW surfaces had higher total fibrinogen (FIB) and immunoglobulin-G (IgG) adsorption compared to NF and PCL surfaces. In contrast, NF surfaces had higher surface FIB and IgG adsorption compared to PCL and NW surfaces. Platelet adhesion and viability studies show more adhesion and clustering of platelets on the NF surfaces as compared to PCL and NW surfaces. Platelet activation studies reveal that NW surfaces have the highest percentage of unactivated platelets, whereas NF surfaces have the highest percentage of fully activated platelets. Whole blood clotting results indicate that NW surfaces maintain an increased amount of free hemoglobin during the clotting process compared to PCL and NF surface, indicating less clotting and slower rate of clotting on their surfaces.

  6. Wetting properties of nanostructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Canut, S. [Laboratoire de Physique de la Matiere Condensee et Nanostructures (UMR CNRS 5586), Universite Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)]. E-mail: ramos@lpmcn.univ-lyon1.fr

    2006-04-15

    Swift heavy ion irradiation is a powerful tool to tailor surfaces under controlled conditions at a nanometric scale. The growing importance of nanostructured surfaces for a wide variety of applications and fundamental investigations is now well established. In this paper I will mainly discuss the interest of such surfaces for investigations concerning solid-liquid interfaces. The role played by topographical defects on wetting properties of solid surfaces, and both the dissipative and the confinement effects on the interface will be demonstrated by simple examples.

  7. Modeling of biological nanostructured surfaces

    Science.gov (United States)

    Cristea, P. D.; Tuduce, Rodica; Arsene, O.; Dinca, Alina; Fulga, F.; Nicolau, D. V.

    2010-02-01

    The paper presents a methodology using atom or amino acid hydrophobicities to describe the surface properties of proteins in order to predict their interactions with other proteins and with artificial nanostructured surfaces. A standardized pattern is built around each surface atom of the protein for a radius depending on the molecule type and size. The atom neighborhood is characterized in terms of the hydrophobicity surface density. A clustering algorithm is used to classify the resulting patterns and to identify the possible interactions. The methodology has been implemented in a software package based on Java technology deployed in a Linux environment.

  8. Nanostructure of the Ionic Liquid-Graphite Stern Layer.

    Science.gov (United States)

    Elbourne, Aaron; McDonald, Samila; Voïchovsky, Kislon; Endres, Frank; Warr, Gregory G; Atkin, Rob

    2015-07-28

    Ionic liquids (ILs) are attractive solvents for devices such as lithium ion batteries and capacitors, but their uptake is limited, partially because their Stern layer nanostructure is poorly understood compared to molecular solvents. Here, in situ amplitude-modulated atomic force microscopy has been used to reveal the Stern layer nanostructure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm TFSI)-HOPG (highly ordered pyrolytic graphite) interface with molecular resolution. The effect of applied surface potential and added 0.1 wt/wt % Li TFSI or EMIm Cl on ion arrangements is probed between ±1 V. For pure EMIm TFSI at open-circuit potential, well-defined rows are present on the surface formed by an anion-cation-cation-anion (A-C-C-A) unit cell adsorbed with like ions adjacent. As the surface potential is changed, the relative concentrations of cations and anions in the Stern layer respond, and markedly different lateral ion arrangements ensue. The changes in Stern layer structure at positive and negative potentials are not symmetrical due to the different surface affinities and packing constraints of cations and anions. For potentials outside ±0.4 V, images are featureless because the compositional variation within the layer is too small for the AFM tip to detect. This suggests that the Stern layer is highly enriched in either cations or anions (depending on the potential) oriented upright to the surface plane. When Li(+) or Cl(-) is present, some Stern layer ionic liquid cations or anions (respectively) are displaced, producing starkly different structures. The Stern layer structures elucidated here significantly enhance our understanding of the ionic liquid electrical double layer.

  9. Nanostructured surfaces of dental implants.

    Science.gov (United States)

    Bressan, Eriberto; Sbricoli, Luca; Guazzo, Riccardo; Tocco, Ilaria; Roman, Marco; Vindigni, Vincenzo; Stellini, Edoardo; Gardin, Chiara; Ferroni, Letizia; Sivolella, Stefano; Zavan, Barbara

    2013-01-17

    The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years.

  10. Nanostructured Surfaces of Dental Implants

    Directory of Open Access Journals (Sweden)

    Stefano Sivolella

    2013-01-01

    Full Text Available The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years.

  11. Nanostructured zirconia layers as thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Radu Robert PITICESCU

    2011-09-01

    Full Text Available The coatings obtained by thermal spray are used both as antioxidant and connection materials (e.g. MCrAlY type alloys as well as thermal barrier coatings (e.g. partially stabilized zirconia oxide with yttria oxide. This paper studies the characteristics of the coatings obtained with nanostructured powders by thermal spraying and air plasma jet metallization. Testing of coatings is done against the most disturbing factor, thermal shock. Structural changes occurring after thermal shock tests are highlighted by investigations of optical and electronic microscopy. The results obtained after quick thermal shock show a good morphological and surface behavior of the developed coatings.

  12. Quantum Emitters near Layered Plasmonic Nanostructures: Decay Rate Contributions

    CERN Document Server

    Pors, Anders

    2016-01-01

    We introduce a numerical framework for calculating decay rate contributions when excited two-level quantum emitters are located near layered plasmonic nanostructures, particularly emphasizing the case of plasmonic nanostructures atop metal substrates where three decay channels exist: free space radiation, Ohmic losses, and excitation of surface plasmon polaritons (SPPs). The calculation of decay rate contributions is based on Huygen's equivalence principle together with a near-field to far-field transformation of the local electric field, thereby allowing us to discern the part of the electromagnetic field associated with free propagating waves rather than SPPs. The methodology is applied to the case of an emitter inside and near a gap-plasmon resonator, emphasizing strong position and orientation dependencies of the total decay rate, contributions of different decay channels, radiation patterns, and directivity of SPP excitation.

  13. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  14. Inverse design of nanostructured surfaces for color effects

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Johansen, Villads Egede; Friis, Kasper Storgaard;

    2014-01-01

    We propose an inverse design methodology for systematic design of nanostructured surfaces for color effects. The methodology is based on a 2D topology optimization formulation based on frequency-domain finite element simulations for E and/or H polarized waves. The goal of the optimization...... is to maximize color intensity in prescribed direction(s) for a prescribed color (RGB) vector. Results indicate that nanostructured surfaces with any desirable color vector can be generated; that complex structures can generate more intense colors than simple layerings; that angle independent colorings can...

  15. Rational nanostructuring of surfaces for extraordinary icephobicity

    Science.gov (United States)

    Eberle, Patric; Tiwari, Manish K.; Maitra, Tanmoy; Poulikakos, Dimos

    2014-04-01

    Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours.Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled

  16. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  17. Nanostructured ZnO Arrays with Self-ZnO Layer Created Using Simple Electrostatic Layer-by-Layer Assembly

    Directory of Open Access Journals (Sweden)

    PilHo Huh

    2012-01-01

    Full Text Available Formation of unique ZnO nanoarrays utilizing photodynamic polymer, surface-relief grating structures, and unique electrostatic layer-by-layer assembly as a simple and economical methodology was demonstrated. Atomic force microscope (AFM, scanning electron microscopy (SEM, and energy-dispersive X-ray (EDAX analysis were employed to characterize elemental composition and morphology of the resulting ZnO nanostructures with self-ZnO layer. Optical behavior of the final product was studied by UV-vis-NIR absorption and photoluminescence (PL spectra.

  18. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...

  19. Nanostructured imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, Sweccha

    2017-01-01

    The testing and further development of a prototype nanostructured imaging surface plasmon resonance (iSPR) biosensor, with a focus on surface modification and detailed characterization of the biosensor chip and in-field and at-line applicability in the food industry is described. Furthermore, a simp

  20. Nanostructured imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, Sweccha

    2017-01-01

    The testing and further development of a prototype nanostructured imaging surface plasmon resonance (iSPR) biosensor, with a focus on surface modification and detailed characterization of the biosensor chip and in-field and at-line applicability in the food industry is described. Furthermore, a

  1. Optical Characterization of Nanostructured Surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft

    spectrum; the new method only evaluates the color of the reflected light using a standard RGB color camera. Color scatterometry provides the combined advantages of spectroscopic scatterometry, which provides fast evaluations, and imaging scatterometry that provides an overview image from which small...... implementation, a range of complementing characterization methods is needed to perform high-speed quality control of the nanostructures. This thesis concerns the development of a new method for fast in-line characterization of periodic nanostructures. The focus is on optical scatterometry, which uses inverse......, with trapezoidal profiles approximately ~200 nm high and with periods between 600 nm and 5000 nm. The heights and filling factors are determined with an accuracy of ~8 %, while the sidewall slopes have larger uncertainties due to a lower influence on the reflected light. The thesis also evaluates the use...

  2. Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Boreyko, Jonathan B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Srijanto, Bernadeta R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science & Engineering; Nguyen, Trung Dac [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences; Vega, Carlos [Univ. Complutense Madrid (Spain). Dept. de Quimica Fisica; Fuentes-Cabrera, Miguel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Collier, C. Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2013-07-03

    Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here in this paper, we report that nanostructured superhydrophobic surfaces promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15°). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven by the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments.

  3. Water desorption from nanostructured graphite surfaces.

    Science.gov (United States)

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  4. Surface modification of microfibrous materials with nanostructured carbon

    Energy Technology Data Exchange (ETDEWEB)

    Krasnikova, Irina V., E-mail: tokareva@catalysis.ru [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Mishakov, Ilya V.; Vedyagin, Aleksey A. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Bauman, Yury I. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk 630090 (Russian Federation); Korneev, Denis V. [State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region 630559 (Russian Federation)

    2017-01-15

    The surface of fiberglass cloth, carbon and basalt microfibers was modified with carbon nanostructured coating via catalytic chemical vapor deposition (CCVD) of 1,2-dichloroethane. Incipient wetness impregnation and solution combustion synthesis (SCS) methods were used to deposit nickel catalyst on the surface of microfibrous support. Prepared NiO/support samples were characterized by X-ray diffraction analysis and temperature-programmed reduction. The samples of resulted hybrid materials were studied by means of scanning and transmission electron microscopies as well as by low-temperature nitrogen adsorption. The nature of the support was found to have considerable effect on the CCVD process peculiarities. High yield of nanostructured carbon with largest average diameter of nanofibers within the studied series was observed when carbon microfibers were used as a support. This sample characterized with moderate surface area (about 80 m{sup 2}/g after 2 h of CCVD) shows the best anchorage effect. Among the mineral supports, fiberglass tissue was found to provide highest carbon yield (up to 3.07 g/g{sub FG}) and surface area (up to 344 m{sup 2}/g) due to applicability of SCS method for Ni deposition. - Highlights: • The microfibers of different nature were coated with nanostructured carbon layer. • Features of CNF growth and characteristics of hybrid materials were studied. • Appropriate anchorage of CNF layer on microfiber’s surface was demonstrated.

  5. Morphology and wettability of ZnO nanostructures prepared by hydrothermal method on various buffer layers

    Science.gov (United States)

    Li, Bao-jia; Huang, Li-jing; Zhou, Ming; Ren, Nai-fei

    2013-12-01

    Zinc oxide (ZnO) nanostructures were prepared by hydrothermal method on glass substrates with various buffer layers: Ag, Al, aluminum-doped zinc oxide (AZO) and tin-doped indium oxide (ITO). The structure, morphology and wettability of the ZnO nanostructured surfaces were investigated by using X-ray diffraction, scanning electron microscopy and water contact angle (WCA) analysis methods, respectively. All the nanostructures grown on glass with various buffer layers exhibited strong growth orientation along the (1 0 1) plane. The nature of the buffer layer was found to have remarkable effect on the morphology and wettability of the ZnO nanostructures. Whether the buffer layers were hydrophilic or low hydrophobic, all the ZnO nanostructures grown on the various buffer layers showed high hydrophobic property, and that grown on the AZO buffer layer even exhibited superhydrophobicity with a WCA of 151.1°. This work may provide a scientific basis for self-cleaning ZnO-based optoelectronic device applications.

  6. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD

    Directory of Open Access Journals (Sweden)

    Denis V. Nazarov

    2015-12-01

    Full Text Available In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD, chemical etching and atomic layer deposition (ALD. For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD. Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material.

  7. Surface-enhanced Raman spectroscopy on novel black silicon-based nanostructured surfaces

    DEFF Research Database (Denmark)

    Talian, Ivan; Mogensen, Klaus Bo; Orinak, A.;

    2009-01-01

    Two different black silicon nanostructured surfaces modified with thin gold layers were tested for analytical signal enhancement with Surface-Enhanced Raman Spectroscopy (SERS). The relationship between the thicknesses of the gold layers and the analytical signal enhancement was studied. Also......, effects of Ti and Ti/Pt adhesion layers underneath the gold layers on the analytical signal enhancement were tested. An enhancement factor of 7.6 x 10(7) with the excitation laser 785 nm was achieved for the tested analyte, Rhodamine 6G, and non-resonance SER spectra were recorded in a 5 s acquisition...

  8. Depth-resolved studies of layered magnetic nanostructures using {sup 57}Fe probe layers and Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Waldemar A.A., E-mail: wmacedo@cdtn.br

    2014-11-15

    An atomic-scale quantitative analysis of the structural and magnetic properties of surfaces, interfaces and complex nanostructures is of fundamental relevance for the development of new materials for spintronics. Studies of buried magnetic interfaces and depth-resolved measurements in layered magnetic nanostructures are particularly challenging, and the combination of conversion electron Mössbauer spectroscopy and/or nuclear resonant scattering of synchrotron radiation with isotope-enriched probe layers can be a powerful tool in this field. The potential offered by the application of isotope-selective measurements for the study of Fe-based layered magnetic nanostructures is illustrated with our recent results on the investigation of depth-dependent spin structures and interfacial interdiffusion in exchange-biased ferromagnetic/antiferromagnetic bilayer systems and of an epitaxial magnetic system with perpendicular magnetic anisotropy, obtained from samples prepared with ultrathin {sup 57}Fe probe layers placed at different depths during the growth processes, via molecular beam epitaxy or sputtering deposition. - Highlights: • The potential of using {sup 57}Fe probe layers for depth-resolved studies is illustrated. • Three studies of layered magnetic nanostructures by CEMS and NRS are described. • Direct evidence of depth-dependent spin rotation in exchange biased Fe/MnF{sub 2}. • FeCo epitaxially grown on Rh(0 0 1) at 300 K shows a chemically sharp interface.

  9. Characterization of perovskite layer on various nanostructured silicon wafer

    Science.gov (United States)

    Rostan, Nur Fairuz Mohd; Sepeai, Suhaila; Ramli, Noor Fadhilah; Azhari, Ayu Wazira; Ludin, Norasikin Ahmad; Teridi, Mohd Asri Mat; Ibrahim, Mohd Adib; Zaidi, Saleem H.

    2017-05-01

    Crystalline silicon (c-Si) solar cell dominates 90% of photovoltaic (PV) market. The c-Si is the most mature of all PV technologies and expected to remain leading the PV technology by 2050. The attractive characters of Si solar cell are stability, long lasting and higher lifetime. Presently, the efficiency of c-Si solar cell is still stuck at 25% for one and half decades. Tandem approach is one of the attempts to improve the Si solar cell efficiency with higher bandgap layer is stacked on top of Si bottom cell. Perovskite offers a big potential to be inserted into a tandem solar cell. Perovskite with bandgap of 1.6 to 1.9 eV will be able to absorb high energy photons, meanwhile c-Si with bandgap of 1.124 eV will absorb low energy photons. The high carrier mobility, high carrier lifetime, highly compatible with both solution and evaporation techniques makes perovskite an eligible candidate for perovskite-Si tandem configuration. The solution of methyl ammonium lead iodide (MAPbI3) was prepared by single step precursor process. The perovskite layer was deposited on different c-Si surface structure, namely planar, textured and Si nanowires (SiNWs) by using spin-coating technique at different rotation speeds. The nanostructure of Si surface was textured using alkaline based wet chemical etching process and SiNW was grown using metal assisted etching technique. The detailed surface morphology and absorbance of perovskite were studied in this paper. The results show that the thicknesses of MAPbI3 were reduced with the increasing of rotation speed. In addition, the perovskite layer deposited on the nanostructured Si wafer became rougher as the etching time and rotation speed increased. The average surface roughness increased from ˜24 nm to ˜38 nm for etching time range between 5-60 min at constant low rotation speed (2000 rpm) for SiNWs Si wafer.

  10. Nanostructure templating using low temperature atomic layer deposition

    Science.gov (United States)

    Grubbs, Robert K.; Bogart, Gregory R.; Rogers, John A.

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  11. Antibacterial efficiencies of TiO{sub 2} nanostructured layers prepared in organic viscous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Dumitriu, Cristina [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Popescu, Marian [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190 Bucharest (Romania); Ungureanu, Camelia [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Pirvu, Cristian, E-mail: c_pirvu@yahoo.com [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2015-06-30

    Graphical abstract: - Highlights: • Ti substrate was covered with a nanostructured TiO{sub 2} layer in viscous electrolytes. • The formation mechanism and surface morphologies are very different. • The shielding covering the nanotubes incorporate the used electrolytes. • TiO{sub 2} nanostructured layers showed antibacterial efficiencies. - Abstract: Using easy and cheap potential step anodization in electrolytes with different molar mass and water content, a Ti substrate was covered with a nanostructured TiO{sub 2} layer. Surface characterization of the prepared samples was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and contact angle analysis. The formation mechanism and surface morphologies are very different, depending on the molar mass and water percent of electrolyte solutions used for anodizing Ti substrate. The electrochemical behavior of the samples was studied using Tafel plots, and electrochemical impedance spectroscopy recorded in a simulated body fluid. All used anodizing treatments have conducted to samples with increased corrosion protection. The paper illustrates the antibacterial efficiencies of TiO{sub 2} nanostructured layers (shielded nanotubes, nanoporous oxide layer and some remaining PEG electrolyte) quantitatively estimated using gram-negative bacterium Escherichia coli ATCC 8738.

  12. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  13. Surface plasmon resonance in super-periodic metal nanostructures

    Science.gov (United States)

    Leong, Haisheng

    Surface plasmon resonances in periodic metal nanostructures have been investigated over the past decade. The periodic metal nanostructures have served as new technology platforms in fields such as biological and chemical sensing. An existing method to determine the surface plasmon resonance properties of these metal nanostructures is the measurement of the light transmission or reflection from these nanostructures. The measurement of surface plasmon resonances in either the transmission or reflection allows one to resolve the surface plasmon resonance in metal nanostructures. In this dissertation, surface plasmon resonances in a new type of metal nanostructures were investigated. The new nanostructures were created by patterning traditional periodic nanohole and nanoslit arrays into diffraction gratings. The patterned nanohole and 11anoslit arrays have two periods in the structures. The new nanostructures are called "super-periodic" nanostructures. With rigorous finite difference time domain (FDTD) numerical simulations, surface plasmon resonances in super-periodic nanoslit and nanohole arrays were investigated. It was found that by creating a super-period in periodic metal nanostructures, surface plasmon radiations can be observed in the non-zero order diffractions. This discovery presents a new method of characterizing the surface plasmon resonances in metal nanostructures. Super-periodic gold nanoslit and nanohole arrays were fabricated with the electron beam lithography technique. The surface plasmon resonances were measured in the first order diffraction by using a CCD. The experimental results confirm well with the FDTD numerical simulations.

  14. Hydrophobic ZnO nanostructured thin films on glass substrate by simple successive ionic layer absorption and reaction (SILAR) method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh; Raj, A. Dhayal [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore-641046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.co [Department of Nanoscience and Technology, Bharathiar University, Coimbatore-641046 (India); Nataraj, D. [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore-641046 (India)

    2010-10-01

    In the present work, ZnO nanostructured thin films were grown on glass substrates by a simple successive ionic layer absorption and reaction method (SILAR) process at relatively low temperature for its self cleaning application. X-ray diffraction, scanning electron microscopy and Photoluminescence (PL) spectra were used to characterize the prepared ZnO nanostructured film. XRD pattern clearly reviles that the grown ZnO nanostructure film reflect (002) orientation with c-direction. SEM image clearly shows the surface morphology with cluster of spindle and flower-like nanostructured with diameter various around 350 nm. Photoluminescence (PL) spectra of ZnO nanostructures film exhibit a UV emission around 385nm and visible emission in the range around 420-500 nm. Good water repellent behavior were observed for ZnO nanostructured film without any surface modification.

  15. Atomic layer deposition for nanostructured Li-ion batteries

    NARCIS (Netherlands)

    Knoops, H. C. M.; Donders, M. E.; M. C. M. van de Sanden,; Notten, P. H. L.; Kessels, W. M. M.

    2012-01-01

    Nanostructuring is targeted as a solution to achieve the improvements required for implementing Li-ion batteries in a wide range of applications. These applications range in size from electrical vehicles down to microsystems. Atomic layer deposition (ALD) could be an enabling technology for

  16. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach

    Science.gov (United States)

    Guerfi, Y.; Doucet, J. B.; Larrieu, G.

    2015-10-01

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  17. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach.

    Science.gov (United States)

    Guerfi, Y; Doucet, J B; Larrieu, G

    2015-10-23

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  18. Surface plasmon polaritons in artificial metallic nanostructures

    Science.gov (United States)

    Briscoe, Jayson Lawrence

    Surface plasmon polaritons have been the focus of intense research due to their many unique properties such as high electromagnetic field localization, extreme sensitivity to surface conditions, and subwavelength confinement of electromagnetic waves. The area of potential impact is vast and includes promising advancements in photonic circuits, high speed photodetection, hyperspectral imaging, spectroscopy, enhanced solar cells, ultra-small scale lithography, and microscopy. My research has focused on utilizing these properties to design and demonstrate new phenomena and implement real-world applications using artificial metallic nanostructures. Artificial metallic nanostructures employed during my research begin as thin planar gold films which are then lithographically patterned according to previously determined dimensions. The result is a nanopatterned device which can excite surface plasmon polaritons on its surface under specific conditions. Through my research I characterized the optical properties of these devices for further insight into the interesting properties of surface plasmon polaritons. Exploration of these properties led to advancements in biosensing, development of artificial media to enhance and control light-matter interactions at the nanoscale, and hybrid plasmonic cavities. Demonstrations from these advancements include: label-free immunosensing of Plasmodium in a whole blood lysate, low part-per-trillion detection of microcystin-LR, enhanced refractive index sensitivity of novel resonant plasmonic devices, a defect-based plasmonic crystal, spontaneous emission modification of colloidal quantum dots, and coupling of plasmonic and optical Fabry-Perot resonant modes in a hybrid cavity.

  19. Magnetically induced decrease in droplet contact angle on nanostructured surfaces.

    Science.gov (United States)

    Zhou, Qian; Ristenpart, William D; Stroeve, Pieter

    2011-10-04

    We report a magnetic technique for altering the apparent contact angle of aqueous droplets deposited on a nanostructured surface. Polymeric tubes with embedded superparamagnetic magnetite (Fe(3)O(4)) nanoparticles were prepared via layer-by-layer deposition in the 800 nm diameter pores of polycarbonate track-etched (PCTE) membranes. Etching away the original membrane yields a superparamagnetic film composed of mostly vertical tubes attached to a rigid substrate. We demonstrate that the apparent contact angle of pure water droplets deposited on the nanostructured film is highly sensitive to the ante situm strength of an applied magnetic field, decreasing linearly from 117 ± 1.3° at no applied field to 105 ± 0.4° at an applied field of approximately 500 G. Importantly, this decrease in contact angle did not require an inordinately strong magnetic field: a 15° decrease in contact angle was observed even with a standard alnico bar magnet. We interpret the observed contact angle behavior in terms of magnetically induced conformation changes in the film nanostructure, and we discuss the implications for reversibly switching substrates from hydrophilic to hydrophobic via externally tunable magnetic fields.

  20. Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes

    Science.gov (United States)

    Dumitriu, Cristina; Popescu, Marian; Ungureanu, Camelia; Pirvu, Cristian

    2015-06-01

    Using easy and cheap potential step anodization in electrolytes with different molar mass and water content, a Ti substrate was covered with a nanostructured TiO2 layer. Surface characterization of the prepared samples was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and contact angle analysis. The formation mechanism and surface morphologies are very different, depending on the molar mass and water percent of electrolyte solutions used for anodizing Ti substrate. The electrochemical behavior of the samples was studied using Tafel plots, and electrochemical impedance spectroscopy recorded in a simulated body fluid. All used anodizing treatments have conducted to samples with increased corrosion protection. The paper illustrates the antibacterial efficiencies of TiO2 nanostructured layers (shielded nanotubes, nanoporous oxide layer and some remaining PEG electrolyte) quantitatively estimated using gram-negative bacterium Escherichia coli ATCC 8738.

  1. Modeling surface imperfections in thin films and nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansen, Poul-Erik; Madsen, J. S.; Jensen, S. A.

    2017-01-01

    Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection on the surf......Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection...... classes of imperfections are examined. The imperfections are introduced as periodic structures with a super cell periods ten times larger than the simple grating period. Two classes of imperfections concern the grating and one class concern the substrate. It is shown that imperfections of a few nanometers...

  2. Development of a gold-nanostructured surface for amperometric genosensors

    Energy Technology Data Exchange (ETDEWEB)

    Zanardi, Chiara, E-mail: chiara.zanardi@unimore.it [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy); Baldoli, Clara, E-mail: clara.baldoli@istm.cnr.it [Istituto di Scienze e Tecnologie Molecolari del CNR (Italy); Licandro, Emanuela [Universita degli Studi di Milano, Dipartimento di Chimica Organica ed Industriale (Italy); Terzi, Fabio; Seeber, Renato [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy)

    2012-10-15

    A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1-5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

  3. Surface modification and functionalization of nanostructured carbons

    Directory of Open Access Journals (Sweden)

    A. Stanishevsky

    2009-12-01

    Full Text Available Purpose: Nanostructured carbon nanomaterials (e.g., nanocrystalline diamond films and particles, carbon nanotubes, carbon onions, fullerenes, etc. are being extensively explored for numerous biomedical applications in surgical implants, therapy, drug delivery, and biosensoring due to their interesting physical, chemical, and biological properties. Such applications of carbon nanomaterials often require specific surface functionality to be introduced for better integration of these materials with physiological environment. In the last decade, substantial progress has been made in the development of controllable surface modification methods and in the introduction of different functional groups on the surface of carbon nanomaterials.Design/methodology/approach: This paper briefly overviews the surface modification and functionalization approaches for various carbon nanomaterials, and it focuses on the plasma modification and functionalization of nanocrystalline diamond films, diamond nanoparticles, and carbon nanospheres. The results on the surface characterization using FTIR and XPS techniques, and the preliminary studies of cellular response to these modified carbon nanomaterials are presented and discussed.Findings: The results of surface modification of NCD films, detonation nanodiamonds, and carbon nanospheres, demonstrate the flexibility of nanocarbons to attain various surface functionality that can be adjusted for specific applications. It has been shown that neither of tested nanocarbon materials was cytotoxic in this study, although the attachement and proliferation of various cells was strongly affected by the specific type of surface functionalization.Research limitations/implications: At the present, it is not clear to what degree the available surface sites on NCD films or carbon nanoparticles can be occupied with functional groups. Furthermore, while there is clear selectivity of cellular response to H, O, and F surface

  4. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.

  5. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ines [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal); Feio, Maria J. [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Santos, Nuno C. [Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular (Portugal); Eaton, Peter [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Serro, Ana Paula; Saramago, Benilde [Centro de Quimica Estrutural, Instituto Superior Tecnico (Portugal); Pereira, Eulalia [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Franco, Ricardo, E-mail: ricardo.franco@fct.unl.pt [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal)

    2012-12-15

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  6. Computational characterization of ordered nanostructured surfaces

    Science.gov (United States)

    Mohieddin Abukhdeir, Nasser

    2016-08-01

    A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.

  7. Neutralization of H- at Nanostructured Surfaces

    Science.gov (United States)

    Obreshkov, Boyan; Thumm, Uwe

    2006-05-01

    The charge transfer rates and the neutralization probabilities for hydrogen anions colliding with nanostructured (vicinal) surfaces are obtained by direct numerical integration of the time-dependent Schroedinger equation for the motion of the active electron in the field of the projectile-surface compound. The electronic structure of the surface is calculated from a Thomas-Fermi - von Weizsaecker statistical model with local density approximation for the exchange-correlation energy. In fixed-ion approximation, the decay rate of the electronic state of the anion in front of the surface is obtained by projecting the density of states of the collision system onto the unperturbed projectile level. The ion neutralization probability is calculated from this static width within a rate equation approach for a set of broken-straight-line collision trajectories for kinetic energies of 1 keV. The dependence of decay rates and neutralization probabilities on the surface morphology and the scattering trajectories, and a comparison of our numerical results with the experiments will be discussed.

  8. Landau damping of surface plasmons in metal nanostructures

    CERN Document Server

    Shahbazyan, Tigran V

    2016-01-01

    We develop a quantum-mechanical theory for Landau damping of surface plasmons in metal nanostructures larger that the characteristic length for nonlocal effects. We show that the electron surface scattering, which facilitates plasmon decay in small nanostructures, can be incorporated into the metal dielectric function on par with phonon and impurity scattering. The derived surface scattering rate is determined by the plasmon local field polarization relative to the metal surface, and is highly sensitive to the system geometry. We illustrate our model by providing analytical results for surface scattering rate in some common shape nanostructures.

  9. Electrochemical Thin Layers in Nanostructures for Energy Storage.

    Science.gov (United States)

    Noked, Malachi; Liu, Chanyuan; Hu, Junkai; Gregorczyk, Keith; Rubloff, Gary W; Lee, Sang Bok

    2016-10-18

    Conventional electrical energy storage (EES) electrodes, such as rechargeable batteries, are mostly based on composites of monolithic micrometer sized particles bound together with polymeric and conductive carbon additives and binders. The kinetic limitations of these monolithic chunks of material are inherently linked to their electrical properties, the kinetics of ion insertion through their interface and ion migration in and through the composite phase. Redox chemistry of nanostructured materials in EES systems offer vast gains in power and energy. Furthermore, due to their thin nature, ion and electron transport is dramatically increased, especially when thin heterogeneous conducting layers are employed synergistically. However, since the stability of the electrode material is dictated by the nature of the electrochemical reaction and the accompanying volumetric and interfacial changes from the perspective of overall system lifetime, research with nanostructured materials has shown often indefinite conclusions: in some cases, an increase in unwanted side-reactions due to the high surface area (bad). In other cases, results have shown significantly better handling of mechanical stress that results from lithiation/delithiation (good). Despite these mixed results, scientifically informed design of thin electrode materials, with carefully chosen architectures, is considered a promising route to address many limitations witnessed in EES systems by reducing and protecting electrodes from parasitic reactions, accommodating mechanical stress due to volumetric changes from electrochemical reactions, and optimizing charge carrier mobilities from both the "ionic" and "electronic" points of view. Furthermore, precise nanoscale control over the electrode structure can enable accurate measurement through advanced spectroscopy and microscopy techniques. This Account summarizes recent findings related to thin electrode materials synthesized by atomic layer deposition (ALD) and

  10. Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS.

    Science.gov (United States)

    Saftics, Andras; Kurunczi, Sándor; Szekrényes, Zsolt; Kamarás, Katalin; Khánh, Nguyen Quoc; Sulyok, Attila; Bősze, Szilvia; Horvath, Robert

    2016-10-01

    Surface coatings of the polysaccharide dextran and its derivatives are key ingredients especially in label-free biosensors for the suppression of non-specific binding and for receptor immobilization. Nevertheless, the nanostructure of these ultrathin coatings and its tailoring by the variation of the preparation conditions have not been profoundly characterized and understood. In this work carboxymethylated dextran (CMD) was prepared and used for fabricating ultrathin surface coatings. A grafting method based on covalent coupling to aminosilane- and epoxysilane-functionalized surfaces was applied to obtain thin CMD layers. The carboxyl moiety of the CMD was coupled to the aminated surface by EDC-NHS reagents, while CMD coupling through epoxysilane molecules was performed without any additional reagents. The surface analysis following the grafting procedures consisted of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared spectroscopy (ATR-IR), spectroscopic ellipsometry, atomic force microscopy (AFM) and optical waveguide lightmode spectroscopy (OWLS). The XPS and AFM measurements showed that the grafting resulted in a very thin dextran layer of a few nanometers. The OWLS method allowed devising the structure of the interfacial dextran layers by the evaluation of the optogeometrical parameters. The alteration in the nanostructure of the CMD layer with the chemical composition of the silane coverage and the pH of the grafting solution was revealed by in situ OWLS, specifically, lain down chains were found to be prevalent on the surface under neutral and basic conditions on epoxysilylated surfaces. The developed methodologies allowed to design and fabricate nanometer scale CMD layers with well-controlled surface structure, which are very difficult to characterize in aqueous environments using present instrumentations and highly hydrated surface layers.

  11. Surface analysis of nanostructured carbonaceous materials

    Science.gov (United States)

    Wepasnick, Kevin Andrew

    The characterization of surfaces is central to understanding its interaction with other materials. Current ground-breaking research in interfacial science is focusing on surfaces which have a nanoscopic-size to their structuring. In particular, carbon nanotubes (CNTs) have been explored extensively. However, to utilize these materials in commercial and scientific applications, the surfaces are often modified to tailor specific properties, such as dispersion, sorption, and reactivity. The focus of this thesis is to apply surface analytical techniques to explore the chemical and structural characteristics of modified nanostructured surfaces. Specifically studied are the covalent surface modifications of CNTs by strategies that involve the direct incorporation of specific elements into the graphene sidewalls by commonly used wet chemical oxidants. These resulting CNTs are then evaluated in terms of their change in surface chemistry and structure. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface oxidation, while chemical derivatization techniques in conjunction with XPS afforded the concentration of carboxyl, carbonyl, and hydroxyl groups on the CNT surface. Transmission electron microscopy (TEM) was able to provide detailed structural information on the modified CNT, including the extent of sidewall damage. Results indicate that the distribution of oxygen-containing functional groups was insensitive to the reaction conditions, but was dependent upon the identity of the oxidant. These trends in functional group concentration were then applied to determining environmental properties, specifically divalent metal cation sorption. Consistently, the increases in COOH functional groups result in an increase in sorption capacity of divalent metal cations, such as Zn2+ and Cd2+. Furthermore, the interactions of size-selected metal and metal-oxide nanoclusters with graphite surfaces were studied by atomic force microscopy (AFM), scanning tunneling

  12. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    Science.gov (United States)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Zhang, Zhiqiang; Duan, Huigao

    2015-10-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process.

  13. Fabrication of Nanostructured Electroforming Copper Layer by Means of an Ultrasonic-assisted Mechanical Treatment

    Institute of Scientific and Technical Information of China (English)

    Liao Qiang; Li Weiping; Liu Huicong; Zhu Liqun

    2010-01-01

    Electroformed copper layer with nanostructure is obtained using a subsequent mechanical treatment under the conditions of ultrasonic vibration according to the demand of high performance material in aeronautics.The microstructure of the electro-formed copper layer is observed by optical microscope (OM),scanning electron microscope (SEM) and transmission electron microscope (TEM).The tensile strength is evaluated with a tensile tester.It is found that bulk crystal of electroformed copper's surface layer is changed to nanocrystals (about 10 nm in size) after the ultrasonic-assisted mechanical treatment (UMT) but the whole monocrystalline structure still remains.The tensile strength exhibited by the new copper layer is two times better than the regular electroformed copper layer,while the fracture strain remains constant.In addition,the strengthening mechanism of UMT process is proved to be dislocation strengthening mechanism.

  14. Nanostructuring of Ta{sub 2}O{sub 5} surfaces by low energy Ar{sup +} bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Benito, Noelia; Palacio, Carlos, E-mail: carlos.palacio@uam.es

    2015-10-01

    Graphical abstract: - Highlights: • Ar{sup +} bombardment of Ta{sub 2}O{sub 5} surfaces leads to the formation of an altered layer where the composition is different from that of the bulk. • Ar{sup +} bombardment of Ta{sub 2}O{sub 5} surfaces leads to the formation of short-range hexagonal order nanostructures. • The height of the nanostructures is equal to the thickness of the altered layer produced during bombardment. • There is a close relationship between the nanostructuring of the surface and the altered layer formed during bombardment. - Abstract: The surface modifications undergoing on a Ta{sub 2}O{sub 5} surface bombarded with Ar{sup +} have been studied using surface analysis techniques (XPS, ARXPS and AFM). It has been observed that ion bombardment produces an altered layer composed of Ta suboxides as a consequence of the preferential sputtering of oxygen atoms. ARXPS measurements carried out on the bombarded surfaces can be explained using a model in which the altered layer consist of suboxide islands, with coverage 85% and thickness 2.88 nm. Moreover, AFM measurements show that ion bombardment leads to the formation of short-range hexagonal order nanostructures with characteristic parameters fully consistent with those found in ARXPS for the island model, therefore indicating the close relationship between the nanostructuring of the surface and the altered layer formed during bombardment.

  15. Water Droplet Spreading and Wicking on Nanostructured Surfaces.

    Science.gov (United States)

    Chen, Xue; Chen, Jiannan; Ouyang, Xiaolong; Song, Yu; Xu, Ruina; Jiang, Peixue

    2017-07-11

    Phase-change heat transfer on nanostructured surfaces is an efficient cooling method for high heat flux devices due to its superior wettability. Liquid droplet spreading and wicking effect then dominate the heat transfer. Therefore, this study investigates the flow behavior after a droplet touches a nanostructured surface focusing on the ZnO nanowire surface with three different nanowire sizes and two array types (regular and irregular). The spreading diameter and the wicking diameter are measured against time. The results show that the average spreading and wicking velocities on a regular nanostructured surface are both smaller than those on an irregular nanostructured surface and that the nanowire size affects the liquid spreading and capillary wicking.

  16. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  17. Transient and self-limited nanostructures on patterned surfaces

    Science.gov (United States)

    Dimastrodonato, V.; Pelucchi, E.; Zestanakis, P. A.; Vvedensky, D. D.

    2013-05-01

    Site-controlled quantum dots formed during the deposition of (Al)GaAs layers by metal-organic vapor-phase epitaxy on GaAs(111)B substrates patterned with inverted pyramids result in geometric and compositional self-ordering along the vertical axis of the template. We describe a theoretical scheme that reproduces the experimentally observed time-dependent behavior of this process, including the evolution of the recess and the increase of Ga incorporation along the base of the template to stationary values determined by alloy composition and other growth parameters. Our work clarifies the interplay between kinetics and geometry for the development of self-ordered nanostructures on patterned surfaces, which is essential for the reliable on-demand design of confined systems for applications to quantum optics.

  18. Surface effects and gold-nanostructure surface coating of whispering-gallery microresonators

    Science.gov (United States)

    Ganta, Deepak

    Scope and method of study. The purpose of this study is to explore the surface effects of high-quality-factor optical microsphere resonators and thin-film-coated microresonators in various ambient gases. In this work, we present a systematic study of the assembly and characterization of gold nanostructures. We employ a wet-chemical synthesis method for growing gold nanorods and a directed electrochemical method for assembly of gold nanowires. The adhesion methods of gold nanostructures on high-quality-factor optical microsphere resonators are also investigated. Findings and conclusions. A novel method is employed for measuring thermal accommodation coefficients of various gases like nitrogen, helium and ambient air on several coated and uncoated surfaces of fused-silica microresonators, operating at room temperature. This method is further extended to measure the absorption coefficient of a surface film or water layer on a fused-silica microresonator, and provides a novel method to find the water layer desorption and adsorption rates on the surface of a microresonator in the presence of gases like ambient air and nitrogen. We have adapted methods for growing gold nanorods of different aspect ratios (AR), and developed a novel method of growing high-AR (20-400) gold nanowires from low-AR gold nanorods. Various methods were discovered to coat these gold nanostructures and carbon nanotubes on the fused-silica surface. The most successful method involves surface modification with MPMDMS (i.e., silanization) before coating with gold nanorods. These coating methods have made microresonators useful for plasmonic sensing applications.

  19. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  20. Enhancement of light emission from nanostructured In(2)O(3) via surface plasmons.

    Science.gov (United States)

    Qiu, Dongjiang; Wan, Zhengfen; Cai, Xikun; Yuan, Zijian; Hu, Lian; Zhang, Bingpo; Cai, Chunfeng; Wu, Huizhen

    2010-10-25

    We report the construction of In(2)O(3)/Ag/In(2)O(3) sandwich nanostructures and realization of effective coupling with surface plasmon (SP) modes. An enhancement of photoluminescence as large as 278-fold is achieved for the new nanostructures, while only eightfold is obtained from bilayer structures. The advancement of the nanostructures is that both the frequency of incidence photons and the in-plane wavevector of the excited SP modes along each side of the sandwiched nanometer metal layer are identical, thus the momenta mismatch between two SP modes which inevitably occurs in commonly used metal/dielectric bilayer structures is no longer a problem. The fulfillment of the cross coupling and resonance conditions of the two SP modes leads to the tremendous amplification of light emission. Such sandwich nanostructures can be readily extended to other dielectric/metal/dielectric nanomaterial combinations and identified as technologically useful for SP mediated light emitting devices.

  1. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Science.gov (United States)

    Amanov, Auezhan; Cho, In-Sik; Pyun, Young-Sik

    2016-12-01

    A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  2. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    Science.gov (United States)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-01-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures. PMID:26847409

  3. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    Science.gov (United States)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-02-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.

  4. Development of nanostructured magnetic capsules by means of the layer by layer technique.

    Science.gov (United States)

    Herrera, Oscar L; Parigi, Enrico; Habibi, Neda; Pastorino, Laura; Caneva Soumetz, Federico; Ruggiero, Carmelina

    2010-01-01

    Nanomagnetic particles have been already taken into account as drug carriers thank to the possibility to control their movement to a specific location where the treatment is required by means of high gradient magnetic fields (HGMF). In this work the layer-by-layer technique (LbL) and nanomagnetic particles were used to developed innovative nanostructured magnetic capsules (NSMC). Their potential application as magnetic drug carriers was investigated under the influence of both static and oscillating magnetic fields used respectively to control capsule displacement and shell permeability. The assembly process of the nanostructured magnetic capsules, its characterization by Quartz Crystal Microbalance (QCM), and the results obtained under the influence of the magnetic fields are presented.

  5. Surface Nano-Structuring by Adsorption and Chemical Reactions

    OpenAIRE

    Ken-ichi Tanaka

    2010-01-01

    Nano-structuring of the surface caused by adsorption of molecules or atoms and by the reaction of surface atoms with adsorbed species are reviewed from a chemistry viewpoint. Self-assembly of adsorbed species is markedly influenced by weak mutual interactions and the local strain of the surface induced by the adsorption. Nano-structuring taking place on the surface is well explained by the notion of a quasi-molecule provided by the reaction of surface atoms with adsorbed species. Self-assembl...

  6. Strength Improvement of Glass Substrates by Using Surface Nanostructures.

    Science.gov (United States)

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew

    2016-12-01

    Defects and heterogeneities degrade the strength of glass with different surface and subsurface properties. This study uses surface nanostructures to improve the bending strength of glass and investigates the effect of defects on three glass types. Borosilicate and aluminosilicate glasses with a higher defect density than fused silica exhibited 118 and 48 % improvement, respectively, in bending strength after surface nanostructure fabrication. Fused silica, exhibited limited strength improvement. Therefore, a 4-μm-deep square notch was fabricated to study the effect of a dominant defect in low defect density glass. The reduced bending strength of fused silica caused by artificial defect increased 65 % in the presence of 2-μm-deep nanostructures, and the fused silica regained its original strength when the nanostructures were 4 μm deep. In fragmentation tests, the fused silica specimen broke into two major portions because of the creation of artificial defects. The number of fragments increased when nanostructures were fabricated on the fused silica surface. Bending strength improvement and fragmentation test confirm the usability of this method for glasses with low defect densities when a dominant defect is present on the surface. Our findings indicate that nanostructure-based strengthening is suitable for all types of glasses irrespective of defect density, and the observed Weibull modulus enhancement confirms the reliability of this method.

  7. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    Science.gov (United States)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  8. Nanostructured solid-state hybrid photovoltaic cells fabricated by electrostatic layer-by-layer deposition

    Science.gov (United States)

    Kniprath, Rolf; McLeskey, James T.; Rabe, Jürgen P.; Kirstein, Stefan

    2009-06-01

    We report on the fabrication of hybrid organic/inorganic photovoltaic cells utilizing layer-by-layer deposition of water-soluble polyions and nanocrystals. A bulk heterojunction structure was created consisting of alternating layers of the p-conductive polythiophene derivative poly[2-(3-thienyl)-ethoxy-4-butylsulfonate] and n-conductive TiO2 nanoparticles. We fabricated working devices with the heterostructure sandwiched between suitable charge carrier blocking layers and conducting oxide and metal electrodes, respectively. We analyzed the influence of the thickness and nanostructure of the active layer on the cell performance and characterized the devices in terms of static and transient current response with respect to illumination and voltage conditions. We observed reproducible and stable photovoltaic behavior with photovoltages of up to 0.9 V.

  9. Modeling surface imperfections in thin films and nanostructured surfaces

    Science.gov (United States)

    Hansen, P.-E.; Madsen, J. S.; Jensen, S. A.; Madsen, M. H.; Karamehmedovic, M.

    2017-06-01

    Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection on the surface. Combining measurement data from several instruments increases the knowledge of non-perfect surfaces. In this paper we investigate how to incorporate this knowledge of surface imperfection into inverse methods used in scatterometry and ellipsometry using the Rigorous Coupled Wave Analysis. Three classes of imperfections are examined. The imperfections are introduced as periodic structures with a super cell periods ten times larger than the simple grating period. Two classes of imperfections concern the grating and one class concern the substrate. It is shown that imperfections of a few nanometers can severely change the reflective response on silicon gratings. Inverse scatterometry analyses of gratings with imperfection using simulated data with white noise have been performed. The results show that scatterometry is a robust technology that is able to characterize grating imperfections provided that the imperfection class is known.

  10. Electrochemical atomic layer deposition of Pt nanostructures on fuel cell gas diffusion layer

    CSIR Research Space (South Africa)

    Modibedi, M

    2010-12-01

    Full Text Available . Acta 42(10) 1587. 4. Stickney, J.L., et al., (2002) Encyclopedia of Electrochemistry, Wiley-VCH: Weinheim 513 5. Mkwizu T.S., Mathe M.K., Cukrowski I., (2010) Langmuir 26 (1) 570. Electrochemical Atomic Layer Deposition of Pt nanostructures on fuel... cell gas diffusion layer Mmalewane Modibedi1, Tumaini Mkwizu1, 2, Nikiwe Kunjuzwa1,3 , Kenneth Ozoemena1 and Mkhulu Mathe1 1. Energy and Processes, Materials Science and Manufacturing, The Council for Scientific and Industrial Research (CSIR...

  11. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M. [SIC, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain); Pérez, J. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Mir, M. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5 Pabellón 11, E-28029 Madrid (Spain); Blázquez, O.; Hernández, S.; Garrido, B. [MIND-IN" 2UB, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  12. Automated quantification of one-dimensional nanostructure alignment on surfaces

    CERN Document Server

    Dong, Jianjin; Abukhdeir, Nasser Mohieddin

    2016-01-01

    A method for automated quantification of the alignment of one-dimensional nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be rigorously compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous metho...

  13. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Science.gov (United States)

    Mahmoodi, S.; Moradi, M.; Mohseni, S. M.

    2016-12-01

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism.

  14. Local excitation of surface plasmon polaritons in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Boltasseva, Alexandra;

    2003-01-01

    We investigate local excitation of surface plasmon polaritons (SPPs) at a 55-nm-thick gold layer covered with randomly located scatterers (density similar to75 mum(-2)) by using an uncoated fiber tip of a near-field optical microscope as a radiation source and detecting the radiation scattered...

  15. Local excitation of surface plasmon polaritons in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Boltasseva, Alexandra

    2003-01-01

    We investigate local excitation of surface plasmon polaritons (SPPs) at a 55-nm-thick gold layer covered with randomly located scatterers (density similar to75 mum(-2)) by using an uncoated fiber tip of a near-field optical microscope as a radiation source and detecting the radiation scattered...

  16. Localized nonequilibrium nanostructures in surface chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, M; Ipsen, M; Mikhailov, A S; Ertl, G [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2003-06-01

    Nonequilibrium localized stationary structures of submicrometre and nanometre sizes can spontaneously develop under reaction conditions on a catalytic surface. These self-organized structures emerge because of the coupling between the reaction and a structural phase transition in the substrate. Depending on the reaction conditions they can either correspond to densely covered spots (islands), inside which the reaction predominantly proceeds, or local depletions (holes) in a dense adsorbate layer with a very small reactive output in comparison to the surroundings. The stationary localized solutions are constructed using the singular perturbation approximation. These results are compared with numerical simulations, where special adaptive grid algorithms and numerical continuation of stationary profiles are used. Numerical investigations beyond the singular perturbation limit are also presented.

  17. Unidirectional light propagation through two-layer nanostructures based on optical near-field interactions

    CERN Document Server

    Naruse, Makoto; Ishii, Satoshi; Drezet, Aurélien; Huant, Serge; Hoga, Morihisa; Ohyagi, Yasuyuki; Matsumoto, Tsutomu; Tate, Naoya; Ohtsu, Motoichi

    2014-01-01

    We theoretically demonstrate direction-dependent polarization conversion efficiency, yielding unidirectional light transmission, through a two-layer nanostructure by using the angular spectrum representation of optical near-fields. The theory provides results that are consistent with electromagnetic numerical simulations. This study reveals that optical near-field interactions among nanostructured matter can provide unique optical properties, such as the unidirectionality observed here, and offers fundamental guiding principles for understanding and engineering nanostructures for realizing novel functionalities.

  18. Simulation of the Electric Field Distribution Near a Topographically Nanostructured Titanium-Electrolyte Interface: Influence of the Passivation Layer

    Directory of Open Access Journals (Sweden)

    Andreas Körtge

    2013-01-01

    Full Text Available A major challenge in biomaterials research is the regulation of protein adsorption at metallic implant surfaces. Recently, a number of studies have shown that protein adsorption can be influenced by metallic nanotopographies, which are discussed to increase electric field strengths near sharp edges and spikes. Since many metallic biomaterials form a native passivation layer with semiconducting properties, we have analyzed the influence of this layer on the near-surface electric field distribution of a nanostructure using finite element simulations. The Poisson-Boltzmann equation was solved for a titanium nanostructure covered by a TiO2 passivation layer in contact with a physiological NaCl solution (bulk concentration 0.137 mol/L. In contrast to a purely metallic nanostructure, the electric field strengths near sharp edges and spikes can be lower than in planar regions if a passivation layer is considered. Our results demonstrate that the passivation layer has a significant influence on the near-surface electric field distribution and must be considered for theoretical treatments of protein adsorption on passivated metals like titanium.

  19. Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure Graphene Electron Transfer Layer

    Directory of Open Access Journals (Sweden)

    Chih-Hung Hsu

    2014-01-01

    Full Text Available The utilization of nanostructure graphene thin films as electron transfer layer in dye-sensitized solar cells (DSSCs was demonstrated. The effect of a nanostructure graphene thin film in DSSC structure was examined. The nanostructure graphene thin films provides a great electron transfer channel for the photogenerated electrons from TiO2 to indium tin oxide (ITO glass. Obvious improvements in short-circuit current density of the DSSCs were observed by using the graphene electron transport layer modified photoelectrode. The graphene electron transport layer reduces effectively the back reaction in the interface between the ITO transparent conductive film and the electrolyte in the DSSC.

  20. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  1. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Science.gov (United States)

    Zhuiykov, Serge; Kawaguchi, Toshikazu; Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M.

    2017-01-01

    Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique's capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO3) over the large area of standard 4" Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  2. Continuous production of nanostructured particles using spatial atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ommen, J. Ruud van, E-mail: j.r.vanommen@tudelft.nl; Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis [Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2015-03-15

    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ∼1 nm diameter are deposited onto titania (TiO{sub 2}) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.12–0.31 wt. % of Pt) at a rate of about 1 g min{sup −1}. Tuning the precursor injection velocity (10–40 m s{sup −1}) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100 °C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of core–shell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications.

  3. Curvature-dependent surface energy and implications for nanostructures

    Science.gov (United States)

    Chhapadia, P.; Mohammadi, P.; Sharma, P.

    2011-10-01

    At small length scales, several size-effects in both physical phenomena and properties can be rationalized by invoking the concept of surface energy. Conventional theoretical frameworks of surface energy, in both the mechanics and physics communities, assume curvature independence. In this work we adopt a simplified and linearized version of a theory proposed by Steigmann-Ogden to capture curvature-dependence of surface energy. Connecting the theory to atomistic calculations and the solution to an illustrative paradigmatical problem of a bent cantilever beam, we catalog the influence of curvature-dependence of surface energy on the effective elastic modulus of nanostructures. The observation in atomistic calculations that the elastic modulus of bent nanostructures is dramatically different than under tension - sometimes softer, sometimes stiffer - has been a source of puzzlement to the scientific community. We show that the corrected surface mechanics framework provides a resolution to this issue. Finally, we propose an unambiguous definition of the thickness of a crystalline surface.

  4. Cold cathodes based on carbonic nanostructured layered structures

    Directory of Open Access Journals (Sweden)

    Belyanin A. F.

    2013-06-01

    Full Text Available The paper describes formation conditions for and the structure of diamond-like materials films used in the manufacture of layered cold cathodes of emission electronics devices. The authors study the structure and field emission properties of layered structures with polycluster diamond and diamond-like carbon films (DCF formed by various methods. It has been found that the best emission properties are characteristic of DCFs obtained by cathode sputtering. Emission from the surface of such films occurs on the boundaries of the globules.

  5. Breath Figure-Assisted Fabrication of Nanostructured Coating on Silicon Surface and Evaluation of Its Antireflection Power

    Directory of Open Access Journals (Sweden)

    Francesco Galeotti

    2016-01-01

    Full Text Available We report our recent results on the fabrication of nanostructured polymer layers aimed at developing efficient antireflection coating on silicon. The proposed manufacturing approach is based on self-assembly and relies on breath figure formation. By simple and straightforward operations, we are able to produce different nanostructured coatings: densely packed nanodomes, randomly distributed nanopores, and multilayered close-packed nanopores. By optical reflectivity measurements on coated silicon wafers, we show that the latter type of nanostructure is able to reduce the reflectivity of standard silicon surface (≈40% at 450 nm to about 10%.

  6. Fe and Co nanostructures embedded into the Cu(100) surface: Self-Organization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, S. V., E-mail: kolesnikov@physics.msu.ru; Klavsyuk, A. L.; Saletsky, A. M. [Moscow State University, Faculty of Physics (Russian Federation)

    2015-10-15

    The self-organization and magnetic properties of small iron and cobalt nanostructures embedded into the first layer of a Cu(100) surface are investigated using the self-learning kinetic Monte Carlo method and density functional theory. The similarities and differences between the Fe/Cu(100) and the Co/Cu(100) are underlined. The time evolution of magnetic properties of a copper monolayer with embedded magnetic atoms at 380 K is discussed.

  7. Automated quantification of one-dimensional nanostructure alignment on surfaces

    Science.gov (United States)

    Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser

    2016-06-01

    A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

  8. Understanding the biological responses of nanostructured metals and surfaces

    Science.gov (United States)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  9. Effect of layered nanostructures on the linewidth of forbidden E2 transitions

    Science.gov (United States)

    Guzatov, D. V.; Klimov, V. V.

    2017-08-01

    In the framework of classical electrodynamics, analytical expressions are derived and investigated for the linewidth of forbidden E2 transitions in an atom (molecule) located near layered metal – dielectric nanostructures. It is shown that the radiation intensity at the forbidden transition during detection in the halfspace behind a layered nanostructure can significantly exceed the intensity during detection in the half-space where an atom (molecule) is located.

  10. Imprinted and injection-molded nano-structured optical surfaces

    Science.gov (United States)

    Christiansen, Alexander B.; Højlund-Nielsen, Emil; Clausen, Jeppe; Caringal, Gideon P.; Mortensen, N. Asger; Kristensen, Anders

    2013-09-01

    Inspired by nature, nano-textured surfaces have attracted much attention as a method to realize optical surface functionality. The moth-eye antireflective structure and the structural colors of Morpho butterflies are well- known examples used for inspiration for such biomimetic research. In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication of Black Silicon (BSi) random nanostructure surfaces. The optical transmission at normal incidence is measured for wavelengths from 400 nm to 900 nm. For samples with optimized nanostructures, the reflectance is reduced by 50 % compared to samples with planar surfaces. The specular and diffusive reflection of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx. 4 % for normal incidence. Diffraction gratings provide strong color reflection defined by the diffraction orders. However, the apperance varies strongly with viewing angles. Three different methods to address the strong angular-dependence of diffraction grating based structural color are discussed.

  11. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.

    Science.gov (United States)

    Uhm, Soo-Hyuk; Song, Doo-Hoon; Kwon, Jae-Sung; Lee, Sang-Bae; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-04-01

    To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO2 nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO2 nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO2 nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO2 nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO2 nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO2 nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO2 nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance.

  12. Nanostructured layer-by-layer films containing phaeophytin-b: Electrochemical characterization for sensing purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nunes Pauli, Gisele Elias [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900 (Brazil); Araruna, Felipe B. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Eiras, Carla [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil); Leite, José Roberto S.A. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Chaves, Otemberg Souza; Filho, Severino Gonçalves Brito; Vanderlei de Souza, Maria de Fátima [Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba (Brazil); Chavero, Lucas Natálio; Sartorelli, Maria Luisa [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900 (Brazil); and others

    2015-02-01

    This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV–Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H{sub 2}O{sub 2}) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H{sub 2}O{sub 2}. This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H{sub 2}O{sub 2}. - Highlights: • Potential applications of phaeophytin-b • Low-cost method to produce sensitive nanostructured films • Electrochemical sensor based on phaeophytin-b and cashew gum.

  13. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    Science.gov (United States)

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.

  14. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    Science.gov (United States)

    Petefish, Joseph W.

    's mirror interferometer to perform multiple exposures at multiple angles before developing. Precise control of the resonance position is shown by locating three SPR dips at predetermined wavenumbers of 5000, 4000, and 3000 cm-1, respectively. A set of three gratings, each having four closely spaced resonances is employed to show how the sensor response could be broadened. The work in Chapter 3 shows potential for simultaneous enhancement of multiple vibrational modes; the multiband approach might find application for modes at disparate locations within the IR spectrum, while the broadband approach may allow concurrent probing of broad single modes or clusters of narrow modes within a particular neighborhood of the spectrum. Chapter 4 uses the rigorous coupled-wave analysis (RCWA) method to numerically explore another facet of the nanostructure-based tunability of grating-baed SPR sensing. The work in this chapter illustrates how infrared signal enhancement could be tailored by through adjustment of the grating amplitude. Modeled infrared reflection absorption (IRRAS) spectra and electric field distributions were generated for several nanostructured grating configurations. It was found that there exists a critical amplitude value for a given grating pitch where the plasmon response achieves a maximum. Amplitudes greater than this critical value produce a broader and attenuated plasmon peak, while smaller amplitudes produce a plasmon resonance that is not as intense. Field simulations show how amplitudes nearer the critical amplitude resulted in large increases in the electric field within an analyte film atop the sensor surface, and the relative strength of the increased field is predictable based on the appearance of the IRRAS spectra. It is believed that these larger fields are the cause of observed enhanced absorption. Published reports pertaining to interactions of SPs with molecular resonance and to diffraction-based tracking of plasmons without a spectrometer are

  15. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition.

    Science.gov (United States)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O(2) as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl(3) plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.

  16. Surface nanostructures in commercial pure Ti induced by high energy shot peening

    Institute of Scientific and Technical Information of China (English)

    CHEN Chun-huan; REN Rui-ming; ZHAO Xiu-juan; ZHANG Yu-jun

    2004-01-01

    The high-energy shot peening (HESP) technique was used to obtain the surface nanocrystalline microstructure for a hcp metal titanium. XRD, SEM and TEM were applied to characterize the microstructure of the surface layer. Large amount of the deformation twins in the surface layer were observed by SEM in the specimens after HESP treatment in a shot-time, and the number of deformation twins both in a single plane and in intersecting planes increases with HESP time, until the twin character disappears completely in the top surface layer, which means that the severe plastic deformation(SPD) occurs on the surface. The XRD analysis results show that after HESP treatmen for 30 - 60 min the surface grain size decreases to nanoscale. According to the TEM images and corresponding diffraction patterns from SPD areas of the 120 min-treatment specimen, the measured grain size near the surface is about 20 - 30 nm. The grain size in deformation layer increases with the depth from the surface, and the nanostructured layer is about 20 μm in depth. Therefore, the surface nanocrystalline and a gradient microstructure from the surface to the matrix are obtained, which results in the micro-hardness decreasing from surface to the matrix gradually.

  17. Characterization of highly anisotropic three-dimensionally nanostructured surfaces

    CERN Document Server

    Schmidt, Daniel

    2013-01-01

    Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example ...

  18. Intrinsic instability of thin liquid films on nanostructured surfaces

    Science.gov (United States)

    Rokoni, Arif; Hu, Han; Sun, Liyong; Sun, Ying

    2016-11-01

    The instability of a thin liquid film on nanostructures is not well understood but is important in liquid-vapor two-phase heat transfer (e.g., thin film evaporation and boiling), lubrication, and nanomanufacturing. In thin film evaporation, the comparison between the non-evaporating film thickness and the critical film breakup thickness determines the stability of the film: the film becomes unstable when the critical film breakup thickness is larger than the non-evaporating film thickness. In this study, a closed-form model is developed to predict the critical breakup thickness of a thin liquid film on 2D periodic nanostructures based on minimization of system free energy in the limit of a liquid monolayer. Molecular dynamics simulations are performed for water thin films on square nanostructures of varying depth and wettability and the simulations agree with the model predictions. The results show that the critical film breakup thickness increases with the nanostructure depth and the surface wettability. The model developed here enables the prediction of the minimum film thickness for stable thin film evaporation on a given nanostructure.

  19. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.

  20. Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties.

    Science.gov (United States)

    Zhang, Xintong; Fujishima, Akira; Jin, Ming; Emeline, Alexei V; Murakami, Taketoshi

    2006-12-21

    Dual function of self-cleaning and antireflection can be created in double-layered TiO2-SiO2 nanostructured films. The film were prepared by (1) layer-by-layer deposition of multilayered SiO2 nanoparticles with polydiallyldimethylammonium (PDDA) cations, (2) layer-by-layer deposition of multilayered titanate nanosheets with polications on PDDA/SiO2 multilayer films, and (3) burning out the polymer and converting titanate nanosheets into TiO2 by hearing at 500 degrees C. The as-prepared films, consisting of a porous SiO2 bottom layer and a dense TiO2 top layer, improved the transmittance of glass or quartz substrates, as demonstrated by transmission spectra collected at normal incidence. The photocatalytic properties of the films were studied by the change of the water contact angle together with the decay of the IR absorption of the hydrocarbon chain of octadecylphosphonic-acid-modified films under 2.6 mW cm-2 UV illumination. Both the antireflective and the photocatalytic properties of the films were dependent on the number of PDDA/nanosheet bilayers deposited. however, excellent surface wettability of the films for water was obtained, independent of the preparation conditions. The experimental findings are discussed in terms of the special structure of the double-layered nanostructured film.

  1. Antiferro-ferromagnetic transition in ultrathin Ni(OH)2 layer grown on graphene surface and observation of interlayer exchange coupling in Ni(OH)2/graphene/Ni(OH)2 nanostructures

    Science.gov (United States)

    Bhattacharya, Shatabda; Mathan Kumar, E.; Thapa, Ranjit; Saha, Shyamal K.

    2017-01-01

    The major limitation of using graphene as a potential spacer element in interlayer exchange coupling (IEC) might be due to destruction of ferromagnetism as a result of the charge transfer effect at the interface if a transition metal based ferromagnetic layer is grown on the graphene surface. To overcome this problem, we have used the antiferromagnetic Ni(OH)2 layer grown on the graphene surface to convert it ferromagnetic due to the charge transfer effect. By growing thin layers of Ni(OH)2 on both sides of the graphene surface, strong antiferromagnetic IEC with ultra-low coercivity (7 Oe) is observed. By lowering the nickel content, an ultrathin layer of Ni(OH)2 is grown on either side of graphene and shows complete ferromagnetism with a giant coercivity of 4154 Oe. Ab initio calculations have been done to substantiate this kind of charge transfer effect at the interface of Ni(OH)2 and graphene. Magnetotransport of the composite material is also investigated to understand the role of IEC in transport properties.

  2. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  3. The Role of Nanostructured Al2O3 Layer in Reduction of Hot Corrosion Products in Normal YSZ Layer

    Directory of Open Access Journals (Sweden)

    Mohammadreza Daroonparvar

    2013-01-01

    Full Text Available YVO4 crystals and monoclinic ZrO2 are known as hot corrosion products that can considerably reduce the lifetime of thermal barrier coatings during service. The hot corrosion resistance of two types of air plasma sprayed thermal barrier coating systems was investigated: an Inconel 738/NiCrAlY/YSZ (yttria-stabilized zirconia and an Inconel 738/NiCrAlY/YSZ/nano-Al2O3 as an outer layer. Hot corrosion test was accomplished on the outer surface of coatings in molten salts (45% Na2SO4 + 55% V2O5 at 1000°C for 52 hour. It was found that nanostructured alumina as outer layer of YSZ/nano-Al2O3 coating had significantly reduced the infiltration of molten salts into the YSZ layer and resulted in lower reaction of fused corrosive salts with YSZ, as the hot corrosion products had been substantially decreased in YSZ/nano-Al2O3 coating in comparison with normal YSZ coating after hot corrosion process.

  4. Surface nanostructures by single highly charged ions.

    Science.gov (United States)

    Facsko, S; Heller, R; El-Said, A S; Meissl, W; Aumayr, F

    2009-06-03

    It has recently been demonstrated that the impact of individual, slow but highly charged ions on various surfaces can induce surface modifications with nanometer dimensions. Generally, the size of these surface modifications (blisters, hillocks, craters or pits) increases dramatically with the potential energy of the highly charged ion, while the kinetic energy of the projectile ions seems to be of little importance. This paper presents the currently available experimental evidence and theoretical models and discusses the circumstances and conditions under which nanosized features on different surfaces due to the impact of slow highly charged ions can be produced.

  5. Study of an antireflection surface constructed of controlled ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ren-Jei, E-mail: rjchung@ntut.edu.tw [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan, ROC (China); Lin, Zih-Cian [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan, ROC (China); Lin, Chin-An; Lai, Kun-Yu [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan, ROC (China); Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China)

    2014-11-03

    Zinc oxide (ZnO) nanostructures were fabricated on Si wafers using a hydrothermal method. By adjusting the spin-coating speed and annealing time for the zinc acetate thin films used as a seed layer, the density of ZnO nanorods (NRs) was controlled. In addition, it was found that the morphology of the NRs evolved from a wire-like geometry to a tower-like geometry with an increasing concentration of ascorbic acid. The surface reflectance of the ZnO NR layers with various textures was investigated. The results indicated that NRs effectively enhanced light trapping and further reduced Fresnel reflection due to the significant grading in the refractive index, avoiding the abrupt transition at the air/Si interface. The total reflectance on the coated surface can be as low as 11%, which is 3 times lower than that of polished Si. The optimized design of nanostructured ZnO surfaces for antireflection coatings will greatly improve the performance of optoelectronic devices. - Highlights: • Nanotructured ZnO was prepared to serve as an anti-reflection coating. • The geometries of sol–gel prepared ZnO were controlled. • ZnO nanorod, nanoneedle and nanotower arrays were fabricated. • The light reflectance of the nanostructures was much lower than that of bare Si.

  6. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    Science.gov (United States)

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-11-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics.

  7. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation

    Directory of Open Access Journals (Sweden)

    Svensson S

    2014-02-01

    gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly promoted nor attenuated the activity of monocytes when exposed to zymosan particles or S. epidermidis.Keywords: nanotopography, staphylococci, host defense, bacteria, zymosan, macrophage

  8. Effect of surface nanostructure on temperature programmed reaction spectroscopy

    Science.gov (United States)

    Rieger, Michael; Rogal, Jutta; Reuter, Karsten

    2008-03-01

    Using the catalytic CO oxidation at RuO2(110) as a showcase, we employ first-principles kinetic Monte Carlo simulations to illustrate the intricate effects on temperature programmed reaction (TPR) spectroscopy data brought about by the mere correlations between the locations of the active sites at a nanostructured surface. Even in the absence of lateral interactions, this nanostructure alone can cause inhomogeneities that cannot be grasped by prevalent mean-field data analysis procedures, which thus lead to wrong conclusions on the reactivity of the different surface species. The RuO2(110) surface studied here exhibits only two prominent active sites, arranged in simple alternating rows. Yet, the mere neglection of this still quite trivial nanostructure leads mean-field TPR data analysis [1] to extract kinetic parameters that are in error by several orders of magnitude and that do not even reflect the relative reactivity of the different surface species correctly [2].[1] S. Wendt, M. Knapp, and H. Over, JACS 126, 1537 (2004).[2] M. Rieger, J. Rogal, and K. Reuter, Phys. Rev. Lett (in press).

  9. Ion beam induced optical and surface modification in plasmonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai B., E-mail: udaibhansingh123@gmail.com; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-15

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm{sup −1} along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  10. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Enright, R; Miljkovic, N; Alvarado, JL; Kim, K; Rose, JW

    2014-07-23

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-and nanoscale by exploiting advances in surface engineering developed over the last several decades.

  11. Superhydrophobic Behavior on Nano-structured Surfaces

    Science.gov (United States)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  12. Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong L [Marietta, GA; Xu, Sheng [Atlanta, GA

    2011-08-23

    An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.

  13. Surface nanostructuring of TiO{sub 2} thin films by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gomez, P. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain); Palmero, A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain)], E-mail: alberto.palmero@icmse.csic.es; Yubero, F. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain); Vinnichenko, M.; Kolitsch, A. [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); Gonzalez-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain)

    2009-04-15

    This work reports a procedure to modify the surface nanostructure of TiO{sub 2} anatase thin films through ion beam irradiation with energies in the keV range. Irradiation with N{sup +} ions leads to the formation of a layer with voids at a depth similar to the ion-projected range. By setting the ion-projected range a few tens of nanometers below the surface of the film, well-ordered nanorods appear aligned with the angle of incidence of the ion beam. Slightly different results were obtained by using heavier (S{sup +}) and lighter (B{sup +}) ions under similar conditions.

  14. Nanostructured Surfaces for Drug Delivery and Anti-Fibrosis

    Science.gov (United States)

    Kam, Kimberly Renee

    Effective and cost-efficient healthcare is at the forefront of public discussion; on both personal and policy levels, technologies that improve therapeutic efficacy without the use of painful hypodermic needle injections or the use of harsh chemicals would prove beneficial to patients. Nanostructured surfaces as structure-mediated permeability enhancers introduce a potentially revolutionary approach to the field of drug delivery. Parental administration routes have been the mainstay technologies for delivering biologics because these therapeutics are too large to permeate epithelial barriers. However, there is a significant patient dislike for hypodermic needles resulting in reduced patient compliance and poor therapeutic results. We present an alternative strategy to harness the body's naturally occurring biological processes and transport mechanisms to enhance the drug transport of biologics across the epithelium. Our strategy offers a paradigm shift from traditional biochemical drug delivery vehicles by using nanotopography to loosen the epithelial barrier. Herein, we demonstrate that nanotopographical cues can be used to enable biologics > 66 kDa to be transported across epithelial monolayers by increasing paracellular transport. When placed in contact with epithelial cells, nanostructured films significantly increase the transport of albumin, IgG, and a model therapeutic, etanercept. Our work highlights the potential to use drug delivery systems which incorporate nanotopographical cues to increase the transport of biologics across epithelial tissue. Furthermore, we describe current advancements in nano- and microfabrication for applications in anti-fibrosis and wound healing. Influencing cellular responses to biomaterials is crucial in the field of tissue engineering and regenerative medicine. Since cells are surrounded by extracellular matrix features that are on the nanoscale, identifying nanostructures for imparting desirable cellular function could greatly

  15. Reaction mechanisms for on-surface synthesis of covalent nanostructures.

    Science.gov (United States)

    Björk, J

    2016-03-02

    In recent years, on-surface synthesis has become an increasingly popular strategy to form covalent nanostructures. The approach has great prospects for facilitating the manufacture of a range of fascinating materials with atomic precision. However, the on-surface reactions are enigmatic to control, currently restricting its bright perspectives and there is a great need to explore how the reactions are governed. The objective of this topical review is to summarize theoretical work that has focused on comprehending on-surface synthesis protocols through studies of reaction mechanisms.

  16. Topographic characterization of nanostructures on curved polymer surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Petersen, Jan C.; Taboryski, Rafael J.

    2014-01-01

    The availability of portable instrumentation for characterizing surface topography on the micro- and nanometer scale is very limited. Particular the handling of curved surfaces, both concave and convex, is complicated or not possible on current instrumentation. However, the currently growing use ...... surfaces in vibration prone production facilities has not previously been reported in the literature, and therefore has great novelty potential....... that the instrument can characterize and validate the micro- and nanoscale topography directly in the production facility, as the interruptive time delay induced from shipping to an external facility is not compatible with present large-scale production routines. Satisfactory characterization of nanostructured curved...

  17. Arc tracks on nanostructured surfaces after microbreakdowns

    Science.gov (United States)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  18. TiO2 nanostructured surfaces for biomedical applications developed by electrochemical anodization

    Science.gov (United States)

    Strnad, G.; Petrovan, C.; Russu, O.; Jakab-Farkas, L.

    2016-11-01

    Present research demonstrates the formation of self-ordered nanostructured oxide layer on the surface of two phase Ti6Al4V alloy by using electrochemical anodization in H3PO4/HF electrolytes. Our results show that the ordered oxide nanotubes grow on large areas on the samples surface, on both phases of (α+β) Ti6Al4V titanium alloy. We developed nanotubes of 70 nm (internal diameter) using 0.3 wt% HF and of 80 nm using 0.5 wt% HF additions to 1M H3PO4, at an anodization potential of 20 V, and an anodization time of 2 hours. We show that anodization potential has a strong influence on nanostructures morphology. Our results show that nanotubes’ internal diameter is ∼30 nm at 10 V potential, ∼40 nm at 15 V potential, and ∼70-80 nm at 20 V potential in anodization process performed in 1M H3PO4 + 0.5 wt% HF, 2 hours. The thickness of the developed nanostructured oxide layer is in 200-250 nm range.

  19. Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)

    Science.gov (United States)

    Špašková, Barbora; Lynn, Nicholas S.; Slabý, Jiří Bocková, Markéta; Homola, Jiří

    2017-06-01

    There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.

  20. Nanostructured layer-by-layer films containing phaeophytin-b: electrochemical characterization for sensing purposes.

    Science.gov (United States)

    Pauli, Gisele Elias Nunes; Araruna, Felipe B; Eiras, Carla; Leite, José Roberto S A; Chaves, Otemberg Souza; Brito Filho, Severino Gonçalves; de Souza, Maria de Fátima Vanderlei; Chavero, Lucas Natálio; Sartorelli, Maria Luisa; Bechtold, Ivan H

    2015-02-01

    This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV-Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H2O2) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H2O2. This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H2O2.

  1. Nanostructural Evolution of Hard Turning Layers in Carburized Steel

    Science.gov (United States)

    Bedekar, Vikram

    The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting

  2. Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices.

    Science.gov (United States)

    Wang, Xiang; Wang, Jingfang; Cheng, Hanjun; Yu, Ping; Ye, Jianshan; Mao, Lanqun

    2011-09-06

    This study demonstrates the capability of graphene as a spacer to form electrochemically functionalized multilayered nanostructures onto electrodes in a controllable manner through layer-by-layer (LBL) chemistry. Methylene green (MG) and positively charged methylimidazolium-functionalized multiwalled carbon nanotubes (MWNTs) were used as examples of electroactive species and electrochemically useful components for the assembly, respectively. By using graphene as the spacer, the multilayered nanostructures of graphene/MG and graphene/MWNT could be readily formed onto electrodes with the LBL method on the basis of the electrostatic and/or π-π interaction(s) between graphene and the electrochemically useful components. Scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis), and cyclic voltammetry (CV) were used to characterize the assembly processes, and the results revealed that nanostructure assembly was uniform and effective with graphene as the spacer. Electrochemical studies demonstrate that the assembled nanostructures possess excellent electrochemical properties and electrocatalytic activity toward the oxidation of NADH and could thus be used as electronic transducers for bioelectronic devices. This potential was further demonstrated by using an alcohol dehydrogenase-based electrochemical biosensor and glucose dehydrogenase-based glucose/O(2) biofuel cell as typical examples. This study offers a simple route to the controllable formation of graphene-based electrochemically functionalized nanostructures that can be used for the development of molecular bioelectronic devices such as biosensors and biofuel cells.

  3. Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Bandarenka, Hanna V; Girel, Kseniya V; Bondarenko, Vitaly P; Khodasevich, Inna A; Panarin, Andrei Yu; Terekhov, Sergei N

    2016-12-01

    Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanism. The ratio of silver salt concentration and immersion time substantially manages the SERS intensity. It has been established that optimal conditions of nanostructured silver layers formation for a maximal Raman enhancement can be chosen taking into account a special parameter called effective time: a product of the silver salt concentration on the immersion deposition time. The detection limit for porphyrin molecules CuTMPyP4 adsorbed on the silvered PS has been evaluated as 10(-11) M.

  4. In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring

    Science.gov (United States)

    Biethan, J.-P.; Considine, L.; Pavlidis, D.

    2011-04-01

    A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation.

  5. Determination of the photoelectron reference plane in nanostructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lobo-Checa, Jorge; Mugarza, Aitor [Centre d' Investigacio en Nanociencia i Nanotecnologia, CIN2 (CSIC-ICN), Esfera UAB, Campus de la UAB, 08193-Bellaterra (Spain); Ortega, Jose Enrique [Dpto Fisica Aplicada I, Universidad del PaIs Vasco, E-20018 San Sebastian (Spain); Michel, Enrique G, E-mail: jorge.lobo@cin2.es [Dpto de Fisica de la Materia Condensada and Instituto Universitario de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2011-10-15

    In angle-resolved photoemission (ARPES) from crystalline solids, wave-vector conservation applies to the two-dimensional (2D) surface, which may thus be defined as the reference plane in ARPES. We investigate whether such reference varies for photoemitted electrons in nanometer-sized systems that expose different crystal planes. To this aim, we exploit the structural tunability of the Ag/Cu(223) system which is capable of offering surfaces with periodic arrays of nanofacets of varying size and orientation. A thorough, photon-energy-dependent analysis of the surface states confined to such nanostructures is performed comparing different reference planes for photoemitted electrons. Assuming the premise that k{sub ||} must be a good quantum number for 2D states, we conclude that the (final state) photoelectron reference direction is not the average optical direction but the local facet that confines the (initial state) surface electrons. Moreover, in the general case of nanostructured systems with uneven surfaces, we show how the photoelectron reference plane can be empirically determined through such a photon-energy-dependent ARPES analysis. (paper)

  6. Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range.

    Science.gov (United States)

    González-Campuzano, Ricardo; Saniger, J M; Mendoza, Doroteo

    2017-09-15

    The size-controllable and ordered Al nanocavities and nanodomes arrays were synthesized by electrochemical anodization of aluminum using phosphoric acid, citric acid and mixture both acids. Few layer graphene (FLG) was transferred directly on top of Al nanostructures and their morphology were evaluated by Scanning Electron Microscopy. The interaction between FLG and the plasmonic properties of Al nanostructures arrays were investigated based on specular reflectivity in the UV-Vis-IR range and Raman Spectroscopy. We found that their optical reflectivity was dramatically reduced as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 200 nm-896 nm wavelength range, which were ascribed to plasmonic resonances. The plasmonic properties of these nanostructures do not exhibit evident changes by the presence of FLG in the UV-Vis range of the electromagnetic spectrum. By contrast, the Surface-Enhanced Raman Spectroscopy (SERS) of FLG was observed in nanocavities and nanodomes structures that result in an intensity increase of the characteristic G and 2D bands of FLG induced by the plasmonic properties of Al nanostructures. © 2017 IOP Publishing Ltd.

  7. Highly efficient uniform ZnO nanostructures for an electron transport layer of inverted organic solar cells.

    Science.gov (United States)

    Kim, Sarah; Kim, Chul-Hyun; Lee, Sang Kyu; Jeong, Jun-Ho; Lee, Jihye; Jin, Sung-Ho; Shin, Won Suk; Song, Chang Eun; Choi, Jun-Hyuk; Jeong, Jong-Ryul

    2013-07-11

    A highly uniform and predesigned ZnO nanostructure fabricated by single step direct nanoimprinting was used as the efficient electron transport layer (ETL) in inverted bulk heterojunction organic solar cells. Improved photovoltaic cell efficiency with long-term stability can be observed due to the large interface between the active layer and nanostructured ZnO ETL.

  8. Electron field emission from nanostructured surfaces of GaN and AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Evtukh, A.; Litovchenko, V.; Semenenko, M.; Gorbanyuk, T.; Grygoriev, A. [Institute of Semiconductor Physics, 41 prospekt Nauki, 03028 Kiev (Ukraine); Yilmazoglu, O.; Hartnagel, H.; Pavlidis, D. [Technische Universitaet Darmstadt, Institut fuer Hochfrequenztechnik, Merckstr. 25, 64283 Darmstadt (Germany)

    2008-07-01

    The possibility of high frequency electromagnetic wave generation by field emission based devices has great interest. The wide bandgap materials GaN and AlGaN are very promising for these applications due to low electron affinity and the existence of satellite valleys in conduction band. The results of investigations of the peculiarities of electron field emission from nanostructured surfaces of GaN and AlGaN are presented. Multilayer GaN and AlGaN structures with various levels of layer doping on sapphire and bulk GaN substrates were used as initial wafers. The surface of the upper layers was nanostructured by photoelectrochemical etching in water solution of KOH. Intensive electron field emission into vacuum was observed and explained by low electron affinity and electric field enhancement on surface nanowires. A decrease of the slope in the Fowler-Nordheim characteristics was revealed. The changing slope suggests a lowering of effective work function. It is caused by electron heating and transfer into an upper satellite valley with lower electron affinity. A theory was developed for the observed phenomena and interpretation of results. It is based on electron intervalley transition upon heating and on energy band reconstruction of the surface of the nanowires due to quantum size-confinement effect. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  10. Durable superhydrophobic surfaces made by intensely connecting a bipolar top layer to the substrate with a middle connecting layer.

    Science.gov (United States)

    Zhi, Jinghui; Zhang, Li-Zhi

    2017-08-30

    This study reported a simple fabrication method for a durable superhydrophobic surface. The superhydrophobic top layer of the durable superhydrophobic surface was connected intensely to the substrate through a middle connecting layer. Glycidoxypropyltrimethoxysilane (KH-560) after hydrolysis was used to obtain a hydrophilic middle connecting layer. It could be adhered to the hydrophilic substrate by covalent bonds. Ring-open reaction with octadecylamine let the KH-560 middle layer form a net-like structure. The net-like sturcture would then encompass and station the silica particles that were used to form the coarse micro structures, intensely to increase the durability. The top hydrophobic layer with nano-structures was formed on the KH-560 middle layer. It was obtained by a bipolar nano-silica solution modified by hexamethyldisilazane (HMDS). This layer was connected to the middle layer intensely by the polar Si hydroxy groups, while the non-polar methyl groups on the surface, accompanied by the micro and nano structures, made the surface rather hydrophobic. The covalently interfacial interactions between the substrate and the middle layer, and between the middle layer and the top layer, strengthened the durability of the superhydrophobic surface. The abrasion test results showed that the superhydrophobic surface could bear 180 abrasion cycles on 1200 CW sandpaper under 2 kPa applied pressure.

  11. Intrusion and extrusion of a liquid on nanostructured surfaces

    Science.gov (United States)

    Amabili, M.; Giacomello, A.; Meloni, S.; Casciola, C. M.

    2017-01-01

    Superhydrophobicity is connected to the presence of gas pockets within surface asperities. Upon increasing the pressure this ‘suspended’ state may collapse, causing the complete wetting of the rough surface. In order to quantitatively characterize this process on nanostructured surfaces, we perform rare-event atomistic simulations at different pressures and for several texture geometries. Such an approach allows us to identify for each pressure the stable and metastable states and the free energy barriers separating them. Results show that, by starting from the superhydrophobic state and increasing the pressure, the suspended state abruptly collapses at a critical intrusion pressure. If the pressure is subsequently decreased, the system remains trapped in the metastable state corresponding to the wet surface. The liquid can be extruded from the nanostructures only at very negative pressures, by reaching the critical extrusion pressure (spinodal for the confined liquid). The intrusion and extrusion curves form a hysteresis cycle determined by the large free energy barriers separating the suspended and wet states. These barriers, which grow very quickly for pressures departing from the intrusion/extrusion pressure, are shown to strongly depend on the texture geometry.

  12. Fast and Slow Wetting Dynamics on nanostructured surfaces

    Science.gov (United States)

    Nandyala, Dhiraj; Rahmani, Amir; Cubaud, Thomas; Colosqui, Carlos

    2015-11-01

    This talk will present force-displacement and spontaneous drop spreading measurements on diverse nanostructured surfaces (e.g., mesoporous titania thin films, nanoscale pillared structures, on silica or glass substrates). Experimental measurements are performed for water-air and water-oil systems. The dynamics of wetting observed in these experiments can present remarkable crossovers from fast to slow or arrested dynamics. The emergence of a slow wetting regime is attributed to a multiplicity of metastable equilibrium states induced by nanoscale surface features. The crossover point can be dramatically advanced or delayed by adjusting specific physical parameters (e.g., viscosity of the wetting phases) and geometric properties of the surface nanostructure (e.g., nanopore/pillar radius and separation). Controlling the crossover point to arrested dynamics can effectively modify the degree of contact angle hysteresis and magnitude of liquid adhesion forces observed on surfaces of different materials. This work is supported by a SEED Award from The Office of Brookhaven National Laboratory Affairs at Stony Brook University.

  13. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  14. Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Marc D; Vohra, Yogesh K [Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, AL (United States)

    2002-10-21

    Microwave plasma chemical vapour deposition of nanostructured diamond films was carried out on curved surfaces of Ti-6Al-4V alloy machined to simulate the shape of a temporomandibular joint (TMJ) dental implant. Raman spectroscopy shows that the deposited films are uniform in chemical composition along the radius of curvature of the TMJ condyle. Thin film x-ray diffraction reveals an interfacial carbide layer and nanocrystalline diamond grains in this coating. Nanoindentation hardness measurements show an ultra-hard coating with a hardness value of 60{+-}5 GPa averaged over three samples. (rapid communication)

  15. RAPID COMMUNICATION: Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant

    Science.gov (United States)

    Fries, Marc D.; Vohra, Yogesh K.

    2002-10-01

    Microwave plasma chemical vapour deposition of nanostructured diamond films was carried out on curved surfaces of Ti-6Al-4V alloy machined to simulate the shape of a temporomandibular joint (TMJ) dental implant. Raman spectroscopy shows that the deposited films are uniform in chemical composition along the radius of curvature of the TMJ condyle. Thin film x-ray diffraction reveals an interfacial carbide layer and nanocrystalline diamond grains in this coating. Nanoindentation hardness measurements show an ultra-hard coating with a hardness value of 60+/-5 GPa averaged over three samples.

  16. Curved surface effect and emission on silicon nanostructures

    Science.gov (United States)

    Huang, Wei-Qi; Yin, Jun; Zhou, Nian-Jie; Huang, Zhong-Mei; Miao, Xin-Jian; Cheng, Han-Qiong; Su, Qin; Liu, Shi-Rong; Qin, Chao-Jian

    2013-10-01

    The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, LO1, and LO2 lines in PL spectra due to Si—N, Si—NO, Si=O, and Si—O—Si bonds on curved surface, respectively. Si—Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the LYb line of electroluminescence (EL) emission.

  17. Micro/nanostructured surface modification using femtosecond laser pulses on minimally invasive electrosurgical devices.

    Science.gov (United States)

    Lin, Chia-Cheng; Lin, Hao-Jan; Lin, Yun-Ho; Sugiatno, Erwan; Ruslin, Muhammad; Su, Chen-Yao; Ou, Keng-Liang; Cheng, Han-Yi

    2016-01-29

    The purpose of the present study was to examine thermal damage and a sticking problem in the tissue after the use of a minimally invasive electrosurgical device with a nanostructured surface treatment that uses a femtosecond laser pulse (FLP) technique. To safely use an electrosurgical device in clinical surgery, it is important to decrease thermal damage to surrounding tissues. The surface characteristics and morphology of the FLP layer were evaluated using optical microscopy, scanning electron microscopy, and transmission electron microscopy; element analysis was performed using energy-dispersive X-ray spectroscopy, grazing incidence X-ray diffraction, and X-ray photoelectron spectroscopy. In the animal model, monopolar electrosurgical devices were used to create lesions in the legs of 30 adult rats. Animals were sacrificed for investigations at 0, 3, 7, 14, and 28 days postoperatively. Results indicated that the thermal damage and sticking situations were reduced significantly when a minimally invasive electrosurgical instrument with an FLP layer was used. Temperatures decreased while film thickness increased. Thermographic data revealed that surgical temperatures in an animal model were significantly lower in the FLP electrosurgical device compared with that in the untreated one. Furthermore, the FLP device created a relatively small area of thermal damage. As already mentioned, the biomedical nanostructured layer reduced thermal damage and promoted the antisticking property with the use of a minimally invasive electrosurgical device. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  18. Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures

    Science.gov (United States)

    Anderson, Nicholas R.

    The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic

  19. Lithography-free synthesis of nanostructured cobalt on Si (111) surfaces: structural and magnetic properties

    Science.gov (United States)

    Bounour-Bouzamouche, W.; Chérif, S. M.; Farhat, S.; Roussigné, Y.; Lungu, C. P.; Mazaleyrat, F.; Guerioune, M.

    2014-07-01

    We illustrate the concept of lithography-free synthesis and patterning of magnetic cobalt in the nanometric scale. Our elaboration method allows fabricating 2D architectures of cobalt and cobalt silicide onto silicon (111) surfaces. A continuous cobalt layer of 1, 3 and 10 nm thickness was first deposited by using thermoionic vacuum arc (TVA) technology and then, thermally annealed on vacuum at temperatures from 450° C to 800° C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750° C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the substrate temperature. Magnetic properties were investigated by means of vibrating sample magnetometer (VSM) technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modelled by a series of shapes tending to a fractal curve.

  20. Manipulating Surface Energy to form Compound Semiconductor Nanostructures

    Science.gov (United States)

    DeJarld, Matthew T.

    Nanostructures have been lauded for their quantum confinement capabilities and potential applications in future devices. Compound semiconductor nanostructures are being integrated into the next generation of photovoltaic and light emitting devices to take advantage of their unique optical characteristics. Despite their promise, adoption of nanostructure based devices has been slow. This is due in large part to difficulties in effective fabrication and processing steps. By manipulating the surface energy of various components during growth, we can control the final structure and corresponding optoelectronic characteristics. Specifically I will present on GaSb quantum dots embedded in GaAs and GaAs nanowires using novel substrate and catalyst materials. GaSb quantum dots embedded in a GaAs matrix are ideal for devices that require capture of minority carriers as they exhibit a type II band offset with carrier concentration in the valence band. However, during GaAs capping, there is a strong driving force for the dot to demolish into a distribution of intact dots, rings, and GaSb material clusters. We demonstrate the ability to mitigate this effect using both chemical and kinetic means: we alter the surface chemistry via the addition of aluminum, and use droplet epitaxy as an alternative quantum dot formation method. Secondly, the growth of high quality GaAs on silicon has always been restricted due to material incompatibilities. With the emergence of increasingly smaller low power electronics, there is a demand to integrate optoelectronic devices directly on the surface of CMOS sensor stacks. Utilizing the vapor-liquid-solid growth mechanism we are able to demonstrate the growth of high quality GaAs nanowires on polycrystalline substrates at low temperatures. This allows for the growth of III-V nanowire based devices directly on the metal pads of pre-packaged CMOS chips. We also investigate the potential use of bismuth as an alternative to gold for catalyzing

  1. One-Step Fabrication of Hierarchically Structured Silicon Surfaces and Modification of Their Morphologies Using Sacrificial Layers

    Directory of Open Access Journals (Sweden)

    Seong J. Cho

    2013-01-01

    Full Text Available Fabrication of one-dimensional nanostructures is a key issue for optical devices, fluidic devices, and solar cells because of their unique functionalities such as antireflection and superhydrophobicity. Here, we report a novel one-step process to fabricate patternable hierarchical structures consisting of microstructures and one-dimensional nanostructures using a sacrificial layer. The layer plays a role as not only a micromask for producing microstructures but also as a nanomask for nanostructures according to the etching time. Using this method, we fabricated patterned hierarchical structures, with the ability to control the shape and density of the nanostructure. The various architectures provided unique functionalities. For example, our sacrificial-layer etching method allowed nanostructures denser than what would be attainable with conventional processes to form. The dense nanostructure resulted in a very low reflectance of the silicon surface (less than 1%. The nanostructured surface and hierarchically structured surface also exhibited excellent antiwetting properties, with a high contact angle (>165° and low sliding angle (<1°. We believe that our fabrication approach will provide new insight into functional surfaces, such as those used for antiwetting and antireflection surface applications.

  2. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    Science.gov (United States)

    Selvaraj Kousalya, Arun

    . Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.

  3. Coulomb sink effect on coarsening of metal nanostructures on surfaces

    Institute of Scientific and Technical Information of China (English)

    Yong HAN; Feng LIU

    2008-01-01

    We discuss Coulomb effects on the coarsening of metal nanostructures on surfaces. We have proposed a new concept of a "Coulomb sink" [Phys. Rev. Lett., 2004, 93: 106102] to elucidate the effect of Coulomb charging on the coarsening of metal mesas grown on semiconductor surfaces. A charged mesa, due to its reduced chemical potential, acts as a Coulomb sink and grows at the expense of neighboring neu-tral mesas. The Coulomb sink provides a potentially useful method for the controlled fabrication of metal nanostructures. In this article, we will describe in detail the proposed physical models, which can explain qualitatively the most salient fea-tures of coarsening of charged Pb mesas on the Si(111) sur-face, as observed by scanning tunneling microscopy (STM). We will also describe a method of precisely fabricating large-scale nanocrystals with well-defined shape and size. By using the Coulomb sink effect, the artificial center-full-hol-lowed or half-hollowed nanowells can be created.

  4. Morphologies, Preparations and Applications of Layered Double Hydroxide Micro-/Nanostructures

    Directory of Open Access Journals (Sweden)

    Mingdong Dong

    2010-12-01

    Full Text Available Layered double hydroxides (LDHs, also well-known as hydrotalcite-like layered clays, have been widely investigated in the fields of catalysts and catalyst support, anion exchanger, electrical and optical functional materials, flame retardants and nanoadditives. This feature article focuses on the progress in micro-/nanostructured LDHs in terms of morphology, and also on the preparations, applications, and perspectives of the LDHs with different morphologies.

  5. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    Science.gov (United States)

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  6. Uncertainties in Surface Layer Modeling

    Science.gov (United States)

    Pendergrass, W.

    2015-12-01

    A central problem for micrometeorologists has been the relationship of air-surface exchange rates of momentum and heat to quantities that can be predicted with confidence. The flux-gradient profile developed through Monin-Obukhov Similarity Theory (MOST) provides an integration of the dimensionless wind shear expression where is an empirically derived expression for stable and unstable atmospheric conditions. Empirically derived expressions are far from universally accepted (Garratt, 1992, Table A5). Regardless of what form of these relationships might be used, their significance over any short period of time is questionable since all of these relationships between fluxes and gradients apply to averages that might rarely occur. It is well accepted that the assumption of stationarity and homogeneity do not reflect the true chaotic nature of the processes that control the variables considered in these relationships, with the net consequence that the levels of predictability theoretically attainable might never be realized in practice. This matter is of direct relevance to modern prognostic models which construct forecasts by assuming the universal applicability of relationships among averages for the lower atmosphere, which rarely maintains an average state. Under a Cooperative research and Development Agreement between NOAA and Duke Energy Generation, NOAA/ATDD conducted atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of legacy flux-gradient formulations (the ϕ functions, see Monin and Obukhov, 1954) for the exchange of heat and momentum. At the Duke Energy Ocotillo site, NOAA/ATDD installed sonic anemometers reporting wind and temperature fluctuations at 10Hz at eight elevations. From these observations, ϕM and ϕH were derived from a two-year database of mean and turbulent wind and temperature observations. From this extensive measurement database, using a

  7. Laser Nanostructurization of the Metal and Alloy Surfaces

    Science.gov (United States)

    Kanavin, Andrei; Kozlovskaya, Natalia; Krokhin, Oleg; Zavestovskaya, Irina

    2010-10-01

    The results from experimental and theoretical investigation of material pulsed laser treatment aimed at obtaining nano- and microstructured surface are presented. An experiment has been performed on the modification of indium surface using a solid-state diode-pumped laser. It has been shown that nano- and micro-size structures are formed under laser melting and fast crystallization of the metal surface. The kinetics of the crystallization of metals under superfast cooling. The distribution function for crystalline nuclei dimensions is analytically found within the framework of the classical kinetic equation in case of superfast temperature changing. The average number of particles in the crystalline nuclei and relative volume of the crystalline phase are determined as functions of thermodynamic and laser treatment regime parameters. Good agreement is observed with experimental results for ultrashort laser pulses induced micro- and nanostructures production.

  8. Computational design of surfaces, nanostructures and optoelectronic materials

    Science.gov (United States)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  9. Surface plasmon polariton waveguiding in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Leosson, K.

    2003-01-01

    In this study, guiding of surface plasmon polaritons excited at a gold film surface along corrugation-free channels in regions that are covered with randomly located surface scatterers, is considered using near-field microscopy for imaging of surface plasmon polariton intensity distributions at t...... demonstrate well-defined surface plasmon polariton guiding along corrugation-free 2 micro-m wide channels in random structures and, in the wavelength range 738-774 nm, low-loss guiding around 20degrees bends having a bend radius of approx. 15 micro-m....

  10. Characterization of Nanocrystallizatin Surface Layer of 0.4C-1Cr Low Alloy Steel Prepared by Ultrasonic Particulate Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-bao; LIU Yu-liang; ZHAO Xin-qi; WU Jie; SONG Hong-wei; XIONG Tian-ying

    2004-01-01

    A nanostructured surface layer was fabricated in a quenched and tempered 0.4C-1Cr low alloy steel by ultrasonic particulate peening technique. The microstructure of the nanocrystalline surface layer was characterized by means of TEM and Mossbauer spectroscopy. Experimental results reveal that both cementite and ferrite nanocrystals with an average size of 5 nm were formed in the surface layer of the steel, phase transformation of austenite and dissolution of cementite maybe occur in the process of ultrasonic particulate peening.

  11. Characterization of Nanocrystallizatin Surface Layer of 0.4C-1Cr Low Alloy Steel Prepared by Ultrasonic Particulate Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANGJun-bao; LIUYu-liang; ZHAOXin-qi; WUJie; SONGHong-wei; XIONGTian-ying

    2004-01-01

    A nanostructured surface layer was fabricated in a quenched and tempered 0.4C-ICr low alloy steel by ultrasonic particulate peening technique. The microstructure of the nanocrystalline surface layer was characterized by means of TEM and Moessbauer spectroscopy. Experimental results reveal that both cementite and ferrite nanocrystals with an average size of 5 nm were formed in the surface layer of the steel, phase transformation of austenite and dissolution of cementite maybe occur in the process of ultrasonic particulate peening.

  12. Surface plasmon polariton waveguiding in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Leosson, K.

    2003-01-01

    In this study, guiding of surface plasmon polaritons excited at a gold film surface along corrugation-free channels in regions that are covered with randomly located surface scatterers, is considered using near-field microscopy for imaging of surface plasmon polariton intensity distributions...... at the surface. In the wavelength range 713-815 nm, we observed complete inhibition of the surface plasmon polariton propagation inside the random structures composed of individual (approx. 70 nm high) gold bumps (and their clusters) placed on a 55 nm thick gold film with a bump density of 75 micro-m-2. We...... demonstrate well-defined surface plasmon polariton guiding along corrugation-free 2 micro-m wide channels in random structures and, in the wavelength range 738-774 nm, low-loss guiding around 20degrees bends having a bend radius of approx. 15 micro-m....

  13. Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry

    Science.gov (United States)

    Dey, S. K.; Wang, C.-G.; Tang, D.; Kim, M. J.; Carpenter, R. W.; Werkhoven, C.; Shero, E.

    2003-04-01

    A 4 nm layer of ZrOx (targeted x˜2) was deposited on an interfacial layer (IL) of native oxide (SiO, t˜1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 300 °C. Some as-deposited layers were subjected to a postdeposition, rapid thermal annealing at 700 °C for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous ZrO2-rich Zr silicate containing about 15% by volume of embedded ZrO2 nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-ZrO2 (t-ZrO2) and monoclinic-ZrO2 (m-ZrO2) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper SiO2-rich Zr silicate and the lower SiOx. The latter was substoichiometric and the average oxidation state increased from Si0.86+ in SiO0.43 (as-deposited) to Si1.32+ in SiO0.66 (annealed). This high oxygen deficiency in SiOx was indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor (MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of ZrO2 and SiO2, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multilayer nanostructure and nanochemistry that

  14. Water molecules orientation in surface layer

    Science.gov (United States)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  15. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    Science.gov (United States)

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces.

  16. Effects of post-heated ZnO seed layers on structural and optical properties of ZnO nanostructures grown by hydrothermal method

    Science.gov (United States)

    Kim, Soaram; Nam, Giwoong; Yim, Kwang Gug; Lee, Jewon; Kim, Yangsoo; Leem, Jae-Young

    2013-05-01

    ZnO nanostructures were grown by the hydrothermal method on ZnO seed layers post-heated in the range 350°C-500°C. The effects of the post-heated ZnO seed layers on the structural and optical properties of the ZnO nanostructures were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD) spectroscopy, and photoluminescence (PL) spectroscopy. The average grain sizes in the ZnO seed layers increased with increasing post-heating temperature, and nano-fibrous structures were observed on the surface of the ZnO seed layers post-heated at 450°C. The ZnO seed layers post-heated in the range 350°C-500°C affected the residual stress, lattice distortion in the ZnO nanostructures and the intensity, positions, and full widths at half maximum of 2 θ and PL peaks in the XRD and PL spectra for the ZnO nanostructures.

  17. Growth mechanism, surface and optical properties of ZnO nanostructures deposited on various Au-seeded thickness obtained by mist-atomization

    Science.gov (United States)

    Afaah, A. N.; Aadila, A.; Asib, N. A. M.; Mohamed, R.; Rusop, M.; Khusaimi, Z.

    2016-07-01

    In this paper, growth mechanisms of ZnO nanostructures on non-seeded glass, 6 nm and 12 nm Au seed layer obtained by mist-atomization was proposed. ZnO films were successfully deposited on glass substrate with different thickness of Au seed layer i.e. 6 nm and 12 nm. The surface and optical properties of the prepared samples were investigated using Field emission scanning electron microscopy (FESEM) and photoluminescence (PL). FESEM micrograph show that ZnO nanostructure deposited on 6 nm Au seed layer has uniform formation and well distributed. From PL spectroscopy, the UV emission shows that ZnO deposited on 6 nm Au seed layer has the more intense UV intensity which proved that high crystal quality of nanostructured ZnO deposited on 6 nm Au seed layer.

  18. Engineering aperiodic nanostructured surfaces for scattering-based optical devices

    Science.gov (United States)

    Lee, Yuk Kwan Sylvanus

    Novel optical devices such as biosensors, color displays and authentication devices can be obtained from the distinctive light scattering properties of resonant nanoparticles and nanostructured arrays. These arrays can be optimized through the choice of material, particle morphology and array geometry. In this thesis, by engineering the multi-frequency colorimetric responses of deterministic aperiodic nanostructured surfaces (DANS) with various spectral Fourier properties, I designed, fabricated and characterized scattering-based devices for optical biosensing and structural coloration applications. In particular, using analytical and numerical optimization, colorimetric biosensors are designed and fabricated with conventional electron beam lithography, and characterized using dark-field scattering imaging as well as image autocorrelation analysis of scattered intensity in the visible spectral range. These sensors, which consist of aperiodic surfaces ranging from quasi-periodic to pseudo-random structures with flat Fourier spectra, sustain highly complex structural resonances that enable a novel optical sensing approach beyond the traditional Bragg scattering. To this end, I have experimentally demonstrated that DANS with engineered structural colors are capable of detecting nanoscale protein monolayers with significantly enhanced sensitivity over periodic structures. In addition, different aperiodic arrays of gold (Au) nanoparticles are integrated with polydimethylsiloxane (PDMS) microfluidic structures by soft-lithographic micro-imprint techniques. Distinctive scattering spectral shifts and spatial modifications of structural color patterns in response to refractive index variations were simultaneously measured. The successful integration of DANS with microfluidics technology has introduced a novel opto-fluidic sensing platform for label-free and multiplexed lab-on-a-chip applications. Moreover, by studying the isotropic scattering properties of homogenized

  19. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Farzaneh, M. [Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2011-01-15

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon registered) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a ''flower-like'' structure in first few minutes of immersion. And as the immersion time lengthened, a ''cornflake'' structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle ({proportional_to}164 ) and low contact angle hysteresis ({proportional_to}4 ). (orig.)

  20. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    Science.gov (United States)

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well

  1. Model castings with composite surface layer - application

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-10-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.

  2. Comparative study of the surface layer density of liquid surfaces

    Science.gov (United States)

    Chacón, E.; Fernández, E. M.; Duque, D.; Delgado-Buscalioni, R.; Tarazona, P.

    2009-11-01

    Capillary wave fluctuations blur the inherent structure of liquid surfaces in computer simulations. The intrinsic sampling method subtracts capillary wave fluctuations and yields the intrinsic surface structure, leading to a generic picture of the liquid surface. The most relevant magnitude of the method is the surface layer density ns that may be consistently determined from different properties: the layering structure of the intrinsic density profiles, the turnover rate for surface layer particles, and the hydrodynamic damping rate of capillary waves. The good agreement among these procedures provides evidence for the physical consistency of the surface layering hypothesis, as an inherent physical property of the liquid surfaces. The dependence of the surface compactness, roughness, and exchange rate with temperature is analyzed for several molecular interaction models.

  3. Localized surface plasmon of quasi-one-dimensional metallic nanostructures

    Science.gov (United States)

    Liu, Mingzhao

    2007-05-01

    The plasmon resonance of noble metal nanoparticles provides interesting optical properties in the visible and near-infrared region, and is highly tunable by varying the shape and the composition of the nanoparticles. The rod-like gold nanostructures can be synthesized by a seed-mediated method in aqueous surfactant solutions. Starting from different types of gold seeds, either single crystalline gold nanorods or penta-fold twinned gold bipyramids can be synthesized in decent yield with silver(I) added into the growth solution. These nanostructures have pronounced plasmon resonance varying in the 1˜2 eV range. The bipyramids are strikingly monodisperse in shape, which leads to the sharpest ensemble longitudinal plasmon resonance reported so far for metal colloid solutions. A mechanism based on the underpotential deposition of silver was thus suggested to explain the essential role of Ag(I) in the growth process. The optical spectra of the gold colloids were simulated with the finite-difference time-domain (FDTD) method. The results show excellent agreement with recent experimental optical spectra. The local field enhancement (|E|/|E0|) was studied at the plasmon resonance. Sharper structural features produce more significant enhancement and the largest enhancement of more than a factor of 200 is seen around the poles of the bipyramid. A large internal field enhancement by more than a factor of 30 is found for the bipyramids, which suggests that they will exhibit very strong optical nonlinearities. The plasmon can be further tuned by introducing the core/shell nanostructures such as metal/metal or metal/semiconductor nanorods. Following a simple procedure, a homogeneous layer of silver with 1-4 nm thickness can be plated onto the gold nanorods, which shifts the longitudinal plasmon mode of the nanorods toward blue. The silver layer can be converted to semiconductors silver sulfide or selenide, with the longitudinal plasmon resonance tuned toward red. The metal

  4. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  5. Band-edge Bilayer Plasmonic Nanostructure for Surface Enhanced Raman Spectroscopy

    CERN Document Server

    Mousavi, S Hamed Shams; Atabaki, Amir H; Adibi, Ali

    2014-01-01

    Spectroscopic analysis of large biomolecules is critical in a number of applications, including medical diagnostics and label-free biosensing. Recently, it has been shown that Raman spectroscopy of proteins can be used to diagnose some diseases, including a few types of cancer. These experiments have however been performed using traditional Raman spectroscopy and the development of the Surface enhanced Raman spectroscopy (SERS) assays suitable for large biomolecules could lead to a substantial decrease in the amount of specimen necessary for these experiments. We present a new method to achieve high local field enhancement in surface enhanced Raman spectroscopy through the simultaneous adjustment of the lattice plasmons and localized surface plasmon polaritons, in a periodic bilayer nanoantenna array resulting in a high enhancement factor over the sensing area, with relatively high uniformity. The proposed plasmonic nanostructure is comprised of two interacting nanoantenna layers, providing a sharp band-edge ...

  6. Surface characterization and antifouling properties of nanostructured gold chips for imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, S.; Pellacani, P.; Beek, van T.A.; Zuilhof, H.; Nielen, M.W.F.

    2015-01-01

    Surface Plasmon Resonance (SPR) optical sensing is a label-free technique for real-time monitoring of biomolecular interactions. Recently, a portable imaging SPR (iSPR) prototype instrument, featuring a nanostructured gold chip, has been developed. In the present work, we investigated the crucial

  7. Nanostructures and pinholes on W surfaces exposed to high flux D plasma at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Y.Z., E-mail: jaja880816@aliyun.com [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, B. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, C.; Fu, B.Q. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); De Temmerman, G. [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); ITER Organization, Route de Vinon-Sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-08-15

    Nanostructures and pinholes formed on tungsten surface exposed to high fluxes (10{sup 24} m{sup −2} s{sup −1}) deuterium ions at 943 K and 1073 K were studied by scanning electron microscopy and electron backscatter diffraction. Nanostructure formation is observed at 943 K and 1073 K, and exhibits a strong dependence on the surface orientation. With increasing fluence, pinholes appear on the surface and are mainly observed on grains with surface normal near [1 1 1]. The pinholes are speculated to be caused by the rupture of bubbles formed near the surface. The formation of pinholes has no obvious relationship with the surface nanostructures.

  8. Coulomb oscillations in three-layer graphene nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Guettinger, J; Stampfer, C; Molitor, F; Graf, D; Ihn, T; Ensslin, K [Solid State Physics Laboratory, ETH Zurich, 8093 Zurich (Switzerland)], E-mail: guettinj@phys.ethz.ch

    2008-12-15

    We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as a function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of {approx}0.6 meV is extracted.

  9. Investigating the effects of capping layer on optical gain of nitride based semiconductor nanostructure lasers

    Science.gov (United States)

    Annabi Milani, E.; Mohadesi, V.; Asgari, A.

    2017-04-01

    In this study, the effects of GaN capping layer on the behaviour of AlGaN/GaN nanostructure based laser is considered. We have employed the self-consistent solution of Poisson and Schrodinger equations for calculation of the energy levels, wave functions and conduction and valance bands profile. The impact of different thicknesses of the capping layer has been studied for sheet carrier density, then on optical gain. The results indicate that, by increasing the thickness of the cap layer, the optical gain decreases.

  10. Arsenic contamination of coarse-grained and nanostructured nitinol surfaces induced by chemical treatment in hydrofluoric acid.

    Science.gov (United States)

    Korotin, D M; Bartkowski, S; Kurmaev, E Z; Borchers, C; Müller, M; Neumann, M; Gunderov, D V; Valiev, R Z; Cholakh, S O

    2012-10-01

    XPS measurements of coarse-grained and nanostructured nitinol (Ni(50.2)Ti(49.8)) before and after chemical treatment in hydrofluoric acid (40% HF, 1 min) are presented. The nanostructured state, providing the excellent mechanical properties of nitinol, is achieved by severe plastic deformation. The near-surface layers of nitinol were studied by XPS depth profiling. According to the obtained results, a chemical treatment in hydrofluoric acid reduces the thickness of the protective TiO(2) oxide layer and induces a nickel release from the nitinol surface and an arsenic contamination, and can therefore not be recommended as conditioning to increase the roughness of NiTi-implants. A detailed evaluation of the resulting toxicological risks is given.

  11. Adhesive modification of indium-tin-oxide surface for template attachment for deposition of highly ordered nanostructure arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gu, W. [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Liao, L.S., E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Cai, S.D.; Zhou, D.Y.; Jin, Z.M.; Shi, X.B.; Lei, Y.L. [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2012-08-01

    Polyvinyl alcohol (PVA), a very cheap polymer with one hydroxyl group in each repeating unit, was spun coated on the surface of an indium-tin-oxide (ITO) substrate to improve the adhesion between the substrate and a nanoporous anodic aluminum oxide (AAO) template layer for a template-directed fabrication of nanostructures. Compared with dihydroxy-terminated polystyrene (PS-dOH) and a silane coupling agent (KH550), PVA was a superior binder because of its abundant hydroxyl groups for adhesion enhancement and its low cost for applications. As an example, a highly ordered CdSe nanorod array free standing on the ITO substrate was electrochemically deposited by using an ultrathin AAO layer as the template on the PVA modified surface. It was demonstrated that the PVA modified ITO can be reliably used for the template-directed fabrication of nanostructures.

  12. Ballistic electron propagation through periodic few-layer graphene nanostructures

    Science.gov (United States)

    Dragoman, Daniela; Mihalache, Iulia

    2016-10-01

    We have studied electron propagation in periodic structures containing mono- and few-layer graphene regions and/or semiconducting stripes. The calculation of the transmission coefficient in all cases has been performed using transfer matrices inside regions with the same material/potential energy, as well as interface matrices between regions in which the evolution laws of charge carriers differ. Numerical simulations of the transmission coefficient, as well as of the low-temperature conductance, suggest that different periodic structures modulate differently the electrical current. The obtained results can be used to model ballistic transport in all-graphene devices, in particular in few-layer graphene structures.

  13. Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates

    Science.gov (United States)

    Marquez, Maricel

    method for the formation of nanometer-scale polymer structures on solid surfaces via template assisted admicellar polymerization (TAAP) is described. Admicellar polymerization uses a surfactant layer adsorbed on a surface to localize monomer to the surface prior to polymerization of the monomer. TAAP refers to nanostructures that form by restricting adsorption to the uncovered sites of an already-templated surface. In this case, the interstitial sites between adsorbed latex spheres were used as the template. Unlike most other process that form polymer nanostructures, polymer dimensions can be significantly smaller than the interstitial size because of sphere-surfactant-monomer interactions. As a proof of concept, nanostructures formed via TAAP were compared to structures prepared by others via adsorption of three different proteins (Bovine serum albumin, fibrinogen, and anti-mouse IgG) in the interstitial sites of colloidal monolayers. The size and shape of the nanostructures formed (honeycomb vs. pillars) was dependent upon the size of the spheres utilized and the method of polymer deposition (i.e. admicellar polymerization vs. polymer adsorption). Thinner honeycomb walls, and larger separation distances between the template and the nanostructures were consistently found for TAAP. In chapter 4, an in-depth study of the factors affecting TAAP is presented for three different monomers: aniline, pyrrole and methyl methacrylate; and three different surfaces: highly ordered pyrolytic graphite (HOPG), gold, and SiO2. Among the parameters discussed are the effect of monomer and surfactant concentration, surfactant chain length, polymerization time and temperature, solution ionic strength, substrate choice and surface treatment. Control over these parameters allowed the synthesis of polymer nanopillars, nanorings, honeycombs, and "honeytubes." Experimental results showed that the nanostructures' morphology can be effectively modified by changing the length of the hydrophobic

  14. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    Science.gov (United States)

    Hao, Qingzhen

    spectrum, due to nontrivial high orders of evanescent scattering modes. This study unveils the different near-field properties between nanoparticle and nanohole arrays and adds important details to the conventional wisdom for SERS substrate design. Besides SERS studies on gold substrates, I further extended my research to transition metals, i.e. platinum. I have carried out a comparative study of SERS performance for gold and platinum substrates. The commonly observed low enhancement from a platinum substrate is explained by the larger Fano interference between its free intra-band electrons and its bound inter-band electrons. A major challenge in applying SERS for biochemical sensing is to fabricate substrates with excellent sensitivity and uniform surface functionality. Graphene, a single sheet of carbon atoms with an ideal two-dimensional honeycomb crystal structure, offers excellent surface chemical properties. We synthesized high quality single-layer graphene sheets by chemical vapor deposition (CVD) on copper foils and transferred them to gold nanostructures, i.e., nanoparticle or nanohole arrays. Our experimental data show that graphene coated metallic substrates could achieve higher sensitivity of SERS detection than bare metallic substrates. The combined graphene-nanostructure substrates show about three-fold or nine-fold enhancement in the Raman signal of methylene blue (MB) compared with the bare nanohole or nanoparticle substrates, respectively. The difference in the enhancement factors between the nanohole and nanoparticle substrates is explained by the different coating morphologies of graphene on the two substrates. SERS enhancement of graphene is further investigated on mechanically exfoliated graphene. We found that SERS enhancement of graphene can be tuned by changing its Fermi level through doping. Both molecular doping and gate doping experiments show that hole-doped graphene yields a larger SERS enhancement in MB than electron-doped graphene, which

  15. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    KAUST Repository

    Yue, Weisheng

    2012-10-26

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. © 2012 IOP Publishing Ltd.

  16. Surface integral formulations for the design of plasmonic nanostructures.

    Science.gov (United States)

    Forestiere, Carlo; Iadarola, Giovanni; Rubinacci, Guglielmo; Tamburrino, Antonello; Dal Negro, Luca; Miano, Giovanni

    2012-11-01

    Numerical formulations based on surface integral equations (SIEs) provide an accurate and efficient framework for the solution of the electromagnetic scattering problem by three-dimensional plasmonic nanostructures in the frequency domain. In this paper, we present a unified description of SIE formulations with both singular and nonsingular kernel and we study their accuracy in solving the scattering problem by metallic nanoparticles with spherical and nonspherical shape. In fact, the accuracy of the numerical solution, especially in the near zone, is of great importance in the analysis and design of plasmonic nanostructures, whose operation critically depends on the manipulation of electromagnetic hot spots. Four formulation types are considered: the N-combined region integral equations, the T-combined region integral equations, the combined field integral equations and the null field integral equations. A detailed comparison between their numerical solutions obtained for several nanoparticle shapes is performed by examining convergence rate and accuracy in both the far and near zone of the scatterer as a function of the number of degrees of freedom. A rigorous analysis of SIE formulations and their limitations can have a high impact on the engineering of numerous nano-scale optical devices such as plasmon-enhanced light emitters, biosensors, photodetectors, and nanoantennas.

  17. Leidenfrost Vapor Layer Stabilization on Superhydrophobic Surfaces

    Science.gov (United States)

    Vakarelski, Ivan; Patankar, Neelesh; Marston, Jeremy; Chan, Derek; Thoroddsen, Sigurdur

    2012-11-01

    We have performed experiments to investigate the influence of the wettability of a superheated metallic sphere on the stability of a thin vapor layer during the cooling of a sphere immersed in water. For high enough sphere temperatures, a continuous vapor layer (Leidenfrost regime) is observed on the surface of non-superhydrophobic spheres, but below a critical sphere temperature the layer becomes unstable and explosively switches to nuclear boiling regime. In contrast, when the sphere surface is textured and superhydrophobic, the vapor layer is stable and gradually relaxes to the sphere surface until the complete cooling of the sphere, thus avoiding the nuclear boiling transition altogether. This finding could help in the development of heat exchange devices and of vapor layer based drag reducing technologies.

  18. First Principles Studies of ABO3 Perovskite Surfaces and Nanostructures

    Science.gov (United States)

    Pilania, Ghanshyam

    Perovskite-type complex oxides, with general formula ABO 3, constitute one of the most prominent classes of metal oxides which finds key applications in diverse technological fields. In recent years, properties of perovskites at reduced dimensions have aroused considerable interest. However, a complete atomic-level understanding of various phenomena is yet to emerge. To fully exploit the materials opportunities provided by nano-structured perovskites, it is important to characterize and understand their bulk and near-surface electronic structure along with the electric, magnetic, elastic and chemical properties of these materials in the nano-regime, where surface and interface effects naturally play a dominant role. In this thesis, state-of-the-art first principles computations are employed to systematically study properties of one- and two-dimensional perovskite systems which are of direct technological significance. Specifically, our bifocal study targets (1) polarization behavior and dielectric response of ABO3 ferroelectric nanowires, and (2) oxygen chemistry relevant for catalytic properties of ABO3 surfaces. In the first strand, we identify presence of novel closure or vortex-like polarization domains in PbTIO3 and BaTiO3 ferroelectric nanowires and explore ways to control the polarization configurations by means of strain and surface chemistry in these prototypical model systems. The intrinsic tendency towards vortex polarization at reduced dimensions and the underlying driving forces are discussed and previously unknown strain induced phase transitions are identified. Furthermore, to compute the dielectric permittivity of nanostructures, a new multiscale model is developed and applied to the PbTiO3 nanowires with conventional and vortex-like polarization configurations. The second part of the work undertaken in this thesis is comprised of a number of ab initio surface studies, targeted to investigate the effects of surface terminations, prevailing chemical

  19. Stable water layers on solid surfaces.

    Science.gov (United States)

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems.

  20. Roles of Surface and Interface Spins in Exchange Coupled Nanostructures

    Science.gov (United States)

    Phan, Manh-Huong

    Exchange bias (EB) in magnetic nanostructures has remained a topic of global interest because of its potential use in spin valves, MRAM circuits, magnetic tunnel junctions, and spintronic devices. The exploration of EB on the nanoscale provides a novel approach to overcoming the superparamagnetic limit and increasing the thermoremanence of magnetic nanoparticles, a critical bottleneck for magnetic data storage applications. Recent advances in chemical synthesis have given us a unique opportunity to explore the EB in a variety of nanoparticle systems ranging from core/shell nanoparticles of Fe/γFe2O3, Co/CoO,and FeO/Fe3O4 to hollow nanoparticles of γFe2O3 and hybrid composite nanoparticles of Au/Fe3O4. Our studies have addressed the following fundamental and important questions: (i) Can one decouple collective contributions of the interface and surface spins to the EB in a core/shell nanoparticle system? (ii) Can the dynamic and static response of the core and shell be identified separately? (iii) Can one tune ``minor loop'' to ``exchange bias'' effects in magnetic hollow nanoparticles by varying the number of surface spins? (iv) Can one decouple collective contributions of the inner and outer surface spins to the EB in a hollow nanoparticle system? (v) Can EB be induced in a magnetic nanoparticle by forming its interface with a non-magnetic metal? Such knowledge is essential to tailor EB in magnetic nanostructures for spintronics applications. In this talk, we will discuss the aforementioned findings in terms of our experimental and atomistic Monte Carlo studies. The work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438.

  1. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.

    Science.gov (United States)

    Gunawidjaja, Ray; Kharlampieva, Eugenia; Choi, Ikjun; Tsukruk, Vladimir V

    2009-11-01

    It is demonstrated that bimetallic silver-gold anisotropic nanostructures can be easily assembled from various nanoparticle building blocks with well-defined geometries by means of electrostatic interactions. One-dimensional (1D) silver nanowires, two-dimensional (2D) silver nanoplates, and spherical gold nanoparticles are used as representative building blocks for bottom-up assembly. The gold nanoparticles are electrostatically bound onto the 1D silver nanowires and the 2D silver nanoplates to give bimetallic nanostructures. The unique feature of the resulting nanostructures is the particle-to-particle interaction that subjects absorbed analytes to an enhanced electromagnetic field with strong polarization dependence. The Raman activity of the bimetallic nanostructures is compared with that of the individual nanoparticle blocks by using rhodamine 6G solution as the model analyte. The Raman intensity of the best-performing silver-gold nanostructure is comparable with the dense array of silver nanowires and silver nanoplates that were prepared by means of the Langmuir-Blodgett technique. An optimized design of a single-nanostructure substrate for surface-enhanced Raman spectroscopy (SERS), based on a wet-assembly technique proposed here, can serve as a compact and low-cost alternative to fabricated nanoparticle arrays.

  2. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Science.gov (United States)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  3. Development of Methods for Surface Modification of Nanostructured Materials

    Science.gov (United States)

    Marsh, David A.

    The surfaces of a material become increasingly more influential when the dimensions are reduced, because a larger percentage of the atoms are exposed on the surface. The surface environment of nanostructured materials dictates both physical properties and function, but is synthetically challenging to control. Although the desired functionality is commonly introduced via post-synthetic modification, it would be advantageous to minimize the number of synthetic steps by having specific function installed in the precursor. This work describes efforts to investigate new precursor complexes for the synthesis of nanoparticles, in addition to electrochemical studies on single monolayer films for electrocatalysis. Chapter 2 focuses on the preparation of magnetic nanoaparticles, and the synthesis of a polymerizable surfactant, stacac, to be used to generate composite materials. Although an iron complex of stacac could be used as a precursor for magnetic nanoparticles, favorable composite materials could only be produced by introduction of stacac after isolation of magnetic nanoparticles. Chapter 3 describes the synthesis of Au(I) complexes with various thiourea-based ligands, to be used as precursors for gold nanoparticles. The experimental conditions were varied and parameters were found where addition of a reducing agent generated solution-stable gold nanoparticles in a reproducible manner. It was determined that only aggregated gold nanoparticles were produced when Au(I) complexes were generated in situ and the use of crystalline precursors resulted in soluble gold nanoparticles. Chapter 4 discusses the preparation of electrocatalysts for the oxidation of water with a focus on accurately determining the active surface area. A monolayer of cobalt was prepared on a gold electrode by underpotential deposition and used as an electrocatalyst for water oxidation. Because the surface area of gold can be measured directly, deposition of a single monolayer produced negligible

  4. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  5. Improved pharmacokinetics and enhanced tumor growth inhibition using a nanostructured lipid carrier loaded with doxorubicin and modified with a layer-by-layer polyelectrolyte coating

    Science.gov (United States)

    Mussi, Samuel V.; Parekh, Gaurav; Pattekari, Pravin; Levchenko, Tatyana; Lvov, Yuri; Ferreira, Lucas A.M.; Torchilin, Vladimir P.

    2015-01-01

    A nanostructured lipid carrier (NLC) loaded with doxorubicin (DOX) has been shown to be cytotoxic against the human cancer cell lines A549 and MCF-7/Adr. In attempts to improve formulation characteristics, enhance pharmacokinetics and antitumor effects, we modified the surface of these NLC with an alternating layer-by-layer (LbL) assembly of polycation and polyanion polyelectrolytes and an additional coating with PEG using a simple method of core shell attachment. The formulation had a narrow size distribution, longer residence in the blood, lower accumulation in the liver, higher accumulation in tumors and a significant tumor growth inhibition effect. Thus, NLC-DOX nanopreparations complexes modified by LbL coating have the potential to enhance the anticancer effects of DOX against tumors. PMID:26325314

  6. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  7. Smear layer--materials surface.

    Science.gov (United States)

    Eick, J D

    1992-01-01

    SEM and TEM photomicrographs were presented of the smear layer and several dentin-adhesive interfaces. It was shown that as the wetting and penetration of the dentin adhesive increased, the shear bond strength also increased. Three categories of dentin adhesives were presented. Category one included Scotchbond, Dentin Adhesit and Gluma, with shear bond strength values between 5 and 7 MPa; the second category, dentin adhesives based on Dr. Bowen's research, included Tenure and Mirage Bond, with shear bond strengths between 8 and 14 MPa; the third category included Superbond and Scotchbond 2, with shear bond strength values up to 20 MPa. Failures occurred at the interface or in the resin adhesive for materials in categories one and two; failures occurred through the dentin or composite for materials in category three.

  8. The fabrication of flip-covered plasmonic nanostructure surfaces with enhanced wear resistance

    Science.gov (United States)

    Jung, Joo-Yun; Sung, Sang-Keun; Kim, Kwang-Seop; Cheon, So-Hui; Lee, Jihye; Choi, Jun-Hyuk; Lee, Eungsug

    2017-01-01

    Exposed nanostructure surfaces often suffer from external dynamic wear, particularly when used in human interaction, resulting in surface defects and the degradation of plasmonic resonance properties particularly in terms of transmittance extinction rate and peak-to-valley slope. In this work, a method for the fabrication of flip-covered silver nanostructure-arrayed surfaces is shown to enhance wear resistance. Selectively transferred silver dot and silver webbed-trench exposed reference samples were fabricated by metal nanoimprint, and flip-covered samples were created by flipping and bonding reference samples onto a PET film coated with an adhesive layer. The samples' spectral transmittance was measured before and after a dynamic wear test. Some spectral shift was observed due to the change in refractive index of the surrounding media, but this was not as significant as the effects of the other chosen geometry factors. It was found that dynamic wear had a greater effect on the plasmonic resonance behavior of the exposed samples than in those that had been flip-covered. This suggests that flip-covering may be an effective strategy for the protection of plasmonic resonators against dynamic wear. It is expected that the slight variations in spectral transmittance could be compensated through proper tuning of the sample geometry.

  9. Quantifying bulk and surface recombination processes in nanostructured water splitting photocatalysts via in situ ultrafast spectroscopy.

    Science.gov (United States)

    Appavoo, Kannatassen; Liu, Mingzhao; Black, Charles T; Sfeir, Matthew Y

    2015-02-11

    A quantitative description of recombination processes in nanostructured semiconductor photocatalysts-one that distinguishes between bulk (charge transport) and surface (chemical reaction) losses-is critical for advancing solar-to-fuel technologies. Here we present an in situ experimental framework that determines the bias-dependent quantum yield for ultrafast carrier transport to the reactive interface. This is achieved by simultaneously measuring the electrical characteristics and the subpicosecond charge dynamics of a heterostructured photoanode in a working photoelectrochemical cell. Together with direct measurements of the overall incident-photon-to-current efficiency, we illustrate how subtle structural modifications that are not perceivable by conventional X-ray diffraction can drastically affect the overall photocatalytic quantum yield. We reveal how charge carrier recombination losses occurring on ultrafast time scales can limit the overall efficiency even in nanostructures with dimensions smaller than the minority carrier diffusion length. This is particularly true for materials with high carrier concentration, where losses as high as 37% are observed. Our methodology provides a means of evaluating the efficacy of multifunctional designs where high overall efficiency is achieved by maximizing surface transport yield to near unity and utilizing surface layers with enhanced activity.

  10. Toward high-energy laser-driven ion beams: Nanostructured double-layer targets

    Science.gov (United States)

    Passoni, M.; Sgattoni, A.; Prencipe, I.; Fedeli, L.; Dellasega, D.; Cialfi, L.; Choi, Il Woo; Kim, I. Jong; Janulewicz, K. A.; Lee, Hwang Woon; Sung, Jae Hee; Lee, Seong Ku; Nam, Chang Hee

    2016-06-01

    The development of novel target concepts is crucial to make laser-driven acceleration of ion beams suitable for applications. We tested double-layer targets formed of an ultralow density nanostructured carbon layer (˜7 mg/cm 3 , 8 - 12 μ m -thick) deposited on a μ m -thick solid Al foil. A systematic increase in the total number of the accelerated ions (protons and C6 + ) as well as enhancement of both their maximum and average energies was observed with respect to bare solid foil targets. Maximum proton energies up to 30 MeV were recorded. Dedicated three-dimensional particle-in-cell simulations were in remarkable agreement with the experimental results, giving clear indication of the role played by the target nanostructures in the interaction process.

  11. Micro arc oxidized HAp-TiO 2 nanostructured hybrid layers-part I: Effect of voltage and growth time

    Science.gov (United States)

    Abbasi, S.; Bayati, M. R.; Golestani-Fard, F.; Rezaei, H. R.; Zargar, H. R.; Samanipour, F.; Shoaei-Rad, V.

    2011-05-01

    Micro arc oxidation was employed to grow hydroxyapatite-TiO 2 nanostructured porous composite layers. The layers were synthesized on the titanium substrates in the electrolytes consisting of calcium acetate and sodium β-glycerophosphate salts under different applied voltages for various times. SEM and AFM investigations revealed a porous structure and rough surface where the pores size and the surface roughness were respectively determined as 70-650 nm and 9.8-12.7 nm depending on the voltage and time. Chemical composition and phase structure of the layers were evaluated using EDX, XPS, and XRD methods. The layers consisted of the hydroxyapatite, anatase, α-TCP, and calcium titanatephases with a varying fraction depending on the growth conditions. The hydroxyapatite crystalline size was also determined as ˜42 nm. The sample fabricated under the voltage of 350 V for 3 min exhibited the most appropriate Ca/P ratio (˜1.60) as well as the highest amount of the hydroxyapatite phase. This sample had a fine surface morphology and a high pores density.

  12. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips

    Science.gov (United States)

    Indutnyi, Ivan; Ushenin, Yuriy; Hegemann, Dirk; Vandenbossche, Marianne; Myn'ko, Victor; Lukaniuk, Mariia; Shepeliavyi, Petro; Korchovyi, Andrii; Khrystosenko, Roman

    2016-12-01

    The increase of the sensitivity of surface plasmon resonance (SPR) refractometers was studied experimentally by forming a periodic relief in the form of a grating with submicron period on the surface of the Au-coated chip. Periodic reliefs of different depths and spatial frequency were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. Spatial frequencies of the grating were selected close to the conditions of Bragg reflection of plasmons for the working wavelength of the SPR refractometer and the used environment (solution of glycerol in water). It was found that the degree of refractometer sensitivity enhancement and the value of the interval of environment refractive index variation, Δ n, in which this enhancement is observed, depend on the depth of the grating relief. By increasing the depth of relief from 13.5 ± 2 nm to 21.0 ± 2 nm, Δ n decreased from 0.009 to 0.0031, whereas sensitivity increased from 110 deg./RIU (refractive index unit) for a standard chip up to 264 and 484 deg./RIU for the nanostructured chips, respectively. Finally, it was shown that the working range of the sensor can be adjusted to the refractive index of the studied environment by changing the spatial frequency of the grating, by modification of the chip surface or by rotation of the chip.

  13. Growth of α-sexithiophene nanostructures on C60 thin film layers

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Madsen, Morten; Balzer, Frank

    2014-01-01

    Organic molecular beam grown -sexithiophene (-6T) forms nanostructured thin films on buckminsterfullerene (C60) thin film layers. At substrate temperatures of 300K during growth a rough continuous film is observed, which develop to larger elongated islands and dendritic- as well as needle like ...... fluorescence polarimetry measurements the in-plane orientation of the crystalline sites within the needle like structures is determined. The polarimetry investigations strongly indicate that the needle like structures consist of lying molecules....

  14. Double-layered ZnO nanostructures for efficient perovskite solar cells

    KAUST Repository

    Mahmood, Khalid

    2014-01-01

    To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field. This journal is

  15. Method for removing a high definition nanostructure, a partly freestanding layer, a sensor comprising said layer and a method using said sensor

    NARCIS (Netherlands)

    Xu, Q.; Schneider, G.; Zandbergen, H.W.; Wu, M.Y.; Song, B.

    2013-01-01

    The present invention is in the field of a method for removing a high definition nanostructure in a partly free-standing layer, the layer, a sensor comprising said layer, a use of said sensor, and a method of detecting a species, and optional further characteristics thereof, using said sensor. The s

  16. Nanostructured Antireflection Layer, and Application of Same to LEDs

    DEFF Research Database (Denmark)

    2013-01-01

    material, etching the substrate in a mostly anisotropic etch and concurrently etching at least a part of the thin film masking material to form a non-periodical nano structure, the nano structure comprising a plurality of cone shaped surface structures. The optical device may comprise a white LED...

  17. Nanostructured Antireflection Layer, and Application of Same to LEDs

    DEFF Research Database (Denmark)

    2013-01-01

    material, etching the substrate in a mostly anisotropic etch and concurrently etching at least a part of the thin film masking material to form a non-periodical nano structure, the nano structure comprising a plurality of cone shaped surface structures. The optical device may comprise a white LED...... or a wavelength converter for a white light source....

  18. Local field distribution and configuration of CO molecules adsorbed on the nanostructure platinum surface

    Institute of Scientific and Technical Information of China (English)

    Huang Xiao-Jing; He Su-Zhen; Wu Chen-Xu

    2006-01-01

    This paper shows that the local electric field distribution near the nanostructure metallic surface is obtained by solving the Laplace equation, and furthermore, the configuration of CO molecules adsorbed on a Pt nanoparticle surface is obtained by using Monte Carlo simulation. It is found that the uneven local electric field distribution induced by the nanostructure surface can influence the configuration of carbon monoxide (CO) molecules by a force, which drags the adsorbates to the poles of the nanoparticles. This result, together with our results obtained before, may explain the experimental results that the nanostructure metallic surface can lead to abnormal phenomena such as anti-absorption infrared effects.

  19. Surface-layer gusts for aircraft operation

    DEFF Research Database (Denmark)

    Young, G.S.; Kristensen, L.

    1992-01-01

    We use Monin-Obukhov similarity theory to extend the Kristensen et al. (1991) aviation gust estimation technique from the neutral to the diabatic surface layer. Example calculations demonstrate the importance of this correction. Simple stability class methods using only standard aviation surface ...

  20. Metallic nanostructure formation limited by the surface hydrogen on silicon.

    Science.gov (United States)

    Perrine, Kathryn A; Teplyakov, Andrew V

    2010-08-03

    Constant miniaturization of electronic devices and interfaces needed to make them functional requires an understanding of the initial stages of metal growth at the molecular level. The use of metal-organic precursors for metal deposition allows for some control of the deposition process, but the ligands of these precursor molecules often pose substantial contamination problems. One of the ways to alleviate the contamination problem with common copper deposition precursors, such as copper(I) (hexafluoroacetylacetonato) vinyltrimethylsilane, Cu(hfac)VTMS, is a gas-phase reduction with molecular hydrogen. Here we present an alternative method to copper film and nanostructure growth using the well-defined silicon surface. Nearly ideal hydrogen termination of silicon single-crystalline substrates achievable by modern surface modification methods provides a limited supply of a reducing agent at the surface during the initial stages of metal deposition. Spectroscopic evidence shows that the Cu(hfac) fragment is present upon room-temperature adsorption and reacts with H-terminated Si(100) and Si(111) surfaces to deposit metallic copper. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to follow the initial stages of copper nucleation and the formation of copper nanoparticles, and X-ray energy dispersive spectroscopy (XEDS) confirms the presence of hfac fragments on the surfaces of nanoparticles. As the surface hydrogen is consumed, copper nanoparticles are formed; however, this growth stops as the accessible hydrogen is reacted away at room temperature. This reaction sets a reference for using other solid substrates that can act as reducing agents in nanoparticle growth and metal deposition.

  1. Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect.

    Science.gov (United States)

    Han, Qingyan; Zhang, Yaqiong; Ren, Zebin; Wang, Zhaojin; Gao, Wei; He, Enjie; Zheng, Hairong

    2016-04-01

    Ag@SiO2/LaF3:Eu3+ core-shell nanostructure was synthesized with a wet chemical method in which the SiO2 layer functioned as a separation layer between Ag-core and LaF3:Eu3+ luminescence material. With this system, surface enhanced luminescene of LaF3:Eu3+ with Ag substrate was investigated, and an obvious enhancement effect was observed. The dependence of the luminescence enhancement on the distance between the luminescence shell and the metallic core was studied too. It is believed that the enhancement effect presented by the current hybrid nanostructure system has great potential in the development of photovoltaic cells.

  2. Analysis on surface nanostructures present in hindwing of dragon fly (Sympetrum vulgatum) using atomic force microscopy.

    Science.gov (United States)

    Selvakumar, Rajendran; Karuppanan, Karthikeyan K; Pezhinkattil, Radhakrishnan

    2012-12-01

    The present study involves the analysis of surface nanostructures and its variation present in the hind wing of dragon fly (Sympetrum vulgatum) using atomic force microscopy (AFM). The hindwing was dissected into 4 parts (D1-D4) and each dissected section was analyzed using AFM in tapping mode at different locations. The AFM analysis revealed the presence of irregular shaped nanostructures on the surface of the wing membrane with size varying between 83.25±1.79 nm to 195.08±10.25 nm. The size and shape of the nanostructure varied from tip (pterostigma) to the costa part. The membrane surface of the wing showed stacked arrangement leading to increase in size of the nanostructure. Such arrangement of the nanostructures has lead to the formation of nanometer sized valleys of different depth and length on the membrane surface giving them ripple wave morphology. The average roughness of the surface nanostructures varied from 18.58±3.12 nm to 24.25±8.33 nm. Surfaces of the wings had positive skewness in D1, D2 and D4 regions and negative skewness in D3 region. These surface nanostructures may contribute asymmetric resistance under mechanical loading during the flight by increasing the bending and torsional resistance of the wing.

  3. Reactive oxygen plasma-enabled synthesis of nanostructured CdO: tailoring nanostructures through plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cvelbar, Uros; Mozetic, Miran [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Ostrikov, Kostya [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)], E-mail: Uros.Cvelbar@ijs.si, E-mail: Kostya.Ostrikov@csiro.au

    2008-10-08

    Plasma-assisted synthesis of nanostructures is one of the most precise and effective approaches used in nanodevice fabrication. Here we report on the innovative approach of synthesizing nanostructured cadmium oxide films on Cd substrates using a reactive oxygen plasma-based process. Under certain conditions, the surface morphology features arrays of crystalline CdO nano/micropyramids. These nanostructures grow via unconventional plasma-assisted oxidation of a cadmium foil exposed to inductively coupled plasmas with a narrow range of process parameters. The growth of the CdO pyramidal nanostructures takes place in the solid-liquid-solid phase, with the rates determined by the interaction of plasma-produced oxygen atoms and ions with the surface. It is shown that the size of the pyramidal structures can be effectively controlled by the fluxes of oxygen atoms and ions impinging on the cadmium surface. The unique role of the reactive plasma environment in the controlled synthesis of CdO nanopyramidal structures is discussed as well.

  4. A randomly nano-structured scattering layer for transparent organic light emitting diodes.

    Science.gov (United States)

    Huh, Jin Woo; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Park, Seung Koo; Hwang, Joohyun; Cho, Nam Sung; Lee, Jonghee; Han, Jun-Han; Chu, Hye Yong; Lee, Jeong-Ik

    2014-09-21

    A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs.

  5. Multipole surface solitons in layered thermal media

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis

    2008-01-01

    We address the existence and properties of multipole solitons localized at a thermally insulating interface between uniform or layered thermal media and a linear dielectric. We find that in the case of uniform media, only surface multipoles with less than three poles can be stable. In contrast, we reveal that periodic alternation of the thermo-optic coefficient in layered thermal media makes possible the stabilization of higher order multipoles.

  6. Fabrication of Nanostructured Polymer Surfaces and Characterization of their Wetting Properties

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard

    micro- and nanostructuring of commerical injection molding tools to create the desired surface structures directly in the molding process. The aim of this project was to enable the fabrication of surfaces with controlled wetting by injection molding. During the project, I have demonstrated improvements....... • Simulations of wetting transitions. • Clean room fabrication of functional surfaces, and production of micro- and nanostructured mold inserts. • Injection molding of micro- and nanostructured polymer parts on a commercial injection molding machine. • Co-invented a patented technique for microstructuring steel...

  7. Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure InN Compact Layer

    Science.gov (United States)

    Chen, Cheng-Chiang; Chen, Lung-Chien; Kuo, Shu-Jung

    2013-05-01

    This study presents a dye-sensitized solar cells (DSSCs) with a nanostructured InN compact layer (InN-CPL). The effect of a nanostructured InN-CPL in a DSSC structure prepared by radio frequency magnetron sputtering was examined. The InN-CPL effectively reduces the back reaction at the interface between the indium tin oxide (ITO) transparent conductive film and the electrolyte in the DSSC. DSSCs fabricated on ITO/InN-CPL/TiO2/D719 exhibited a short-circuit current density (JSC), open-circuit voltage (VOC), and power conversion efficiency (η) of 23.2 mA/cm2, 0.7 V, and 8.9%, respectively.

  8. Separation followed by direct SERS detection of explosives on a novel black silicon multifunctional nanostructured surface prepared in a microfluidic channel

    DEFF Research Database (Denmark)

    Talian, Ivan; Hübner, Jörg

    2013-01-01

    The article describes the multifunctionality of a novel black silicon (BS) nanostructured surface covered with a thin layer of noble metal prepared in the a microfluidic channel. It is focused on the separation properties of the BS substrate with direct detection of the separated analytes utilizing...

  9. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr; Coltrin, Michael Elliott; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs) are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined

  10. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr; Coltrin, Michael Elliott; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs) are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined

  11. The surface nanostructures of titanium alloy regulate the proliferation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Min Lai

    2014-02-01

    Full Text Available To investigate the effect of surface nanostructures on the behaviors of human umbilical vein endothelial cells (HUVECs, surface nanostructured titanium alloy (Ti-3Zr2Sn-3Mo-25Nb, TLM was fabricated by surface mechanical attrition treatment (SMAT technique. Field emission scanning electron microscopy (FE-SEM, atomic force microscopy (AFM, transmission electron microscopy (TEM and X-ray diffraction (XRD were employed to characterize the surface nanostructures of the TLM, respectively. The results demonstrated that nano-crystalline structures with several tens of nanometers were formed on the surface of TLM substrates. The HUVECs grown onto the surface nanostructured TLM spread well and expressed more vinculin around the edges of cells. More importantly, HUVECs grown onto the surface nanostructured TLM displayed significantly higher (p < 0.01 or p < 0.05 cell adhesion and viabilities than those of native titanium alloy. HUVECs cultured on the surface nanostructured titanium alloy displayed significantly higher (p < 0.01 or p < 0.05 productions of nitric oxide (NO and prostacyclin (PGI2 than those of native titanium alloy, respectively. This study provides an alternative for the development of titanium alloy based vascular stents.

  12. Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants.

    Science.gov (United States)

    Rosenbaum, Jonathan; Versace, Davy Louis; Abbad-Andallousi, Samir; Pires, Remi; Azevedo, Christophe; Cénédese, Pierre; Dubot, Pierre

    2017-02-28

    The influence of copper derived TiO2 surfaces (nCu-nT-TiO2) on the death of nosocomial Staphylococcus aureus (Sa) and Escherichia coli (Ec), was investigated. TiO2 nanotube (nT-TiO2) arrays were fabricated by anodic oxidation of pure titanium sheets in fluorhydric solutions, leading to surface nanostructuration and creation of specific reactive sites. Copper nanocubes with a mean size of 20 nm have been synthesized and deposited on the nT-TiO2 surface by pulsed electrodeposition from a copper sulphate solution. Scanning Electron Microscopy (SEM) reveals that Cu nanocubes are both inserted into the TiO2 nanotubes and on the nanotube edges. X-ray Photoemission Spectroscopy (XPS) and SEM-EDX confirm the metallic nature of copper nanoparticles, covered with a thin mixed CuO-Cu2O thin layer. As the adsorption of proteins is one of the early stages of biomaterial surface interactions with body fluids before bacterial colonization, Infrared Spectroscopy (IR) in reflection-absorption mode, SEM and XPS have been used to follow the evolution of nCu-nT-TiO2 surfaces when exposed to a simulated plasma solution containing Bovine Serum Albumin (BSA). Finally bacterial tests have revealed a high biocide potential of the nCu-nT-TiO2 surface, which leads to the entire death of SA and EC.

  13. Nanostructured films from phthalocyanine and carbon nanotubes: surface morphology and electrical characterization.

    Science.gov (United States)

    Brito, Jackeline B; Gomes, Douglas J C; Justina, Vanessa D; Lima, Aline M F; Olivati, Clarissa A; Silva, Josmary R; de Souza, Nara C

    2012-02-01

    We report on the investigation of the surface morphology and DC conductivity of nanostructured layer-by-layer (LbL) films from nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with either multi-walled carbon nanotubes (MWNTs/NiTsPc) or multi-walled carbon nanotubes dispersed in chitosan (MWNTs+Ch/NiTsPc). We have explored the surface morphology of the films by using fractal concepts and dynamic scale laws. The MWNTs/NiTsPc LbL films were found to have a fractal dimension of ca. 2, indicating a quasi Euclidean surface. MWNTs+Ch/NiTsPc LbL films are described by the Lai-Das Sarma-Villain (LDV) model, which predicts the deposition of particles and their subsequent relaxation. An increase in the wetting contact angle of MWNTs+Ch/NiTsPc LbL films was observed, as compared with MWNTs/NiTsPc LbL films, which presented an increase in the fractal dimension of the first system. Room temperature conductivities were found be ca. 0.45 S/cm for MWNTs/NiTsPc and 1.35 S/cm for MWNTs+Ch/NiTsPc.

  14. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    2011-01-01

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present chara

  15. Simple method for preparation of nanostructure on microchannel surface and its usage for enzyme-immobilization.

    Science.gov (United States)

    Miyazaki, Masaya; Kaneno, Jun; Uehara, Masato; Fujii, Masayuki; Shimizu, Hazime; Maeda, Hideaki

    2003-03-07

    We developed a novel preparation method of nanostructure on the microchannel surface formed by sol-gel like simple treatment with 3-aminopropyltriethoxysilane, which is suitable for a highly efficient enzyme-immobilized microchannel reactor.

  16. Surface state and normal layer effects

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.A.; Ledvij, M. [Argonne National Lab., IL (United States); Liu, S.H. [Univ. of California, San Diego, CA (United States). Dept. of Physics

    1995-08-01

    In addition to the conducting CuO{sub 2} (S) layers, most high-T{sub c} superconductors also contain other conducting (N) layers, which are only superconducting due to the proximity effect. The combination of S and N layers can give rise to complicated electronic densities of states, leading to quasilinear penetration depth and NMR relaxation rate behavior at low temperatures. Surface states can also complicate the analysis of tunneling and, photoemission measurements. Moreover, geometrical considerations and in homogeneously trapped flux axe possible explanations of the paramagnetic Meissner effect and of corner and ring SQUID experiments. Hence, all of the above experiments could be consistent with isotropic s-wave superconductivity within the S layers.

  17. Fabrication of Nanostructured Polymer Surfaces and Characterization of their Wetting Properties

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard

    molds able to produce superhydrophobic polymer parts. The patented microstructuring technique generates microstructures similar to those found on the leaf of the lotus flower, without the overlaying nanostructure. Despite the lack of hierarchical structures, the microstructured surface shows excellent....... • Simulations of wetting transitions. • Clean room fabrication of functional surfaces, and production of micro- and nanostructured mold inserts. • Injection molding of micro- and nanostructured polymer parts on a commercial injection molding machine. • Co-invented a patented technique for microstructuring steel...

  18. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    Science.gov (United States)

    Zhu, Yizhou; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.; Wu, Shuilin

    2017-04-01

    One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  19. Study of bipolar pulsed plasma electrolytic carbonitriding on nanostructure of compound layer for a gamma Ti-Al alloy

    Institute of Scientific and Technical Information of China (English)

    Mahmood ALIOFKHAZRAEI; Alireza SABOUR ROUHAGHDAM; Mohsen ROOHZENDEH

    2008-01-01

    The surface hardening of a gamma Ti-Al alloy by using bipolar pulsed nanocrystalline plasma electro-lytic carbonitriding has been studied in this investigation. Coating process was performed on a triethanolamine-based electrolyte by a cooling bath. The nanostructure of the obtained compound layer was examined with the figure analysis of the scanning electron microscopy (SEM) nanographs. The effects of the process variables, i.e., fre-quency, temperature of the electrolyte, applied voltage and treatment time, have been experimentally studied. Statistical methods were used to achieve the optimum size of the nanocrystals. Finally, the contribution percentage of the effective factors of the pulsed current was revealed, and the confirmation run showed the validity of the obtained results.

  20. Self-assembled growth of nanostructural Ge islands on bromine-passivated Si(111) surfaces at room temperature

    Indian Academy of Sciences (India)

    Amal K Das; B N Dev; B Sundaravel; E Z Luo; J B Xu; I H Wilson

    2002-07-01

    We have deposited relatively thick (∼ 60 nm) Ge layers on Br-passivated Si(111) substrates by thermal evaporation under high vacuum conditions at room temperature. Ge has grown in a layer-plus-island mode although it is different from the Stranski–Krastanov growth mode observed in epitaxial growth. Both the islands and the layer are nanocrystalline. This appears to be a consequence of reduction of surface free energy of the Si(111) substrate by Br-passivation. The size distribution of the Ge nanoislands has been determined. The Br–Si(111) substrates were prepared by a liquid treatment, which may not produce exactly reproducible surfaces. Nevertheless, some basic features of the nanostructural island growth are reasonably reproducible, while there are variations in the details of the island size distribution.

  1. From layered double hydroxide to spinel nanostructures: facile synthesis and characterization of nanoplatelets and nanorods.

    Science.gov (United States)

    Sun, Genban; Sun, Lingna; Wen, He; Jia, Zhiqian; Huang, Kunlin; Hu, Changwen

    2006-07-13

    Mg-Al spinel (MgAl2O4) nanorods and nanoplatelets transformed from Mg-Al layered double hydroxide (Mg-Al-LDHs) were synthesized via a combined hydrothermal method and calcination route using Al(NO3).9H2O and Mg(NO3)2.6H2O as raw materials. The nanorods and nanoplatelets were characterized by means of physical techniques, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microcopy (HRTEM), selected-area electron diffraction (SAED), Fourier transform infrared spectra (FT-IR), thermogravimetric (TG), and nitrogen adsorption-desorption isotherms. XRD patterns reveal that the Mg-Al-LDHs nanostructures were obtained under a hydrothermal reaction temperature of 200 degrees C and Mg-Al spinel nanostructures were fabricated via calcination of the Mg-Al-LDHs nanostructures at 750 degrees C. It can be seen from TEM that the sizes of the Mg-Al-LDHs nanoplatelets were about 20-40 nm and the diameters of the MgAl2O4 nanorods were ca. 6 nm. The HRTEM images indicate that the crystal lattice spaces of the MgAl2O4 nanorods and nanoplatelets are 0.282 and 0.287 nm, respectively.

  2. Splitting the surface wave in metal/dielectric nanostructures

    Institute of Scientific and Technical Information of China (English)

    Zhu Song; Wu Jian

    2011-01-01

    We investigate a modified surface wave splitter with a double-layer structure, which consists of symmetrical metallic grating and an asymmetrical dielectric, using the finite-difference time-domain (FDTD) simulation method.The metal/dielectric interface structure at this two-side aperture can support bound waves of different wavelengths,thus guiding waves in opposite directions. The covered dielectric films play an important role in the enhancement and confinement of the diffraction wave by the waveguide modes. The simulation result shows that the optical intensities of the guided surface wave at wavelengths of 760-nm and 1000-nm are about 100 times and 4~5 times those of the weaker side, respectively, which means that the surface wave is split by the proposed device.

  3. From Zn-Al layered double hydroxide to ZnO nanostructure:Gradually etching by sodium hydroxide

    Institute of Scientific and Technical Information of China (English)

    Gang Qiang Wan; Dong Xiang Li; Chun Fang Li; Jie Xu; Wan Guo Hou

    2012-01-01

    Zn-Al layered double hydroxide (LDH) was used as precursor to produce ZnO nanostructures through dissolution of aluminum hydroxide in caustic soda.The Zn-Al LDH could transform into different nanostructures of ZnO on LDH nanosheets and even pure ZnO nanorods under various NaOH concentration.The formed ZnO nanorods vertically aligned on both LDH sides.UV-vis diverse reflectance spectra show that the obtained ZnO nanorods have a band gap of approximately 3.05 eV.Such ZnO/LDH nanostructures might be used as photocatalyst in the organic pollutant decomposition.

  4. A nanostructured surface increases friction exponentially at the solid-gas interface

    CERN Document Server

    Phani, Arindam; Hawk, J E; Prashanthi, Kovur; Thundat, Thomas

    2016-01-01

    According to Stokes' law, a moving solid surface experiences dissipation that is linearly related to its velocity and the viscosity of the medium. This linear dependence on viscosity forms the basis for many characterization techniques for liquids. Unlike viscosities of different liquids, viscosities of gases vary only in a narrow range which limits their use as an effective characterization parameter using moving structures. Here we report experimental results of dissipation showing exponential dependence on viscosity for oscillating surfaces modified with nanostructures. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making it an ideal detection parameter for analysis. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas medi...

  5. A nanostructured surface increases friction exponentially at the solid-gas interface

    Science.gov (United States)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  6. The Effects of Surface Properties of Nanostructured Bone Repair Materials on Their Performances

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available Nanotechnology has been expected to be an extraordinarily promising method for bone repair. Meanwhile, the promise of nanobiomaterials for therapeutic applications has been widely reported, and a lot of studies have been made in terms of repairing bone using nanomaterials accompanied by rapid development of nanotechnology. Compared with conventional biomaterials, nanostructured implants have been shown to possess positive effects on cellular functions because of their unique surface properties, such as nanotopography, increased wettability, larger surface area, and microenvironment similar to extracellular matrix. Moreover, many positive cellular responses have been found to take place at the interface between nanostructured implants and host bone. In this paper, we will give a review about the effects of surface properties of nanostructured bone repair materials on their performances in terms of several aspects and a detailed interpretation or introduction on the specific cellular recognitions at the interface between nanostructured implants and host bone.

  7. Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes

    Directory of Open Access Journals (Sweden)

    Thomas Baumgärtel

    2013-03-01

    Full Text Available This study investigates the controlled chemical functionalization of silicon oxide nanostructures prepared by AFM-anodization lithography of alkyl-terminated silicon. Different conditions for the growth of covalently bound mono-, multi- or submonolayers of distinctively functional silane molecules on nanostructures have been identified by AFM-height investigations. Routes for the preparation of methyl- or amino-terminated structures or silicon surfaces are presented and discussed. The formation of silane monolayers on nanoscopic silicon oxide nanostructures was found to be much more sensitive towards ambient humidity than, e.g., the silanization of larger OH-terminated silica surfaces. Amino-functionalized nanostructures have been successfully modified by the covalent binding of functional fluorescein dye molecules. Upon excitation, the dye-functionalized structures show only weak fluorescence, which may be an indication of a relatively low surface coverage of the dye molecules on length scale that is not accessible by standard AFM measurements.

  8. Heat treatment effects on the surface morphology and optical properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zainizan Sahdan, M. [Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical and Electronics Engineering, Universiti Tun Hussein onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Hafiz Mamat, M.; Salina, M.; Noor, Uzer M.; Rusop, Mohamad [Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Zuraida [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2010-09-15

    Zinc oxide (ZnO) nanostructures have received broad attention due to its wide applications especially for thin-film solar cells and transistors. In this paper, we report the effects of heat treatment on the structural and optical properties of ZnO nanostructures. Zinc oxide nanostructures were synthesized using thermal chemical vapour deposition (CVD) method on glass substrate. The surface morphologies which were observed by scanning electron microscope (SEM) show that ZnO nanostructures change its shape and size when the annealing temperature increases from 400 C to 600 C. Structural measurement using X-ray diffraction (XRD) has shown that ZnO nanostructures have the highest crystallinity and smallest crystallite size (20 nm) when annealed at 550 C. Furthermore, the samples were optically characterized using Photoluminescence (PL) spectrometer. The PL spectra indicate that ZnO nanostructures have the highest peak at UV wavelength when annealed at 550 C. The mechanism of the PL properties of ZnO nanostructures is also discussed. We conclude that ZnO nanostructures deposited using thermal CVD have the optimum structural and PL properties when annealed at 550 C. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Surface functionalization of nanostructured Fe2O3 polymorphs: from design to light-activated applications.

    Science.gov (United States)

    Barreca, Davide; Carraro, Giorgio; Gasparotto, Alberto; Maccato, Chiara; Rossi, Francesca; Salviati, Giancarlo; Tallarida, Massimo; Das, Chittaranjan; Fresno, Fernando; Korte, Dorota; Stangar, Urška Lavrenčič; Franko, Mladen; Schmeisser, Dieter

    2013-08-14

    Nanostructured iron(III) oxide deposits are grown by chemical vapor deposition (CVD) at 400-500 °C on Si(100) substrates from Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine), yielding the selective formation of α-Fe2O3 or the scarcely studied ε-Fe2O3 polymorphs under suitably optimized preparative conditions. By using Ti(OPr(i))4 (OPr(i) = iso-propoxy) and water as atomic layer deposition (ALD) precursors, we subsequently functionalized the obtained materials at moderate temperatures (<300 °C) by an ultrathin titanomagnetite (Fe3-xTixO4) overlayer. An extensive multitechnique characterization, aimed at elucidating the system structure, morphology, composition and optical properties, evidenced that the photoactivated hydrophilic and photocatalytic behavior of the synthesized materials is dependent both on iron oxide phase composition and ALD surface modification. The proposed CVD/ALD hybrid synthetic approach candidates itself as a powerful tool for a variety of applications where semiconductor-based nanoarchitectures can benefit from the coupling with an ad hoc surface layer.

  10. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.

    Science.gov (United States)

    Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2012-02-28

    Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie stable and favor the formation of suspended droplets on top of the nanostructures as compared to partially wetting droplets which locally wet the base of the nanostructures. These suspended droplets promise minimal contact line pinning and promote passive droplet shedding at sizes smaller than the characteristic capillary length. However, the gas films underneath such droplets may significantly hinder the overall heat and mass transfer performance. We investigated droplet growth dynamics on superhydrophobic nanostructured surfaces to elucidate the importance of droplet morphology on heat and mass transfer. By taking advantage of well-controlled functionalized silicon nanopillars, we observed the growth and shedding behavior of suspended and partially wetting droplets on the same surface during condensation. Environmental scanning electron microscopy was used to demonstrate that initial droplet growth rates of partially wetting droplets were 6× larger than that of suspended droplets. We subsequently developed a droplet growth model to explain the experimental results and showed that partially wetting droplets had 4-6× higher heat transfer rates than that of suspended droplets. On the basis of these findings, the overall performance enhancement created by surface nanostructuring was examined in comparison to a flat hydrophobic surface. We showed these nanostructured surfaces had 56% heat flux enhancement for partially wetting droplet morphologies and 71% heat flux degradation for suspended morphologies in comparison to flat hydrophobic surfaces. This study provides insights into the previously unidentified role of droplet wetting morphology on growth rate, as well as the need to design Cassie stable nanostructured surfaces with tailored droplet

  11. Reduction of Friction of Metals Using Laser-Induced Periodic Surface Nanostructures

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2015-10-01

    Full Text Available We report on the effect of femtosecond-laser-induced periodic surface structures (LIPSS on the tribological properties of stainless steel. Uniform periodic nanostructures were produced on AISI 304L (American Iron and Steel Institute steel grade steel surfaces using an 800-nm femtosecond laser. The spatial periods of LIPSS measured by field emission scanning electron microscopy ranged from 530 to 570 nm. The tribological properties of smooth and textured surfaces with periodic nanostructures were investigated using reciprocating ball-on-flat tests against AISI 440C balls under both dry and starved oil lubricated conditions. The friction coefficient of LIPSS covered surfaces has shown a lower value than that of the smooth surface. The induced periodic nanostructures demonstrated marked potential for reducing the friction coefficient compared with the smooth surface.

  12. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    Science.gov (United States)

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.

  13. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures

    Science.gov (United States)

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-01

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  14. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface

    Directory of Open Access Journals (Sweden)

    Zheng Y

    2012-02-01

    Full Text Available Yanhua Zheng1, Jinbo Li2, Xuanyong Liu2, Jiao Sun11Shanghai Biomaterials Research and Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, People’s Republic of China; 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of ChinaAbstract: Ag-implanted titanium with a nanostructured surface was prepared by hydrothermal treatment with H2O2 followed by Ag plasma immersion ion implantation. Streptococcus mutans, Porphyromonas gingivalis and Candida albicans were chosen for antimicrobial tests. Genes related to microbial structure or adhesion, namely glucan-binding proteins B (GbpB, fimbria protein A (FimA, and agglutinin-like sequence4 (Als4, were examined. The osteoblast’s attachment, viability, and quantitative analysis of osteogenic gene expression (Alp, Ocn, RunX2 on titanium surfaces were evaluated. Scanning electron microscopy (SEM revealed that Ag nanoparticles of approximately 10 nm were incorporated on the nanostructured surface of titanium after Ag plasma immersion ion implantation. Trials showed that 93.99% of S. mutans, 93.57% of P. g, and 89.78% of C. albicans were killed on the Ag-implanted titanium with a nanostructured surface. Gene expressions from the three microorganisms confirmed the antimicrobial activities of the Ag-implanted titanium with a nanostructured surface. Furthermore, the adhesive images and viability assays indicated that the Ag-implanted titanium with a nanostructured surface did not impair osteoblasts. The expressions of osteoblast phenotype genes in cells grown on the Ag-implanted titanium surface were significantly increased. The results of this study suggest that the Ag-implanted titanium with a nanostructured surface displays good antimicrobial properties, reducing gene expressions of

  15. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    Science.gov (United States)

    Xiu, Yonghao

    In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect of hierarchical roughness, i.e., two scale roughness effect on roughness is investigated using systems of (1) monodisperse colloidal silica sphere (submicron) arrays and Au nanoparticle on top and (2) Si micrometer pyramids and Si nanostructures on top from KOH etching and metal assisted etching of Si. The relation between the contact area fraction and water droplet contact angles are derived based on Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained regarding the synergistic combination of two scales. Previously the microscopic three-phase-contact line is thought to be the key factor in determining contact angles and hystereses. In our study, Laplace pressure was brought up and related to the three-phase-contact line and taken as a key figure of merit in determining superhydrophobicity. In addition, we are one of the first to study the effect of tapered structures (wall inclination). Combining with a second scale roughness on the tapered structures, stable Cassie state for both water and low surface energy oil may be achieved. This is of great significance for designing both superhydrophobicity and superoleophobicity. Regarding the origin of contact angle hysteresis, study of superhydrophobicity on micrometer Si pillars was performed. The relation between the interface work of function and contact angle hysteresis was proposed and derived mathematically based on the Young-Dupre equation. The three-phase-contact line was further related to a secondary scale roughness induced. Based on

  16. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures

    Directory of Open Access Journals (Sweden)

    Amarendra Kumar

    2016-06-01

    Full Text Available In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400–800 nm. Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.

  17. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  18. Dynamic air layer on textured superhydrophobic surfaces.

    Science.gov (United States)

    Vakarelski, Ivan U; Chan, Derek Y C; Marston, Jeremy O; Thoroddsen, Sigurdur T

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model.

  19. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection.

    Science.gov (United States)

    Golda-Cepa, M; Syrek, K; Brzychczy-Wloch, M; Sulka, G D; Kotarba, A

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function-bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces.

  20. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection

    Science.gov (United States)

    Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.; Yaacob, Mohd Hanif; Mahdi, Mohd Adzir; Zan, Mohd Saiful Dzulkefly; Shaari, Sahbudin

    2016-01-01

    We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au-Ag-Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1-1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10-5 change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  1. The structure of the NiTi surface layers after the ion-plasma alloying of Ta

    Energy Technology Data Exchange (ETDEWEB)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: girs@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, L. L., E-mail: lm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Schmidt, E. Yu., E-mail: shmidt.rin@yandex.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The effect of the Ta-ion beam implantation on the micro- and nanostructures of the surface layers of NiTi alloy was investigated using transmission electron microscopy and Auger spectroscopy. It is found that the elements are distributed non-uniformly with depth, so that the sublayers differ significantly in structure. The modified surface layer was found to consist of two sublayers, i.e. the upper oxide layer and the lower-lying amorphous layer that contains a maximum of Ta atoms.

  2. Optimization of light out-coupling in optoelectronic devices using nanostructured surface

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini;

    the overall efficiency of the LEDs. In this paper we have developed various methods for two important semiconductors: silicon carbide (SiC) and gallium nitride (GaN), and demonstrated enormous extraction efficiency enhancement. SiC is an important su bstrate for LED devices. It has refractive index of 2.......6, and only a few percent of light could escape from it. We have developed periodic nanocone structures by using electron - beam lithography, periodic nanodome structures by using nanosphere lithography, random nanostructures by using self - assembled metal nanoparticles, and random nanostructures by directly...... using the self - masking effect of thin Al films, as shown in Fig.1. All these nanostructures have shown increased transmittance or reduced reflectance c ompared to the bare surface. Fluorescent SiC samples show tremendous photoluminescence enhancement (up to 210%) after the surface nanostructuring...

  3. Profile Prediction and Fabrication of Wet-Etched Gold Nanostructures for Localized Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Zhou Xiaodong

    2009-01-01

    Full Text Available Abstract Dispersed nanosphere lithography can be employed to fabricate gold nanostructures for localized surface plasmon resonance, in which the gold film evaporated on the nanospheres is anisotropically dry etched to obtain gold nanostructures. This paper reports that by wet etching of the gold film, various kinds of gold nanostructures can be fabricated in a cost-effective way. The shape of the nanostructures is predicted by profile simulation, and the localized surface plasmon resonance spectrum is observed to be shifting its extinction peak with the etching time. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9486-4 contains supplementary material, which is available to authorized users. Click here for file

  4. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au–Ag–Au nanostructure for lead(II) ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin, Nur Hasiba [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaacob, Mohd Hanif; Mahdi, Mohd Adzir [Wireless and Photonic Network Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zan, Mohd Saiful Dzulkefly [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Shaari, Sahbudin [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2016-01-15

    Highlights: • Tri-metallic Au–Ag–Au CS-GO SPR sensor was fabricated for the first time. • The tri-metallic nanostructure provided an enhanced evanescent field. • Successful functionalization of the CS-GO sensing layer. • Superior performance for lead(II) ion detection. - Abstract: We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au–Ag–Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1–1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10{sup −5} change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  5. Chondrocyte behavior on nanostructured micropillar polypropylene and polystyrene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Prittinen, Juha [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Jiang, Yu [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Ylärinne, Janne H. [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Pakkanen, Tapani A. [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Lammi, Mikko J., E-mail: mikko.lammi@uef.fi [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Qu, Chengjuan [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland)

    2014-10-01

    This study was aimed to investigate whether patterned polypropylene (PP) or polystyrene (PS) could enhance the chondrocytes' extracellular matrix (ECM) production and phenotype maintenance. Bovine primary chondrocytes were cultured on smooth PP and PS, as well as on nanostructured micropillar PP (patterned PP) and PS (patterned PS) for 2 weeks. Subsequently, the samples were collected for fluorescein diacetate-based cell viability tests, for immunocytochemical assays of types I and II collagen, actin and vinculin, for scanning electronic microscopic analysis of cell morphology and distribution, and for gene expression assays of Sox9, aggrecan, procollagen α{sub 1}(II), procollagen α{sub 1}(X), and procollagen α{sub 2}(I) using quantitative RT-PCR assays. After two weeks of culture, the bovine primary chondrocytes had attached on both patterned PP and PS, while practically no adhesion was observed on smooth PP. However, the best adhesion of the cells was on smooth PS. The cells, which attached on patterned PP and PS surfaces synthesized types I and II collagen. The chondrocytes' morphology was extended, and an abundant ECM network formed around the attached chondrocytes on both patterned PP and PS. Upon passaging, no significant differences on the chondrocyte-specific gene expression were observed, although the highest expression level of aggrecan was observed on the patterned PS in passage 1 chondrocytes, and the expression level of procollagen α{sub 1}(II) appeared to decrease in passaged chondrocytes. However, the expressions of procollagen α{sub 2}(I) were increased in all passaged cell cultures. In conclusion, the bovine primary chondrocytes could be grown on patterned PS and PP surfaces, and they produced extracellular matrix network around the adhered cells. However, neither the patterned PS nor PP could prevent the dedifferentiation of chondrocytes. - Highlights: • Methods to avoid chondrocyte dedifferentiation would be useful for cartilage

  6. Unstable Growth and Decay of Nanostructures on Crystalline Surfaces

    Science.gov (United States)

    Einstein, Theodore L.

    2001-03-01

    Instabilities during growth are typically attributed to the venerable [step] Ehrlich-Schwoebel effect (SESE), or closely related asymmetries(J.G. Amar and F. Family, Phys. Rev. Lett. 77), 4584 (1996) for atoms arriving at upper and lower sides of a step. Esp., SESE leads to the well-known Bales-Zangwill (BZ) instability of step edges. We have found(O. Pierre-Louis, M.R. D'Orsogna, and T.L. Einstein, Phys. Rev. Lett. 82), 3661 (1999) that an analogous in-plane asymmetry of the energy barriers at kinks for atoms moving along step edges, the kink Ehrlich-Schwoebel effect (KESE), can produce a new instability that can supplant the BZ instability. (The relevant edge and corner barriers can be calculated semiempirically; moreover, they can theoretically be tuned in electrochemical cells.(M.I. Haftel and T.L. Einstein, Proc. MRS 580), 195 (2000); Proc. ICSFS-10 (Princeton, 2000), Appl. Surface Sci.) We analyze various contributions to the mass current along the step. Monte Carlo simulations on a simple SOS model are used to illustrate behavior and distinguish between strong and weak KESE. The threshold of stable kink-flow growth is analyzed. KESE can induce mound formation, the orientation of which depends on the strength of the kink ES barrier. Such behavior was observed on Ag(100).(G. Costantini ldots U. Valbusa, Proc. ICSFS-10 (Princeton, 2000), Appl. Surf. Sci.; Surface Sci. 459), L487 (2000) Intriguing experiments observe wavelength selection during step-flow growth on vicinal Cu(100).(T. Maroutian, L. Douillard, and H.-J. Ernst, Phys. Rev. Lett. 83), 4353 (1999) KESE also can account for the instability of the Wolf-Villain model, in contrast to the similar Das Sarma-Tamborenea model.(P. Punyindu, Z. Toroczkai, and S. Das Sarma, preprint) At the coarse-grained level, the continuum step model can account for the decay of nanomounds on Si(7x7): the exponents of the decay rate and, more remarkably, the overall rate of these nanostructures (to within a factor of two

  7. STM study of In nanostructures formation on Ge(001) surface at different coverages and temperatures

    Institute of Scientific and Technical Information of China (English)

    Qin Zhi-Hui; Shi Dong-Xia; Pang Shi-Jin; Gao Hong-Jun

    2008-01-01

    Different In/Ge(001) nanostructures have been obtained by annealing the samples at 320℃ with different coverages of In. Annealing a sample with a critical coverage of 2.1 monolayer of In, different In/Ge(001) nanostructures can be obtained at different temperatures. It is found that thermal annealing treatments first make In atoms form elongated Ge{103}-faceted In-clusters, which will grow wider and longer with increasing temperature, and finally cover the surface completely.

  8. Synthesis and characterization of metal (Core) - layered double hydroxide (Shell) nanostructures

    Science.gov (United States)

    Noh, Woo C.

    Layered double hydroxides (LDH) which belong to a class of inorganic ceramic layered materials have been studied since the mid-19th century for a variety of applications including catalysis, anion exchange, adsorbents and antacid, but more recently as a potential drug and gene delivery platform. Drug delivery platforms based on nano-sized geometries are nanovectors which promise a revolutionary impact on the therapy and imaging of various types of cancers and diseases. To date, various polymeric platforms have been the focus of intense research, but the development of inorganic, bio-hybrid nanoparticles for therapeutics and molecular imaging are at a stage of infancy. The hybridization of LDH with bioactive agents or the fabrication of metal (Core)---LDH (Shell) nanostructures could have many beneficial effects including multimodality, active targetability, and efficacy. For example, Core---Shell nanostructures may be designed to have a high scattering optical cross-section for imaging, but may also be tailored to strongly absorb near infrared (NIR) light for hyperthermic ablation. The central theme of this thesis was to demonstrate proof-of-concept of spherical silver and gold metal (Core)---LDH (Shell) nanostructures that have uniform size distribution and are agglomeration free. The effects of processing parameters on the characteristics of LDH as well as LDH-coated spherical metal (Ag, Au) nanoparticles have been evaluated using X-ray Diffraction, Dynamic Light Scattering, Scanning Electron Microscopy, Transmission Electron Microscopy, Rutherford Backscattering Spectrometry, and Inductively Coupled Plasma Emission Spectrometry to arrive at appropriate process windows. The core---shell nanostructures were also characterized for their optical properties in the ultra---violet---visible region, and the data were compared with simulated data, computed by using a quasi static model from Mie scattering theory. Moreover, in order to achieve a strong plasmon resonance

  9. Titanium Surfaces with Nanostructures Influence on Osteoblasts Proliferation: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Maxim

    2014-10-01

    Full Text Available Objectives: Nanothechnology found to be increasingly implemented in implantology sphere over the recent years and it shows encouraging effect in this field. The aim of present review is to compare, based on the recent evidence, the influence of various nanostructure surface modifications of titanium for implants, on osteoblasts proliferation. Material and Methods: A literature review of English articles was conducted by using MEDLINE database restricted to 2009 - 2014 and constructed according PRISMA guidelines. Search terms included “Titanium implant”, “Titanium surface with nanostructure”, “Osteoblast”. Additional studies were identified in bibliographies. Only in vitro and/or in vivo studies on nano structured implant surfaces plus control sample, with specific evaluation method for osteoblasts proliferation and at least one Ti sample with nanostructure, were included in the review. Results: 32 studies with 122 groups of examined samples were selected for present review. Each study conducted in vitro experiment, two studies conducted additional in vivo experiments. All studies were dispensed by type of surface modification into two major groups; “Direct ablative titanium implant surface nano-modifications” with 19 studies and ”Nanocomposite additive implant surface modifications” with 13 studies. Overall 24 studies reporting on positive effect of nanostructured surface, 2 studies found no significant advantage and 6 studies reported on negative effect compared to other structure scales. Conclusions: From examination of selected articles we can notice marked advantage in implementation of various nanostructures onto implant surface. Yet for discovering the ultimate implant surface nanostructure, further comparable investigations of Ti surface nanostructures need to be done.

  10. Molecular dynamics simulation of atomic-scale frictional behavior of corrugated nano-structured surfaces.

    Science.gov (United States)

    Kim, Hyun-Joon; Kim, Dae-Eun

    2012-07-01

    Surface morphology is one of the critical parameters that affect the frictional behavior of two contacting bodies in relative motion. It is important because the real contact area as well as the contact stiffness is dictated by the micro- and nano-scale geometry of the surface. In this regard, the frictional behavior may be controlled by varying the surface morphology through nano-structuring. In this study, molecular dynamics simulations were conducted to investigate the effects of contact area and structural stiffness of corrugated nano-structures on the fundamental frictional behavior at the atomic-scale. The nano-structured surface was modeled as an array of corrugated carbon atoms with a given periodicity. It was found that the friction coefficient of the nano-structured surface was lower than that of a smooth surface under specific contact conditions. The effect of applied load on the friction coefficient was dependent on the size of the corrugation. Furthermore, stiffness of the nano-structure was identified to be an important variable in dictating the frictional behavior.

  11. Neutralized wettability effect of superhydrophilic Cr-layered surface on pool boiling critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Jeong, Ui Ju; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The former method is deemed challenging due to longer development period and license issue. In this regard, FeCrAl, Cr, and SiC have been received positive attention as ATF coating materials because they are highly resistant to high temperature steam reaction causing massive hydrogen generation. In this study, Cr was selected as a target deposition material on the metal substrate because we found that Cr-layered surface becomes superhydrophilic, favorable to delaying the triggering of the critical heat flux (CHF). Thus in order to investigate the effect of Cr-layered superhydrophilic surfaces (under explored coating conditions) on pool boiling heat transfer, pool boiling experiment was conducted in the saturated deionized water under atmospheric pressure. As a physical vapor deposition (PVD) method, the DC magnetron sputtering technique was introduced to develop Cr-layered nanostructure. As a control variable of DC sputtering, substrate temperature was selected. Surface wettability and nanostructure were analyzed as major surface parameters on the CHF. We believe that highly dense micro/nano structure without nucleation cavities and inner pores neutralized the wettability effect on the CHF. Moreover, superhydrophilic surface with deficient cavity density rather hinders active nucleation. This emphasizes the importance of micro/nano structure surface for enhanced boiling heat transfer.

  12. Microscopic origins of the surface exciton photoluminescence in ZnO nanostructures

    Science.gov (United States)

    Biswas, Mahua; Jung, Yun Suk; Kim, Hong Koo; Kumar, Kumarappan; Hughes, Gregory J.; Newcomb, S.; Henry, Martin O.; McGlynn, Enda

    2012-02-01

    Photoluminescence (PL) studies of the surface exciton peak in ZnO nanostructures at ~3.367 eV are reported to elucidate the nature and origin of the emission and its relationship to nanostructure morphology. Localised voltage application in high vacuum and different gas atmospheres show a consistent PL variation (and recovery), allowing an association of the PL to a bound excitonic transition at the ZnO surface modified by an adsorbate. Studies of samples treated by plasma and of samples exposed to UV light under high vacuum conditions show no consistent effects on the surface exciton peak indicating no involvement of oxygen species. X-ray photoelectron spectroscopy data indicate involvement of adsorbed OH species. The relationship of the surface exciton peak to the nanostructure morphology is discussed in light of x-ray diffraction, scanning and transmission electron microscopy data.

  13. Induction of Polymerization of the Surface Nanostructures of the Electrodes by Electric Field

    Directory of Open Access Journals (Sweden)

    S.G. Еmelyanov

    2014-07-01

    Full Text Available The results of experimental studies of the interface of "dielectric liquid - nanostructured metal electrode" after electroconvection is presented. It is discovered the patterns of structuring of areas of polymerization showing disruption of the diffusion layer and the processes of charge injection from the tops of structures.

  14. Approaches to nanostructure control and functionalizations of polymer@silica hybrid nanograss generated by biomimetic silica mineralization on a self-assembled polyamine layer

    Directory of Open Access Journals (Sweden)

    Jian-Jun Yuan

    2011-11-01

    Full Text Available We report the rational control of the nanostructure and surface morphology of a polyamine@silica nanoribbon-based hybrid nanograss film, which was generated by performing a biomimetic silica mineralization reaction on a nanostructured linear polyethyleneimine (LPEI layer preorganized on the inner wall of a glass tube. We found that the film thickness, size and density of the nanoribbons and the aggregation/orientation of the nanoribbons in the film were facile to tune by simple adjustment of the biomimetic silicification conditions and LPEI self-assembly on the substrate. Our LPEI-mediated nanograss process allows the facile and programmable generation of a wide range of nanostructures and surface morphologies without the need for complex molecular design or tedious techniques. This ribbon-based nanograss has characteristics of a LPEI@silica hybrid structure, suggesting that LPEI, as a polymeric secondary amine, is available for subsequent chemical reaction. This feature was exploited to functionalize the nanograss film with three representative species, namely porphyrin, Au nanoparticles and titania. Of particular note, the novel silica@titania composite nanograss surface demonstrated the ability to convert its wetting behavior between the extreme states (superhydrophobic–superhydrophilic by surface hydrophobic treatment and UV irradiation. The anatase titania component in the nanograss film acts as a highly efficient photocatalyst for the decomposition of the low-surface-energy organic components attached to the nanosurface. The ease with which the nanostructure can be controlled and facilely functionalized makes our nanograss potentially important for device-based application in microfluidic, microreactor and biomedical fields.

  15. Fabricating nanostructures through a combination of nano-oxidation and wet etching on silicon wafers with different surface conditions.

    Science.gov (United States)

    Huang, Jen-Ching

    2012-01-01

    This study investigates the surface conditions of silicon wafers with native oxide layers (NOL) or hydrogen passivated layers (HPL) and how they influence the processes of nano-oxidation and wet etching. We also explore the combination of nano-oxidation and wet etching processes to produce nanostructures. Experimental results reveal that the surface conditions of silicon wafers have a considerable impact on the results of nano-oxidation when combined with wet etching. The height and width of oxides on NOL samples exceeded the dimensions of oxides on HPL samples, and this difference became increasingly evident with an increase in applied bias voltage. The height of oxidized nanolines on the HPL sample increased after wet etching; however, the width of the lines increased only marginally. After wet etching, the height and width of oxides on the NOL were more than two times greater than those on the HPL. Increasing the applied bias voltage during nano-oxidation on NOL samples increased both the height and width of the oxides. After wet etching however, the increase in bias voltage appeared to have little effect on the height of oxidized nanolines, but the width of oxidized lines increased. This study also discovered that the use of higher applied bias voltages on NOL samples followed by wet etching results in nanostructures with a section profile closely resembling a curved surface. The use of this technique enabled researchers to create molds in the shape of a silicon nanolens array and an elegantly shaped nanoscale complex structures mold.

  16. Preparation of Dispersed Platinum Nanoparticles on a Carbon Nanostructured Surface Using Supercritical Fluid Chemical Deposition

    Directory of Open Access Journals (Sweden)

    Mineo Hiramatsu

    2010-03-01

    Full Text Available We have developed a method of forming platinum (Pt nanoparticles using a metal organic chemical fluid deposition (MOCFD process employing a supercritical fluid (SCF, and have demonstrated the synthesis of dispersed Pt nanoparticles on the surfaces of carbon nanowalls (CNWs, two-dimensional carbon nanostructures, and carbon nanotubes (CNTs. By using SCF-MOCFD with supercritical carbon dioxide as a solvent of metal-organic compounds, highly dispersed Pt nanoparticles of 2 nm diameter were deposited on the entire surface of CNWs and CNTs. The SCF-MOCFD process proved to be effective for the synthesis of Pt nanoparticles on the entire surface of intricate carbon nanostructures with narrow interspaces.

  17. Surface roughness scattering in multisubband accumulation layers

    Science.gov (United States)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-06-01

    Accumulation layers with very large concentrations of electrons where many subbands are filled became recently available due to ionic liquid and other new methods of gating. The low-temperature mobility in such layers is limited by the surface roughness scattering. However, theories of roughness scattering so far dealt only with the small-density single subband two-dimensional electron gas (2DEG). Here we develop a theory of roughness-scattering limited mobility for the multisubband large concentration case. We show that with growing 2D electron concentration n the surface dimensionless conductivity σ /(2 e2/h ) first decreases as ∝n-6 /5 and then saturates as ˜(d aB/Δ2)≫1 , where d and Δ are the characteristic length and height of the surface roughness and aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2DEG thickness and the related increase of the scattering rate the 2DEG remains a good metal.

  18. Verifying field-effect passivation of a SiNx layer on a silicon nanopillar array using surface photovoltage characterization

    Science.gov (United States)

    Kim, Eunah; Cho, Yunae; Sohn, Ahrum; Kim, Dong-Wook; Park, Hyeong-Ho; Kim, Joondong

    In silicon (Si) wafer based photovoltaic (PV) devices, light-trapping strategies to improve optical absorption are very important due to the indirect bandgap of Si. Surface nano-patterned Si enable omnidirectional broadband antireflection (AR) effects with the help of graded refractive index, multiple scattering, diffraction, and Mie resonance. In this work, the surface photovoltage (SPV) of periodic nanopillar (NP) arrays were investigated using Kelvin probe force microscopy (KPFM). The SPV characteristics clearly revealed that positive fixed charges in SiNx layers induced downward band bending at the Si surface and increased SPV at the NP top surface. The similar SPV value of NPs and planar counterpart suggests that field effect passivation by the dielectric layer coating could help improve PV performance of nanostructure-based Si solar cells and that KPFM measurements are useful tool for quantitative investigation of surface electrical properties of Si nanostructures.

  19. Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Ainara, E-mail: airodriguez@ceit.es [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); Morant-Miñana, Maria Carmen; Dias-Ponte, Antonio; Martínez-Calderón, Miguel; Gómez-Aranzadi, Mikel; Olaizola, Santiago M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain)

    2015-10-01

    Highlights: • Femtosecond laser-induced surface nanostructures on sputtered platinum thin films. • Three types of structures obtained: random nanostructures, LSFL and HSFL. • Two different modification regimes have been established based on laser fluence. - Abstract: In this work, submicro and nanostructures self-formed on the surface of Platinum thin films under femtosecond laser-pulse irradiation are investigated. A Ti:Sapphire laser system was used to linearly scan 15 mm lines with 100 fs pulses at a central wavelength of 800 nm with a 1 kHz repetition rate. The resulting structures were characterized by scanning electron microscopy (SEM) and 2D-Fast Fourier Transform (2D-FFT) analysis. This analysis of images revealed different types of structures depending on the laser irradiation parameters: random nanostructures, low spatial frequency LIPSS (LSFL) with a periodicity from about 450 to 600 nm, and high spatial frequency LIPSS (HSFL) with a periodicity from about 80 to 200 nm. Two different modifications regimes have been established for the formation of nanostructures: (a) a high-fluence regime in which random nanostructures and LSFL are obtained and (b) a low-fluence regime in which HSFL and LSFL are obtained.

  20. Surface Properties of PEMFC Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    WoodIII, David L [Los Alamos National Laboratory (LANL); Rulison, Christopher [Augustine Scientific; Borup, Rodney [Los Alamos National Laboratory (LANL)

    2010-01-01

    The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 higher than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.

  1. Formation of nanocrystalline layers by surface severe plastic deformation and pulsed plasma electrolytic carburizing.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2010-07-01

    Surfaces of various kinds of metallic materials spheres were treated by nanocrystalline surface severe plastic deformation and then pulsed nanocrystalline plasma electrolytic carburizing to study nanocrystalline substrate effect on formation and nano-hardness of hard nanocrystalline layer. The surface layers of the metallic materials developed by the nanocrystalline surface severe plastic deformation were characterized by means of high resolution scanning electron microscope. Nearly equiaxed nanocrystals with grain sizes ranging from 15 to 90 nm were observed in the near surface regions of all metallic materials, which are low carbon steel and commercially pure titanium. The effect of substrate nanocrystallization on growth kinetics and hardness of formed nanocrystalline carbide layer was studied with the means of figure analysis and nanohardness tests. Figure analysis show the length to diameter ratio and distribution curve of nanocrystals and it has been found that the achieved properties of hard layer (growth rate, nano-hardness, nanostructure...) are related to these factors. It was also clarified that these techniques and surface nanocrystallization can be easily achieved in most of metallic materials. Results indicate that the resultant hardened carburized layers exhibited excellent hardness profile. Investigation of the layer characteristics showed strong dependence followed from the treatment experimental parameters as well as the shape of nanocrystals.

  2. Magnetic Behavior of Surface Nanostructured 50-nm Nickel Thin Films

    Directory of Open Access Journals (Sweden)

    Kumar Prashant

    2010-01-01

    Full Text Available Abstract Thermally evaporated 50-nm nickel thin films coated on borosilicate glass substrates were nanostructured by excimer laser (0.5 J/cm2, single shot, DC electric field (up to 2 kV/cm and trench-template assisted technique. Nanoparticle arrays (anisotropic growth features have been observed to form in the direction of electric field for DC electric field treatment case and ruptured thin film (isotropic growth features growth for excimer laser treatment case. For trench-template assisted technique; nanowires (70–150 nm diameters have grown along the length of trench template. Coercive field and saturation magnetization are observed to be strongly dependent on nanostructuring techniques.

  3. Surface and Bulk Nanostructuring of Insulators by Ultrashort Laser Pulses

    Science.gov (United States)

    2017-04-05

    theoretical electron yield in Fig. 5 distributed in an effective ellipsoidal volume of axis w0 = 2.5µm and zR = 35µm. Black, gray and light gray lines...non perturbative effects leading to HHG. 15. SUBJECT TERMS Nanostructuring of bulk insulators, sub-picosecond electronic and structural events, photo...laser fields necessary for inducing strong nonlinear and non perturbative effects leading to HHG [16–20] II. PHOTOIONIZATION OF MONCRYSTALINE CVD

  4. Double-dark-resonance-enhanced Kerr nonlinearity in a single layer of graphene nanostructure

    Science.gov (United States)

    Solookinejad, Gh.; Panahi, M.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed

    2016-08-01

    In this paper, a novel scheme is proposed for the giant enhanced Kerr nonlinearity in a single layer of graphene nanostructure based on quantum optics and nonlinear optical sciences. The linear and the nonlinear susceptibility of the monolayer graphene system are presented in details by using the density matrix method and perturbation theory. After deriving the equations of motion in the steady-state regime, we analytically solve the linear and nonlinear susceptibility of the system. Our numerical results show that the giant enhanced Kerr nonlinearity can be obtained in the double-dark-resonance condition with zero linear and nonlinear absorption. Our results may have potential applications in quantum information science in infrared and terahertz regimes.

  5. Large-area thermoelectric high-aspect-ratio nanostructures by atomic layer deposition

    Science.gov (United States)

    Ruoho, Mikko; Juntunen, Taneli; Tittonen, Ilkka

    2016-09-01

    We report on the thermoelectric properties of large-area high-aspect-ratio nanostructures. We fabricate the structures by atomic layer deposition of conformal ZnO thin films on track-etched polycarbonate substrate. The resulting structure consists of ZnO tubules which continue through the full thickness of the substrate. The electrical and thermal properties of the structures are studied both in-plane and out-of-plane. They exhibit very low out-of-plane thermal conductivity down to 0.15 W m-1 K-1 while the in-plane sheet resistance of the films was found to be half that of the same film on glass substrate, allowing material-independent doubling of output power of any planar thin-film thermoelectric generator. The wall thickness of the fabricated nanotubes was varied within a range of up to 100 nm. The samples show polycrystalline nature with (002) preferred crystal orientation.

  6. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

    Science.gov (United States)

    Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho

    2016-06-28

    An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.

  7. Nanostructured composite layers for electromagnetic shielding in the GHz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Suchea, M. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Chemistry and Physics, “Al.I. Cuza” University of Iasi, Iasi (Romania); Tudose, I.V. [Chemistry and Physics, “Al.I. Cuza” University of Iasi, Iasi (Romania); Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Tzagkarakis, G. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Kenanakis, G. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology (FORTH) Hellas, Heraklion (Greece); Katharakis, M. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Drakakis, E. [Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Koudoumas, E., E-mail: koudoumas@staff.teicrete.gr [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece)

    2015-10-15

    Graphical abstract: - Highlights: • Paint-like nanocomposite layers consisting of graphene nanoplatelets, PANI:HCl and PEDOT:PSS present very effective attenuation of electromagnetic radiation in the frequency range 4–20 GHz. • The shielding performance is based mostly on the graphene nanoplatelets and supported by PANI:HCl. In contrast, PEDOT:PSS plays mainly the role of the binder. • Increasing resistivity was observed to reduce the shielding effect, while increasing thickness to favor it. - Abstract: We report on preliminary results regarding the applicability of nanostructured composite layers for electromagnetic shielding in the frequency range of 4–20 GHz. Various combinations of materials were employed including poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), polyaniline, graphene nanoplatelets, carbon nanotubes, Cu nanoparticles and Poly(vinyl alcohol). As shown, paint-like nanocomposite layers consisting of graphene nanoplatelets, polyaniline PEDOT:PSS and Poly(vinyl alcohol) can offer quite effective electromagnetic shielding, similar or even better than that of commercial products, the response strongly depending on their thickness and resistivity.

  8. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  9. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  10. Wear measurement by surface layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Blatchley, C.

    1987-05-01

    The purpose of these projects was to demonstrate the capability for precisely but remotely measuring small increments of wear, erosion or corrosion in utility components using detectors mounted outside the system to monitor the presence of radionuclide surface markers. These gamma ray emitting markers are produced by surface layer activation (SLA) using a high energy particle beam from a Van de Graaff or cyclotron particle accelerator. The work was divided into three major projects: (1) determination of the feasibility of applying SLA based surface monitoring techniques to key power plant systems; (2) a field demonstration of SLA monitoring in steam turbine components subject to severe solid particle erosion; and (3) a field demonstration of SLA wear or corrosion monitoring of components in boiler auxiliaries. In the field tests, surface material removal was successfully measured from both selected systems, demonstrating the feasibility of the technique for long term diagnostic condition monitoring. Three bearing components in a boiler circulation pump were monitored almost continuously for a period of over 5 months until the pump was stopped due to electrical problems unrelated to the wear measurements. Solid particle erosion from two stop valve bypass valves was measured during a series of nine startup cycles. Both test demonstrations confirmed the earlier feasibility estimates and showed how SLA markers can be used to provide valuable diagnostic information to plant operators. 22 refs., 63 figs., 29 tabs.

  11. Role of specific amine surface configurations for grafted surfaces: implications for nanostructured CO2 adsorbents.

    Science.gov (United States)

    Shimizu, Steven; Song, Changsik; Strano, Michael

    2011-03-15

    Amine-grafted porous materials that capture CO2 from emission streams have been considered to be potential alternatives to the more energy-intensive liquid amine systems currently employed. An underappreciated fact in the uptake mechanism of these materials is that under dry, anhydrous conditions each CO2 molecule must react with two adjacent amine groups to adsorb onto the surface, which makes the configuration of amine groups on the surface critically important. Using this chemical mechanism, we developed a semiempirical adsorption isotherm equation that allows straightforward computation of the adsorption isotherm from an arbitrary surface configuration of grafted amines for honeycomb, square, and triangular lattices. The model makes use of the fact that the distribution of amines with respect to the number of nearest neighbors, referred to as the z-histogram, along with the amine loading and equilibrium constant, uniquely determine the adsorption characteristics to a very good approximation. This model was used to predict the range of uptakes possible just through surface configuration, and it was used to fit experimental data in the literature to give a meaningful equilibrium constant and show how efficiently amines were utilized. We also demonstrate how the model can be utilized to design more efficient nanostructured adsorbents and polymer-based adsorbents. Recommendations for exploiting the role of surface configuration include the use of linear instead of branched polyamines, higher amine grafting densities, the use of flexible, less bulky, long, and rotationally free amine groups, and increased silanol densities.

  12. Layer-by-layer assembly of nanostructured composites: Mechanics and applications

    Science.gov (United States)

    Podsiadlo, Paul

    The development of efficient methods for preparation of nanometer-sized materials and our evolving ability to manipulate the nanoscale objects have brought about a scientific and technological revolution called: nanotechnology. This revolution has been especially driven by discovery of unique nanoscale properties of the nanomaterials which are governed by their inherent size. Today, the total societal impact of nanotechnology is expected to be greater than the combined influences that the silicon integrated circuit, medical imaging, computer-aided engineering, and man-made polymers have had in the last century. Many nanomaterials were also found to possess exceptional mechanical properties. This led to tremendous interest into developing composite materials by exploiting the mechanical properties of these building blocks. In spite of a tremendous volume of work done in the field, preparation of such nanocomposites (NCs) has proven to be elusive due to inability of traditional "top-down" fabrication approaches to effectively harness properties of the nano-scale building blocks. This thesis focuses on preparation of organic/inorganic and solely organic NCs via a bottom-up nano-manufacturing approach called the layer-by-layer (LBL) assembly. Two natural and inexpensive nanoscale building blocks are explored: nanosheets of Na+-montmorillonite clay (MTM) and rod-shaped nanocrystals of cellulose (CNRs). In the first part of the thesis, we present results from systematic study of mechanics of MTM-based NCs. Different compositions are explored with a goal of understanding the nanoscale mechanics. Ultimately, development of a transparent composite with record-high strength and stiffness is presented. In the second part, we present results from LBL assembly of the CNRs. We demonstrate feasibility of assembly and mechanical properties of the resulting films. We also demonstrate preparation of LBL films with anti- reflective properties from tunicate (a sea animal) CNRs. In the

  13. Electrochemical and surface analyses of nanostructured Ti-24Nb-4Zr-8Sn alloys in simulated body solution.

    Science.gov (United States)

    Li, J; Li, S J; Hao, Y L; Huang, H H; Bai, Y; Hao, Y Q; Guo, Z; Xue, J Q; Yang, R

    2014-06-01

    The use of nanostructuring to improve the stability of passive thin films on biomaterials can enhance their effectiveness in corrosion resistance and reduce the release of ions. The thickness of the ultrathin films that cover Ti and Ti alloys (only several nanometers) has prevented researchers from establishing systematic methods for their characterization. This study employed a multifunctional biomedical titanium alloy Ti-24Nb-4Zr-8Sn (wt.%) as a model material. Coarse-grained (CG) and nanostructured (NS) alloys were analyzed in 0.9% NaCl solution at 37°C. To reveal the details of the passive film, a method of sample preparation producing a passive layer suitable for transmission electron microscope analysis was developed. Electrochemical corrosion behavior was evaluated by potentiodynamic polarization tests and Mott-Schottky measurements. Surface depth chemical profile and morphology evolution were performed by X-ray photoelectron spectroscopy and in situ atomic force microscopy, respectively. A mechanism was proposed on the basis of the point defect model to compare the corrosion resistance of the passive film on NS and CG alloys. Results showed that the protective amorphous film on NS alloy is thicker, denser and more homogeneous with fewer defects than that on CG alloy. The film on NS alloy contains more oxygen and corrosion-resistant elements (Ti and Nb), as well as their suboxides, compared with the film on CG alloy. These characteristics can be attributed to the rapid, uniform growth of the passive film facilitated by nanostructuring.

  14. Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures.

    Science.gov (United States)

    Li, Dongfang; Lawandy, Nabil M; Zia, Rashid

    2013-09-09

    The enhanced optical forces induced by surface phonon-polariton (SPhP) modes are investigated in different silicon carbide (SiC) nanostructures. Specifically, we calculate optical forces using the Maxwell stress tensor for three different geometries: spherical particles, slab waveguides, and rectangular waveguides. We show that SPhP modes in SiC can produce very large forces, more than one order of magnitude larger than the surface plasmon-polariton (SPP) forces in analogous metal nanostructures. The material and geometric basis for these large optical forces are examined in terms of dispersive permittivity, separation distance, and operating wavelength.

  15. Organic light emitting diode with surface modification layer

    Energy Technology Data Exchange (ETDEWEB)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  16. Localized surface plasmon resonance induced structure-property relationships of metal nanostructures

    Science.gov (United States)

    Vilayurganapathy, Subramanian

    The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence a careful study of the above mentioned parameters is of utmost importance in designing efficient devices. In this dissertation, we synthesize and study the optical properties of nanostructures of different shapes and size. In particular, we estimated the plasmonic near field enhancement via surface-enhanced Raman scattering (SERS) and 2-photon Photoemission electron microscopy (2P-PEEM). We synthesized the nanostructures using four different techniques. One synthesis technique, the thermal growth method was employed to grow interesting Ag and Au nanostructures on Si. The absence of toxic chemicals during nanostructure synthesis via the thermal growth technique opens up myriad possibilities for applications in the fields of biomedical science, bioengineering, drug delivery among others along with the huge advantage of being environment friendly. The other three synthesis techniques (ion implantation, Electrodeposition and FIB lithography) were chosen with the specific goal of designing novel plasmonic metal, metal hybrid nanostructures as photocathode materials in next generation light sources. The synthesis techniques for these novel nanostructures were dictated by the requirement of high quantum efficiency, robustness under constant irradiation and coherent unidirectional electron emission

  17. Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture

    Directory of Open Access Journals (Sweden)

    Cheng BR

    2014-05-01

    Full Text Available Boran Cheng,1,* Zhaobo He,2,* Libo Zhao,2,* Yuan Fang,1 Yuanyuan Chen,1 Rongxiang He,2 Fangfang Chen,1 Haibin Song,1 Yuliang Deng,2 Xingzhong Zhao,2 Bin Xiong1 1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, People’s Republic of China; 2Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Abstract: Circulating tumor cells (CTCs in the blood which have detached from both the primary tumor and any metastases may be considered as a “liquid biopsy” and are expected to replace tumor biopsies in the monitoring of treatment response and determining patient prognosis. Here, we introduce a facile and efficient CTC detection material made of hydroxyapatite/chitosan (HA/CTS, which is beneficial because of its transparency and excellent biological compatibility. Atomic force microscopy images show that the roughness of the HA/CTS nanofilm (HA/CTSNF substrates can be controlled by changing the HA:CTS ratio. Enhanced local topographic interactions between nano-components on cancer cell membranes, and the antibody coated nanostructured substrate lead to improved CTC capture and separation. This remarkable nanostructured substrate has the potential for CTC culture in situ and merits further analysis. CTCs captured from artificial blood samples were observed in culture on HA/CTSNF substrates over a period of 14 days by using conventional staining methods (hematoxylin eosin and Wright’s stain. We conclude that these substrates are multifunctional materials capable of isolating and culturing CTCs for subsequent studies. Keywords: cell capture, cell culture, nanofilms, hydroxyapatite/chitosan

  18. Thermal Stability of Surface Layer Microstructures of Commercially Pure Titanium Treated by High Energy Shot Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-juan; CHEN Chun-huan; REN Rui-ming

    2004-01-01

    Commercially pure titanium was treated by high energy shot peening, and annealed at a series of temperatures. The surface layers are characterized by means of scan electronic microscope, X-Ray diffraction, transmission electronic microscope and micro-hardness testing machine. The results showed that microhardness of surface layers decreases with anneal temperature, the tendency of microhardness is similar to unannealed one, in other words, the more close to the surface, the more rapidly the hardness decreases, after reaches the depth of 50 μm, the decrease becomes steadily. But the sub-surface microhardness decreased suddenly over 500 ℃, From 550 ℃ to 650 ℃, the microhardness of surface layers almost unchanged.Observing by TEM and SEM, the grain sizes of pure titanium surface layers have increased below 500 ℃; Deformation twins begin disappearing obviously at 550 ℃; The nano-scaled grains within about 10 micrometers from surface existed even at 550℃.Surface nanocrystallization is well known as one of important methods to improve surface properties. The thermal stability of nanocrystalline microstructures was related to their preparation and application. The commercial pure Ti thermal stability of nanocrystalline and deformed microstructures induced by high-energy-shot-peening (HESP) technique was investigated. The nanostructured surface and deformed sub-surface layers of specimens were prepared through HESP treatment. The thermal stability was characterized through XRD analyses of surface layers, SEM and TEM microstructure observation and microhardness measurement of specimens annealed in different temperature in the air after HESP treatments. The results showed that after HESP treatment, the microhardness of surface layers increased with treatment time, especially in the rang of about 40 micrometers from the surface, the microhardness increase was obvious. The surface microhardness decreased gradually with annealing temperature, but the sub-surface

  19. Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Lupan, Oleg [Department of Physics, University of Central Florida, PO Box 162385 Orlando, FL, 32816-2385 (United States); Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, bd. Stefan cel Mare 168, FCIM, MD-2004, Chisinau (Moldova, Republic of); Shishiyanu, Sergiu [Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, bd. Stefan cel Mare 168, FCIM, MD-2004, Chisinau (Moldova, Republic of); Chow, Lee [Department of Physics, University of Central Florida, PO Box 162385 Orlando, FL, 32816-2385 (United States)], E-mail: chow@ucf.edu; Shishiyanu, Teodor [Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, bd. Stefan cel Mare 168, FCIM, MD-2004, Chisinau (Moldova, Republic of)

    2008-03-31

    Undoped and Sn, Ni-doped nanostructured ZnO thin films were deposited on glass substrates using a successive ionic layer adsorption and reaction (SILAR) method at room temperature. The SILAR deposited zinc oxide films have been rapid photothermal processing (RPP) at various temperatures to study the effect of annealing on the sensing properties. Structural, electrical and sensing properties were investigated by means of X-ray diffraction (XRD), Energy Dispersive X-ray spectroscopy, scanning electron microscopy, electrical resistivity, and sensitivity measurements. Microstructures of the deposited films were studied for different concentrations of dopants and zinc-complex solution and temperatures. The results of influence of growth processes, doping, and RPP on phase structure, surface morphology, particles size and resistivity values are presented and discussed. The average grain size determined from XRD patterns was 240, 220 and 265 A for ZnO, Sn-ZnO and Ni-ZnO films, respectively. Moreover, electrical characterization of the sensors prepared from SILAR deposited nanostructured zinc oxide thin film has been carried out. The variation in resisitivity of the ZnO film sensors was obtained with doping and post-deposition rapid photothermal processing in vacuum and N{sub 2} ambient. Electrical resistivity measurements showed semiconducting nature with room temperature resistivity 1.5 x 10{sup 5}, 6.1 x 10{sup 2}, 70 {omega} cm for as-deposited ZnO, 4 at.% Ni-ZnO and 4 at.% Sn-ZnO, respectively. These values decreased to 1 x 10{sup 4}, 2 x 10{sup 2}, 30 {omega} cm for RPP annealed films. The types of doping and temperatures of RPP were found to have an important role in determining the sensitivity and resolution of the NO{sub 2}, NH{sub 3} ZnO-based sensors. While the nanostructured ZnO sensor showed higher ammonia sensitivity than that of NO{sub 2}, an enhanced NO{sub 2} sensitivity was noticed with the ZnO films doped with 4 at.% Sn and higher NH{sub 3} sensitivity

  20. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    Science.gov (United States)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  1. Nanostructured material surfaces--preparation, effect on cellular behavior, and potential biomedical applications: a review.

    Science.gov (United States)

    Guduru, Deepak; Niepel, Marcus; Vogel, Jürgen; Groth, Thomas

    2011-10-01

    Nanostructures play important roles in vivo, where nanoscaled features of extracellular matrix (ECM) components influence cell behavior and resultant tissue formation. This review summarizes some of the recent developments in fostering new concepts and approaches to nanofabrication, such as top-down and bottom-up and combinations of the two. As in vitro investigations demonstrate that man-made nanotopography can be used to control cell reactions to a material surface, its potential application in implant design and tissue engineering becomes increasingly evident. Therefore, we present recent progress in directing cell fate in the field of cell mechanics, which has grown rapidly over the last few years, and in various tissue-engineering applications. The main focus is on the initial responses of cells to nanostructured surfaces and subsequent influences on cellular functions. Specific examples are also given to illustrate the potential nanostructures may have for biomedical applications and regenerative medicine.

  2. X-ray lattice strain determination in surface layers

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Pantleon, Karen

    2002-01-01

    The present article describes several aspects of lattice strain determination in surface layers by means of X-ray diffraction analysis. Several possibilities and the origins of stress in surface layers are illustrated by the following three cases: 200 nm thick Mo layers on glass substrates; 5.5 m.......5 microns thick TiN layers on heat treatable steel and 21 microns thick gamma prime-Fe4N1-x layers on iron....

  3. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  4. Surface Functionalized Nanostructured Ceramic Sorbents for the Effective Collection and Recovery of Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.; Nell, Kara M.; Clubb, Donald C.; Gill, Gary A.; Addleman, Raymond S.

    2016-05-02

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.

  5. Microgel-based engineered nanostructures and their applicability with template-directed layer-by-layer polyelectrolyte assembly in protein encapsulation.

    Science.gov (United States)

    Shenoy, Dinesh B; Sukhorukov, Gleb B

    2005-05-23

    A novel strategy for the fabrication of microcapsules is elaborated by employing biomacromolecules and a dissolvable template. Calcium carbonate (CaCO(3)) microparticles were used as sacrificial templates for the two-step deposition of polyelectrolyte coatings by surface controlled precipitation (SCP) followed by the layer-by-layer (LbL) adsorption technique to form capsule shells. When sodium alginate was used for inner shell assembly, template decomposition with an acid resulted in simultaneous formation of microgel-like structures due to calcium ion-induced gelation. An extraction of the calcium after further LbL treatment resulted in microcapsules filled with the biopolymer. The hollow as well as the polymer-filled polyelectrolyte capsules were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and scanning force microscopy (SFM). The results demonstrated multiple functionalities of the CaCO(3) core - as supporting template, porous core for increased polymer accommodation/immobilization, and as a source of shell-hardening material. The LbL treatment of the core-inner shell assembly resulted in further surface stabilization of the capsule wall and supplementation of a nanostructured diffusion barrier for encapsulated material. The polymer forming the inner shell governs the chemistry of the capsule interior and could be engineered to obtain a matrix for protein/drug encapsulation or immobilization. The outer shell could be used to precisely tune the properties of the capsule wall and exterior. [Diagram: see text] Confocal laser scanning microscopy (CLSM) image of microcapsules (insert is after treating with rhodamine 6G to stain the capsule wall).

  6. Nanostructure analysis of polymer assembly on water surface by X-ray reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, H.; Matsuoka, H.; Kago, K.; Yoshitome, R.; Mouri, E. [Kyoto Univ., Department of Polymer Chemistry, Kyoto (Japan)

    2000-03-01

    X-ray reflectivity (XR) is an extremely powerful technique to study the fine structure of surface and interface in the order of angstrom. In this study, we have performed systematic XR measurements for monolayers on water surface. The nanostructures of various monolayers were precisely determined, and their changes by surface pressure and photoisomerization were clearly detected. The structure of lipid monolayer and DNA complex at air-water interface was also evaluated. (author)

  7. Molecular modeling of fibronectin adsorption on topographically nanostructured rutile (110) surfaces

    Science.gov (United States)

    Guo, Chuangqiang; Wu, Chunya; Chen, Mingjun; Zheng, Ting; Chen, Ni; Cummings, Peter T.

    2016-10-01

    To investigate the topographical dependency of protein adsorption, molecular dynamics simulations were employed to describe the adsorption behavior of the tenth type-III module of fibronectin (FN-III10) on nanostructured rutile (110) surfaces. The results indicated that the residence time of adsorbed FN-III10 largely relied on its binding mode (direct or indirect) with the substrate and the region for protein migration on the periphery (protrusion) or in the interior (cavity or groove) of nanostructures. In the direct binding mode, FN-III10 molecules were found to be 'trapped' at the anchoring sites of rutile surface, or even penetrate deep into the interior of nanostructures, regardless of the presented geometrical features. In the indirect binding mode, FN-III10 molecules were indirectly connected to the substrate via a hydrogen-bond network (linking FN-III10 and interfacial hydrations). The facets created by nanostructures, which exerted restraints on protein migration, were suggested to play an important role in the stability of indirect FN-III10-rutile binding. However, a doubly unfavorable situation - indirect FN-III10-rutile connections bridged by a handful of mediating waters and few constraints on movement of protein provided by nanostructures - would result in an early desorption of protein.

  8. Investigation of surface plasmon resonance in composite nanostructure of silver film and nanowire array

    Science.gov (United States)

    Li, Jun; Yang, Junyi; Wu, Xingzhi; Song, Yinglin

    2016-10-01

    We investigate the surface plasmon resonance in a new composite nanostructure (Nanowires array beneath metal film). Computational simulation results exhibit that, for both transverse electric(TE) and transverse magnetic (TM) polarization, the positions of resonance peaks is extremely sensitive to the change of center distance (Filling ratio of nanowires). When the diameter of Nanowires is 4nm and under TM polarization, the resonance angle increasing with the increase of center distance. In the case of TE polarization, the result is completely the opposite within limits. It is also shown that changes in thickness of Ag film(At the top of the Ag nanowire) has little direct effect on the resonance angle, But the characteritics of SPR intensity is influenced by the thickness of Ag film in the most degree. When the thickness of Ag film is 50 nm, In range of 10nm to 100nm, the minimum value of the reflectance is only 0.05, the result is consistent with the previous studies. Additionally, the nano composite structure material is very sensitive to the refractive index change of the lowest layer when under the TE- polarization. we have done mode analysis of the SPR structure for both simple and practical structures using comsol multiphysics, our approach is intend to show the feasibity and extend the applicability of the plasmonic nanowires, could lead to provide the basis for design the new structure of nanowires array.

  9. New nanostructured materials: synthesis of dodecanuclear Ni(II) complexes and surface deposition studies.

    Science.gov (United States)

    Pons-Balagué, Alba; Piligkos, Stergios; Teat, Simon J; Sánchez Costa, Jose; Shiddiq, Muhandis; Hill, Stephen; Castro, German R; Ferrer-Escorihuela, Pilar; Sañudo, E Carolina

    2013-07-01

    Microwave-assisted synthesis has been used to obtain the family of dodecanuclear Ni(II) complexes [Ni12(NO3)(MeO)12(MeC6H4CO2)9(MeOH)10(H2O)2][ClO4]2 (1), [Ni12(NO3)(MeO)12(BrC6H4CO2)9(MeOH)10(H2O)2][ClO4]2 (2), [Ni12(CO3)(MeO)12(MeC6H4CO2)9(MeOH)10(H2O)2]2[SO4] (3) and [Ni12(NO3)(MeO)12(MeC6H4CO2)9(MeOH)8(H2O)7][NO3]2 (4). They contain three {Ni4O4} cubane units which template around a central μ6 anion, either NO3(-) or CO3(2-). Their magnetic properties have been studied by superconducting quantum interference device (SQUID) magnetometry and high-field EPR measurements. The nanostructuration of the Ni12 species on mica surfaces is studied by AFM and grazing-incidence X-ray diffraction, which reveal the formation of polycrystalline thin layers.

  10. Nb2O5 Nanostructure Evolution on Nb Surfaces via Low-Energy He(+) Ion Irradiation.

    Science.gov (United States)

    Novakowski, Theodore Joseph; Tripathi, Jitendra Kumar; Hassanein, Ahmed

    2016-12-21

    We propose low-energy, broad-beam He(+) ion irradiation as a novel processing technique for the generation of Nb2O5 surface nanostructures due to its relative simplicity and scalability in a commercial setting. Since there have been relatively few studies involving the interaction of high-fluence, low-energy He(+) ion irradiation and Nb (or its oxidized states), this systematic study explores both effects of fluence and sample temperature during irradiation on resulting surface morphology. Detailed normal and cross-sectional scanning electron microscopy (SEM) studies reveal subsurface He bubble formation and elucidate potential driving mechanisms for nanostructure evolution. A combination of specular optical reflectivity and X-ray photoelectron spectroscopy (XPS) is also used to gain additional information on roughness and stoichiometry of irradiated surfaces. Our investigations show significant surface modification for all tested irradiation conditions; the resulting surface structure size and geometry have a strong dependence on both sample temperature during irradiation and total ion fluence. Optical reflectivity measurements on irradiated surfaces demonstrate increased surface roughening with increasing ion fluence, and XPS shows higher oxidation levels for samples irradiated at lower temperatures, suggesting larger surface roughness and porosity. Overall, it was found that low-energy He(+) ion irradiation is an efficient processing technique for nanostructure formation, and surface structures are highly tunable by adjusting ion fluence and Nb2O5 sample temperature during irradiation. These findings may have excellent potential applications for solar energy conversion through improved efficiency due to effective light absorption.

  11. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  12. Complex WS 2 nanostructures

    Science.gov (United States)

    Whitby, R. L. D.; Hsu, W. K.; Lee, T. H.; Boothroyd, C. B.; Kroto, H. W.; Walton, D. R. M.

    2002-06-01

    A range of elegant tubular and conical nanostructures has been created by template growth of (WS 2) n layers on the surfaces of single-walled carbon nanotube bundles. The structures exhibit remarkably perfect straight segments together with interesting complexities at the intersections, which are discussed here in detail in order to enhance understanding of the structural features governing tube growth.

  13. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    Science.gov (United States)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  14. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  15. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  16. Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach.

    Science.gov (United States)

    Priya, Angel J; Vijayalakshmi, S P; Raichur, Ashok M

    2011-11-09

    The encapsulation of probiotic Lactobacillus acidophilus through layer-by-layer self-assembly of polyelectrolytes (PE) chitosan (CHI) and carboxymethyl cellulose (CMC) has been investigated to enhance its survival in adverse conditions encountered in the GI tract. The survival of encapsulated cells in simulated gastric (SGF) and intestinal fluids (SIF) is significant when compared to nonencapsulated cells. On sequential exposure to SGF and SIF for 120 min, almost complete death of free cells is observed. However, for cells coated with three nanolayers of PEs (CHI/CMC/CHI), about 33 log % of the cells (6 log cfu/500 mg) survived under the same conditions. The enhanced survival rate of encapsulated L. acidophilus can be attributed to the impermeability of polyelectrolyte nanolayers to large enzyme molecules like pepsin and pancreatin that cause proteolysis and to the stability of the polyelectrolyte nanolayers in gastric and intestinal pH. The PE coating also serves to reduce viability losses during freezing and freeze-drying. About 73 and 92 log % of uncoated and coated cells survived after freeze-drying, and the losses occurring between freezing and freeze-drying were found to be lower for the coated cells.

  17. Molecular Dynamics Simulation of Condensation on Nanostructured Surface in a Confined Space

    CERN Document Server

    Li, Li; Zhang, Yuwen

    2016-01-01

    Understanding heat transfer characteristics of phase change and enhancing thermal energy transport in nanoscale are of great interest in both theoretical and practical applications. In the present study, we investigated the nanoscale vaporization and condensation by using molecular dynamics simulation. A cuboid system is modeled by placing hot and cold walls in the bottom and top ends and filling with working fluid between the two walls. By setting two different high temperatures for the hot wall, we showed the normal and explosive vaporizations and their impacts on thermal transport. For the cold wall, the cuboid nanostructures with fixed height, varied length, width ranging from 4 to 20 layers, and an interval of 4 layers are constructed to study the effects of condensation induced by different nanostructures. For vaporization, the results showed that higher temperature of the hot wall led to faster transport of the working fluid as a cluster moving from the hot wall to the cold wall. However, excessive tem...

  18. Nanostructure formation on silicon surfaces by using low energy helium plasma exposure

    Science.gov (United States)

    Takamura, Shuichi; Kikuchi, Yusuke; Yamada, Kohei; Maenaka, Shiro; Fujita, Kazunobu; Uesugi, Yoshihiko

    2016-12-01

    A new technology for obtaining nanostructure on silicon surface for potential applications to optical devices is represented. Scanning electron microscope analysis indicated a grown nanostructure of dense forest consisting of long cylindrical needle cones with a length of approximately 300 nm and a mutual distance of approximately 200 nm. Raman spectroscopy and spectrophotometry showed a good crystallinity and photon trapping, and reduced light reflectance after helium plasma exposure. The present technique consists of a simple maskless process that circumvents the use of chemical etching liquid, and utilizes soft ion bombardment on silicon substrate, keeping a good crystallinity.

  19. Non-collinear magnetism induced by frustration in transition-metal nanostructures deposited on surfaces.

    Science.gov (United States)

    Lounis, S

    2014-07-01

    How does magnetism behave when the physical dimension is reduced to the size of nanostructures? The multiplicity of magnetic states in these systems can be very rich, in that their properties depend on the atomic species, the cluster size, shape and symmetry or choice of the substrate. Small variations of the cluster parameters may change the properties dramatically. Research in this field has gained much by the many novel experimental methods and techniques exhibiting atomic resolution. Here we review the ab-initio approach, focusing on recent calculations on magnetic frustration and occurrence of non-collinear magnetism in antiferromagnetic nanostructures deposited on surfaces.

  20. Surface Modification of LiMn2O4 for Lithium Batteries by Nanostructured LiFePO4 Phosphate

    Directory of Open Access Journals (Sweden)

    B. Sadeghi

    2012-01-01

    Full Text Available LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles was modified by nanostructured LiFePO4 via sol gel dip coating method. Synthesized products were characterized by thermally analyzed thermogravimetric and differential thermal analysis (TG/DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and energy dispersive X-ray spectroscopy (EDX. The results of electrochemical tests showed that the charge/discharge capacities improved and charge retention of battery enhanced. This improved electrochemical performance is caused by LiFePO4 phosphate layer on surfaces of LiMn2O4 cathode particles.

  1. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne;

    2013-01-01

    by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...... the particle coated surfaces exhibited similar friction coefficients, from which it may be concluded that the surface geometry, and not the roughness amplitude per se, influenced the measured friction. During measurements with hydrophobic surfaces, strong adhesive forces related to the formation of a bridging...... air cavity were evident from both normal force and friction force measurements. In contrast to the frictional forces between the hydrophilic surfaces, the friction coefficient for hydrophobic surfaces was found to depend on the surface structure and we believe that this dependence is related...

  2. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    Science.gov (United States)

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-01

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  3. Surface States Effect on the Large Photoluminescence Redshift in GaN Nanostructures

    KAUST Repository

    Ben Slimane, Ahmed

    2013-01-01

    We report on the large photoluminescence redshift observed in nanostructures fabricated using n-type GaN by ultraviolet (UV) metal-assisted electroless chemical-etching method. The scanning electron microscopy (SEM) characterization showed nanostructures with size dispersion ranging from 10 to 100 nm. We observed the crystalline structure using high resolution transmission electron microscopy (HRTEM) and electron energy loss (EELS) techniques. In contrast to 362 nm UV emission from the GaN epitaxy, the nanostructures emitted violet visible-light in photoluminescence (PL) characterization with increasing optical excitation. An energy band model was presented to shed light on the large PL redshift under the influence of surface states, which resulted in two competing photoluminescence mechanisms depending on excitation conditions.

  4. Thermal stability of nanocrystalline layer prepared by surface mechanical attrition in 0Cr18Ni9Ti stainless steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-bin; WU Xiao-chun; XU Ling-yun

    2004-01-01

    By means of surface mechanical attrition (SMA), a nanostructured surface layer was formed on a 0Cr18Ni9Ti austenite stainless steel plate. A strain-induced martensite transformation was observed during SMA treatment, and a single magnetic martensite phase layer with thickness of about 30 μm was gotten. The grain growth and phase transformations in the nanocrystalline layer are investigated during heating. The grain growth exponent for nanocrystalline polycrystalline steel is estimated. The kinetics mechanism governing the grain growth in the nanocrystalline layer is discussed. The martensite in the surface layer is quite stable and the temperature at which the reverse transformation of martensite to austenite starts during heating is about 500 ℃.

  5. Tunable plasmonic nanostructures: From fundamental nanoscale optics to surface-enhanced spectroscopies

    Science.gov (United States)

    Wang, Hui

    In this thesis, I demonstrate the rational design and controllable fabrication of a series of novel plasmonic nanostructures with judiciously tailored optical properties including perfect nanoshells, roughened subwavelength particles, prolate nanoshells known as nanorice, and non-concentric nanoshells known as nanoeggs. All of these nanostructures are very important subwavelength nanoscale optical components that can be utilized to manipulate light in unique ways. The most striking feature of these nanoparticles is their geometrically tunable plasmon resonances, which can be harnessed for widespread applications. I have also utilized these nanostructures as the building blocks to construct self-assembled multinanoparticle systems, such as nanoshell heterodimers, nanosphere arrays and nanoshell arrays. I have further developed multifunctional molecular sensing platforms using these nanoengineered plasmonic structures as substrates for surface-enhanced spectroscopies, realizing integrated analytical chemistry lab-on-a-chip. Applying the Plasmon Hybridization model as design principles to experimentally realizable nanostructures results in a thorough understanding of the origin of the geometry-dependent optical properties observed in these nanosystems. Finite Difference Time Domain (FDTD) method also provides a powerful platform for the numerical simulation of local- and far-field optical properties of these nanostructures.

  6. High-Resolution Scanning Tunneling Microscopy Studies of Molecular Nanostructures on Surfaces

    DEFF Research Database (Denmark)

    Song, Xin

    The “bottom-up” fabrication by self-assembly has been proven to be a relatively facile way to construct well-defined nanostructures in a controlled manner. Although self-assembly technique has been widely used for design of different nanostructures, the further advanced fabrication of nanostructu......The “bottom-up” fabrication by self-assembly has been proven to be a relatively facile way to construct well-defined nanostructures in a controlled manner. Although self-assembly technique has been widely used for design of different nanostructures, the further advanced fabrication...... of nanostructures requires deeper insight into the adsorption sites, adsorption configurations, diffusion behaviour and driving forces for self-assembly of different molecules or atoms on different substrates. To study these fundamental issues, scanning tunneling microscopy (STM) has proven to be an ideal choice....... First, to study the role of hydrogen bonding in self-assembly, we investigate the monomolecular self-assembled system of pyrene-4,5,9,10-tetrone and phenanthrene- 9,10-dione molecules on Au(111) and HOPG surface respectively and the binary molecular self-assembled system of stearic acid and guanine...

  7. Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications.

    Science.gov (United States)

    Dong, Yao-Da; Larson, Ian; Barnes, Timothy J; Prestidge, Clive A; Allen, Stephanie; Chen, Xinyong; Roberts, Clive J; Boyd, Ben J

    2012-09-18

    Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.

  8. Nanostructure-Enhanced Surface Acoustic Waves Biosensor and Its Computational Modeling

    Directory of Open Access Journals (Sweden)

    Guigen Zhang

    2009-01-01

    Full Text Available Surface acoustic wave (SAW devices are considered to be very promising in providing a high-performance sensing platform with wireless and remote operational capabilities. In this review, the basic principles of SAW devices and Love-mode SAW-based biosensors are discussed first to illustrate the need for surface enhancement for the active area of a SAW sensor. Then some of the recent efforts made to incorporate nanostructures into SAW sensors are summarized. After that, a computational approach to elucidate the underlying mechanism for the operations of a Love-mode SAW biosensor with nanostructured active surface is discussed. Finally, a modeling example for a Love-mode SAW sensor with skyscraper nanopillars added to in its active surface along with some selected results is presented.

  9. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    Science.gov (United States)

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  10. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    Science.gov (United States)

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates.

  11. Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Di; Pennec, Y.; Djafari-Rouhani, B.; Lambert, Y.; Deblock, Y.; Stiévenard, D., E-mail: didier.stievenard@isen.fr [Institut d' Electronique et de Microélectronique et de Nanotechnologies, IEMN, (CNRS, UMR 8520), Groupe de Physique, Cité scientifique, avenue Poincaré, 59652 Villeneuve d' Ascq (France); Cristini-Robbe, O. [PHLAM, UMR8523, Université de Lille 1, 59652 Villeneuve d' Asq Cedex (France); Xu, T. [Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Faucher, M. [Institut d' Electronique et de Microélectronique et de Nanotechnologies, IEMN, (CNRS, UMR 8520), Groupe NAM6, Cité scientifique, avenue Poincaré, 59652 Villeneuve d' Asq (France)

    2014-04-07

    Surface nanostructuration is an important challenge for the optimization of light trapping in solar cell. We present simulations on both the optical properties and the efficiency of micro pillars—MPs—or nanocones—NCs—silicon based solar cells together with measurements on their associated optical absorption. We address the simulation using the Finite Difference Time Domain method, well-adapted to deal with a periodic set of nanostructures. We study the effect of the period, the bottom diameter, the top diameter, and the height of the MPs or NCs on the efficiency, assuming that one absorbed photon induces one exciton. This allows us to give a kind of abacus involving all the geometrical parameters of the nanostructured surface with regard to the efficiency of the associated solar cell. We also show that for a given ratio of the diameter over the period, the best efficiency is obtained for small diameters. For small lengths, MPs are extended to NCs by changing the angle between the bottom surface and the vertical face of the MPs. The best efficiency is obtained for an angle of the order of 70°. Finally, nanostructures have been processed and allow comparing experimental results with simulations. In every case, a good agreement is found.

  12. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates.

    Science.gov (United States)

    Peters, Robert F; Gutierrez-Rivera, Luis; Dew, Steven K; Stepanova, Maria

    2015-03-20

    Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.

  13. Superhydrophobic Surface With Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage.

    Science.gov (United States)

    Lv, Tong; Cheng, Zhongjun; Zhang, Dongjie; Zhang, Enshuang; Zhao, Qianlong; Liu, Yuyan; Jiang, Lei

    2016-09-21

    Recently, superhydrophobic surfaces with tunable wettability have aroused much attention. Noticeably, almost all present smart performances rely on the variation of surface chemistry on static micro/nanostructure, to obtain a surface with dynamically tunable micro/nanostructure, especially that can memorize and keep different micro/nanostructures and related wettabilities, is still a challenge. Herein, by creating micro/nanostructured arrays on shape memory polymer, a superhydrophobic surface that has shape memory ability in changing and recovering its hierarchical structures and related wettabilities was reported. Meanwhile, the surface was successfully used in the rewritable functional chip for droplet storage by designing microstructure-dependent patterns, which breaks through current research that structure patterns cannot be reprogrammed. This article advances a superhydrophobic surface with shape memory hierarchical structure and the application in rewritable functional chip, which could start some fresh ideas for the development of smart superhydrophobic surface.

  14. Studies on the controlled growth of InAs nanostructures on scission surfaces; Untersuchungen zum kontrollierten Wachstum von InAs-Nanostrukturen auf Spaltflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, J.

    2006-01-15

    The aim of this thesis was the controlled alignment of self-assembled InAs nano-structures on a {l_brace}110{r_brace}-oriented surface. The surface is prestructured with the atomic precision offered by molecular beam epitaxy, using the cleaved edge overgrowth-technique. On all samples grown within this work, the epitaxial template in the first growth step was deposited on a (001)GaAs substrate, while the InAs-layer forming the nanostructures during the second growth step was grown on cleaved {l_brace}110{r_brace}-GaAs surfaces. Atomic Force Microscopy (AFM) investigations demonstrate the formation of quantum dot (QD)-like nanostructures on top of the AlAs-stripes. X-ray diffraction measurements on large arrays of aligned quantum dots demonstrate that the quantum dots are formed of pure InAs. First investigations on the optical properties of these nanostructures were done using microphotoluminescence-spectroscopy with both high spatial and spectral resolution. (orig.)

  15. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  16. Scalable nanostructuring on polymer by a SiC stamp: optical and wetting effects

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Lu, Weifang; Petersen, Paul Michael;

    2015-01-01

    surface. The reflectance of SiC can be reduced down to 0.5% when the ~600nm nanostructures are applied on the surface (bare surface reflectance 25%). The texture of the green SiC color is changed when the different nanostructures are apparent. The ~600nm SiC nanostructures are replicated on polymer...... from 68 (bare) to 123 (nanostructured) degrees. The optical effect on the polymer surface can be maximized by applying a thin aluminum (Al) layer coating on the nanostructures (bare polymer reflectance 11%, nanostructured polymer reflectance 5%, Al coated nanostructured polymer reflectance 3......A method for fabricating scalable antireflective nanostructures on polymer surfaces (polycarbonate) is demonstrated. The transition from small scale fabrication of nanostructures to a scalable replication technique can be quite challenging. In this work, an area per print corresponding to a 2-inch...

  17. The Lowest Atmosphere: Atmospheric Boundary Layer Including Atmospheric Surface Layer.

    Science.gov (United States)

    1996-04-01

    of motion of the atmosphere— "second order closure"—to such applications as the SCIPUFF -PC code for tracer dispersion (see Sykes, 1994). Now, for...Turbulence, Methuen, London, 2nd Ed., 1955. Sykes, R.I., "The SCIPUFF -PC Code," ARAP Draft Report, 1994. Tennekes, H., "The Atmospheric Boundary Layer

  18. Pyrolytic deposition of nanostructured titanium carbide coatings on the surface of multiwalled carbon nanotubes

    Science.gov (United States)

    Kremlev, K. V.; Ob"edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Tatarskii, D. A.; Yunin, P. A.

    2016-05-01

    Nanostructured titanium carbide coatings have been deposited on the surface of multiwalled carbon nanotubes (MWCNTs) by the MOCVD method with bis(cyclopentadienyl)titanium dichloride precursor. The obtained TiC/MWCNT hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is established that a TiC coating deposits onto the MWCNT surface with the formation of a core-shell (MWSNT-TiC) type structure.

  19. On the Injection Molding of Nanostructured Polymer Surfaces

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent;

    2006-01-01

    Well-defined nano-topographies were prepared by electron-beam lithography and electroplated to form nickelshims. The surface pattern consisted of square pillars repeated equidistantly within the plane of the surface in a perpendicular arrangement. The width and distance between the squares both...... mold sub-micrometer surface structures in polymers mainly relates to adhesive energy between polymer and shim....

  20. Aqueous phase deposition of dense tin oxide films with nano-structured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Yoshitake, E-mail: masuda-y@aist.go.jp; Ohji, Tatsuki; Kato, Kazumi

    2014-06-01

    Dense tin oxide films were successfully fabricated in an aqueous solution. The pH of the solutions was controlled to pH 1.3 by addition of HCl. Precise control of solution condition and crystal growth allowed us to obtain dense tin oxide films. Concave–convex surface of fluorine-doped tin oxide (FTO) substrates was entirely-covered with the continuous films. The films were about 65 nm in thickness and had nano-structured surfaces. Morphology of the films was strikingly different from our previous reported nano-sheet assembled structures. The films were not removed from the substrates by strong water flow or air blow to show strong adhesion strength. The aqueous solution process can be applied to surface coating of various materials such as nano/micro-structured surfaces, particles, fibers, polymers, metals or biomaterials. - Graphical abstract: Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. They had nano-structured surfaces. Concave-convex substrates were entirely-covered with the continuous films. - Highlights: • Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. • They had nano-structured surfaces. • Concave–convex substrates were entirely-covered with the continuous films.

  1. Enhanced Hydrogen Transport over Palladium Ultrathin Films through Surface Nanostructure Engineering.

    Science.gov (United States)

    Abate, Salvatore; Giorgianni, Gianfranco; Gentiluomo, Serena; Centi, Gabriele; Perathoner, Siglinda

    2015-11-01

    Palladium ultrathin films (around 2 μm) with different surface nanostructures are characterized by TEM, SEM, AFM, and temperature programmed reduction (TPR), and evaluated in terms of H2 permeability and H2-N2 separation. A change in the characteristics of Pd seeds by controlled oxidation-reduction treatments produces films with the same thickness, but different surface and bulk nanostructure. In particular, the films have finer and more homogeneous Pd grains, which results in lower surface roughness. Although all samples show high permeo-selectivity to H2 , the samples with finer grains exhibit enhanced permeance and lower activation energy for H2 transport. The analysis of the data suggests that grain boundaries between the Pd grains at the surface favor H2 transfer from surface to subsurface. Thus, the surface nanostructure plays a relevant role in enhancing the transport of H2 over the Pd ultrathin film, which is an important aspect to develop improved membranes that function at low temperatures and toward new integrated process architectures in H2 and syngas production with enhanced sustainability.

  2. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.

    Science.gov (United States)

    Choi, Chang-Hwan; Kim, Chang-Jin C J

    2009-07-07

    Evaporation of liquids on substrates is important for many applications including lab-on-a-chip, especially when they are in droplets. Unlike on planar substrates, droplet evaporation on micropatterned substrates has been studied only recently and none so far on nanopatterns. Driven by the applicability of nanostructured surfaces to biomaterials and tissue engineering, we report on the evaporative process of sessile droplets of pure water and a protein solution on superhydrophobic surfaces of sharp-tip post structures in a submicrometer pitch (230 nm) and varying heights (100-500 nm). We find that the nanotopographical three-dimensionalities such as structural height and sidewall profile affect the surface superhydrophobicity in such a way that only tall and slender nanostructures provide the surface with great superhydrophobicity (a contact angle more than 170 degrees). The evaporation process was different between the pure water and the protein solution; unlike pure water, a significant contact-line spreading and pinning effect was observed in a droplet of a protein solution with an intermediate transition from a dewetting (Cassie) to a wetting (Wenzel) state. Enabled by well-defined nanostructures, our results highlight that the surface superhydrophobicity and the droplet evaporation are significantly affected by the three-dimensional nanometric topography and the surface fouling such as protein adsorption.

  3. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template

    Science.gov (United States)

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

  4. Sb–Te alloy nanostructures produced on a graphite surface by a simple annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Masashi, E-mail: kuwaco-kuwahara@aist.go.jp [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Uratsuji, Hideaki [Shibaura Eletec Co., Yokohama 247-0006 (Japan); Abe, Maho [Research Institute of Electrical Communication, Tohoku Univ., Sendai 980-8577 (Japan); Sone, Hayato; Hosaka, Sumio [Department of Electronic Engineering, Gunma Univ., Kiryu, Gunma 376-8515 (Japan); Sakai, Joe [Groupe de Recherche en Matériaux, Microélectronique, Acoustique et Nanotechnologies (GREMAN), UMR 7347 CNRS/Université François Rabelais de Tours, Tours 37200 (France); Uehara, Yoichi [Research Institute of Electrical Communication, Tohoku Univ., Sendai 980-8577 (Japan); Endo, Rie [Department of Metallurgy and Ceramics Science Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Tsuruoka, Tohru [International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan)

    2015-08-15

    We have produced Sb–Te alloy nanostructures from a thin Sb{sub 2}Te{sub 3} layer deposited on a highly oriented pyrolytic graphite substrate using a simple rf-magnetron sputtering and annealing technique. The size, shape, and chemical composition of the structures were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray spectrometry (EDX), respectively. The shape of the nanostructures was found to depend on the annealing temperature; nanoparticles appear on the substrate by annealing at 200 °C, while nanoneedles are formed at higher temperatures. Chemical composition analysis has revealed that all the structures were in the composition of Sb:Te = 1:3, Te rich compared to the target composition Sb{sub 2}Te{sub 3}, probably due to the higher movability of Te atoms on the substrate compared with Sb. We also tried to observe the production process of nanostructures in situ using SEM. Unfortunately, this was not possible because of evaporation in vacuum, suggesting that the formation of nanostructures is highly sensitive to the ambient pressure.

  5. Nanostructured sapphire vicinal surfaces as templates for the growth of self-organized oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Thune, E., E-mail: elsa.thune@unilim.fr [Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface (SPCTS), UMR CNRS 6638, ENSCI, 47-73 Avenue Albert Thomas, F-87065 Limoges Cedex (France); Boulle, A. [Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface (SPCTS), UMR CNRS 6638, ENSCI, 47-73 Avenue Albert Thomas, F-87065 Limoges Cedex (France); Babonneau, D.; Pailloux, F. [Laboratoire de Physique des Materiaux (PHYMAT), UMR CNRS 6630, Universite de Poitiers, Boulevard Marie et Pierre Curie - Teleport 2, BP 30179, F-86962 Futuroscope - Chasseneuil Cedex (France); Hamd, W.; Guinebretiere, R. [Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface (SPCTS), UMR CNRS 6638, ENSCI, 47-73 Avenue Albert Thomas, F-87065 Limoges Cedex (France)

    2009-11-15

    Vicinal substrates of sapphire with miscut angle of 10 deg. from the (0 0 1) planes towards the [1 1 0] direction have been annealed in air in the range from 1000 to 1500 deg. C. The behaviour of these surfaces has been characterized as a function of the temperature and the thermal treatment time by Atomic Force Microscopy observations. A thermal treatment at 1250 deg. C allows to stabilize a surface made of periodically spaced nanosized step-bunches. Such stepped surfaces were used as template to grow self-patterned epitaxial oxide nanoparticles by thermal annealing of yttria-stabilized zirconia thin films produced by sol-gel dip-coating. Grazing Incidence Small Angle X-ray Scattering and High-Resolution Transmission Electron Microscopy were used to study the morphology of the nanoparticles and their epitaxial relationships with the substrate.

  6. Time dependency of the laser-induced nanostructuring process of chromium layers with different thicknesses on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, P., E-mail: pierre.lorenz@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstr. 15, D-04318 Leipzig (Germany); Klöppel, M. [Institute of Scientific Computation, Department of Mathematics, TU Dresden, D-01062 Dresden (Germany); Smausz, T. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Csizmadia, T. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Ehrhardt, M.; Zimmer, K. [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstr. 15, D-04318 Leipzig (Germany); Hopp, B. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2015-05-01

    Highlights: • The ns laser-induced melting effect of thin Cr layers on fused silica was studied. • The molten layer was analyzed by study of the time-dependent optical properties. • The liquid phase lifetime Δt{sub LF} depends on the metal thickness and the fluence. • The Δt{sub LF} dependency can be well described by an analytic function. • The comparison of the results with FEM simulation yields to a moderate agreement. - Abstract: Nanostructures exhibit a raised importance in manifold application fields like electronics and optics. The laser irradiation of thin metal layers allows the fabrication of metal nanostructures induced by a melting and deformation process where the resultant structures are dependent on the laser and metal layer parameters. However, for an optimization of this process a detailed physical understanding is necessary. Therefore, the dynamics of the metal layer deformation process was measured by time-dependent reflection and transmission as well as shadow graph measurements at different KrF excimer laser parameters (laser fluence and number of laser pulses) and metal layer thicknesses were used. Magnetron-sputtered thin chromium films with a thickness from 10 to 100 nm on fused silica substrates were studied. Based on the optical measurements the liquid phase lifetime of the metal was estimated and compared with the calculated lifetime using a simple thermodynamic model.

  7. Surface Instability of a Vertically Oscillating Granular Layer

    Institute of Scientific and Technical Information of China (English)

    SUI Lei; MIAO Guo-Qing; WEI Rong-Jue

    2001-01-01

    In the study of the surface instability of a vertically oscillating granular layer, we obtained experimentally thephase diagram for the surface states of the layer in the driving frequency-acceleration plane, and measured thedispersion relation for the surface waves in a granular layer in comparison to that in viscous fluids. Our experiments show that the onset dimensionless acceleration increases with the driving frequency, and the wavelengthof the surface waves increases with the depth of granular layer. These experimental results are in agreement withour theoretical model qualitatively.

  8. Light Irradiation through Small Particles and Its Applications for Surface Nanostructuring in Near Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi; HONG Ming-Hui; FUH Ying-Hsi Jerry; LU Li; TAN Leng Seow; Luk(y)anchuk B S

    2007-01-01

    We investigate the light scattering through small particles and its applications in nanostructuring, such as nanobumping, nanopatterning and dry laser cleaning. The theoretical calculation based on Mie theory provides an exact solution for sphere cavity resonance and plasmon resonance, which are two mechanisms for dielectric and metallic particles assisted surface nanostructuring in near field. The experimental results indicate that nanobumps on glass surface and subwavelength holes array on silicon surface can be formed without cracks with the self-assembly of 1 μm silica particle mask under laser irradiation. It is also found that the scattering wave by 40 nm gold particles can propagate 200 times away in terms of particle radius as recorded by photoresist under the UV light irradiation. Meanwhile, dry laser cleaning of 40 nm gold particle on silicon wafer is demonstrated at plasmonic resonance frequency. The total cleaning efficiency is estimated to be 80%.

  9. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    Science.gov (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  10. Surface plasmon microscopy with low-cost metallic nanostructures for biosensing I

    Science.gov (United States)

    Lindquist, Nathan; Oh, Sang-Hyun; Otto, Lauren

    2012-02-01

    The field of plasmonics aims to manipulate light over dimensions smaller than the optical wavelength by exploiting surface plasmon resonances in metallic films. Typically, surface plasmons are excited by illuminating metallic nanostructures. For meaningful research in this exciting area, the fabrication of high-quality nanostructures is critical, and in an undergraduate setting, low-cost methods are desirable. Careful optical characterization of the metallic nanostructures is also required. Here, we present the use of novel, inexpensive nanofabrication techniques and the development of a customized surface plasmon microscopy setup for interdisciplinary undergraduate experiments in biosensing, surface-enhanced Raman spectroscopy, and surface plasmon imaging. A Bethel undergraduate student performs the nanofabrication in collaboration with the University of Minnesota. The rewards of mentoring undergraduate students in cooperation with a large research university are numerous, exposing them to a wide variety of opportunities. This research also interacts with upper-level, open-ended laboratory projects, summer research, a semester-long senior research experience, and will enable a large range of experiments into the future.

  11. Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures

    Science.gov (United States)

    Biswas, Mahua; Jung, Yun Suk; Kim, Hong Koo; Kumar, Kumarappan; Hughes, Gregory J.; Newcomb, S.; Henry, Martin O.; McGlynn, Enda

    2011-06-01

    We report photoluminescence (PL) studies of the surface exciton peak in ZnO nanostructures at ~3.367 eV aimed at elucidation of the nature and origin of the emission and its relationship to the nanostructure morphology. PL spectra in conjunction with localized voltage application in high vacuum and different gas atmospheres show a consistent variation (and recovery), allowing an association of the PL to a bound excitonic transition at the ZnO surface, which is modified by an adsorbate. PL studies of samples treated by plasma and of samples exposed to UV light under high vacuum conditions, both well-known processes for desorption of surface adsorbed oxygen, show no consistent effects on the surface exciton peak indicating the lack of involvement of oxygen species. X-ray photoelectron spectroscopy data strongly suggest involvement of adsorbed OH species. X-ray diffraction, scanning, and transmission electron microscopy data are presented also, and the relationship of the surface exciton peak to the nanostructure morphology is discussed.

  12. Near-field thermal imaging of nanostructured surfaces

    Science.gov (United States)

    Kittel, A.; Wischnath, U. F.; Welker, J.; Huth, O.; Rüting, F.; Biehs, S.-A.

    2008-11-01

    We show that a near-field scanning thermal microscope, which essentially detects the local density of states of the thermally excited electromagnetic modes at nanometer distances from some material, can be employed for nanoscale imaging of structures on that material's surface. This finding is explained theoretically by an approach which treats the surface structure perturbatively.

  13. Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces

    NARCIS (Netherlands)

    Tsai, Peichun Amy; Pacheco Benito, Sergio; Pirat, C.; Lefferts, Leonardus; Lohse, Detlef

    2009-01-01

    We experimentally investigate drop impact dynamics onto different superhydrophobic surfaces, consisting of regular polymeric micropatterns and rough carbon nanofibers, with similar static contact angles. The main control parameters are the Weber number We and the roughness of the surface. At small

  14. Integrated Surface and Mechanical Characterization of Freestanding Biological and Other Nano-Structures Using Atomic Force Microscopy

    Science.gov (United States)

    Wang, Xin

    This dissertation is focused on surface and mechanical characterization of freestanding biological and other nano-structures using atomic force microscopy including two parts: cell mechanics and nano-structure mechanics. The main purpose of this work is to investigate how the nano- / micro-scale mechanical properties affect macro-scale function. In cancer cells, efficacy of drug delivery is oftentimes declined due to the thick dendritic network of oligosaccharide mucin chains on the cell surface. AFM is used to measure the force needed to pierce the mucin layer to reach the cell surface. A pool of ovarian, pancreatic, lung, colorectal and breast cancer cells are characterized. The studies offer additional support for the development of clinical and pharmaceutical approaches to combat mucin over-expression in tumors during cancer chemotherapy. Macroscopic adhesion-aggregation and subsequent transportation of microorganisms in porous medium are closely related to the microscopic deformation and adhesion mechanical properties. The classical Tabor's parameter is modified. Multiple bacterial strains are characterized in terms of aggregates size, aggregation index and transportation kinetics. AFM is employed to obtain the microscopic coupled adhesion-deformation properties. The strong correlation between Tabor's parameter and aggregation-deposition-transportation suggests the AFM characterization is capable of making reliable predication of macroscopic behavior. A novel "nano-cheese-cutter" is fabricated on tipless AFM cantilever to measure elastic modulus and interfacial adhesion of a 1-D freestanding nano-structure. A single electrospun fiber is attached to the free end of AFM cantilever, while another fiber is similarly prepared on a mica substrate in an orthogonal direction. An external load is applied to deform the two fibers into complementary V-shapes. This work is extended to investigate the interfacial adhesion energy between dissimilar materials. SWCNT thin

  15. Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Murali, K.V., E-mail: kvmuralikv@gmail.com [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Ragina, A.J. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Preetha, K.C. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Sree Narayana College, Kannur, Kerala 670007 (India); Deepa, K.; Remadevi, T.L. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Pazhassi Raja N.S.S. College, Mattannur, Kerala 670702 (India)

    2013-09-01

    Graphical abstract: - Highlights: • Quantum confined SnO{sub 2} thin films were synthesized at 80 °C by SILAR technique. • Film formation mechanism is discussed. • Films with snow like crystallite morphology offer high specific surface area. • The blue-shifted value of band gap confirmed the quantum confinement effect. • Present synthesis has advantages – low cost, low temperature and green friendly. - Abstract: Quantum confined nanostructured SnO{sub 2} thin films were synthesized at 353 K using ammonium chloride (NH{sub 4}Cl) and other chemicals by successive ionic layer adsorption and reaction technique. Film formation mechanism is discussed. Structural, morphological, optical and electrical properties were investigated and compared with the as-grown and annealed films fabricated without NH{sub 4}Cl solution. SnO{sub 2} films were polycrystalline with crystallites of tetragonal structure with grain sizes lie in the 5–8 nm range. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap of as-grown films confirmed the quantum confinement effect of grains. Refractive index of the films lies in the 2.1–2.3 range. Films prepared with NH{sub 4}Cl exhibit relatively lower resistivity of the order of 10{sup 0}–10{sup −1} Ω cm. The present synthesis has advantages such as low cost, low temperature and green friendly, which yields small particle size, large surface–volume ratio, and high crystallinity SnO{sub 2} films.

  16. Imprinted and injection-molded nano-structured optical surfaces

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik

    2013-01-01

    Inspired by nature, nano-textured surfaces have attracted much attention as a method to realize optical surface functionality. The moth-eye antireflective structure and the structural colors of Morpho butterflies are wellknown examples used for inspiration for such biomimetic research...... of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx. 4...... % for normal incidence. Diffraction gratings provide strong color reflection defined by the diffraction orders. However, the apperance varies strongly with viewing angles. Three different methods to address the strong angular-dependence of diffraction grating based structural color are discussed....

  17. Atomic scale control and understanding of cubic silicon carbide surface reconstructions, nanostructures and nanochemistry

    Science.gov (United States)

    Soukiassian, Patrick G.; Enriquez, Hanna B.

    2004-05-01

    The atomic scale ordering and properties of cubic silicon carbide (bgr-SiC) surfaces and nanostructures are investigated by atom-resolved room and high-temperature scanning tunnelling microscopy (STM) and spectroscopy (STS), synchrotron radiation-based valence band and core level photoelectron spectroscopy (VB-PES, CL-PES) and grazing incidence x-ray diffraction (GIXRD). In this paper, we review the latest results on the atomic scale understanding of (i) the structure of bgr-SiC(100) surface reconstructions, (ii) temperature-induced metallic surface phase transition, (iii) one dimensional Si(C) self-organized nanostructures having unprecedented characteristics, and on (iv) nanochemistry at SiC surfaces with hydrogen. The organization of these surface reconstructions as well as the 1D nanostructures' self-organization are primarily driven by surface stress. In this paper, we address such important issues as (i) the structure of the Si-rich 3 × 2, the Si-terminated c (4 × 2), the C-terminated c (2 × 2) reconstructions of the bgr-SiC(100) surface, (ii) the temperature-induced reversible {\\mathrm {c}}(4\\times 2) \\Leftrightarrow 2\\times 1 metallic phase transition, (iii) the formation of highly stable (up to 900 °C) Si atomic and vacancy lines, (iv) the temperature-induced sp to sp3 diamond like surface transformation, and (v) the first example of H-induced semiconductor surface metallization on the bgr-SiC (100) 3 × 2 surface. The results are discussed and compared to other experimental and theoretical investigations.

  18. Surface characterization of self-assembled N-Cu nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Lucila J.; Moreno-Lopez, Juan C. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Sferco, Silvano J. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Fisica, Facultad de Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria, C.C. 242, (S3000ZAA) Santa Fe (Argentina); Passeggi, Mario C.G.; Vidal, Ricardo A. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Ferron, Julio, E-mail: jferron@intec.unl.edu.ar [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829,(S3000AOM) Santa Fe (Argentina)

    2012-01-01

    We report on the process of low energy N{sub 2}{sup +} implantation and annealing of a Cu(0 0 1) surface. Through AES we study the N diffusion process as a function of the substrate temperature. With STM and LEIS we characterize the surface morphology and the electronic structure is analyzed with ARUPS. Under annealing (500 < T < 700 K) N migrates to the surface and reacts forming a Cu{sub x}N compound that decomposes at temperatures above 700 K. LEIS measurements show that N locates on the four-fold hollow sites of the Cu(0 0 1) surface in a c(2 Multiplication-Sign 2) arrangement. Finally, a gap along the [0 0 1] azimuthal direction is determined by ARUPS. DFT calculations provide support to our conclusions.

  19. Inhibition of Biofilm Formation Using Novel Nanostructured Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Biofilms are ubiquitous in the environment. Few surfaces resist biofilm formation, most promote it. Biofilm formation poses problems in water systems as they can...

  20. Ordered gold nanostructures on sapphire surfaces: Fabrication and optical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Konovko, A. A. [Moscow State University (Russian Federation); Smirnov, I. S. [Moscow State University of Electronics and Mathematics (Russian Federation); Roshchin, B. S.; Volkov, Yu. O. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Angelutz, A. A.; Andreev, A. V.; Shkurinov, A. P. [Moscow State University (Russian Federation); Kanevskii, V. M.; Asadchikov, V. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    The possibilities of obtaining ordered gold nanoarrays on sapphire surfaces with oriented nanorelief are demonstrated. The structures are morphologically described using atomic force microscopy data. A study of the angular dependence of the reflectivity in the visible range of electromagnetic waves has revealed some features which are likely to indicate surface plasmon-polariton excitation at the air-gold interface under exposure to p-polarized radiation. The experimental results are found to be in good agreement with the theoretical calculations.

  1. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.

    Science.gov (United States)

    Aili, Abulimiti; Li, Hongxia; Alhosani, Mohamed H; Zhang, TieJun

    2016-08-24

    Superhydrophobic nanostructured surfaces have demonstrated outstanding capability in energy and water applications by promoting dropwise condensation, where fast droplet growth and efficient condensate removal are two key parameters. However, these parameters remain contradictory. Although efficient droplet removal is easily obtained through coalescence jumping on uniform superhydrophobic surfaces, simultaneously achieving fast droplet growth is still challenging. Also, on such surfaces droplets can grow to larger sizes without restriction if there is no coalescence. In this work, we show that superhydrophobic nanostructured microporous surfaces can manipulate the droplet growth and jumping. Microporous surface morphology effectively enhances the growth of droplets in pores owing to large solid-liquid contact area. At low supersaturations, the upward growth rate (1-1.5 μm/s) of these droplets in pores is observed to be around 15-25 times that of the droplets outside the pores. Meanwhile, their top curvature radius increases relatively slowly (∼0.25 μm/s) due to pore confinement, which results in a highly stretched droplet surface. We also observed forced jumping of stretched droplets in pores either through coalescence with spherical droplets outside pores or through self-pulling without coalescence. Both experimental observation and theoretical modeling reveal that excess surface free energy stored in the stretched droplet surface and micropore confinement are responsible for this pore-scale-forced jumping. These findings reveal the insightful physics of stretched droplet dynamics and offer guidelines for the design and fabrication of novel super-repellent surfaces with microporous morphology.

  2. White Layer of Hard Turned Surface by Sharp CBN Tool

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-ping; SONG He-chuan; C.Richard Liu

    2005-01-01

    White layers in hard turned surfaces were identified and measured as a function of turning parameters based on the Taguchi method. It reveals that white layers generate on the machine surface in the absence of tool flank wear, and white layer depth varies with the different combinations of hard turning parameters. Turning speed has the most important impact on white layer depth, feed rate follows, and cutting depth at last. The white layer generation consequently suggests a strong couple relation to the heat generation and thermal process of hard turning operation. White layer disappears under an optimal combination of turning parameters by Taguchi method. It suggests that a superior surface integrity without white layer is feasible under some selected combinations of turning parameters by a sharp CBN cutting tool.

  3. Efficiency enhancement using ArF laser induced micro/nanostructures on the polymeric layer of solar cell

    Science.gov (United States)

    Parvin, P.; Reyhani, A.; Mehrabi, M.; Refahizadeh, M.; Mortazavi, S. Z.; Ranjbar, A.

    2017-02-01

    Here, the solar cell surface is irradiated with ArF excimer laser at 193 nm. This process forms regular micro/nanostructures on the samples, most likely due to the surface resonance phenomena. Laser induced surface rippling in the form of the conical micro/nanostructures or micro/nano-pillars are strongly dependent on the energy dose which induces a great number of micro/nano cavities on the surface. Despite the reflection events are taken into account as the major source of the optical losses, however the laser induced self-micro/nano structuring significantly reduces the spectral reflectivity. It leads to enhance the efficiency of solar cell accordingly. The effect of laser fluence is also investigated as to several forms of the micro/nanostructures are created at various UV doses. Finally, the electrical characterization is carried out based on the current-voltage plots. The surface morphology is analyzed using SEM and the spectral reflectivity is measured by the spectrophotometry, indicating that the current density rises due to the light trapping in micro/nano-cavities.

  4. Diamond nucleation on surface of C60 thin layers

    Institute of Scientific and Technical Information of China (English)

    杨国伟; 袁放成; 刘大军; 何金田; 张兵临

    1997-01-01

    Diamond nucleation on the surface of C60 thin layers and intermediate layer of Si substrates are studied by scanning electron microscopy (SEM). The cross-section SEM images of diamond films show that diamond grains really nucleate on the surface of C60 thin layers. The SEM images of diamond nucleating sites show the nucleating aggregation of diamond on C60 surfaces. The preferential oriented diamond films are observed. The plasma pre-treatment of C60 sublimating layers is a key factor for diamond nucleation.

  5. Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography

    Energy Technology Data Exchange (ETDEWEB)

    Giudicatti, Silvia; Marabelli, Franco [Dipartimento di Fisica ' A. Volta' , Universita degli Studi di Pavia, via Bassi 6, 27100 Pavia (Italy); Valsesia, Andrea [Plasmore S.r.l., Via Deledda 4,21020 Ranco (Varese) (Italy); Colpo, Pascal; Rossi, Francois [Institute for Health and Consumer Protection, Joint Research Centre of the European Commission, via Fermi 1, 21020 Ispra (Varese) (Italy)

    2010-04-15

    We investigate nanostructured surfaces consisting of a hexagonal lattice of polymeric pillars embedded in a gold matrix. These systems are prepared by a new fabrication technique based on plasma assisted deposition and colloidal lithography. A complete characterization of such surfaces is performed by angle resolved reflectance and transmittance measurements. Both delocalized and localized plasmonic modes can be identified: their reciprocal interplay allows to observe spectral features and to detect refractive index changes related to one of the sample interfaces by measurements performed with a light beam incident from the opposite side. This intriguing behaviour, together with ease of use and low cost of the deposition procedure, make this kind of nanostructures particularly interesting in biosensing applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Solid-core and hollow magnetic nanostructures: Synthesis, surface modifications and biological applications.

    Science.gov (United States)

    Nieciecka, Dorota; Nawara, Krzysztof; Kijewska, Krystyna; Nowicka, Anna M; Mazur, Maciej; Krysinski, Pawel

    2013-10-01

    In the need of development of versatile and flexible platforms for sensing, nanostructured particles are one of the systems of choice. Additionally, the state-of-the-art, controlled surface modifications of these structures offer broad possibilities of using such systems for diagnostics and therapy, often referred to as thera(g)nostics. In this brief review we will focus on the synthesis and surface modifications of solid-core magnetic nanostructures and polymeric capsules containing nanoferrites modified with anti-cancer drug--doxorubicin, designed for magnetic field-driven drug delivery for cancer therapy. We will also outline some problems related to the usage of such structures. The encapsulation and distribution of magnetic iron oxide nanoparticles modified with doxorubicin will be demonstrated in the polypyrrole spherical microvessels.

  7. A hybrid approach to the surface biofunctionalization of nanostructured porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, Miguel Manso; Ruiz, Josefa Predestinacion Garcia [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Unidad Asociada GMNF (ICMM-CSIC), 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Bioingenieria Biomateriales y Nanomedicina (CIBERbbn) (Spain); Gonzalez, Ruy Sanz [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, 28049 Madrid (Spain); Velez, Manuel Hernandez [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Unidad Asociada GMNF (ICMM-CSIC), 28049 Madrid (Spain)

    2010-02-15

    The application of nanostructured porous alumina templates as a solid support in biomedical assays requires a surface biofunctionalization process that has been addressed in this work by an hybrid aminopropyl-triethoxysilane/tetraisopropyl-orthotitanate (APTS/ TIPT) self assembled film. The nanostructured porous alumina templates are activated in a peroxide solution before immersion in the biofunctionalizing APTS/TIPT solution. The biofunctionalization process was followed up by UV-vis spectroscopy, which confirmed the modification of the dielectric structure of the alumina surface. The influence of the biofunctionalization step in an immunological assay was carried out by fluorescence microscopy. Results confirm the gain in activity after the immobilization of an FITC labelled mouse Igg. Specific biological recognition in a bovine serum albumin (BSA)-antiBSA assay is proved afterwards by shifts observed in the reflectance interferograms thus providing a fast biosensing transducer platform. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Three-dimensional nanostructures on Ge/Si(100) wetting layers: Hillocks and pre-quantum dots

    Science.gov (United States)

    Ramalingam, Gopalakrishnan; Floro, Jerrold A.; Reinke, Petra

    2016-05-01

    The annealing of sub-critical Ge wetting layers (WL cake-type structure where the step edges run parallel to the ⟨110⟩ direction, are formed from thin wetting layers, while {105}-faceted structures, called pre-quantum dots (p-QDs), are formed from thicker layers. The wetting layer thickness and thus the misfit strain energy controls the type of structure. The crossover thickness between the hillock and p-QDs regime is between 1.6 and 2.1 ML. The hillocks have larger lateral dimensions and volumes than p-QDs, and the p-QDs are exceptionally small quantum dots with a lower limit of 10 nm in width. Our work opens a new pathway to the control of nanostructure morphology and size in the elastically strained Ge/Si system.

  9. Three-Dimensional Clustered Nanostructures for Microfluidic Surface-Enhanced Raman Detection.

    Science.gov (United States)

    Wang, Gang; Li, Kerui; Purcell, Francis J; Zhao, De; Zhang, Wei; He, Zhongyuan; Tan, Shuai; Tang, Zhenguan; Wang, Hongzhi; Reichmanis, Elsa

    2016-09-21

    A materials fabrication concept based on a fluid-construction strategy to create three-dimensional (3D) ZnO@ZnS-Ag active nanostructures at arbitrary position within confined microchannels to form an integrated microfluidic surface-enhanced Raman spectroscopy (SERS) system is presented. The fluid-construction process allowed facile construction of the nanostructured substrates, which were shown to possess a substantial number of integrated hot spots that support SERS activity. Finite-difference time-domain (FDTD) analysis suggested that the 3D clustered geometry facilitated hot spot formation. High sensitivity and good recycle performance were demonstrated using 4-mercaptobenzoic acid (4-MBA) and a mixture of Rhodamine 6G (R6G) and 4-MBA as target organic pollutants to evaluate the SERS microfluidic device performance. The 3D clustered nanostructures were also effective in the detection of a representative nerve agent and biomolecule. The results of this investigation provide a materials and process approach to the fabrication of requisite nanostructures for the online detection of organic pollutants, devices for real-time observation of environmental hazards, and personal-health monitoring.

  10. Aspects of the atmospheric surface layers on Mars and Earth

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Landberg, L.

    2002-01-01

    The structures of mean flow and turbulence in the atmospheric surface boundary layer have been extensively studied on Earth, and to a far less extent on Mars, where only the Viking missions and the Pathfinder mission have delivered in-situ data. Largely the behaviour of surface-layer turbulence a...

  11. Insights from simple models for surface states in nanostructures

    Science.gov (United States)

    Boykin, Timothy B.; Klimeck, Gerhard

    2017-03-01

    Surface passivation is of great technological importance due to the increasing miniaturisation of electronic devices. It has been known for many years that under certain conditions surface states can form; when they do so in a quantum well (QW) the result is an unbound (i.e., evanescent) state in the QW. Such surface states are generally undesirable, so a good physical understanding of them is important. A simple single-p-orbital valence band model is used with two types of surface passivation to examine surface states in a QW: (1) an energy upshift added to the terminal atoms; and (2) explicit passivation by an s-orbital on each end of the QW. These models show these unbound/evanescent QW states can occur in both models; that in them the wavefunction is bound to the terminal atoms; and that the existence of these states is connected to the effective valence-band offset between the terminal atoms and the bulk QW.

  12. Local thermal property analysis by scanning thermal microscopy of an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F.A. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China) and Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France)]. E-mail: guofuan@yahoo.com; JI, Y.L. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China); Trannoy, N. [Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France); Lu, J. [LASMIS, Universite de Technologie de Troyes, 12 Rue Marie Curie, Troyes 10010 (France)

    2006-06-15

    Scanning thermal microscopy (SThM) was used to map thermal conductivity images in an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment (SMAT). It is found that the deformed surface layer shows different thermal conductivities that strongly depend on the grain size of the microstructure: the thermal conductivity of the nanostructured surface layer decreases obviously when compared with that of the coarse-grained matrix of the sample. The role of the grain boundaries in thermal conduction is analyzed in correlation with the heat conduction mechanism in pure metal. A theoretical approach, based on this investigation, was used to calculate the heat flow from the probe tip to the sample and then estimate the thermal conductivities at different scanning positions. Experimental results and theoretical calculation demonstrate that SThM can be used as a tool for the thermal property and microstructural analysis of ultrafine-grained microstructures.

  13. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  14. Local Surface Potential of GaN Nanostructures Probed by Kelvin Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    GU Xiao-Xiao(顾骁骁); HUANG Da-Ming(黄大鸣); MORKOC Hadis

    2003-01-01

    We have measured the fluctuation in local surface potential of GaN epitaxial films having two different types of nanostructure, as-grown islands or, etched pits, by Kelvin probe force microscopy. We found that the perimeters of as-grown islands and the internal walls of, etched pits have lower surface potential as compared with the asgrown c-plane. The results show that the crystallographic facets tilted with respect to c-plane have higher work function and are electrically more active than c-surface.

  15. Effect of adhesion transfer on the surface pattern regularity in nanostructuring burnishing

    Science.gov (United States)

    Kuznetsov, Viktor P.; Tarasov, Sergey Yu.; Nikonov, Anton Yu.; Filippov, Andrey V.; Voropaev, Vladimir V.; Dmitriev, Andrey I.

    2016-11-01

    In the paper the influence of friction-induced adhesion of metal to the tool on the formation of surface topography under nanostructuring burnishing was studied. A comprehensive approach, including both experimental (optical microscopy and profilometry) and theoretical (computer-aided simulation) methods was used. The results showed a direct connection between values of adhesion strength of materials in contact with the workpiece surface pattern quality caused by the tool movement. Results of the experimental and theoretical study are in good agreement and allow us to identify the reason of regular profile forming during surface burnishing.

  16. Contact mechanics for layered materials with randomly rough surfaces.

    Science.gov (United States)

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  17. Genesis of femtosecond-induced nanostructures on solid surfaces.

    Science.gov (United States)

    Varlamova, Olga; Martens, Christian; Ratzke, Markus; Reif, Juergen

    2014-11-01

    The start and evolution of the formation of laser-induced periodic surface structures (LIPSS, ripples) are investigated. The important role of irradiation dose (fluence×number of pulses) for the properties of the generated structures is demonstrated. It is shown how, with an increasing dose, the structures evolve from random surface modification to regular sub-wavelength ripples, then coalesce to broader LIPSS and finally form more complex shapes when ablation produces deep craters. First experiments are presented following this evolution in one single irradiated spot.

  18. Scanning Tunneling Spectroscopy Study of Single Layer Step Edges on Si (100) Surfaces

    Science.gov (United States)

    Wang, Xiqiao; Namboodiri, Pradeep; Li, Kai; Deng, Xiao; Silver, Richard

    Advanced Hydrogen lithography enables the fabrication of atomically precise donor-based quantum devices on Si(100) surfaces. Understanding the defect and step edge interaction with local electronic and geometric structures is needed to properly interpret device measurement results. Low temperature Si epitaxy, used to encapsulate devices, introduces island growth and step edges near/above buried donor nanostructures, presenting a real challenge in relocating and characterizing buried donor devices using Scanning Tunneling Microscopy/Spectroscopy (STM/STS). We present spatially resolved STS results across single layer steps on Si(100) surfaces. While the electronic properties across SA steps were found to be very similar to that on flat terraces, we observed an edge induced gap state on rebonded SB step edges, which was assigned to the unpaired dangling bond state at the lower edge atom of the rebonded SB steps. In addition, we used computational simulation within Bardeen's formalism to probe the influence of subsurface doping density profiles on the observed STS features over step edges and other defects. This study will help to elucidate the role played by surface step edges and subsurface doping densities in characterizing surface and subsurface nanostructures using STS/STM.

  19. EUV-induced physico-chemical changes in near-surface layers of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, A., E-mail: abartnik@wat.edu.pl [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Chernyayeva, O.; Sobczak, J.W. [Institute of Physical Chemistry Polish Academy of Sciences, 44-52 Kasprzaka Street, 01-224 Warsaw (Poland)

    2011-04-15

    In this work a laser-plasma EUV source based on a gas puff target was used for micro- and nanostructuring of polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and poly-oxydiphenylene-pyromellitimide (Kapton HN) foils. The plasma radiation was focused using a gold-plated grazing incidence ellipsoidal collector. The collector allowed for effective focusing of Kr plasma radiation from the wavelength range {lambda} = 9-70 nm. The polymer foils were irradiated in the focal plane or at some distance downstream the focal plane of the EUV collector. The surface morphology of the irradiated polymer samples was investigated using a scanning electron microscope (SEM) and the chemical changes by X-ray photoelectron spectroscopy (XPS). Different kinds of micro- and nanostructures created in near-surface layers of the polymers were obtained. The form of the structures depends on the type of polymer and the EUV exposure. In case of PEN even a single shot was sufficient to obtain visible changes in surface morphology. In case of Kapton clearly visible surface modification requires tens of EUV pulses. To investigate the changes in the chemical structure XPS spectra, corresponding to the valence band of the polymer samples, were measured. Significant differences were revealed in the XPS spectra of irradiated and not-irradiated polymers showing decrease of functional groups containing oxygen was indicated.

  20. Improved Bond Strength of Cyanoacrylate Adhesives Through Nanostructured Chromium Adhesion Layers

    Science.gov (United States)

    Gobble, Kyle; Stark, Amelia; Stagon, Stephen P.

    2016-09-01

    The performance of many consumer products suffers due to weak and inconsistent bonds formed to low surface energy polymer materials, such as polyolefin-based high-density polyethylene (HDPE), with adhesives, such as cyanoacrylate. In this letter, we present an industrially relevant means of increasing bond shear strength and consistency through vacuum metallization of chromium thin films and nanorods, using HDPE as a prototype material and cyanoacrylate as a prototype adhesive. For the as received HDPE surfaces, unmodified bond shear strength is shown to be only 0.20 MPa with a standard deviation of 14 %. When Cr metallization layers are added onto the HDPE at thicknesses of 50 nm or less, nanorod-structured coatings outperform continuous films and have a maximum bond shear strength of 0.96 MPa with a standard deviation of 7 %. When the metallization layer is greater than 50 nm thick, continuous films demonstrate greater performance than nanorod coatings and have a maximum shear strength of 1.03 MPa with a standard deviation of 6 %. Further, when the combination of surface roughening with P400 grit sandpaper and metallization is used, 100-nm-thick nanorod coatings show a tenfold increase in shear strength over the baseline, reaching a maximum of 2.03 MPa with a standard deviation of only 3 %. The substantial increase in shear strength through metallization, and the combination of roughening with metallization, may have wide-reaching implications in consumer products which utilize low surface energy plastics.

  1. Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence.

    Science.gov (United States)

    Chaudhery, Vikram; George, Sherine; Lu, Meng; Pokhriyal, Anusha; Cunningham, Brian T

    2013-04-26

    Photonic crystal (PC) surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers.

  2. Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence

    Directory of Open Access Journals (Sweden)

    Brian T. Cunningham

    2013-04-01

    Full Text Available Photonic crystal (PC surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers.

  3. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...... to the polymer part was mainly influenced by packing pressure level and distance from the gate....

  4. Characterization of large area nanostructured surfaces using AFM measurements

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido;

    2012-01-01

    magnitude of the 3D surface amplitude parameters chosen for the analysis, when increasing the Al purity from 99,5% to 99,999%. AFM was then employed to evaluate the periodical arrangements of the nano structured cells. Image processing was used to estimate the average areas value, the height variation...

  5. Facile Phase Transfer and Surface Biofunctionalization of Hydrophobic Nanoparticles Using Janus DNA Tetrahedron Nanostructures

    Science.gov (United States)

    Li, Juan; Hong, Cheng-Yi; Wu, Shu-Xian; Liang, Hong; Wang, Li-Ping; Huang, Guoming; Chen, Xian; Yang, Huang-Hao; Shangguan, Dihua; Tan, Weihong

    2016-01-01

    Hydrophobic nanoparticles have shown substantial potential for bioanalysis and biomedical applications. However, their use is hindered by complex phase transfer and inefficient surface modification. This paper reports a facile and universal strategy for phase transfer and surface biofunctionalization of hydrophobic nanomaterials using aptamer-pendant DNA tetrahedron nanostructures (Apt-tet). The Janus DNA tetrahedron nanostructures are constructed by three carboxyl group modified DNA strands and one aptamer sequence. Each tetrahedron edge is an 18-base-pair double helix, making the tetrahedral edges about 5.8 nm in length. The pendant linear sequence is an aptamer, in this case AS1411, known to specifically bind nucleolin, typically overexpressed on the plasma membranes of tumor cells. The incorporation of the aptamers adds targeting ability and also enhances intracellular uptake. Phase-transfer efficiency using Apt-tet is much higher than that achieved using single-stranded DNA. In addition, the DNA tetrahedron nanostructures can be programmed to permit the incorporation of other functional nucleic acids, such as DNAzymes, siRNA, or antisense DNA, allowing, in turn, the construction of promising theranostic nanoagents for bioanalysis and biomedical applications. Given these unique features, we believe that our strategy of surface modification and functionalization may become a new paradigm in phase-transfer-agent design and further expand biomedical applications of hydrophobic nanomaterials. PMID:26302208

  6. Facile Phase Transfer and Surface Biofunctionalization of Hydrophobic Nanoparticles Using Janus DNA Tetrahedron Nanostructures.

    Science.gov (United States)

    Li, Juan; Hong, Cheng-Yi; Wu, Shu-Xian; Liang, Hong; Wang, Li-Ping; Huang, Guoming; Chen, Xian; Yang, Huang-Hao; Shangguan, Dihua; Tan, Weihong

    2015-09-01

    Hydrophobic nanoparticles have shown substantial potential for bioanalysis and biomedical applications. However, their use is hindered by complex phase transfer and inefficient surface modification. This paper reports a facile and universal strategy for phase transfer and surface biofunctionalization of hydrophobic nanomaterials using aptamer-pendant DNA tetrahedron nanostructures (Apt-tet). The Janus DNA tetrahedron nanostructures are constructed by three carboxyl group modified DNA strands and one aptamer sequence. The pendant linear sequence is an aptamer, in this case AS1411, known to specifically bind nucleolin, typically overexpressed on the plasma membranes of tumor cells. The incorporation of the aptamers adds targeting ability and also enhances intracellular uptake. Phase-transfer efficiency using Apt-tet is much higher than that achieved using single-stranded DNA. In addition, the DNA tetrahedron nanostructures can be programmed to permit the incorporation of other functional nucleic acids, such as DNAzymes, siRNA, or antisense DNA, allowing, in turn, the construction of promising theranostic nanoagents for bioanalysis and biomedical applications. Given these unique features, we believe that our strategy of surface modification and functionalization may become a new paradigm in phase-transfer-agent design and further expand biomedical applications of hydrophobic nanomaterials.

  7. Plasmonic three-dimensional transparent conductor based on Al-doped zinc oxide-coated nanostructured glass using atomic layer deposition.

    Science.gov (United States)

    Malek, Gary A; Aytug, Tolga; Liu, Qingfeng; Wu, Judy

    2015-04-29

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for designing plasmonic 3D transparent conductors. Transformation of the nonconducting 3D structure to a conducting porous surface network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electron-beam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO-coated glass surface along with the in-plane dimensions of the deposited AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to those of untextured two-dimensional AZO-coated glass substrates. In addition, transmittance measurements of the glass samples coated at various AZO thicknesses showed preservation of the transparent nature of each sample, and the AuNPs demonstrated enhanced light scattering as well as light-trapping capabilities.

  8. The Investigation of Coated Tools Tribological Characteristics Influence on the Cutting Process and the Quality Parameters of the Parts Surface Layer

    Directory of Open Access Journals (Sweden)

    V.F. Bezjazychnyj

    2013-09-01

    Full Text Available The influence of cutting tools nanostructured coatings on the parameters of machined parts surface layer has been researched. The interaction between friction characteristics of coated tools and shear plane angle during machining has been determined. The results of different materials cutting with coated carbide-tipped tools have been shown.

  9. Nanostructured implant surface effect on osteoblast gene expression and bone-to-implant contact in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Gustavo, E-mail: gustavo_mendonca@dentistry.unc.edu [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Universidade Catolica de Brasilia, Curso de Odontologia, Taguatinga/DF (Brazil); Baccelli Silveira Mendonca, Daniela [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil) and Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Pagotto Simoes, Luis Gustavo; Araujo, Andre Luis; Leite, Edson Roberto [Departmento de Quimica, Universidade Federal de Sao Carlos-UFSCAR, Rod. Washington Luiz, 13565-905 Sao Carlos, SP (Brazil); Golin, Alexsander Luiz [Departmento de Engenharia Mecanica, Faculdade de Engenharia Mecanica, Pontificia Universidade Catolica de Curitiba, Curitiba, PR (Brazil); Aragao, Francisco J.L. [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Embrapa Recursos Geneticos e Biotecnologia, Laboratorio de Introducao e Expressao de Genes, PqEB W5 Norte, 70770-900, Brasilia, DF (Brazil); Cooper, Lyndon F., E-mail: lyndon_cooper@dentistry.unc.edu [Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States)

    2011-12-01

    The aim of this study was to investigate the response of nanostructured implant surfaces at the level of osteoblast differentiation and its effects in bone-to-implant contact (BIC) and removal-torque values (RTV). CpTi grade IV implants (1.6 x 4.0 mm) were machined or machined and subsequently coated with an oxide solution. The surfaces were divided into: machined (M), titania-anatase (An), titania-rutile (Ru), and zirconia (Zr). Surfaces were examined by scanning electron microscopy, atomic force microscopy, and by X-ray microanalysis. Implants were inserted in rat tibia and harvested from 0 to 21 days for measurement of Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteopontin, and RUNX-2 mRNA levels by real time PCR; from 0 to 56 days for RTV; and from 0 to 56 days for BIC. The roughness parameter (Sa) was compared by one-way ANOVA followed by Tukey Test. Comparison of Torque removal values and histomorphometric measurements on implants in vivo was performed by Kruskal-Wallis test and the significance level for all statistical analyses was set at p {<=} 0.05. mRNA levels on all nanostructured surfaces were increased compared to M. At 56 days, the mean RTV in Ncm was 11.6 {+-} 2.5, 11.3 {+-} 2.4, 11.1 {+-} 3.5, 9.7 {+-} 1.4 for An, Ru, Zr, and M, respectively. Higher BIC (%) was measured for all the nanostructured surfaces versus M at 21 and 56 days (p < 0.05). Nanostructured topographic features composed of TiO{sub 2} or ZrO{sub 2} applied to machined cpTi implant promoted greater mesenchymal stem cell commitment to the osteoblast phenotype and associated increased BIC and physical association with bone. Highlights: {yields} Nanostructured surfaces using a sol-gel technique coated cpTi with TiO{sub 2} or ZrO{sub 2}. {yields} Evaluated molecular and mechanical effect of nanofeatures in vivo in rat tibiae. {yields} Nanofeatures improved the differentiation of rat MSCs into osteoblasts. {yields} Nanofeatures improved increased bone-to-implant contact and

  10. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  11. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja;

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives molecu...... process compared to existing commercial substrates. Therefore it is believed that these novel substrates will be able to make SERS more applicable in mobile explosives detection systems to be deployed in for example landmine clearance actions....

  12. Enhancement of Polymer Cytocompatibility by Nanostructuring of Polymer Surface

    OpenAIRE

    Petr Slepička; Nikola Slepičková Kasálková; Lucie Bačáková; Zdeňka Kolská; Václav Švorčík

    2012-01-01

    Polymers with their advantageous physical, chemical, mechanical, and electrical properties and easy manufacturing are widely used in biology, tissue engineering, and medicine, for example, as prosthetic materials. In some cases the polymer usage may be impeded by low biocompatibility of common synthetic polymers. The biocompatibility can be improved by modification of polymer surface, for example, by plasma discharge, irradiation with ionizing radiation, and sometime subsequent grafting with ...

  13. Surface Chemistry of Nano-Structured Mixed Metal Oxide Films

    Science.gov (United States)

    2012-12-11

    Low Temperature Synthesis and Characterization of Nanocrystalline Titanium Carbide with Tunable Porous Architectures, Chemistry of Materials, (01...of the C–H bond to form carboxyl, both of which decompose via a COd 2 intermediate to evolve CO2 and H2. High surface area, porous titanium carbide films...characterization of nanocrystalline titanium carbide with tunable porous architectures” Chem. Mater. 22, 319-329 (2010). http://dx.doi.org/10.1021/cm902184m 3

  14. Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation

    Directory of Open Access Journals (Sweden)

    Tran PA

    2013-05-01

    Full Text Available Phong A Tran,1,2 Thomas J Webster31Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC, Australia; 2The Particulate Fluid Processing Centre, University of Melbourne, Melbourne, VIC, Australia; 3Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USAAbstract: Wetting properties of biomaterials, in particular nanomaterials, play an important role, as these influence interactions with biological elements, such as proteins, bacteria, and cells. In this study, the wetting phenomenon of titanium substrates coated with selenium nanoparticles was studied using experimental and mathematical modeling tools. Importantly, these selenium-coated titanium substrates were previously reported to increase select protein adsorption (such as vitronectin and fibronectin, to decrease bacteria growth, and increase bone cell growth. Increased selenium nanoparticle coating density resulted in higher contact angles but remained within the hydrophilic regime. This trend was found in disagreement with the Wenzel model, which is widely used to understand the wetting properties of rough surfaces. The trend also did not fit well with the Cassie–Baxter model, which was developed to understand the wetting properties of composite surfaces. A modified wetting model was thus proposed in this study, to understand the contributing factors of material properties to the hydrophilicity/hydrophobicity of these nanostructured selenium-coated surfaces. The analysis and model created in this study can be useful in designing and/or understanding the wetting behavior of numerous biomedical materials and in turn, biological events (such as protein adsorption as well as bacteria and mammalian cell functions.Keywords: hydrophilicity, hydrophobicity, Wenzel model, Cassie–Baxter model, free energy, implant material, proteins, cells, bacteria

  15. Unconventional nuclear magnetic resonance techniques using nanostructured diamond surfaces

    Science.gov (United States)

    Acosta, Victor; Jarmola, Andrey; Budker, Dmitry; Santori, Charles; Huang, Zhihong; Beausoleil, Raymond

    2014-03-01

    Nuclear magnetic resonance (NMR) technologies rely on obtaining high nuclear magnetization, motivating low operating temperatures and high magnetic fields. Dynamic nuclear polarization (DNP) techniques traditionally require another superconducting magnet and THz optics. We seek to use chip-scale devices to polarize nuclei in liquids at room temperature. The technique relies on optical pumping of nitrogen-vacancy (NV) centers and subsequent transfer of polarization to nuclei via hyperfine interaction, spin diffusion, and heteronuclear polarization transfer. We expect efficient polarization transfer will be realized by maximizing the diamond surface area. We have fabricated densely-packed (50 % packing fraction), high-aspect-ratio (10+) nanopillars over mm2 regions of the diamond surface. Pillars designed to have a few-hundred-nanometer diameter act as optical antennas, reducing saturation intensity. We also report progress in using nanopillar arrays as sensitive optical detectors of nano-scale NMR by measuring NV center Zeeman shifts produced by nearby external nuclei. The enhanced surface area increases the effective density of NV centers which couple to external nuclei. Combining these techniques may enable, e.g., identification of trace analytes and molecular imaging.

  16. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation.

    Science.gov (United States)

    Lin, Kaili; Xia, Lunguo; Gan, Jingbo; Zhang, Zhiyuan; Chen, Hong; Jiang, Xinquan; Chang, Jiang

    2013-08-28

    To promote and understand the biological responses of the implant via nanostructured surface design is essential for the development of bioactive bone implants. However, the control of the surface topography of the bioceramics in nanoscale is a big challenge because of their brittle property. Herein, the hydroxyapatite (HAp) bioceramics with distinct nanostructured topographies were fabricated via hydrothermal treatment using α-tricalcium phosphate ceramic as hard-template under different reaction conditions. HAp bioceramics with nanosheet, nanorod and micro-nanohybrid structured surface in macroscopical size were obtained by controlling the composition of the reaction media. Comparing with the traditional sample with flat and dense surface, the fabricated HAp bioceramics with hierarchical 3D micro-nanotextured surfaces possessed higher specific surface area, which selectively enhanced adsorption of specific proteins including Fn and Vn in plasma, and stimulated osteoblast adhesion, growth, and osoteogenic differentiation. In particular, the biomimetic features of the hierarchical micro-nanohybrid surface resulted in the best ability for simultaneous enhancement of protein adsorption, osteoblast proliferation, and differentiation. The results suggest that the hierarchical micro-nanohybrid topography might be one of the critical factors to be considered in the design of functional bone grafts.

  17. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology

    Science.gov (United States)

    Velmurugan, Ramaiyan; Selvamuthukumar, Subramanian

    2016-02-01

    The research focuses on the development and optimization of ifosfamide nanostructured lipid carriers for oral delivery with the application of response surface methodology. The objectives of the study were to develop a formulation for ifosfamide to be delivered orally, overcome the instability of the drug in acidic environment during oral administration, to sustain the release, drug leakage during storage and low loading capacity. A modified solvent diffusion method in aqueous system was applied to prepare nanostructured lipid nanoparticles. Hydrophilic polymers such as chitosan and sodium alginate were used as coating materials. Glycerol mono oleate and oleic acid were used as solid and liquid lipid, respectively. Poloxamer is used as stabilizers. The central composite rotatable design consisting of three-factored factorial design with three levels was used in this study. The physiochemical characterization included evaluation of surface morphology, particle size and surface charge of the drug in the delivery system. The in vitro drug release, entrapment and drug loading efficiency and as well as the storage stability were evaluated. The results showed that the optimal formulation was composed of drug/lipid ratio of 1:3, organic/aqueous phase ratio of 1:10 and concentration of surfactant of 1 % w/v. Ifosfamide nanostructured lipid carrier under the optimized conditions gave rise to the entrapment efficiency of 77 %, drug loading of 6.14 %, mean diameter of 223 nm and zeta potential value of -25 mV. Transmission electron microscopy analysis showed spherical particles. The in vitro experiment proved that ifosfamide from the delivery system released gradually over the period of 72 h. Sodium alginate cross-linked chitosan nanostructured lipid carrier demonstrated enhanced stability of ifosfamide, high entrapment efficiency and sustained release.

  18. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite

    Science.gov (United States)

    Ryu, Seung Wook; Yoon, Jaehong; Moon, Hyoung-Seok; Shong, Bonggeun; Kim, Hyungjun; Lee, Han-Bo-Ram

    2017-03-01

    One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

  19. Characterization and use of crystalline bacterial cell surface layers

    Science.gov (United States)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  20. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array

    Science.gov (United States)

    Kannegulla, Akash; Liu, Ye; Cheng, Li-Jing

    2016-03-01

    Enhanced photoluminescence (PL) of quantum dots (QD) in visible range using plasmonic nanostructures has potential to advance several photonic applications. The enhancement effect is, however, limited by the light coupling efficiency to the nanostructures. Here we demonstrate experimentally a new open-ring nanostructure (ORN) array 100 nm engraved into a 200 nm thick silver thin film to maximize light absorption and, hence, PL enhancement at a broadband spectral range. The structure is different from the traditional isolated or through-hole split-ring structures. Theoretical calculations based on FDTD method show that the absorption peak wavelength can be adjusted by their period and dimension. A broadband absorption of about 60% was measured at the peak wavelength of 550 nm. The emission spectrum of CdSe/ZnS core-shell quantum dots was chosen to match the absorption band of the ORN array to enhance its PL. The engraved silver ORN array was fabricated on a silver thin film deposited on a silicon substrate using focus ion beam (FIB) patterning. The device was characterized by using a thin layer of QD water dispersion formed between the ORN substrate and a cover glass. The experimental results show the enhanced PL for the QD with emission spectrum overlapping the absorption band of ORN substrate and quantum efficiency increases from 50% to 70%. The ORN silver substrate with high absorption over a broadband spectrum enables the PL enhancement and will benefit applications in biosensing, wavelength tunable filters, and imaging.

  1. Calcium phosphate thin films enhance the response of human mesenchymal stem cells to nanostructured titanium surfaces

    Directory of Open Access Journals (Sweden)

    Mura M McCafferty

    2014-05-01

    Full Text Available The development of biomaterial surfaces possessing the topographical cues that can promote mesenchymal stem cell recruitment and, in particular, those capable of subsequently directing osteogenic differentiation is of increasing importance for the advancement of tissue engineering. While it is accepted that it is the interaction with specific nanoscale topography that induces mesenchymal stem cell differentiation, the potential for an attendant bioactive chemistry working in tandem with such nanoscale features to enhance this effect has not been considered to any great extent. This article presents a study of mesenchymal stem cell response to conformal bioactive calcium phosphate thin films sputter deposited onto a polycrystalline titanium nanostructured surface with proven capability to directly induce osteogenic differentiation in human bone marrow–derived mesenchymal stem cells. The sputter deposited surfaces supported high levels of human bone marrow–derived mesenchymal stem cell adherence and proliferation, as determined by DNA quantification. Furthermore, they were also found to be capable of directly promoting significant levels of osteogenic differentiation. Specifically, alkaline phosphatase activity, gene expression and immunocytochemical localisation of key osteogenic markers revealed that the nanostructured titanium surfaces and the bioactive calcium phosphate coatings could direct the differentiation towards an osteogenic lineage. Moreover, the addition of the calcium phosphate chemistry to the topographical profile of the titanium was found to induce increased human bone marrow–derived mesenchymal stem cell differentiation compared to that observed for either the titanium or calcium phosphate coating without an underlying nanostructure. Hence, the results presented here highlight that a clear benefit can be achieved from a surface engineering strategy that combines a defined surface topography with an attendant, conformal

  2. Functionality of novel black silicon based nanostructured surfaces studied by TOF SIMS

    DEFF Research Database (Denmark)

    Talian, Ivan; Aranyosiova, M.; Orinak, A.

    2010-01-01

    depends on Ag layer thickness and measured ion mode (negative, positive). The best SIMS signal enhancement was obtained at BS2 surface coated with 400 nm of Ag layer. SIMS fragmentation schemes were developed for a model analyte deposited onto a silver and gold surface. Significant differences in pre...

  3. Preservation of Archaeal Surface Layer Structure During Mineralization.

    Science.gov (United States)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-05-25

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer "ghosts" during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  4. Preservation of Archaeal Surface Layer Structure During Mineralization

    Science.gov (United States)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-05-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  5. Nanostructured Surfaces to Target and Kill Circulating Tumor Cells While Repelling Leukocytes

    Directory of Open Access Journals (Sweden)

    Michael J. Mitchell

    2012-01-01

    Full Text Available Hematogenous metastasis, the process of cancer cell migration from a primary to distal location via the bloodstream, typically leads to a poor patient prognosis. Selectin proteins hold promise in delivering drug-containing nanocarriers to circulating tumor cells (CTCs in the bloodstream, due to their rapid, force-dependent binding kinetics. However, it is challenging to deliver such nanocarriers while avoiding toxic effects on healthy blood cells, as many possess ligands that adhesively interact with selectins. Herein, we describe a nanostructured surface to capture flowing cancer cells, while preventing human neutrophil adhesion. Microtube surfaces with immobilized halloysite nanotubes (HNTs and E-selectin functionalized liposomal doxorubicin (ES-PEG L-DXR significantly increased the number of breast adenocarcinoma MCF7 cells captured from flow, yet also significantly reduced the number of captured neutrophils. Neutrophils firmly adhered and projected pseudopods on surfaces coated only with liposomes, while neutrophils adherent to HNT-liposome surfaces maintained a round morphology. Perfusion of both MCF7 cells and neutrophils resulted in primarily cancer cell adhesion to the HNT-liposome surface, and induced significant cancer cell death. This work demonstrates that nanostructured surfaces consisting of HNTs and ES-PEG L-DXR can increase CTC recruitment for chemotherapeutic delivery, while also preventing healthy cell adhesion and uptake of therapeutic intended for CTCs.

  6. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei

    2016-12-01

    Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400-900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells.

  7. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  8. Directional and singular surface plasmon generation in chiral and achiral nanostructures demonstrated by Leakage Radiation Microscopy

    CERN Document Server

    Jiang, Quanbo; Berthel, Martin; Huant, Serge; Bellessa, Joel; Genet, Cyriaque; Drezet, Aurélien

    2016-01-01

    In this paper, we describe the implementation of leakage radiation microscopy (LRM) to probe the chirality of plasmonic nanostructures. We demonstrate experimentally spin-driven directional coupling as well as vortex generation of surface plasmon polaritons (SPPs) by nanostructures built with T-shaped and $\\Lambda$- shaped apertures. Using this far-field method, quantitative inspections, including directivity and extinction ratio measurements, are achieved via polarization analysis in both image and Fourier planes. To support our experimental findings, we develop an analytical model based on a multidipolar representation of $\\Lambda$- and T-shaped aperture plasmonic coupler allowing a theoretical explanation of both directionality and singular SPP formation. Furthermore, the roles of symmetry breaking and phases are emphasized in this work. This quantitative characterization of spin-orbit interactions paves the way for developing new directional couplers for subwavelength routing.

  9. Avoided Crossing Patterns and Spectral Gaps of Surface Plasmon Modes in Gold Nano-Structures

    CERN Document Server

    Kolomenskii, Alexandre; Hembd, Jeshurun; Kolomenski, Andrei; Noel, John; Teizer, Winfried; Schuessler, Hans

    2010-01-01

    The transmission of ultrashort (7 fs) broadband laser pulses through periodic gold nano-structures is studied. The distribution of the transmitted light intensity over wavelength and angle shows an efficient coupling of the incident p-polarized light to two counter-propagating surface plasmon (SP) modes. As a result of the mode interaction, the avoided crossing patterns exhibit energy and momentum gaps, which depend on the configuration of the nano-structure and the wavelength. Variations of the widths of the SP resonances and an abrupt change of the mode interaction in the vicinity of the avoided crossing region are observed. These features are explained by the model of two coupled modes and a coupling change due to switching from the high frequency dark mode to the low frequency bright mode for increasing wavelength of the excitation light. PACS numbers: 73.20.Mf, 42.70.Qs, 42.25.-p,

  10. Efficient Coupling and Transport of a Surface Plasmon at 780 nm in a Gold Nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-28

    We studied plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We designed an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  11. Surface-enhanced Raman scattering in femtosecond laser-nanostructured Ag substrate

    Energy Technology Data Exchange (ETDEWEB)

    Dai Ye; He Min; Yan Xiaona; Ma Guohong [Department of Physics, Shanghai University, Shanghai 200444 (China); Lu Bo, E-mail: yedai@shu.edu.cn [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China)

    2011-02-01

    We demonstrate that a surface-enhanced Raman scattering (SERS) substrate could be directly fabricated on the surface of Ag film by femtosecond laser micromachining. According to the morphology observation by SEM, an amount of nanoparticles, nanoprotrusions, and nanospikes were found to form in the ablation region and the density and size distribution of these Ag nanoparticles depended possibly on the incident laser intensity. Additionally, a large area of nanostructured region was produced by fast line scanning, and an enhancement factor of {approx}10{sup 5} was obtained in this region after the sample was soaked in the rhodamine 6G solution for 30 min.

  12. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Byoungho Lee

    2011-01-01

    Full Text Available The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

  13. Surface-enhanced Raman scattering: effective optical constants for electric field modelling of nanostructured Ag films

    Science.gov (United States)

    Perera, M. Nilusha M. N.; Schmidt, Daniel; Gibbs, W. E. Keith; Juodkazis, Saulius; Stoddart, Paul R.

    2016-09-01

    Surface-enhanced Raman scattering (SERS) is drawing increasing interest in fields such as chemical and biomolecular sensing, nanoscale plasmonic engineering and surface science. In addition to the electromagnetic and chemical enhancements in SERS, several studies have reported a "back-side" enhancement when nanostructures are excited through a transparent base rather than directly through air. This additional enhancement has been attributed to a local increase in the electric field for propagation from high to low refractive index media. In this study, Mueller matrix ellipsometry was used to derive the effective optical constants of Ag nanostructures fabricated by thermal evaporation at oblique angles. The results confirm that the effective optical constants of the nanostructured Ag film depart substantially from the bulk properties. Detailed analysis suggests that the optical constants of the nano-island Ag structures exhibit uniaxial optical properties with the optical axis inclined from the substrate normal towards the deposition direction of the vapour flux. The substrates were functionalized with thiophenol and used to measure the wavelength dependence of the additional SERS signal. Further, a model based on the Fresnel equations was developed, using the Ag film optical constants and thickness as determined by ellipsometry. Both experimental data and the model show a significant additional enhancement in the back-side SERS, blue shifted from the plasmon resonance of the nanostructures. This information will be useful for a range of applications where it is necessary to understand the effective optical behaviour of thin films and in designing miniaturized optical fibre sensors for remote sensing applications.

  14. Nanostructure growth by helium plasma irradiation to tungsten in sputtering regime

    Energy Technology Data Exchange (ETDEWEB)

    Noiri, Y., E-mail: noiri-yasuyuki13@ees.nagoya-u.ac.jp [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kajita, S., E-mail: kajita@ees.nagoya-u.ac.jp [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2015-08-15

    The formation of nanostructure on tungsten (W) surface due to Helium (He) plasma irradiation can be harmful for fusion reactors. Up to now, W nanostructure growth was investigated mainly without sputtering. Under sputtering regime, nanostructure growth competes with erosion due to sputtering. In this study, the nanostructure growth was investigated in the linear divertor simulator NAGDIS-II at incident ion energy range of 200–500 eV. The growth of nanostructures was investigated by experiments and calculations under the sputtering regime. With increasing incident ion energy, the thickness of nanostructured W layer saturated rapidly at a lower He fluence, resulting in thinner W nanostructured layer. The erosion rate of the top of the W nanostructured layer was obtained from the comparison with the numerical calculation.

  15. Improve oxidation resistance at high temperature by nanocrystalline surface layer.

    Science.gov (United States)

    Xia, Z X; Zhang, C; Huang, X F; Liu, W B; Yang, Z G

    2015-08-13

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  16. MAO-derived hydroxyapatite/TiO2 nanostructured multi-layer coatings on titanium substrate

    Science.gov (United States)

    Abbasi, S.; Golestani-Fard, F.; Rezaie, H. R.; Mirhosseini, S. M. M.

    2012-11-01

    In this study, titanium substrates which previously oxidized through Micro arc oxidation method, was coated by Hydroxyapatite (HAp) coating once more by means of the same method. Morphology, topography and chemical properties as well as phase composition and thickness of layers were studied to reveal the effect of the electrolyte concentration on coating features. According to results, the obtained coatings are consisted of HAp and titania as the major phases along with minor amounts of calcium titanate and α-tri calcium phosphate. Ca and P are present on surface of obtained layers as well as predictable Ti and O based on the XPS results. Thickness profile of coatings figured out that by increasing the electrolyte concentration, especially by addition of more Calcium Acetate (CA) to electrolyte, the thickness of HAp layer would rise, consequently. However, the influence of coating time on thickness of obtained coatings would be more considerable than electrolyte concentration. High specific area coatings with nest morphology were obtained in Electrolyte containing 5 g/L β-Glycero Phosphate (β-GP) and 5 g/L CA. Increasing coating duration time in this kind of coatings would cause deduction of the nesting in their structure.

  17. Organic depth profiling of a nanostructured delta layer reference material using large argon cluster ions.

    Science.gov (United States)

    Lee, J L S; Ninomiya, S; Matsuo, J; Gilmore, I S; Seah, M P; Shard, A G

    2010-01-01

    Cluster ion beams have revolutionized the analysis of organic surfaces in time-of-flight secondary ion mass spectrometry and opened up new capabilities for organic depth profiling. Much effort has been devoted to understanding the capabilities and improving the performance of SF(5)(+) and C(60)(n+), which are successful for many, but not all, organic materials. Here, we explore the potential of organic depth profiling using novel argon cluster ions, Ar(500)(+) to Ar(1000)(+). We present results for an organic delta layer reference sample, consisting of ultrathin "delta" layers of Irganox 3114 (approximately 2.4 nm) embedded between thick layers of Irganox 1010 (approximately 46 or 91 nm). This indicates that, for the reference material, major benefits can be obtained with Ar cluster ions, including a constant high sputtering yield throughout a depth of approximately 390 nm, and an extremely low sputter-induced roughness of <5 nm. Although the depth resolution is currently limited by an instrumental artifact, and may not be the best attainable, these initial results strongly indicate the potential to achieve high depth resolution and suggest that Ar cluster ions may have a major role to play in the depth profiling of organic materials.

  18. Observation of free surface-induced bending upon nanopatterning of ultrathin strained silicon layer

    Energy Technology Data Exchange (ETDEWEB)

    Moutanabbir, Oussama; Reiche, Manfred; Zakharov, Nikolai [Max Planck Institute of Microstructure Physics, Weinberg 2, Halle (Saale), 06120 (Germany); Naumann, Falk; Petzold, Matthias, E-mail: moutanab@mpi-halle.mpg.de [Fraunhofer Institute for Mechanics of Materials, Walter-Huelse-Strasse 1, Halle (Saale), 06120 (Germany)

    2011-01-28

    We provide evidence of nanopatterning-induced bending of an ultrathin tensile strained silicon layer directly on oxide. This strained layer is achieved through the epitaxial growth of silicon on a Si{sub 0.84}Ge{sub 0.16} virtual substrate and subsequent transfer onto a SiO{sub 2}-capped silicon substrate by combining hydrophilic wafer bonding and the ion-cut process. Using high resolution transmission electron microscopy, we found that the upper face of the strained silicon nanostructures fabricated from the obtained heterostructure using electron beam lithography and dry reactive ion etching displays a concave shape. This bending results from the free-surface-induced strain relaxation, which implies lattice out-of-plane expansion near the edges and concomitant contraction at the center. For a {approx} 110 nm x 400 nm x 20 nm nanostructure, the bending is associated with an angle of 1.5 deg. between the (22-bar) vertical atomic planes at the edges of the {approx} 110 nm side. No bending is, however, observed at the strained Si/SiO{sub 2} interface. This phenomenon cannot be explained by the classical Stoney's formula or related formulations developed for nanoscale thin films. Here we employed a continuum mechanical approach to describe these observations using three-dimensional numerical calculations of relaxation-induced lattice displacements.

  19. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface.

    Science.gov (United States)

    Wang, Guocheng; Meng, Fanhao; Ding, Chuanxian; Chu, Paul K; Liu, Xuanyong

    2010-03-01

    A monoclinic zirconia coating with a nanostructural surface was prepared on the Ti-6Al-4V substrate by an atmospheric plasma-spraying technique, and its microstructure and composition, as well as mechanical and biological properties, were investigated to explore potential application as a bioactive coating on bone implants. X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Raman spectroscopy revealed that the zirconia coating was composed of monoclinic zirconia which was stable at low temperature, and its surface consists of nano-size grains 30-50 nm in size. The bond strength between the coating and the Ti-6Al-4V substrate was 48.4 + or - 6.1 MPa, which is higher than that of plasma-sprayed HA coatings. Hydrothermal experiments indicated that the coating was stable in a water environment and the phase composition and Vickers hardness were independent of the hydrothermal treatment time. Bone-like apatite is observed to precipitate on the surface of the coating after soaking in simulated body fluid for 6 days, indicating excellent bioactivity in vitro. The nanostructured surface composed of monoclinic zirconia is believed to be crucial to its bioactivity. Morphological observation and the cell proliferation test demonstrated that osteoblast-like MG63 cells could attach to, adhere to and proliferate well on the surface of the monoclinic zirconia coating, suggesting possible applications in hard tissue replacements.

  20. Local electric field and configuration of CO molecules adsorbed on a nanostructured surface with nanocones

    Institute of Scientific and Technical Information of China (English)

    You Rong-Yi; Huang Xiao-Jing

    2009-01-01

    Based on the nanostructured surface model that the (platinum,Pt) nanocones grow out symmetrically from a plane substrate,the local electric field near the conical nanoparticle surface is computed and discussed. On the basis of these results,the adsorbed CO molecules are modelled as dipoles,and three kinds of interactions,I.e. Interactions between dipoles and local electric field,between dipoles and dipoles,as well as between dipoles and nanostructured substrate,are taken into account. The spatial configuration of CO molecules adsorbed on the nanocone surface is then given by Monte-Carlo simulation. Our results show that the CO molecules adsorbed on the nanocone surface cause local agglomeration under the action of an external electric field,and this agglomeration becomes more compact with decreasing conical angle,which results in a stronger interaction among molecules. These results serve as a basis for explaining abnormal phenomena such as the abnormal infrared effect (AIRE),which was found when CO molecules were adsorbed on the nancetructured transition-metal surface.

  1. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Abel, B.; Aslan, K. [Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251 (United States)

    2012-11-15

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization, where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Colonization by Staphylococcus aureus of Nano-Structured Fluorinated Surfaces, Formed by Different Methods of Ion-Plasma Technology.

    Science.gov (United States)

    Elinson, V M; Didenko, L V; Shevlyagina, N V; Avtandilov, G A; Gaidarova, A Kh; Lyamin, A N

    2016-11-01

    Colonization of fluorinated surfaces produced by ion-plasma technology by Staphylococcus aureus was studied by scanning electron microscopy and surface energy analysis. It was shown that the intensity of colonization was determined by the surface relief and fluorine content. Formation of nanostructured surfaces accompanied by a sharp decrease in the surface energy prevented adhesion of Staphylococcus aureus cells to the fluorine-containing surface.

  3. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan Christian

    2005-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soil-structure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  4. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan

    2007-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soilstructure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  5. Turbulent Boundary Layer Flow over Superhydrophobic Surfaces

    Science.gov (United States)

    2013-05-10

    Figure 1 were a highly viscous fluid, such as honey , the boundary layer would be thick while if the fluid were water, a low-viscosity fluid, the boundary...drag has become even more important. In response to this need, and with the benefit of modern technology, the drag-reduction field is replete with...manufactured with “riblets,” small ridges on the order of fractions of millimeters, built-into the hull or skin that seek to reduce frictional drag. The

  6. High-Performance Fully Nanostructured Photodetector with Single-Crystalline CdS Nanotubes as Active Layer and Very Long Ag Nanowires as Transparent Electrodes.

    Science.gov (United States)

    An, Qinwei; Meng, Xianquan; Sun, Pan

    2015-10-21

    Long and single-crystalline CdS nanotubes (NTs) have been prepared via a physical evaporation process. A metal-semiconductor-metal full-nanostructured photodetector with CdS NTs as active layer and Ag nanowires (NWs) of low resistivity and high transmissivity as electrodes has been fabricated and characterized. The CdS NTs-based photodetectors exhibit high performance, such as lowest dark currents (0.19 nA) and high photoresponse ratio (Ilight/Idark ≈ 4016) (among CdS nanostructure network photodetectors and NTs netwok photodetectors reported so far) and very low operation voltages (0.5 V). The photoconduction mechanism, including the formation of a Schottky barrier at the interface of Ag NW and CdS NTs and the effect of oxygen adsorption process on the Schottky barrier has also been provided in detail based on the studies of CdS NTs photodetector in air and vacuum. Furthermore, CdS NTs photodetector exhibits an enhanced photosensitivity as compared with CdS NWs photodetector. The enhancement in performance is dependent on the larger surface area of NTs adsorbing more oxygen in air and the microcavity structure of NTs with higher light absorption efficiency and external quantum efficiency. It is believed that CdS NTs can potentially be useful in the designs of 1D CdS-based optoelectronic devices and solar cells.

  7. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    Science.gov (United States)

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  8. Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering

    Science.gov (United States)

    Saprykina, N. A.; Saprykin, A. A.; Ibragimov, E. A.; Arkhipova, D. A.

    2016-07-01

    The paper presents data on state of the art in selective laser sintering of products. Layer-by-layer sintering is shown to be a future-oriented technology, making it possible to synthesize products of metal powder materials. Factors, influencing the quality of a sintered product, are revealed in the paper. It presents outcomes of experiments, focused on the dependence of surface layer thickness of sintered aluminum powder PA-4 on laser processing conditions. Basic factors, influencing the quality of a sintered surface layer include laser power, speeds of scanning and moving the laser beam on the layer of powder. Thickness of the sintered layer varies from 0.74 to 1.55 mm, as the result of changing the laser processing conditions.

  9. Nanoscale Surface Modification of Layered Materials

    Science.gov (United States)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  10. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    Surface layer temperature inversion in the south eastern Arabian Sea, during winter has been studied using Bathythermograph data collected from 1132 stations. It is found that the inversion in this area is a stable seasonal feature...

  11. Effects of stratification on an ocean surface Ekman layer

    Science.gov (United States)

    Pham, Hieu; Sarkar, Sutanu

    2014-11-01

    Large-eddy simulations are used to investigate the effects of stratification on structural and turbulent dynamics of an upper-ocean Ekman layer that is driven by a constant wind stress (friction velocity u*) at low latitude with Coriolis parameter f. The surface layer evolves in the presence of interior stratification whose buoyancy frequency varies among cases, taking three values: N / f = 19 , 60 and 192. At quasi-steady state, a stratified turbulent Ekman layer forms with a surface current veering to the right of the wind direction. The thickness of the Ekman layer decreases with increasing N and is found to scale with u*, f, and N, similar to the neutral atmospheric boundary layer of Zilitinkevich & Esau (2002) that is capped by a stratified layer with buoyancy frequency, N. As N increases, the speed of the Ekman current increases but the Ekman transport is invariant. The surface veering angle also increases with larger N. The shear rate and buoyancy frequency are elevated at the base of the Ekman layer. The peak of down-wind Reynolds stress occurs near the surface and scales with u*2 in all cases while the peak of cross-wind Reynolds stress occurs in the middle of the Ekman layer and decreases with increasing N.

  12. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under...

  13. Atomic-layer electroless deposition: a scalable approach to surface-modified metal powders.

    Science.gov (United States)

    Cappillino, Patrick J; Sugar, Joshua D; El Gabaly, Farid; Cai, Trevor Y; Liu, Zhi; Stickney, John L; Robinson, David B

    2014-04-29

    Palladium has a number of important applications in energy and catalysis in which there is evidence that surface modification leads to enhanced properties. A strategy for preparing such materials is needed that combines the properties of (i) scalability (especially on high-surface-area substrates, e.g. powders); (ii) uniform deposition, even on substrates with complex, three-dimensional features; and (iii) low-temperature processing conditions that preserve nanopores and other nanostructures. Presented herein is a method that exhibits these properties and makes use of benign reagents without the use of specialized equipment. By exposing Pd powder to dilute hydrogen in nitrogen gas, sacrificial surface PdH is formed along with a controlled amount of dilute interstitial hydride. The lattice expansion that occurs in Pd under higher H2 partial pressures is avoided. Once the flow of reagent gas is terminated, addition of metal salts facilitates controlled, electroless deposition of an overlayer of subnanometer thickness. This process can be cycled to create thicker layers. The approach is carried out under ambient processing conditions, which is an advantage over some forms of atomic layer deposition. The hydride-mediated reaction is electroless in that it has no need for connection to an external source of electrical current and is thus amenable to deposition on high-surface-area substrates having rich, nanoscale topography as well as on insulator-supported catalyst particles. STEM-EDS measurements show that conformal Rh and Pt surface layers can be formed on Pd powder with this method. A growth model based on energy-resolved XPS depth profiling of Rh-modified Pd powder is in general agreement. After two cycles, deposits are consistent with 70-80% coverage and a surface layer with a thickness from 4 to 8 Å.

  14. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope

    Science.gov (United States)

    Zhao, X. S.; Geng, Y. Q.; Li, W. B.; Yan, Y. D.; Hu, Z. J.; Sun, T.; Liang, Y. C.; Dong, S.

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  15. Local surface potential of π-conjugated nanostructures by Kelvin probe force microscopy: effect of the sampling depth.

    Science.gov (United States)

    Liscio, Andrea; Palermo, Vincenzo; Fenwick, Oliver; Braun, Slawomir; Müllen, Klaus; Fahlman, Mats; Cacialli, Franco; Samorí, Paolo

    2011-03-01

    Kelvin probe force microscopy (KPFM) is usually applied to map the local surface potential of nanostructured materials at surfaces and interfaces. KPFM is commonly defined as a 'surface technique', even if this assumption is not fully justified. However, a quantification of the surface sensitivity of this technique is crucial to explore electrical properties at the nanoscale. Here a versatile 3D model is presented which provides a quantitative explanation of KPFM results, taking into account the vertical structure of the sample. The model is tested on nanostructured films obtained from two relevant semiconducting systems for field-effect transistor and solar cell applications showing different interfacial properties, i.e., poly(3-hexylthiophene) (P3HT) and perylene-bis-dicarboximide (PDI). These findings are especially important since they enable quantitative determination of the local surface potential of conjugated nanostructures, and thereby pave the way towards optimization of the electronic properties of nanoscale architectures for organic electronic applications.

  16. Accumulation-layer surface plasmons in transparent conductive oxides.

    Science.gov (United States)

    Fardad, Shima; Alexander Ramos, E; Salandrino, Alessandro

    2017-05-15

    A rigorous analytical study of the eigenmodes supported by a charge accumulation layer within a transparent conductive oxide (TCO) is presented. The new class of surface plasmons termed accumulation-layer surface plasmons (ASPs) is introduced. Near resonance ASPs are tightly bound and display a vast effective index tunability that could be of great practical interest. The suppression of ASPs in the presence of epsilon-near zero regions is discussed.

  17. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

    Science.gov (United States)

    Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2016-06-01

    Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.

  18. Surface-Functionalization of Nanostructured Cellulose Aerogels by Solid State Eumelanin Coating.

    Science.gov (United States)

    Panzella, Lucia; Melone, Lucio; Pezzella, Alessandro; Rossi, Bianca; Pastori, Nadia; Perfetti, Marco; D'Errico, Gerardino; Punta, Carlo; d'Ischia, Marco

    2016-02-08

    Bioinspired aerogel functionalization by surface modification and coating is in high demand for biomedical and technological applications. In this paper, we report an expedient three-step entry to all-natural surface-functionalized nanostructured aerogels based on (a) TEMPO/NaClO promoted synthesis of cellulose nanofibers (TOCNF); (b) freeze-drying for aerogel preparation; and (c) surface coating with a eumelanin thin film by ammonia-induced solid state polymerization (AISSP) of 5,6-dihydroxyindole (DHI) or 5,6-dihydroxyindole-2-carboxylic acid (DHICA) previously deposited from an organic solution. Scanning electron microscopy showed uniform deposition of the dark eumelanin coating on the template surface without affecting porosity, whereas solid state (13)C NMR and electron paramagnetic resonance (EPR) spectroscopy confirmed the eumelanin-type character of the coatings. DHI melanin coating was found to confer to TOCNF templates a potent antioxidant activity, as tested by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays as well as strong dye adsorption capacity, as tested on methylene blue. The unprecedented combination of nanostructured cellulose and eumelanin thin films disclosed herein implements an original all-natural multifunctional aerogel biomaterial realized via an innovative coating methodology.

  19. Turbulence Structure of the Unstable Atmospheric Surface Layer and Transition to the Outer Layer

    Science.gov (United States)

    McNaughton, K. G.

    We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, which then creates a second ejection that is similar to, but larger than, the first. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures. Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. In an extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to the fundamental hypothesis of Monin--Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and are severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer. When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surface layer, zs, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer. It is zs = u* 3ks, where u*s friction velocity, k is the von Káán constant and s is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer. This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower

  20. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors.

    Science.gov (United States)

    Wen, Yanli; Pei, Hao; Wan, Ying; Su, Yan; Huang, Qing; Song, Shiping; Fan, Chunhai

    2011-10-01

    The sensitivity of aptamer-based electrochemical sensors is often limited by restricted target accessibility and surface-induced perturbation of the aptamer structure, which arise from imperfect packing of probes on the heterogeneous and locally crowded surface. In this study, we have developed an ultrasensitive and highly selective electrochemical aptamer-based cocaine sensor (EACS), based on a DNA nanotechnology-based sensing platform. We have found that the electrode surface decorated with an aptamer probe-pendant tetrahedral DNA nanostructure greatly facilitates cocaine-induced fusion of the split anticocaine aptamer. This novel design leads to a sensitive cocaine sensor with a remarkably low detection limit of 33 nM. It is also important that the tetrahedra-decorated surface is protein-resistant, which not only suits the enzyme-based signal amplification scheme employed in this work, but ensures high selectivity of this sensor when deployed in sera or other adulterated samples.

  1. Synthesis and characterization of large specific surface area nanostructured amorphous silica materials.

    Science.gov (United States)

    Marquez-Linares, Francisco; Roque-Malherbe, Rolando M A

    2006-04-01

    Large specific surface area materials attract wide attention because of their applications in adsorption, catalysis, and nanotechnology. In the present study, we describe the synthesis and characterization of nanostructured amorphous silica materials. These materials were obtained by means of a modification of the Stobe-Fink-Bohn (SFB) method. The morphology and essential features of the synthesized materials have been studied using an automated surface area and pore size analyzer and scanning electron microscopy. The existence of a micro/mesoporous structure in the obtained materials has been established. It was also found that the obtained particle packing materials show large specific surface area up to 1,600 m2/g. (To our best knowledge, there is no any reported amorphous silica material with such a higher specific surface area.) The obtained materials could be useful in the manufacture of adsorbents, catalyst supports, and other nanotechnological applications.

  2. Focused ion beam nano-structuring of $Al_2O_3$ dielectric layers for photonic applications

    NARCIS (Netherlands)

    Ay, Feridun; Bradley, Jonathan D.B.; Hopman, Wico C.L.; Gadgil, Vishwas J.; Ridder, de René M.; Wörhoff, Kerstin; Pollnau, Markus

    2007-01-01

    In order to enable full integration of active integrated optical components based on Si-technology, high quality micro- and nano-structuring processes aiming at the development of on-chip resonator structures are to be achieved. By optimizing focused ion beam milling parameters such as ion current,

  3. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Liu, Bin, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn; Zhang, Rong, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn; Xie, Zili; Zhuang, Zhe; Dai, JiangPing; Tao, Tao; Zhi, Ting; Zhang, Guogang; Chen, Peng; Ren, Fangfang; Zhao, Hong; Zheng, Youdou [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People' s Republic of China and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-04-21

    Surface-plasmon (SP) coupled red light emitting InGaN/GaN multiple quantum well (MQW) structure is fabricated and investigated. The centre wavelength of 5-period InGaN/GaN MQW structure is about 620 nm. The intensity of photoluminescence (PL) for InGaN QW with naked Ag nano-structures (NS) is only slightly increased due to the oxidation of Ag NS as compared to that for the InGaN QW. However, InGaN QW with Ag NS/SiO{sub 2} structure can evidently enhance the emission efficiency due to the elimination of surface oxide layer of Ag NS. With increasing the laser excitation power, the PL intensity is enhanced by 25%–53% as compared to that for the SiO{sub 2} coating InGaN QW. The steady-state electric field distribution obtained by the three-dimensional finite-difference time-domain method is different for both structures. The proportion of the field distributed in the Ag NS for the GaN/Ag NS/SiO{sub 2} structure is smaller as compared to that for the GaN/naked Ag NS structure. As a result, the energy loss of localized SP modes for the GaN/naked Ag NS structure will be larger due to the absorption of Ag layer.

  4. Electron field emission characteristics of different surface morphologies of ZnO nanostructures coated on carbon nanotubes.

    Science.gov (United States)

    Li, Kuan-Wei; Lian, Huan-Bin; Cai, Jhen-Hong; Wang, Yao-Te; Lee, Kuei-Yi

    2011-12-01

    The optimal carbon nanotube (CNT) bundles with a hexagonal arrangement were synthesized using thermal chemical vapor deposition (TCVD). To enhance the electron field emission characteristics of the pristine CNTs, the zinc oxide (ZnO) nanostructures coated on CNT bundles using another TCVD technique. Transmission electron microscopy (TEM) images showed that the ZnO nanostructures were grown onto the CNT surface uniformly, and the surface morphology of ZnO nanostructures varied with the distance between the CNT bundle and the zinc acetate. The results of field emissions showed that the ZnO nanostructures grown onto the CNTs could improve the electron field emission characteristics. The enhancement of field emission characteristics was attributed to the increase of emission sites formed by the nanostructures of ZnO grown onto the CNT surface, and each ZnO nanostructure could be regarded as an individual field emission site. In addition, ZnO-coated CNT bundles exhibited a good emission uniformity and stable current density. These results demonstrated that ZnO-coated CNTs is a promising field emitter material.

  5. Self-limiting atomic layer deposition of conformal nanostructured silver films

    Science.gov (United States)

    Golrokhi, Zahra; Chalker, Sophia; Sutcliffe, Christopher J.; Potter, Richard J.

    2016-02-01

    The controlled deposition of ultra-thin conformal silver nanoparticle films is of interest for applications including anti-microbial surfaces, plasmonics, catalysts and sensors. While numerous techniques can produce silver nanoparticles, few are able to produce highly conformal coatings on high aspect ratio surfaces, together with sub-nanometre control and scalability. Here we develop a self-limiting atomic layer deposition (ALD) process for the deposition of conformal metallic silver nanoparticle films. The films have been deposited using direct liquid injection ALD with ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) and propan-1-ol. An ALD temperature window between 123 and 128 °C is identified and within this range self-limiting growth is confirmed with a mass deposition rate of ∼17.5 ng/cm2/cycle. The effects of temperature, precursor dose, co-reactant dose and cycle number on the deposition rate and on the properties of the films have been systematically investigated. Under self-limiting conditions, films are metallic silver with a nano-textured surface topography and nanoparticle size is dependent on the number of ALD cycles. The ALD reaction mechanisms have been elucidated using in-situ quartz crystal microbalance (QCM) measurements, showing chemisorption of the silver precursor, followed by heterogeneous catalytic dehydrogenation of the alcohol to form metallic silver and an aldehyde.

  6. Atomic and molecular layer deposition for surface modification

    Science.gov (United States)

    Vähä-Nissi, Mika; Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas-solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin - even non-uniform - atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid.

  7. GaP ring-like nanostructures on GaAs (100) with In{sub 0.15}Ga{sub 0.85}As compensation layers

    Energy Technology Data Exchange (ETDEWEB)

    Prongjit, Patchareewan, E-mail: rsomchai@chula.ac.th; Pankaow, Naraporn, E-mail: rsomchai@chula.ac.th; Boonpeng, Poonyasiri, E-mail: rsomchai@chula.ac.th; Thainoi, Supachok, E-mail: rsomchai@chula.ac.th; Panyakeow, Somsak, E-mail: rsomchai@chula.ac.th; Ratanathammaphan, Somchai, E-mail: rsomchai@chula.ac.th [Semiconductor Device Research Laboratory (Nanotec Center of Excellence) Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 (Thailand)

    2013-12-04

    We present the fabrication of GaP ring-like nanostructures on GaAs (100) substrates with inserted In{sub 0.15}Ga{sub 0.85}As compensation layers. The samples are grown by droplet epitaxy using solid-source molecular beam epitaxy. The dependency of nanostructural and optical properties of GaP nanostructures on In{sub 0.15}Ga{sub 0.85}As layer thickness is investigated by ex-situ atomic force microscope (AFM) and photoluminescence (PL). It is found that the characteristics of GaP ring-like structures on GaAs strongly depend on the In{sub 0.15}Ga{sub 0.85}As layer thickness.

  8. Dropwise condensation on superhydrophobic nanostructured surfaces: literature review and experimental analysis

    Science.gov (United States)

    Bisetto, A.; Torresin, D.; Tiwari, M. K.; Del, D., Col; Poulikakos, D.

    2014-04-01

    It is well established that the dropwise condensation (DWC) mode can lead up to significant enhancement in heat transfer coefficients as compared to the filmwise mode (FWC). Typically, hydrophobic surfaces are expected to promote DWC, while hydrophilic ones induce FWC. To this end, superhydrophobic surfaces, where a combination of low surface energy and surface texturing is used to enhance the hydrophobicity, have recently been proposed as a promising approach to promote dropwise condensation. An attractive feature of using superhydrophobic surfaces is to facilitate easy roll-off of the droplets as they form during condensation, thus leading to a significant improvement in the heat transfer associated with the condensation process. High droplet mobility can be obtained acting on the surface chemistry, decreasing the surface energy, and on the surface structure, obtaining a micro- or nano- superficial roughness. The first part of this paper will present a literature review of the most relevant works about DWC on superhydrophobic nanotextured substrates, with particular attention on the fabrication processes. In the second part, experimental data about DWC on superhydrophobic nanotextured samples will be analyzed. Particular attention will be paid to the effect of vapour velocity on the heat transfer. Results clearly highlight the excellent potential of nanostructured surfaces for application in flow condensation applications. However, they highlight the need to perform flow condensation experiments at realistic high temperature and saturation conditions in order to evaluate the efficacy of superhydrophobic surfaces for practically relevant pure vapor condensation applications.

  9. Electron and Positron State in Layered Nanostructures «Metal – Insulator»

    Directory of Open Access Journals (Sweden)

    А.V. Babich

    2016-11-01

    Full Text Available Within the framework of modified method of Kohn-Sham and stable jelly model with taking into account image forces and conduction band profiles of the dielectric self-consistent calculations of potential profiles, and the work functions, the Schottky barriers for asymmetric metal dielectric film systems in which insulators on both sides of the metal nanofilms are different were done. Dielectric environment generally leads to negative changes in the electron work function and surface energy. In view of the conduction band of the dielectric (solid inert gases, dimensional effects, the impact of effective mass to energy and positron annihilation characteristics in layered structures with self-consistent hybrid potential profiles, which built in the local density approximation and crosslinked with image potentials were investigated. The possibility of localization of positronium atoms in nanosandvich is discussed. Comparison with the experiments were done.

  10. Nanostructured Surface with Tunable Contact Angle Hysteresis for Constructing In Vitro Tumor Model

    Directory of Open Access Journals (Sweden)

    Kang Sun

    2016-01-01

    Full Text Available Contact angle hysteresis (CAH is an important phenomenon in surface chemistry. In this paper, we fabricated nanostructured substrates and investigated the relationship between roughness and CAH. We demonstrated that by patterning well-tuned CAH in superhydrophobic background, we can pattern droplets with controlled sizes. We further showed that our system could be used in fabricating complex hydrogel architecture, allowing coculture of different types of cells in three-dimensional way. This CAH-based patterning strategy would provide in vitro models for tissue engineering and drug delivery.

  11. Modelling the formation of nanostructures on metal surface induced by femtosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Djouder, M. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Itina, T.E. [Laboratoire Hubert Curien, UMR CNRS 5516/Universite Jean Monnet, 18 rue de Professeur Benoit Lauras, 42000 Saint-Etienne (France); Deghiche, D. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Lamrous, O., E-mail: omarlamrous@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)

    2012-01-15

    We employ the particle-in-cell method to simulate the mechanisms of femtosecond (fs) laser interactions with a metallic target. The theoretical approach considers the solid as a gas of free electrons in a lattice of immobile ions and the laser fluences close to the ablation threshold. At first moments of the interaction, our simulations mapped out different nanostructures. We carefully characterized the rippling phase and found that its morphology is dependent on the distribution of the electron density and the period of the ripples depends on the laser intensity. The simulation method provides new insights into the mechanisms that are responsible for surface grating formation.

  12. Surface functionalization of nanostructured LaB6-coated Poly Trilobal fabric by magnetron sputtering

    Science.gov (United States)

    Wu, Yan; Zhang, Lin; Min, Guanghui; Yu, Huashun; Gao, Binghuan; Liu, Huihui; Xing, Shilong; Pang, Tao

    2016-10-01

    Nanostructured LaB6 films were deposited on flexible Poly Trilobal substrates (PET textiles) through direct current magnetron sputtering in order to broaden its applications and realize surface functionalization of polyester fabrics. Characterizations and performances were investigated by employing a scanning electron microscope (SEM), Fourier transformation infrared spectroscopy (FT-IR) and ultraviolet-visible (UV-vis) spectrophotometer. Ultraviolet Protection Factor (UPF) conducted by the integral conversion was employed to measure the ultraviolet protection ability. As expected, the growth of LaB6 film depending on the pressure variation enhanced UV-blocking ability (UPF rating at 30.17) and absorption intensity of the textiles.

  13. Erosion resistance of Fe-C-Cr weld surfacing layers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fe-C-Cr weld surfacing layers with different compositions and microstructures can be obtained by submerged arc welding with welding wire of the low carbon steel and high alloy bonded flux. With the increase of Cr and C in the layers the microstructures are changed from hypoeutectoid steel, hypereutectoid steel to hypoeutectic iron and hypereutectic iron. When the weld surfacing layers belong to the alloyed cast irons the erosion resistance can be raised with the eutectic increase and the austenite decrease. Good erosion resistance can be obtained when the proportion of the primary carbides is within 10 %. The experimental results lay a foundation to make double-metal percussive plates by surfacing wear resistant layers on the substrates of the low carbon steels.

  14. Nanostructural Formation of Pd-Co Bimetallic Complex on HOPG Surfaces: XPS and AFM Studies

    Directory of Open Access Journals (Sweden)

    Lisandra Arroyo-Ramírez

    2009-01-01

    Full Text Available A new single source approach was developed to synthesize Pd-Co nanoparticles using a bimetallic compound, [Et3NH]2[CoPd2(μ-4-I-3,5-Me2pz4Cl4] (CoPd2, as a molecular precursor to obtain dispersed catalyst on highly ordered pyrolytic graphite (HOPG surface, in view of preparing oxygen reduction catalysts for low temperature fuel cells. X-ray photoelectron spectroscopy (XPS and atomic force microscopy (AFM techniques were employed to characterize the nanostructure formations and to determine the composition and morphology of the complex on the HOPG. Results of high resolution XPS analysis (HR-XPS revealed the binding energies corresponding to the atomic constituents of the precursor. When the precursor solution was placed on the surface of the HOPG, the bimetallic complex assumes a tubular structure and it appears that the surface of the HOPG offers a ground for the self-organization of nanostructural formations.

  15. Rayleigh surface waves, phonon mode conversion, and thermal transport in nanostructures

    Science.gov (United States)

    Maurer, Leon; Knezevic, Irena

    We study the effects of phonon mode conversion and Rayleigh (surface) waves on thermal transport in nanostructures. We present a technique to calculate thermal conductivity in the elastic-solid approximation: a finite-difference time-domain (FDTD) solution of the elastic or scalar wave equations combined with the Green-Kubo formula. The technique is similar to an equilibrium molecular dynamics simulation, captures phonon wave behavior, and scales well to nanostructures that are too large to simulate with many other techniques. By imposing fixed or free boundary conditions, we can selectively turn off mode conversion and Rayleigh waves to study their effects. In the example case of graphenelike nanoribbons with rough edges, we find that mode conversion among bulk modes has little effect on thermal transport, but that conversion between bulk and Rayleigh waves can significantly reduce thermal conductivity. With increasing surface disorder, Rayleigh waves readily become trapped by the disorder and draw energy away from the propagating bulk modes, which lowers thermal conductivity. We discuss the implications on the accuracy of popular phonon-surface scattering models that stem from scalar wave equations and cannot capture mode conversion to Rayleigh waves.

  16. Nanosecond laser nanostructuring of fused silica surfaces assisted by a chromium triangle template

    Science.gov (United States)

    Lorenz, P.; Grüner, C.; Frost, F.; Ehrhardt, M.; Zimmer, K.

    2017-10-01

    The well-reproducible, fast and cost-effective nanostructuring is a big challenge for laser methods. The laser nanostructuring of fused silica assisted by chromium nanotriangles was studied using a KrF excimer laser (λ = 248 nm, Δtp = 25 ns, top hat beam profile). Therefore, a fused silica substrate was covered with periodically ordered polystyrene (PS) spheres with a diameter of 1.59 μm. Subsequently, this system was covered with 30 nm chromium by electron beam evaporation. Afterwards the PS spheres were removed and the bare and resultant periodic Cr triangles were irradiated. The laser irradiation with high laser fluences resulted in a removal of the chromium and in localized modifications of the fused silica like a localized ablation of the fused silica. The resultant structures were studied by scanning electron (SEM) and atomic force microscopy (AFM) as well as the surface composition was analysed by energy-dispersive X-ray spectroscopy (EDX). The laser process allows the production of well-defined periodic hole structures into the fused silica surface where the resultant surface structure depends on the laser parameters. The multi-pulse irradiation of the Cr/SiO2 sample with moderate laser fluences (Φ ∼ 650 mJ/cm2) allows the fabrication of periodic pyramidal-like structures (depth Δz = 130 nm).

  17. TEM and AES investigations of the natural surface nano-oxide layer of an AISI 316L stainless steel microfibre.

    Science.gov (United States)

    Ramachandran, Dhanya; Egoavil, Ricardo; Crabbe, Amandine; Hauffman, Tom; Abakumov, Artem; Verbeeck, Johan; Vandendael, Isabelle; Terryn, Herman; Schryvers, Dominique

    2016-11-01

    The chemical composition, nanostructure and electronic structure of nanosized oxide scales naturally formed on the surface of AISI 316L stainless steel microfibres used for strengthening of composite materials have been characterised using a combination of scanning and transmission electron microscopy with energy-dispersive X-ray, electron energy loss and Auger spectroscopy. The analysis reveals the presence of three sublayers within the total surface oxide scale of 5.0-6.7 nm thick: an outer oxide layer rich in a mixture of FeO.Fe2 O3 , an intermediate layer rich in Cr2 O3 with a mixture of FeO.Fe2 O3 and an inner oxide layer rich in nickel.

  18. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.

    Science.gov (United States)

    Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad

    2016-08-09

    Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° distribution theory is incorporated to show that previous modeling approaches underpredict the overall heat transfer by as much as 300% for dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.

  19. Surface Morphology and Tooth Adhesion of a Novel Nanostructured Dental Restorative Composite

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2016-03-01

    Full Text Available Recently, a novel dental restorative composite based on nanostructured micro-fillers of anodic porous alumina has been proposed. While its bulk properties are promising thanks to decreased aging and drug delivery capabilities, its surface properties are still unknown. Here we investigated the surface morphology and the adhesion to tooth dentin of this composite as prepared. For comparison, we used two commercial composites: Tetric EVO Flow (Ivoclar and Enamel HRi Plus (Micerium. The surface morphology was characterized by atomic force microscopy and the adhesion strength by tensile tests. The experimental composite is rougher than the commercial composites, with root mean square roughness of ~549 nm against 170–511 nm, and presents an adhesion strength of ~15 MPa against 19–21 MPa. These results show at the same time some proximity to the commercial composites, but also the need for optimization of the experimental material formulation.

  20. Systematic study on visible light collimation by nanostructured slits in the metal surface

    Institute of Scientific and Technical Information of China (English)

    Fu Jin-Xin; Hua Yi-Lei; Chen Yu-Hui; Liu Rong-Juan; Li Jia-Fang; Li Zhi-Yuan

    2011-01-01

    We present a systematic experimental investigation on visible light collimation by a nanostructured slit flanked with a pair of periodic array of grooves in gold thin film. A wide variety of aspects are considered, such as the polarization state, the transport path of incident light, the groove-groove spacing, the groove width and depth. Our results clearly show that the relationship between the collimation wavelength and the periodicity of the slit-groove structure accords well with the surface plasmon dispersion model proposed by previous researchers. Furthermore, the surface plasmon wave phase retardation effect induced by the surface structure is also verified via the measurement for samples with different groove widths and depths. These results indicate that the detailed geometry of the groove structure has obvious impacts on the collimation effect and the angular distribution of the diffraction light in the subwavelength plasmonic system.

  1. Nanostructured graded-index antireflection layer formation on GaN for enhancing light extraction from light-emitting diodes

    Science.gov (United States)

    Dylewicz, R.; Khokhar, A. Z.; Wasielewski, R.; Mazur, P.; Rahman, F.

    2012-05-01

    We describe the fabrication and characterization of a randomly etched gallium nitride (GaN) surface for enhancing light extraction from light-emitting diodes. Our technique uses silica spheres as nano-targets in a sputter-etch process and produces a fine-grained surface with features around 35 nm. The textured surface layer acts as a graded refractive index layer with antireflection properties. Measurements show that photoluminescence intensity from such treated surfaces on a GaN LED wafer increases 2.2 times over that from pristine surfaces. These findings are also supported by computer modelling studies described here.

  2. Surface structural, morphological, and catalytic studies of homogeneously dispersed anisotropic Ag nanostructures within mesoporous silica

    Science.gov (United States)

    Sareen, Shweta; Mutreja, Vishal; Pal, Bonamali; Singh, Satnam

    2016-11-01

    Highly dispersed anisotropic Ag nanostructures were synthesized within the channels of 3-aminopropyltrimethoxysilane (APTMS)-modified mesoporous SBA-15 for catalyzing the reduction of p-dinitrobenzene, p-nitrophenol, and p-nitroacetophenone, respectively. A green templating process without involving any reducing agent, by varying the amount (1-10 wt.%) of Ag loading followed by calcination at 350 °C under H2 led to change in the morphology of Ag nanoparticles from nanospheres ( 7-8 nm) to nanorods (aspect ratio 12-30 nm) without any deformation in mesoporous sieves. In comparison to white bare SBA-15, gray-colored samples were formed with Ag impregnation exhibiting absorption bands at 484 and 840 nm indicating the formation of anisotropic Ag nanostructures within mesoporous matrix. TEM and FE-SEM micrographs confirmed the presence of evenly dispersed Ag nanostructures within as well as on the surface of mesoporous matrix. AFM studies indicated a small decrease in the average roughness of SBA-15 from 20.59 to 19.21 nm for 4 wt.% Ag/m-SBA-15, illustrating the encapsulation of majority of Ag nanoparticles in the siliceous matrix and presence of small amount of Ag nanoparticles on the mesoporous support. Moreover, due to plugging of mesopores with Ag, a significant decrease in surface area from 680 m2/g of SBA-15 to 385 m2/g was observed. The Ag-impregnated SBA-15 catalyst displayed superior catalytic activity than did bare SBA-15 with 4 wt.% Ag-loaded catalyst exhibiting optimum activity for selective reduction of p-nitrophenol to p-aminophenol (100 %), p-nitroacetophenone to p-aminoacetophenone (100 %), and p-dinitrobenzene to p-nitroaniline (87 %), with a small amount of p-phenylenediamine formation.

  3. Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles.

    Science.gov (United States)

    Trubetskoy, V S; Loomis, A; Hagstrom, J E; Budker, V G; Wolff, J A

    1999-08-01

    DNA can be condensed with an excess of poly-cations in aqueous solutions forming stable particles of submicron size with positive surface charge. This charge surplus can be used to deposit alternating layers of polyanions and polycations on the surface surrounding the core of condensed DNA. Using poly-L-lysine (PLL) and succinylated PLL (SPLL) as polycation and polyanion, respectively, we demonstrated layer-by-layer architecture of the particles. Polyanions with a shorter carboxyl/backbone distance tend to disassemble binary DNA/PLL complexes by displacing DNA while polyanions with a longer carboxyl/backbone distance effectively formed a tertiary complex. The zeta potential of such complexes became negative, indicating effective surface recharging. The charge stoichiometry of the DNA/PLL/SPLL complex was found to be close to 1:1:1, resembling poly-electrolyte complexes layered on macrosurfaces. Recharged particles containing condensed plasmid DNA may find applications as non-viral gene delivery vectors.

  4. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  5. Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface

    Science.gov (United States)

    Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F.

    2017-01-01

    Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium. PMID:28195226

  6. Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface

    Science.gov (United States)

    Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; van Aert, S.; van Tendeloo, G.; Krok, F.

    2017-02-01

    Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.

  7. Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures

    Science.gov (United States)

    Milla, M. J.; Barho, F.; González-Posada, F.; Cerutti, L.; Bomers, M.; Rodriguez, J.-B.; Tournié, E.; Taliercio, T.

    2016-10-01

    We report a detailed analysis of the influence of the doping level and nanoribbon width on the localized surface plasmon resonance (LSPR) by means of reflectance measurements. The plasmonic system, based on one-dimensional periodic gratings of highly Si-doped InAsSb/GaSb semiconductor nanostructures, is fabricated by a simple, accurate and large-area technique fabrication. Increasing the doping level blueshifts the resonance peak while increasing the ribbon width results in a redshift, as confirmed by numerical simulations. This provides an efficient means of fine-tuning the LSPR properties to a target purpose of between 8-20 μm (1250-500 cm-1). Finally, we show surface plasmon resonance sensing to absorbing polymer layers. We address values of the quality factor, sensitivity and figure of merit of 16 700 nm RIU-1 and 2.5, respectively. These results demonstrate Si-doped InAsSb/GaSb to be a low-loss/high sensitive material making it very promising for the development of biosensing devices in the mid-infrared.

  8. Nonlinear vibration of viscoelastic embedded-DWCNTs integrated with piezoelectric layers-conveying viscous fluid considering surface effects

    Science.gov (United States)

    Fereidoon, A.; Andalib, E.; Mirafzal, A.

    2016-07-01

    This article studies the nonlinear vibration of viscoelastic embedded nano-sandwich structures containing of a double walled carbon nanotube (DWCNT) integrated with two piezoelectric Zinc oxide (ZnO) layers. DWCNT and ZnO layers are subjected to magnetic and electric fields, respectively. This system is conveying viscous fluid and the related force is calculated by modified Navier-Stokes relation considering slip boundary condition and Knudsen number. Visco-Pasternak model with three parameters of the Winkler modulus, shear modulus, and damp coefficient is used for simulation of viscoelastic medium. The nano-structure is simulated as an orthotropic Timoshenko beam (TB) and the effects of small scale, structural damping and surface stress are considered based on Eringen's, Kelvin-voigt and Gurtin-Murdoch theories. Energy method and Hamilton's principle are employed to derive motion equations which are then solved using differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of small scale effect, fluid velocity, thickness of piezoelectric layer, boundary condition, surface effects, van der Waals (vdW) force on the frequency and critical velocity of nano-structure. Results indicate that the frequency and critical velocity increases with assume of surface effects.

  9. Formation of the Surface Space Charge Layer in Fair Weather

    Science.gov (United States)

    Redin, Alexander; Kupovykh, Gennady; Boldyreff, Anton

    2014-05-01

    It is widely known that the positive space charge, caused by electrode effect action, is obtained near surface in fair weather. Space charge density depends on the different local features: meteorological conditions, aerosol particles concentration, convective transfer of the surface layer. Namely space charge determines the local variations of electric field. Space charge could be negative in condition of strong ionization rate in thin air layer near surface. The electrodynamic model, consisting of transfer equations of light ions and nucleuses, generated by interactions between lights ions and aerosol particles, and Poisson equation. The turbulent transfer members, electric field near the surface, the mobility of positive and negative ions, recombination coefficient, ionization rate, the number of elementary charges on the nuclei were took into account in the model equations. The time-space variations of positive and negative small and heavy ions, electric field, electrical conductivity, current density and space charge, depending on aerosol particles concentrations, turbulence and convective transfer ionization rate, aerosol particles size and number of charged on the particles are calculated. The mechanisms of turbulent and convection-turbulent surface layer electrodynamic structure forming in dependence of single and multi-charged aerosol particles for different physical and meteorological conditions are investigated. Increasing of turbulent mixing intensity leads to increasing of character electrode layer thickness, decreasing of space charge density value, decreasing of electric current conductivity value. The electrode effect of the whole layer remains constant. Increasing of aerosol particles concentration leads to decreasing of electrode effect within the whole electrode layer and increasing of electric field values, decreasing of space charge density values and current conductivity density. It was received that increasing of the aerosol particles

  10. Laser alloying of the plain carbon steel surface layer

    Directory of Open Access Journals (Sweden)

    A. Radziszewska

    2008-07-01

    Full Text Available As an example of the types of features observed after laser alloying, the addition of Ta to mild carbon steel is described. The system is of interest because such alloying is beneficial in improving surface related properties. The paper describes the microstructure and properties (phase and chemical composition, microhardness of the laser alloyed surface layer. In the investigation the optical microscope, the scanning electron microscope (SEM, chemical (EDS microanalysis composition and microhardness testing methods have been used. Specimens of 0,17 %C plain steel were coated with Ta powder layers. The paints containing organic components were used as the binders during deposition of Ta powder layers on the sample surface. The thickness of Ta deposited layers amounted to 0,16 mm. The specimens were then swept through high power (of nominal power 2,5 kW CW CO2 laser radiation at different speeds.The surface alloyed layers varied in microstructure consisted of fiber like Ta2C + γ eutectics, chemical composition and microhardness. The EDS analyses revealed the enrichment of tantalum in the laser alloyed zone (LAZ. The changes of process parameters had an influence on the hardness of alloyed surface layers: by increasing scanning velocity (from 12 mm/s to 20 mm/s and decreasing laser power (from 1,8 kW to 1,35 kW, the hardness diminished. The wear tests were also carried out which showed that laser alloying of plain carbon steel surface layer led to improvement of their wear resistance.

  11. Method for producing functionally graded nanocrystalline layer on metal surface

    Science.gov (United States)

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  12. Effect of Anti-Sticking Nanostructured Surface Coating on Minimally Invasive Electrosurgical Device in Brain.

    Science.gov (United States)

    Cheng, Han-Yi; Ou, Keng-Liang; Chiang, Hsi-Jen; Lin, Li-Hsiang

    2015-10-01

    The purpose of the present study was to examine the extent of thermal injury in the brain after the use of a minimally invasive electrosurgical device with a nanostructured copper-doped diamond-like carbon (DLC-Cu) surface coating. To effectively utilize an electrosurgical device in clinical surgery, it is important to decrease the thermal injury to the adjacent tissues. The surface characteristics and morphology of DLC-Cu thin film was evaluated using a contact angle goniometer, scanning electron microscopy, and atomic force microscopy. Three-dimensional biomedical brain models were reconstructed using magnetic resonance images to simulate the electrosurgical procedure. Results indicated that the temperature was reduced significantly when a minimally invasive electrosurgical device with a DLC-Cu thin film coating (DLC-Cu-SS) was used. Temperatures decreased with the use of devices with increasing film thickness. Thermographic data revealed that surgical temperatures in an animal model were significantly lower with the DLC-Cu-SS electrosurgical device compared to an untreated device. Furthermore, the DLC-Cu-SS device created a relatively small region of injury and lateral thermal range. As described above, the biomedical nanostructured film reduced excessive thermal injury with the use of a minimally invasive electrosurgical device in the brain.

  13. Atomic and electronic structure of both perfect and nanostructured Ni(111) surfaces: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Piskunov, Sergei, E-mail: piskunov@lu.l [Faculty of Computing, University of Latvia, 19 Raina blvd., Riga LV-1586 (Latvia); Faculty of Physics and Mathematics, University of Latvia, 8 Zellu Str., Riga LV-1002 (Latvia); Zvejnieks, Guntars; Zhukovskii, Yuri F. [Institute for Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga (Latvia); Bellucci, Stefano [INFN-Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Italy)

    2011-03-31

    In this study, we perform first principles simulations on both atomically smooth and nanostructured Ni(111) slabs. The latter contains periodically distributed nickel nanoclusters atop a thin metal film gradually growing from adatoms and serving as a promising catalyst. Applying the generalized gradient approximation within the formalism of the density functional theory we compare the atomic and electronic structures of Ni bulk, as well as both perfect and nanostructured (111) surfaces obtained using two different ab initio approaches: (i) the linear combination of atomic orbitals and (ii) the projector augmented plane waves. The most essential inter-atomic forces between the Ni adatoms upon the substrate have been found to be formed via: (i) attractive pair-wise interactions, (ii) repulsive triple-wise interactions within a triangle and (iii) attractive triple-wise interactions within a line between the nearest adatoms. The attractive interactions surmount the repulsive forces, hence resulting in the formation of stable clusters from Ni adatoms. The magnetic moment and the effective charge (within both Mulliken and Bader approaches) of the outer atoms in Ni nanoparticles increase as compared to those for the smooth Ni(111) surface. The calculated electronic charge redistribution in the Ni nanoclusters features them as possible adsorption centers with increasing catalytic activity, e.g., for further synthesis of carbon nanotubes.

  14. Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver

    KAUST Repository

    Uysal, Ismail E.

    2016-08-09

    Transient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium\\'s permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver. © 2016 Optical Society of America.

  15. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  16. A brilliant sandwich type fluorescent nanostructure incorporating a compact quantum dot layer and versatile silica substrates.

    Science.gov (United States)

    Huang, Liang; Wu, Qiong; Wang, Jing; Foda, Mohamed; Liu, Jiawei; Cai, Kai; Han, Heyou

    2014-03-18

    A "hydrophobic layer in silica" structure was designed to integrate a compact quantum dot (QD) layer with high quantum yield into scalable silica hosts containing desired functionality. This was based on metal affinity driven assembly of hydrophobic QDs with versatile silica substrates and homogeneous encapsulation of organosilica/silica layers.

  17. Surface modes in sheared boundary layers over impedance linings

    Science.gov (United States)

    Brambley, E. J.

    2013-08-01

    Surface modes, being duct modes localized close to the duct wall, are analysed within a lined cylindrical duct with uniform flow apart from a thin boundary layer. As well as full numerical solutions of the Pridmore-Brown equation, simplified mathematical models are given where the duct lining and boundary layer are lumped together and modelled using a single boundary condition (a modification of the Myers boundary condition previously proposed by the author), from which a surface mode dispersion relation is derived. For a given frequency, up to six surface modes are shown to exist, rather than the maximum of four for uniform slipping flow. Not only is the different number and behaviour of surface modes important for frequency-domain mode-matching techniques, which depend on having found all relevant modes during matching, but the thin boundary layer is also shown to lead to different convective and absolute stability than for uniform slipping flow. Numerical examples are given comparing the predictions of the surface mode dispersion relation to full solutions of the Pridmore-Brown equation, and the accuracy with which surface modes are predicted is shown to be significantly increased compared with the uniform slipping flow assumption. The importance of not only the boundary layer thickness but also its profile (tanh or linear) is demonstrated. A Briggs-Bers stability analysis is also performed under the assumption of a mass-spring-damper or Helmholtz resonator impedance model.

  18. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly.

    Science.gov (United States)

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-06-27

    A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu(2+)) has been developed, where organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV-vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA)n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu(2+), much below the guideline value (2.0 mg L(-1), ~31.2 nM) from the World Health Organization (WHO), respectively. Toward the goal for practical applications, this simple and cost-effective probe was further evaluated by monitoring PCP and Cu(II) in water samples.

  19. Light management of tandem solar cells on nanostructured substrates

    Science.gov (United States)

    Chin, Alan H.; Keshavarz, Majid; Wang, Guo; Yu, Rosaline; Niu, Xinwei; Yang, Liyou

    2017-04-01

    We report the use of nanostructured substrates as a simple approach to improve the performance of tandem micromorph silicon solar cells. In the proposed approach, nanostructured substrates are produced using a low-cost, self-assembled growth process. The use of a nanostructured substrate coated with a thick transparent conductive oxide electrode layer enables the conformal deposition of the tandem solar cell absorber layers while allowing the solar cell to exhibit a modified surface morphology caused by the underlying nanostructured morphology. Using this nanostructured substrate approach, we demonstrated a 78% relative enhancement in the conversion efficiency of a tandem micromorph silicon cell on a nanostructured substrate compared to a standard tandem micromorph cell deposited onto a flat substrate.

  20. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Science.gov (United States)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  1. Water content distribution in the surface layer of Maoping slope

    Institute of Scientific and Technical Information of China (English)

    LIU Yuewu; CHEN Huixin; LIU Qingquan; GONG Xin; ZHANG Dawei; LI Lianxiang

    2005-01-01

    The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.

  2. Wetting layer of copper on the tantalum (001) surface

    Science.gov (United States)

    Dupraz, Maxime; Poloni, Roberta; Ratter, Kitti; Rodney, David; De Santis, Maurizio; Gilles, Bruno; Beutier, Guillaume; Verdier, Marc

    2016-12-01

    The heteroepitaxial interface formed by copper deposited onto the tantalum (001) surface is studied by surface x-ray diffraction and ab initio calculations. The analysis of the crystal truncation rods reveals the presence of a wetting layer of copper made of two atomic planes pseudomorphic to the tantalum substrate, with the upper most atomic planes significantly deformed. These findings are in total agreement with the results of density-functional-theory calculations. The presence of the wetting layer confirms a Stranski-Krastanov growth mode and is thought to explain the extremely fast atomic diffusion of copper during the dewetting process in the solid state at high temperature.

  3. Stress distribution and surface instability of an inclined granular layer

    Institute of Scientific and Technical Information of China (English)

    Zheng He-Peng; Jiang Yi-Min; Peng Zheng

    2013-01-01

    Static granular materials may avalanche suddenly under continuous quasi-static drives.This phenomenon,which is important in many engineering applications,can be explained by analyzing the stability of the elastic solutions.We show this for a granular layer driven by its inclination angle in gravity,where the elastic problem can be solved generally and analytically.It is found that a loss of stability may occur only at the free surface of the layer.This result is considered to be relevant for understanding surface avalanches and the flows observed experimentally.

  4. Chromized Layers Produced on Steel Surface by Means of CVD

    Institute of Scientific and Technical Information of China (English)

    KASPRZYCKA Ewa; BOGDA(N)SKI Bogdan; JEZIORSKI Leopold; JASI(N)SKI J(o)zef; TORBUS Roman

    2004-01-01

    Chemical vapour deposition of chromium on the surface of carbon steel has been investigated using a novel CVD method that combines the low cost of pack cementation method with advantages of vacuum technique. The processes have been performed in chromium chlorides atmosphere at a low pressure range from 1 to 800 hPa, the treatment temperature 800 to 950℃. Studies of the layers thickness, the phase composition, Cr, C and Fe depth profiles in diffusion zone have been conducted. The effect of the vacuum level during the process and the process parameters such as time and temperature on layer diffusion growth on the carbon steel surface has been investigated.

  5. Ferromagnetic (Ga,Mn)As layers and nanostructures: control of magnetic anisotropy by strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Wenisch, Jan

    2008-07-01

    This work studies the fundamental connection between lattice strain and magnetic anisotropy in the ferromagnetic semiconductor (Ga,Mn)As. The first chapters provide a general introduction into the material system and a detailed description of the growth process by molecular beam epitaxy. A finite element simulation formalism is developed to model the strain distribution in (Ga,Mn)As nanostructures is introduced and its predictions verified by high-resolution X-ray diffraction methods. The influence of lattice strain on the magnetic anisotropy is explained by an magnetostatic model. A possible device application is described in the closing chapter. (orig.)

  6. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation.

    Science.gov (United States)

    Anderson, David M; Gupta, Maneesh K; Voevodin, Andrey A; Hunter, Chad N; Putnam, Shawn A; Tsukruk, Vladimir V; Fedorov, Andrei G

    2012-04-24

    Controlling coalescence events in a heterogeneous ensemble of condensing droplets on a surface is an outstanding fundamental challenge in surface and interfacial sciences, with a broad practical importance in applications ranging from thermal management of high-performance electronic devices to moisture management in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by achieving favorable dynamics during dropwise condensation; however, the effectiveness of such chemically homogeneous surfaces has been limited because condensing droplets tend to form as pinned Wenzel drops rather than mobile Cassie ones. Here, we introduce an amphiphilic nanostructured surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic regeneration of nucleation sites for small droplets, thus rendering the surface self-rejuvenating. This unique amphiphilic nanointerface generates an arrangement of condensed Wenzel droplets that are fluidically linked by a wetted sublayer, promoting previously unobserved coalescence events where numerous droplets simultaneously merge, without direct contact. Such ensemble coalescences rapidly create fresh nucleation sites, thereby shifting the overall population toward smaller droplets and enhancing the rates of mass and heat transfer during condensation.

  7. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications.

    Science.gov (United States)

    Chen, Jian-Nan; Zhang, Zhen; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-12-01

    A numerical and experimental investigation was conducted to analyze dropwise evaporative cooling of heated surfaces with various wettability characteristics. The surface wettability was tuned by nanostructure modifications. Spray-cooling experiments on these surfaces show that surfaces with better wettability have better heat transfer rate and higher critical heat flux (CHF). Single droplet impingement evaporative cooling of a heated surface was then investigated numerically with various wettability conditions to characterize the effect of contact angle on spray-cooling heat transfer. The volume of fluid (VOF) model with variable-time stepping was used to capture the time-dependent liquid-gas interface motion throughout the computational domain with the kinetic theory model used to predict the evaporation rate at the liquid-gas interface. The numerical results agree with the spray-cooling experiments that dropwise evaporative cooling is much better on surfaces with better wettability because of the better liquid spreading and convection, better liquid-solid contact, and stronger liquid evaporation.

  8. Characterization of nanostructured photosensitive (NiS){sub x}(CdS){sub (1-x)} composite thin films grown by successive ionic layer adsorption and reaction (SILAR) route

    Energy Technology Data Exchange (ETDEWEB)

    Ubale, A.U., E-mail: ashokuu@yahoo.com [Nanostructured Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, Amravati 444604, Maharashtra (India); Bargal, A.N. [Nanostructured Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, Amravati 444604, Maharashtra (India)

    2011-07-15

    Highlights: {yields} Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1 to 0) were deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. {yields} The structural, surface morphological and electrical characterizations of the as deposited and annealed films were studied. {yields} The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature. -- Abstract: Recently ternary semiconductor nanostructured composite materials have attracted the interest of researchers because of their photovoltaic applications. Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1-0) had been deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. As grown and annealed films were characterised by X-ray diffraction, scanning electron microscopy and EDAX to investigate structural and morphological properties. The (NiS){sub x}(CdS){sub (1-x)} films were polycrystalline in nature having mixed phase of rhombohedral and hexagonal crystal structure due to NiS and CdS respectively. The optical and electrical properties of (NiS){sub x}(CdS){sub (1-x)} thin films were studied to determine compsition dependent bandgap, activation energy and photconductivity. The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature.

  9. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho; Cha, Suk Won, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Iui-dong, Yeongtong-gu, Suwon 443-270 (Korea, Republic of); Hong, Soon Wook; Koo, Bongjun; Kim, Young-Beom, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); An, Jihwan [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solid oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.

  10. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications.

    Science.gov (United States)

    Gowda, Sanketh R; Reddy, Arava Leela Mohana; Shaijumon, Manikoth M; Zhan, Xiaobo; Ci, Lijie; Ajayan, Pulickel M

    2011-01-12

    Various three-dimensional (3D) battery architectures have been proposed to address effective power delivery in micro/nanoscale devices and for increasing the stored energy per electrode footprint area. One step toward obtaining 3D configurations in batteries is the formation of core-shell nanowires that combines electrode and electrolyte materials. One of the major challenges however in creating such architectures has been the coating of conformal thin nanolayers of polymer electrolytes around nanostructured electrodes. Here we show conformal coatings of 25-30 nm poly(methyl methacralate) electrolyte layers around individual Ni-Sn nanowires used as anodes for Li ion battery. This configuration shows high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Our results demonstrate conformal nanoscale anode-electrolyte architectures for an efficient Li ion battery system.

  11. Surface functionalization of nanostructured LaB{sub 6}-coated Poly Trilobal fabric by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yan, E-mail: wuyanchn@hotmail.com [Mechanical and Electrical Engineering Branch, Jiaxing Nanyang Polytechnic Institute, Jiaxing 314003 (China); Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Zhang, Lin, E-mail: zhanglin2007@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Min, Guanghui, E-mail: ghmin@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Yu, Huashun; Gao, Binghuan; Liu, Huihui; Xing, Shilong; Pang, Tao [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China)

    2016-10-30

    Highlights: • Nano