WorldWideScience

Sample records for nanosecond-flash 15n photo-cidnp

  1. Biological diversity of photosynthetic reaction centers and the solid-state photo-CIDNP effect

    NARCIS (Netherlands)

    Roy, Esha

    2007-01-01

    Photosynthetic reaction centers (RCs) from plants, heliobacteria and green sulphur bacteria has been investigated with photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR. In photosystem (PS) I of spinach, all signals appear negative which is proposed by a predominance of the

  2. Synthesis of nucleotide–amino acid conjugates designed for photo-CIDNP experiments by a phosphotriester approach

    Directory of Open Access Journals (Sweden)

    Tatyana V. Abramova

    2013-12-01

    Full Text Available Conjugates of 2’-deoxyguanosine, L-tryptophan and benzophenone designed to study pathways of fast radical reactions by the photo Chemically Induced Dynamic Nuclear Polarization (photo-CIDNP method were obtained by the phosphotriester block liquid phase synthesis. The phosphotriester approach to the oligonucleotide synthesis was shown to be a versatile and economic strategy for preparing the required amount of high quality samples of nucleotide–amino acid conjugates.

  3. NMR and photo-CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition

    International Nuclear Information System (INIS)

    Weiss, M.A.; Frank, B.H.; Heiney, R.; Pekar, A.; Khait, I.; Neuringer, L.J.; Shoelson, S.E.

    1990-01-01

    The proinsulin-insulin system provides a general model for the proteolytic processing of polypeptide hormones. Two proinsulin-specific endopeptidases have been defined, a type I activity that cleaves the B-chain/C-peptide junction (Arg 31 -Arg 32 ) and a type II activity that cleaves the C-peptide/A-chain junction (Lys 64 -Arg 65 ). These endopeptidases are specific for their respective dibasic target sites; not all such dibasic sites are cleaved, however, and studies of mutant proinsulins have demonstrated that additional sequence or structural features are involved in determining substrate specificity. To define structural elements required for endopeptidase recognition, the authors have undertaken comparative 1 H NMR and photochemical dynamic nuclear polarization (photo-CIDNP) studies of human proinsulin, insulin, and split proinsulin analogues as models or prohormone processing intermediates. The overall conformation of proinsulin is observed to be similar to that of insulin, and the connecting peptide is largely unstructured. In the 1 H NMR spectrum of proinsulin significant variation is observed in the line widths of insulin-specific amide resonances, reflecting exchange among conformational substrates; similar exchange is observed in insulin and is not damped by the connecting peptide. The aromatic 1 H NMR resonances of proinsulin are assigned by analogy to the spectrum of insulin, and assignments are verified by chemical modification. These results suggest that a stable local structure is formed at the CA junction, which influences insulin-specific packing interactions. They propose that this structure (designated the CA knuckle) provides a recognition element for type II proinsulin endopeptidase

  4. Two-dimensional NMR and photo-CIDNP studies of the insulin monomer: Assignment of aromatic resonances with application to protein folding, structure, and dynamics

    International Nuclear Information System (INIS)

    Weiss, M.A.; Shoelson, S.E.; Nguyen, D.T.; O'Shea, E.; Karplus, M.; Khait, I.; Neuringer, L.J.; Inouye, K.; Frank, B.H.; Beckage, M.

    1989-01-01

    The aromatic 1 H NMR resonances of the insulin monomer are assigned at 500 MHz by comparative studies of chemically modified and genetically altered variants, including a mutant insulin (PheB25 → Leu) associated with diabetes mellitus. The two histidines, three phenylalanines, and four tyrosines are observed to be in distinct local environments; their assignment provides sensitive markers for studies of tertiary structure, protein dynamics, and protein folding. The environments of the tyrosine residues have also been investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) and analyzed in relation to packing constrains in the crystal structures of insulin. Dimerization involving specific B-chain interactions is observed with increasing protein concentration and is shown to depend on temperature, pH, and solvent composition. The differences between proinsulin and mini-proinsulin suggest a structural mechanism for the observation that the fully reduced B29-A1 analogue folds more efficiently than proinsulin to form the correct pattern of disulfide bonds. These results are discussed in relation to molecular mechanics calculations of insulin based on the available crystal structures

  5. 15N-tomatine

    International Nuclear Information System (INIS)

    Elliger, C.A.

    1988-01-01

    A method for preparative isolation of 15 N-tomatine from foliage of tomato plants grown hydroponically with 15 N-containing nutrient salts is described. Extractive workup of plant material gave a crude product which was chromatographed on Sephadex LH-20 to yield pure tomatine. Assay of 15 N content by mass spectrometry showed that isotopic purity was ca. 95%. (author)

  6. The measurement of 15N

    International Nuclear Information System (INIS)

    Fiedler, R.

    1984-01-01

    The use of mass spectrometry and emission spectrometry for the determination of 15 N in stable tracer studies is reviewed. Mass spectrometry has the advantage that more accurate results compared to emission spectrometry are possible. Emission spectrometry, however, is less expensive and only requires samples at least 50 times smaller for analysis. The sample preparation method is similar for both techniques. (U.K.)

  7. Carbohydrate-protein interaction studies by laser photo CIDNP NMR methods

    NARCIS (Netherlands)

    Siebert, HC; Kaptein, R; Beintema, JJ; Soedjanaatmadja, UM; Wright, CS; Rice, A; Kleineidam, RG; Kruse, S; Schauer, R; Pouwels, PJW; Kamerling, JP; Gabius, HJ; Vliegenthart, JFG

    The side chains of tyrosine, tryptophan and histidine are able to produce CIDNP (Chemically Induced Dynamic Nuclear Polarization) signals after laser irradiation in the presence of a suitable radical pair-generating dye. Elicitation of such a response in proteins implies surface accessibility of the

  8. Resolution of the 15N balance enigma?

    International Nuclear Information System (INIS)

    Clough, T.J.; Sherlock, R.R.; Cameron, K.C.; Stevens, R.J.; Laughlin, R.J.; Mueller, C.

    2001-01-01

    The enigma of soil nitrogen balance sheets has been discussed for over 40 years. Many reasons have been considered for the incomplete recovery of 15 N applied to soils, including sampling uncertainty, gaseous N losses from plants, and entrapment of soil gases. The entrapment of soil gases has been well documented for rice paddy and marshy soils but little or no work appears to have been done to determine entrapment in drained pasture soils. In this study 15 N-labelled nitrate was applied to a soil core in a gas-tight glovebox. Water was applied, inducing drainage, which was immediately collected. Dinitrogen and N -2 were determined in the flux through the soil surface, and in the gases released into the glovebox as a result of irrigation or physical destruction of the core. Other components of the N balance were also measured, including soil inorganic-N and organic-N. Quantitative recovery of the applied 15 N was achieved when the experiment was terminated 484 h after the 15 N-labelled material was applied. Nearly 23% of the 15 N was recovered in the glovebox atmosphere as N 2 and N 2 O due to diffusion from the base of the soil core, convective flow after irrigation, and destructive soil sampling. This 15 N would normally be unaccounted for using the sampling methodology typically employed in 15 N recovery experiments. Copyright (2001) CSIRO Publishing

  9. Emission spectroscopic 15N analysis 1985

    International Nuclear Information System (INIS)

    Meier, G.

    1986-01-01

    The state of the art of emission spectroscopic 15 N analysis is demonstrated taking the NOI-6e 15 N analyzer as an example. The analyzer is equipped with a microcomputer to ensure a high operational comfort, computer control, and both data acquisition and data processing. In small amounts of nitrogen-containing substances (10 to 50 μg N 2 ) the 15 N abundance can be very quickly determined in standard discharge tubes or in aqueous ammonium salt solutions with a standard deviation less than 0.6 percent

  10. Synthesis of hydroxylamine-15 N.HCl

    International Nuclear Information System (INIS)

    Baldea, Aurel

    2001-01-01

    15 N labelled hydroxylamine is one of the starting substance for synthesis of labelled oximes. Industrial procedure was chosen to prepare hydroxylamine- 15 N. Sodium nitrite reduced by sodium bisulfite and sulfur dioxide, at temperature of 0-2 deg. C, produces sodium hydroxylamine disulfonate. The reaction mixture is treated with acetone and the resulting acetoxime is distilled. In order to obtain crystalline hydroxylamine hydrochloride, hydrochloric acid is added to the distillate and the solution is evaporated to dryness. The crude product was purified by recristallization, yielding 62-65% of theoretical amount. Labelled ammonium chloride formed as byproduct can be recovered improving 15 N balance. IR spectra is used for chemical analysis and mass spectrometry for isotopic analysis. For this purpose hydroxylamine- 15 N is converted into molecular nitrogen. (author)

  11. 15N tracer techniques in pediatric research

    International Nuclear Information System (INIS)

    Heine, W.; Richter, I.; Plath, C.; Wutzke, K.; Stolpe, H.J.; Tiess, M.; Toewe, J.

    1983-01-01

    The main topics of the review comprise mathematical fundamentals of the determination of N metabolism parameters using the 3-pool method, the value of different 15 N tracer substances for the determination of whole-body protein parameters, the utilization of parenterally applied D-amino acids, studies on the influence of different diets on the N metabolism of premature infants with the 15 N tracer technique, the application of the 15 N-glycine-STH-test for the evaluation of the therapeutic effect of STH in children suffering from hypothalamico-hypophyseal dwarfism, in vivo studies on urea utilization by the infant intestinal flora under various dietary regimens as well as in vitro investigations on the utilization of 15 N-labelled urea and NH 4 Cl, resp., by the intestinal flora

  12. [Studies with 15N-labeled lysine in colostomized hens. 2. 15N excretion in feces].

    Science.gov (United States)

    Gruhn, K; Wiefel, P

    1983-05-01

    Over a period of four days colostomised hens were given 15N-lysine, and the development of 15N-excretion both in the TCA-soluble and the TCA-precipitable fraction of the faeces was measured over eight days. In both fractions the total, lysine, histidine and arginine N and 15N-excess (15N') was determined. The average apparent digestibility of 14N was 81.2% +/- 1.1% and of 15N' 93.2% +/- 0.7%. Labelled N is already excreted in faeces 3 hours after its application. The TCA-precipitable N is less strongly labelled than the TCA-soluble N. During the application of 15N' the labelling in faecal lysine is nearly one power of ten higher than in total N. The atom-% 15N' of the lysine could also be distinctly detected in arginine and histidine. The quotas of the total 15N' in faeces were 3.5% for arginine-15N' and 0.8% for histidine 15N'; 15N' can mainly be detected in the soluble fraction.

  13. Synthesis of 15N-enriched fertilizers. Pt. II. Synthesis of 15N-enriched urea

    International Nuclear Information System (INIS)

    Bondassolli, J.A.; Trivelin, P.C.O.; Mortatti, J.; Victoria, R.L.

    1988-01-01

    The results of studies on the production of 15 N-urea through the reaction between 15 N-enriched anhidrous ammonia, carbon monoxide and sulfur, using hydrogen sulfite as a auto catalizers and methyl alcohol as a liquid reaction medium is presented. The influence of the quantities of reagents on final yield of synthesised urea were studied. Analysis of the cost of 5 Atoms % 15 N-enriched urea were made. (M.A.C.) [pt

  14. 15N in biological nitrogen fixation studies

    International Nuclear Information System (INIS)

    Faust, H.

    1986-05-01

    A bibliography with 298 references on the use of the stable nitrogen isotope 15 N in the research on the biological fixation of dinitrogen is presented. The literature pertaining to this bibliography covers the period from 1975 to the middle of 1985. (author)

  15. Synthesis of organic compounds 15 N enriched

    International Nuclear Information System (INIS)

    Oliveira, Claudineia Raquel de; Bendassolli, Jose Albertino; Prestes, Clelber Vieira; Tavares, Glauco Arnold

    2002-01-01

    The aim of this work was to develop urea- 15 N and glycine- 15 N synthesis for agronomic and biological studies. The production of these compounds was evaluated due to the fact of increasing use of urea, comparing to others solid fertilizers and the importance of glycine in the studies of protein metabolism. A non-conventional method was carried out to synthesize urea. The process involved reaction among Co, NH 3 anidrid and S at low temperature (100 deg C) and of pressure (0,81 mPa) compared to the conventional method. Monolise halets reaction was carried out for glycine synthesis with chloroacetic and ammonia 2 deg C. Both compounds are economic viable, they can be produced at a lower price than the trade market one. (author)

  16. Synthesis of 15N isotope labeled alanine

    International Nuclear Information System (INIS)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant'Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira

    2005-01-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of 15 N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of 15 N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of α-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ( 15 NH 3 aq) was carried out. In order to avoid eventually losses of 15 NH 3 , special cares were adopted, since the production cost is high. Although the acquisition cost of the 13 N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH 3 (aq) being employed. With the establishment of the system for 15 NH 3 recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  17. Resonances in the nuclear reactions 15N + 12C and 15N + 16O

    International Nuclear Information System (INIS)

    Monnehan, G.A.

    1987-06-01

    The reaction 12 C + 15 N have been studied at 15 N beam energies between 30 and 70 MeV. For each reaction, about twelve residual nuclei have been identified through the γ-ray detection method. Excitation functions were obtained for the fusion and peripheral channels. Resonances are seen in the channels containing at least one α particle at energies below 50 MeV. At higher energies, strong structures are observed in the direct reaction channels. The evolution of the fusion cross section is well reproduced by a model based on the statistical desexcitation of the compound nucleus if the discrete states of the residual nuclei are taken into account. The favourable observation of resonant phenomena in 15 N induced reactions can be understood in terms of a small number of channels open to the grazing wave. In the range 50 to 60 MeV, there is a strong coupling between the fusion and the direct reaction channels. The occurrence of resonances above E lab = 50 MeV in the peripheral channels is explained with the band crossing and effective barrier models. In the 15 N induced reactions, the absorption of the surface waves is weak [fr

  18. 15N liver function tests - concept, validity, clinical use

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Krumbiegel, P.; Hirschberg, K.; Reinhardt, R.; Junghans, P.

    1987-01-01

    Several liver function tests using the oral application of a nitrogen compound labelled with 15 N and the subsequent determination of 15 N in a certain fraction of urine by emission spectrometry are described. Because of the key position of the liver in the metabolism of nitrogen compounds the results of these tests allow conclusions concerning disturbances of special liver functions. Instructions for the clinical use of the '[ 15 N]Ammonium Test', '[ 15 N]Hippurate Test' the '[ 15 N]Methacetin Test', and the '[ 15 N]Glycine Test' are given. (author)

  19. 15N-labelled glycine synthesis

    International Nuclear Information System (INIS)

    Tavares, Claudineia R.O.; Bendassolli, Jose A.; Sant'Ana Filho, Carlos R.; Prestes, Clelber V.; Coelho, Fernando

    2006-01-01

    This work describes a method for 15 N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of α-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia ( 15 NH 3 ). Special care was taken to avoid possible 15 NH 3 losses, since its production cost is high. In that respect, although the purchase cost of the 13 N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an important tool for N cycling studies in living organisms, also minimizing labor and environmental hazards, as well as time limitation problems in field studies. The tests were carried out with three replications, and variable 15 NH 3(aq) volumes in the reaction were used (50, 100, and 150 mL), in order to calibrate the best operational condition; glycine masses obtained were 1.7, 2, and 3.2 g, respectively. With the development of a system for 15 NH 3 recovery, it was possible to recover 71, 83, and 87% of the ammonia initially used in the synthesis. With the required adaptations, the same system was used to recover methanol, and 75% of the methanol initially used in the amino acid purification process were recovered. (author)

  20. Determination of endogenous nitrogen in feces using 15N tracers

    International Nuclear Information System (INIS)

    Herrmann, U.; Krawielitzki, K.; Schadereit, R.; Smulikowska, S.

    1986-01-01

    A ration consisting of wheat gluten and N-free components was supplemented with L-lysine and L-leucine and fed to two groups of growing Wistar rats. Group 1 received 15 N Lys and unlabelled Leu, group 2 received unlabelled Lys and 15 N Leu in order to study the influence of the utilization of the 15 N marker on the labelling quota of feces and urine as well as various fractions of the body. The good utilization of Lys in group 1 results in a higher 15 N excess in feces and a reduced 15 N abundance in urine in comparison to group 2 with a lower utilization of 15 N Leu. The results show that the 15 N abundance in urine is unsuitable as an indicator of the 15 N labelling quota of endogenous metabolic fecal nitrogen. (author)

  1. Synthesis of {sup 15}N labeled glyphosate; Sintese do glifosato enriquecido com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Tavares, Glauco Arnold; Rossete, Alexssandra L.R.M.; Tagliassachi, Romulo Barbieri; Prestes, Cleuber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of {sup 15}N labeled glyphosate. The {sup 15}N-herbicide was undertaken by phosphometilation with the phosphit dialquil and {sup 15}N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  2. Synthesis and NMR characterization of ( sup 15 N)taurine (2-( sup 15 N)aminoethanesulfonic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Philippossian, G.; Welti, D.H.; Fumeaux, R.; Richli, U.; Anantharaman, K. (Nestle Research Centre, Nestec Ltd., Lausanne (Switzerland))

    1989-11-01

    The title compound was prepared in three steps with 55% overall yield starting from potassium ({sup 15}N)phthalimide. The synthetic route involved reaction with 1,2-dibromoethane, hydrolysis of the resulting N-(2-bromoethyl) ({sup 15}N)phthalimide with HBr and treatment of the 2-bromoethyl({sup 15}N)amine thus formed with sodium sulphite. The product was characterized by {sup 13}C, {sup 1}H and {sup 15}N NMR spectroscopy. The absolute coupling constants of {sup 15}N with the {sup 13}C nuclei and the non-exchanging protons were determined and an unambiguous assignment of the proton signals obtained. (author).

  3. 15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH.

    Science.gov (United States)

    Shchepin, Roman V; Barskiy, Danila A; Coffey, Aaron M; Theis, Thomas; Shi, Fan; Warren, Warren S; Goodson, Boyd M; Chekmenev, Eduard Y

    2016-06-24

    15 N nuclear spins of imidazole- 15 N 2 were hyperpolarized using NMR signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH). A 15 N NMR signal enhancement of ∼2000-fold at 9.4 T is reported using parahydrogen gas (∼50% para-) and ∼0.1 M imidazole- 15 N 2 in methanol:aqueous buffer (∼1:1). Proton binding to a 15 N site of imidazole occurs at physiological pH (p K a ∼ 7.0), and the binding event changes the 15 N isotropic chemical shift by ∼30 ppm. These properties are ideal for in vivo pH sensing. Additionally, imidazoles have low toxicity and are readily incorporated into a wide range of biomolecules. 15 N-Imidazole SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales ranging from peptide and protein molecules to living organisms.

  4. 15N-ammonium test in clinical research

    International Nuclear Information System (INIS)

    Jung, K.; Metzner, C.; Teichmann, B.; Leipzig Univ.

    1989-01-01

    By use of the 15 N-ammonium test the liver function is investigated under influence of hormonal contraceptives in women and in liver diseases in children. With the described noninvasive nonradioactive isotope test the ammonia detoxification capability and the urea synthesis capacity of the liver is determined by measuring of the 15 N excretion in ammonia and urea in urine after oral administering of 15 N-ammonium chloride. The 15 N-ammonium test shows a significant influence of the hormonal contraceptives on the liver function and gives diagnostic evidence for liver diseases in children. (author)

  5. Synthesis of [1,3 - 15 N2] uracil

    International Nuclear Information System (INIS)

    Chiriac, M.; Axente, D.

    2001-01-01

    The synthesis of 15 N labelled uracil, using CO( 15 NH 2 ) 2 as starting material, is presented. The experimental procedure is an adaptation of the synthesis methods for the corresponding unlabelled compounds. Urea- 15 N 2 used as starting material was obtained from H 15 NO 3 (99 at.% 15 N) produced at National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca.The uracil structure was determined using the mass spectrometry method and the isotopic labelling was determined by the same method on the molecular compound. The synthesis scheme of (1,3- 15 N 2 ) uracil is presented. (authors)

  6. Application of 15N labeling to topics in molecular hematology

    International Nuclear Information System (INIS)

    Lapidot, A.; Irving, C.S.

    1975-01-01

    The amount of information which can be obtained from many types of spectrometric analysis of compounds of hematological interest can be greatly enhanced when measurements are made on a series of isotopically labeled compounds. A murine Friend virus-induced erythroleukemic cell (FLC) culture was found to be a superior biosynthetic system for the preparation of highly and selectively 15 N and 13 C enriched hemoglobins. A mutant of Rhodopseudomonas spheroides was found suitable for the preparation of larger quantities of >90 percent enriched protoporphyrin-IX- 15 N and coproporphyrin-III-- 15 N. A comparison of the 15 N and 13 C NMR spectra of FLC carbomonoxy-[Gly- 15 N]-hemoglobin, carbomonoxy-[Gly- 13 C/sub alpha/]-hemoglobin, α and β globin-[Gly- 15 N] and globin-[Gly- 13 C/sub alpha/] demonstrated 1) 15 N peptide chemical shifts are sensitive to polypeptide sequence, whereas 13 C α-carbon chemical shifts are not, (2) variations in the solvation of the peptide N-H group can be detected in the 15 N spectra but not the 13 C spectra, (3) 15 N heme resonances could not be detected, whereas 13 C resonances could. These studies indicated that in hemoglobin the glycyl N-H resonances are either solvated by H 2 O or hydrogen bonded to peptide C=0 groups. In denatured globin, the majority of the glycyl residues are rapidly exchanging between these two states

  7. Methods of 15N tracer research in biological systems

    International Nuclear Information System (INIS)

    Hirschberg, K.; Faust, H.

    1985-01-01

    The application of the stable isotope 15 N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15 N tracer technique. On the basis of the latest results of 15 N tracer research in life sciences and agriculture methods of 15 N tracer research in biological systems are compiled. The 15 N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15 N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15 N analysis and aspects of 15 N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15 N tracer experiments are made. (author)

  8. Synthesis of {sup 15}N isotope labeled alanine; Sintese da alanina enriquecida com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant' Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of {sup 15}N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of {sup 15}N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of {alpha}-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ({sup 15}NH{sub 3} aq) was carried out. In order to avoid eventually losses of {sup 15}NH{sub 3}, special cares were adopted, since the production cost is high. Although the acquisition cost of the {sup 13}N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH{sub 3} (aq) being employed. With the establishment of the system for {sup 15}NH{sub 3} recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  9. Synthesis of fertilizers nitrogen and 15N-enriched. Pt. I. Production of enriched 15N-anhydrous ammonia

    International Nuclear Information System (INIS)

    Bendassolli, J.A.; Mortatti, J.; Trivelin, P.C.O.; Victoria, R.L.

    1988-01-01

    The results of 15 N-anhydrous ammonia production through reaction between 15 N-enriched ammonium sulphate and sodium hidroxide are reported. Influence of the reaction temperature, carrier gas flow, reaction time and mass of ammonium sulphate on the production of anhydrous ammonia were studied. Analyses for the cost of production of 5% atoms in 15 N-enriched anhydrous ammonia were made. (M.A.C.) [pt

  10. sup 15 N-ammonium test in clinical research. Der ( sup 15 N)-Ammoniumtest in der klinischen Forschung

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K; Metzner, C; Teichmann, B [Akademie der Wissenschaften der DDR, Leipzig (German Democratic Republic). Zentralinstitut fuer Isotopen- und Strahlenforschung Leipzig Univ. (German Democratic Republic). Bereich Medizin

    1989-01-01

    By use of the {sup 15}N-ammonium test the liver function is investigated under influence of hormonal contraceptives in women and in liver diseases in children. With the described noninvasive nonradioactive isotope test the ammonia detoxification capability and the urea synthesis capacity of the liver is determined by measuring of the {sup 15}N excretion in ammonia and urea in urine after oral administering of {sup 15}N-ammonium chloride. The {sup 15}N-ammonium test shows a significant influence of the hormonal contraceptives on the liver function and gives diagnostic evidence for liver diseases in children. (author).

  11. 15N sample preparation for mass spectroscopy analysis

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Salati, E.; Matsui, E.

    1973-01-01

    Technics for preparing 15 N samples to be analised is presented. Dumas method and oxidation by sodium hypobromite method are described in order to get the appropriate sample. Method to calculate 15 N ratio from mass spectrometry dates is also discussed [pt

  12. Preparation of 15N-13C-fulminic acid

    International Nuclear Information System (INIS)

    Wilmes, R.; Winnewisser, M.

    1993-01-01

    The precursor for the title compound was prepared in a three-step synthesis. The 13 C-label was incorporated in the first step employing 2- 13 C-ethyl acetate and the 15 N-label in the last step, using 15 N-sodium nitrite. Upon pyrolysis the precursor forms three fragments, one of them being the title compound. (Author)

  13. 1H-15N correlation spectroscopy of nanocrystalline proteins

    International Nuclear Information System (INIS)

    Morcombe, Corey R.; Paulson, Eric K.; Gaponenko, Vadim; Byrd, R. Andrew; Zilm, Kurt W.

    2005-01-01

    The limits of resolution that can be obtained in 1 H- 15 N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee-Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1 H resonances. Heteronuclear decoupling of 15 N from the 1 H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2 H and 15 N enriched protein where the amides have been exchanged in normal water, MAS at ∼20 kHz, and WALTZ-16 decoupling of the 15 N nuclei. The combination of these techniques results in average 1 H lines of only ∼0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15 N decoupling are described for achieving the best possible performance in these experiments

  14. Production of 15N for nitride type nuclear fuel

    International Nuclear Information System (INIS)

    Axente, Damian

    2005-01-01

    Full text: Nitride nuclear fuel is the choice for advanced nuclear reactors and ADS, considering its favorable properties as: melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in different nuclear reactors requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Nitride fuel is a promising candidate for transmutation in ADSs of radioactive minor actinides, which are converted into nitrides with 15 N for that purpose. Taking into account that at present the world wide 15 N market is about 20 - 40 Kg 15 N/y, the supply of that isotope for nitride type nuclear fuel, would demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N at 99 at. % 15 N concentration, using present technology of 15 N/ 14 N isotopic exchange in Nitrox system, the first separation stage of the cascade would be fed with 10M HNO 3 solution at a 600 m 3 /h flow-rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for an industrial plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million m 3 /y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle SO 2 is a problem to be solved to compensate the cost of sulfur dioxide and to diminish the amount of sulfuric acid waste solution. It should be taken into consideration an important price reduction of 15 N in order to make possible its utilization for industrial production of nitride type nuclear fuel. (authors)

  15. Enrichment of 15N by ion exchange chromatography

    International Nuclear Information System (INIS)

    Ohwaki, Masao; Ohtsuka, Haruhisa; Nomura, Masao; Okamoto, Makoto; Fujii, Yasuhiko

    1996-01-01

    15 N isotope separation was studied using cation exchange resins which consist of functional groups: sulfonic acid, carboxylic acid and phenol at various concentration of the eluent LiOH. The isotope separation coefficients for these ion exchange resins were observed to be nearly equal, in spite of the large difference in ion exchange characteristics. The effect of flow rate on 15 N isotope separation was also studied, and the results indicate that the operation at high flow rate would be preferable for the industrial process of 15 N enrichment. Based on the preliminary investigations, a continuous operation using a series of ion exchange columns has been carried out in order to achieve high enrichment of 15 N. (author)

  16. Liver function tests using the stable istope 15N

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Hirschberg, K.; Krumbiegel, P.; Junghans, P.; Reinhardt, R.; Teichmann, B.

    1988-01-01

    Several liver function tests using oral application of a nitrogen compound labelled with 15 N and the subsequent determination of 15 N in a certain fraction of urine or in the total urine by emission spectrometry are described. Because of the key function of the liver in the metabolism of nitrogen compounds, the results of these tests allow conclusions concerning some disturbances of liver functions. (author)

  17. Liver function tests using the stable isotope /sup 15/N

    Energy Technology Data Exchange (ETDEWEB)

    Faust, H; Jung, K; Hirschberg, K; Krumbiegel, P; Junghans, P; Reinhardt, R; Matkowitz, R; Teichmann, B

    1988-01-01

    Several liver function tests using oral application of a nitrogen compound labelled with /sup 15/N and the subsequent determination of /sup 15/N in a certain fraction of urine or in the total urine by emission spectrometry are described. Because of the key function of the liver in the metabolism of nitrogen compounds, the results of these tests allow conclusions concerning some disturbances of liver functions.

  18. δ15N value does not reflect fasting in mysticetes.

    Science.gov (United States)

    Aguilar, Alex; Giménez, Joan; Gómez-Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ(15)N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ(15)N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ(15)N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indication of nutritive condition.

  19. Competition for tracer 15N in tussock tundra ecosystems

    International Nuclear Information System (INIS)

    Marion, G.M.; Miller, P.C.; Black, C.H.

    1987-01-01

    The objectives of this study were to assess the roles of plant species, time, and site on competition for tracer 15 N (without carrier) in tussock tundra ecosystems. Six experimental sites were located in northern Alaska. After one year across the experimental sites, the recovery of 15 N by litter (11.3-16.3%) and mosses (5.4-16.4%) was significantly greater than for aboveground vascular plants (2.6-5.0%). 15 N recoveries by tundra vascular plants (2.6-5.0%) were low when compared to forest trees (9-25%) which suggst that competition for nitrogen is particularly severe in these colddominated tundra ecosystems. There were no significant differences among sites in 15 N recoveries by vascular plants, by mosses, or by litter. There was a statistically significant decline in 15 N recovery with time for Vaccinium vitis-idaea and Eriophoum vaginatum between the second and third year. The shallow rooted Vaccinium vitis-ideae was more highly labeled than the deep rooted Eriophorum vaginatum. Nearness to the source of the applied 15 N played a critical role in competition for surface applied nitrogen. (author)

  20. Balance study of the fate of 15N fertilizer

    International Nuclear Information System (INIS)

    Korte, F.; Sotiriou, N.

    1980-01-01

    An interim report is presented on a series of experiments with wooden box-type lysimeters (60 cm x 60 cm x 70 cm) loaded with a sandy soil, a loess soil and straw-amended soil. The lysimeters support crops rotated over a five-year period to be studied - potato, barley, sugar-beet, barley (with winter rape) and finally (1979) potato. Each lysimeter received split applications of urea at total rates of 0, 50 or 100 kg.ha -1 . The effects of soil residues of the herbicide monolinuron were also studied. The report deals with data collected during the first three years of the planned experiments (1975 - 1977 inclusive). 15 N-labelled urea (47 atom 15 N% excess) was initially used but in some experiments this was followed by applications of unlabelled urea in order to study the fate of the residual 15 N in the subsequent years. The results to date indicated that in the first year highest recoveries in the plant of the applied 15 N obtained on the sandy soil. The low recoveries of 15 N in the subsequent years when unlabelled urea was supplied also indicated significant storage by soil or root organic matter of the applied 15 N. Compared with the control (zero application of urea nitrogen), potato took up more total nitrogen in the presence of fertilizer including more of the unlabelled soil pool nitrogen. Analyses of the soil profiles in terms of total soil nitrogen and fertilizer-derived nitrogen (on the basis of 15 N assays) indicated leaching of the labelled nitrogen down the soil profile in all cases during the three-year period. Analysis of NO 3 -N in leachates confirmed the presence of labelled urea-derived nitrogen. (author)

  1. Changes in mineral 15 N from soils treated with 15 N-urea and 15 N-vinasse incorporated or not to sugar cane straw

    International Nuclear Information System (INIS)

    Silva, Vilma M.; Colaco, Waldeciro; Encarnacao, Fernando A.F.

    1999-01-01

    Changes in N derived from 15 N sources (urea and vinasse), applied to two soils differing in texture (PV sandy, LR clayey), incorporated or not to sugar cane straw (dry leaves and sheathes) and incubated in an open system for 35 days, were evaluated through an isotope technique. Soil samples were collected 7, 14, 21, 28 and 35 days after applications to determine nitrogen fractions (total-N, N H 4 + - N and NO 3 - - N) derived from the labelled sources. Mineral N was taken as the sum of N H 4 + - N and N H 3 - -N. 15 N-abundances were determined in the concentrated extracts of these fractions. The mineral N net transformation rates were found from the mineral N obtained by taking the difference between the values of two subsequent incubation times. The results showed that mineral N transformation rates were initially positives in the treatments of 15 N-urea, and significantly higher (10,30 mg kg -1 d -1 , PV and 8,08 mg kg -1 d -1 , LR) than those obtained in the treatments with 15 N vinasse (1,11 mg kg -1 dia -1 , PV and 0,55 mg kg -1 dia -1 , LR). In general terms, mineral-N net transformation rates were negative (0,06 and 0,26 mg.kg -1 d -1 , PV; -1,44 and 0,07 mg.kg -1 .d -1 , LR, respective;y for urea and vinasse) indicating prevalence of immobilization. The results also showed small fluctuations among treatments at some of the incubation periods, which reflects the influence of characteristics and properties of both soils. (author)

  2. 15 N separation in the Nitrox system under pressure

    International Nuclear Information System (INIS)

    Axente, D.; Baldea, A.; Teaca, C.; Horga, R.; Abrudean, M.

    1999-01-01

    The basic isotope exchange reaction responsible for the separation of 15 N in Nitrox system is that between gaseous nitrogen oxides and aqueous nitric acid with single stage separation factor α = 1.055 for M.l -1 nitric acid, at 25 deg. C and atmospheric pressure. The rate of nitrogen isotope exchange between NO and HNO 3 has been measured as a function of nitric oxide pressure 0.1 - 0.4 MPa for 1 and 2 M.l -1 . It is concluded that 15 N/ 14 N exchange rate in NO-HNO 3 system has a linear dependence on NO pressure as indicated by rate measurements at different NO partial pressure and constant overall pressure, by adding helium in reactor. Using the rate law: R = [HNO 3 ] 2 [N 2 O 3 ] the 15 N/ 14 N exchange rates for nitric acid concentrations 1.5 - 10 M.l -1 were calculated. In order to know what happens in 15 N separation at higher pressure, when the isotopic transport between two phases is improved, a stainless steel laboratory experimental setup with 1000 mm long x 18 mm i,d. column, packed with triangular wire springs 1.8 x 1.8 x 0.2 mm was utilised. At 0.15 MPA and 2.36 ml.cm -2 . min -1 flow rate HETP was 7% smaller than at atmospheric pressure and 1.5 times smaller flow rate. HETP at 3.14 ml . cm -2 . min -1 flow rate and 0.18 MPa is practically equal with that obtained at atmospheric pressure and 2 times smaller flow rate. The operation of the 15 N separation setup at 0.18 MPa, instead of atmospheric pressure, will permit to double the 10 M.l -1 nitric acid flow rate and of 15 N production of the given column. (authors)

  3. Isotopic enrichment of 15N by ionic exchange chromatography

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.

    1979-01-01

    The present paper presents some studies on production of 15 N-enriched ammonium sulphate with 5% atoms by ionic exchange chromatography method. Two systems are described of columns of resin, where experiments were conducted by eluition of NH 4 + bands with sodium hydroxide solution. Analyses were made of the cost of production of 15 N-enriched ammonium sulphate 5% atoms and, based on the experiments developed, a cost was obtained which was compatible with the international price of the product. The isotopic analyses of nitrogen were made by mass spectrometry. (Author) [pt

  4. 15N-labelled pyrazines of triterpenic acids

    International Nuclear Information System (INIS)

    Vlk, Martin; Micolova, Petra; Sarek, Jan

    2016-01-01

    Triterpenoid pyrazines from our research group were found selectively cytotoxic on several cancer cell lines with IC 50 in low micromolar range. This sparked our interest in preparing their labeled analogs for metabolic studies. In this work, we prepared a set of non-labeled pyrazines from seven triterpenoid skeletal types along with their 15 N labelled analogs. In this work, we present the synthesis and characterization of the target 15 N labelled pyrazines. Currently, these compounds are being studied in complex metabolic studies. (author)

  5. 15N fractionation in infrared-dark cloud cores

    Science.gov (United States)

    Zeng, S.; Jiménez-Serra, I.; Cosentino, G.; Viti, S.; Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Fontani, F.; Hily-Blant, P.

    2017-07-01

    Context. Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the solar system may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. Aims: We seek to determine the 14N/15N ratio towards a sample of cold and dense cores at the initial stages in their evolution. Methods: We observed the J = 1 → 0 transitions of HCN, H13CN, HC15N, HN13C, and H15NC towards a sample of 22 cores in four infrared-dark clouds (IRDCs) which are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15 K, the column densities of HCN, H13CN, HC15N, HN13C, and H15NC are calculated and their 14N/15N ratio is determined for each core. Results: The 14N/15N ratios measured in our sample of IRDC cores range between 70 and ≥763 in HCN and between 161 and 541 in HNC. These ratios are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass prestellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2, and G2 do not agree with the results from similar studies towards the same cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Conclusions: Relatively low 14N/15N ratios amongst the four-IRDCs were measured in IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http

  6. Synthesis of 15N-labelled urea and methylenediurea

    International Nuclear Information System (INIS)

    Murray, T.P.; Jones, G.T.

    1985-01-01

    A new technique was developed for the large-scale synthesis of 15 N-labelled urea at low enrichment levels. The synthesis is based on nucleophilic displacement of the phenoxide ion from phenyl carbonate and uses anhydrous ammonia as the nucleophile. In previous reports a copper catalyst was used; however, in this study it was found that the copper resulted in product decomposition and tar formation, which makes product purification difficult. A novel set of reaction conditions was developed: no catalyst was used, and no product decomposition or tar formation occurred. The reaction product was easily purified, and consistently high yields of 15 N-labelled urea were obtained. 15 N-labelled methylenediurea was prepared by the dilute solution reaction of formalin with 15 N-labelled urea. The methodology developed for the reclamation of unreacted urea resulted in minimum loss of labelled urea. High performance liquid chromatography has been used to determine the chemical purity of both urea and methylenediurea. (author)

  7. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    Science.gov (United States)

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations.

  8. Isotopic enrichment of 15N by ionic exchange cromatography

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Matsui, E.; Salati, E.

    1979-01-01

    The ionic exchange chromatographic method in columns of resin which is employed in the study of isotopic enrichment of 15 N is presented. Determinations are made of the isotopic separation constant for the exchange of isotopes 15 N and 14 N in the equilibrium involving ammonium hidroxide in the solution phase and ions NH 4 + adsorbed in cationic resins: Dowex 50W-X8 and X12, 100-200 mesh. Experiments are also conducted for determination of height of theoretical plates for situations of equilibrium of the NH 4 + band in two systems of resin's columns aimed at estimating the experimental conditions used. The isotopic analyses of nitrogen are carried out by mass spectrometry [pt

  9. Foliar absorption of 15N labeled urea by tea plant

    International Nuclear Information System (INIS)

    Hoshina, Tsuguo; Kozai, Shuji; Ishigaki, Kozo

    1978-01-01

    The effect of foliar application on the nitrogen nutrient status of tea shoots has been studied using 15 N labelled urea. Furthermore, the difference in nitrogen utilization by tea plant between foliar applied and top dressed nitrogen was investigated using 15 N labelled urea and ammonium sulfate. The foliar application of urea increased the amount of chlorophyll and total nitrogen in the new shoot, and the foliar application was more effective under shading condition. The urea sprayed upon old leaves prior to the opening of new leaf translocated to the new shoots. However, the foliar application after the opening of new leaf was more effective on nitrogen absorption by new shoots than one prior to that, and rather than top dressing for new shoots. It could be recognized that the foliar application of urea raises the nitrogen nutrient status of tea leaves in summer. (author)

  10. True cooking aroma or artefact. 15N gives the answer

    International Nuclear Information System (INIS)

    Metro, F.; Boudaud, N.; Dumont, J.P.

    1994-01-01

    In order to determine the respective contributions of the various nitrous precursor families in aroma preparations, the usually added amino acids were substituted with 15 N isotope labelled homologous components. Results concerning isotope ratios for the volatile fraction nitrous components collected from poultry meat aromatic preparations, are presented. Terminal product labelling appears to allow for a better determination of the substrate and functional additive contributions. 4 figs., 6 refs

  11. Geomorphic control on the δ15N of mountain forests

    Directory of Open Access Journals (Sweden)

    R. G. Hilton

    2013-03-01

    Full Text Available Mountain forests are subject to high rates of physical erosion which can export particulate nitrogen from ecosystems. However, the impact of geomorphic processes on nitrogen budgets remains poorly constrained. We have used the elemental and isotopic composition of soil and plant organic matter to investigate nitrogen cycling in the mountain forest of Taiwan, from 24 sites with distinct geomorphic (topographic slope and climatic (precipitation, temperature characteristics. The organic carbon to nitrogen ratio of soil organic matter decreased with soil 14C age, providing constraint on average rates of nitrogen loss using a mass balance model. Model predictions suggest that present day estimates of nitrogen deposition exceed contemporary and historic nitrogen losses. We found ∼6‰ variability in the stable isotopic composition (δ15N of soil and plants which was not related to soil 14C age or climatic conditions. Instead, δ15N was significantly, negatively correlated with topographic slope. Using the mass balance model, we demonstrate that the correlation can be explained by an increase in nitrogen loss by non-fractioning pathways on steeper slopes, where physical erosion most effectively removes particulate nitrogen. Published data from forests on steep slopes are consistent with the correlation. Based on our dataset and these observations, we hypothesise that variable physical erosion rates can significantly influence soil δ15N, and suggest particulate nitrogen export is a major, yet underappreciated, loss term in the nitrogen budget of mountain forests.

  12. Absorption of ammonium sulphate 15N by coffee plants

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos; Trivelin, Paulo Cesar Ocheuze; Dourado Neto, Durval

    2005-01-01

    The objective of this study was to quantify the absorption of ammonium sulphate 15 N by coffee plants. Treatments consisted of five sub-plots of 9 plants, of which the three central ones received 280 kg ha -1 of 15 N, applied at four times: 1/4 on 01 Set 03; 1/4 on 03 Nov 03; 1/4 on 15 Dec 03 and 1/4 on 30 Jan 04. The isotopic enrichment was 2,072 ± 0,001 atom % 15 N. The dry matter of the shoot was evaluated every 60 days, using one plant per replicate, collected outside the sub-plot. They were as similar as possible to the labeled plants, which were used only for isotopic and Total N analysis, after being dried at 65 deg C until constant weight. At harvest, plants had absorbed 42,88% of the fertilizer N. Leaves accumulated the largest amount of fertilizer N, and were also the compartments that received most N from other parts of the plant. The following partition of the fertilizer N was found at harvest: 23.01% in young leaves, 6.23% in old leaves, 4,46% in stem, 3.46% in fruits, 3.10% in young branches and 2.63% in old branches. (author)

  13. Dynamic of N fertilizers: urea (15 N) and aqua ammonia (15 N) incorporated to the sugar cane soil. Final report

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.

    1988-05-01

    The dynamic of N fertilizers, urea and aqua ammonia, in the soil of sugar cane crops are studied with an emphasis on the horizontal and vertical moving. The nitrogen routing from urea and aqua ammonia sources, by isotopic technique with 15 N in relation to the leaching, volatilization and extraction by the cultivation and residue of N immobilized manure in the soil with sugar cane plantation is also analysed. (C.G.C.)

  14. Effect of estrogens on urinary 15N balance in girls

    International Nuclear Information System (INIS)

    Zachmann, M.; Kempken, B.; Prader, A.

    1984-01-01

    While the anabolic and growth-promoting effects of testosterone are known to be important for pubertal growth in boys, the role of estrogens (E) in the female spurt is less certain. Adrenal androgens have been considered to be more important than ovarian E. To study the anabolic effects of E, there has been carried out a pilot study in 9 girls aged 11 to 15 years. Before and 6 days after the start of E treatment, urinary 15 N balance studies were performed, using 15 NH 4 Cl. (author)

  15. Investigation into endogenous N metabolism in /sup 15/N-labelled pigs. 1. /sup 15/N labelling and /sup 15/N excretion in urine and feces after feeding 4 different diets

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, H; Bergner, U; Adam, K [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1984-07-01

    4 male castrated pigs (55-65 kg) either received a wheat-fish meal diet (1 and 2) or a wheat-horse bean diet (3 and 4) without straw meal supplement (1 and 3) or with a supplement of 20% dry matter (2 and 4). In order to investigate whether a /sup 15/N labelling of the pigs is also possible with a protein excess in the ration, the animals received 24.8 g (1 and 2) and 11.6 g crude protein/kg/sup 0.75/ live weight (3 and 4). During a 10-day /sup 15/N-labelling 385 mg /sup 15/N excess (/sup 15/N') per kg/sup 0.75/ were applied with /sup 15/N labelling the following quotas of the applied /sup 15/N amount were incorporated: 1 = 10.2%, 2 = 7.2%, 3 = 18.7%, 4 = 14.4%. /sup 15/N excretion in both TCA fractions of feces showed a highly significant positive correlation to the increasing content of crude fibre in the 4 diets. The immediate /sup 15/N incorporation into the TCA-precipitable fraction of feces proves that /sup 15/N enters the large intestine endogenously and serves bacterial protein synthesis. 3 days after the last /sup 15/N application the pigs were killed. The values of atom-% /sup 15/N' were determined in the TCA-precipitable blood plasma and in the TCA-precipitable fraction of the liver. The other examined organs and tissues showed smaller differences between the test animals. The results show that the /sup 15/N labelling of tissues and organs of pigs is also possible at a high level of protein supply by means of an oral application of (/sup 15/N) ammonia salts.

  16. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY

    International Nuclear Information System (INIS)

    Fushman, David; Cowburn, David

    1999-01-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site- specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D-parallel /D-perpendicular -1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D-parallel /D-perpendicular ≥1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems

  17. Investigation of the metabolism of colostomized laying hens with 15N-labelled wheat. 6

    International Nuclear Information System (INIS)

    Gruhn, K.; Hennig, A.

    1980-01-01

    Three colostomized laving hens received 40 g 15 N-labelled wheat with 20.13 atom-% 15 N excess ( 15 N'), 19.18 atom-% 15 N'-lysine, 18.17 atom-% 15 N'-histidine and 20.43 atom-% 15 N'-arginine per day over a period of four days. After having received the same non-labelled feed ration on the following four days, the hens were slaughtered. The incorporation and distribution of 15 N' in the total nitrogen and the nitrogen of the basic amino acids was determined in liver, kidneys, muscles, bones and the remaining carcass (excluding blood, digestive tract and genital organs). The quota of nitrogen of natural isotope frequency ( 14 N) of the total 14 N of the hens' carcasses was 47% in the muscles, 14% in the bones and 20% in the feathers; the relative 15 N' values were 37%, 8% and 1%, resp. The atom-% 15 N' in the kidneys was twice as much as in the liver four days after the last 15 N' application. The average percentage of the nitrogen in the three basic amino acids of the total nitrogen in the tissues and organs (excluding feathers) is 25% concerning both 14 N and 15 N'. The 15N' balance revealed that in hen 1 100%, in hen 2 102% and in hen 3 101% of the consumed wheat 15 N' were found. (author)

  18. Mimicking floodplain reconnection and disconnection using 15N mesocosm incubations

    Science.gov (United States)

    Welti, N.; Bondar-Kunze, E.; Mair, M.; Bonin, P.; Wanek, W.; Pinay, G.; Hein, T.

    2012-11-01

    Floodplain restoration changes the nitrate delivery pattern and dissolved organic matter pool in backwaters, though the effects these changes have are not yet well known. We performed two mesocosm experiments on floodplain sediments to quantify the nitrate metabolism in two types of floodplains. Rates of denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anammox were measured using 15N-NO3 tracer additions in mesocosms of undisturbed floodplain sediments originating from (1) restored and (2) disconnected sites in the Alluvial Zone National Park on the Danube River downstream of Vienna, Austria. DNRA rates were an order of magnitude lower than denitrification and neither rate was affected by changes in nitrate delivery pattern or organic matter quality. Anammox was not detected at any of the sites. Denitrification was out-competed by assimilation, which was estimated to use up to 70% of the available nitrate. Overall, denitrification was higher in the restored sites, with mean rates of 5.7 ± 2.8 mmol N m-2 h-1 compared to the disconnected site (0.6 ± 0.5 mmol N m-2 h-1). In addition, ratios of N2O : N2 were lower in the restored site indicating a more complete denitrification. Nitrate addition had neither an effect on denitrification, nor on the N2O : N2 ratio. However, DOM (dissolved organic matter) quality significantly changed the N2O : N2 ratio in both sites. Addition of riverine-derived organic matter lowered the N2O : N2 ratio in the disconnected site, whereas addition of floodplain-derived organic matter increased the N2O : N2 ratio in the restored site. These results demonstrate that increasing floodplains hydrological connection to the main river channel increases nitrogen retention and decreases nitrous oxide emissions.

  19. Pion elastic and inelastic scattering from 15N

    International Nuclear Information System (INIS)

    Saunders, D.P.

    1991-12-01

    Data were obtained on the Clinton P. Anderson Los Alamos Meson Physics Facility Energetic Pion Channel and Spectrometer for elastic and inelastic pion scattering from ground state 15 N nuclei. States observed here included those of 0.0, 5.27, 6.32, 7.16, 7.30, 7.57, 8.31, 8.57, 9.15, 9.76, 9.9, 10.7, 11.3, 11.9, 12.5, 12.9, 13.1, 14.1, 14.4, 14.6, 15.0, 16.5, 16.9, 17.2, 17.6, 18.3, 18.7, and 18.9 MeV excitation energies. Angular distributions were obtained for scattering at angles from 25 degree to 90 degree in 5 degree increments with an incident pion energy of 164 MeV. Optical model analyses of the elastic (0 MeV) angular distributions with equal point proton and neutron densities in both momentum and coordinate space formulations accurately predict the data, although the two formulations require different energy shifts to do so. This difference is thought to be a result of the more accurate nonlocal representation of the nuclear potential in the momentum space code. Additional spectra were obtained for scattering at constant momentum transfers of .94 and 1.57 fm -1 in order to generate constant momentum transfer excitation functions. Use of these excitation functions, σ(π + )/σ(π - ) ratios, and shell model DWIA calculations allowed identification of several excited states having shell-model-like, single particle-hole, pure spin-flip excitations. Shell model and collective model DWIA calculations, as well as the q = .94 and 1.57 fm -1 excitation functions and the σ(π + )/σ(π - ) ratios indicate that the other states are generally well represented by a shell model description with collective enhancements

  20. Fate of 15N-urea and 15N-ammonium sulphate applied in different periods to cica-8 rice culture in greenhouse conditions

    International Nuclear Information System (INIS)

    Bastidas, O.G.; Alvarez, A.; Victoria, R.L.; Urquiaga C, S.; Muraoka, T.

    1984-01-01

    The fate of nitrogen fertilizers in rice cultivars (Cica-8) is studied. Urea (1.973% at of 15 N) and ammonium sulfate (1.826% at of 15 N) are used. The fertilizers are applied in four levels (0,100,200 and 300 Kg N/ha) in shadow coditions and after 30 days of germination. (M.A.C.) [pt

  1. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    Science.gov (United States)

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  2. Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US

    Science.gov (United States)

    Linda H. Pardo; Steven G. McNulty; Johnny L. Boggs; Sara Duke

    2007-01-01

    Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, d15N of foliage and soil also increases. We measured foliar d15N at 11 high-elevation spruce-fir stands along an N deposition gradient...

  3. Metabolic studies in colostomized laying hens using 15N-labelled wheat. 4

    International Nuclear Information System (INIS)

    Gruhn, K.; Glotz, D.

    1979-01-01

    3 colostomized laying hybrids received over 4 days a dosage of 672 mg 15 N excess ( 15 N'), 20.3 mg lysine 15 N', 23.0 mg histidine 15 N' and 66.7 mg arginine 15 N' with a ration customary in production. After feeding the same unlabelled ration for another 4 days the hens were killed and the N content of the blood as well as of its fractions (cells, plasma, free amino acids of the plasma) was determined. The 15 N' was determined in the total blood, the corpuscles, the plasma, the nonprotein-N (NPN) fraction as well as in the amino acids lysine, histidine and arginine. The average amount of the blood cell N in the total blood N was 58.5% and that of the plasma 40.3%; the corresponding 15 N' values amounted to 66.1% and 33.9%, respectively. The sum of the 15 N' of the basic amino acids of the blood cells, on an average, amounted to 39.7% of the total cell 15 N'; the corresponding average value for the total 15 N' in lysine, histidine and arginine of the blood plasma 15 N' was 23.6.% and the quota of the three free amino acids of the total NP 15 N' of the plasma was 6.2%. (author)

  4. Implications of heterogeneity on procedures for estimating plant 15N recovery in hedgerow intercrop system

    NARCIS (Netherlands)

    Rowe, E.C.; Cadisch, G.

    2002-01-01

    Nitrogen flows in agroforestry systems can be quantified by applying excess 15N to one pool or part of the system and subsequently measuring the quantity of 15N in other pools. Accurate quantifications depend on accurate determination of the mass, percentage N, and percentage 15N enrichment of each

  5. 15N NMR study on cyanide (C15N-) complex of cytochrome P-450cam. Effects of d-camphor and putidaredoxin on the iron-ligand structure

    International Nuclear Information System (INIS)

    Shiro, Yoshitsugu; Iizuka, Tetsutaro; Makino, Ryu; Ishimura, Yuzuru; Morishima, Isao

    1989-01-01

    The cyanide (C 15 N - ) complex of Pseudomonas putida cytochrome P-450 (P-450 cam ) exhibited well-resolved and hyperfine-shifted 15 N NMR resonances arising from the iron-bound C 15 N - at 423 and 500 ppm in the absence and presence of the substrate, d-camphor, respectively. The values were smaller than those for cyanide complexes of myoglobin and hemoglobin (∼ 1000 ppm) but fell into the same range as those for the cyanide complexes of peroxidases (∼ 500 ppm). The 15 N shift values of P-450 cam were not incompatible with the existence of anionic ligand, such as cysteinyl thiolate anion, at the fifth coordination site of heme iron. The difference in the 15 N chemical shift values between camphor-free and bound enzymes was inferred by the increase in the steric constraint to the Fe-C-N bond upon substrate binding

  6. The effect of organic matter and nitrification inhibitor on 15 N H4 and 15 N O3 absorption by the maize

    International Nuclear Information System (INIS)

    Saito, S.M.T.

    1974-01-01

    The effect of the forms 15 N H 4 and 15 N O 3 in presence or absence of organic matter and of the nitrification inhibitor AM (2-amino-4-chloro-6-methyl-pyrimidine) in dry matter weight and nitrogen content of the plant derived from soil and form fertilizer is studied. The experiment was carried out in greenhouse and the test plant was the hybrid Maize Centralmex . The fertilizers ( 15 N H 4 ) 2 S O 4 and Na 15 N O 3 , were added in two levels: 40 and 120 Kg N/ha, with 1,02% of N and 1,4% of 15 N in excess, respectively. Three soils of different physical and chemical characteristics were used; Regosol intergrade, Latosol Roxo and Podzolized de Lins e Marilia var. Marilia. (M.A.C.)

  7. Utilization of 15N-labelled urea in laying hens. 4

    International Nuclear Information System (INIS)

    Gruhn, K.; Hennig, A.

    1986-01-01

    In order to study the utilization of urea in poultry, 3 colostomized laying hybrids were orally supplied with a traditional ration supplemented with 1% 15 N'-labelled urea with a 15 N excess ( 15 N') of 96.06 atom-% over a period of 6 days. After another 2 days on which the hens received the same ration with unlabelled urea, they were killed. The atom-% 15 N' of the blood on an average of the 3 hens was 0.64, of the plasma 1.40 and of the corpuscles 0.47. The TCA-soluble fraction of the blood had an average 15 N' of 1.14 atom-%; the 15 N amount was 9.7% of the total amount of 15 N in the blood. The amount of 15 N' in the urea in the blood was 6.8 atom-%. This shows that the absorbed urea is decomposed very slowly. The quota of 15 N' in the basic amino acids from the total 15 N' of the blood plasma was only 0.3% and that of the corpuscles 2.2%. The average 15 N' of the mature follicles was 2.39 atom-% whereas the smallest and the remaining ovary contain 1.12 atom-%. The labelling level of lysine in mature egg cells was, in contrast to this, only 0.08 atom-% 15 N' and in infantile follicles 0.04 atom-% 15 N'. 1% of the 15 N' quota was in the follicles and the remaining ovary. Of the basic amino acids, histidine is most strongly labelled. The lower incorporation of the 15 N' from urea into the basic amino acids shows that the nitrogen of this compound can be used for the synthesis of the essential amino acids to a low degree only. (author)

  8. Studies of 15N transamination following application of various tracer substances. 1

    International Nuclear Information System (INIS)

    Schadereit, R.; Krawielitzki, K.; Herrmann, U.

    1986-01-01

    4 groups of 3 growing Wistar rats each were orally given 15 N-labelled methionine, lysine, glycine and ammonia sulphate, resp., over 10 days. Measuring the 15 N accumulation in the amino acids (AA) of the body protein, the transamination of the individual 15 N substances and thus their suitability as tracer substances for studies of N metabolism was determined. None of the tested 15 N-AA achieved a proportionate labelling of all AA of the body protein. The AA used as tracer in each case showed the highest 15 N labelling. Of the amino- 15 N detected in the animal body, about 19% were found in Met after 15 N Met application, 88% in Lys after 15 N Lys application and 50% in Gly after 15 N Gly application. After the application of 15 N-ammonia sulphate about 42% of the body amino- 15 N are apportioned to the essential and 58% to the non-essential AA. Thus, this substance produces a more proportional labelling of the essential and non-essential AA of the body protein than 15 N-Gly. The following quotas of the 15 N amounts applied were found in the AA of the animal bodies: tracer substance lysine 52%, glycine 32%, ammonia sulphate 24%, methionine 21%. After summing up the amino acid 15 N amounts in the animal body, eliminating in each case the tracer AA and taking into account the molecular weight of the AA, there was a good agreement of the intensity of the accumulation of 15 N in the individual AA, irrespective of the applied tracer substance. (author)

  9. 15N tracer kinetic studies on the validity of various 15N tracer substances for determining whole-body protein parameters in very small preterm infants

    International Nuclear Information System (INIS)

    Plath, C.; Heine, W.; Wutzke, K.D.; Krienke, L.; Toewe, J.M.; Massute, G.; Windischmann, C.

    1987-01-01

    Reliable 15 N tracer substances for tracer kinetic determination of whole-body protein parameters in very small preterm infants are still a matter of intensive research, especially after some doubts have been raised about the validity of [ 15 N]glycine, a commonly used 15 N tracer. Protein turnover, synthesis, breakdown, and further protein metabolism data were determined by a paired comparison in four preterm infants. Their post-conceptual age was 32.2 +/- 0.8 weeks, and their body weight was 1670 +/- 181 g. Tracer substances applied in this study were a [ 15 N]amino acid mixture (Ia) and [ 15 N]glycine (Ib). In a second group of three infants with a post conceptual age of 15 N-labeled 32.0 +/- 1.0 weeks and a body weight of 1,907 +/- 137 g, yeast protein hydrolysate (II) was used as a tracer substance. A three-pool model was employed for the analysis of the data. This model takes into account renal and fecal 15 N losses after a single 15 N pulse. Protein turnovers were as follows: 11.9 +/- 3.1 g kg-1 d-1 (Ia), 16.2 +/- 2.5 g kg-1 d-1 (Ib), and 10.8 +/- 3.0 g kg-1 d-1 (II). We were able to demonstrate an overestimation of the protein turnover when Ib was used. There was an expected correspondence in the results obtained from Ia and II. The 15 N-labeled yeast protein hydrolysate is a relatively cheap tracer that allows reliable determination of whole-body protein parameters in very small preterm infants

  10. /sup 15/N analysis in nutritional and metabolic research of infancy

    Energy Technology Data Exchange (ETDEWEB)

    Heine, W; Richter, I; Plath, C; Wutzke, K; Drescher, U [Rostock Univ. (German Democratic Republic). Bereich Medizin

    1982-01-01

    Investigation of protein metabolism in nutritional pediatric research by means of /sup 15/N tracer techniques has been relatively seldom used up to now. /sup 15/N-labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on /sup 15/N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover, and the reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters were performed in infants on breast milk, formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the /sup 15/N-D-phenylalanine retention of parenteral nutrition was found to be 33% of the applied doses at an average. An oral /sup 15/N-glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormone. /sup 15/N tracer technique was also tested in utilizing /sup 15/N-urea for bacterial protein synthesis of the intestinal flora and by incorporation of /sup 15/N from /sup 15/N-glycine and /sup 15/N-lysine into the jejunal mucosa for measuring the enterocyte regeneration.

  11. Fields of application and results of analytic procedures with /sup 15/N in pediatric alimentary research

    Energy Technology Data Exchange (ETDEWEB)

    Heine, W; Richter, I; Plath, C; Wutzke, K; Kupatz, P; Drescher, U [Rostock Univ. (German Democratic Republic)

    1981-10-01

    Investigation of protein metabolism in nutritional pediatric research by means of /sup 15/N tracer techniques has been relatively seldom used up to now. /sup 15/N labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on /sup 15/N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover and reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters was performed in infants on mother's milk and formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the /sup 15/N-D-phenylalanin retention on parenteral nutrition was found to be 33% of the applied dosis at an average. An oral /sup 15/N glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormon in numerous types of dwarfism. Further application of /sup 15/N tracer technique dealt with utilisation of /sup 15/N urea for bacterial protein synthesis of the intestinal flora and with incorporation of /sup 15/N from /sup 15/N glycine and /sup 15/N lysine into the jejunal mucosa for measuring the enterocyte regeneration.

  12. Fields of application and results of analytic procedures with 15N in pediatric alimentary research

    International Nuclear Information System (INIS)

    Heine, W.; Richter, I.; Plath, C.; Wutzke, K.; Kupatz, P.; Drescher, U.

    1981-01-01

    Investigation of protein metabolism in nutritional pediatric research by means of 15 N tracer techniques has been relatively seldom used up to now. 15 N labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on 15 N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover and reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters was performed in infants on mother's milk and formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the 15 N-D-phenylalanin retention on parenteral nutrition was found to be 33% of the applied dosis at an average. An oral 15 N glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormon in numerous types of dwarfism. Further application of 15 N tracer technique dealt with utilisation of 15 N urea for bacterial protein synthesis of the intestinal flora and with incorporation of 15 N from 15 N glycine and 15 N lysine into the jejunal mucosa for measuring the enterocyte regeneration. (author)

  13. Studies of liver-specific metabolic reactions with /sup 15/N. 1. Metabolism of /sup 15/N-ammonium chloride in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, K; Jung, K; Faust, H; Matkowitz, R

    1987-07-01

    The /sup 15/N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After (/sup 15/N)ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the (/sup 15/N)ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of (/sup 15/N)hippurate seems to be a suitable indicator of liver disfunction.

  14. Fate of [15N]glycine in peat as determined by 13C and 15N CP-MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Benzing-Purdie, L.M.; Cheshire, M.V.; Williams, B.L.; Sparling, G.P.; Ratcliffe, C.I.; Ripmeester, J.A.

    1986-01-01

    Peat samples, nonsterile, sterilized by γ irradiation or autoclaving, were incubated with [ 15 N]glycine for a period of 6 months. The 13 C NMR data showed the established trend of increased humification with decreasing particle size and that autoclaving had significantly disturbed the humification-particle size distribution. The 15 N CP-MAS NMR spectra showed the presence of [ 15 N]glycine in all fractions after incubation. 15 NH 4 + , a result of either biological or chemical deamination, was one of the main products in the nonsterile peat series. The 15 N spectra also showed resonances corresponding to amine, secondary amide, and pyrrole-type nitrogen and the presence of glycine derivatives and melanoidins. The results presented give the first spectroscopic evidence of the possible involvement of the Maillard reaction in the humification process

  15. Utilization of 15N-labelled urea in laying hens. 7

    International Nuclear Information System (INIS)

    Gruhn, K.

    1987-01-01

    3 colostomized laying hybrids received 1% 15 N-labelled urea with 96.06 atom-% 15 N excess ( 15 N') with a commercial ration over a period of 6 days. After the application of the same ration with unlabelled urea on the following 2 days the animals were butchered. In the muscles of breast, legs and heart, the labelling of total nitrogen and the incorporation of urea 15 N' into 15 amino acids of the 3 different kinds of muscles were ascertained. On average, significant differences could be ascertained between the atom-% 15 N of the muscles was 0.25 and 0.34 atom-%, resp.; that of the cardial proteins 0.71 atom-% 15 N'. The incorporation of urea 15 N into the basic amino acids is low and varies both between the kinds of muscles and between the amino acids. On average the highest level of labelling was found among the essential amino acids valine, isoleucine and leucine; the average atom-% 15 N' for the muscles of the breast is 0.13, of the leg 0.17, and of the heart 0.27; the 15 N' quota of branched Chain amino acids in the total 15 N' of the respective muscle is accordingly 6.0%, 5.0% and 4.5%. The non-essential amino acids, particularly glutamic acid, are more highly labelled in the muscles than the essential ones. A 15 N' for glutamic acid of 0.24 atom-% in the breast muscles, of 0.27 atom-% in those of the legs and of 0.64 atom-% in the heart muscle could be detected. The average quota of the 15 N' of these acid amino acids in the 15 N' for breast, leg and heart muscles is 7.4, 6.2 and 6.7, resp. The quota of the 15 N' in the 6 non-essential amino acids in the total 15 N' in all 3 kinds of muscles is approximately two thirds and in the 9 essential ones one third of the total 15 N'. Although the results show that there is a certain incorporation of 15 N' from urea into the amino acids of the muscle proteins, their contribution to meeting the demands is irrelevant. (author)

  16. Synthesis of (+-)-[1,1'-15N2, 2'-13C]-trans-3'-methylnicotine

    International Nuclear Information System (INIS)

    Sirimanne, S.R.; Maggio, V.L.; Patterson, D.G. Jr.

    1992-01-01

    The synthesis of (±)- [1,1'- 15 N 2 , 2'- 13 C]-trans-3'-methylnicotine is reported. 15 N-3-Bromopyridine obtained from bromination of pyridine was formylated with nBuLi/[carbonyl- 13 C]-methyl formate. The resulting 15 n-Pyridine-3-[ 13 C-carbonyl]-carboxaldehyde was reacted with 15 N-methylamine and then the resulting Schiff's base was condensed with succinic anhydride to give (±)- [1,1'- 15 N 2 , 5'- 13 C]-trans-4'-carboxycotinine. Reduction with lithium aluminum hydride and mesylation followed by reduction with Zn/NaI gave (±)-[1,1'- 15 N 2 , 2'- 13 C]-trans-3'-methylnicotine. (Author)

  17. Investigation into endogenous N metabolism in 15N-labelled pigs. 1

    International Nuclear Information System (INIS)

    Bergner, H.; Bergner, U.; Adam, K.

    1984-01-01

    4 male castrated pigs (55-65 kg) either received a wheat-fish meal diet (1 and 2) or a wheat-horse bean diet (3 and 4) without straw meal supplement (1 and 3) or with a supplement of 20% dry matter (2 and 4). In order to investigate whether a 15 N labelling of the pigs is also possible with a protein excess in the ration, the animals received 24.8 g (1 and 2) and 11.6 g crude protein/kg/sup 0.75/ live weight (3 and 4). During a 10-day 15 N-labelling 385 mg 15 N excess ( 15 N') per kg/sup 0.75/ were applied with 15 N labelling the following quotas of the applied 15 N amount were incorporated: 1 = 10.2%, 2 = 7.2%, 3 = 18.7%, 4 = 14.4%. 15 N excretion in both TCA fractions of feces showed a highly significant positive correlation to the increasing content of crude fibre in the 4 diets. The immediate 15 N incorporation into the TCA-precipitable fraction of feces proves that 15 N enters the large intestine endogenously and serves bacterial protein synthesis. 3 days after the last 15 application the pigs were killed. The values of atom-% 15 N' were determined in the TCA-precipitable blood plasma and in the TCA-precipitable fraction of the liver. The other examined organs and tissues showed smaller differences between the test animals. The results show that the 15 N labelling of tissues and organs of pigs is also possible at a high level of protein supply by means of an oral application of [ 15 N] ammonia salts. (author)

  18. Doubly 15N-substituted diazenylium: THz laboratory spectra and fractionation models

    Science.gov (United States)

    Dore, L.; Bizzocchi, L.; Wirström, E. S.; Degli Esposti, C.; Tamassia, F.; Charnley, S. B.

    2017-07-01

    Context. Isotopic fractionation in dense molecular cores has been suggested as a possible origin of large 14N/15N ratio variations in solar system materials. While chemical models can explain some observed variations with different fractionation patterns for molecules with -NH or -CN functional groups, they fail to reproduce the observed ratios in diazenylium (N2H+). Aims: Observations of doubly 15N-substituted species could provide important constraints and insights for theoretical chemical models of isotopic fractionation. However, spectroscopic data are very scarce. Methods: The rotational spectra of the fully 15N-substituted isopologues of the diazenylium ion, 15N2H+ and 15N2D+, have been investigated in the laboratory well into the THz region by using a source-modulation microwave spectrometer equipped with a negative glow discharge cell. An extended chemical reaction network has been used to estimate what ranges of 15N fractionation in doubly 15N-substituted species could be expected in the interstellar medium (ISM). Results: For each isotopologue of the H- and D-containing pair, nine rotational transitions were accurately measured in the frequency region 88 GHz-1.2 THz. The analysis of the spectrum provided very precise rest frequencies at millimeter and sub-millimeter wavelengths, useful for the radioastronomical identification of the rotational lines of 15N2H+ and 15N2D+ in the ISM.

  19. Stable isotope sup 15 N-urea and clinical research in nephrology

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Nobuhiro; Arai, Junko; Akimoto, Mitsuko; Miwa, Toichiro; Takuma, Takehide (Tokyo Women' s Medical Coll. (Japan))

    1990-08-01

    Stable isotope {sup 15}N-compound, {sup 15}N-urea, is useful marker to investigate nitrogen metabolism in clinical nephrology, particularly in chronic renal failure or dialysis. {sup 15}N-urea incorporation into plasma albumin in addition to plasma {sup 15}N disappearance was studied in 6 patients with endstage chronic renal failure. As a result, only minor fraction of administered {sup 15}N-urea was incorporated into albumin in this study. In addition, it was also confirmed that high energy diet may promote protein synthesis through {sup 15}N incorporation to plasma amino acids, such as alanine, in these patients with low protein meal. Therefore, administration of {sup 15}N-compound to human subjects may contribute to provide us the important informations on nitrogen metabolism. For instance, urea kinetics are described in the endstage chronic renal failure in this review. However, less expensive {sup 15}N-compounds should be provided and more simple but accurate measurement of {sup 15}N activity should be developed for the further clinical application of the stable isotope. (author).

  20. Effects of growth and change of food on the δ15N in marine fishes

    International Nuclear Information System (INIS)

    Kasamatsu, Fujio; Sato, Rie; Park, Kwang Lai

    1998-01-01

    Information is limited concerning variation of the δ 15 N with growth in marine organisms and consequently the effect of growth of marine biota on the δ 15 N is not yet well understood. The δ 15 N in 26 species of marine fishes taken from Japanese coastal waters together with 4664 stomach contents of these fishes were examined to investigate the effects of food habits and growth on the δ 15 N. The mean δ 15 N for two species that fed mainly on large-size fishes and six species that fed mainly on small-size fishes were 14.5±1.0per mille and 12.8±0.7per mille, respectively. For five species that fed mainly on decapod crustaceans, two species that fed mainly on zooplankton, and three species that fed mainly on benthos (mainly Polychaeta), the δ 15 N were 13.0±0.7, 9.7±0.9, and 12.2±1.2per mille, respectively. The mean δ 15 N in the species whose prey were mainly fish or decapod crustaceans was about 3-5per mille higher than the species whose prey was mainly zooplankton. Within the four species that shift their food habits with growth to higher trophic level, the δ 15 N significantly increased with growth in one species (Pacific cod), while not significant increase in the δ 15 N with growth in the remaining species. (author)

  1. Investigation of the metabolism of colostomized laying hens with 15N-labelled wheat. 5

    International Nuclear Information System (INIS)

    Gruhn, K.

    1980-01-01

    In an experiment with 3 colostomized laying hybrids each animal received 80 g pelleted mixed feed and 40 g 15 N-labelled wheat with 20.13 atom-% 15 N excess ( 15 N') over a period of four days. On the following four days the hens received rations composed in the same way with unlabelled wheat, however in the tissues and organs of the slaughtered hens 15 N' was determined in the total N and the amino acids lysine, histidine and arginine in both the segments of the gastro intestinal tract and in its content. The amount of 15 N' stomach, small intestine and colon was 43.7%, 27.2% and 29.1%, respectively. The tissue of the small intestine contained, on an average, the highest 15 N' in lysine of all the basic amino acids. It was 0.82 atom-% 15 N' for lysine, 0.55% for histidine and 0.63% for arginine. The percentage of the 15 N' of the basic amino acids from the corresponding total 15 N' amount of the charges was 20.5% in the contents of the gastrointestinal tract, 28.0% in the stomach tissue and in the tissues of the small intestine 24.4% of the cecum 21.5% and of the rectum 25.7%. (author)

  2. Stable isotope 15N-urea and clinical research in nephrology

    International Nuclear Information System (INIS)

    Sugino, Nobuhiro; Arai, Junko; Akimoto, Mitsuko; Miwa, Toichiro; Takuma, Takehide

    1990-01-01

    Stable isotope 15 N-compound, 15 N-urea, is useful marker to investigate nitrogen metabolism in clinical nephrology, particularly in chronic renal failure or dialysis. 15 N-urea incorporation into plasma albumin in addition to plasma 15 N disappearance was studied in 6 patients with endstage chronic renal failure. As a result, only minor fraction of administered 15 N-urea was incorporated into albumin in this study. In addition, it was also confirmed that high energy diet may promote protein synthesis through 15 N incorporation to plasma amino acids, such as alanine, in these patients with low protein meal. Therefore, administration of 15 N-compound to human subjects may contribute to provide us the important informations on nitrogen metabolism. For instance, urea kinetics are described in the endstage chronic renal failure in this review. However, less expensive 15 N-compounds should be provided and more simple but accurate measurement of 15 N activity should be developed for the further clinical application of the stable isotope. (author)

  3. Human dietary δ(15)N intake: representative data for principle food items.

    Science.gov (United States)

    Huelsemann, F; Koehler, K; Braun, H; Schaenzer, W; Flenker, U

    2013-09-01

    Dietary analysis using δ(15)N values of human remains such as bone and hair is usually based on general principles and limited data sets. Even for modern humans, the direct ascertainment of dietary δ(15)N is difficult and laborious, due to the complexity of metabolism and nitrogen fractionation, differing dietary habits and variation of δ(15)N values of food items. The objective of this study was to summarize contemporary regional experimental and global literature data to ascertain mean representative δ(15)N values for distinct food categories. A comprehensive data set of more than 12,000 analyzed food samples was summarized from the literature. Data originated from studies dealing with (1) authenticity tracing or origin control of food items, and (2) effects of fertilization or nutrition on δ(15)N values of plants or animals. Regional German food δ(15)N values revealed no major differences compared with the mean global values derived from the literature. We found that, in contrast to other food categories, historical faunal remains of pig and poultry are significantly enriched in (15)N compared to modern samples. This difference may be due to modern industrialized breeding practices. In some food categories variations in agricultural and feeding regimens cause significant differences in δ(15)N values that may lead to misinterpretations when only limited information is available. Copyright © 2013 Wiley Periodicals, Inc.

  4. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    Science.gov (United States)

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  5. Nitrogen processing in a tidal freshwater marsh: a whole ecosystem 15N labeling study

    NARCIS (Netherlands)

    Gribsholt, B.; Boschker, H.T.S.; Struyf, E.; Andersson, M.G.I.; Tramper, A.; de Brabandere, L.; van Damme, S.; Brion, N.; Meire, P.; Dehairs, F.; Middelburg, J.J.; Heip, C.H.R.

    2005-01-01

    We quantified the fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrientrich Scheldt River in a whole-ecosystem 15N labeling experiment. 15N-NH4+ was added to the floodwater entering a 3,477 14 m2 tidal marsh area, and marsh ammonium processing and

  6. Infrared and Raman spectra of uric acid and its 15N and D labelled compounds

    International Nuclear Information System (INIS)

    Majoube, Michel

    Infrared and Raman spectra of polycrystalline uric acid (2, 6, 8-trioxypurine) 1.3, 7 and 9- 15 N and deuterated analogues have been determined. Band shifts with 15 N substitution and with deuteration are discussed. An assignment of fundamental vibrations of uric acid is proposed from the comparison of the eight isotopically substituted analogues [fr

  7. δ(15) N from soil to wine in bulk samples and proline.

    Science.gov (United States)

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Nitrogen cycling in a forest stream determined by a 15N tracer addition

    Science.gov (United States)

    Patrick J. Mullholland; Jennifer L. Tank; Diane M. Sanzone; Wilfred M. Wollheim; Bruce J. Peterson; Jackson R. Webster; Judy L. Meyer

    2000-01-01

    Nitrogen uptake and cycling was examined using a six-week tracer addition of 15N-labeled ammonium in early spring in Waer Branch, a first-order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition,

  9. Nitrogen-15-labeled deoxynucleosides. 3. Synthesis of [3-15N]-2'-deoxyadenosine

    International Nuclear Information System (INIS)

    Rhee, Young-Sook; Jones, R.A.

    1990-01-01

    The synthesis of [3- 15 N]-labeled adenine has been reported by several groups. Each of these syntheses followed essentially the same route, in which the 15 N is introduced by nitration of 4-bromoimidazole under forcing conditions using [ 15 N]-HNO 3 . The authors have devised an alternate route which uses an azo coupling reaction for introduction of the 15 N and proceeds through the intermediacy of [5- 15 N]-labeled 5-aminoimidazole-4-carboxamide (AICA). An unrelated route to the [5- 15 N]-labeled 5-amino-imidazole ribonucleoside (AIRs) was recently reported. AICA is a versatile precursor, which is most commonly used for entry into the guanine or isoguanine families, although it is usually used as the AICA-riboside rather than the heterocycle itself. The authors have found that AICA also can be used for the adenine family by cyclization to hypoxanthine using diethoxymethyl acetate in DMF at reflux. Although these conditions are more vigorous than those required for cyclization of 4,5-diaminopyrimidines using this reagent, the reaction works well. In addition, they report high-yield enzymatic conversion of [3- 15 N]-adenine to [3- 15 N]-2'-deoxyadenosine

  10. Utilization of 15N-labelled urea in laying hens. 2

    International Nuclear Information System (INIS)

    Gruhn, K.; Zander, R.

    1985-01-01

    In an N metabolism experiment 3 colostomized laying hybrids received 2870 mg 15 N excess ( 15 N') per animal in 6 days in the form of urea with their conventional feed rations. During the 8-day experiment the 21 eggs laid were separated into egg-shell, white of egg and yolk. Weight, N content and 15 N' of the individual fractions of the eggs were determined. On an average 4.6% of the heavy nitrogen was in the egg-shells, 50% in the white of egg and 45.5% in the yolk. 2.8%, 4.5% and 5.5% (hens 1 - 3) of the 15 N' consumed were detected in the eggs. The maximum 15 N' output in the white of egg was reached on the 6th day, whereas 15 N' output in the yolk showed a nearly linear increase in the time of the experiment. The results show that labelled nitrogen from urea is incorporated into the egg to a lower degree than after the feeding of 15 N-labelled proteins and that the development of its incorporation into the white of egg and the yolk differ from that after the feeding of 15 N-labelled native proteins. (author)

  11. Application of 15N amino acid absorption in chronic enteropathy and hepatic diseases in infants

    International Nuclear Information System (INIS)

    Culea, M.; Palibroda, N.; Chiriac, M.; Moldovan, Z.; Miu, N.

    1993-01-01

    The aim of this study was to estimate malabsorption status in humans using a 15 N stable isotope tracer technique. [ 15 N]-glycine, 98.98 atom %, was synthesized in our institute and was administered orally as a single bolus dose to twelve patients. Six of the 12 subjects studied were healthy and 6 were suspected of having malabsorption. Blood, urine and faecal samples were obtained, proteins in the samples were precipitated with sulphosalicylic acid (5%), the eluate was purified with Dowex 50W-X8 (40mm x 2mm column), and derivatised to form the trifluoroacetyl-butyl esters using standard techniques. Gas chromatographic separation was performed on a glass column 2m X 3mm i.d. packed with EGA 1% on Chromosorb W AW 80-100 mesh. An isotope dilution GC/MS method and Kjeldahl digestion followed by MS analysis of nitrogen gas was performed. 15 N isotopomer was used as internal standard. [ 15 N]-Gly elimination in faeces was compared with total 15 N elimination in faeces to distinguish artefacts caused by intestinal bacteria. Significant differences in the amount of [ 15 N]-Gly eliminated in urine and faeces between malabsorption and control patients were obtained. It was concluded that more emphasis should be given to the faeces data than to urine because 15 N elimination in urine is competitive with 15 N incorporation into protein. 12 refs, 4 figs, 4 tabs

  12. Disturbance and topography shape nitrogen availability and ä15N over long-term forest succession

    Science.gov (United States)

    Steven S. Perakis; Alan J. Tepley; Jana E. Compton

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil ä15N values. We examined soil and foliar patterns in N and ä15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane...

  13. Utilization of 15N-labelled urea in laying hens. 8

    International Nuclear Information System (INIS)

    Gruhn, K.; Graf, H.

    1987-01-01

    3 colostomized laying hybrids received orally with a conventional ration 1% urea with 96.06 atom-% 15 N excess ( 15 N') over a period of 6 days. In the period of the experiment every hen consumed 2.87 g 15 N'. After another 2 days, on which they received conventional feed urea, the animals were butchered. 15 N' was determined in the total N and in 15 amino acids of the oviduct. Of the 15 amino acids the labelling of glutamic acid, glycine and serine was highest and on average amounted to 0.80, 0.66 and 0.67 atom-% 15 N', resp. In lysine and arginine only 0.10 and 0.11 atom-% 15 N' could be detected. The amino acid N with natural isotopic frequency amounted to a quarter for the basic amino acids, a tenth for the branched chain ones and for the non-essential ones (glutamic acid, aspartic acid, serine, glycine, alanine, proline) a third of the total oviduct 14 N. The average quota of 15 N' is only 3.6%, that of the branched chain amino acids 4.5 and that of the non-essential ones 21.1%. Consequently, the 15 N' of the urea is mainly used for the synthesis of the non-essential amino acids of the oviduct. (author)

  14. Absorption and translocation of 15N in Japonica (Hinohikari) and Indica (Hadsaduri) rice varieties

    International Nuclear Information System (INIS)

    Islam, N.; Inagaki, S.; Chishaki, N.; Horiguchi, T.

    1997-01-01

    The absorption and translocation of 15 N-labeled nitrogen (N) applied as three N levels of ammonium nitrate at the stages of panicle initiation (PI) and heading (HD) were compared between a japonica rice variety (var. Hinohikari) and a tall indica rice variety (var. Hadsaduri) by growing them hydroponically. With the supply of low N level, 15 N absorption by the japonica variety was larger, but at medium and high N levels, the tall indica variety absorbed larger amounts of 15 N at both stages. However, the amount of 15 N partitioned to the panicles at maturity was considerably smaller in the indica variety, since dry matter allocation to the panicles was also smaller in this variety. The tall indica variety showed a considerable loss of 15 N from heading to maturity at the high N-level unlike the japonica variety. (author)

  15. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs

    International Nuclear Information System (INIS)

    Kaldy, James

    2011-01-01

    Highlights: → Green macroalgae exposed to nutrient solutions exhibited changes in tissue 15 N signatures. → Macroalgae exhibited no fractionation with NO 3 and slight fractionation with NH 4 . → Algae exposed to cruise ship waste water had increased tissue δ 15 N indicating a heavy N source. → Field bioassays exhibited decreased δ 15 N indicating isotopically light riverine δ 15 N-NO 3 was likely the dominant N source. → Algal bioassays could not detect a δ 15 N cruise ship waste water signal in this system. - Abstract: Green macroalgae bioassays were used to determine if the δ 15 N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ 15 N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5 per mille in δ 15 N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ 15 N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N 2 -fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ 15 N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  16. Disturbance and topography shape nitrogen availability and δ15 N over long-term forest succession

    Science.gov (United States)

    Perakis, Steven; Tepley, Alan J.; Compton, Jana

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane landscape influenced by human logging and wildfire. In contrast to expectations, we found that disturbance caused declines in surface mineral soil δ15N values, both in logged forests measured 40–50 years after disturbance, and in unlogged forests disturbed by severe wildfire within the last 200 years. Both symbiotic N fixation and N transfers from disturbed vegetation and detritus could lower soil δ15N values after disturbance. A more important role for symbiotic N fixation is suggested by lower soil δ15N values in slow-successional sites with slow canopy closure, which favors early-successional N fixers. Soil δ15N values increased only marginally throughout 800 years of succession, reflecting soil N uptake by vegetation and strong overall N retention. Although post-disturbance N inputs lowered surface soil δ15N values, steady-state mass balance calculations suggest that wildfire combustion of vegetation and detritus can dominate long-term N loss and increase whole-ecosystem δ15N. On steeper topography, declining soil δ15N values highlight erosion and accelerated soil turnover as an additional abiotic control on N balances. We conclude for N-limited montane forests that soil δ15N and N availability are less influenced by nitrate leaching and denitrification loss than by interactions between disturbance, N fixation, and erosion.

  17. Indirect Measurement of 15N(p,α)12C and 18O(p,α)15N. Applications to the AGB Star Nucleosynthesis

    International Nuclear Information System (INIS)

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Tribble, R.; Al-Abdullah, T.; Banu, A.; Fu, C.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-01-01

    The Trojan Horse Method has been recently applied to the study of reactions involved in fluorine nucleosynthesis inside AGB stars. Fluorine abundance is important since it allows to constrain mixing models from the comparison of the observed fluorine abundances with the ones predicted by models. Anyway direct measurements of the cross section do not extend down to the Gamow peak, which is the astrophysically relevant energy region. In particular the study focuses on the 15 N(p,α) 12 C and the 18 O(p,α) 15 N reactions which can influence fluorine yield as they are part of 19 F production/destruction network

  18. Combined solid state and solution NMR studies of α,ε-15N labeled bovine rhodopsin

    International Nuclear Information System (INIS)

    Werner, Karla; Lehner, Ines; Dhiman, Harpreet Kaur; Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald; Klein-Seetharaman, Judith; Khorana, H. Gobind

    2007-01-01

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of α,ε- 15 N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state 13 C, 15 N-REDOR and HETCOR experiments of all possible 13 C' i-1 carbonyl/ 15 N i -tryptophan isotope labeled amide pairs, and H/D exchange 1 H, 15 N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone 15 N nuclei and partially to their bound protons. 1 H, 15 N chemical shift assignment was achieved for indole side chains of Trp35 1.30 and Trp175 4.65 . 15 N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175 4.65 at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin

  19. 15N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon

    International Nuclear Information System (INIS)

    Ambrosano, Edmilson Jose; Rossi, Fabricio; Trivelin, Paulo Cesar Ocheuze; Cantarella, Heitor; Ambrosano, Glaucia Maria Bovi; Schammass, Eliana Aparecida; Muraoka, Takashi

    2011-01-01

    Legumes as green manure are alternative sources of nitrogen (N) for crops and can supplement or even replace mineral nitrogen fertilization due to their potential for biological nitrogen fixation (BNF). The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulfate (AS) was evaluated using the 15 N tracer technique. N was added at the rate of 196 and 70 kg ha -1 as 15 N-labeled sunn hemp green manure (SH) and as ammonium sulfate (AS), respectively. Treatments were: (I) Control; (II) AS 15 N; (III) SH 15 N + AS; (IV) SH 15 N; and (V) AS 15 N + SH. Sugarcane was cultivated for five years and was harvested three times. 15 N recovery was evaluated in the two first harvests. In the sum of the three harvests, the highest stalk yields were obtained with a combination of green manure and inorganic N fertilizer; however, in the second cutting the yields were higher where SH was used than in plots with AS. The recovery of N by the first two consecutive harvests accounted for 19 to 21% of the N applied as leguminous green manure and 46 to 49% of the N applied as AS. The amounts of inorganic N, derived from both N sources, present in the 0-0.4 m layer of soil in the first season after N application and were below 1 kg ha -1 . (author)

  20. δ15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems

    International Nuclear Information System (INIS)

    Yamamuro, M.; Kayanne, H.; Yamano, H.

    2003-01-01

    In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;≥1.0 μM) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and δ 15 N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical δ 15 N values were found in seagrass leaves of several species at each site. The correlations between δ 15 N and nutrient concentrations and between δ 15 N and molar ratios of nutrients suggested that nutrient availability did not affect the δ 15 N value of seagrass leaves by altering the physiological condition of the plants. Increases in δ 15 N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that δ 15 N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water

  1. 15N incorporation into organ proteins of newborn rats following single pulse-labelling with different tracers

    International Nuclear Information System (INIS)

    Wutzke, K.D.; Plath, C.; Richter, I.; Heine, W.; Zhukova, T.P.; Sorokina, E.G.; Friedrich, M.

    1987-01-01

    A short-chain 15 N-peptide mixture characterized by an average chain length of 2.3 was obtained when 15 N-labelled yeast protein was hydrolyzed enzymatically by thermitase from Thermoactinomyces vulgaris. Fifteen newborn Wistar rats were given a single pulse of [ 15 N]glycine. [ 15 N]H 4 Cl and [ 15 N]yeast protein thermitasehydrolysate (YPTH) in a dosage of 50 mg 15 N excess kg -1 by gastric tube. In comparison with [ 15 N]glycine the 15 N incorporation rates of brain, muscle and liver were approximately 150% higher after [ 15 N]YPTH application. Uniform labelling, high 15 N enrichment, almost complete absorption, avoidance of imbalances and the low price make this tracer substance superior to other tracers conventionally used for organ labelling. (author)

  2. Utilization of {sup 15}N-Diammonium Phosphate by Ruminants to Produce Milk and Meat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Piva, G.; Silva, S. [Istituto di Zootecnicae di Chimica Agraria, Facolta di Agraria Univ. Cattolicas. Cuore, Piacenza (Italy)

    1968-07-01

    The authors investigated the alimentary role of diammonium phosphate (DAP) in ruminants. For this study DAP labelled with {sup 15}N was used; analysis of the {sup 15}N atomic per cent excess was made with an Italelettronica mass spectrophotometer (model SP 21 F) and the amino acid determination by a Beckman-Spinco amino acid analyser (model 120B) fitted with a preparative column. For the experiment 7 g of DAP at 15 and 20 at. % excess {sup 15}N were administered once to mature lactating and non-lactating sheep, respectively. The measurement of {sup 15}N in the protein and isolated amino acids of milk and meat showed: (1) The milk protein produced in the first 24 h contained the highest atomic per cent excess of {sup 15}SN, 0.093; (2) That the supplemental {sup 15}N was found in all the amino acids of milk proteins except tryptophane. The atomic per cent excess of {sup 15}N was observed to vary between the various amino acids. These results confirmed previous observations on bacterial protein synthesized from DAP. (3) Muscle protein {sup 15}N maximized on the third day after administration of the {sup 15}N-DAP, with an atomic per cent excess of 0.040; (4) The atomic per cent excess of {sup 15}N in the individual amino acids of muscle protein is significant in only two amino' acids, serine and cystine; and (5) That after 8 d of adaptation there are no traces of DAP in milk or meat proteins, urine or faeces. The authors conclude that the ruminant, after a period of adaptation and through the mediation of ruminant microorganisms, is able to use the nitrogen of diammonium phosphate for the synthesis of milk and meat proteins. (author)

  3. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    Science.gov (United States)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  4. Characterization of amino acid metabolism by cultured rat kidney cells: Study with 15N

    International Nuclear Information System (INIS)

    Nissim, I.; States, B.; Yudkoff, M.; Segal, S.

    1987-01-01

    The present study evaluates the metabolism of glutamine and glutamate by normal rat kidney (NRK) cells. The major aim was to evaluate the effect of acute acidosis on the metabolism of amino acid and ammonia formation by cultured NRK cells. Experiments at either pH 7.0 or 7.4 were conducted with phosphate-buffered saline supplemented with either 1 mM [5- 15 N]glutamine, [2- 15 N]glutamine, or [ 15 N]glutamate. Incubation with either glutamine or glutamate as a precursor showed that production of ammonia and glucose was increased significantly at pH 7.0 vs 7.4. In experiments with [5- 15 N]glutamine, the authors found that ∼57 and 43% of ammonia N was derived from 5-N of glutamine at pH 7.4 and 7.0, respectively. Three major metabolic pathways of [2- 15 N]glutamine or [ 15 N]glutamate disposal were identified: (1) transamination reactions involving the pH-independent formation of [ 15 N] aspartate and [ 15 N]alanine; (2) the synthesis of [6- 15 NH 2 ]adenine nucleotide, a process more active at pH 7.4 vs. 7.0; and (3) glutamine synthesis from [ 15 N]glutamate, especially at pH 7.4. The data indicate that NRK cells in culture consume glutamine and glutamate and generate ammonia and various amino acids, depending on the H + concentration in the media. The studies suggest that these cell lines may provide a useful model for studying various aspects of the effect of pH on rat renal ammoniagenesis

  5. Urinary excretion of 15N during intraportal infusion of 15N-ammonia in chickens fed low or high protein diet

    International Nuclear Information System (INIS)

    Karasawa, Yutaka; Koh, Katsuki; Takahashi, Akira; Sumiya, Ryuta

    1985-01-01

    The purpose of this study is to examine time courses of 15 N in urinary ammonia and total N when 15 N-labeled ammonium acetate was continuously infused for 1 hour into chickens fed a 5 or 20 % protein diet. 15 N-enrichment of urinary nitrogen in the two dietary groups increased sharply in ammonia for the first 20 minutes and to a less extent linearly in total N for the first 30 minutes, and then gradually in both ammonia and total N. Through the ammonia infusion, the 15 N-enrichment of urinary ammonia was higher in the chickens fed the low protein diet than in those fed the high protein diet; both of them were higher than 15 N-enrichments of urinary N, which were almost the same in the two dietary groups. The urinary total N from the infused ammonia rose linearly for the first 40 minutes but thereafter did not rise further in the two dietary groups, whereas the endogenous urinary total N tended to decrease a little in the chichens fed the high protein diet but unchanged in those fed the low protein diet. The urinary ammonia from the infused ammonia increased sharply for the first 20 minutes, then linearly but at a lower rate in the chickens fed the high protein diet, whereas that in the chickens fed the low protein diet rose linearly throughout ammonia infusion. In contrast, the endogenous urinary ammonia showed no change in the chickens fed the high protein diet while it showed a tendency to increase a little in these fed the low protein diet. These results indicate that the increased urinary ammonia and total N during ammonia infusion are derived mostly from the infused ammonia in chickens fed 5 and 20% protein diets. (author)

  6. Levels of 16O near 13 MeV excitation from 15N+p reactions

    International Nuclear Information System (INIS)

    Bray, K.H.; Frawley, A.D.; Ophel, T.R.; Barker, F.C.

    1977-02-01

    Angular distributions, a O 0 excitation function and Doppler-broadened γ-ray profiles for the reaction 15 N(p,α 1 γ), and angular distributions for the 15 N(p,αsub(o)) reaction, have been measured for proton energies from about 900 to 1250 keV. These data, together with analysing powers from the 15 N(p,αsub(o)) reaction with polarized protons, have been satisfactorily fitted by means of R-matrix theory, in terms of the known levels of 16 O in the 13 MeV region together with background contributions. (Author)

  7. Comparison of unenriched versus 15N-enriched fertilizer as a tracer for N fertilizer uptake

    International Nuclear Information System (INIS)

    Meints, V.W.; Shearer, G.; Kohl, D.H.; Kurtz, L.T.

    1975-01-01

    A greenhouse experiment was conducted on three soils with differing cropping and fertilization histories to determine whether unenriched fertilizer N can be used in the same manner as 15 N-enriched fertilizer to estimate the amount of plant N derived from fertilizer. Estimates using unenriched fertilizer N were compared with estimates using two 15 N enrichment levels. Use of unenriched fertilizer N led to underestimation of the amount of fertilizer N in the plant material in four of six cases when compared to 15 N-enriched fertilizer. Standard deviations of the estimates of fertilizer-derived N in plant material were considerably greater when unenriched fertilizer was used. (U.S.)

  8. Influence of nutrition on protein synthesis and 15N tracer data in man

    International Nuclear Information System (INIS)

    Faust, H.

    1984-01-01

    Quantitative studies and measurements of parameters of the protein metabolism in vivo require the isotope methodology. Different 15 N tracer methods with special modifications are available which can be used depending on clinical problems. The oral single pulse application of [ 15 N]glycine is equal to other isotope tracer techniques provided that the basic assumptions of the application are fullfilled. The protein metabolism is clearly influenced by the nutritional status whereby the protein synthesis is more sensitive than the breakdown to altered dietary intakes of protein and energy. The importance of standardized experimental conditions is emphasized for studies with 15 N and the interpretation of tracer data. (author)

  9. Evaluation for dinitrogen fixation of alfalfa in field based on δ15N value

    International Nuclear Information System (INIS)

    Yao Yunyin; Chen Ming; Zhang Xizhong

    1992-12-01

    The dinitrogen fixation rate of alfalfa was estimated grown in pot and field experiments. β values (isotope fraction factor) of 7 cultivars of alfalfa (Medicago sativa L.) and white clover (Trifolium repens L.) grown in N-free liquid culture medium were examined. Variations in the δ 15 N values of varieties of alfalfa at growing seasons and forage grasses grown under various conditions were measured. %Ndfa of alfalfa was estimated using the natural 15 N abundance method, 15 N isotope dilution method and total N difference, and their accuracy was compared

  10. Studies of liver-specific metabolic reactions with 15N. 1

    International Nuclear Information System (INIS)

    Hirschberg, K.; Jung, K.; Faust, H.; Matkowitz, R.

    1987-01-01

    The 15 N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After [ 15 N]ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the [ 15 N]ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of [ 15 N]hippurate seems to be a suitable indicator of liver disfunction. (author)

  11. A liver-function test using 15N-labelled ammonium chloride

    International Nuclear Information System (INIS)

    Jung, K.; Hirscherg, K.; Faust, H.; Matkowitz, R.

    1985-01-01

    Malfunction of the liver involves disturbances of urea synthesis and ammonia detoxification. These phenomena became apparent, especially during ammonia loading of patients. The functional state of the liver can be assessed by oral administration of 15 NH 4 Cl and subsequent analysis of 15 N-urea and 15 N-ammonia in urine by emission spectrometry. Clinical tests based on the ratio of the excess abundances (see Appendix) of 15 N-ammonia to 15 N-urea excreted in urine 3 h after oral administration gave values for patients with liver disease which differed significantly from those for healthy subjects. Absorption disturbances, which often accompany liver diseases, do not influence the effectiveness of the method. (orig.)

  12. Liver-function test using /sup 15/N-labelled ammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K; Hirscherg, K; Faust, H; Matkowitz, R

    1985-08-01

    Malfunction of the liver involves disturbances of urea synthesis and ammonia detoxification. These phenomena became apparent, especially during ammonia loading of patients. The functional state of the liver can be assessed by oral administration of /sup 15/NH/sub 4/Cl and subsequent analysis of /sup 15/N-urea and /sup 15/N-ammonia in urine by emission spectrometry. Clinical tests based on the ratio of the excess abundances (see Appendix) of /sup 15/N-ammonia to /sup 15/N-urea excreted in urine 3 h after oral administration gave values for patients with liver disease which differed significantly from those for healthy subjects. Absorption disturbances, which often accompany liver diseases, do not influence the effectiveness of the method.

  13. Backbone dynamics of the EIAV-Tat protein from 15N relaxation studies

    International Nuclear Information System (INIS)

    Ejchart, A.; Herrmann, F.; Roesch, P.; Sticht, H.; Willbold, D.

    1994-01-01

    The work investigates the mobility of EIAV-Tat protein backbone by measuring the relaxation parameters of the 15 N nitrogens. High degree of the flexibility, non-typical of rigid, well structured proteins was shown

  14. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    International Nuclear Information System (INIS)

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2010-01-01

    Stable nitrogen isotopes (δ 15 N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ 15 N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ 15 N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ 15 N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations.

  15. Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State

    Science.gov (United States)

    Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2017-01-01

    Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin-lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C).

  16. Evaluation of the protein metabolism during hepatic coma evidenced by 15N tracer data

    International Nuclear Information System (INIS)

    Matkowitz, R.; Hartig, W.; Junghans, P.; Jung, K.; Hirschberg, K.; Bornhak, H.

    1983-01-01

    In patients in coma hepaticum as well as in pigs with experimental hepatic coma the protein metabolism was studied under conditions of parenteral application of an amino acid diet using 15 N-glycine as tracer

  17. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    Science.gov (United States)

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  18. Effect of the supply dose on the 15N enrichment level of cow's milk nitrogenous fractions

    International Nuclear Information System (INIS)

    Colin, O.; Laurent, F.; Vignon, B.; Antoine, J.M.

    1994-01-01

    Production of cow milk 15 N-labelled proteins is necessary for the study of their digestion by man. An adequate enrichment is required for compatibility with utilization constraints (application dose, studied fractions...). A test was conducted with five cows in order to optimize the utilization of labelled ammonium sulphate in the cow diet for 15 N enrichment of the milk nitrogenous matter. Doses and supply timing of labelled compounds are discussed. 3 figs., 3 refs

  19. Methodical investigation of the endogenous N excretion in feces by 15N-labelled rats

    International Nuclear Information System (INIS)

    Bergner, U.; Bergner, H.

    1983-01-01

    Wistar rats (approximately 100g live weight, n = 8) received a wheat diet and were labelled over a period of 7 days with 15 N-ammonium acetate. From day 1 - 5 of the experiment after the end of the labelling feces and urine were collected and analysed. After the animals were killed (day 5 of the experiment) the atom-% 15 N excess ( 15 N') in the contents of the digestive tract as well as in the tissues of stomach wall, intestinal wall, liver, pancreas and blood plasma was determined. The TCA-soluble fraction of the blood plasma showed 0.44 atom-% 15 N' on day 5 after the end of 15 N labelling. 3 hours before the killing fecal N also showed 0.44 and during the last collection period (24 hours before) an average of 0.51 atom-% 15 N'. Urine decreased in the same period from 0.71 to 0.59 atom-% 15 N'. The endogenous fecal N is calculated to 88%. As the tissues of the digestive tract are likely to supply the biggest part of the endogenous fecal protein, the values of atom-% 15 N' from the TCA-precipitable fraction of the intestinal wall and of the pancreas gland was calculed to an average of 0.526. According to this the calculation endogenous fecal N is 84%. It is probable that the quota of endogenous fecal N in the total amount of fecal N varies in dependence on the fermentable crude fiber in the diet as well as on the age of the test animals and thus the bacterial protein synthesis in the colon. As the N used by the bacteria is likely to come from the TCA-soluble fraction of the blood, the calculation formula suggested, which uses the TCA-soluble fraction of the blood plasma, achieves good approximate values also for higher bacterial protein synthesis in the colon. (author)

  20. 15N abundance in Antarctica: origin of soil nitrogen and ecological implications

    International Nuclear Information System (INIS)

    Wada, E.; Shibata, R.; Torii, T

    1981-01-01

    The results of an investigation of the nitrogen cycle in Antartica are reported which show that nitrate in Antarctic soils is extremely depleted in 15 N compared with biogenic nitrogen and that algae collected from a nitrate-rich saline pond and from a penguin rookery exhibit, respectively, the lowest and the highest 15 N/ 14 N ratios among terrestrial biogenic nitrogen so far observed. The possible causes of these extreme nitrogen isotopic compositions are discussed. (U.K.)

  1. Fertilizer-n uptake and distribution in rice plants using 15N tracer technique

    International Nuclear Information System (INIS)

    Yan Juan; Shen Qirong; Yin Bin; Wan Xinjun

    2009-01-01

    Fertilizer-nitrogen (N) uptake and distribution in rice were studied using 15 N tracer technique. The results obtained were as follows. At the tillering, jointing and booting, and anthesis stages, 23.1%, 8.3% and 19.9% of N were taken from fertilizer applied in base (N1), tillering (N2) and jointing and booting (N3), respectively. The 15 N translocation from anthesis to maturity was in the order of N3>N1>N2, but the 15 N translocation efficiency was higher in N1 (base fertilizer treatment) than in the other two treatments. At maturity, the 15 N distribution in straw in the treatments of N1, N2 and N3 was only 24.3%, 26.7% and 30.4%, respectively. No matter what time the N fertilizer was applied, the 15 N uptake was mostly distributed in leaves, then in the sheath, the least in stem, and 15 N distribution in spike increased with the increased 15 N translocation from nutritional organs to spike after anthesis. The study also showed that the 15 N uptake at maturity in N1, N2 and N3 treatments was 10.3%, 5.9% and 12.4%, respectively. The results indicated that (1) when soil N content was not high, the base fertilizer application was important to rice growth, and optimal increment might help increase tillering, and improve rice quality; (2) the initiation fertilizer significantly promoted quantities during grain filling, and thus application of N fertilizer in initiation was of considerable advance in increasing N harvest index (NHI); (3) the rice plants absorbed less N applied in tillering stage due to a big N loss in that period. Therefore a little bit increase of base N fertilizer with no or very small amount of tillering fertilizer, together with some topdressing of N fertilizer during initiation could improve N uptake by rice. (authors)

  2. Determination of protein turnover parameters in athletes using 15N tracers

    International Nuclear Information System (INIS)

    Krumbiegel, P.; Kuehne, K.; Faust, H.; Bornhak, H.; Junghans, P.; Zerbes, H.

    1985-01-01

    In 2 adolescent female athletes engaged in technical-acrobatic sports the influence of a high protein diet on the protein turnover rate under training conditions was investigated by means of 15 N-glycine. Protein synthesis was significantly increased, whereas the utilization of nutritive nitrogen was decreased as expected. The 15 N tracer technique is well suited to determine the protein requirements under special training conditions

  3. Nitrogen source tracking with δ15N content of coastal wetland plants in Hawaii

    Science.gov (United States)

    Gregory L. Bruland; Richard A.. Mackenzie

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared δ15N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of δ15N with...

  4. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus

    International Nuclear Information System (INIS)

    Chalot, M.; Finlay, R.D.; Ek, H.; Söderström, B.

    1995-01-01

    Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [ 15 N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [ 15 N]alanine. Short-term exposure of mycelial discs to [ 15 N]alanine showed that the greatest flow of 15 N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [ 15 N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15 N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon. (author)

  5. Evaluation of natural 15N abundance method in estimating symbiotic dinitrogen fixation by leguminous grasses

    International Nuclear Information System (INIS)

    Yao Yunyin; Cheng Ming; Ma Changlin; Wang Zhidong; Hou Jinqin; Zhang Lihong; Luo Yongyun

    1991-01-01

    Natural 15 N abundance method was used to estimate contribution of symbiotic dinitrogen fixation by leguminous grasses. With the method the expensive 15 N fertilizer did not need to be applied to the soil and the normal ecosystem was not disturbed. Collecting samples of shoots of leguminous grasses and measuring the content of 15 N in them wee all to do for estimating potential of symbiotically fixed N 2 . Isotopic fractionation associated with N 2 fixation by legumes was studied. Values for 7 cultivars of alfalfa were ranged between 1.0000 ∼ 1.0015 (δ 15 N values were -0.05 ∼ 1.47 per mille); and the values for white clover, mung bean and whitepopinac lead tree were 0.0079, 0.9983 and 1.0018 (δ 15 N values: 2.15, 1.74 and -1.81 per mille) respectively. According to the δ 15 N values of grasses tested, the potential of N 2 fixation for 6 cultivars of alfalfa was estimated. Glory and rambler had higher potential of N 2 fixation; Baoding, Aigonquin and Minto had lower potential, and Peru was the lowest.N 2 fixing activity of alfalfa varied with different periods. The peak was found between June and July. Effects of non-N 2 -fixing references and different methods on estimates of %Ndfa of leguminous grasses were also discussed

  6. Interannual changes in δ15N values in Fucus vesiculosus L

    International Nuclear Information System (INIS)

    Carballeira, Carlos; Rey-Asensio, Ana; Carballeira, Alejo

    2014-01-01

    Highlights: • Isotopic values change along the thallus of F. vesiculosus. • δ 15 N values along the thallus are different between control and polluted sites. • δ 15 N values are temporally unstable at polluted sites. - Abstract: The natural abundance of 15 N15 N) has been widely used to detect anthropogenically derived N loads in environmental impact studies. The present study involved retrospective analysis of subsamples of Fucus vesiculosus L. collected during a period of three years (2008–2010) from two sites: a control site, within a coastal reference area, and an area affected by the effluents of a marine land-based fish farm. The isotopic signal in different subsamples of the macroalgae thalli (tissue that has grown during the same period) varied depending on the age of the tissue. Moreover, the isotopic signal decreased significantly with the age of the frond to within a certain range. The δ 15 N of F. vesiculosus is temporally unstable; therefore, measurement of the δ 15 N of macroalgal tissues does not allow reliable retrospective biomonitoring of environmental pollution. Further knowledge about the growth and other biological aspects of this species is required

  7. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N

  8. Estimate of production of gaseous nitrogen in the human body based on (15)N analysis of breath N2 after administration of [(15)N2]urea.

    Science.gov (United States)

    Junghans, Peter

    2013-01-01

    After oral administration of [(15)N2]urea (1.5 mmol, 95 atom% (15)N), we found that breath N2 was significantly (15)N-labelled. The result suggests that molecular nitrogen in breath must be partly produced endogenously. Based on a metabolic model, the endogenous N2 production was estimated to be 0.40±0.25 mmol kg(-1) d(-1) or 2.9±1.8 % of the total (urinary and faecal) N excretion in fasted healthy subjects (n=4). In patients infected with Helicobacter pylori (n=5), the endogenous N2 production was increased to 1.24±0.59 mmol kg(-1) d(-1) or 9.0±4.3 % of the total N excretion compared to the healthy controls (pexchange measurements may be affected by endogenously produced nitrogen, especially in metabolic situations with elevated nitrosation, for instance in oxidative and nitrosative stress-related diseases such as H. pylori infections.

  9. Metabolic rates of 15N-D- and 15N-L-phenylalanine in an amino acid mixture for parenteral feeding

    International Nuclear Information System (INIS)

    Wutzke, K.; Heine, W.; Drescher, U.

    1982-01-01

    15 N investigations on the metabolism of L- and D-phenylalanine under conditions of parenteral feeding with the aminoacid solution Infesol in 6 infants revealed a retention rate of 83.4 +- 3.4 per cent for the L-form and of 36.6 +- 5.2 per cent for the D-form. When the D-isomer was raised from 1:3 to 1:1 in relation to the L-Form, 32.6 per cent of the infused D-phenylalanine were still retained. After continuous 24-hour infusion of the tracers, the maximum of 15 N excretion in the urine was reached between the 24th and the 30th hour. But little incorporation of 15 N-nitrogen was found in the serum and erythrocytes because of the relatively long half-life period of these proteins. Changes in the composition of commercial DL-amino acid mixtures will only be possible after determining the utilization rates of all essential and non-essential D-amino acids being used in such mixtures. (author)

  10. Absorption of ammonium sulphate {sup 15}N by coffee plants; Recuperacao do {sup 15}N do sulfato de amonio por plantas de cafe

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mail: tatiele@cena.usp.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Dourado Neto, Durval [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Producao Vegetal

    2005-07-01

    The objective of this study was to quantify the absorption of ammonium sulphate {sup 15}N by coffee plants. Treatments consisted of five sub-plots of 9 plants, of which the three central ones received 280 kg ha{sup -1} of {sup 15}N, applied at four times: 1/4 on 01 Set 03; 1/4 on 03 Nov 03; 1/4 on 15 Dec 03 and 1/4 on 30 Jan 04. The isotopic enrichment was 2,072 {+-} 0,001 atom % {sup 15}N. The dry matter of the shoot was evaluated every 60 days, using one plant per replicate, collected outside the sub-plot. They were as similar as possible to the labeled plants, which were used only for isotopic and Total N analysis, after being dried at 65 deg C until constant weight. At harvest, plants had absorbed 42,88% of the fertilizer N. Leaves accumulated the largest amount of fertilizer N, and were also the compartments that received most N from other parts of the plant. The following partition of the fertilizer N was found at harvest: 23.01% in young leaves, 6.23% in old leaves, 4,46% in stem, 3.46% in fruits, 3.10% in young branches and 2.63% in old branches. (author)

  11. Barley Benefits from Organic Nitrogen in Plant Residues Applied to Soil using 15N Isotope Dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Galal, Y.G.M.; Abdel Aziz, H.A.; El-Degwy, S.M.A.; Abd El-Haleem, M.

    2008-01-01

    The experiment was carried out in pots (sandy soil cultivated with Barley plant) under greenhouse conditions, at Inshas, Egypt. The aim was to evaluate the transformation of nitrogen applied either as mineral form ( 15 NH 4 ) 2 SO 4 , or as organic-material-N (plant residues) .Basal recommended doses of P and K were applied. Labeled 15 N as( 15 NH 4 ) 2 SO 4 (5 % a.e) or plant residues (ground leuceana forage, compost, and mixture of them) were applied at a rate of 20 kg N/ ha). 15 N technique was used to evaluate N-uptake and fertilizer use efficiency. The treatments were arranged in a completely randomized block design under greenhouse conditions. The obtained results showed that the dry weight of barley shoots was positively affected by reinforcement of mineral- N with organic-N. On the other hand, the highest dry weight was estimated with leuceana either applied alone or reinforced with mineral N. Similar trend was noticed with N uptake but only with organic N, while with treatment received 50% organic-N. plus 50% mineral- N. the best value of N uptake was recorded with mixture of leuceana and compost. The amount of Ndff was lowest where fertilizer 15 N was applied alone. Comparing Ndff for the three organic treatments which received a combination of fertilizer- 15 N+organic-material-N, results showed that the highest Ndff was occurred with mixture of leuceana and compost, whereas the lowest was induced with individual leuceana treatment. 15 N recovery in shoots of barley ranged between 22.14 % to 82.16 %. The lowest occurred with application of mineral 15 N alone and; the highest occurred where mineral 15 N was mixed with compost or leucaena-compost mixture

  12. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Natasha L Vokhshoori

    Full Text Available We explored δ(15N compound-specific amino acid isotope data (CSI-AA in filter-feeding intertidal mussels (Mytilus californianus as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15N gradients in the California Upwelling Ecosystem (CUE, determining bulk δ(15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2 = 0.759. In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15N trend is therefore most consistent with a baseline δ(15N gradient, likely due to the mixing of two source waters: low δ(15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC, with (15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15N values of phenylalanine (δ(15NPhe, the best AA proxy for baseline δ(15N values. We hypothesize δ(15N(Phe values in intertidal mussels can approximate annual integrated δ(15N values of coastal phytoplankton primary production. We therefore used δ(15N(Phe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15N values. We propose that δ(15N(Phe isoscapes derived from filter feeders can directly characterize baseline δ(15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  13. Utilization of 15N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    International Nuclear Information System (INIS)

    Peschke, H.

    1981-01-01

    After systematic application of 15 N-ammonium nitrate, the change of the dinuclidic composition and 15 N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative 15 N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The 15 N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are 15 N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors. (author)

  14. Adsorption, translocation and redistribution of nitrogen (15N) in orange trees

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Boaretto, Antonio Enedi Boaretto; Bendassolli, Jose Albertino; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi

    2002-01-01

    The objective was to evaluate the absorption of 15 N from nutrient solution by young orange trees and the translocation and the redistribution of the absorbed N. The treatments were constituted by four periods of 15 N labelling (spring, summer, autumn and winter). In the first treatment, the young orange trees received 15 N in the nutrient solution during the spring and five replicates of the plants were picked at the end of the period. The new part, which was developed during the 15 N labelling period, was separated from the other part (old part) in branch and leaf, and also in flower and fruit when they were. The old part was separated in leaf, stem and root. This same procedure was followed in the other treatments. The total N and the isotope ratios 15 N/ 14 N were performed by mass spectrometry. The major part of absorbed N during the spring and summer was translocated to the new part of the orange trees, but in autumn and winter the absorbed N was concentrated in the old plant part. The redistribution of N from of old plant parts was more intensive during the autumn and winter. (author)

  15. Incorporation of 15N-inorganic nitrogen into free-amino acids in germinating corn

    International Nuclear Information System (INIS)

    Samukawa, Kisaburo; Yamaguchi, Masuro

    1979-01-01

    Incorporation of 15 N-labeled compounds, (K 15 NO 3 ) and ( 15 NH 4 ) 2 SO 4 , into free-amino acids was measured in germinating corn. Sterilized seeds of sweet corn (Choko No. 865) were sown on the filter papers soaked in 10 ml of the solution containing one of the labeled compounds (40 ppm N, 99 atom % excess) in petri dishes and germinated at 30 deg C. After 48 hours and 72 hours, 15 N-incorporation was measured in 5 seedlings selected owing to uniform growth. A GC-MS was used for measuring the ratio of 15 N isotopes present in free-amino acids. 15 N incorporation into free-amino acids hardly occurred when corn was germinated in the solution containing K 15 NO 3 , which suggested that endogenous nitrogen was used during the early germination stage of corn when nitrate is present. Incorporation into amino acids was greater when corn was germinated in the medium containing ( 15 NH 4 ) 2 SO 4 , than the case of the solution containing K 15 NO 3 . When corn was germinated in the solution containing ( 15 NH 4 ) 2 SO 4 , assimilation of 15 N into asparagine or aspartic acid was comparatively higher than that into the other amino acids, though the incorporation rate was low. Thus, in intact germinating corn, the hydrolyzed product of protein was utilized for germination with priority, and dependence on exogenous nitrogen was low. (Kaihara, S.)

  16. Fate of 15N-urea applied to wheat-soybean succession crop

    International Nuclear Information System (INIS)

    Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi; Spolidorio, Eduardo Scarpari; Freitas, Jose Guilherme de; Cantarella, Heitor

    2004-01-01

    The wheat crop in Sao Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha -1 ) depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha -1 of N. The efficiency of 15 N-urea utilization ranged from 52% to 85%. The main loss of applied 15 N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha -1 , was less than 1% of applied 15 N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual 15 N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the 15 N applied to wheat at sowing or at tillering stage. (author)

  17. Utilization of /sup 15/N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, H [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Pflanzenproduktion

    1981-12-01

    After systematic application of /sup 15/N-ammonium nitrate, the change of the dinuclidic composition and /sup 15/N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative /sup 15/N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The /sup 15/N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are /sup 15/N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors.

  18. 15N dilution technique of assessing the contribution of nitrogen fixation to rice plant

    International Nuclear Information System (INIS)

    Ventura, Wilbur; Watanabe, Iwao

    1983-01-01

    An attempt to correlate the positive nitrogen balance in rice-soil system with the 15 N dilution in rice plants was made to see if isotope dilution can be used to assess the contribution of nitrogen fixation to the nitrogen nutrition of rice. 15 N ammonium sulfate and sucrose were added to the moist soil in pots to label biomass nitrogen fraction. The rice-soil system with higher nitrogen gain had lower 15 N content in the rice plants. When the surface of pots was covered with black cloths to suppress photodependent N 2 fixation, no significant nitrogen gain was observed. Significant gain was found in the rice-flooded soil system exposed to light, and the 15 N content of plants decreased in allowing the photodependent N 2 fixation by blue-green algae symbiosis. The contribution of plant nitrogen derived from photodependent N 2 fixation was estimated to be 20-30 % of the positive nitrogen gain in the system by the 15 N dilution technique using the rice-covered soil as reference system. (Mori, K.)

  19. /sup 15/N dilution technique of assessing the contribution of nitrogen fixation to rice plant

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, W; Watanabe, Iwao [International Rice Research Inst., College, Laguna (Phillippines)

    1983-06-01

    An attempt to correlate the positive nitrogen balance in rice-soil system with the /sup 15/N dilution in rice plants was made to see if isotope dilution can be used to assess the contribution of nitrogen fixation to the nitrogen nutrition of rice. /sup 15/N ammonium sulfate and sucrose were added to the moist soil in pots to label biomass nitrogen fraction. The rice-soil system with higher nitrogen gain had lower /sup 15/N content in the rice plants. When the surface of pots was covered with black cloths to suppress photodependent N/sub 2/ fixation, no significant nitrogen gain was observed. Significant gain was found in the rice-flooded soil system exposed to light, and the /sup 15/N content of plants decreased in allowing the photodependent N/sub 2/ fixation by blue-green algae symbiosis. The contribution of plant nitrogen derived from photodependent N/sub 2/ fixation was estimated to be 20-30 % of the positive nitrogen gain in the system by the /sup 15/N dilution technique using the rice-covered soil as reference system.

  20. Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15N natural abundance

    International Nuclear Information System (INIS)

    Amarger, N.; Durr, J.C.; Bourguignon, C.; Lagacherie, B.; Mariotti, A.; Mariotti, F.

    1979-01-01

    The use of variations in natural abundance of 15 N between nitrogen fixing and non nitrogen fixing soybeans was investigated for quantitative estimate of symbiotic nitrogen fixation. Isotopic analysis of 4 varieties of inoculated and non-inoculated soybeans growing under field conditions, with and without N-fertilizer was determined. It was found that inoculated soybeans had a significantly lower 15 N content than non-inoculated ones. Estimates of the participation of fixed N to the total nitrogen content of inoculated soybeans were calculated from these differences. They were compared to estimates calculated from differences in N yield between inoculated and non-inoculated plants and to the nitrogenase activity, measured by the C 2 H 2 reduction assay over the growing season. Estimates given by the 15 N measurements were correlated with the C 2 H 2 reducing activity but not with the differences in the N yield. This shows that the isotopic composition was dependent on the amount of fixed nitrogen and consequently that the estimates of fixed nitrogen based on natural 15 N abundance should be reliable. The absence of correlation between estimates based on 15 N content and estimates based on N yield was explained by differences in the uptake of soil nitrogen between inoculated and non inoculated soybeans. (Auth.)

  1. Progress in 15N and 13C separation by isotopic exchange

    International Nuclear Information System (INIS)

    Axente, D.

    2004-01-01

    An experimental study of 15 N separation by isotopic exchange in NO, NO 2 - HNO 3 system under pressure is presented. The pressure increase in 15 N separation plant improved the isotopic transport between the two phases circulated in counter-current in the packed column according to a better kinetics of isotopic exchange at higher pressures. The operation of 15 N separation plant at a pressure of 1.8 atm (absolute) will permit doubling of 10 M nitric acid flow rate and of 15 N production of a given column. The improved performance at a higher pressure is significant for large scale 15 N production, which would be utilized for uranium nitride fuels for FBRs. Enrichment of 13 C by chemical exchange between CO 2 and amine carbamate in nonaqueous solvent has been modelled. For process optimization the steady state separation and the height equivalent to a theoretical plate (HETP) have been determined for different experimental conditions and simulated for higher pressures than atmospheric one. At lower temperature (5 deg C) as the pressure increases the quantity of CO 2 dissolved in amine solution increases. For process analysis at higher pressures and lower temperatures, the two steps model has been considered. At 0.9 MPa pressure and 5 deg C the reaction rate is higher than at 25 deg C and atmospheric pressure, the value of HETP being lower with more than 100% than at 25 deg C. (author)

  2. Solvent-dependent deuterium isotope effects in the 15N NMR spectra of an ammonium ion

    International Nuclear Information System (INIS)

    Wielogorska, E.; Jackowski, K.

    2000-01-01

    Deuterium isotope effects on 15 N NMR chemical shifts and spin-spin coupling constants have been investigated for the 15 N enriched ammonium chloride (conc. 15 NH 4 + ion has been observed in water, methanol, ethanol and dimethylsulfoxide, while the 15 ND 4 + has been monitored in the analogous deuterated liquids. It is shown that the isotope effect in nitrogen chemical shifts ( 1 Δ 15 N( 2/1 H)), significantly different in various solvents, changes from -1.392 ppm in dimethylsulfoxide to -0.071 ppm in ethanol. The 1 J(N,H) and 1 J(N,D) coupling constants have been measured for acidic solutions under conditions of slow proton (or deuterium) exchange. The reduced coupling constants have been estimated to present isotope effects in the spin-spin coupling constants. The latter isotope effects are fairly small. (author)

  3. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  4. Large old trees influence patterns of delta13C and delta15N in forests.

    Science.gov (United States)

    Weber, Pascale; Bol, Roland; Dixon, Liz; Bardgett, Richard D

    2008-06-01

    Large old trees are the dominant primary producers of native pine forest, but their influence on spatial patterns of soil properties and potential feedback to tree regeneration in their neighbourhood is poorly understood. We measured stable isotopes of carbon (delta(13)C) and nitrogen (delta(15)N) in soil and litter taken from three zones of influence (inner, middle and outer zone) around the trunk of freestanding old Scots pine (Pinus sylvestris L.) trees, to determine the trees' influence on below-ground properties. We also measured delta(15)N and delta(13)C in wood cores extracted from the old trees and from regenerating trees growing within their three zones of influence. We found a significant and positive gradient in soil delta(15)N from the inner zone, nearest to the tree centre, to the outer zone beyond the tree crown. This was probably caused by the higher input of (15)N-depleted litter below the tree crown. In contrast, the soil delta(13)C did not change along the gradient of tree influence. Distance-related trends, although weak, were visible in the wood delta(15)N and delta(13)C of regenerating trees. Moreover, the wood delta(15)N of small trees showed a weak negative relationship with soil N content in the relevant zone of influence. Our results indicate that large old trees control below-ground conditions in their immediate surroundings, and that stable isotopes might act as markers for the spatial and temporal extent of these below-ground effects. John Wiley & Sons, Ltd

  5. Coral skeletal δ15N reveals isotopic traces of an agricultural revolution

    International Nuclear Information System (INIS)

    Marion, Guy S.; Dunbar, Robert B.; Mucciarone, David A.; Kremer, James N.; Lansing, J. Stephen; Arthawiguna, Alit

    2005-01-01

    This study introduces a new method of tracing the history of nutrient loading in coastal oceans via δ 15 N analysis of organic nitrogen preserved in the skeleton of the massive Porites coral. Four coral cores were collected in Bali, Indonesia, from reefs exposed to high levels of fertilizers in agricultural run-off, from lagoonal corals impacted by sewage, and from a reef located 30 km offshore. Skeletal δ 15 N in the agriculturally exposed coral declined from 10.7 ± 0.4 per mille in 1970-1971, when synthetic fertilizers (-0.8 per mille ± 0.2 per mille ) were introduced to Bali, to a depleted 'anthropogenic' baseline of 3.5 per mille ± 0.4% in the mid-1990s. δ 15 N values were negatively correlated with rainfall, suggesting that marine δ 15 N lowers during flood-born influxes of waste fertilizers. Reef cores exposed to untreated sewage in terrestrial discharge were enriched (7.8 and 7.3 ± 0.4 per mille ), while the offshore core reflected background oceanic signals (6.2 ± 0.4 per mille). δ 15 N, N concentration, and C:N systematics indicate that the N isotopic composition of skeletal organic matter was generally well preserved over 30 years. We suggest that skeletal organic δ 15 N can serve as a recorder of past nitrogen sources. In Bali, this tracer suggests that the intensification of Western style agricultural practices since 1970 are contributing to the degradation of coastal coral reefs

  6. Origin and tracing techniques of high 15N nitrogen compounds in industrial environments

    International Nuclear Information System (INIS)

    Talma, A.S.; Meyer, R.

    2002-01-01

    Effluents and process waters from various industrial plants were investigated for the 15 N/ 14 N isotope ratio in nitrate and ammonia. It was found that large isotope fractionation occurs in cases where ammonia is involved in gas-liquid phase changes. This feature was found to occur in two coke oven plants where ammonia gas is removed from a gas stream by solution in water, in an ammonia sulphate plant where ammonia gas is absorbed in sulphuric acid and in a water treatment plant where ammonia is removed from (high pH) water by blowing air through the process water. In all these cases 15 N isotope enrichments (in the range of 10 to 30 per mille) occurred. These enrichments are in excess of those found naturally. Ammonia in such wastewaters essentially retains this high 15 N content when it is converted to nitrate underground: which occurs rapidly under well-oxidised conditions. Nitrate is a fairly conservative tracer and its contamination in water can be followed readily. In the low recharge environment in the central parts of South Africa evidence of waste management practices of 10-20 years earlier were still quite evident using this isotopic label. The high 15 N nitrate signal could be used to distinguish industrial nitrogen pollution from pollution by local sewage disposal systems. Vegetation that derives its nitrogen from such high 15 N sources retains the isotope signature of its source. Grass and other annual plants then exhibit the isotope signature of the water of a specific year. Trees exhibit the isotope signature of deeper water, which shows the effects of longer term pollution events. The use of high 15 N as tracer enables the source apportionment of nitrogen derived pollution in these specific circumstances. (author)

  7. Coral skeletal {delta}{sup 15}N reveals isotopic traces of an agricultural revolution

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Guy S. [Department of Biological Sciences, Stanford University, Stanford, CA 94305 (United States)]. E-mail: g.marion@uq.edu.au; Dunbar, Robert B. [Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 (United States); Mucciarone, David A. [Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 (United States); Kremer, James N. [Department of Marine Sciences, University of Connecticut at Avery Point, Groton, CT 06340 (United States); Lansing, J. Stephen [Department of Anthropology, University of Arizona, Tucson, AZ 85721 (United States); Arthawiguna, Alit [Installation for Agricultural Research (IP 2TP), Kotak Pos 3480, Denpasar, Bali (Indonesia)

    2005-09-01

    This study introduces a new method of tracing the history of nutrient loading in coastal oceans via {delta}{sup 15}N analysis of organic nitrogen preserved in the skeleton of the massive Porites coral. Four coral cores were collected in Bali, Indonesia, from reefs exposed to high levels of fertilizers in agricultural run-off, from lagoonal corals impacted by sewage, and from a reef located 30 km offshore. Skeletal {delta}{sup 15}N in the agriculturally exposed coral declined from 10.7 {+-} 0.4 per mille in 1970-1971, when synthetic fertilizers (-0.8 per mille {+-} 0.2 per mille ) were introduced to Bali, to a depleted 'anthropogenic' baseline of 3.5 per mille {+-} 0.4% in the mid-1990s. {delta}{sup 15}N values were negatively correlated with rainfall, suggesting that marine {delta}{sup 15}N lowers during flood-born influxes of waste fertilizers. Reef cores exposed to untreated sewage in terrestrial discharge were enriched (7.8 and 7.3 {+-} 0.4 per mille ), while the offshore core reflected background oceanic signals (6.2 {+-} 0.4 per mille). {delta}{sup 15}N, N concentration, and C:N systematics indicate that the N isotopic composition of skeletal organic matter was generally well preserved over 30 years. We suggest that skeletal organic {delta}{sup 15}N can serve as a recorder of past nitrogen sources. In Bali, this tracer suggests that the intensification of Western style agricultural practices since 1970 are contributing to the degradation of coastal coral reefs.

  8. Nitrate reductase 15N discrimination in Arabidopsis thaliana, Zea mays, Aspergillus niger, Pichea angusta, and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Eli eCarlisle

    2014-07-01

    Full Text Available Stable 15N isotopes have been used to examine movement of nitrogen (N through various pools of the global N cycle. A central reaction in the cycle involves nitrate (NO3– reduction to nitrite (NO2– catalyzed via nitrate reductase (NR. Discrimination against 15N by NR is a major determinant of isotopic differences among N pools. Here, we measured in vitro 15N discrimination by several NRs purified from plants, fungi, and a bacterium to determine the intrinsic 15N discrimination by the enzyme and to evaluate the validity of measurements made using 15N-enriched NO3–. Observed NR isotope discrimination ranged from 22‰ to 32‰ (kinetic isotope effects of 1.022 to 1.032 among the different isozymes at natural abundance 15N (0.37%. As the fractional 15N content of substrate NO3– increased from natural abundance, the product 15N fraction deviated significantly from that expected based on substrate enrichment and 15N discrimination measured at natural abundance. Additionally, isotopic discrimination by denitrifying bacteria used to reduce NO3– and NO2– in some protocols became a greater source of error as 15N enrichment increased. We briefly discuss potential causes of artifactual results with enriched 15N and recommend against the use of highly enriched 15N tracers to study N discrimination in plants or soils.

  9. Fate of 15N and 14C from labelled plant material

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Gjettermann, Birgitte; Eriksen, Jørgen

    2008-01-01

    strength of labelled plant residues in dissolved inorganic N (DIN) and dissolved organic N (DON) in pore water from the plough layer, and (ii) the plant uptake of organically bound N. Litterbags containing 14C- and 15N-labelled ryegrass or clover roots or leaves were inserted into the sward of a ryegrass......–clover mixture in early spring. The fate of the released 14C and 15N was monitored in harvested biomass, roots, soil, and pore water percolating from the plough layer. No evidence of plant uptake of dual-labelled organic compounds from the dual-labelled residues could be observed. N in pore water from the plough...

  10. Constraints on oceanic N balance/imbalance from sedimentary 15N records

    Directory of Open Access Journals (Sweden)

    M. A. Altabet

    2007-01-01

    Full Text Available According to current best estimates, the modern ocean's N cycle is in severe deficit. N isotope budgeting provides an independent geochemical constraint in this regard as well as the only means for past reconstruction. Overall, it is the relative proportion of N2 fixation consumed by water column denitrification that sets average oceanic δ15N under steady-state conditions. Several factors (conversion of organic N to N2, Rayleigh closed and open system effects likely reduce the effective fractionation factor (ε for water column denitrification to about half the inherent microbial value for εden. If so, the average oceanic δ15N of ~5‰ is consistent with a canonical contribution from water column denitrification of 50% of the source flux from N2 fixation. If an imbalance in oceanic N sources and sinks changes this proportion then a transient in average oceanic δ15N would occur. Using a simple model, changing water column denitrification by ±30% or N2 fixation by ±15% produces detectable (>1‰ changes in average oceanic δ15N over one residence time period or more with corresponding changes in oceanic N inventory. Changing sedimentary denitrification produces no change in δ15N but does change N inventory. Sediment δ15N records from sites thought to be sensitive to oceanic average δ15N all show no detectible change over the last 3 kyr or so implying a balanced marine N budget over the latest Holocene. A mismatch in time scales is the most likely meaningful interpretation of the apparent conflict with modern flux estimates. Decadal to centennial scale oscillations between net N deficit and net surplus may occur but on the N residence timescale of several thousand years, net balance is achieved in sum. However, sediment δ15N records from the literature covering the period since the last glacial maximum show excursions of up to several ‰ that are consistent with sustained N deficit during the deglaciation followed by readjustment

  11. 15N-urea tracing emission spectroscopy for detecting the infection of Helicobacter pylori

    International Nuclear Information System (INIS)

    Zhu Yayi

    2002-01-01

    Objective: To study a noninvasive and nonradioactive method, 15 N-urea tracing emission spectroscopy, for detecting the Helicobacter pylori (Hp) infection. Methods: A group of 26 patients was tested with a method of 15 N-urea tracing emission spectroscopy for detecting the Hp infection. Results: Taking the bacterial culture or (and) Gram stain as a standard, the specificity, sensitivity and positive predicting rate of the test were 81%, 89% and 84%, respectively. Conclusion: The method could be considered useful for clinical practice

  12. 15N NMR studies of layered nitride superconductor LixZrNCl

    International Nuclear Information System (INIS)

    Tou, H.; Oshiro, S.; Kotegawa, H.; Taguchi, Y.; Kishiume, Y.; Kasahara, Y.; Iwasa, Y.

    2010-01-01

    NMR measurements were carried out on pristine ZrNCl and Li x ZrNCl. From the 15 N-Knight shift study, the isotropic Knight shift, the traceless chemical (orbital) shift tensor and the traceless Knight shift tensor were determined as K iso = -71 ppm, (σ 1 , σ 2 , σ 3 ) = (-55, -55, 110) ppm and (K 1 , K 2 , K 3 ) = (48, 48, -96) ppm, respectively. In the superconducting state, the fractional change of the 15 N NMR shift for H-parallel ab was observed, evidencing that the pairing symmetry is a spin-singlet state.

  13. Modified micro-diffusion method for 15N-enriched soil solutions

    International Nuclear Information System (INIS)

    Aigner, M.

    2000-01-01

    The preparation of solutions for determination of 15 N/ 14 N isotope ratios is described, with special reference to dilute samples. A micro-diffusion method has been simplified to be more suitable for rapid isotope-ratio determination in soil solutions collected in tensionics. Ammonia expelled during micro-diffusion is captured on acidified filter discs fixed to the caps of gas-tight vials. The discs are transferred to tin capsules for shipment to the Soil Science Unit for 15 N-enrichment determination. (author)

  14. Uniform 15N- and 15N/13C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    International Nuclear Information System (INIS)

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W.

    1994-01-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly 15 N-and 15 N/ 13 C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the φ angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor

  15. Determination of N metabolism parameters following 15N-amino acid infusion based on a mathematical model

    International Nuclear Information System (INIS)

    Pahle, T.; Koehler, R.; Souffrant, W.B.; Gebhardt, G.; Matkowitz, R.; Hartig, W.

    1983-01-01

    Two female pigs (25 kg live weight) received a continuous infusion of 15 N-glycine and 15 N-lysine solutions, resp., for 45 h and for further 72 h unlabelled amino acid solutions. The main protein and energy sources, however, were administered orally. The time course of the 15 N level and the differential urinary N excretion were determined from blood urea and urine. For the demonstration of synthesis and decay rates of the total body protein a mathematical model has been developed. The suitability of 15 N-lysine and 15 N-glycine for the determination of N metabolism parameters is discussed

  16. Determination of N metabolism parameters following /sup 15/N-amino acid infusion based on a mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Pahle, T; Koehler, R; Souffrant, W B; Gebhardt, G [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin; Matkowitz, R; Hartig, W [Bezirkskrankenhaus Leipzig (German Democratic Republic). Chirurgische Klinik

    1983-01-01

    Two female pigs (25 kg live weight) received a continuous infusion of /sup 15/N-glycine and /sup 15/N-lysine solutions, resp., for 45 h and for further 72 h unlabelled amino acid solutions. The main protein and energy sources, however, were administered orally. The time course of the /sup 15/N level and the differential urinary N excretion were determined from blood urea and urine. For the demonstration of synthesis and decay rates of the total body protein a mathematical model has been developed. The suitability of /sup 15/N-lysine and /sup 15/N-glycine for the determination of N metabolism parameters is discussed.

  17. δ15N as a proxy for historic anthropogenic nitrogen loading in Charleston Harbor, SC, USA

    Science.gov (United States)

    Payne, T. N.; Andrus, C. F. T.

    2015-12-01

    Bivalve shell geochemistry can serve as a useful indicator of changes in coastal environments. There is increasing interest in developing paleoenvironmental proxies from mollusk shell organic components. Numerous studies have focused on how the δ15N obtained from bivalve tissues can be used to trace present-day wastewater input into estuaries. However, comparatively little attention has been paid to tracing the impact of anthropogenic nitrogen loading into estuaries over time. By measuring historic levels of δ15N in the organic fraction of oyster shells (Crassostrea virginica) from archaeological sites around Charleston Harbor and comparing those levels to the δ15N content of modern shells, it is possible to assess how nitrogen has fluctuated historically in the area. Whole-shell samples from the Late Archaic Period (~3000-4000 BP, Late Woodland Period (~1400-800 BP), 18th and 19th centuries, and modern controls were measured for %N and d15N. Evidence of increased anthropogenic input of N is expected to begin in the early historic period based on similar analysis in Chesapeake Bay. More ancient samples may give insight into baseline conditions prior to recent population growth and industrialization. This information could help understand how large-scale anthropogenic nitrogen loading has affected coastal ecosystems over time and guide future remediation. Furthermore, this project will help refine and improve this novel proxy of past environmental conditions.

  18. Impact of seaweed beachings on dynamics of δ15N isotopic signatures in marine macroalgae

    International Nuclear Information System (INIS)

    Lemesle, Stéphanie; Mussio, Isabelle; Rusig, Anne-Marie; Menet-Nédélec, Florence; Claquin, Pascal

    2015-01-01

    Highlights: • Two coastal sites (COU, GM) in the Bay of Seine affected by summer seaweed beachings. • The same temporal dynamics of the algal δ 15 N at the two sites. • N and P concentrations in seawater of the two sites dominated by riverine sources. • A coupling between seaweed beachings and N sources of intertidal macroalgae. - Abstract: A fine-scale survey of δ 15 N, δ 13 C, tissue-N in seaweeds was conducted using samples from 17 sampling points at two sites (Grandcamp-Maisy (GM), Courseulles/Mer (COU)) along the French coast of the English Channel in 2012 and 2013. Partial triadic analysis was performed on the parameter data sets and revealed the functioning of three areas: one estuary (EstA) and two rocky areas (GM ∗ , COU ∗ ). In contrast to oceanic and anthropogenic reference points similar temporal dynamics characterized δ 15 N signatures and N contents at GM ∗ and COU ∗ . Nutrient dynamics were similar: the N-concentrations in seawater originated from the River Seine and local coastal rivers while P-concentrations mainly from these local rivers. δ 15 N at GM ∗ were linked to turbidity suggesting inputs of autochthonous organic matter from large-scale summer seaweed beachings made up of a mixture of Rhodophyta, Phaeophyta and Chlorophyta species. This study highlights the coupling between seaweed beachings and nitrogen sources of intertidal macroalgae

  19. Estimation of nitrogen fixation in Leucaena leucocephala using 15N-enrichment methodologies

    Science.gov (United States)

    John A. Parrotta; Dwight D. Baker; Maurice Fried

    1994-01-01

    An estimation of biological nitrogen fixation by Leucaena leucocephala (Lam.) de Wit in monoculture and mixed-species plantations (with Casuarina equisetifolia L. ex J.R. & G. Forst., and Eucalyptus robusta Sm.) was undertaken over a two-year period in Puerto Rico using the 15N-enrichment...

  20. Application of 15N-enrichment methodologies to estimate nitrogen fixation in Casuarina equisetifolia

    Science.gov (United States)

    John A. Parrotta; Dwight D. Baker; Maurice Fried

    1994-01-01

    The 15N-enrichment technique for estimating biological nitrogen fixation in Casuarina equisetifolia J.R. & G. Forst. was evaluated under field conditions in single-species and mixed-species plantings (with a nonfixing reference species, Eucalyptus X robusta J.E. Smith) between...

  1. The use of δ15N in assessing sewage stress on coral reefs

    International Nuclear Information System (INIS)

    Risk, Michael J.; Lapointe, Brian E.; Sherwood, Owen A.; Bedford, Bradley J.

    2009-01-01

    While coral reefs decline, scientists argue, and effective strategies to manage land-based pollution lag behind the extent of the problem. There is need for objective, cost-effective, assessment methods. The measurement of stable nitrogen isotope ratios, δ 15 N, in tissues of reef organisms shows promise as an indicator of sewage stress. The choice of target organism will depend upon study purpose, availability, and other considerations such as conservation. Algae are usually plentiful and have been shown faithfully to track sewage input. The organic matrix of bivalve shells can provide time series spanning, perhaps, decades. Gorgonians have been shown to track sewage, and can provide records potentially centuries-long. In areas where baseline data are lacking, which is almost everywhere, δ 15 N in gorgonians can provide information on status and trends. In coral tissue, δ 15 N combined with insoluble residue determination can provide information on both sewage and sediment stress in areas lacking baseline data. In the developed world, δ 15 N provides objective assessment in a field complicated by conflicting opinions. Sample handling and processing are simple and analysis costs are low. This is a method deserving widespread application.

  2. Study of the GDR in 15N using fast neutron capture

    International Nuclear Information System (INIS)

    Wender, S.A.; Jensen, M.; Potokar, M.; Roberson, N.R.; Tilley, D.R.; Weller, H.R.

    1978-01-01

    The excitation function for 15 N(γ,n) from 16 to 23 MeV was obtained by use of the detailed balance priinciple from neutron capture. As coefficients from the 14 N(n,γ) data are also shown. Similar data are shown for 14 C(p,γ) and 14 N(p,γ) studies. 2 figures

  3. Applications of stable isotopes of 2H, 13C and 15N to clinical problems

    International Nuclear Information System (INIS)

    Klein, P.D.; Szczepanik, P.A.; Hachey, D.L.

    1974-01-01

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use 2 H, 13 C, or 15 N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective 13 C and 15 N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. 13 C and 15 N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B 12 -responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. 15 N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome. (Mukohata, S.)

  4. Regional assessment of N saturation using foliar and root δ15N

    Science.gov (United States)

    L.H. Pardo; P.H. Templer; C.L. Goodale; S. Duke; P.M. Groffman; M.B. Adams; P. Boeckx; J. Boggs; J. Campbell; B. Colman; J. Compton; B. Emmett; P. Gundersen; J. Kjonaas; G. Lovett; M. Mack; A. Magill; M. Mbila; M.J. Mitchell; G. McGee; S. McNulty; K. Nadelhoffer; S. Ollinger; D. Ross; H. Rueth; L. Rustad; P. Schaberg; S. Schiff; P. Schleppi; J. Spoelstra; W. Wessel

    2006-01-01

    N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar δ15N may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root δ

  5. Use of low enriched 15N2 for symbiotic fixation tests

    International Nuclear Information System (INIS)

    Victoria, R.L.

    1975-01-01

    Gaseous atmospheres containing 15 N 2 with low enrichment were used to test symbiotic nitrogen fixation in beans (Phaseolus vulgari, L.). The tests of fixation in nodulated roots and the tests of fixation in the whole plant, in which the plants were placed inside a specially constructed growth chamber, gave positive results and suggest that the methodology used can be very helpfull in more detailed studies on symbiotic fixation. Samples of atmospheric air were purified by absorption of O 2 and CO 2 by two methods. The purified N 2 obtained was analysed and the results were compared. Samples of bean plant material were collected in natural conditions and analysed for 15 N natural variation. Several samples were prepared for 15 N isotopic analysis by two methods. The results obtained were compared. All samples were analysed in an Atlas-Varian Ch-4 model mass spectrometer, and the results were given in delta 15 N 0 / 00 variation in relation to a standard gas

  6. Fast hydrogen exchange affects 15N relaxation measurements in intrinsically disordered proteins

    International Nuclear Information System (INIS)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean

    2013-01-01

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, 1 H– 15 N HSQC, is used to measure the 15 N transverse relaxation rate (R 2 ), the measured R 2 rate is convoluted with the HX rate (k HX ) and has higher apparent R 2 values. Since the 15 N R 2 measurement is important for analyzing protein backbone dynamics, the HX effect on the R 2 measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing 15 N R 2 CPMG experiments on α-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R 2 CPMG can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D 2 O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R 2 CPMG values be obtained by methods described herein.

  7. Synthesis and biosynthesis of 13C, 15N labeled deoxynucleosides useful for biomolecular structural determinations

    International Nuclear Information System (INIS)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-01-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study utilizes nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy (more than 10,000 mw) in this arena requires stable isotope enrichment. Herein, the authors present strategies for the site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of [U- 13 C, 15 N] DNA from methylotrophic bacteria. With commercially available 6-chloropurine, an effective 2-step route leads to [6- 15 N]-2'-deoxadenosine (dA). The resulting [6- 15 N]-dA is used in a series of reactions to synthesize [2- 13 C, 1,2'- 15 N 2 ]-2'-deoxyguanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4g of methanol to yield 1 gram of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. The authors are currently developing large scale isolation protocols. General synthetic pathways to oligomeric DNA are presented

  8. Synthesis and biosynthesis of 13C-, 15N-labeled deoxynucleosides useful for biomolecular structural determinations

    International Nuclear Information System (INIS)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-01-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U- 13 C, 15 N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2'-deoxy-(amino- 15 N)adenosine (dA). The resulting d(amino- 15 N)A is used in a series of reactions to synthesize 2'-deoxy-(2- 13 C,1,amino- 15 N 2 )guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented

  9. Relationships between salmon abundance and tree-ring δ 15N: three objective tests

    Science.gov (United States)

    D.C. Drake; Paul J. Sheppard; Robert J. Naiman

    2011-01-01

    Quantification of a relationship between salmon escapement in rivers and riparian tree-ring δ 15N could allow reconstruction of prehistorical salmon abundance. Unfortunately, attempts to quantify this link have met with little success. We examined the feasibility of the approach using natural abundance of δ 15...

  10. 948 15 N as a tool to demonstrate the contribution of fish-waste ...

    African Journals Online (AJOL)

    This study uses stable isotope ratios of nitrogen (ä15N) to test the hypothesis that a bloom of the green seaweed Ulva lactuca, which occurred in Saldanha Bay, South Africa, in summer 1993/94 was linked to an adjacent discharge of nitrogen from pelagic fish processing waste. It is suggested that only two significant ...

  11. Comparison of /sup 15/N-aided methods for determining symbiotic dinitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Rennie, R J [International Atomic Energy Agency, Vienna (Austria). Joint FAO/IAEA Div. of Atomic Energy in Food and Agriculture

    1979-01-01

    Three methods of calculating the amount of symbiotic dinitrogen fixation in navy beans (Phaseolus vulgaris cv. Sanilac) were compared in a greenhouse experiment. /sup 15/N-isotope dilution procedures yielded the most logical estimation of dinitrogen fixation. The classical difference method was not in agreement. Potential errors of the 'A'-value procedure to calculate dinitrogen fixation are discussed.

  12. Use of low enriched /sup 15/N/sub 2/ for symbiotic fixation tests

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, R L

    1975-01-01

    Gaseous atmospheres containing /sup 15/N/sub 2/ with low enrichment were used to test symbiotic nitrogen fixation in beans (Phaseolus vulgari, L.). The tests of fixation in nodulated roots and the tests of fixation in the whole plant, in which the plants were placed inside a specially constructed growth chamber, gave positive results and suggest that the methodology used can be very helpfull in more detailed studies on symbiotic fixation. Samples of atmospheric air were purified by absorption of O/sub 2/ and CO/sub 2/ by two methods. The purified N/sub 2/ obtained was analysed and the results were compared. Samples of bean plant material were collected in natural conditions and analysed for /sup 15/N natural variation. Several samples were prepared for /sup 15/N isotopic analysis by two methods. The results obtained were compared. All samples were analysed in an Atlas-Varian Ch-4 model mass spectrometer, and the results were given in delta /sup 15/N/sub 0///sup 00/ variation in relation to a standard gas.

  13. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Science.gov (United States)

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  14. Recovery of 15N-urea in soil-plant system of tanzania grass pasture

    International Nuclear Information System (INIS)

    Martha Junior, Geraldo Bueno; Vilela, Lourival; Corsi, Moacyr; Trivelin, Paulo Cesar Ocheuze

    2009-01-01

    The economic attractiveness and negative environmental impact of nitrogen (N) fertilization in pastures depend on the N use efficiency in the soil-plant system. However, the recovery of urea- 15 N by Panicum maximum cv. Tanzania pastures, one of the most widely used forage species in intensified pastoral systems, is still unknown. This experiment was conducted in a randomized complete block design with four treatments (0, 40, 80 and 120 kg ha-1 of N-urea) and three replications, to determine the recovery of 15 N urea by Tanzania grass. Forage production, total N content and N yield were not affected by fertilization (p > 0.05), reflecting the high losses of applied N under the experimental conditions. The recovery of 15 N urea (% of applied N) in forage and roots was not affected by fertilization levels (p > 0.05), but decreased exponentially in the soil and soil-plant system (p 15 N (kg ha -1 ) in forage and roots (15 to 30 cm) increased with increasing urea doses (p < 0.05). (author)

  15. (13)C-(15)N correlation via unsymmetrical indirect covariance NMR: application to vinblastine.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Blinov, Kirill A; Williams, Antony J

    2007-12-01

    Unsymmetrical indirect covariance processing methods allow the derivation of hyphenated 2D NMR data from the component 2D spectra, potentially circumventing the acquisition of the much lower sensitivity hyphenated 2D NMR experimental data. Calculation of HSQC-COSY and HSQC-NOESY spectra from GHSQC, COSY, and NOESY spectra, respectively, has been reported. The use of unsymmetrical indirect covariance processing has also been applied to the combination of (1)H- (13)C GHSQC and (1)H- (15)N long-range correlation data (GHMBC, IMPEACH, or CIGAR-HMBC). The application of unsymmetrical indirect covariance processing to spectra of vinblastine is now reported, specifically the algorithmic extraction of (13)C- (15)N correlations via the unsymmetrical indirect covariance processing of the combination of (1)H- (13)C GHSQC and long-range (1)H- (15)N GHMBC to produce the equivalent of a (13)C- (15)N HSQC-HMBC correlation spectrum. The elimination of artifact responses with aromatic solvent-induced shifts (ASIS) is shown in addition to a method of forecasting potential artifact responses through the indirect covariance processing of the GHSQC spectrum used in the unsymmetrical indirect covariance processing.

  16. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  17. 15N-Labelling and structure determination of adamantylated azolo-azines in solution

    Directory of Open Access Journals (Sweden)

    Sergey L. Deev

    2017-11-01

    Full Text Available Determining the accurate chemical structures of synthesized compounds is essential for biomedical studies and computer-assisted drug design. The unequivocal determination of N-adamantylation or N-arylation site(s in nitrogen-rich heterocycles, characterized by a low density of hydrogen atoms, using NMR methods at natural isotopic abundance is difficult. In these compounds, the heterocyclic moiety is covalently attached to the carbon atom of the substituent group that has no bound hydrogen atoms, and the connection between the two moieties of the compound cannot always be established via conventional 1H-1H and 1H-13C NMR correlation experiments (COSY and HMBC, respectively or nuclear Overhauser effect spectroscopy (NOESY or ROESY. The selective incorporation of 15N-labelled atoms in different positions of the heterocyclic core allowed for the use of 1H-15N (JHN and 13C-15N (JCN coupling constants for the structure determinations of N-alkylated nitrogen-containing heterocycles in solution. This method was tested on the N-adamantylated products in a series of azolo-1,2,4-triazines and 1,2,4-triazolo[1,5-a]pyrimidine. The syntheses of adamantylated azolo-azines were based on the interactions of azolo-azines and 1-adamatanol in TFA solution. For azolo-1,2,4-triazinones, the formation of mixtures of N-adamantyl derivatives was observed. The JHN and JCN values were measured using amplitude-modulated 1D 1H spin-echo experiments with the selective inversion of the 15N nuclei and line-shape analysis in the 1D 13С spectra acquired with selective 15N decoupling, respectively. Additional spin–spin interactions were detected in the 15N-HMBC spectra. NMR data and DFT (density functional theory calculations permitted to suggest a possible mechanism of isomerization for the adamantylated products of the azolo-1,2,4-triazines. The combined analysis of the JHN and JCN couplings in 15N-labelled compounds provides an efficient method for the structure

  18. Nitrogen turnover of three different agricultural soils determined by 15N triple labelling

    Science.gov (United States)

    Fiedler, Sebastian R.; Kleineidam, Kristina; Strasilla, Nicol; Schlüter, Steffen; Reent Köster, Jan; Well, Reinhard; Müller, Christoph; Wrage-Mönnig, Nicole

    2017-04-01

    To meet the demand for data to improve existing N turnover models and to evaluate the effect of different soil physical properties on gross nitrogen (N) transformation rates, we investigated two arable soils and a grassland soil after addition of ammonium nitrate (NH4NO3), where either ammonium (NH4+), or nitrate (NO3-), or both pools have been labelled with 15N at 60 atom% excess (triple 15N tracing method). Besides NH4+, NO3- and nitrite (NO2-) contents with their respective 15N enrichment, nitrous oxide (N2O) and dinitrogen (N2) fluxes have been determined. Each soil was adjusted to 60 % of maximum water holding capacity and pre-incubated at 20˚ C for two weeks. After application of the differently labelled N fertilizer, the soils were further incubated at 20˚ C under aerobic conditions in a He-N2-O2 atmosphere (21 % O2, 76 He, 2% N2) to increase the sensitivity of N2 rates via the 15N gas flux method. Over a 2 week period soil N pools were quantified by 2 M KCl extraction (adjusted to pH 7 to prevent nitrite losses) (Stevens and Laughlin, 1995) and N gas fluxes were measured by gas chromatography in combination with IRMS. Here, we present the pool sizes and fluxes as well as the 15N enrichments during the study. Results are discussed in light of the soil differences that were responsible for the difference in gross N dynamics quantified by the 15N tracing model Ntrace (Müller et al., 2007). References Müller, C., T. Rütting, J. Kattge, R.J. Laughlin, and R.J. Stevens, (2007) Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biology & Biochemistry. 39(3): p. 715-726. Stevens, R.J. and R.J. Laughlin, (1995) Nitrite transformations during soil extraction with potassium chloride. Soil Science Society of America Journal. 59(3): p. 933-938.

  19. 15 N utilization in nitride nuclear fuels for advanced nuclear power reactors and accelerator - driven systems

    International Nuclear Information System (INIS)

    Axente, D.

    2005-01-01

    15 N utilization for nitride nuclear fuels production for nuclear power reactors and accelerator - driven systems is presented. Nitride nuclear fuel is the obvious choice for advanced nuclear reactors and ADS because of its favorable properties: a high melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in nuclear reactors and ADS requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Accelerator - driven system is a recent development merging of accelerator and fission reactor technologies to generate electricity and transmute long - lived radioactive wastes as minor actinides: Np, Am, Cm. A high-energy proton beam hitting a heavy metal target produces neutrons by spallation. The neutrons cause fission in the fuel, but unlike in conventional reactors, the fuel is sub-critical and fission ceases when the accelerator is turned off. Nitride fuel is a promising candidate for transmutation in ADS of minor actinides, which are converted into nitrides with 15 N for that purpose. Tacking into account that the world wide market is about 20 to 40 Kg 15 N annually, the supply of that isotope for nitride fuel production for nuclear power reactors and ADS would therefore demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N, using present technology of isotopic exchange in NITROX system, the first separation stage of the cascade would be fed with 10M HNO 3 solution of 600 mc/h flow - rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for a production plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million mc/y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle of SO 2 is a problem to be solved to compensate the cost of SO 2

  20. Distribution of 15N-labeled urea injected into field-grown corn plants

    International Nuclear Information System (INIS)

    Zhou, X.; Madrmootoo, C.A.; Mackenzie, A.F.; Smith, D.L.

    1998-01-01

    Nitrogen (N) assimilate supply to developing corn (Zea mays L.) ears plays a critical role in grain dry weight accumulation. The use of stem-perfused/injected 15N labeled compounds to determine the effects of an artificial N source on the subsequent distribution of injected N and grain weight of field-grown corn plants has not been reported previously. Our objective was to assess the distribution of N added via an artificial source. Three soil N fertilizer levels (0, 180, and 270 kg N ha-1) and three N solutions (distilled water control and 15N enriched urea at 15 and 30 mM N) were arranged in a split-plot design. Three N concentrations were injected using a pressurized stem injection technique. The injection started fifteen days after silking and continued until immediately prior to plant physiological maturity. The average uptake volume was 256 mL over the 30-day injection period. The N supplied via injection represented 1.5 to 3% of the total plant N. Neither soil applied N fertilizer nor injected N altered dry matter distribution among plant tissues. As the concentration of N in the injected solutions increased, N concentrations increased in the grain and upper stalks, and % 15N atom excess in ear+1 leaves and leaves increased. The relative degree of 15N enrichment for each of the tissues measured was injected internode grain upper stalks leaves lower stalks cob husk ear + 1 leaf ear leaf. This study indicated that the exogenous N supplied via stem-injection, was incorporated into all the measured plant parts, although not uniformly. The distribution of the injected 15N was affected both by the proximity of sinks to the point of injection and the strength of the various sinks

  1. Application time of nitrogen fertilizer 15N by a potato crop (Solanum Tuberosum L.)

    International Nuclear Information System (INIS)

    Bastidas, O.G.; Urquiaga, S.

    1987-01-01

    This study was performed at the ''San Jorge'' experimental farm of the Instituto Colombiano Agropecuario (ICA), Bogota, Colombia. The study was performed to investigate the effect of timing of application of nitrogen fertilizer on the productivity of, and the efficiency of utilization of 15 N-labelled fertilizer by, a potato crop (Solanum tuberosum L.), cv. Tequendama. The crop was fertilized with 100, 200 and 100 Kg/ha -1 of N, P 2 O 5 and K 2 O respectively. The N fertilizers were either added as 15 N labelled urea (2.955 at.% 15 N excess) or as labelled ammonium sulphate (2.071 at.% 15 N excess). In all treatments with nitrogen, a total of 100 Kg N ha -1 was added, but the nitrogen was added either in two or three split doses (only one dose being labelled with 15 N) at the following times: at planting, 35 days after emergence (DAE) and/or 60 DAE. It was found that: a) Nitrogen fertilization increased tuber production from 24 to 43 t/ha -1 ; b) The tubers constituted approximately 80% of total plant dry matter and 70% of the total nitrogen and fertilizer N accumulated by the plant; c) The fertilizer use efficiency varied between 49 and 68%, and the highest efficiency occurred when the nitrogen was split in three doses; d) The urea and ammonium sulphate gave similar results in all parameters evaluated; e) When the total nitrogen difference method was applied to interpretation of the results the fertilizer use efficiency was overestimated by 15 to 30%

  2. New Perspectives on Nitrogen Fixation Measurements Using 15N2 Gas

    Directory of Open Access Journals (Sweden)

    Nicola Wannicke

    2018-04-01

    Full Text Available Recently, the method widely used to determine 15N2 fixation rates in marine and freshwater environments was found to underestimate rates because the dissolution of the added 15N2 gas bubble in seawater takes longer than theoretically calculated. As a solution to the potential underestimate of rate measurements, the usage of the enriched water method was proposed to provide constant 15N2 enrichment. Still, the superiority of enriched water method over the previously used bubble injection remains inconclusive. To clarify this issue, we performed laboratory based experiments and implemented the results into an error analysis of 15N2 fixation rates. Moreover, we conducted a literature search on the comparison of the two methods to calculate a mean effect size using a meta-analysis approach. Our results indicate that the error potentially introduced by an equilibrium phase of the 15N2 gas is −72% at maximum for experiments with very short incubation times of 1 h. In contrast, the underestimation was negligible for incubations lasting 12–24 h (error is −0.2%. Our meta-analysis indicates that 84% of the measurements in the two groups will overlap and there is a 61% chance that a sample picked at random from the enriched water group will have a higher value than one picked at random from the bubble group. Overall, the underestimation of N2 fixation rates when using the bubble method relative to the enriched water method is highly dependent on incubation time and other experimental conditions and cannot be generalized.

  3. Separation of 15N by isotopic exchange in NO, NO2-HNO3 system under pressure

    International Nuclear Information System (INIS)

    Axente, D.; Baldea, A.; Teaca, C.; Horga, R.; Abrudean, M.

    1998-01-01

    One of the most used method for production of 15 N with 99% at. concentration is the isotopic exchange between gaseous nitrogen oxides and HNO 3 solution 10M: ( 15 NO, 15 NO 2 ) g + H 14 NO 3,l = ( 14 NO, 14 NO 2 ) g + H 15 NO 3,l . The isotopic exchange is characterized by an elemental separation factor α=1.055 at 25 deg. C and atmospheric pressure. Recently, kinetics data pointed to the linear dependence of the exchange rate 15 N/ 14 N(R) on the nitrogen oxide pressure with a rate law R = k[HNO 3 ] 2 · [N 2 O 3 ]. In this work, the influence of the nitrogen oxide pressure on the 15 N separation efficiency was determined by the use of a laboratory equipment with a separation column pack of Helipack type, with dimensions 1.8 mm x 1.8 mm x 0.2 mm. The increase of nitrogen oxide pressure led to a better isotopic transfer between the two counter-flow phases in the column pack. The HETP (Height Equivalent to a Theoretical Plate) determined for a 3.14 ml ·cm -2 · min -1 load is equal to that obtained at atmospheric pressure for a two times lower load. The operation of the equipment for isotopic separation of 15 N at 1.8 atm instead of atmospheric pressure allows doubling the HNO 3 10 M load of the column and consequently, doubling the production rate. A better performance of the separation process at higher pressure is essential for the industrial production of 15 N isotope which is used for the production of uranium nitride in FBR type reactors. (authors)

  4. [Accumulation responses of seeds and seedlings to 15N isotope for two typical broadleaved trees in Northeast China.

    Science.gov (United States)

    Wang, Guang Chen; Song, Yuan; Yan, Qiao Ling; Zhang, Jin Xin

    2016-08-01

    Two typical broadleaved trees (i.e., Fraxinus rhynchophylla and Acer mono) with wind-dispersed seeds in Northeast China were selected in this study. A method of 15 N isotope labeling was used to explore the accumulation responses of seeds and seedlings to 15 N-urea soaking concentration (0, 0.05, 0.1 and 0.2 g·L -1 ), soaking time (4, 8 and 12 days) and leaf stage (2, 4, 6, and 8 leaves). The results showed that 15 N-urea soaking concentration and soaking time had significantly positive effects on δ 15 N values of seeds, i.e., higher 15 N-urea concentration and longer period of soaking (0.2 g·L -1 +12 d) were contributed to more 15 N accumulation of seeds. The maximum multiples of 15 N accumulation in F. rhynchophylla seeds and A. mono seeds were observed in 0.1 g·L -1 + (4 d, 8 d) and 0.05 g·L -1 + (4 d, 8 d), respectively. The loss rate of δ 15 N values decreased markedly from 2 leaves to 6 leaves and then kept relatively stable with the increasing seedling height, and the total δ 15 N values of seedlings started to decline at the stage of 8 leaves. These results suggested that seedlings with 6 leaves were more suitable for tracking seedling source. The δ 15 N values in leaves of seedlings were significantly positively correlated with 15 N-urea concentration level, soaking time and δ 15 N values of seeds. Overall, the accumulation of 15 N-urea could be found in seeds and seedlings of F. rhynchophylla and A. mono. The combination of 15 N-urea concentration (0.1 g·L -1 ), soaking time (8 d) and leaf stage (6 leaves) was the most suitable for tracking the seeds and seedlings of these two broadleaved trees.

  5. Variable δ15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    Science.gov (United States)

    Olin, Jill A.; Hussey, Nigel E.; Grgicak-Mannion, Alice; Fritts, Mark W.; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their community will be influenced with consequences for conservation and management actions. PMID:24147026

  6. Variable δ(15N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    Directory of Open Access Journals (Sweden)

    Jill A Olin

    Full Text Available The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15N diet-tissue discrimination factors (∆(15N. As ∆(15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15N dietary values. Overall, the most suitable species-specific ∆(15N values decreased with increasing dietary-δ(15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15N = 9‰ whereas a ∆(15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ(15N = 15‰. These data corroborate the previously reported inverse ∆(15N-dietary δ(15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15N values that reflect the predators' δ(15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species

  7. Effect of applying wheat stubble on preservation and utilization of n-fertilizer by 15N trace technique

    International Nuclear Information System (INIS)

    Xu Xinyu; Zhang Yumei; Xiang Hua; Hu Jisheng

    1991-10-01

    By using 15 N trace technique, the effect of applying wheat stubble on the preservation and utilization rate of 15 N- ammonium sulphate have been studied. The abundance of ( 15 NH 4 ) 2 SO 4 fertilizer was 8.92%. After three years pot test and field plot test, the results showed that the yields with ' 15 N+mulching' and ' 15 N+incorporating' treated were increased by 5.4∼30.0% for spring wheat and millet(pot test), and 18∼23% for winter wheat and summer corn(field plot test), as compared with only ' 15 N' treatment. The results of 15 N-fertilizer labelled tests showed that the utilization rates of 15 N-fertilizer treated by ' 15 N+mulching' for cropping seasons were 57.8%, 65.8%, 36.6% and 8.5% respectively. These were increased 3.7%, 10.2%, 21.5% and 2.8% as compared with only ' 15 N' treatment. Comparing with only ' 15 N'treatment, the N leached off by percolation water was decreasing 50%, the loss of N caused by volatilization was decreasing 30.3% and the N in humus was increasing 21.1%. All of these proved that the applying of wheat stubble in different mode would adjust and control the activation of microbe in the soil, and the preservation and utilization rate of fertilizer in the soul would be increased

  8. Influence of ethyl-trinexapac on 15N accumulation and distribution and on highland rice yield

    International Nuclear Information System (INIS)

    Alvarez, Rita de Cassia Felix; Crusciol, Carlos Alexandre Costa; Alvarez, Angela Cristina Camarim; Trivelin, Paulo Cesar Ocheuze; Rodrigues, Joao Domingos

    2007-01-01

    The high rice grain yields ensured by sprinkler irrigation have encouraged the use of higher fertilizer doses, mainly the nitrogen fertilizers. However, an improper management of nitrogen fertilization may result in plant lodging. Application of plant regulators may redirect assimilates to grain production while limiting the vegetative growth. This study aimed to: evaluate the influence of the growth regulator Ethyl-trinexapac on plant growth parameters and on 15 N accumulation and distribution in the whole plant and plant components, and determine the contribution of nitrogen taken up in different developmental stages in panicle formation, yield components and rice yield. The experiment was carried out under controlled greenhouse conditions. The treatments consisted of application or not of a plant growth regulator (0 and 200 g active ingredient ha-1 of ethyl-trinexapac) at four plant development stages (beginning to end of tillering; end of tillering and flower differentiation; flower differentiation to flowering; flowering until physiological maturation). The experimental design was arranged in random blocks, in a 2 x 4 factorial scheme, with three replications. The plants were placed in a group of 48 pots. In a group of 24 pots with nutrient solution containing 15 NH 4 SO 4 , plants were collected and separated in parts in the beginning of each pre-established plant development stage and at the end of each stage. In a second group (24 pots), pre-labeled plants were left to grow in nutrient solution with 14 NH 4 SO 4 and harvested at the end of each cycle in order to access 15 N redistribution.. The growth regulator reduced plant height and 15 N accumulation in the panicle and promoted redistribution of the absorbed 15 N, and increased accumulated 15 N in root, stem+sheats and leaves. The contribution of absorbed 15 N to panicle formation in each stage increased with the plant development, though in a lower proportion in the presence of the growth regulator

  9. Studies of the utilization of phosphorus and nitrogen fertilizers by 32P and 15N isotopes

    International Nuclear Information System (INIS)

    Dombovari, Janos; Kiss, A.S.

    1983-01-01

    The utilization of phosphorus and nitrogen fertilizers in crop enhancement was studied with different plants and soils, using 15 N nad 32 P labelling. 15 N was determined by mass spectrometry, 32 P by radiometry. For nitrogen fertilizers better results were achieved by sequential small doses than by single higher doses. The utilization of phosphorus fertilizer strongly depends, in addition to the plant species, on the quality of the soil, especially on its Ca and N contents. Low and high soil liming increased and decreased the utilization of phosphorus, respectively, while nitrogen fertilizers increased it in each case. Measurement of the isotopically exchangable phosphorus content of soils represents a new technique for the determination of the phosphorus uptake. (A.L.)

  10. Loss of nitrogen (study with 15N) as gaseous oxides under submerged conditions of paddy

    International Nuclear Information System (INIS)

    Mandal, S.R.; Datta, N.P.

    1987-01-01

    The experiment in a specially designed, air-tight pot with rice and different water soluble grades of nitrophosphate, ammonium nitrate (plus super phosphate) tagged with six atom per cent excess 15 N clearly revealed that the loss of nitrogen as oxides during the growth period of rice under submerged condition was very small (1.48 to 2.57 mg/pot). The 15 N content in the lost oxides was also very small and a small traction of total nitrogen applied represented the loss in this channel (0.0062 to 0.0163 per cent). The loss was influenced by NH 4 :NO 3 ratio in the fertilizer and increased with the increasing quantity of nitrate present in the fertilizers. (author)

  11. Estimation of nitrogen fixation in Saccharum spp. by 15N dilution method

    International Nuclear Information System (INIS)

    Singh, Mohan

    1994-01-01

    The amount of nitrogen fixed by bacteria associated with the roots of Saccharum spontaneum, S. sinense, and S. barberi has been estimated by 15 N-isotope dilution method using Sclerotachya fusca as a non-fixing control. S. spontaneum produced highest shoot dry weight among the species tested but maximum nitrogen was accumulated by S. barberi. Highest dilution in the 15 N-enrichment was observed in S. spontaneum followed by S. sinense and S. barberi in comparison to the control plant of Sclerotchya fusca. S. spontaneum derived 60 per cent followed by S. sinense 54 per cent and S. barberi 35 per cent of their total nitrogen requirement through fixation of nitrogen by diazotrophic bacteria associated with their roots. (author). 11 refs., 2 tabs

  12. Dynamic of N fertilizers: urea ({sup 15} N) and aqua ammonia ({sup 15} N) incorporated to the sugar cane soil. Final report; Dinamica do N dos fertilizantes: ureia ({sup 15} N) e aquamonia ({sup 15} N) incorporados ao solo na cultura da cana-de-acucar. Relatorio final

    Energy Technology Data Exchange (ETDEWEB)

    Trivelin, P C.O. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    1988-05-01

    The dynamic of N fertilizers, urea and aqua ammonia, in the soil of sugar cane crops are studied with an emphasis on the horizontal and vertical moving. The nitrogen routing from urea and aqua ammonia sources, by isotopic technique with {sup 15} N in relation to the leaching, volatilization and extraction by the cultivation and residue of N immobilized manure in the soil with sugar cane plantation is also analysed. (C.G.C.).

  13. Comparison of 15N- and 13C-determined parameters of mobility in melittin

    International Nuclear Information System (INIS)

    Zhu Lingyang; Prendergast, Franklyn G.; Kemple, Marvin D.

    1998-01-01

    Backbone and tryptophan side-chain mobilities in the 26-residue, cytolytic peptide melittin (MLT) were investigated by 15 N and 13 C NMR. Specifically, inverse-detected 15 N T 1 and steady-state NOE measurements were made at 30 and 51 MHz on MLT at 22 deg. C enriched with 15 N at six amide positions and in the Trp 19 side chain. Both the disordered MLT monomer (1.2 mM peptide at pH 3.6 in neat water) and α-helical MLT tetramer (4.0 mM peptide at pH 5.2 in 150 mM phosphate buffer) were examined. The relaxation data were analyzed in terms of the Lipari and Szabo model-free formalism with three parameters: τ m , the correlation time for the overall rotation; S 2 , a site-specific order parameter which is a measure of the amplitude of the internal motion; and τ e , a local, effective correlation time of the internal motion. A comparison was made of motional parameters from the 15 N measurements and from 13 C measurements on MLT, the latter having been made here and previously [Kemple et al. (1997) Biochemistry, 36, 1678-1688]. τ m and τ e values were consistent from data on the two nuclei. In the MLT monomer, S 2 values for the backbone N-H and Cα-H vectors in the same residue were similar in value but in the tetramer the N-H order parameters were about 0.2 units larger than the Cα-H order parameters. The Trp side-chain N-H and C-H order parameters, and τ e values were generally similar in both the monomer and tetramer. Implications of these results regarding the dynamics of MLT are examined

  14. Aqua ammonia 15 N obtaining and application with vainness for sugar-cane fertilization

    International Nuclear Information System (INIS)

    Vitti, Andre Cesar; Trivellin, Paulo Cesar O.; Oliveira, Claudineia R. de; Bendassoli, Jose A.

    2000-01-01

    Nitrogen compounds marked with the isotope 15 N are continuously being used in agronomic studies and, when associated to the isotopic dilution technique, they constitute an important tool in clarifying the N cycle. At the Centro de Energia Nuclear na Agricultura (CENA/USP), it was obtained ( 15 NH 4 ) 2 SO 4 enhanced at 3,5% of 15 N atoms, by means of the ionic exchange chromatography technique, which made possible to produce aqua ammonia ( 15 NH 3 aq). Four repetitions were taken to the aqua ammonia production process to use the nitrogen compound in the field experiment. In each process 150g of ammonium sulfate enhanced at 3,5% of 15 N atoms was used, obtaining 31,0 ± 1,6 g of aqua ammonia on the average (80% yield), with the same enhancement. The incidence of isotopic dilution has not been observed during the procedure, what made the use of such methodology possible. After obtaining the aqua ammonia 15 N through this procedure, it was added to the vinasse (an equivalent to 50 m 3 ha -1 ) in doses that corresponded to 70 kg ha -1 of N-NH 3 aq. The mixture was applied to the sugar-cane straw on the soil's surface, aimed to the crop's fertilization. The compound's isotopic composition was analyzed by means of a spectrometer of masses ANCA-SL Europe Scientific, while the total-N volatilized, by the micro-Kjeldahl. Method. In accordance to the low NH 3 (6,4 ± 1,9 kg ha -1 ) volatilization results, it could be concluded that the application of vinasse and aqua ammonia mixture to the straw on the soil's surface was efficient, due to the vinasse's acid character, which allowed the NH 3 , in presence of the ion H + , to stay in the NH 4 + form in solution. (author)

  15. δ15N in the turtle grass from the Mexican Caribbean

    Science.gov (United States)

    Talavera-Saenz, A.; Sanchez, A.; Ortiz-Hernandez, M.

    2013-05-01

    Nutrient inputs associated with population growth threaten the integrity of coastal ecosystems. To assess the rapid increase in tourism, we compared the δ15N from Thalassia testudinum collected at sites with different levels of tourism development and population to detect the N inputs of wastewater discharge (WD) along the coast of Quintana Roo. The contributions of nitrogen enriched in 15N are directly related to the increase of WD inputs in areas of high tourism development (Nichupte Lagoon in Cancun, >3 million tourists per year from 2007 to 2011 and 0.7 million of resident population) and decreased towards Bahia Akumal and Tulum (>3 million tourists per year from 2007 to 2011 and 0.15 million of resident population). The δ15N from T. testudinum was significantly lower at Mahahual and Puerto Morelos (about 0.4 million tourists per year in 2007 to 2011 and 0.25 million of resident population) than other the sites. In areas of the lowest development and with tourist activity restricted and small population, such as the Yum Balam Reserve and Sian Ka'an Biosphere Reserve, the δ15N values were in much higher enrichment that Mahahual and Puerto Morelos. Therefore is suggested that Mahahual and Puerto Morelos may be used for baseline isotopic monitoring, over environmental pressure on the reef lagoon ecosystem, where tourist activities and population are growing very slow rate. The anthropogenic N input has the potential to impact, both environmentally and economically, the seagrass meadows and the coral reefs along the coast of Quintana Roo and the Caribbean.

  16. The CN/C15N isotopic ratio towards dark clouds

    Science.gov (United States)

    Hily-Blant, P.; Pineau des Forêts, G.; Faure, A.; Le Gal, R.; Padovani, M.

    2013-09-01

    Understanding the origin of the composition of solar system cosmomaterials is a central question, not only in the cosmochemistry and astrochemistry fields, and requires various approaches to be combined. Measurements of isotopic ratios in cometary materials provide strong constraints on the content of the protosolar nebula. Their relation with the composition of the parental dark clouds is, however, still very elusive. In this paper, we bring new constraints based on the isotopic composition of nitrogen in dark clouds, with the aim of understanding the chemical processes that are responsible for the observed isotopic ratios. We have observed and detected the fundamental rotational transition of C15N towards two starless dark clouds, L1544 and L1498. We were able to derive the column density ratio of C15N over 13CN towards the same clouds and obtain the CN/C15N isotopic ratios, which were found to be 500 ± 75 for both L1544 and L1498. These values are therefore marginally consistent with the protosolar value of 441. Moreover, this ratio is larger than the isotopic ratio of nitrogen measured in HCN. In addition, we present model calculations of the chemical fractionation of nitrogen in dark clouds, which make it possible to understand how CN can be deprived of 15N and HCN can simultaneously be enriched in heavy nitrogen. The non-fractionation of N2H+, however, remains an open issue, and we propose some chemical way of alleviating the discrepancy between model predictions and the observed ratios. Appendices are available in electronic form at http://www.aanda.orgThe reduced spectra (in FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A65

  17. Electroexcitation of 15N levels from 9.7 to 14.7 MeV

    International Nuclear Information System (INIS)

    Ansaldo, E.J.; Bergstrom, J.C.; Caplan, H.S.; Yen, R.

    1977-01-01

    The electromagnetic form factors of five transitions in 15 N have been measured for momentum transfers between 0.48 and 1.27 fm -1 . The transitions observed were identified with levels at 9.76, 10.80, 11.88, 12.50, and 14.7 MeV excitation energy. Ground state radiative widths have been extracted by a Helm model analysis. (author)

  18. Foliar fertilization of sugarcane (Saccharum spp): absorption and translocation of 15-N-labeled urea

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Carvalho, J.G. de; Silva, A.Q. da; Primavesi, A.C.P.A.; Camacho, E.; Eimori, I.E.; Guilherme, M.R.

    1988-01-01

    The absorption and translocation of foliar applied nitrogen as urea solution to sugar cane plants was evaluated. An experiment using the isotope dilution technique with 15 N labeled urea was carried out in green house condition. Seedlings of sugarcane variety IAC 53-150 were planted in pots with 5KG of top soil''latossolo vermelho amarelo, fase arenosa'' (Haplustox). (M.A.C.) [pt

  19. Fast hydrogen exchange affects {sup 15}N relaxation measurements in intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean, E-mail: jean.baum@rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology (United States)

    2013-03-15

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, {sup 1}H-{sup 15}N HSQC, is used to measure the {sup 15}N transverse relaxation rate (R{sub 2}), the measured R{sub 2} rate is convoluted with the HX rate (k{sub HX}) and has higher apparent R{sub 2} values. Since the {sup 15}N R{sub 2} measurement is important for analyzing protein backbone dynamics, the HX effect on the R{sub 2} measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing {sup 15}N R{sub 2}{sup CPMG} experiments on {alpha}-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R{sub 2}{sup CPMG} can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D{sub 2}O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R{sub 2}{sup CPMG} values be obtained by methods described herein.

  20. Chemienzymatic synthesis of Uridine. Nucleotides labeled with [15N] and [13C

    DEFF Research Database (Denmark)

    Gilles, Anne-Marie; Cristea, Ioan; Palibroda, Nicolae

    1995-01-01

    +necessary for the oxidation of glucose 6-phosphate and 6-phosphogluconate was recycled by glutamate dehydrogenase and excess of ammonia and a-oxoglutarate. Despite the number and complexity of the enzymatic steps, the synthesis of [15N,13C]UTP is straightforward with an overall yield exceeding 60%. This method, extended...... and diversified to the synthesis of all natural ribonucleotides, is a more economical alternative for obtaining nucleic acids for structural analysis by heteronuclear NMR spectroscopy....

  1. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Science.gov (United States)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  2. Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    DEFF Research Database (Denmark)

    Pirhofter-Walzl, Karin; Eriksen, Jørgen; Rasmussen, Jim

    2013-01-01

    access to greater amounts of soil 15N compared with a shallow-rooting binary mixture, and if leguminous plants affect herbage yield and soil 15N-access. Methods 15N-enriched ammonium-sulphate was placed at three different soil depths (0.4, 0.8 and 1.2 m) to determine the depth dependent soil 15N....... This positive plant diversity effect could not be explained by complementary soil 15N-access of the different plant species from 0.4, 0.8 and 1.2 m soil depths, even though deep-rooting chicory acquired relatively large amounts of deep soil 15N and shallow-rooting perennial ryegrass when grown in a mixture...

  3. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Science.gov (United States)

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  4. Affordable uniform isotope labeling with 2H, 13C and 15N in insect cells

    International Nuclear Information System (INIS)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D.

    2015-01-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for 15 N and 13 C with yields comparable to expression in full media. For 2 H, 15 N and 2 H, 13 C, 15 N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins

  5. Recovery of 15N-labelled fertilizers applied to bromegrass on a thin black chernozem soil

    International Nuclear Information System (INIS)

    Malhi, S.S.

    1995-01-01

    The availability of N fertilizers on established grass stands is a function of such processes as immobilization, gaseous loss, leaching and position of applied N. A field experiment was conducted on a Thin Black Chernozem soil at Crossfield, Alberta to determine the effect of source, time and method of application on the recovery of 15 N-labelled fertilizers applied to smooth bromegrass (Bromus inermis Leyss.). The treatments included two sources of N [urea and ammonium nitrate (AN)], four application times (early autumn, late autumn, early spring and late spring) and two methods of placement (surface-broadcast and subsurface banding). In most cases the 15 N recovery in soil did not differ much between urea and AN. However, when urea was surface-broadcast, there was, on average, 10.2% less 15 N recovery in plants than AN. The N recovery for late spring > early spring > late autumn = early autumn. When urea was banded 4 cm deep into the soil, N recovery in plants increased significantly compared with its surface-broadcast application. However, this was not observed when the source of N was AN. Banding generally increased the amount of immobilized N present in the soil and N recovery. We concluded that the N recovery in plants and in plants plus soil was less for urea than for AN and was less with autumn broadcast N application than with spring broadcast application. (author). 23 refs., 3 tabs

  6. Impact of seaweed beachings on dynamics of δ(15)N isotopic signatures in marine macroalgae.

    Science.gov (United States)

    Lemesle, Stéphanie; Mussio, Isabelle; Rusig, Anne-Marie; Menet-Nédélec, Florence; Claquin, Pascal

    2015-08-15

    A fine-scale survey of δ(15)N, δ(13)C, tissue-N in seaweeds was conducted using samples from 17 sampling points at two sites (Grandcamp-Maisy (GM), Courseulles/Mer (COU)) along the French coast of the English Channel in 2012 and 2013. Partial triadic analysis was performed on the parameter data sets and revealed the functioning of three areas: one estuary (EstA) and two rocky areas (GM(∗), COU(∗)). In contrast to oceanic and anthropogenic reference points similar temporal dynamics characterized δ(15)N signatures and N contents at GM(∗) and COU(∗). Nutrient dynamics were similar: the N-concentrations in seawater originated from the River Seine and local coastal rivers while P-concentrations mainly from these local rivers. δ(15)N at GM(∗) were linked to turbidity suggesting inputs of autochthonous organic matter from large-scale summer seaweed beachings made up of a mixture of Rhodophyta, Phaeophyta and Chlorophyta species. This study highlights the coupling between seaweed beachings and nitrogen sources of intertidal macroalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Behavior of /sup 15/N-labelled amino acids in germinated corn

    Energy Technology Data Exchange (ETDEWEB)

    Samukawa, K; Yamaguchi, M [Osaka Prefectural Univ., Sakai (Japan). Coll. of Agriculture

    1979-06-01

    By investigating the rise and fall of /sup 15/N-labelled amino acids in germinated corns, the behavior of amino radicals in free amino acids, the influence of the hydrolysis products of stored proteins on free amino acids and the change from heterotrophy to autotrophy of seeds were clarified. The amount of amino acid production depending on external nitrogen was very small in the early period of germination. /sup 15/N incorporation into proline was not observed in the early period of germination, which suggested that the proline may be nitrogen-storing source. Most of the amino-state nitrogen of asparagine accumulated at the time of germination was internal nitrogen, and this fact suggested that aspartic acid serve as the acceptor of ammonia produced in the early stage of germination. /sup 15/N content increased significantly on 9 th day after germination, and decreased on 12 th day. These facts prove that there are always active decomposition and production of protein in plant body.

  8. Enrichment of {sup 15}N and {sup 10}B isotopes by chemical exchange process

    Energy Technology Data Exchange (ETDEWEB)

    D` Souza, A B; Sonwalkar, A S; Subrahmanyam, B V; Valladares, B A [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. {sup 15}N and {sup 10}B in Chemical Engineering Division is presented. {sup 15}N is widely used as a tracer in agricultural research and {sup 10}B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on {sup 15}N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of {sup 10}B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched {sup 10}B to be used as soluble reactor poison. (author). 5 refs., 2 figs., 3 tabs.

  9. Evaluation for dinitrogen fixation of induced wheat nodules by 15N isotope dilution method

    International Nuclear Information System (INIS)

    Yao Yunyin; Zhen Ming; Chang Xizhong

    1993-11-01

    The results in pot experiments showed that the treating of 2,4-D and Azorhizobium caulinodans (2,4-D+A) could induce para-nodule formation on wheat roots. Plants treated grew normally. The plant height and dry weight are significantly higher than reference plants which are treated with 2,4-D+azorhizobium sterilized (2,4-D+AS). The nitrogenase activity is detected by ARA method. The N yield of most treated plants, especially in root systems, is higher than reference group that is measured by Kjeldahl method. The atom % 15 N excess in leaf and stem of treated plants measured by 15 N isotope dilution method is lower than that of reference group. Through four years experiments, it shows that para-nodules of wheat treated with 2,4-D+A could fix N 2 from air, but the ability of nitrogen fixation is lower and unstable. Although the nodulation efficiency could reach 100%, not each para-nodule induced can present activity of dinitrogen fixation. The amount of N fixed is 0.05∼18.1 mg/pot (0.01∼3.87 mg/plant). The net %Ndfa is 2.32%∼18.07%. The free-living N 2 fixing activity of azorhizobium is detected by 15 N isotope dilution method. The calculation of %Ndfa of nodulated wheat accurately is also discussed

  10. Plot-size for 15N-fertilizer recovery studies by tanzania-grass

    International Nuclear Information System (INIS)

    Martha Junior, Geraldo Bueno; Trivelin, Paulo Cesar Ocheuze; Corsi, Moacyr

    2009-01-01

    The understanding of the N dynamics in pasture ecosystems can be improved by studies using the 15 N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for 15 N-fertilizer recovery experiments with irrigated Panicum maximum cv. Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing) in the winter, spring and summer seasons were considered. A 1 m 2 plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with 15 N negatively affected the N derived from fertilizer (Npfm) recovered in herbage.The lowest decline in Npfm values were observed for moderate and light grazing intensities. This fact might be explained by the vigorous growth characteristics of these plants. Increasing the grazing intensity decreased the tussock mass and, the smaller the tussock mass, the greater was the dependence on fertilizer nitrogen. (author)

  11. Enrichment of 15N and 10B isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    D'Souza, A.B.; Sonwalkar, A.S.; Subrahmanyam, B.V.; Valladares, B.A.

    1994-01-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. 15 N and 10 B in Chemical Engineering Division is presented. 15 N is widely used as a tracer in agricultural research and 10 B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on 15 N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of 10 B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched 10 B to be used as soluble reactor poison. (author)

  12. Practical aspects of the 2D 15N-{1H}-NOE experiment

    International Nuclear Information System (INIS)

    Renner, Christian; Schleicher, Michael; Moroder, Luis; Holak, Tad A.

    2002-01-01

    The heteronuclear 15 N-NOE experiment was extensively tested with respect to statistical and systematic experimental error. The dependence of signal intensity in the NOE experiment and in the reference experiment on the saturation and relaxation time was experimentally investigated. The statistics of the experimental values were accessed by numerous repetitions of identical set-ups. As a model system a protein of typical size for NMR studies was chosen, i.e., a 120 amino acid residues containing fragment of the F-actin binding gelation factor (ABP-120). The fragment exhibits fast dynamics that are accessible with the 15 N-NOE experiment with various amplitudes. The results of this study show that commonly used parameters are only adequate for accurate measurement of motions with moderate amplitude. Highly flexible parts require longer delay times and thus more experimental time than commonly used. On the other hand, a qualitative or semi-quantitative assessment of a protein's mobility on fast times scales can be obtained from rapidly recorded experiments with unusual short delay times. The findings of this study are of equal importance for highly accurate measurement of the 15 N-NOE as well as for quick identification of mobile or even unstructured residues/parts of a protein

  13. Behavior of 15N-labelled amino acids in germinated corn

    International Nuclear Information System (INIS)

    Samukawa, Kisaburo; Yamaguchi, Masuro

    1979-01-01

    By investigating the rise and fall of 15 N-labelled amino acids in germinated corns, the behavior of amino radicals in free amino acids, the influence of the hydrolysis products of stored proteins on free amino acids and the change from heterotrophy to autotrophy of seeds were clarified. The amount of amino acid production depending on external nitrogen was very small in the early period of germination. 15 N incorporation into proline was not observed in the early period of germination, which suggested that the proline may be nitrogen-storing source. Most of the amino-state nitrogen of asparagine accumulated at the time of germination was internal nitrogen, and this fact suggested that aspartic acid serve as the acceptor of ammonia produced in the early stage of germination. 15 N content increased significantly on 9 th day after germination, and decreased on 12 th day. These facts prove that there are always active decomposition and production of protein in plant body. (Kobatake, H.)

  14. Fertilizer 15N balance and recovery of N from organic sources by rice in Typic Ustochrept

    International Nuclear Information System (INIS)

    Bhattacharyya, Ranjan; Sachdev, M.S.; Sachdev, P.; Kundu, S.; Sutradhar, G.

    2002-01-01

    To investigate the fertilizer-N balance and recovery of N from organics (as determined by A-value technique) by rice as affected by urea application alone or in combination with FYM or green manure, a field experiment was conducted in the khariff season if 1997 at IARI, New Delhi on a sandy loam soil (Typic Ustochrept). 15 N-labelled urea was applied at 0.90 and 120 kg N ha -1 levels alone and in combination with either FYM or green manure in 2:1 or 1:1 ratios. Organic sources were incorporated seven days before transplanting whereas, urea was applied in three equal splits at 15 DAT, 28 DAT and 42 DAT. The residual 15 N in soil was determined only in the surface soil layer (0-15 cm) of rice crop. The combined source helped in conserving more of urea-N in soil as residual (42-45%) than urea alone (23-27%) treatment due to the fact that the unaccounted fertilizer 15 N was more in urea alone treatment (43-45%) than combined sources (12-15%) at both the levels. The efficiency of uptake of organic N by rice as determined through A-value technique was similar or better than urea-N at both the levels. (author)

  15. Redox-controlled backbone dynamics of human cytochrome c revealed by 15N NMR relaxation measurements

    International Nuclear Information System (INIS)

    Sakamoto, Koichi; Kamiya, Masakatsu; Uchida, Takeshi; Kawano, Keiichi; Ishimori, Koichiro

    2010-01-01

    Research highlights: → The dynamic parameters for the backbone dynamics in Cyt c were determined. → The backbone mobility of Cyt c is highly restricted due to the covalently bound heme. → The backbone mobility of Cyt c is more restricted upon the oxidation of the heme. → The redox-dependent dynamics are shown in the backbone of Cyt c. → The backbone dynamics of Cyt c would regulate the electron transfer from Cyt c. -- Abstract: Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D 15 N NMR relaxation experiments. 15 N T 1 and T 2 values and 1 H- 15 N NOEs of uniformly 15 N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S 2 ), the effective correlation time for internal motion (τ e ), the 15 N exchange broadening contributions (R ex ) for each residue, and the overall correlation time (τ m ) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S 2 value was increased from 0.88 ± 0.01 to 0.92 ± 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S 2 values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.

  16. Paleoenvironmental implications of taxonomic variation among δ 15 N values of chloropigments

    Science.gov (United States)

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mak A.; Pearson, Ann

    2011-11-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ 15N values of chloropigments of photosynthetic organisms to determine the corresponding δ 15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth's history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N 2, NO 3-, and NH 4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ 15N biomass - δ 15N chloropigment) for prokaryotes, with average values for species ranging from -12.2‰ to +11.7‰. We define this difference as ɛpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of ɛpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of ɛpor for freshwater cyanobacterial species is -9.8 ± 1.8‰, while for marine cyanobacteria it is -0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., ɛpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of ɛpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of ɛpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of

  17. Estimation of dinitrogen fixation by cowpea (Vigna unguiculata) using residual soil 15N in poppy (Papaver somniferum L) cowpea sequence

    International Nuclear Information System (INIS)

    Patra, D.D.; Chand, Sukhmal; Anwar, M.

    1994-01-01

    Estimation of dinitrogen fixation by cowpea was carried out under greenhouse conditions using pots each containing 12 kg soil. Different 15 N sources included residual soil 15 N where urea was applied to opium poppy before planting of cowpea as fixing and maize as non-fixing crop. Other N sources were labelled urea, 15 N labelled poppy straw, and labelled urea + unlabelled poppy straw. The amount of N 2 fixed varied with the source of 15 N in soil. Plant material treatment gave a higher estimate at 40 days, whereas the estimate was highest with residual 15 N at 75 days. Such variation is attributed to variation in 1 5N enrichment which can be reduced by utilizing the residual 15 N which gives a more stable enrichment of soil 15 N with time. It may also alleviate the errors resulting from the differential pattern of 15 N uptake by fixing and nonfixing plant due to temporal variation in 15 N enrichment in soil. (author). 8 refs., 3 tabs

  18. Does δ 15N in river food webs reflect the intensity and origin of N loads from the watershed?

    International Nuclear Information System (INIS)

    Anderson, Caroline; Cabana, Gilbert

    2006-01-01

    Stable nitrogen isotope ratios (δ 15 N) were measured in invertebrates and fish collected from 82 river sites located in the Saint-Lawrence Lowlands in Quebec, Canada, to examine the relationship between aquatic biota δ 15 N and anthropogenic nitrogen (N) loads. Mean δ 15 N values of all three trophic levels examined (primary consumers, predatory invertebrates and invertebrate-feeding fish) were highly correlated with total anthropogenic N loads on the watershed (kg N km -2 year -1 ; r 2 > 0.61, p 2 > 0.62, p 2 > 0.45, p 2 > 0.29, p 15 N and N loads originating from each of the three livestock species examined (bovines, pigs and poultry; p 15 N (multiple r 2 = 0.67, p 15 N values increasing slowly over a wide range of low levels of N loads, but increasing much faster as N loads grew larger. The three anthropogenic N sources examined were highly correlated with one another, preventing us from statistically isolating their respective effects on δ 15 N. When these loads were expressed as a proportion of total N load, δ 15 N of aquatic biota was still highly correlated with N from livestock and fertilizers, but not with N from human population. Overall, these results suggest that δ 15 N values of aquatic consumers could be used as indicators of the intensity of anthropogenic N loading on watersheds, but not as tracers of the relative importance of individual N sources

  19. Spatial variations in larch needle and soil δ15N at a forest-grassland boundary in northern Mongolia.

    Science.gov (United States)

    Fujiyoshi, Lei; Sugimoto, Atsuko; Tsukuura, Akemi; Kitayama, Asami; Lopez Caceres, M Larry; Mijidsuren, Byambasuren; Saraadanbazar, Ariunaa; Tsujimura, Maki

    2017-03-01

    The spatial patterns of plant and soil δ 15 N and associated processes in the N cycle were investigated at a forest-grassland boundary in northern Mongolia. Needles of Larix sibirica Ledeb. and soils collected from two study areas were analysed to calculate the differences in δ 15 N between needle and soil (Δδ 15 N). Δδ 15 N showed a clear variation, ranging from -8 ‰ in the forest to -2 ‰ in the grassland boundary, and corresponded to the accumulation of organic layer. In the forest, the separation of available N produced in the soil with 15 N-depleted N uptake by larch and 15 N-enriched N immobilization by microorganisms was proposed to cause large Δδ 15 N, whereas in the grassland boundary, small Δδ 15 N was explained by the transport of the most available N into larch. The divergence of available N between larch and microorganisms in the soil, and the accumulation of diverged N in the organic layer control the variation in Δδ 15 N.

  20. Effect of organic matter application on the fate of 15N-labeled ammonium fertilizer in an upland soil

    International Nuclear Information System (INIS)

    Nishio, T.; Oka, N.

    2003-01-01

    The effect of the application of organic matter on the fate of 15 N-labeled ammonium was investigated in a field. The organic materials incorporated into the experimental plots consisted of wheat straw, rape, pig compost, cow compost, plant manure. In May 2000, 10 g N m -2 of 15 N-labeled ammonium was applied to the field together with the organic materials, and maize and winter wheat were consecutively cultivated. The recovery of applied 15 N in soils and plants was determined after the harvest of each crop. Although only about 10% of the applied 15 N-labeled fertilizer remained in the 0-30 cm layer of the Control Plot and the Plant Manure Plot, more than 25% of the applied 15 N remained in the Pig Compost Plot. Amount and proportion of the immobilized 15 N to those of total N or microbial biomass N in soils were determined for the topsoil samples (0-10 cm layer). The amounts of both microbial biomass N and total immobilized 15 N in soil were highest in the Pig Compost Plot. Although the amount of microbial biomass N was comparable to the amount of immobilized 15 N-labeled fertilizer in soil, the amounts of 15 N-labeled fertilizer contained in the microbial biomass accounted for less than 10 % of the amount of total immobilized 15 N in soil. The ratio of the amount of 15 N-labeled fertilizer contained in biomass N to the total amount of biomass N was one order to magnitude higher than the ratio of the amount of immobilized 15 N-labeled fertilizer to the amount of total N in soil. No conspicuous changes in the amount of immobilized 15 N in soil were observed during the cultivation of winter wheat except for the Pig Compost Plot. No significant correlation was recognized between the amount of 15 N-labeled fertilizer contained in microbial biomass before wheat cultivation and that of 15 N-labeled fertilizer absorbed by wheat, indicating that microbial N immobilized during the growth period of the former crop (maize) was not a significant source of N for the latter

  1. Unusually negative nitrogen isotopic compositions (δ15N) of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    Science.gov (United States)

    Fogel, M. L.; Wooller, M. J.; Cheeseman, J.; Smallwood, B. J.; Roberts, Q.; Romero, I.; Meyers, M. J.

    2008-12-01

    Extremes in δ15N values in mangrove tissues and lichens (range =+4 to -22‰) were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6-9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from -12‰ to -2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰). Isotopically depleted ammonia in the atmosphere (δ15N=-19‰) and in rainwater (δ15N=-10‰) were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  2. Unusually negative nitrogen isotopic compositions (δ15N of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    Directory of Open Access Journals (Sweden)

    I. Romero

    2008-12-01

    Full Text Available Extremes in δ15N values in mangrove tissues and lichens (range =+4 to −22‰ were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6–9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from −12‰ to −2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰. Isotopically depleted ammonia in the atmosphere (δ15N=−19‰ and in rainwater (δ15N=−10‰ were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  3. Localization of 15N uptake in a Tibetan alpine Kobresia pasture

    Science.gov (United States)

    Schleuß, Per-Marten; Kuzyakov, Yakov

    2014-05-01

    The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation

  4. Banding urea and lignosulfonate in corn (Zea mays L.) production and 15N recovery

    International Nuclear Information System (INIS)

    Alkanani, T.; MacKenzie, A.F.

    1996-01-01

    The use of urea in corn (Zea mays L.) production is common. Under current N fertilizer recommendations for corn, urea may have adverse effects on corn growth when applied in a band. The effects of ammonium lignosulfonate (LS) on corn growth and on N uptake from the banded application of urea and diammonium phosphate (DAP) mixtures were investigated on two soils from eastern Quebec. Field experiments were initiated in the first week of May 1991 on an Ormstown silty clay and a Ste. Rosalie clay soils (fine, mixed, nonacid, mesic Typic Humaquepts). Treatments were two rates of urea (30 and 90 kg urea-N ha -1 ) in a combination with DAP (14kg N ha 1 ), with or without banded fertilizer solutions of LS (8 kg N ha -1 ) applied at planting 5 cm to the side and 3 cm below the seed. A no treatment control was included. The low rate of urea compared with the unfertilized plots. When compared with the unfertilized treatment, the high rate of urea and DAP (no LS added) caused 10% increase in grain yield. However, addition of LS to the high rate of urea and DAP increase grain yield by band 20%. In general, LS significantly increased corn N uptake from urea on both soils. Separate 15 N field experiments were initiated in June 1991. Mean recovery of 15 N ranged from 17.8% to 30.9% of the applied labelled urea. The rate of urea-N banded had no significant effect on immobilization, but LS resulted in significantly less 15 N immobilized. These observations suggest that LS can reduce the biological immobilization of urea-N and increase the efficiency of urea fertilizer by reducing the negative effects of banding high levels of urea, while attaining benefits of band placement. (author). 29 refs., 6 tabs

  5. Nitrogen (15N) accumulation in corn grains as affected by source of nitrogen in red latosol

    International Nuclear Information System (INIS)

    Duete, Robson Rui Cotrim; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze; Silva, Edson Cabral da; Ambrosano, Edmilson Jose

    2009-01-01

    Nitrogen is the most absorbed mineral nutrient by corn crop and most affects grains yield. It is the unique nutrient absorbed by plants as cation (NH 4 + ) or anion (NO 3 - ). The objectives of this work were to investigate the N accumulation by corn grains applied to the soil as NH 4 + or NO 3 - in the ammonium nitrate form compared to amidic form of the urea, labeled with 15 N; to determine the corn growth stage with highest fertilizer N utilization by the grains, and to quantify soil nitrogen exported by corn grains. The study was carried out in the Experimental Station of the Regional Pole of the Sao Paulo Northwestern Agribusiness Development (APTA), in Votuporanga, State of Sao Paulo, Brazil, in a Red Latosol. The experimental design was completely randomized blocks, with 13 treatments and four replications, disposed in factorial outline 6x2 + 1 (control, without N application). A nitrogen rate equivalent to 120 kg N ha-1 as urea- 15 N or as ammonium nitrate, labeled in the cation NH 4 + ( 15 NH 4 + NO 3 - ) or in the anion NO 3 - (NH 4 + 15N+O 3 - ), was applied in six fractions of 20 kg N ha-1 each, in different microplots, from seeding to the growth stage 7 (pasty grains). The forms of nitrogen, NH 4 + -N and N O 3 --N, were accumulated equitably by corn grains. The corn grains accumulated more N from urea than from ammonium nitrate. The N applied to corn crop at eight expanded leaves stage promoted largest accumulation of this nutrient in the grains. (author)

  6. Nitrogen fixation by free-living organisms in rice soils. Studies with 15N

    International Nuclear Information System (INIS)

    Rao, V.R.; Charyulu, P.B.B.N.; Nayak, D.N.; Ramakrishna, C.

    1979-01-01

    Heterotrophic nitrogen fixation as influenced by water regime, organic matter, combined nitrogen and pesticides was investigated in several Indian rice soils by means of the 15 N 2 tracer technique. Soil submergence accelerated nitrogen fixation. Addition of cellulose to both non-flooded and flooded soils enhanced nitrogen fixation. Under submerged conditions, addition of sucrose, glucose and malate in that order stimulated nitrogen fixation in alluvial soil, while only sucrose enhanced nitrogen fixation in laterite soil. Nitrogen fixation in flooded alluvial and laterite soils decreased with increasing concentration of combined nitrogen. Nitrogen fixation was appreciable in acid sulphate and saline soils under both flooded and non-flooded conditions, despite high salinity and acidity. Application of certain pesticides at rates equivalent to recommended field level greatly influenced nitrogen fixation in flooded rice soils. Additions of benomyl (carbamate fungicide) and carbofuran (methyl carbamate insecticide) to alluvial and laterite soils resulted in significant stimulation of nitrogen fixation. Gamma-BHC stimulated nitrogen fixation only in alluvial soil, with considerable inhibition in a laterite soil. Nitrogen fixation by Azospirillum lipoferum was investigated by 15 N 2 . Large variations in 15 N 2 incorporation by A. lipoferum isolated from the roots of several rice cultivars was observed. Specific lines of rice harbouring A. lipoferum with high nitrogenase activity might be selected. Nitrogen fixed by heterotrophic organisms in a complex system such as soil could not be evaluated precisely. Indigenous nitrogen fixation in a flooded soil would be in the range of 5-10 kg N/ha, increasable 3 to 4-fold by appropriate fertilizers and cultural practices

  7. 15N indicates an active N-cycling microbial community in low carbon, freshwater sediments.

    Science.gov (United States)

    Sheik, C.

    2017-12-01

    Earth's large lakes are unique aquatic ecosystems, but we know little of the microbial life driving sedimentary biogeochemical cycles and ultimately the isotopic record. In several of these large lakes, water column productivity is constrained by element limitation, such as phosphorus and iron, creating oligotrophic water column conditions that drive low organic matter content in sediments. Yet, these sediments are biogeochemically active and have been shown to have oxygen consumption rates akin to pelagic ocean sediments and complex sulfur cycling dynamics. Thus, large oligotrophic lakes provide unique and interesting biogeochemical contrast to highly productive freshwater and coastal marine systems. Using Lake Superior as our study site, we found microbial community structure followed patterns in bulk sediment carbon and nitrogen concentrations. These observed patterns were loosely driven by land proximity, as some stations are more coastal and have higher rates of sedimentation, allochthonous carbon inputs and productivity than pelagic sites. Interestingly, upper sediment carbon and nitrogen stable isotopes were quite different from water column. Sediment carbon and nitrogen isotopes correlated significantly with microbial community structure. However, 15N showed much stronger correlation than 13C, and became heavier with core depth. Coinciding with the increase in 15N values, we see evidence of both denitrification and anammox processes in 16S rRNA gene libraries and metagenome assembled genomes. Given that microorganisms prefer light isotopes and that these N-cycling processes both contribute to N2 production and efflux from the sediment, the increase in 15N with sediment depth suggests microbial turnover. Abundance of these genomes also varies with depth suggesting these novel microorganisms are partitioning into specific sediment geochemical zones. Additionally, several of these genomes contain genes involved in sulphur cycling, suggesting a dual

  8. Use of /sup 15/N in following organic matter turnover, with specific reference to rotation systems

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, J N [Commonwealth Scientific and Industrial Research Organization, Glen Osmond (Australia). Div. of Soils

    1981-01-01

    The results of this experiment indicate that the use of the technique described, (based on the degree of /sup 15/N-labelling of an N/sub 2/ fixer and a non-fixer), may be of value in assessing N/sub 2/ fixation in the field by legumes, but it is apparent that there are some problems to be overcome. Analyses of the whole plant are necessary, since the proportions of legume N due to N/sub 2/ fixation vary with the plant part. The extent to which legumes take up available N from the soil obviously will vary with soil profile and plant properties; and they will be affected by sward density and competition from other plants. These latter factors will increase the difficulty of using this method for assessing N/sub 2/ fixation by legumes in grazed pastures, but probably they would not be big problems when applying the method to grain legume crops. It is important that, in comparing the extent of labelling of the N of fixing and non-fixing plants, both types of plants should have access to soil inorganic-N of the same enrichment. This will be difficult to achieve under field conditions. However soils which contain relatively stable /sup 15/N-labelled organic residues may yield NO/sub 3/-N of tolerably constant enrichments. An experiment is in progress at Avon in which soils, amended 15 months previously with /sup 15/N-labelled legume residues and then cropped to wheat, will remain in situ and will be sown with fixing and non-fixing plants during the 1980 and 1981 seasons. These soils may prove to be suitable for measuring N/sub 2/ fixation in the field.

  9. Biological Nitrogen Fixation Efficiency in Brazilian Common Bean Genotypes as Measured by {sup 15}N Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Franzini, V. I.; Mendes, F. L. [Brazilian Agricultural Research Corporation, EMBRAPA-Amazonia Oriental, Belem, PA (Brazil); Muraoka, T.; Trevisam, A. R. [Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP (Brazil); Adu-Gyamfi, J. J. [Soil and Water Management and Crop Nutrition Laboratory, International Atomic Energy Agency, Seibersdorf (Austria)

    2013-11-15

    Common bean (Phaseolus vulgaris L.) represents the main source of protein for the Brazilian and other Latin-American populations. Unlike soybean, which is very efficient in fixing atmospheric N{sub 2} symbiotically, common bean does not dispense with the need for N fertilizer application, as the biologically fixed N (BNF) seems incapable to supplement the total N required by the crop. A experiment under controlled conditions was conducted in Piracicaba, Brazil, to assess N{sub 2} fixation of 25 genotypes of common bean (Phaseolus vulgaris L.). BNF was measured by {sup 15}N isotope dilution using a non-N{sub 2} fixing bean genotype as a reference crop. The common bean genotypes were grown in low (2.2 mg N kg{sup -1} soil) or high N content soil (200 mg N kg{sup -1} soil), through N fertilizer application, as urea-{sup 15}N (31.20 and 1.4 atom % {sup 15}N, respectively). The bean seeds were inoculated with Rhizobium tropici CIAT 899 strain and the plants were harvested at grain maturity stage. The contribution of BNF was on average 75% of total plant N content, and there were differences in N fixing capacity among the bean genotypes. The most efficient genotypes were Horizonte, Roxo 90, Grafite, Apore and Vereda, when grown in high N soil. None of the genotypes grown in low N soil was efficient in producing grains compared to those grown in high N soil, and therefore the BNF was not able to supply the total N demand of the bean crop. (author)

  10. Detection of free radicals by radical trapping and 15N NMR spectroscopy in copolymerization of methyl acrylate and styrene

    NARCIS (Netherlands)

    Kelemen, P.; Klumperman, B.

    2003-01-01

    The macroradicals taking part in the copolymn. of Me acrylate and styrene were trapped by reaction with a 15N labeled stable nitroxyl radical at 70 DegC. The nitroxyl radical is formed in situ from a thermally instable alkoxyamine precursor. 15N NMR spectroscopy is applied to detect the trapping

  11. Can δ(15)N in lettuce tissues reveal the use of synthetic nitrogen fertiliser in organic production?

    Science.gov (United States)

    Sturm, Martina; Kacjan-Maršić, Nina; Lojen, Sonja

    2011-01-30

    The nitrogen isotopic fingerprint (δ(15)N) is reported to be a promising indicator for differentiating between organically and conventionally grown vegetables. However, the effect on plant δ(15)N of split nitrogen fertilisation, which could enable farmers to cover up the use of synthetic fertiliser, is not well studied. In this study the use of δ(15)N in lettuce as a potential marker for identifying the use of synthetic nitrogen fertiliser was tested on pot-grown lettuce (Lactuca sativa L.) treated with synthetic and organic nitrogen fertilisers (single or split application). The effect of combined usage of synthetic and organic fertilisers on δ(15)N was also investigated. The δ(15)N values of whole plants treated with different fertilisers differed significantly when the fertiliser was applied in a single treatment. However, additional fertilisation (with isotopically the same or different fertiliser) did not cause a significant alteration of plant δ(15)N. The findings of the study suggest that the δ(15)N value of lettuce tissues could be used as a rough marker to reveal the history of nitrogen fertilisation, but only in the case of single fertiliser application. However, if the difference in δ(15)N between the applied synthetic and organic nitrogen fertilisers was > 9.1 ‰, the detection of split and combined usage of the fertilisers would have greater discriminatory power. 2010 Society of Chemical Industry.

  12. High-yield nitration of benzene in the synthesis of sup 15 N-labelled nitrobenzene, acetanilide, and diphenylamine

    Energy Technology Data Exchange (ETDEWEB)

    Konior, R.J.; Ling Yang; Walter, R.I. (Illinois Univ., Chicago, IL (USA). Dept. of Chemistry)

    1990-11-01

    Labelled H{sup 15}NO{sub 3} was used as the least-cost source of nitrogen label to prepare nitrobenzene by reaction of acetyl nitrate with excess benzene. This labelled product was subsequently converted to acetanilide-{sup 15}N and diphenylamine-{sup 15}N. (author).

  13. High-yield nitration of benzene in the synthesis of 15N-labelled nitrobenzene, acetanilide, and diphenylamine

    International Nuclear Information System (INIS)

    Konior, R.J.; Ling Yang; Walter, R.I.

    1990-01-01

    Labelled H 15 NO 3 was used as the least-cost source of nitrogen label to prepare nitrobenzene by reaction of acetyl nitrate with excess benzene. This labelled product was subsequently converted to acetanilide- 15 N and diphenylamine- 15 N. (author)

  14. Natural abundance of 15N in barley as influenced by prior cropping or fallow, nitrogen fertilizer and tillage

    International Nuclear Information System (INIS)

    Doughton, J.A.; Saffigna, P.G.; Vallis, I.

    1991-01-01

    The 15 N abundance of nitrogen was measured in barley grown with 0,50 and 100 kg/ha of applied nitrogen after pretreatments of either fallow or grain sorghum, where sorghum stubble was either incorporated, removed or retained on the soil surface (zero-till). Barley 15 N abundance was assumed to reflect that of assimilated soil mineral nitrogen. 15 N enrichment was assumed to be mostly the result of isotope fractionation between 14 N and 15 N during denitrification of the large excess of NO 3 -N present prior to and during the experiment. Nitrogen fertilizer additions caused 15 N depletion of nitrogen in barley. However, where fertilizer additions resulted in excess availability of NO 3 -N, subsequent denitrification and 15 N enrichment of this NO 3 -N levels partially counterbalanced the 15 N depleting effect of fertilizer additions. Where soil NO 3 -N levels were low ( 3 -N/ha) following sorghum there were no differences in 15 N abundance of nitrogen in barley between tillage treatments. With additions of nitrogen fertilizer and the availability of excess NO 3 -N for denitrification, differences between tillage treatments occurred with some being significant. 27 refs., 6 tabs

  15. Effect of estrogens on urinary /sup 15/N balance in girls

    Energy Technology Data Exchange (ETDEWEB)

    Zachmann, M.; Kempken, B.; Prader, A. (Zurich Univ. (Switzerland))

    1984-08-01

    While the anabolic and growth-promoting effects of testosterone are known to be important for pubertal growth in boys, the role of estrogens (E) in the female spurt is less certain. Adrenal androgens have been considered to be more important than ovarian E. To study the anabolic effects of E, there has been carried out a pilot study in 9 girls aged 11 to 15 years. Before and 6 days after the start of E treatment, urinary /sup 15/N balance studies were performed, using /sup 15/NH/sub 4/Cl.

  16. Determination of 15N nitrates in water samples using mass spectrometry

    International Nuclear Information System (INIS)

    Moya, P.; Aguirre, E.; Gallardo, P.

    2000-01-01

    The nitrogen element (Z = 7) has two stable isotopes, whose relative quantities are 99.64% for 14 N and 0.36% for 15 N. Nitrogen is part of many processes and reactions that are important to life and that affect the quality of the water. Within the nitrogen cycle there are kinetic and thermodynamic fractionation processes, which are potentially important for tracing its sources and demands. Water contamination due to nitrates is a serious problem that is affecting large parts of the biosphere. Surface water contamination can be remedied by prevention and control measures, but the problem becomes acute when the contamination penetrates to groundwater water. Contaminated groundwater can remain in the aquifers for centuries, even milleniums, and decontamination is very difficult, if not impossible. Isotopic techniques can help to evaluate how vulnerable the groundwater is to contamination from the surface when its displacement speed and extra load area are determined. Then the sources of surface contamination (natural, industrial, agricultural, domestic) can be identified. Isotopic techniques can also describe an incipient contamination, and they can provide an early alert when chemical or biological indicators do not reveal any signs for concern. The isotopic fractionation of several nitrogen compounds provide the basis for using 15 N as a hydrological isotope tool. There are three main sources of nitrogen contamination in water, these are: organic nitrogen in the soil, nitrogenized fertilizers, domestic, industrial and animal wastes. The following technical procedure describes the method for determining the isotopic ration 15 N/ 14 N in nitrates in water. The nitrate is separated from the water using ion exchange columns through a resin, which is eluded with HCI and with the addition of silver oxide becomes silver nitrate. This solution is freeze-dried and submitted to combustion at 850 in a sealed quartz tube, using copper/copper oxide for the nitrogen reduction

  17. Partial wave analysis of the 18O(p,α0)15N reaction

    International Nuclear Information System (INIS)

    Wild, L.W.J.; Spicer, B.M.

    1979-01-01

    A partial wave analysis of the differential cross sections for the 18 O(p,α 0 ) 15 N reaction has been carried out applying the formalism of Blatt and Biedenharn (1952), made specific for this reaction. The differential cross sections, measured at 200 keV intervals from 6.6 to 10.4 MeV bombarding energy, were subjected to least-squares fitting to this specific analytic expression. Two resonances were given by the analysis, the 19 F states being at 14.71+-0.07 MeV (1/2 - ) and 14.80 + 0.07 MeV (1/2) +

  18. Using 15N in studies on the uptake of mineral and organic nitrogen by plants

    International Nuclear Information System (INIS)

    Mitovska, R.

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen ( 15 N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N

  19. Using /sup 15/N in studies on the uptake of mineral and organic nitrogen by plants

    Energy Technology Data Exchange (ETDEWEB)

    Mitovska, R. (Akademiya na Selskostopanskite Nauki, Sofia (Bulgaria). Inst. po Pochvoznanie)

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen (/sup 15/N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N.

  20. Determination of the δ15N of nitrate in solids; RSIL lab code 2894

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2894 is to determine the δ15N of nitrate (NO3-) in solids. The nitrate fraction of the nitrogen species is dissolved by water (called leaching) and can be analyzed by the bacterial method covered in RSIL lab code 2899. After leaching, the δ15N of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of NO3- to N2O, which follows the pathway shown in equation 1: NO3- → NO2- → NO → 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before δ15N values are reported.

  1. Determination of the δ15N of nitrate in water; RSIL lab code 2899

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2899 is to determine the δ15N of nitrate (NO3-) in water. The δ15N of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of the NO3- to N2O, which follows the pathway shown in equation 1: NO3- → NO2- → NO → 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before δ15N values are reported.

  2. Interferometric imaging of Titan's HC$_3$N, H$^{13}$CCCN and HCCC$^{15}$N

    OpenAIRE

    Cordiner, M. A.; Nixon, C. A.; Charnley, S. B.; Teanby, N. A.; Molter, E. M.; Kisiel, Z.; Vuitton, V.

    2018-01-01

    We present the first maps of cyanoacetylene isotopologues in Titan's atmosphere, including H$^{13}$CCCN and HCCC$^{15}$N, detected in the 0.9 mm band using the Atacama Large Millimeter/submillimeter array (ALMA) around the time of Titan's (southern winter) solstice in May 2017. The first high-resolution map of HC$_3$N in its $v_7=1$ vibrationally excited state is also presented, revealing a unique snapshot of the global HC$_3$N distribution, free from the strong optical depth effects that adv...

  3. Analysis of the backbone dynamics of capsicein using 15N NMR relaxation rate measurements

    International Nuclear Information System (INIS)

    Van Heijenoort, C.; Bouaziz, S.; Guittet, E.

    1994-01-01

    15 N relaxation times T 1 and T 1ρ , and heteronuclear steady state nOes, were measured on capsicein, a 98 residue protein. The classical analysis of these data using directly the Lipari and Szabo formalism was shown to give incoherent results, probably due to the presence of a slow exchange along the whole protein. This global exchange broadening made the usual preliminary evaluation of the overall correlation time of capsicein using the Lipari and Szabo expression for the spectral densities impossible. (authors). 2 figs., 23 refs

  4. Vibrational spectra of cholorophylls a and b labeled with 26Mg and 15N

    International Nuclear Information System (INIS)

    Lutz, M.; Kleo, J.; Gilet, R.; Henry, M.; Plus, R.; Leicknam, J.P.

    1975-01-01

    Chlorophyll molecules having their central natural magnesium replaced by 26 Mg and their natural nitrogens by 15 N were obtained by biosynthesis and examined by infrared and resonance Raman spectrometry. These observations provide unequivocal assignments of the molecular vibrational frequencies which involve the magnesium and nitrogen atoms. In particular, in both infrared and resonance Raman spectra, the absence of displacements in bands of frequency higher than 1550 cm -1 indicated the insignificant contributions of C=N stretching modes, which have maximum activity in the 1050 to 1180 cm -1 region. These results also indicate a configuration of chlorophyll in which the magnesium atom is not at a center of symmetry

  5. Feasibility analysis of organic Tea authentication using 15N natural abundance method

    International Nuclear Information System (INIS)

    Feng Haiqiang; Pan Zhiqiang; Yu Cuiping; Wang Xiaochang

    2011-01-01

    Organic agricultural products were always adulterated by pollutant-free agricultural products in market because of lacking of available authentication technique. Organic tea was one of the largest organic agricultural products in China which are facing the same problem and can not be accepted by consumers. In this paper, based on the newest information of δ 15 N from soil-plant-fertilizer system, a new method was suggested to identify whether N fertilizer was applied to organic tea in producing processing. Meanwhile, the principle of this new method and its feasibility were discussed. (authors)

  6. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    Science.gov (United States)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (δ15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in δ15N variability. Simultaneous determinations of δ15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of δ15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae δ15N in monitoring nitrogen origin in mixed-use watersheds. In this study, δ15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to δ15N-DIN along the Charente Estuary, after characterizing δ15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct δ15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct δN- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of δN-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine δN-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae δ15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in δN-NO are low, the same temporal trends in macroalgae δ15N values at estuarine and oceanic sites, and inter-species differences in δ15N values, suggest that macroalgae δ15N values might be modified by the metabolic response of macroalgae to environmental parameters (e

  7. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    Science.gov (United States)

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  8. Life and death of a sewage treatment plant recorded in a coral skeleton δ15N record.

    Science.gov (United States)

    Duprey, Nicolas N; Wang, Xingchen T; Thompson, Philip D; Pleadwell, Jeffrey E; Raymundo, Laurie J; Kim, Kiho; Sigman, Daniel M; Baker, David M

    2017-07-15

    We investigated the potential of coral skeleton δ 15 N (CS-δ 15 N) records for tracking anthropogenic-N sources in coral reef ecosystems. We produced a 56yr-long CS-δ 15 N record (1958-2014) from a reef flat in Guam that has been exposed to varying 1) levels of sewage treatment 2) population density, and 3) land use. Increasing population density (from sewage treatment plant (STP) started operation in 1975. Then, CS-δ 15 N stabilized, despite continued population density and land use changes. Based on population and other considerations, a continued increase in the sewage footprint might have been expected over this time. The stability of CS-δ 15 N, either contradicts this expectation, or indicates that the impacts on the outer reef at the coring site were buffered by the mixing of reef water with the open ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biosynthetic preparation of L-[13C]- and [15N]glutamate by Brevibacterium flavum

    International Nuclear Information System (INIS)

    Walker, T.E.; London, R.E.

    1987-01-01

    The biosynthesis of isotopically labeled L-glutamic acid by the microorganism Brevibacterium flavum was studied with a variety of carbon-13-enriched precursors. The purpose of this study was twofold: (i) to develop techniques for the efficient preparation of labeled L-glutamate with a variety of useful labeling patterns which can be used for other metabolic studies, and (ii) to better understand the metabolic events leading to label scrambling in these strains. B. flavum, which is used commercially for the production of monosodium glutamate, has the capability of utilizing glucose or acetate as a sole carbon source, and important criterion from the standpoint of developing labeling strategies. Unfortunately, singly labeled glucose precursors lead to excessive isotopic dilution which reduces their usefulness. Studies with [3- 13 C]pyruvate indicate that this problem can in principle be overcome by using labeled three-carbon precursors; however, conditions could not be found which would lead to an acceptable yield of isotopically labeled L-glutamate. In contrast, [1- 13 C]- or [2- 13 C]acetate provides relatively inexpensive, readily available precursors for the production of selectively labeled, high enriched L-glutamate. The preparation of L-[ 15 N]glutamate from [ 15 N]ammonium sulfate was carried out and is a very effective labeling strategy. Analysis of the isotopic distribution in labeled glutamate provides details about the metabolic pathways in these interesting organisms

  10. Transformation of {sup 15}N-Labelled Ammonium during Aerobic Decomposition of Plant Material

    Energy Technology Data Exchange (ETDEWEB)

    Danneberg, O. H.; Haunold, E.; Kaindl, K. [Institute for Biology and Agriculture. Reactor Centre, Seibersdorf (Austria)

    1968-07-01

    Plant material from maize leaves with the addition of {sup 15}N-labelled (NH{sub 4}){sub 2}SO{sub 4} was composted for periods of 10 to 180 d. The nitrogen of the decomposing samples was fractionated and the {sup 15}N enrichment in the fractions was determined by mass spectrometry. The added {sup 15}NH{sub 4}{sup +} was incorporated into organic compounds mainly during the first 10 d. The largest amount was found in the 'protein' fraction. The total nitrogen of this fraction increased up to 30 d, thus showing a marked synthesis of microbial protein. It decreased afterwards, when the microbial substances themselves were decomposed. Apart from this there was a marked synthesis of humic substances, especially in the first 10 d as indicated by an increase of the acid-insoluble ''humin'' fraction. A rather small amount of labelled ammonium was incorporated into this fraction within this time and this amount remained constant during the whole experiment. Because of the greater decay resistance the ''humin'' fraction was enriched towards the end of the experiment. (author)

  11. Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes

    International Nuclear Information System (INIS)

    Myint Wazo; Cai Yufeng; Schiffer, Celia A.; Ishima, Rieko

    2012-01-01

    Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R 2 , is needed for accurate characterization of dynamics, the uncertainty in the R 2 value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase alternation on the accuracy of the 15 N CPMG R 2 . Our simulations show that R 2 can be obtained accurately for a relatively wide spectral width, either using the conventional phase cycle or using phase alternation when the r.f. pulse power is accurately calibrated. However, when the r.f. pulse is miscalibrated, the conventional CPMG experiment exhibits more significant uncertainties in R 2 caused by the off-resonance effect than does the phase alternation experiment. Our experiments show that this effect becomes manifest under the circumstance that the systematic error exceeds that arising from experimental noise. Furthermore, our results provide the means to estimate practical parameter settings that yield accurate values of 15 N transverse relaxation rates in the both CPMG experiments.

  12. Studies on nitrogen use efficiency in turmeric using 15N tagged urea

    International Nuclear Information System (INIS)

    Jagadeeswaran, R.; Arulmozhiselvan, K.; Govindaswamy, M.; Murugappan, V.

    2004-01-01

    A greenhouse experiment was conducted with turmeric in order to understand the partitioning of N between shoot and rhizome and to study the N use efficiency using 15 N tagged urea. The experiment was conducted in a completely randomized block design with seven treatments consisting of whole N application as basal and split applications ranging from two to six, besides a control. The result indicated that N derived from 15 N urea (Ndff) increased with number of split application of N up to four splits in turmeric shoot and up to three splits in turmeric rhizome, both at 180 days as well as at harvest stage. Increasing the splits beyond this declined Ndff, which indicated that five and more number of splits of N would not help to increase the uptake of applied N. Thus, the present study clearly revealed that in turmeric, application of N in three splits would be optimal in increasing the Ndff in rhizome. Fertilizer N balance calculations clearly indicated that the recovery of N in turmeric was high in favour of four splits at 180 days growth stage (19.46 per cent) as well as at harvest (30.76 per cent). (author)

  13. Use of Bio-Organic Fertilizers to Develop N Uptake Using 15N Technique

    International Nuclear Information System (INIS)

    Galal, Y.G.M.

    2008-01-01

    Experimental work either in field scale or in green house conditions were conducted using 15 N technique to evaluate the role of different bio fertilizers and different plant residues as organic amendments on enhancement of plant N nutrition. Nitrogen fixation by a symbiotic bacteria has been observed in greenhouse and field experiments under dry land cropping systems. Biological N 2 fixation associated with crop residues (legumes or cereals) was investigated in pot experiments with wheat and chickpea cultivars. In these experiments, labelled wheat and rice straw were used as organic N sources in comparison with either 15 N-labelled ammonium sulfate or ammonium nitrate as chemical nitrogen fertilizers. Rhizobium inoculation extended to be used with wheat gave the best results of N uptake and N 2 fixation when combined with Azospirillum brasilense as heterotrophic diazotrophs. The nitrogen uptake by wheat plants was significantly increased by application of soybean residues and inoculation with Azospirillum brasilense. From the field trial we can conclude that soybean residue as enriched N material, and Azospirillum brasilense inoculation enhanced N yields of wheat cultivars grown in poor fertile sandy soil

  14. Growth, development, and fertilizer-15N recovery by the coffee plant

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos; Dourado-Neto, Durval; Favarin, Jose Laercio; Trivelim, Paulo Cesar Ocheuze; Costa, Flavio Murilo Pereira da

    2007-01-01

    The relationship between growth and fertilizer nitrogen recovery by perennial crops such as coffee is poorly understood and improved understanding of such relations is important for the establishment of rational crop management practices. In order to characterize the growth of a typical coffee crop in Brazil and quantify the recovery of 15 N labeled ammonium sulfate, and improve information for fertilizer management practices this study presents results for two consecutive cropping years, fertilized with 280 and 350 kg ha -1 of N, respectively, applied in four splittings, using five replicates. Shoot dry matter accumulation was evaluated every 60 days, separating plants into branches, leaves and fruits. Labeled sub-plots were used to evaluate N-total and 15 N abundance by mass spectrometry. During the first year the aerial part reached a recovery of 71% of the fertilizer N applied up to February, but this value was reduced to 34% at harvest and 19% at the beginning of the next flowering period due to leaf fall and fruit export. For the second year the aerial part absorbed 36% of the fertilizer N up to March, 47% up to harvest and 19% up to the beginning of the next flowering period. The splitting into four applications of the used fertilizer rates was adequate for the requirements of the crop at these growth stages of the coffee crop. (author)

  15. Distribution of spin dipole transition strength in the 15N(n,p)15C reaction

    International Nuclear Information System (INIS)

    Cellar, A.; Alford, W.P.; Helmer, R.; Abegg, R.; Frekers, D.; Haeusser, O.; Henderson, R.S.; Jackson, K.P.; Vetterli, M.; Yen, S.; Jeppesen, R.; Larson, B.; Mildenberger, J.; Pointon, B.W.; Trudel, A.

    1990-08-01

    The reaction 15 N(n,p) 15 C was studied at a neutron energy of 288 MeV using the TRIUMF (n,p) charge exchange facility and a high pressure gas target. The angular distributions for spin dipole (ΔL=1) transitions to the states in 15 C at energies 0 MeV and 0.740 MeV, as well as for higher excitation energies, were measured and the results were compared with DWIA calculations. The measured distribution of the spin dipole strength agrees well with shell model predictions, indicating that a rather simple model provides a satisfactory description of the 15 N ground state, and of positive parity states in 15 C up to about 18 MeV excitation. The magnitude of the peak cross sections (at ≅ 7 degrees) is described well by the calculations when the theoretical cross section is renormalized by a factor 0.7. The calculated cross sections near zero degrees are generally smaller than experimental data. It this is a general feature of ΔL=1 transitions, it suggests that estimates of GT strength based on a multipole decomposition of measured cross sections may be too high. (Author) (41 refs., 3 tabs., 14 figs.)

  16. Fate of 15N applied as ammonium sulphate to a bean crop

    International Nuclear Information System (INIS)

    Cervellini, A.; Ruschel, A.P.; Matsui, E.

    1980-01-01

    An instrumented 10 X 10-m site was used to study the fate of 15 N-labelled ammonium sulphate (3.289 atom 15 N % excess) applied at the rate of 100 kg N.ha -1 with P and K supplements. Data were collected for the year January through December, 1977. The first bean crop (Phaseolus vulgaris, L) was planted in March, followed by the fertilizer, and harvested three months later. The plot was left fallow for three months when a second bean crop was planted without further fertilizer. The data indicated that the total drainage (22 cm) represented approximately 16% of the total water input (precipitation plus irrigation). It was estimated that nitrate leaching below the 120-cm depth was equivalent to approximately 16 kg N.ha -1 of which less than 10% was derived from the labelled fertilizer. The low recovery of labelled fertilizer (30%) by the first total harvest of straw and grain, and the less than 2.5% further recovery of initial labelled fertilizer by the second crop, suggest high immobilization by the soil-plant residue system. (author)

  17. Dinitrogen fixation estimates in Vetch-barley swards using {sup 15} N-methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Sharabi, N E [Atomic Energy Commission, P.O.Box 6091, Damascus, (Syrian Arab Republic)

    1995-10-01

    N 2- fixation in vetch (Vicia Sativa) grown alone and in mixture with barley (hordeum vulgare) in pots was evaluated using {sup 15} N isotope dilution method. Two harvests were made over the growing season. The proportion of the above-ground N, derived from atmospheric N 2 (% Ndfa) in mixed vetch was significantly higher than that of vetch in pure culture for the different harvests. However, this increase was not accompanied with the amount of N 2-fixation. On the other hand, no significant differences were observed in N-content or in N-derived from soil between barley grown in mixture and in monoculture, in spite of the difference in the number of plants between the tow cropping systems. These results indicate a high competing capacity of barley for soil nitrogen in mixed culture. Barley grown together with vetch had lower atom % 15 N excess than barley grown in mono-culture because it may have received some of their N from N-released by the legume in the second herbage but not in the first. Overall, results obtained from this experiment indicate the importance of mixed crops for forage production. Based on these results, further investigation must carried out in the field. 1 fig.

  18. Nitrogen Dynamic Study on Rice Mutant Lines Using 15N Isotope Techniques

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Malaysian Nuclear Agency in collaboration with UPM and MARDI has produced two types of rice mutant lines of MR219, viz. MR219-4 and MR219-9 developed under rice radiation mutagenenesis programme for adaptability to aerobic conditions. Aerobic cultivating is rice cultivation system on well drained soil and using minimal water input. At Malaysian Nuclear Agency, a nitrogen fertilization study in aerobic condition for the rice mutant lines was carried out in the shade house and field. The study is intended to examine and assess the dynamics of nitrogen by rice mutant lines through the different soil water management and nitrogen levels. Direct 15 N isotopic tracer method was used in this study, whereby the 15 N labeled urea fertilizer was utilized as a tracer for nitrogen nutrient uptake by the test crops. This paper is intended to highlight the progress that has been made in the study of the nitrogen dynamics on MR219-4 and MR219-9 rice mutant lines. (author)

  19. Biological nitrogen fixation in Crotalaria species estimated using the 15N isotope dilution method

    International Nuclear Information System (INIS)

    Samba, R.T.; Neyra, M.; Gueye, M.; Sylla, S.N.; Ndoye, I.; Dreyfus, B.

    2002-01-01

    Growing in Senegal by using 15 N direct isotope dilution technique. Two non-fixing plants, Senna obtusifolia and Senna occidentalis served as reference plants. The amount of nitrogen fixed two months after planting was obtained using the average of the two reference plants. The atom % 15 N excess in the Crotalaria species was significantly lower than that of the reference plants, indicating that significant nitrogen fixation occurred in the three plants. Significant differences were observed between the Crotalaria species; C. ochroleuca yielded more dry matter weight and total nitrogen than did C. perrottetti and C. retusa. The % nitrogen derived from atmosphere (%Ndfa) in leaves and stems was also higher in C. ochroleuca. There was no significant difference in %Ndfa in the whole plant between the three Crotalaria species (47% to 53%). In contrast, interspecific variability was observed based on the %Ndfa. C. ochroleuca significantly exhibited the higher amount of total nitrogen fixed, equivalent to 83 kg of nitrogen fixed per hectare. Based on these data, it was concluded that C. ochroleuca could be used in multiple cropping systems in Senegal for making more nitrogen available to other plants. (author)

  20. Fate of 15N-labelled urea fertilizer under conditions of tropical flooded-rice culture

    International Nuclear Information System (INIS)

    Krishnappa, A.M.; Shinde, J.E.

    1980-01-01

    The fate of an initial pulse of 15 N urea (at the rate of 100 kg N.ha -1 ) was followed under conditions of tropical flooded-rice culture over a sequence of three crops and two intercrop fallows. The total crop recovery accounted for 24.3% of the added fertilizer nitrogen. Ammonia volatilization and leaching losses amounted to 9.7% and 7.5%, respectively. The major losses of the fertilizer nitrogen occurred during the crop season immediately following its application. At the end of the experiment, 26.5% of the fertilizer nitrogen was recovered in the root zone in the Kjeldahl fraction and 0.9% as clay-fixed, non-exchangeable ammonium-N. Total recovery thus amounted to about 69%. The maximum contribution of the 15 N pulse to the NO 3 -N content of the groundwater (about 2%) occurred in the first crop season. It had declined below 0.2% by the third crop season. Throughout the experimental period the total NO 3 -N concentration of the groundwater never exceeded 3.2 ppm. (author)

  1. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W. [Ohio State Univ., Columbus, OH (United States)

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  2. 15N isotopic techniques to study nitrogen cycle in soil-plant-atmosphere system

    International Nuclear Information System (INIS)

    Kumar, Manoj; Chandrakala, J.U.; Sachdev, M.S.; Sachdev, P.

    2009-01-01

    Intensification of agriculture to meet the increasing food demand has caused severe disruption in natural balance of global as well as regional nitrogen cycle, potentially threatening the future sustainability of agriculture and environment of the total fertilizer nitrogen used in agriculture globally, only less than half is recovered by crop plants, rest is lost to the environment, resulting in several environmental problems such as ground water pollution and global warming, besides huge economic loss of this costly input in agriculture. Improving fertilizer nitrogen use efficiency and minimising N loss to the environment is the key to regain the lost control of nitrogen cycle in agriculture. Fertilizer nitrogen use efficiency depends largely on N requirement of crops, N supply from soil and fertilizer through N transformations in soil, and N losses from the soil-water-plant system. 15 N isotopic techniques have the potential to provide accurate measurement quantification of different processes involved in N cycle such as fixation of atmospheric N 2 , transformations- mineralization and immobilization- of soil and fertilizer N which governs N supply to plants, and N losses to the environment through ammonia volatilization, denitrification and nitrate leaching. 15 N tracers can also give precise identification of ways and sources of N loss from agriculture. These information can be used to develop strategies for increasing fertilizer N use efficiency and minimizing the loss of this costly input from agriculture to environment, which in turn will help to achieve the tripartite goal of food security, agricultural profitability and environmental quality. (author)

  3. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C (15)N HSQC-IMPEACH and (13)C (15)N HMBC-IMPEACH correlation spectra.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. (c) 2007 John Wiley & Sons, Ltd.

  4. Combined solid state and solution NMR studies of {alpha},{epsilon}-{sup 15}N labeled bovine rhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Karla; Lehner, Ines [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Dhiman, Harpreet Kaur [University of Pittsburgh School of Medicine, Department of Structural Biology (United States); Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de; Klein-Seetharaman, Judith [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Khorana, H. Gobind [Massachusetts Institute of Technology, Departments of Biology and Chemistry (United States)], E-mail: khorana@mit.edu

    2007-04-15

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of {alpha},{epsilon}-{sup 15}N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state {sup 13}C,{sup 15}N-REDOR and HETCOR experiments of all possible {sup 13}C'{sub i-1} carbonyl/{sup 15}N{sub i}-tryptophan isotope labeled amide pairs, and H/D exchange {sup 1}H,{sup 15}N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone {sup 15}N nuclei and partially to their bound protons. {sup 1}H,{sup 15}N chemical shift assignment was achieved for indole side chains of Trp35{sup 1.30} and Trp175{sup 4.65}. {sup 15}N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175{sup 4.65} at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin.

  5. Homogeneity of δ15N in needles of Masson pine (Pinus massoniana L.) was altered by air pollution

    International Nuclear Information System (INIS)

    Kuang Yuanwen; Wen Dazhi; Li Jiong; Sun Fangfang; Hou Enqing; Zhou Guoyi; Zhang Deqiang; Huang Longbin

    2010-01-01

    The present study investigated the changes of δ 15 N values in the tip, middle and base section (divided by the proportion to needle length) of current- and previous-year needles of Masson pine (Pinus massoniana L.) from two declining forest stands suffering from air pollution, in comparison with one healthy stand. At the healthy stand, δ 15 N in the three sections of both current- and previous-year needles were found evenly distributed, while at the polluted stands, δ 15 N values in the needles were revealed significantly different from the tip to the base sections. The results implied that the distribution of δ 15 N among different parts or sections in foliages was not always homogeneous and could be affected by air pollution. We suggested that the difference of δ 15 N values among pine needle sections should be reconsidered and should not be primarily ignored when the needle δ 15 N values were used to assess plant responses to air pollution. - Values of δ 15 N in needles of Masson pine (Pinus massoniana L.) were uneven and affected by air pollution.

  6. Single Transition-to-single Transition Polarization Transfer (ST2-PT) in [15N,1H]-TROSY

    International Nuclear Information System (INIS)

    Pervushin, Konstantin V.; Wider, Gerhard; Wuethrich, Kurt

    1998-01-01

    This paper describes the use of single transition-to-single transition polarization transfer (ST2-PT) in transverse relaxation-optimized spectroscopy (TROSY), where it affords a √2 sensitivity enhancement for kinetically stable amide 15N-1H groups in proteins. Additional, conventional improvements of [15N,1H]-TROSY include that signal loss for kinetically labile 15N-1H groups due to saturation transfer from the solvent water is suppressed with the 'water flip back' technique and that the number of phase steps is reduced to two, which is attractive for the use of [15N,1H]-TROSY as an element in more complex NMR schemes. Finally, we show that the impact of the inclusion of the 15N steady-state magnetization (Pervushin et al., 1998) on the signal-to-noise ratio achieved with [15N,1H]-TROSY exceeds by up to two-fold the gain expected from the gyromagnetic ratios of 1H and 15N

  7. The degree of urbanization across the globe is not reflected in the δ(15)N of seagrass leaves.

    Science.gov (United States)

    Christiaen, Bart; Bernard, Rebecca J; Mortazavi, Behzad; Cebrian, Just; Ortmann, Alice C

    2014-06-30

    Many studies show that seagrass δ(15)N ratios increase with the amount of urbanization in coastal watersheds. However, there is little information on the relationship between urbanization and seagrass δ(15)N ratios on a global scale. We performed a meta-analysis on seagrass samples from 79 independent locations to test if seagrass δ(15)N ratios correlate with patterns of population density and fertilizer use within a radius of 10-200 km around the sample locations. Our results show that seagrass δ(15)N ratios are more influenced by intergeneric and latitudinal differences than the degree of urbanization or the amount of fertilizer used in nearby watersheds. The positive correlation between seagrass δ(15)N ratios and latitude hints at an underlying pattern in discrimination or a latitudinal gradient in the (15)N isotopic signature of nitrogen assimilated by the plants. The actual mechanisms responsible for the correlation between δ(15)N and latitude remain unknown. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. {sup 15}N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose; Rossi, Fabricio, E-mail: ambrosano@apta.sp.gov.b [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicapa, SP (Brazil). Polo Rigional Centro Sul; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Cantarella, Heitor [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Instituto Agronomico de Campinas. Centro de Solos e Recursos Agroambientais; Ambrosano, Glaucia Maria Bovi [Universidade de Campinas (UNICAMP/FOP), Piracicaba, SP (Brazil). Fac. de Odontologia de Piracicaba. Dept. de Odontologia Social, Bioestatistica; Schammass, Eliana Aparecida [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IZ), Nova Odessa, SP (Brazil). Instituto de Zootecnia; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fertilidade do solo

    2011-05-15

    Legumes as green manure are alternative sources of nitrogen (N) for crops and can supplement or even replace mineral nitrogen fertilization due to their potential for biological nitrogen fixation (BNF). The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulfate (AS) was evaluated using the {sup 15}N tracer technique. N was added at the rate of 196 and 70 kg ha{sup -1} as {sup 15}N-labeled sunn hemp green manure (SH) and as ammonium sulfate (AS), respectively. Treatments were: (I) Control; (II) AS{sup 15}N; (III) SH{sup 15}N + AS; (IV) SH{sup 15}N; and (V) AS{sup 15}N + SH. Sugarcane was cultivated for five years and was harvested three times. {sup 15}N recovery was evaluated in the two first harvests. In the sum of the three harvests, the highest stalk yields were obtained with a combination of green manure and inorganic N fertilizer; however, in the second cutting the yields were higher where SH was used than in plots with AS. The recovery of N by the first two consecutive harvests accounted for 19 to 21% of the N applied as leguminous green manure and 46 to 49% of the N applied as AS. The amounts of inorganic N, derived from both N sources, present in the 0-0.4 m layer of soil in the first season after N application and were below 1 kg ha{sup -1}. (author)

  9. {delta}{sup 15}N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M.; Kayanne, H.; Yamano, H

    2003-04-01

    In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;{>=}1.0 {mu}M) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and {delta}{sup 15}N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical {delta}{sup 15}N values were found in seagrass leaves of several species at each site. The correlations between {delta}{sup 15}N and nutrient concentrations and between {delta}{sup 15}N and molar ratios of nutrients suggested that nutrient availability did not affect the {delta}{sup 15}N value of seagrass leaves by altering the physiological condition of the plants. Increases in {delta}{sup 15}N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that {delta}{sup 15}N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water.

  10. Relationships between depth and δ15N of Arctic benthos vary among regions and trophic functional groups

    Science.gov (United States)

    Stasko, Ashley D.; Bluhm, Bodil A.; Reist, James D.; Swanson, Heidi; Power, Michael

    2018-05-01

    Stable isotope ratios of nitrogen (δ15N) of benthic primary consumers are often significantly related to water depth. This relationship is commonly attributed to preferential uptake of 14N from sinking particulate organic matter (POM) by microbes, and suggests that relationships between δ15N and water depth may be affected by local POM sources and flux dynamics. We examined the relationships between δ15N and water depth (20-500 m) for six trophic functional groups using a mixed effects modelling approach, and compared relationships between two contiguous Arctic marine ecosystems with different POM sources and sinking export dynamics: the Canadian Beaufort Sea and Amundsen Gulf. We demonstrate for the first time in the Arctic that δ15N values of mobile epifaunal carnivores increased as a function of depth when considered separately from benthopelagic and infaunal carnivores, which contrarily did not exhibit increasing δ15N with depth. The δ15N of suspension/filter feeders, infaunal deposit feeders and bulk sediment also increased with water depth, and the slopes of the relationships were steeper in the Amundsen Gulf than in the Beaufort Sea. We propose that regional differences in slopes reflect differences in POM sources exported to the benthos. In the Beaufort Sea, terrestrial POM discharged from the Mackenzie River quantitatively dominates the sedimentary organic matter across the continental shelf and slope, dampening change in δ15N of benthic POM with depth. In the Amundsen Gulf, we attribute a faster rate of change in δ15N of POM with increasing depth to larger contributions of marine-derived POM to the benthic sedimentary pool, which had likely undergone extensive biological transformation in the productive offshore pelagic zone. Differences in POM input regimes among regions should be considered when comparing food webs using stable isotopes, as such differences may impact the rate at which consumer δ15N changes with depth.

  11. Paleoenvironmental implications of taxonomic variation among δ15N values of chloropigments

    Science.gov (United States)

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mark A.; Pearson, Ann

    2011-01-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass – and by extension, surface waters – the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3−, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7–8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed

  12. Distribution of 15N fertilizer in field-lysimeters sown with garlic (Allium sativum) and foxtail millet (Setaria italica)

    International Nuclear Information System (INIS)

    Lazzari, M.A.

    1982-01-01

    We examined the distribution of residual 15 N and its uptake by a foxtail millet crop grown in field lysimeters following a previous garlic crop fertilized with either 15 N-urea or 15 N-ammonium sulphate. Garlic apparently removed more N from the lysimeters treated with urea-N than from those treated with (NH 4 ) 2 SO 4 . Fertilizer-N in the lysimeters was similar (ca. 32% of original) following millet harvest. About 16 per cent of both fertilizers in the lysimeters was removed by the millet. (orig.)

  13. Methods of clinical chemistry and isotopic technique for investigation of the nitrogen metabolism in man using 15N

    International Nuclear Information System (INIS)

    Faust, H.; Bornhak, H.; Hirschberg, K.; Jung, K.; Junghans, P.; Krumbiegel, P.; Reinhardt, R.

    1981-03-01

    The present manual is a catalogue of methods representing theoretical and practical aspects of application of the stable isotope 15 N in medicine as well as a reference book for users of 15 N techniques in life sciences. Special emphasis is given to the planning of 15 N tracer experiments and their interpretation, sources of error and standard values of nitrogen compounds, information on sampling of medical materials, methods of separation and determination of proteins and non-protein nitrogen compounds in serum and urine, and details of the isotopic analysis of nitrogen by emission and mass spectrometry. (author)

  14. 2007 California Aerosol Study: Evaluation of δ15N as a Tracer Of NOx Sources and Chemsitry

    Science.gov (United States)

    Katzman, T. L.

    2017-12-01

    Although stable isotopes of N are commonly used as a source tracer, how this tracer is applied is a point of contention. The "source" hypothesis argues that the δ15N value of NO3- reflects the δ15N value of NOx source inputs into the environment, and any observed variation is solely the result of differences in source contributions. Conversely, the "chemistry" hypothesis argues that N isotopes are influenced by chemical reactions, atmospheric or biologic processing, and post-depositional effects. Previous studies often apply the source hypothesis, writing off the chemistry hypothesis as "minor," but others have noted the impact chemistry should has on δ15N values. Given the known complications, this work seeks to assess the use of stable isotopes as tracers, specifically, the assumption that the δ15N value is a tracer of source alone without significant influence from chemical reactions. If the "source" hypothesis is correct, source emission data, known source δ15N values, and isotope mass balance should be able to approximate measured δ15NNO3 values and determine the δ15N value associated with wildfire derived NOx, which is currently unknown. Significant deviations from observed values would support the significance of equilibrium and kinetic isotope effects associated with chemical reactions and processing in the atmosphere. Aerosols collected in during 2007, emission data, and isotopic analysis were utilized to determine the utility of δ15N as tracer of NOx sources. San Diego, California is a coastal urban area influenced by sea salt aerosols, anthropogenic combustion emissions, and seasonal wildfires. Wildfires also have a significant influence on local atmospheric chemistry and 2007 was notable for being one of the worst fire seasons in the San Diego region on record. Isotopic analysis of collected NO3- has suggested that source δ15N values are likely not conserved as NOx is oxidized into NO3-. Given known source contributions and known δ15N values

  15. Standardized 15N tracer method for the determination of parameters of the whole-body protein metabolism in clinical practice

    International Nuclear Information System (INIS)

    Junghans, P.; Jung, K.; Matkowitz, R.

    1984-01-01

    A standardized 15 N tracer method is described for the assessment of nitrogen and protein metabolism in healthy and pathological changed organisms. The method represents an isotope technical procedure for the application in clinical research and practice. The clinical preparation of the patient/proband by means of a standardized nutritional regime, the tracer administration (single dose) and the sampling (urine, blood), the 15 N tracer technique (sample chemistry, emissionsspectrometric isotope analysis) and the mathematical evaluation of 15 N tracer data are described. (author)

  16. A technique developed for labeling the green manures (sunnhemp and velvet bean) with 15 N for nitrogen dynamic studies

    International Nuclear Information System (INIS)

    Ambrosano, Edmilson Jose

    1997-01-01

    A technique was developed for labeling the leguminous plant tissue with nitrogen ( 15 N) to obtain labelled material for nitrogen dynamic studies. Sunnhemp (crotalaria juncea L.) and velvet beans (Mucuna aterrima, sinonimia Stizolobium aterrimum Piper and Tracy) were grown in pots containing 10 kg of a Red Yellow Podzolic soil, under greenhouse conditions. The rate of 1.2 of nitrogen (ammonium sulphate with 11.37 atom % 15 N) per pot was applied three times. The labelled dried plant material showed 3.177 and 4.337 of atom % 15 N, respectively for velvet beans and sunnhemp. (author)

  17. Distribution of /sup 15/N fertilizer in field-lysimeters sown with garlic (Allium sativum) and foxtail millet (Setaria italica)

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, M.A. (Universidad Nacional del Sur, Bahia Blanca (Argentina). Dept. de Ciencas Agrarias)

    1982-01-01

    We examined the distribution of residual /sup 15/N and its uptake by a foxtail millet crop grown in field lysimeters following a previous garlic crop fertilized with either /sup 15/N-urea or /sup 15/N-ammonium sulphate. Garlic apparently removed more N from the lysimeters treated with urea-N than from those treated with (NH/sub 4/)/sub 2/SO/sub 4/. Fertilizer-N in the lysimeters was similar (ca. 32% of original) following millet harvest. About 16 per cent of both fertilizers in the lysimeters was removed by the millet.

  18. Transformation of 15N-labelled ammonium nitrate in a pot experiment with winter wheat

    International Nuclear Information System (INIS)

    Mueller, S.; Herbst, F.; Weigert, I.

    1986-01-01

    The transformation of 15 N-ammonium nitrate in the soil-plant system was investigated in Mitscherlich pots. Single nitrogen applications at the start of the growing season resulted in a decline in dry matter content and nitrogen uptake by the plant at the end of the ripening process. Root development shows respective reductions already after ear emergence. Nitrogen fertilization leads to an additional uptake of soil nitrogen. Between 60 and 85% of the fertilizer nitrogen is taken up by the plants. Only 2% of this nitrogen is found in the roots at the time of ripeness. Already 49 and 55 %, respectively, of the second nitrogen applications at the time of shooting or at the end of ear emergence is taken up by the plants after a few days, with 75 and 80%, respectively, of the nitrogen being utilized; but the second nitrogen application at the end of ear emergence has less influence on the crop yield. (author)

  19. Potential denitrification in arable soil samples at winter temperatures - measurements by 15N gas analysis

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.; Matzel, W.

    1989-01-01

    In samples from the plough horizon of five soils taken after cereal harvest, denitrification was measured as volatilization of N 2 and N 2 O from 15 N nitrate in the absence of O 2 . Nitrate contents lower than 50 ppm N (related to soil dry matter) had only a small effect on denitrification velocity in four of the five soils. In a clay soil dependence on nitrate concentration corresponded to a first-order reaction. Available C was no limiting factor. Even at zero temperatures remarkable N amounts (on average 0.2 ppm N per day) were still denitrified. The addition of daily turnover rates in relation to soil temperatures prevailing from December to March revealed potential turnovers in the 0-to-30-cm layer of the soils to average 28 ± 5 ppm N. (author)

  20. Nanoscale studies of cement chemistry with 15N resonance reaction analysis

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Livingston, Richard A.; Rolfs, Claus; Becker, Hans-Werner; Kubsky, Stefan; Spillane, Timothy; Castellote, Marta; Viedma, Paloma G. de

    2005-01-01

    Analyses of materials with ion beams have proven to be a valuable technique for describing the spatial distributions of specific elements in host materials. We have applied this technique using the 15 N(p, αγ) 12 C reaction to study the time dependence of the chemical reactions involved in the curing of cement. By using the Dynamitron Tandem accelerator at the Ruhr Universitaet, Bochum, Germany, we have been able to achieve a few nanometer spatial resolution at the surface of cement grains and to study the hydrogen distributions to a depth of about 2 μm. By applying a technique for stopping the chemical reactions at arbitrary times, the time dependence of the chemical reactions involving specific components of cement can be investigated. In addition, the effects of additives on the chemical reactions have been studied, as have materials that are components of concrete

  1. Nanoscale studies of cement chemistry with {sup 15}N resonance reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Jeffrey S. [University of Connecticut, Department of Physics, Unit 3046, Storrs, CT 06269-3046 (United States)]. E-mail: schweitz@phys.uconn.edu; Livingston, Richard A. [Federal Highway Administration, HRDI-05, 6300 Georgetown Pike McLean, VA 22101 (United States); Rolfs, Claus [Institut fuer Physik mit Ionenstrahlen, Ruhr-Universitaet, Bochum Universitaetsstr. 150, Gebaeude NB 3, 44780 Bochum (Germany); Becker, Hans-Werner [Institut fuer Physik mit Ionenstrahlen, Ruhr-Universitaet, Bochum Universitaetsstr. 150, Gebaeude NB 3, 44780 Bochum (Germany); Kubsky, Stefan [Institut fuer Physik mit Ionenstrahlen, Ruhr-Universitaet, Bochum Universitaetsstr. 150, Gebaeude NB 3, 44780 Bochum (Germany); Spillane, Timothy [University of Connecticut, Department of Physics, Unit 3046, Storrs, CT 06269-3046 (United States); Castellote, Marta [Institute of Construction Science ' Eduardo Torroja' (CSIC), Serrano Galvache no. 4, 28033 Madrid (Spain); Viedma, Paloma G. de [Institute of Construction Science ' Eduardo Torroja' (CSIC), Serrano Galvache no. 4, 28033 Madrid (Spain)

    2005-12-15

    Analyses of materials with ion beams have proven to be a valuable technique for describing the spatial distributions of specific elements in host materials. We have applied this technique using the {sup 15}N(p, {alpha}{gamma}){sup 12}C reaction to study the time dependence of the chemical reactions involved in the curing of cement. By using the Dynamitron Tandem accelerator at the Ruhr Universitaet, Bochum, Germany, we have been able to achieve a few nanometer spatial resolution at the surface of cement grains and to study the hydrogen distributions to a depth of about 2 {mu}m. By applying a technique for stopping the chemical reactions at arbitrary times, the time dependence of the chemical reactions involving specific components of cement can be investigated. In addition, the effects of additives on the chemical reactions have been studied, as have materials that are components of concrete.

  2. Separation of ammonium and hydroxylamine nitrogen for the 15N determination

    International Nuclear Information System (INIS)

    Russow, R.

    1990-01-01

    After preseparation of the nitrogen compounds derived from microbial nitrification on a strong basic anion exchanger it is found hydroxylamine together with ammonium in one fraction. The nitrogen of this two compounds can be separated for the emission spectrometric 15 N analysis by the selective oxidation of the hydroxylamine to nitrite/nitrate using an iodine solution. Thus the hydroxylamine is protected against disproportionation during the following ammonium isolation by means of steam disillation in an alkaline medium. After that the nitrite/nitrate is reduced to ammonium using ferrous hydroxide and can than be librated by steam distillation. The performance of the method under discussion will be demonstrated by analysing solutions with known ammonium and hydroxylamine contents. (author)

  3. Study of surface layer on 08Kh15N5D2T steel

    International Nuclear Information System (INIS)

    Tyurin, A.G.; Povolotskij, V.D.; Zhivotovskij, Eh.A.; Berg, B.N.

    1986-01-01

    08Kh15N5D2T steel phase composition is investigated. Its surface layer was determined by X-ray diffraction analysis method. It is shown, that a subscale appears to be the reason for corrosion of products, made of EhP410 steel. Under the existing smelling technology the carbon content in it is ≥ 0.05%. Therefore to avoid the metal surface depletion with chromium, one must provide for titanium relation to carbon of not less than 4.5 and carry out the rolled product thermal treatment in a protective atmosphere; otherwise, the technology must include not only the removal of scale from steel but the metal subscale layer as well

  4. Application of urea-15N in common bean (Phaseolus vulgaris, L.) CV. carioca

    International Nuclear Information System (INIS)

    Neptune, A.M.L.; Muraoka, T.

    1978-01-01

    A study was made in a Textural B Terra Roxa soil of medium fertility, by the use of different levels of Urea 15 N at seeding and at different stages of growth of common beans. Observations were made on the quantity of nitrogen uptaken by the crop, the efficiency of the plant in the utilization of the nitrogen fertilizer and yield. The application of urea, up to 120 kg N/ha, did not show a marked effect on yield, but the utilization of fertilizer nitrogen increased with the increase in nitrogen fertilizer levels. The up take of nitrogen by the bean crop was more efficient when the nitrogen fertilizer was applied before or at flowering stage rather than at seeding. The efficiency of nitrogen fertilizer utilization varied from 11.24% to 35.70%. There was no effect of inoculation on weight and number of nodules, with the rate of 120 kg N/ha [pt

  5. The effects of 15N-fertilizer on the yields of wheat

    International Nuclear Information System (INIS)

    Zhou Dechao

    1985-01-01

    By using 15 N-fertilizer, the effects of increasing yield and the utilization of nitrogen of N-fertilizer applied at different periods and by different methods on wheat were studied. The results were as follows: The utilization of N-fertilizer by winter wheat is dependent on the fertilizer of soil before or after winter. Strong seedlings were obtained in the high fertility soils and the application of N-fertilizer in spring is recommended. In soils of low fertility, however, application of a part of N-fertilizer before winter is recommded in order to get strong seedlings. Application of a part of N-fertilizer as base manure for spring wheat is more advantageous. Deep application of N-fertilizer losses less NH 3 than surface broadcast does

  6. Measurement of denitrification on grassland using gas chromatography and 15N tracer technique

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.; Hagemann, O.; Matzel, W.

    1981-01-01

    Alternative covering of grassland micro-plots fertilized with 15 NH 4 15 NO 3 allowed on the basis on N 2 and N 2 O quantities released within several weeks to measure denitrification and to calculate it by means of methane as gas tracer. Thus the gas exchange was rendered visible and the N quantities measured could be corrected. In some variants, the acetylene blocking technique was successfully applied by adding acetylene to the soil air. The losses measured at 6 dates are discussed together with the 15 N balance and atmospherical conditions. The method is suited for recording the high losses occurring mainly in the second quarter of the year immediately after fertilization. Under the conditions mentioned soil N losses were small (3 kg N/ha). The immobilized fertilizer N quantities reached 20 to 30 kg/ha (fertilizer rate 100 kg N/ha) and were comparably independent of the date of fertilization. (author)

  7. High-resolution Fourier-transform extreme ultraviolet photoabsorption spectroscopy of 14N15N

    Science.gov (United States)

    Heays, A. N.; Dickenson, G. D.; Salumbides, E. J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Lewis, B. R.; Ubachs, W.

    2011-12-01

    The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet and span 100 000-109 000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schrödinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.

  8. The role of 15N in elucidating processes governing integrated soil fertility management strategies

    International Nuclear Information System (INIS)

    Vanlauwe, B.; Sanginga, N.; Merckx, R.

    2005-01-01

    Full text: Nitrogen is the most limiting nutrient for crop production in most of sub-Saharan Africa and has negative impacts on the environment if inputs, both mineral and organic, are not properly managed. Integrated Soil Fertility Management (ISFM) aims at integrating organic and mineral inputs and at site-specific management of mineral inputs to maximize the N use efficiency of both inputs. A series of experiments with 15 N labelled urea and organic matter of varying biochemical quality was carried out to test the hypothesis that mixing urea with organic matter will lead to temporary immobilization of urea-derived N and subsequently to a better utilization of urea-N by the crop and reduced losses of urea-N. Another set of experiments addressed the issue whether organic matter status affects the recovery of applied N fertilizer. First of all, in a lysimeter experiment, mixing 15 N-labeled urea with various organic materials with varying quality was observed not to significantly affect the drainage of urea-derived mineral N. Outflow of water at the bottom of the lysimeters was affected by the type of residue and the way of application. Secondly, in a nanoplot experiment with square metal cubes, 0.43 by 0.43 m, the recovery of applied 15 N-labeled urea was not affected by applying the urea together with incorporated organic materials of varying quality and averaged 23%. Recovery of applied urea in the soil (0-90 cm), however, was significantly higher after mixing the urea with maize stover than in the treatment which received only 90 kg urea-N ha -1 . This is likely to be related to the rather large N-immobilization potential of maize stover in view of its low quality. Leucaena residues have also been shown to initially immobilize N and this was related to the rather high content of soluble polyphenols. Cowpea stover is likely to decompose very fast and may have little impact on the urea-N dynamics. Thirdly, the recovery of 15 N-labeled urea, as affected by the

  9. Compaction stimulates denitrification in an urban park soil using 15N tracing technique

    DEFF Research Database (Denmark)

    Li, Shun; Deng, Huan; Rensing, Christopher Günther T

    2014-01-01

    Soils in urban areas are subjected to compaction with accelerating urbanization. The effects of anthropogenic compaction on urban soil denitrification are largely unknown. We conducted a study on an urban park soil to investigate how compaction impacts denitrification. By using 15N labeling method...... and acetylene inhibition technique, we performed three coherent incubation experiments to quantify denitrification in compacted soil under both aerobic and anaerobic conditions. Uncompacted soil was set as the control treatment. When monitoring soil incubation without extra substrate, higher nitrous oxide (N2O......) flux and denitrification enzyme activity were observed in the compacted soil than in the uncompacted soil. In aerobic incubation with the addition of K15NO3, N2O production in the compacted soil reached 10.11 ng N h-1 g-1 as compared to 0.02 ng N h-1 g-1 in the uncompacted soil. Denitrification...

  10. On the resonant behavior of the 16O + 15N reaction

    International Nuclear Information System (INIS)

    Aissaoui, N.; Haas, F.; Freeman, R.M.; Beck, C.; Morsad, A.; Djerroud, B.; Caplar, R.; Monnehan, G.A.; Hachem, A.; Youlal, M.

    1994-01-01

    The 16 O+ 15 N reaction products have been studied by the γ-ray detection method in the CM energy range 15.5 to 36.1 MeV and by the kinematical coincidence method at energies ranging from E CM =20.6 to 33.5 MeV. The γ-ray yield excitation function of the 16 O 3 - inelastic channel shows the existence of resonant structures. Two structures with ∼1.6 MeV width are observed in the large angle elastic, scattering excitation function, they are correlated with the resonances seen in the inelastic channel. Angular momentum assignments were made from the elastic backward angular distributions. (orig.)

  11. Use of 15N in evaluating symbiotic N2 fixation of field-grown soybeans

    International Nuclear Information System (INIS)

    Ham, G.E.

    1978-01-01

    Various methods have been used to estimate N 2 fixation by legumes (i.e. Kjeldahl N and the acetylene-ethylene assay). Recently 'Asub(N)' values by the legume and a non-nodulating crop using 15 N-labelled N fertilizer were used to quantitatively estimate the amount of N 2 fixed by legume crops growing under field conditions. The objective of this research was to evaluate Kjeldahl N procedures, the acetylene-ethylene assay and the 'Asub(N)' technique as estimators of N 2 fixation by field-grown soybeans. The 'Asub(N)' value concept provided a reliable estimate of N 2 fixation by soybeans which agreed with acetylene-ethylene measurements made weekly and the values compared favourably with Kjeldahl N measurements. (author)

  12. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    Science.gov (United States)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  13. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    Science.gov (United States)

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Synthesis and E.I.M.S. fragmentation analysis of [1,3-{sup 15} N{sub 2}] xanthine and [1,3-{sup 15} N{sub 2}] caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Kenani, A. [Tunis Univ. (Tunisia). Faculte de Medecine; Bernier, J.-L. [Laboratoire de Chimie Organique Physique (France); Henichart, J.-P. [UCB-Pharma (Belgium)

    1995-02-01

    HPLC and mass spectrometry can be used to isolate and identify all metabolites of caffeine in plasma of patients. The synthesis of [1,3-{sup 15}N{sub 2}] xanthine and [1,3-{sup 15}N{sub 2}] caffeine are of interest in the elucidation of mass spectrometry fragmentation pathways and unambiguous determination of metabolites, especially uric acid which exists as a natural constituent of human plasma. (Author).

  15. The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Andersen, A. J.; Thomsen, J. D.

    1985-01-01

    The distriution of seed-borne N in shoot and root of pea and field bean was studied using three methods: 1) determination of the N content in shoot and root of plants grown in sand culture without other N sources. 2) 15N isotope dilution in plants grown in Rhizobium-free medium supplied with 15N-...... of corrections for seed-borne N in studies of nitrogen fixation in legumes is discussed....

  16. Determination of urea utilization of rice at different growth stages by 15N tracer technique

    International Nuclear Information System (INIS)

    Korkmaz, A.; Halitligil, M.B.; Torun, M.

    1991-01-01

    This study reported here examines the percent utilization of 15 N labelled urea by rice when it is broadcasted over the soil surface or mixed within 10 cm soil at different vegetative stages. The experimental plots were arranged in randomized block design and replicated 3 times. N was applied at a rate of 120 kg N/ha as single or split applications at four different times during the growing season. Labelled urea was applied to 0.5x0.5 m plots only in 1988, however in 1989 unlabelled urea was applied to all plots. Stover and seed samples from each plot were harvested, dried at 65 0 C, weighed and kilogram per hectare were calculated in 1988. Also, the yield surplus per kilogram N was calculated for each treatment and this was indicated as urea fertilizer efficiency coefficient. Total N and 15 N analysis for stover and seed were done. Significant differences (at 0.05 level) were observed in stover and seed yields, when 120 kg/ha urea was split applied at different growth stages. Similar yield responses were obtained in 1988 and 1989. Highest seed yields were obtained when half of urea was applied at planting and the other half was applied at one week before heading. The results also showed that the highest utilization of urea for seed plus stover was obtained from the second half of urea (60 kg N/ha) applied one week before heading. Percent utilization of urea by rice also differed according to the rate applied at each stage

  17. The Use of 32P and 15N to Estimate Fertilizer Efficiency in Oil Palm

    International Nuclear Information System (INIS)

    Sisworo, Elsje L; Sisworo, Widjang H; Havid-Rasjid; Haryanto; Syamsul-Rizal; Poeloengan, Z; Kusnu-Martoyo

    2004-01-01

    Oil palm has become an important commodity for Indonesia reaching an area of 2.6 million ha at the end of 1998. It is mostly cultivated in highly weathered acid soil usually Ultisols and Oxisols which are known for their low fertility, concerning the major nutrients like N and P. This study most conducted to search for the most active root-zone of oil palm and applied urea fertilizer at such soils to obtain high N-efficiency. Carrier free KH 2 32 PO 4 solution was used to determine the active root-zone of oil palm by applying 32 P around the plant in twenty holes. After the most active root-zone have been determined, urea in one, two and three splits were respectively applied at this zone. To estimate N-fertilizer efficiency of urea labelled 15 N Ammonium Sulphate was used by adding them at the same amount of 16 g 15 N plan -1 . This study showed that the most active root-zone was found at a 1.5 m distance from the plant-stem and at 5 cm soil depth. For urea the highest N-efficiency was obtained from applying it at two splits. The use of 32 P was able to distinguish several root zones: 1.5 m - 2.5 m from the plant-stem at a 5 cm and 15 cm soil depth. Urea placed at the most active root-zone, which was at a 1.5 m distance from the plant-stem and at a 5 cm depth in one, two, and three splits respectively showed difference N-efficiency. The highest N-efficiency of urea was obtained when applying it in two splits at the most active root-zone. (author)

  18. Bioavailability of nitrogen from sewage sludge using 15N-labelled ammonium sulphate

    International Nuclear Information System (INIS)

    El-Motaium, R.A.

    2001-01-01

    The high nutrient nitrogen and organic matter contents of sewage sludge (SS) make it a potential organic fertilizer for sandy soil. In this study, 15 N-labelled ammonium sulphate was used to investigate the availability of nitrogen from irradiated and non-irradiated sewage sludge to tomato plants. The application of sewage sludge to sandy soil increased dry matter production (DMP), nitrogen yield (NY) and nitrogen recovery (NR) over two successive years. A positive relationship was found between sludge application rate and DMP and NY. The increase was significantly higher (P=0.05) in irradiated than non-irradiated sewage sludge. Total nitrogen derived from non-irradiated sewage sludge are : 48.0, 63.7, 73.5, 105.2 Kg/ha, whereas, the total nitrogen derived from irradiated sewage sludge are: 55.1, 72.5, 88.9, 141.4 Kg/ha corresponding to application rates of 10 t/ha, 20 t/ha, 30 t/ha, respectively. This was attributed to higher dry matter production in the later than the former. A highly significant correlation (0.945**) was found between dry matter production and sludge nitrogen yield (i.e. nitrogen derived from sewage sludge). Fertilizer nitrogen yield (total nitrogen derived from fertilizer) was high in treatment receiving mineral fertilizer, however, the 15 N recovery by tomato was only 13.8%. Soil did not contribute well towards total nitrogen yield in tomato and most nitrogen was derived from sewage sludge. Percent nitrogen derived from sewage sludge was in the range 88-92%, depending on the application rate

  19. δ15N constraints on long-term nitrogen balances in temperate forests

    Science.gov (United States)

    Perakis, S.S.; Sinkhorn, E.R.; Compton, J.E.

    2011-01-01

    Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha−1 and carbon (C) ranged from 188 to 460 Mg ha−1, with highest values near the coast. Ecosystem δ15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water δ15NO3 − patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.

  20. Nitrogen acquisition, transport and metabolism in intact ectomycorrhizal associations studied by 15N stable isotope techniques

    International Nuclear Information System (INIS)

    Ek, H.

    1993-05-01

    The focus of this thesis is on the external mycelium and its role in nitrogen uptake, assimilation and translocation. Tree seedlings in association with ectomycorrhizal fungi were grown in observation chambers. The fungal mycelium were fed with 15-N ammonium or 15-N nitrate or a combination of both. The effects of Collembola on the ectomycorrhizal symbiosis were also studied. The results demonstrates an important role of the external mycelium of Paxillus involutus not only in the uptake but also in the assimilation of ammonium into a variety of different amino acids, primarily glutamine but also glutamic acid, aspartic acid, and alanine, immediately after uptake. The results indicate that ammonium is assimilated by GS and GOGAT or GDH in the mycelium at the uptake site. When nitrate was added to the mycelium as the sole nitrogen source nitrate was reduced in the mycelium and the product assimilated into amino acids. When ammonium nitrate was supplied to the fungal mycelium nitrate was taken up the fungus and transferred to the plant, however, apparently no assimilation of nitrate occurred in the external mycelium. Ammonium or an assimilation product, such as glutamine, probably represses nitrate reductase (NR) but not nitrate uptake and transfer in P. involutus. P. involutus nitrogen uptake and transfer to the associated mycorrhizal pine was up to 76% higher when low numbers of the Collembola Onychiurus armatus were present compared to when they were completely absent. This was probably an indirect effect as P. involutus hyphal growth rate and extramatrical biomass increased at a low Collembola density. At high Collembola densities P. involutus hyphal growth rate was retarded. (74 refs.)

  1. Isotopic ratios D/H and 15N/14N in giant planets

    Science.gov (United States)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  2. Effects of climate on deer bone δ15N and δ13C: Lack of precipitation effects on δ15N for animals consuming low amounts of C 4 plants

    Science.gov (United States)

    Cormie, A. B.; Schwarcz, H. P.

    1996-11-01

    We have examined the relationship of bone collagen δ15N and δ13C to climatic variables, humidity, temperature, and amount of precipitation using fifty-nine specimens of North American white-tailed deer ( Odocoileus virginianus) from forty-six different locations. In previous studies of African mammals there was a significant correlation between bone collagen δ15N and local amount of precipitation. Results presented here similarly show an increase in δ15N with decreasing amount of precipitation but only for 25% of the animals, namely those consuming more than 10% C 4 plants. These animals also exhibited a significant correlation between δ13C and temperature which mirrors previous observations for grasses suggesting that these deer consume grasses during times of population and nutrient stress. In contrast, even in dry areas containing high proportions of C 4 grasses, the majority of the deer had consumed low amounts of C 4 plants and these deer did not have δ15N which correlate with amount of precipitation. Only when deer deviated from their normal feeding pattern by consuming C 4 plants or grasses did their δ15N correlate with amount of rainfall. For these animals, consumption of C 4 plants or grasses may signal conditions of water and nutrient stress. An increase in δ15N of bone collagen may result from combined effects from excretion of concentrated urine (to conserve water) and increased internal recycling of nitrogen (to conserve nitrogen).

  3. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    Science.gov (United States)

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations. PMID:25329300

  4. Experiments and strategies for the assignment of fully13 C/15N-labelled polypeptides by solid state NMR

    International Nuclear Information System (INIS)

    Straus, Suzana K.; Bremi, Tobias; Ernst, Richard R.

    1998-01-01

    High-resolution heteronuclear NMR correlation experiments and strategies are proposed for the assignment of fully 13 C/ 15 N-labelled polypeptides in the solid state. By the combination of intra-residue and inter-residue 13 C- 15 N correlation experiments with 13 C- 13 C spin-diffusion studies, it becomes feasible to partially assign backbone and side-chain resonances in solid proteins. The performance of sequences using 15 N instead of 13 C detection is evaluated regarding sensitivity and resolution for a labelled dipeptide (L-Val-L-Phe). The techniques are used for a partial assignment of the 15 N and 13 C resonances in human ubiquitin

  5. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Wahid, Ahmad Nazrul Abd, E-mail: a-nazrul@nuclearmalaysia.gov.my [Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor (Malaysia); Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahim, Sahibin Abd, E-mail: haiyan@ukm.edu.my [Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor (Malaysia); Rahim, Khairuddin Abdul; Harun, Abdul Rahim [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  6. A suite of Mathematica notebooks for the analysis of protein main chain 15N NMR relaxation data

    International Nuclear Information System (INIS)

    Spyracopoulos, Leo

    2006-01-01

    A suite of Mathematica notebooks has been designed to ease the analysis of protein main chain 15 N NMR relaxation data collected at a single magnetic field strength. Individual notebooks were developed to perform the following tasks: nonlinear fitting of 15 N-T 1 and -T 2 relaxation decays to a two parameter exponential decay, calculation of the principal components of the inertia tensor from protein structural coordinates, nonlinear optimization of the principal components and orientation of the axially symmetric rotational diffusion tensor, model-free analysis of 15 N-T 1 , -T 2 , and { 1 H}- 15 N NOE data, and reduced spectral density analysis of the relaxation data. The principle features of the notebooks include use of a minimal number of input files, integrated notebook data management, ease of use, cross-platform compatibility, automatic visualization of results and generation of high-quality graphics, and output of analyses in text format

  7. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using 15N isotopic tracer technique

    International Nuclear Information System (INIS)

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-01-01

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct 15 N isotope tracer method was used in this study, whereby the 15 N isotope was utilized as a tracer for nitrogen nutrient uptake. 15 N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. 15 N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained

  8. Synthesis and optical resolution of the neurotoxin 2-amino-3-([15N]-methylamino)propanoic acid (BMAA)

    International Nuclear Information System (INIS)

    Yulin Hu; Ziffer, H.

    1990-01-01

    The synthesis of 2-amino-3-([ 15 N]-methylamino)propanoic acid (synonyms, BMAA, β-N-mehylamino-alanine) from α-acetamidoacrylic acid and [ 15 N]-methylamine is described. Enantioselective hydrolysis of the acetamide group, mediated by the enzyme Acylase 1 (EC 3.5.1.14), yielded (R)-BMAA and the (S)-α-acetamido derivative. Acid hydrolysis of the latter compound yielded (S)-BMAA. (author)

  9. Production of granules of urea, urea-ammonium sulphate and urea-potassium chloride enriched with 15N

    International Nuclear Information System (INIS)

    Bendassolli, J.A.

    1991-01-01

    Using a pearling tower it was possible to produce granulated urea, and granulated mixtures of ammonium sulphate and urea, potassium chloride and urea, Labelled in 15 N. Granulated urea with 1, 2, 3 and 4 mm of diameter was obtained using a system with a heating controller. A low concentration of biuret was observed in the granules produced ( 15 N-Labelled ( 15 NH 4' 15 NH 2 ) with variable proportion of ammonium sulphate and urea. (author)

  10. Variability in δ{sup 15}N of intertidal brown algae along a salinity gradient: Differential impact of nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: inesgviana@gmail.com; Bode, Antonio

    2015-04-15

    While it is generally agreed that δ{sup 15}N of brown macroalgae can discriminate between anthropogenic and natural sources of nitrogen, this study provides new insights on net fractionation processes occurring in some of these species. The contribution of continental and marine sources of nitrogen to benthic macroalgae in the estuary-ria system of A Coruña (NW Spain) was investigated by analyzing the temporal (at a monthly and annual basis) and spatial (up to 10 km) variability of δ{sup 15}N in the macroalgae Ascophyllum nodosum and three species of the genus Fucus (F. serratus, F. spiralis and F. vesiculosus). Total nitrate and ammonium concentrations and δ{sup 15}N-DIN, along with salinity and temperature in seawater were also studied to address the sources of such variability. Macroalgal δ{sup 15}N and nutrient concentrations decreased from estuarine to marine waters, suggesting larger dominance of anthropogenic nitrogen sources in the estuary. However, δ{sup 15}N values of macroalgae were generally higher than those of ambient nitrogen at all temporal and spatial scales considered. This suggests that the isotopic composition of these macroalgae is strongly affected by fractionation during uptake, assimilation or release of nitrogen. The absence of correlation between macroalgal and water samples suggests that the δ{sup 15}N of the species considered cannot be used for monitoring short-term changes. But their long lifespan and slow turnover rates make them suitable to determine the impact of the different nitrogen sources integrated over long-time periods. - Highlights: • Variability of Fucacean δ{sup 15}N indicates N sources along a salinity gradient. • δ{sup 15}N of Fucaceae and seawater are not correlated at short time scales. • Isotopic fractionation in macroalgal tissue varies at seasonal and at local scale. • Fucacean species are suitable for monitoring chronic N loadings.

  11. Espectro infrarrojo de [zn(mh34](re042 com substituicion isotópica 14n/15n

    Directory of Open Access Journals (Sweden)

    Claudio Téllez

    1983-11-01

    Full Text Available The infrared spectra of [Zn(15NH34] (Re042 and the isotopoc shift 14N/15N (Zn-n for the metal-ligand band, is reportedInforma-se o espectro infravermelho do complexo de Zn(II, [Zn(15NH341(Re04 e o deslocamento isotópico 14N/15N, para a banda metal - ligante v(Zn-N.

  12. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    Directory of Open Access Journals (Sweden)

    Yang eYang

    2015-06-01

    Full Text Available Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. 2500 m elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3-4 ‰ and 7-8 ‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7 ‰ except in Fabaceae (Trifolium alpinum and Juncaceae (Luzula lutea. There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic and insensitive to obvious environmental cues.

  13. Distribution and utilization of 15N in cowpeas injected into the stem under influence of water deficit.

    Science.gov (United States)

    Götz K-P; Herzog, H

    2000-01-01

    Investigations were carried out on Vigna unguiculata L. Walp. to estimate the distribution and utilization of 15N in different organs after stem injection during vegetative, flowering and pod filling stage. During flowering effects of water deficit were also examined. In well watered plants, within 4 days after injection, 65% of 15N accumulated in leaves. This was drastically reduced to 42% by water deficit. 15N accumulation in stems increased under water deficit. The translocation of 15N from the stem base to roots were not altered by water deficit. During pod filling 62% of recovered 15N in the plants had accumulated in seeds, 24% in leaves and 11% in stems within 4 days, whereas the uptake of nitrogen in pod walls and roots remained low (2%). These results demonstrate that the method of injecting very small quantities (1 mg/plant) of 15N into the stem base allows an exact and detailed quantitative assessment of N translocation/distribution with regard to different organs, different growth stages and different treatments.

  14. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    Science.gov (United States)

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  15. Correlation between the synthetic origin of methamphetamine samples and their {sup 15}N and {sup 13}C stable isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Billault, Isabelle [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France)]. E-mail: Isabelle.Billault@univ-nantes.fr; Courant, Frederique [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Pasquereau, Leo [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Derrien, Solene [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Robins, Richard J. [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Naulet, Norbert [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France)

    2007-06-12

    The active ingredient of ecstasy, N-methyl-3,4-methyldioxyphenylisopropylamine (MDMA) can be manufactured by a number of easy routes from simple precursors. We have synthesised 45 samples of MDMA following the five most common routes using N-precursors from 12 different origins and three different precursors for the aromatic moiety. The {sup 13}C and {sup 15}N contents of both the precursors and the MDMA samples derived therefrom were measured by isotope ratio mass spectrometry coupled to an elemental analyser (EA-IRMS). We show that within-pathway correlation between the {sup 15}N content of the precursor and that of the derived MDMA can be strong but that no general pattern of correlation can be defined. Rather, it is evident that the {delta} {sup 15}N values of MDMA are strongly influenced by a combination of the {delta} {sup 15}N values of the source of nitrogen used, the route by which the MDMA is synthesised, and the experimental conditions employed. Multivariate analysis (PCA) based on the {delta} {sup 15}N values of the synthetic MDMA and of the {delta} {sup 15}N and {delta} {sup 13}C values of the N-precursors leads to good discrimination between the majority of the reaction conditions tested.

  16. Correlation between the synthetic origin of methamphetamine samples and their 15N and 13C stable isotope ratios

    International Nuclear Information System (INIS)

    Billault, Isabelle; Courant, Frederique; Pasquereau, Leo; Derrien, Solene; Robins, Richard J.; Naulet, Norbert

    2007-01-01

    The active ingredient of ecstasy, N-methyl-3,4-methyldioxyphenylisopropylamine (MDMA) can be manufactured by a number of easy routes from simple precursors. We have synthesised 45 samples of MDMA following the five most common routes using N-precursors from 12 different origins and three different precursors for the aromatic moiety. The 13 C and 15 N contents of both the precursors and the MDMA samples derived therefrom were measured by isotope ratio mass spectrometry coupled to an elemental analyser (EA-IRMS). We show that within-pathway correlation between the 15 N content of the precursor and that of the derived MDMA can be strong but that no general pattern of correlation can be defined. Rather, it is evident that the δ 15 N values of MDMA are strongly influenced by a combination of the δ 15 N values of the source of nitrogen used, the route by which the MDMA is synthesised, and the experimental conditions employed. Multivariate analysis (PCA) based on the δ 15 N values of the synthetic MDMA and of the δ 15 N and δ 13 C values of the N-precursors leads to good discrimination between the majority of the reaction conditions tested

  17. Cyanobacteria-derived nitrogen uptake by benthic invertebrates in Lake Taihu: a mesocosm study using 15N labeling

    Directory of Open Access Journals (Sweden)

    Yu J.

    2014-01-01

    Full Text Available Eutrophication of lakes can lead to dominance by cyanobacteria, which are hardly used by zooplankton due to their low nutrition value. However, sedimented cyanobacterial detritus may be a useful source for benthic invertebrates. We studied the Microcystis-derived nitrogen incorporation in benthic invertebrates in Lake Taihu using stable isotopic nitrogen (15N as a tracer. The δ15N of all organisms increased significantly with time after addition of the labeled Microcystis detritus. δ15N values of POM and periphyton peaked earlier than for benthic invertebrates, and the maximum levels were also higher than bivalves, snails and worms (Limnodrilus spp.. Among benthic invertebrates, Radix swinhoei peaked later than other invertebrates, but the maximum level and the excess 15N of the last sampling day were higher. At the end of the experiment, approximately 70% of the added 15N was retained in the benthic food web, while only a small fraction (less than 1% of the added detritus 15N occurred in the pelagic food web. Our results suggest that nitrogen from cyanobacteria can be incorporated more in benthic than pelagic food webs and cyanobacterial blooms may contribute to the development of benthic animals.

  18. 15N and 13C abundances in marine environments with emphasis on biogeochemical structure of food networks

    International Nuclear Information System (INIS)

    Wada, E.

    1987-01-01

    Distributions of δ 15 N and δ 13 C for biogenic substances in the Antarctic Ocean and in the Otsuchi River estuary in Japan were investigated to construct isotope biogeochemical framework for assessing marine ecosystems. The isotopic compositions of phytoplankton were particularly low in the Antarctic Ocean. High nitrate and CO 2 concentrations in the surface sea waters, and the low light intensity seem to enhance the kinetic isotope fractionations that preferred the depletion of 15 N and 13 C in the algal body. A clear-cut linear relationship between animal δ 15 N and its trophic level was obtained in the Antarctic system. In the estuary, the variation of isotope ratios were principally governed by the mixing of land-derived organic matter, marine phytoplankton, and seagrasses. A food-chain effect of 15 N enrichment was also confirmed. An isotopically ordered structure was presented for a marine estuarine ecosystem. The isotopic abundances in a food network vary mainly because of the variation in 15 N and 13 C contents of primary producers grown under different environmental conditions and because of the enrichment of 15 N along food chains. (author)

  19. Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging

    Science.gov (United States)

    Römer, Winfried; Wu, Ting-Di; Duchambon, Patricia; Amessou, Mohamed; Carrez, Danièle; Johannes, Ludger; Guerquin-Kern, Jean-Luc

    2006-07-01

    Dynamic SIMS imaging is proposed to map sub-cellular distributions of isotopically labelled, exogenous compounds. NanoSIMS imaging allows the characterisation of the intracellular transport pathways of exogenous molecules, including peptide vectors employed in innovative therapies, using stable isotopes as molecular markers to detect the compound of interest. Shiga toxin B-subunit (STxB) was chosen as a representative peptide vector. The recombinant protein ( 15N-STxB) was synthesised in Escherichia coli using 15NH 4Cl as sole nitrogen source resulting in 15N enrichment in the molecule. Using the NanoSIMS 50 ion microprobe (Cameca), different ion species ( 12C 14N -, 12C 15N -, 31P -) originating from the same sputtered micro volume were simultaneously detected. High mass resolving power enabled the discrimination of 12C 15N - from its polyatomic isobars of mass 27. We imaged the membrane binding and internalisation of 15N-STxB in HeLa cells at spatial resolutions of less than 100 nm. Thus, the use of rare stable isotopes like 15N with dynamic SIMS imaging permits sub-cellular detection of isotopically labelled, exogenous molecules and imaging of their transport pathways at high mass and spatial resolution. Application of stable isotopes as markers can replace the large and chemically complex tags used for fluorescence microscopy, without altering the chemical and physical properties of the molecule.

  20. Effect of different transplanting leaf age on rice yield, nitrogen utilization efficiency and fate of 15N-fertilizer

    International Nuclear Information System (INIS)

    Fan Hongzhu; Lu Shihua; Zeng Xiangzhong

    2010-01-01

    Field experiments were conducted to study rice yield, N uptake and fate by using 15 N-urea at transplanting leaf age of 2-, 4-and 6-leaf, respectively. The results showed that rice yield significantly decreased with delay of transplanting leaf age, and 15 N-fertilizer uptake by grain and straw of rice, nitrogen utilization and residue also decreased, but loss of 15 N-fertilizer increased. Under different transplanting leaf age, N absorption by rice mainly came from the soil. Almost 1/3 of total N was supplied by fertilizer, and 2/3 came from soil. The efficiency of fertilizer was 20.8% ∼ 25.7%, 15 N-fertilizer residue ratio was 17.9% ∼ 32.2%, and 15 N-fertilizer loss was 42.1% ∼ 61.3%. 15 N-fertilizer residue mainly distributed in 0 ∼ 20 cm top soil under different treatments. The results indicated that transplanting young leaf age could increase rice yield and nitrogen utilization efficiency, and decrease loss of nitrogen fertilizer and pollution level on environment. (authors)

  1. Elastic and inelastic scattering of {sup 15}N ions by {sup 9}Be at 84 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Rudchik, A.T., E-mail: rudchik@kinr.kiev.ua [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Chercas, K.A. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Kemper, K.W. [Physics Department, Florida State University, Tallahassee, FL 32306-4350 (United States); Rusek, K. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Rudchik, A.A.; Herashchenko, O.V. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Koshchy, E.I. [Kharkiv National University, pl. Svobody 4, 61077 Kharkiv (Ukraine); Pirnak, Val.M. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Piasecki, E.; Trzcińska, A. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Sakuta, S.B. [Russian Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Siudak, R. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Strojek, I. [National Center for Nuclear Researches, ul. Hoża 69, PL-00-681 Warsaw (Poland); Stolarz, A. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Ilyin, A.P.; Ponkratenko, O.A.; Stepanenko, Yu.M.; Shyrma, Yu.O. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Szczurek, A. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Uleshchenko, V.V. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine)

    2016-03-15

    Angular distributions of the {sup 9}Be + {sup 15}N elastic and inelastic scattering were measured at E{sub lab}({sup 15}N) = 84 MeV (E{sub c.m.} = 31.5 MeV) for the 0–6.76 MeV states of {sup 9}Be and 0–6.32 MeV states of {sup 15}N. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of {sup 9}Be in ground and excited states and {sup 15}N in excited states as well as the most important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of the {sup 9}Be + {sup 15}N optical potential of Woods–Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the {sup 9}Be + {sup 15}N pure potential elastic scattering dominates at the forward angles whereas the ground state spin reorientation of {sup 9}Be gives a major contribution to the elastic scattering cross sections at the large angles. Contributions from particle transfers are found to be negligible for the present scattering system.

  2. Nitrogen and water utilization by trickle fertigated garlic using the neutron gauge and 15N technologies

    International Nuclear Information System (INIS)

    Mohammad, M.J.; Al-Omari, M.; Zuraiki, S.; Qawasmi, W.

    2002-01-01

    The objective of this study was to increase water and fertilizer use efficiency for conventional fertilization and fertigation. The following treatments were included and studied in an RCB design with four replications of each treatment: Zero N, 30, 60 and 90 ppm N in the irrigation water. Additional soil application equivalent to one fertigation treatment was also included. The fertilizers were injected into the irrigation water by means of an injection pump. Garlic was planted in plot with dimensions of 3mx4.5m. Irrigation was applied to replenish 80% of the Class A pan evaporation on a weekly bases. Access tubes for neutron probe reading were mounted in each plot in three replications. The readings were taken before and after each irrigation or rainfall at 15, 30, 45, 60 and 90 cm soil depth. The labelled N fertilizers ( 15 N) were applied to microplots which contained five plants within each plot. At harvest, plant samples were taken from the microplots for the 15 N measurements. Plant samples were collected and prepared according to the instructions for sampling for 15 N analysis. The yield and its components were obtained from the macroplot. The yield continued to increase with increasing N fertigation rates. The fresh weight per head and per segment showed a similar trend as the yield did. However, the number of segments per head was not affected significantly by the investigated treatments in this study. This may indicate that the zero N treatments produced heads with small segments compared to that produced with N application. The dry weight of shoot, segment and segment membrane responded positively to the rates of N fertigation, reaching the maximum value at the rates of 80 and 120 kg N, irrespective of N fertigation or soil application. The soil application gave a production as high as the best fertigated N rate but lower than the zero N treatment. The percentage of N content in fruits and leaves was the highest with the fertigation treatments where the

  3. Astrophysical S factor for the 15N(p,γ)16O reaction

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A. M.; La Cognata, M.; Kroha, V.

    2011-01-01

    The R-matrix approach has proved to be very useful in extrapolating the astrophysical factor down to astrophysically relevant energies, since the majority of measurements are not available in this region. However, such an approach has to be critically considered when no complete knowledge of the reaction model is available. To get reliable results in such cases one has to use all the available information from independent sources and, accordingly, fix or constrain variations of the parameters. In this paper we present a thorough R-matrix analysis of the 15 N(p,γ) 16 O reaction, which provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong J π =1 - resonances at E R =312 and 962 keV and direct capture to the ground state. Recently, a new measurement of the astrophysical factor for the 15 N(p,γ) 16 O reaction has been published [P. J. LeBlanc et al., Phys. Rev. C 82, 055804 (2010)]. The analysis has been done using the R-matrix approach with unconstrained variation of all parameters including the asymptotic normalization coefficient (ANC). The best fit has been obtained for the square of the ANC C 2 =539.2 fm -1 , which exceeds the previously measured value by a factor of ≅3. Here we present a new R-matrix analysis of the Notre Dame-LUNA data with the fixed within the experimental uncertainties square of the ANC C 2 =200.34 fm -1 . Rather than varying the ANC we add the contribution from a background resonance that effectively takes into account contributions from higher levels. Altogether we present ten fits, seven unconstrained and three constrained. For the unconstrained fit with the boundary condition B c =S c (E 2 ), where E 2 is the energy of the second level, we get S(0)=39.0±1.1 keVb and normalized χ-tilde 2 =1.84, i.e., the result which is similar to LeBlanc et al. From all our fits we get the range 33.1≤S(0)≤40.1 keVb which

  4. Fate of 15N fertilizer applied to trickle-irrigated grapevines

    International Nuclear Information System (INIS)

    Hajrasuliha, S.; Rolston, D.E.; Louie, D.T.

    1998-01-01

    Information on fate of nitrogen applied to vines is needed to improve fertilizer management. Nitrogen-15 enriched ammonium and nitrate fertilizers were applied in the spring through a trickle irrigation system to six Thompson Seedless vines of a vineyard on the West Side of the San Joaquin Valley of California. At fruit harvest, all above-ground plant parts were removed and analyzed for 15 N. Soil around each vine was also sampled and analyzed for 15 N in the inorganic and organic N fractions. Spatial patterns of fertilizer N for soil inorganic and organic N were analyzed using a median polish technique which indicated large variability with respect to direction, distance, and depth. There was a tendency for the fertilizer N from NH 4 to be located directly beneath emitters than from the NO 3 . Nitrogen from the NH 4 application penetrated to only the 150-cm depth, whereas some N from the NO 3 application reached 210 to 240 cm. Most of the organic fertilizer N for both NO 3 and NH 4 applications was in the top 60 cm of soil where the vine roots were likely of greatest density. Overall recovery of fertilizer N was also quite variable, probably due to variability in soil physical properties and uneven surface application of water and fertilizer due to local surface ponding. Although not statistically significant, uptake of fertilizer N by above-ground plant components was slightly higher for the NH 4 application (24.2% of applied N) than the NO 3 application (21.5%). Soil organic N had significantly (95% level) higher N from NH 4 (19% of applied N) than from NO 3 (13%). This probably occurred due to longer residence time of N from NH 4 within the top 60 cm, where the bulk of roots and microbial activity existed, than for NO 3 . Overall, about 67% to 79% of the fertilizer N applied in spring remained in the soil at harvest, and the vines took up the rest. There was no indication of significant N leaching below 2.4 m or denitrification of fertilizer N for the trickle

  5. Effect of body size and body mass on δ 13 C and δ 15 N in coastal fishes and cephalopods

    Science.gov (United States)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2011-11-01

    Carbon and nitrogen isotopes have been widely used in the investigation of trophic relations, energy pathways, trophic levels and migrations, under the assumption that δ 13C is independent of body size and that variation in δ 15N occurs exclusively due to ontogenetic changes in diet and not body size increase per se. However, several studies have shown that these assumptions are uncertain. Data from food-webs containing an important number of species lack theoretical support on these assumptions because very few species have been tested for δ 13C and δ 15N variation in captivity. However, if sampling comprises a wide range of body sizes from various species, the variation of δ 13C and δ 15N with body size can be investigated. While correlation between body size and δ 13C and δ 15N can be due to ontogenetic diet shifts, stability in such values throughout the size spectrum can be considered an indication that δ 13C and δ 15N in muscle tissues of such species is independent of body size within that size range, and thus the basic assumptions can be applied in the interpretation of such food webs. The present study investigated the variation in muscle δ 13C and δ 15N with body size and body mass of coastal fishes and cephalopods. It was concluded that muscle δ 13C and δ 15N did not vary with body size or mass for all bony fishes with only one exception, the dragonet Callionymus lyra. Muscle δ 13C and δ 15N also did not vary with body size or mass in cartilaginous fishes and cephalopods, meaning that body size/mass per se have no effect on δ 13C or δ 15N, for most species analysed and within the size ranges sampled. The assumption that δ 13C is independent of body size and that variation in δ 15N is not affected by body size increase per se was upheld for most organisms and can be applied to the coastal food web studied taking into account that C. lyra is an exception.

  6. O potencial da rotulação metabólica de 15N para a pesquisa de esquizofrenia The potential of 15N metabolic labeling for schizophrenia research

    Directory of Open Access Journals (Sweden)

    Michaela D. Filiou

    2013-01-01

    Full Text Available Pesquisas em psiquiatria ainda necessitam de estudos não dirigidos por hipóteses para revelar fundamentos neurobiológicos e biomarcadores moleculares para distúrbios psiquiátricos. Metodologias proteômicas disponibilizam uma série de ferramentas para esses fins. Apresentamos o princípio de rotulação metabólica utilizando 15N para proteômica quantitativa e suas aplicações em modelos animais de fenótipos psiquiátricos com um foco particular em esquizofrenia. Exploramos o potencial de rotulação metabólica por 15N em diferentes tipos de experimentos, bem como suas considerações metodológicas.Psychiatric research is in need of non-hypothesis driven approaches to unravel the neurobiological underpinnings and identify molecular biomarkers for psychiatric disorders. Proteomics methodologies constitute a state-of-the-art toolbox for biomarker discovery in psychiatric research. Here we present the principle of in vivo 15N metabolic labeling for quantitative proteomics experiments and applications of this method in animal models of psychiatric phenotypes, with a particular focus on schizophrenia. Additionally we explore the potential of 15N metabolic labeling in different experimental set-ups as well as methodological considerations of 15N metabolic labeling-based quantification studies.

  7. Nitrogen utilization of vegetables grown under plastic greenhouse conditions in Ankara using 15N technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and eventually to identify the best N fertilizer rate greenhouse experiments were conducted for two years. Yazgi F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be the suitable varieties to grow in the plastic greenhouse conditions in Ankara. Five N treatments [N 0 =0, N 1 =150, N 2 =300, and N 3 =450 kg/ha; also, soil N application treatment (N soil ) equivalent to the fertigation treatment of 300 kg/ha was included for tomato and pepper, however N rates for cucumber was 131, 266 and 339 kg N/ha; N soil being 266 kg N/ha] were investigated using 15 N labeled urea fertilizer. Significantly higher marketable fresh fruit and total dry matter yields and N uptakes values were obtained from N 3 treatments for tomato and cucumber, but from N 2 treatment for pepper. Also, significantly higher yields, N uptakes and % NUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. (author)

  8. Fertilizer use efficiency by spring potato in Central Beqaa' using 15N

    International Nuclear Information System (INIS)

    Atallah, Therese; Darwich, Talal; Haj Hasan, S.; Chranek, A.

    1999-01-01

    Full text.The two year experiment aimed at studying the impact of the modality of fertilizer application and the irrigation techniques on spring potatoes yield parameters with the use of 15 N. Potato (spunta) was planted in 1997 and 1998 on clay soil in Tel Amara, Central Beqaa, in radomized block design. It consisted of five treatments and four replicates. Treatments (N1=240, N2=360, N3=480 Kg N/ha for 1997 and N1-120, N2=240, N3=360 Kg N/ha for 1998) had the goal of studying the effect of three rates of N fertigation on potato plant performance and production. We compared full fertigation with conventional fertilizer application and irrigation with drip and macro sprinkler. Water demands and irrigation were scheduled according to the mean annual potential evapotranspiration in 1997 and class A pan in 1998, and monitored by the neutron probe and tensiometers. Results showed that, at jarvest, both crops followed the same yield pattern. The highest tuber yield was obtained from N1 and the lowest from N3. These values were 58 ton/ha for 1997 and 32.5 ton/ha for 1998 trials respectively. The 1998 spring crop

  9. Nitrogen fixation in legume trees: Measurement based on 15N techniques

    International Nuclear Information System (INIS)

    Sisworo, E.L.; Rasyid, H.; Sisworo, H.W.; Solahuddin, S.; Wemay, J.

    2000-01-01

    A field experiment has been conducted to measure the N2-fixation in six legume trees, namely Gliricidia sepium(F1), Sesbania sesban(F2), Caliandra tetragona(F3), Flemengia conges-7ta(F4), Acacia mangium(F5), and Leucena leucocephala (F6), using 15N techniques, e.g. the isotope dilution method. For this technique a reference tress, that is a non N2--fixing trees has to be used. In this experiment three reference trees were planted, but only one was used, which above ground growth was equal to the legyme trees. The reference tree chosen was Eucalyptus alba (R1). Data obtained from this experiment show that in general the legume trees have growth then the reference trees expressed, in dray weight of various plant parts and plants and total-N uptake (TN). At harvest some of the legume and reference tree have reached a 2.5 m height. The percentage of N2-fixation(%-fix) ranges from 50-70%. The highest %N-Fix was shown by Leucena leucocephala (F6) (70%N-Fix). High %N-Fix does not necessarily mean hgh N-Fix uptake(gn/tree)too. The N-Fix appears to be determined by the TN (gn/tree). The highest N-Fix was contributed by the leaves, which also has the highest percentage of total -N(%TN) compare to the other plant parts, i.e. roots, stem, and branches

  10. Study on the utilization of N fertilizers by labelling with 15N in a microplot experiment

    International Nuclear Information System (INIS)

    Latkovics, I.

    1982-01-01

    The effect and residual effect of urea and NH 4 NO 3 on the dry matter yield and N uptake of rye-grass and Sudan grass, as well as on the N status of the soil and the distribution of N within the soil profile were studied with 15 N indication on a chernozem-like calcareous sandy soil in an isolated microplot experiment. It has been found that 57-79% of the N contents of the first cuttings came from the fertilizer, and the percentage N amounts decreased with each cutting. Under the given experimental conditions there was no significant difference between the N amounts taken up from urea or from NH 4 NO 3 . Rye-grass utilized N both from urea and NH 4 NO 3 in the same degree (55%), while Sudan grass utilized 29.8% from urea and 36.1% from NH 4 NO 3 . Depending on the treatment, 22.8-31.7% of fertilizer-N was found in the 0-120 cm layer of the soil, while the larger part (74.8-84.6%) of this amount accumulated in the upper 40 cm layer. The amount of fertilizer-N not recovered (and thus 'lost' for the plants) was 13.3-21.6% in the case of rye-grass and 34.4-43.1% of Sudan grass. (author)

  11. Nitrogen management in tomato (Lycopersicon esculentum) using 15N-enriched fertilizer

    International Nuclear Information System (INIS)

    Shivananda, T.N.; Iyengar, B.R.V.; Kotur, S.C.

    1996-01-01

    An experiment was conducted during 1991 to study nitrogen management using 15 N-enriched fertilizer, to achieve economy in fertilizer N input by reduction and postponement of the basal dose in Arka Vikas tomato (Lycopersicon esculentum Miller nom. cons). Application of 90 kg N/ha in 3 equal splits at 10, 30 and 50 days after transplanting did not show any reduction in total N uptake, dry-matter and fruit yields compared with 120 kg N/ha applied in 3 splits (60 kg N/ha basal and 30 kg top-dressed 20 and 40 days after transplanting). Band application of the basal dose and top-dressing at 20 days after transplanting resulted in higher N derived from fertilizer (Ndff), its uptake and utilization. Top-dressing of 30 or 40 kg N/ha at 10 days after transplanting resulted in better utilization than broadcasting the basal dose of 60 kg N/ha. Application at 40-50 days after transplanting showed poor uptake and utilization of applied N. The succeeding Arka Kalyan onion (Allium cepa L.) utilized 2.95-6.37% residual N, the highest being from the split application at 40 days after transplanting. Thus there was economy in fertilizer N input and higher carry-over of residual N for determinate cultivar of tomato be delaying as well as reducing the basal dose and confining the top-dressing to 30 days after transplanting. (author)

  12. Use of 15N in nitrification inhibitor studies with special reference to indigenous materials

    International Nuclear Information System (INIS)

    Sahrawat, K.L.

    1988-01-01

    Non-edible oil seed cakes and their constituents have been advantageously used for increasing the efficiency of fertilizer nitrogen (N) for crop production. The beneficial effects of these materials have been attributed to retardation of nitrification, which lessen the loss of N associated with nitrification by leaching and denitrification in situations where these losses are high. However, it is possible that some of the effects of these materials could be due to immobilization-remineralization of N particularly when the carbonaceous materials are added with fertilizers at high rates. A methodology involving the use of 15 N-labelled fertilizers is advanced to sort out whether the beneficial effects of non-edible oil seed cakes and other materials are due to retardation of nitrification and or immobilization-remineralization of fertilizer N. Using the proposed technique it would be possible to make realistic evaluation of the wealth of indigenous products as nitrification inhibitors. Following the proposed approach it would also be possible to widen the scope and depth of research in this area for ultimately better exploitation of indigenous materials as nitrification inhibitors. (author). 18 refs

  13. Effect of nitrificide in temporally varied /sup 15/N-labelled slurry fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, H. (Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Pflanzenproduktion)

    1983-01-01

    The fertilizing effect of /sup 15/N-labelled semi-liquid cattle manure (application in August, November and March) with nitrification inhibitor 'N-Serve' added in amounts of 1 and 3 percent of the fertilizer N on perennial ryegrass with feed oats as follow-up seed was tested in an open-air pot experiment using sand of a sandy-rusty soil. A combination of semi-liquid manure and straw and winter rape-seed, respectively, as green manure (August) and ammonium sulfate with and without 1 per cent N-Serve (November and March) were used as comparative variants. Manuring in August had no effect on the yield, the 3 per cent N-Serve application in November and of 1 and 3 percent in March resulted in an increase of the perennial ryegrass yield. By analogy, the N utilization of the fertilizers was increased with later fertilizing dates and the amount of the nitrificide applied. In the case of semi-liquid manure application, N-Serve promoted the mineralization of the nitrogen in the soil.

  14. Effect of paddy urease inhibitors on fate of 15N-urea

    International Nuclear Information System (INIS)

    Chen Wei; Lu Wanfang

    1997-01-01

    Urea applied to the paddy field rapidly released ammonium (NH 4 + ) through hydrolysis. The released NH 4 + -N usually reached to a maximum value 2 days after the application. The maximum value was found to be lower and delay 1 day when a mixture of urea and urease inhibitors was applied. Based on 15 N tracing in the urea, it was found that the two urease inhibitors, phenylphosphordiamidate (PPD) and N-(N-butyl) thiophosphoric triamine (NBPT), could enhance the efficiency of urea utilization by rice plants due to more absorption and also stimulated rice growth. The grain yields were higher in the treatments applied with the mixture containing PPD or NBPT, especially at high N level, than that in the treatment applied with urea only. However, the urea inhibitor, hydroquinone (HQ), had far less effect than PPD and NBPT in the experiment. The application of rice straw was found to reduce the urea-N absorption by rice plants but increase its residue in the soil

  15. Production of 15N-enriched nitric acid (H15NO3

    Directory of Open Access Journals (Sweden)

    C. R. Sant Ana Filho

    2008-12-01

    Full Text Available Techniques that employ 15N have proved to be an important tool in many areas of the agronomic and biomedical sciences. Nevertheless, their use is limited by methodological difficulties and by the price of compounds in the international market. Nitric compounds (15NO3- have attracted the interest of researchers. However, these compounds are not currently produced in Brazil. Thus, in the present work H15NO3 was obtained from the oxidation of anhydrous 15NH3. The method we used differs from the industrial process in that the absorption tower is replaced with a polytetrafluoroethylene-lined, stainless-steel hydration reactor. The process output was evaluated based on the following parameters: reaction temperature; ratio of reagents; pressure and flow of 15NH3(g through the catalyst (Pt/Rh. The results showed that, at the best conditions (500 ºC; 50 % excess O2; 0.4 MPa; and 3.39 g.min-1 of 15NH3, a conversion percentage (N-15NH3 to N-15NO3- of 62.2 %, an overall nitrogen balance (N-15NH3 + N-15NO3- of 86.8 %, and purity higher than 99 % could be obtained.

  16. Nitrogen cycling in a 15N-fertilized bean (Phaseolus vulgaris L.) crop

    International Nuclear Information System (INIS)

    Victoria, R.L.; Libardi, P.L.; Reichardt, K.; Cervellini, A.

    1982-01-01

    To increase our understanding of the fate of applied nitrogen in Phaseolus vulgaris crops grown under tropical conditions, 15 N-labelled urea was applied to bean crops and followed for three consecutive cropping periods. Each crop received 100 kg urea-N ha - 1 and 41 kg KCl-K ha - 1 . At the end of each period we estimated each crop's recovery of the added nitrogen, the residual effects of nitrogen from the previous cropping period, the distribution of nitrogen in the soil profile, and leaching losses of nitrogen. In addition, to evaluate potential effects of added phosphorus on nitrogen cycling in this crop, beans were treated at planting with either 35 kg rock-phosphate-P, 35 kg superphosphate-P, or 0 kg P ha - 1 . Results showed that 31.2% of the nitrogen in the first crop was derived from the applied urea, which represents a nitrogen utilization efficiency of 38.5%, 6.2% of the nitrogen in the second crop was derived from fertilizer applied to the first crop, and 1.4% of the nitrogen in the third crop. (orig./AJ)

  17. Fate of nitrogen (15N) from velvet bean in the soil-plant system

    International Nuclear Information System (INIS)

    Scivittaro, Walkyria Bueno; Muraoka, Takashi; Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze

    2004-01-01

    Because of their potential for N 2 biological fixation, legumes are an alternative source of nitrogen to crops, and can even replace or supplement mineral fertilization. A greenhouse experiment was carried out to evaluate temporal patterns of velvet bean (Mucuna aterrima) green manure release of nitrogen to rice plants, and to study the fate of nitrogen from velvet bean in rice cultivation. The isotopic dilution methodology was used. Treatments consisted of a control and 10 incubation periods of soil fertilized with 15 N-labeled velvet bean (0, 20, 40, 60, 90, 120, 150, 180, 210, and 240 days). The plant material was previously chopped, sifted (10 mm mesh sieve) and oven-dried (65 deg C). Incubation of the plant material (2.2 g kg -1 soil) was initiated by the longest period, in order to synchronize the planting of the test crop, rice (Oryza sativa), at time zero for all treatments. Green manure incorporation promoted increases in rice dry matter yield and nitrogen uptake. These variables showed maximum values at incubation periods of 38 and 169 days, respectively. Green manure nitrogen utilization by rice plants was highest at an incubation period corresponding to 151 days. More than 60% of the green manure nitrogen remained in the soil after rice cultivation. The highest green manure nitrogen recovery from the soil-plant system occurred at an incubation period equivalent to 77 days. (author)

  18. Nitrogen fertilization management and nitrogen (15N) utilization by corn crop in red latosol

    International Nuclear Information System (INIS)

    Duete, Robson Rui Cotrim; Ambrosano, Edmilson Jose

    2008-01-01

    Nitrogen is the nutrient that is most absorbed by corn crop, influences grain yield most, and requires the most complex management. The objective of this work was to evaluate the effect of nitrogen (urea 15 N) rate and split-applications, on grain yield, N fertilizer utilization and amount of soil native N absorbed by corn crop in a Red Latosol. The experiment was arranged in a randomized complete block design, with nine treatments and four replications, represented by five N rates: 0, 55, 95, 135 and 175 kg ha -1 N, 15 kg of N applied at sowing, and the remaining amount in different split-applications: 40 and 80 kg ha -1 applied in single rates in the 8-leaf stage or half in the 4-leaf stage + half in the 8-leaf stage; 120 kg ha -1 split in 1/2 + 1/2 or 1/3 + 1/3 + 1/3 in the 4, 8 or 12-leaf stage; 160 kg ha-1 split in 1/4 + 3/8 + 3/8 or 1/4 + 1/4 + 1/4 + 1/4 in the 4, 8, 12-leaf stages or at flowering and pollination. The N fertilizer use by corn was, on average, 39 %, and the soil was the main source of the nutrient for the crop. With three split applications of 135 kg ha-1 N, until 8 leaves, the N fertilizer use is most efficient (52 %) and the grain yield highest (author)

  19. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  20. Quantification Of 15N Internal Transformation To Assess Nitrogen Supply Capacity In Deforested Soil

    International Nuclear Information System (INIS)

    Handayani, I.P.; Prawito, P.; Sisworo, E.L.

    2002-01-01

    Quantification of deforested soil's capacity to supply available N via mineralization and immobilization using 15N pool dilution is crucial to make fertilizer recommendation. The objective of this research was to measure the soil's capacity to minemlize and ilmnobilize N, so that the actual value of available N released by soil can be predicted. The results showed that Imperata grassland released the highest available N (amonium + nitrate) about 33.93 mg/kg/d and can immobilize 11.68 mg/kg/d of N. On the other hand, agriculture lields had the lowest inorganic N by nearly 23.15 mg/kg/d, and no immobilization occurred. The implication is that agriculture fields have a very low labile and stabile pool N (nearly 0), while Imperata grassland have capacity to store more pool N into labile or stabil pool (about 34%). In conclusion, dynamics of N cycling in ecosystem are dependent upon the content of pool C-N utilized by microorganisms and plants

  1. Stellar Origin of 15N-rich Presolar SiC Grains of Type AB: Supernovae with Explosive Hydrogen Burning

    International Nuclear Information System (INIS)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Pignatari, Marco

    2017-01-01

    We report C, N, and Si isotopic data for 59 highly 13 C-enriched presolar submicron- to micron-sized SiC grains from the Murchison meteorite, including eight putative nova grains (PNGs) and 29 15 N-rich ( 14 N/ 15 N ≤ solar) AB grains, and their Mg–Al, S, and Ca–Ti isotope data when available. These 37 grains are enriched in 13 C, 15 N, and 26 Al with the PNGs showing more extreme enhancements. The 15 N-rich AB grains show systematically higher 26 Al and 30 Si excesses than the 14 N-rich AB grains. Thus, we propose to divide the AB grains into groups 1 ( 14 N/ 15 N < solar) and 2 ( 14 N/ 15 N ≥ solar). For the first time, we have obtained both S and Ti isotopic data for five AB1 grains and one PNG and found 32 S and/or 50 Ti enhancements. Interestingly, one AB1 grain had the largest 32 S and 50 Ti excesses, strongly suggesting a neutron-capture nucleosynthetic origin of the 32 S excess and thus the initial presence of radiogenic 32 Si ( t 1/2 = 153 years). More importantly, we found that the 15 N and 26 Al excesses of AB1 grains form a trend that extends to the region in the N–Al isotope plot occupied by C2 grains, strongly indicating a common stellar origin for both AB1 and C2 grains. Comparison of supernova models with the AB1 and C2 grain data indicates that these grains came from supernovae that experienced H ingestion into the He/C zones of their progenitors.

  2. Studies on the protein and amino acid metabolism of laying hens using 15N-labelled casein. 8

    International Nuclear Information System (INIS)

    Richter, G.

    1977-01-01

    Four colostomized Leghorn hens were fed, during 6 days, 15 N-labelled casein as sole protein source. Two animals were slaughtered 48 hours, the other two 144 hours after the last 15 N-application. The share of TCE-soluble N in total N averaged 16% for the body parts analysed, i.e. meat, bone, liver, kidneys, oviducts, residual viscera and other. The variation of the lysine, histidine and arginine levels in the body parts ranged from 3.6 to 7.9 g, 1.1 to 3.7 g and 6.4 to 7.4 g in 16.7 g hydrolysate N, respectively. Except for feathers, the analysed body parts contained an excess amount of heavy nitrogen. The degree of labelling was found to depend on the time of slaughtering after the tracer application. In the liver and in the oviduct being metabolically active organs, the 15 N-excess in the total N fraction decreased by 45% between the 2nd and the 6th days after 15 N-feeding, whilst in the meat it went down by 20%. The decline of the 15 N-concentration in the TCE-soluble N compounds was faster than in the total N-fraction. Out of the body samples analysed, the lysine of the liver having 0.26 atom% 15 N-excess was found to be more strongly labelled in hens 1 and 2. The amino acid arginine reached about the same level of labelling, the 15 N-frequency of histidine being the lowest. (author)

  3. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    Popelis, Yu.Yu.; Liepin'sh, E.E.; Lukevits, E.Ya.

    1986-01-01

    The 1 H, 13 C, and 15 N NMR spectra of 15 N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1 H- 1 H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13 C- 15 N SSCC were determined for 5-trimethylsilylfurfural oxime

  4. Biosynthesis of agmatine in isolated mitochondria and perfused rat liver: studies with 15N-labelled arginine

    Science.gov (United States)

    2005-01-01

    An important but unresolved question is whether mammalian mitochondria metabolize arginine to agmatine by the ADC (arginine decarboxylase) reaction. 15N-labelled arginine was used as a precursor to address this question and to determine the flux through the ADC reaction in isolated mitochondria obtained from rat liver. In addition, liver perfusion system was used to examine a possible action of insulin, glucagon or cAMP on a flux through the ADC reaction. In mitochondria and liver perfusion, 15N-labelled agmatine was generated from external 15N-labelled arginine. The production of 15N-labelled agmatine was time- and dose-dependent. The time-course of [U-15N4]agmatine formation from 2 mM [U-15N4]arginine was best fitted to a one-phase exponential curve with a production rate of approx. 29 pmol·min−1·(mg of protein)−1. Experiments with an increasing concentration (0– 40 mM) of [guanidino-15N2]arginine showed a Michaelis constant Km for arginine of 46 mM and a Vmax of 3.7 nmol·min−1·(mg of protein)−1 for flux through the ADC reaction. Experiments with broken mitochondria showed little changes in Vmax or Km values, suggesting that mitochondrial arginine uptake had little effect on the observed Vmax or Km values. Experiments with liver perfusion demonstrated that over 95% of the effluent agmatine was derived from perfusate [guanidino-15N2]arginine regardless of the experimental condition. However, the output of 15N-labelled agmatine (nmol·min−1·g−1) increased by approx. 2-fold (P<0.05) in perfusions with cAMP. The findings of the present study provide compelling evidence that mitochondrial ADC is present in the rat liver, and suggest that cAMP may stimulate flux through this pathway. PMID:15656789

  5. Glacial–interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements

    Directory of Open Access Journals (Sweden)

    E. Capron

    2013-05-01

    Full Text Available Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial–interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML – a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas–ice depth offset during the Laschamp event (~41 ka and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model–δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification

  6. Indirect measurement of the 15N(p,α)12C reaction cross section through the THM

    International Nuclear Information System (INIS)

    Romano, S.; La Cognata, M.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Lamia, L.; Musumarra, A.; Tribble, R.; Trache, C.L.; Fu, C.

    2005-01-01

    Among the reactions of the stellar CNO cycle, the 15 N(p,α) 12 C plays a crucial role. In particular its reaction rate is important for understanding the CNOI escape towards CNOII. Thus it is important to study its bare nucleus cross section at the energies typical of such astrophysical environments, i.e. few tens of keV. At these energies such a measurement is hard to perform in a direct way because of the electron screening effect as pointed out for several cases. A possibility is then given by indirect methods and in particular the Trojan Horse Method (THM) has been applied in this case. The preliminary validity test for the study of 15 N(p,α) 12 C via the 15 N(d,α 12 C)n three body reaction is reported in this work. A 15 N beam was provided by the cyclotron at Texas A and M University with energy 60 MeV/c and delivered onto a CD 2 target. A ΔE/E telescope (PSD + ionization chamber) and a pair of PSD's were mounted in a coplanar geometry. Coincidences between the detectors were considered and the 15 N-p quasi-free contribution to the overall three-body cross-section was selected. Data analysis and preliminary results will be discussed and compared with direct data. (author)

  7. Isotopic evaluations of dynamic and plant uptake of N in soil amended with 15N-labelled sewage sludge

    International Nuclear Information System (INIS)

    Kchaou, R.; Khelil, M. N.; Rejeb, S.; Gharbi, F.; Henchi, B.; Hernandez, T.; Destain, J. P.

    2010-01-01

    Field experiments were conducted to evaluate the use of a novel 15N isotope technique for comparing the dynamics of N derived from sewage sludge applied to sorghum to the dynamics of N derived from the commercial fertilizer, urea. The treatments included a control, sludge applied at three rates (3, 6 and 9 t/ha, or 113, 226 and 338 kg N/ha) and N-urea applied at three rates (150, 250 and 350 kg N/ha). Recovery of 15N -labelled sludge was similar for the different nitrogen rates applied , with a mean value of 27%. However, the recovery of 15N -urea decreased as the rate of N application increased (from 38% to 27%). Approximately 22% and 19% of the 15N from sludge and urea, respectively, remained in the 0-60 cm layer of soil, most of which was present in the 0-20 cm layer. Furthermore, losses of 15N -labelled fertilizer were not affected by the N fertilization source, and the greatest losses, which were measured in response to the highest N application rate, were 59%. (authors)

  8. δ 15N Studies of Nitrogen Use by the Red Mangrove, Rhizophora mangle L. in South Florida

    Science.gov (United States)

    Fry, B.; Bern, A. L.; Ross, M. S.; Meeder, J. F.

    2000-02-01

    To help define nitrogen (N) sources and patterns of N processing in mangrove ecosystems, mangrove leaf nitrogen contents and δ 15N values were assayed in three marshes along the south Florida coast. In each marsh, leaf samples were collected from dwarf mangroves at interior locations and taller mangroves at the ocean fringe. Leaf % N and δ 15N values did not differ consistently between dwarf and tall mangroves, even though there were large variations in δ 15N (18‰ range, -5 to +13‰) and % N (1·2% range, 0·9-2·1%). Highest % N and δ 15N values occurred along the western margin of Biscayne Bay where canals draining agricultural lands deliver high-nitrate waters to fringing mangrove marshes. High mangrove δ 15N values may be good biomonitors of anthropogenic N loading to south Florida estuaries. Lower values likely reflect less anthropogenic N entering the mangrove marshes, as well as differences in plant physiology that occur along the fringe-dwarf gradient.

  9. Exploring the nitrogen ingestion of aphids--a new method using electrical penetration graph and (15N labelling.

    Directory of Open Access Journals (Sweden)

    Franziska Kuhlmann

    Full Text Available Studying plant-aphid interactions is challenging as aphid feeding is a complex process hidden in the plant tissue. Here we propose a combination of two well established methods to study nutrient acquisition by aphids focusing on the uptake of isotopically labelled nitrogen ((15N. We combined the Electrical Penetration Graph (EPG technique that allows detailed recording of aphid feeding behaviour and stable isotope ratio mass spectrometry (IRMS to precisely measure the uptake of nitrogen. Bird cherry-oat aphids Rhopalosiphum padi L. (Hemiptera, Aphididae fed for 24 h on barley plants (Hordeum vulgare L., cultivar Lina, Poaceae that were cultivated with a (15N enriched nutrient solution. The time aphids fed in the phloem was strongly positive correlated with their (15N uptake. All other single behavioural phases were not correlated with (15N enrichment in the aphids, which corroborates their classification as non-feeding EPG phases. In addition, phloem-feeding and (15N enrichment of aphids was divided into two groups. One group spent only short time in the phloem phase and was unsuccessful in nitrogen acquisition, while the other group displayed longer phloem-feeding phases and was successful in nitrogen acquisition. This suggests that several factors such as the right feeding site, time span of feeding and individual conditions play a role for the aphids to acquire nutrients successfully. The power of this combination of methods for studying plant-aphid interactions is discussed.

  10. Use of 15N enriched plant material for labelling of soil nitrogen in legume dinitrogen fixation experiments

    International Nuclear Information System (INIS)

    Jensen, E.S.

    1989-06-01

    The soil nitrogen in a field plot was labelled with nitrogen-15 (15N) by incorporating labelled plant material derived from previous experiments. The plot was used the following 3 years for determination of the amount of N2 fixed by different leguminous plants. The atom % 15N excess in grains of cereals grown as reference crops was 0.20, 0.05 and 0.03 in the 3 years, respectively. In the first year the level of enrichment was adequate for estimating symbiotic nitrogen fixation. In the second and third year lack of precision in determination of the 15N/14N ratios of legume N, may have caused an error in estimates of nitrogen fixation. About 23% of the labelled N was taken up by plants during the 3 years of cropping; after 4 years about 44% of the labelled N was found still to be present in the top soil. The labelling of the soil nitrogen with organic bound 15N, compared to adding mineral 15N at sowing, is advantageous because the labelled N is released by mineralization so that the enrichment of the plant available soil N pool become more uniform during the growth season; and high levels of mineral N, which may depress the fixation process, is avoided. (author) 7 tabs., 1 ill., 30 refs

  11. The use of 15N-labelled dinitrogen in the study of nitrogen fixation by blue-green algae

    International Nuclear Information System (INIS)

    Jones, J.

    1985-01-01

    Prior to the development of the acetylene reduction technique 15 N was used as the main qualitative and quantitative measure of nitrogen fixation by free-living cyanobacteria in a variety of aquatic and terrestrial habitats. Despite its expense and the technical difficulty, 15 N is a major tool in the study of cyanobacteria, for example, incorporation of 15 N 2 is the definitive test for nitrogen fixation; it is used in the determination of the correct ratio of acetylene reduction to nitrogen fixation, in in situ nitrogen fixation assays, in tracing the formation and fate of extra-cellular nitrogen and in measuring the turnover and grazing rates of cyanobacterial intra-cellular nitrogen. These latter studies show that 15 N-labelled extra-cellular nitrogen can serve as nitrogen sources for a variety of bacteria, fungi, algae and higher plants, and that cyanobacteria are graced and digested by a variety of animals. The turnover rates of cyanobacterial 15 N-labelled cells are dependent on the type of cell, species, environmental conditions and the availability of degrading organisms. The breakdown products are rapidly mineralised and used as nitrogen sources by higher plants. (author)

  12. Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in /sup 15/N natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Amarger, N; Durr, J C; Bourguignon, C; Lagacherie, B [INRA Centre de Recherches de Dijon, 21 (France). Lab. de Microbiologie des Sols; Mariotti, A; Mariotti, F [Paris-6 Univ., 75 (France). Lab. de Geologie Dynamique

    1979-07-01

    The use of variations in natural abundance of /sup 15/N between nitrogen fixing and non nitrogen fixing soybeans was investigated for quantitative estimate of symbiotic nitrogen fixation. Isotopic analysis of 4 varieties of inoculated and non-inoculated soybeans growing under field conditions, with and without N-fertilizer was determined. It was found that inoculated soybeans had a significantly lower /sup 15/N content than non-inoculated ones. Estimates of the participation of fixed N to the total nitrogen content of inoculated soybeans were calculated from these differences. They were compared to estimates calculated from differences in N yield between inoculated and non-inoculated plants and to the nitrogenase activity, measured by the C/sub 2/H/sub 2/ reduction assay over the growing season. Estimates given by the /sup 15/N measurements were correlated with the C/sub 2/H/sub 2/ reducing activity but not with the differences in the N yield. This shows that the isotopic composition was dependent on the amount of fixed nitrogen and consequently that the estimates of fixed nitrogen based on natural /sup 15/N abundance should be reliable. The absence of correlation between estimates based on /sup 15/N content and estimates based on N yield was explained by differences in the uptake of soil nitrogen between inoculated and non inoculated soybeans.

  13. First Measurement of the 14N/15N Ratio in the Analog of the Sun Progenitor OMC-2 FIR4

    Science.gov (United States)

    Kahane, Claudine; Jaber Al-Edhari, Ali; Ceccarelli, Cecilia; López-Sepulcre, Ana; Fontani, Francesco; Kama, Mihkel

    2018-01-01

    We present a complete census of the 14N/15N isotopic ratio in the most abundant N-bearing molecules toward the cold envelope of the protocluster OMC-2 FIR4, the best known Sun progenitor. To this scope, we analyzed the unbiased spectral survey obtained with the IRAM 30 m telescope at 3, 2, and 1 mm. We detected several lines of CN, HCN, HNC, HC3N, N2H+, and their respective 13C and 15N isotopologues. The lines’ relative fluxes are compatible with LTE conditions, and moderate line opacities have been corrected via a population diagram method or theoretical relative intensity ratios of the hyperfine structures. The five species lead to very similar 14N/15N isotopic ratios, without any systematic difference between amine- and nitrile-bearing species as previously found in other protostellar sources. The weighted average of the 14N/15N isotopic ratio is 270 ± 30. This 14N/15N value is remarkably consistent with the [250–350] range measured for the local galactic ratio but significantly differs from the ratio measured in comets (around 140). High-angular resolution observations are needed to examine whether this discrepancy is maintained at smaller scales. In addition, using the CN, HCN, and HC3N lines, we derived a 12C/13C isotopic ratio of 50 ± 5.

  14. Ultra-violet absorption cross sections of isotopically substituted nitrous oxide species: 14N14NO, 15N14NO, 14N15NO and 15N15NO

    Directory of Open Access Journals (Sweden)

    P. von Hessberg

    2004-01-01

    Full Text Available The isotopically substituted nitrous oxide species 14N14NO, 15N14NO, 14N15NO and 15N15NO were investigated by ultra-violet (UV absorption spectroscopy. High precision cross sections were obtained for the wavelength range 181 to 218nm at temperatures of 233 and 283K. These data are used to calculate photolytic isotopic fractionation constants as a function of wavelength. The fractionation constants were used in a three-dimensional chemical transport model in order to simulate the actual fractionation of N2O in the stratosphere, and the results were found to be in good agreement with field studies.

  15. Dynamics of nitrogen in an oxic paleudalf soil with the incorporation of 15N-tagged organic nitrogen (maize straw) and 15N-tagged mineral nitrogen (ammonium sulphate)

    International Nuclear Information System (INIS)

    Freitas, J.R. de.

    1984-12-01

    An experiment, carried out under field conditions in 12 lysimeters, each containing 3.0 ton of Oxic Paleudalf soil with four replicates, is described. This objective is labelling soil organic N. Nitrogen was incorporated into soil as maize straw, non-labelled and labelled with 15 N and ammonium sulphate - 15 N. The soil was sampled every 15 days in three different depths. N as NH + 4 , NO - 3 , total-N and (%)C and (%) moisture was analysed. (M.A.C.) [pt

  16. New method for quality testing of food proteins for the maintenance metabolism. 1. Studies of urinary /sup 15/N excretion by /sup 15/N-labelled young rats fed with various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, H; Bergner, U; Adam, K [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1978-05-01

    Over a period of 7 days 38 Wistar rats received supplements of /sup 15/N in the form of ammonium acetate added to a casein methionine diet. From the 8th day groups of 4 or 5 rats were fed different protein diets (115 kcal per kg body weight sup(0.75)) over a 5-day period. The relationship between /sup 15/N excreted via urine and the quantity of N absorbed from the food protein was used for determining the protein quality under conservation conditions. The following order of protein quality was found: fish meal, casein, wheat, whole egg, soybean, yeast, pea, and gelatin.

  17. New method for quality testing of food proteins for the maintenance metabolism. I. Studies of urinary /sup 15/N excretion by /sup 15/N-labelled young rats fed with various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, H; Bergner, U; Adam, K [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1978-05-01

    Over a period of 7 days 38 Wistar rats received supplements of /sup 15/N in the form of ammonium acetate added to a casein methionine diet. From the 8th day groups of 4 or 5 rats were fed different protein diets (115 kcal per kg body weight sup(0.75)) over a 5-day period. The relationship between /sup 15/N excreted via urine and the quantity of N absorbed from the food protein was used for determining the protein quality under conservation conditions. The following order of protein quality was found: fish meal, casein, wheat, whole egg, soybean, yeast, pea, and gelatin.

  18. Utilization of residual nitrogen (15N) from cover crop and urea by corn

    International Nuclear Information System (INIS)

    Silva, Edson Cabral da; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze; Buzetti, Salatier; Veloso, Marcos Emanuel da Costa

    2006-01-01

    The majority of N from mineral fertilizers and cover crops is usually not used by the very next corn crop, but can be absorbed by follow-up crops. The objective of this study was to evaluate the use of residual nitrogen from urea, sunnhemp (Crotalaria juncea) and millet (Pennisetum americanum) labeled with 15 N, applied to no-tillage corn in the previous growing season, in a Red Latosol of the Cerrado. The study was conducted in an experimental farm of the Sao Paulo State University (UNESP), Ilha Solteira, in Selviria county (MS), Brazil, in different areas. The experiment had a randomized complete block design, with 15 treatments and four replications. Treatments were applied to corn crop in the 2001/02 and 2003/04 growing seasons. They were distributed in a 3 x 5 factorial layout, representing the combination of three cover crops: sunnhemp, millet and spontaneous vegetation (fallow) and five N rates (as urea): 0, 30, 80, 130, and 180 kg ha-1 of N. After corn harvest, the two areas were followed in the dry season and were followed by corn crop in the 2002/03 (experiment 1) and 2003/04 (experiment 2) growing seasons, using the same fertilizer rate on all plots to distinguish the residual effect of N sources. The average use of residual N from the millet and sunnhemp residues (above-ground part) by corn crop was less than 3.5 and 3 %, respectively, of the initial amount. The corn uptake of residual N from urea increased in a quadratic manner in experiment 1 and linearly in experiment Two as a response to the applied N rates, and the recover was below 3 %. The cover crop type did not affect the use of residual N of urea by corn, and vice-versa. (author)

  19. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    Science.gov (United States)

    Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  20. Using {sup 15}N to study the effect of additament on N balance of urea

    Energy Technology Data Exchange (ETDEWEB)

    Jiarong, Pan; Xianfang, Wen; Baojun, Liu; Xingyun, Zheng [Institute for Application of Atomic Energy, Chinese Academy of Agricultural Sciences, Beijing (China)

    1994-08-01

    It was showed that the dry weight and grain yield of rice were 2.3%{approx}12.7% and 1.6%{approx}11.8% higher respectively than those of urea applied alone when urea applied with cow slurry, rare-earth, Maifanshi, calcium chloride and dicyandiamine (DCD). Among the treatments, DCD and Maifanshi increased the nitrogen use efficiency of urea from 4.3 kg grain/kg N applied when urea applied alone to 10.7 kg grain and 12.5 kg grain per kg N applied. It was shown from {sup 15}N tracing experiment that the nitrogen uptake efficiency of urea for rice when applied alone was 20.6% while 25.9, 26.3, 24.0, 28.3 and 27.9% respectively when applied with cow slurry, rare-earth, maifanshi, calcium chloride and DCD. Application of urea with above various materials contributed to a apparent effect on increase of nitrogen residue in soil and nitrogen loss (particularly in loss by air) from urea, among which , the best effect was obtained on nitrogen residue in soil from urea when applied with cow slurry and rare-earth, the residues were 30.3% and 27.3% of applied nitrogen respectively, and DCD could decrease the nitrogen loss greatly, from 57.5% of applied nitrogen when applied alone to 36.3% of applied nitrogen. It was also showed that the difference of effect on kinetics of soil available nitrogen between one treatment and another was not significant, but significant difference existed in effect of different treatments on loss of soil nitrogen and soil nitrogen mineralization. Compared with labelled urea applied alone, application with cow slurry and DCD resulted in great decrease in loss of soil nitrogen and soil nitrogen mineralization while not apparent effect for application with rare-earth, calcium chloride and Maifanshi. (7 tabs.).

  1. Using 15N to study the effect of additament on N balance of urea

    International Nuclear Information System (INIS)

    Pan Jiarong; Wen Xianfang; Liu Baojun; Zheng Xingyun

    1994-08-01

    It was showed that the dry weight and grain yield of rice were 2.3%∼12.7% and 1.6%∼11.8% higher respectively than those of urea applied alone when urea applied with cow slurry, rare-earth, Maifanshi, calcium chloride and dicyandiamine (DCD). Among the treatments, DCD and Maifanshi increased the nitrogen use efficiency of urea from 4.3 kg grain/kg N applied when urea applied alone to 10.7 kg grain and 12.5 kg grain per kg N applied. It was shown from 15 N tracing experiment that the nitrogen uptake efficiency of urea for rice when applied alone was 20.6% while 25.9, 26.3, 24.0, 28.3 and 27.9% respectively when applied with cow slurry, rare-earth, maifanshi, calcium chloride and DCD. Application of urea with above various materials contributed to a apparent effect on increase of nitrogen residue in soil and nitrogen loss (particularly in loss by air) from urea, among which , the best effect was obtained on nitrogen residue in soil from urea when applied with cow slurry and rare-earth, the residues were 30.3% and 27.3% of applied nitrogen respectively, and DCD could decrease the nitrogen loss greatly, from 57.5% of applied nitrogen when applied alone to 36.3% of applied nitrogen. It was also showed that the difference of effect on kinetics of soil available nitrogen between one treatment and another was not significant, but significant difference existed in effect of different treatments on loss of soil nitrogen and soil nitrogen mineralization. Compared with labelled urea applied alone, application with cow slurry and DCD resulted in great decrease in loss of soil nitrogen and soil nitrogen mineralization while not apparent effect for application with rare-earth, calcium chloride and Maifanshi. (7 tabs.)

  2. Crop Nitrogen Uptake in A Legume-wheat Rotation Using1'5N Methodology

    International Nuclear Information System (INIS)

    Badarneh, D.

    2005-01-01

    Afield experiment was conducted to assess the impact of residual N from legume crops, fertilizer applied N, and fallow on the subsequent wheat production. The experiment was carried out in a randomized complex block design for the years 1993 and 1994. In 1993, barley was planted as a reference crop in legume plots. Micro plots, in both years were treated with 15 N. In 1994, whole plots were planted with wheat. In 1993, the yield of lentil treatments was not significantly different. The wheat yield, responded significantly to N addition. Lentil and chickpea derived 2/3 and 3/4 of their N needs from the atmosphere, respectively. In contrast, wheat derived most of its N needs(90%) from the soil. Water consumption was similar expect for wheat fertilized at low rate of N (179.5 mm). In 1994, wheat yields, the harvesting index and water consumption were not significantly different. Traditional harvesting of lentil and fertilizing wheat at a low rate reduced significantly the N% of wheat bio-mass. The % of N derived from fertilizer (Ndff) by wheat was much higher in 1994 (4.18 to 9.24%), but it was 3.62% for the fallow treatments. The % of N derived from soil (%Ndfs) by wheat 93% in 1994 for wheat planted after legume. The results indicated that legumes depleted soil N under the croping system currently adopted in Jordan, and the benefit of fallow to the subsequent wheat crop is attributed to the increase of soil organic N mineralization. (Author) 35 refs., 3 tabs., 2 figs

  3. Separating the contributions to 15N transverse relaxation in a fibronectin type III domain

    International Nuclear Information System (INIS)

    Meekhof, Alison E.; Freund, Stefan M.V.

    1999-01-01

    In proteins, dynamic mobility is an important feature of structure, stability, and biomolecular recognition. Uniquely sensitive to motion throughout the milli- to picosecond range, rates of transverse relaxation, R2, are commonly obtained for the characterization of chemical exchange, and the construction of motional models that attempt to separate overall and internal mobility. We have performed an in-depth study of transverse relaxation rates of backbone 15N nuclei in TNfn31-90, the third fibronectin type III domain from human tenascin. By combining the results of spin-echo (CPMG) and off-resonance T1ρ experiments, we present R2 rates at effective field strengths of 2 to 40 krad/s, obtaining a full spectrum of 16 independent R2 data points for most residues. Collecting such a large number of replicate measurements provides insight into intrinsic uncertainties. The median standard deviation in R2 for non-exchanging residues is 0.31, indicating that isolated measurements may not be sufficiently accurate for a precise interpretation of motional models. Chemical exchange events on a timescale of 570 μs were observed in a cluster of residues at the C terminus. Rates of exchange for five other residues were faster than the sampled range of frequencies and could not be determined. Averaged 'exchange free' transverse relaxation rates, R20, were used to calculate the diffusion tensor for rotational motion. Despite a highly asymmetric moment of inertia, the narrow angular dispersion of N-H vectors within the β sandwich proves insufficient to define deviations from isotropic rotation. Loop residues provide exclusive evidence for axially symmetric diffusion (Dpar/Dper=1.55)

  4. 15N/14N isotopic ratio and statistical analysis: an efficient way of linking seized Ecstasy tablets

    International Nuclear Information System (INIS)

    Palhol, Fabien; Lamoureux, Catherine; Chabrillat, Martine; Naulet, Norbert

    2004-01-01

    In this study, the 15 N/ 14 N isotopic ratios of 106 samples of 3,4-methylenedioxymethamphetamine (MDMA) extracted from Ecstasy tablets are presented. These ratios, measured using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), show a large discrimination between samples with a range of δ 15 N values between -17 and +19%o, depending on the precursors and the method used in clandestine laboratories. Thus, δ 15 N values can be used in a statistical analysis carried out in order to link Ecstasy tablets prepared with the same precursors and synthetic pathway. The similarity index obtained after principal component analysis and hierarchical cluster analysis appears to be an efficient way to group tablets seized in different places

  5. {sup 15}N/{sup 14}N isotopic ratio and statistical analysis: an efficient way of linking seized Ecstasy tablets

    Energy Technology Data Exchange (ETDEWEB)

    Palhol, Fabien; Lamoureux, Catherine; Chabrillat, Martine; Naulet, Norbert

    2004-05-10

    In this study, the {sup 15}N/{sup 14}N isotopic ratios of 106 samples of 3,4-methylenedioxymethamphetamine (MDMA) extracted from Ecstasy tablets are presented. These ratios, measured using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), show a large discrimination between samples with a range of {delta}{sup 15}N values between -17 and +19%o, depending on the precursors and the method used in clandestine laboratories. Thus, {delta}{sup 15}N values can be used in a statistical analysis carried out in order to link Ecstasy tablets prepared with the same precursors and synthetic pathway. The similarity index obtained after principal component analysis and hierarchical cluster analysis appears to be an efficient way to group tablets seized in different places.

  6. Measurement of nitrogen fixation in beam (Phaseolus vulgaris L.) cv. carioca, using a 15N2 low enrichment method

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Matsui, E.; Saito, S.M.T.; Libardi, P.L.; Salati, E.

    1984-01-01

    A experimental work under field conditions to develop a method to measure atmospheric N 2 -fixation by leguminous plants, using a low enrichment 15 N 2 technique, is carried out. The experiment was developed using a N 2 -fixation measuring chamber on Terra Roxa Estruturada. The beam plants had their aereal part under normal conditions and the rooting system confined, through which a mixture of Ar, O 2 and N 2 labelled with 15 N (1.9% atom excess) was circulated from the 22nd to the 31st day from planting. Samples of the gaseous Ar, O 2 and N 2 mixture were analysed by mass spectrometry to determine 15 N concentrations and O 2 and CO 2 contents. The N 2 -fixed was measured by determination of total-N and isotopic concentration of nitrogen in the plants. (M.A.C.) [pt

  7. Comparison of 15N analysis by optical emission spectrometry and mass spectrometry for clinical studies during total parenteral nutrition

    International Nuclear Information System (INIS)

    Ragon, A.; Reynier, J.P.; Guiraud, G.

    1985-01-01

    During total and stable parenteral nutrition, a branched chain amino acid enriched solution containing [ 15 N]leucine was infused into a patient to determine the fate of the nitrogen administered through this formulation. Measurements of 15 N isotopic enrichments were performed on the same biological samples (urinary urea, total plasma proteins and albumin) by optical emission spectrometry (OES) and mass spectrometry (MS) to determine if OES with its specific advantages (cost, handling maintenance) constituted even with low enrichments a useful alternative technique to MS considered as the reference method. The results show that OES constituted a very useful analytical technique to obtain reliable information in clinical metabolic studies when low 15 N enrichments must be determined. (Auth.)

  8. Stellar Origin of 15N-rich Presolar SiC Grains of Type AB: Supernovae with Explosive Hydrogen Burning

    Science.gov (United States)

    Liu, Nan; Nittler, Larry R.; Pignatari, Marco; O'D. Alexander, Conel M.; Wang, Jianhua

    2017-06-01

    We report C, N, and Si isotopic data for 59 highly 13C-enriched presolar submicron- to micron-sized SiC grains from the Murchison meteorite, including eight putative nova grains (PNGs) and 29 15N-rich (14N/15N ≤ solar) AB grains, and their Mg-Al, S, and Ca-Ti isotope data when available. These 37 grains are enriched in 13C, 15N, and 26Al with the PNGs showing more extreme enhancements. The 15N-rich AB grains show systematically higher 26Al and 30Si excesses than the 14N-rich AB grains. Thus, we propose to divide the AB grains into groups 1 (14N/15N PNG and found 32S and/or 50Ti enhancements. Interestingly, one AB1 grain had the largest 32S and 50Ti excesses, strongly suggesting a neutron-capture nucleosynthetic origin of the 32S excess and thus the initial presence of radiogenic 32Si (t 1/2 = 153 years). More importantly, we found that the 15N and 26Al excesses of AB1 grains form a trend that extends to the region in the N-Al isotope plot occupied by C2 grains, strongly indicating a common stellar origin for both AB1 and C2 grains. Comparison of supernova models with the AB1 and C2 grain data indicates that these grains came from supernovae that experienced H ingestion into the He/C zones of their progenitors.

  9. Diet-tissue stable isotope (Δ(13)C and Δ(15)N) discrimination factors for multiple tissues from terrestrial reptiles.

    Science.gov (United States)

    Steinitz, Ronnie; Lemm, Jeffrey M; Pasachnik, Stesha A; Kurle, Carolyn M

    2016-01-15

    Stable isotope analysis is a powerful tool for reconstructing trophic interactions to better understand drivers of community ecology. Taxon-specific stable isotope discrimination factors contribute to the best use of this tool. We determined the first Δ(13)C and Δ(15)N values for Rock Iguanas (Cyclura spp.) to better understand isotopic fractionation and estimate wild reptile foraging ecology. The Δ(13)C and Δ(15)N values between diet and skin, blood, and scat were determined from juvenile and adult iguanas held for 1 year on a known diet. We measured relationships between iguana discrimination factors and size/age and quantified effects of lipid extraction and acid treatment on stable isotope values from iguana tissues. Isotopic and elemental compositions were determined by Dumas combustion using an elemental analyzer coupled to an isotope ratio mass spectrometer using standards of known composition. The Δ(13)C and Δ(15)N values ranged from -2.5 to +6.5‰ and +2.2 to +7.5‰, respectively, with some differences among tissues and between juveniles and adults. The Δ(13)C values from blood and skin differed among species, but not the Δ(15)N values. The Δ(13)C values from blood and skin and Δ(15)N values from blood were positively correlated with size/age. The Δ(13)C values from scat were negatively correlated with size (not age). Treatment with HCl (scat) and lipid extraction (skin) did not affect the isotope values. These results should aid in the understanding of processes driving stable carbon and nitrogen isotope discrimination factors in reptiles. We provide estimates of Δ(13)C and Δ(15)N values and linear relationships between iguana size/age and discrimination factors for the best interpretation of wild reptile foraging ecology. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Deuterium and 15N fractionation in N2H+ during the formation of a Sun-like star

    Science.gov (United States)

    De Simone, M.; Fontani, F.; Codella, C.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.; López-Sepulcre, A.; Caux, E.; Vastel, C.; Soldateschi, J.

    2018-05-01

    Although chemical models predict that the deuterium fractionation in N2H+ is a good evolutionary tracer in the star formation process, the fractionation of nitrogen is still a poorly understood process. Recent models have questioned the similar evolutionary trend expected for the two fractionation mechanisms in N2H+, based on a classical scenario in which ion-neutral reactions occurring in cold gas should have caused an enhancement of the abundance of N2D+, 15NNH+, and N15NH+. In the framework of the ASAI IRAM-30m large program, we have investigated the fractionation of deuterium and 15N in N2H+ in the best known representatives of the different evolutionary stages of the Sun-like star formation process. The goal is to ultimately confirm (or deny) the classical `ion-neutral reactions' scenario that predicts a similar trend for D and 15N fractionation. We do not find any evolutionary trend of the 14N/15N ratio from both the 15NNH+ and N15NH+ isotopologues. Therefore, our findings confirm that, during the formation of a Sun-like star, the core evolution is irrelevant in the fractionation of 15N. The independence of the 14N/15N ratio with time, found also in high-mass star-forming cores, indicates that the enrichment in 15N revealed in comets and protoplanetary discs is unlikely to happen at core scales. Nevertheless, we have firmly confirmed the evolutionary trend expected for the H/D ratio, with the N2H+/N2D+ ratio decreasing before the pre-stellar core phase, and increasing monotonically during the protostellar phase. We have also confirmed clearly that the two fractionation mechanisms are not related.

  11. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    Science.gov (United States)

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15)N and δ(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15)N (δ(15)N plant - δ(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13)C in hay and δ(15)N in both soil and hay between management types, but showed that δ(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15)N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently

  12. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    Science.gov (United States)

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  13. 15N nitrogen-balance studies in patients with testicular feminization, their relatives, and in normal subjects

    International Nuclear Information System (INIS)

    Zachman, M.; Zagalak, M.; Voellmin, J.A.; Prader, A.

    1975-01-01

    Fourteen subjects (4 with testicular feminization, 2 mothers, 1 aunt and 1 father of these patients, 2 normal women, 2 normal men and 2 normal prepubertal boys) were given 0.1 to 0.2 g/kg of 50 percent 15 N-labeled NH 4 Cl before and after 6 daily injections of testosterone (T) 15 mg/m 2 ). In 24-hour urine specimens collected on the test days, 15 N was calculated from total N (Kjeldahl) and the percentage of 15 N (mass spectrometry or 15 N-analyzer Isocommerz). In all normal subjects, urinary 15 N-balance was influenced positively by T (+31.3 +- 8.4 percent), in prepubertal boys more (+43 to +66 percent) than in women (+20 to +30 percent) and men (+6 to +23). In testicular feminization, 15 N-balance not only failed to become more positive, but was even reduced (-24.7 +- 17.6 percent). The father of a patient had only a slight response (+7 percent) as one of the normal males, probably because of higher endogenous T-levels in adult males. One mother and the aunt had no response (-7.4 to + 1.5 percent). In the mother, the balance became slightly positive (+10 percent) on oral contraceptives. The other mother, who was on estrogen treatment prior to and during the test, had a positive but insufficient change of balance (+17 percent). It is concluded that this test allows detection of patients with testicular feminization and possibly also healthy female carriers. In these cases, estrogen treatment appears to positively influence the response to T

  14. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 5

    International Nuclear Information System (INIS)

    Gruhn, K.; Zander, R.; Kirchner, E.

    1987-01-01

    12 colostomized laying hens which received 15 N-labelled wheat over 4 days were butchered 12 h, 36 h, and 108 h (3 animals each) after the last 15 N application. The intake of 15 N exess ( 15 N') from the wheat amounted to 540 mg 15 N' during the application period. The 15 N' in the blood plasma decreased after the last 15 N' application from 0.76 atom-% to 0.55 atom-% after 108 h, the labelling of the corpuscular components at the same measuring points increased from 0.28 to 0.50 atom-% 15 N'. 96.6% of the plasma 15 N' and 93,8% of that in the corpuscles is precipitable in trichloroacetic acid. The atom-% 15 N' of histidine in the total blood remained unchanged in dependence on the butchering time. The 15 N amount in lysine and arginine and that in the non-basic amino acids decreased inconsiderably in the period between 12 h and 108 h after the last 15 N' wheat feeding. (author)

  15. Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15N tracer addition

    Science.gov (United States)

    Patrick J. Mulholland; Jennifer L. Tank; Diane M. Sanzone; Wilfrid M. Wollheim; Bruce J. Peterson; Jackson R. Webster; Judy L. Meyer

    2000-01-01

    Trophic relationships were examined using natural-abundance 13C and 15N analyses and a 15N-tracer addition experiment in Walker Branch, a 1st-order forested stream in eastern Tennessee. In the 15N-tracer addition experiment, we added 15NH4...

  16. 15N Kinetic Analysis of N2O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification

    OpenAIRE

    Poth, Mark; Focht, Dennis D.

    1985-01-01

    A series of 15N isotope tracer experiments showed that Nitrosomonas europaea produces nitrous oxide only under oxygen-limiting conditions and that the labeled N from nitrite, but not nitrate, is incorporated into nitrous oxide, indicating the presence of the “denitrifying enzyme” nitrite reductase. A kinetic analysis of the m/z 44, 45, and 46 nitrous oxide produced by washed cell suspensions of N. europaea when incubated with 4 mM ammonium (99% 14N) and 0.4 mM nitrite (99% 15N) was performed....

  17. The analysis of 15N/14N ratios in natural samples, with emphasis on nitrate and ammonium in precipitation

    International Nuclear Information System (INIS)

    Heaton, T.H.E.; Collett, G.M.

    1985-01-01

    The nitrogen cycle is one of the most important of the earth's elemental cycles. The report describes the procedures used for the analysis of 15 N/ 14 N ratios in ammonium and nitrate (and organic nitrogen), and summaries without discussion the data obtained for precipitation (by rain and dust) collected at the Council for Scientific and Industrial Research site. The 15 N/ 14 N ratios of nitrogen compounds were determined on N2 gas. This was measured by means of a mass spectrometer. The isotopic analysis of organic nitrogen were conducted in two ways: Kjeldahl digestion to form ammonium, and Dumas combustion directly to N2

  18. Nitrogen mineralization from selected 15N-labelled crop residues and humus as affected by inorganic nitrogen

    International Nuclear Information System (INIS)

    Santos, J.A.

    1987-01-01

    The use of cover crops or crop residues as a source of N to succeeding crops has become a matter of increasing importance for economic and environmental reason. Greenhouse and field studies were conducted to determine the N contribution of four 15 N labelled crop residues, rye (Secale cereale L.), wheat (Triticum aestivum L.), crimson clover (Trifolium encarnatum L.), and hairy vetch (Vicia sativa L.), to successive crops and to evaluate the effect of different organic (ON) and inorganic N (IN) combinations on mineralization of the above residues. Total 15 N recovery from the residues ranged from 51% to 85% and 4% to 74% for the greenhouse and field studies, respectively

  19. Prototropic tautomerism of 5-nitrobenzimidazole derivatives in {sup 1}H, {sup 13}C and {sup 15}N NMR spectra; Tautomeria prototropowa pochodnych 5-nitrobenzimidazolu w widmach {sup 1}H, {sup 13}C, {sup 15}N NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wiench, J W; Bocian, W; Stefaniak, L [Inst. Chemii Organicznej, Polska Akademia Nauk, Warsaw (Poland)

    1994-12-31

    NMR spectra of 5-nitrobenzimidazole derivatives in DMSO solution show the fast exchange of protons. The line broadening in {sup 1}H,{sup 13}C and {sup 15}N spectra have been observed. The interpretation of the spectra has been done basing on chemical shifts values and couplings between nuclei in the investigated derivatives. 3 refs, 2 figs, 3 tabs.

  20. Refining Soil Test Calibration and Nitrogen Recommendation in Corn through 15N Isotope Tracer Technique

    International Nuclear Information System (INIS)

    Rallos, Roland V.

    2015-01-01

    Soil test serve as a baseline to efficiently manage the fertilizer inputs and determine excess nutrients that may cause adverse impact to human health and the environment. The ever increasing fertilizer prices and application inefficiency raised concerns to re-evaluate and redesigned the current crop cultural management to increase its efficiency and productivity. Additionally, with the intensification of farming methods, corn varietal improvement, soil degradations, climate change among many others, the earlier fertilizer recommendations may not be sufficient enough to match with the crop’s fertilizer requirements. The use of 15N isotope tracer techniques in nutrient management research implies important benefits than any existing conventional methodologies. This technology provides enormous advantages because it permits a direct quantitative measurement of the crop nutrient utilization under the influence of varied factors of the environment. Hence, this technique was used to understand N dynamics and fertilizer N-use efficiency (FNUE) in corn grown under different soil fertility levels during wet and dry season productions. This allows us to follow the fate and accurately quantify the contribution of different N pools to the crops N nutrition. Results showed that the fertilizer rates for optimum corn yield under low soil N was observed at 180 kg N ha-1 during dry season while 90 kg N ha-1 during wet season production. While for medium and high N soil, the optimum production yield was noted in 45 kg N ha-1 both in dry and wet season productions. Economic optimum nitrogen recommendations (EONR) were also calculated following the quadratic crop response model. In all cases, EONR for dry season productions are much higher compared to wet season production. Generally, high chlorophyll content was observed at higher fertilizer levels. In addition, more than half of the plant N was taken directly from the added fertilizer during the early stage (30-60 days after

  1. Leaching and mass balance of 15N-labeled urea applied to a Kentucky bluegrass turf

    International Nuclear Information System (INIS)

    Miltner, E.D.; Branham, B.E.; Paul, E.A.; Rieke, P.E.

    1996-01-01

    The fate of urea applied to Kentucky bluegrass (Poa pratensis L.) turf was studied over a 2-yr period using a combination of intact monolith lysimeters and small plots. Soil type was a Marlette fine sandy loam (fine-loamy mixed mesic Glossoboric Hapludalfs). Urea was applied at a rate of 196 kg N ha-1 yr-1 in five equal applications of 39.2 kg N ha-1, using two application schedules. Treatments were fertilized at approximately 38-d intervals with the 'Spring' treatment fertilized from late April through late September and the 'Fall' treatment from early June through early November. In 1991 only, the April and November applications used 15N-labeled urea (LFN). For the Spring treatment, 31% of LFN was recovered from thatch at 18 DAT. This value remained constant for the next year, then gradually declined to 20% after 2 yr. Only 8% of the LFN was recovered from soil at 18 DAT and increased to only 20% 2 yr after application. Approximately 35% of the LFN was harvested in clippings over 2 yr. Through May 1993 (748 DAT), LFN in leachate totaled 0.18% of the amount applied. For the Fall treatment, 62% of the LFN was recovered from thatch d 18 DAT. This value declined to 35% by the following June. LFN in soil increased from 12% to 25% over 2 yr. Approximately 38% of the LFN was harvested in clippings over 2 yr. Total leachate LFN recovery was 0.23% over the 2-yr period. Total recovery of LFN was 64 and 81% for the Spring and Fall treatments, respectively, suggesting volatile losses of N. Whether the N was applied in the spring or late fall, rapid uptake and immobilization of the LFN resulted. A maximum of 25% of applied LFN was recovered in the soil from either application timing at any time over the 2 yr of the experiment. A well-maintained turf intercepts and immobilizes LFN quickly making leaching an unlikely avenue of N loss from a turf system

  2. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    Science.gov (United States)

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.

  3. Enrichment of 15N and 18O by chemical exchange reactions between nitrogen oxides (NO, NO2) and aqueous nitric acid

    International Nuclear Information System (INIS)

    Abrudean, M.; Axente, D.; Baldea, A.

    1981-01-01

    The enrichment of 15 N and 18 O by chemical exchange in the NO, NO 2 -H 2 O, HNO 3 system is described. A laboratory experimental plant and a cascade for producing the two isotopes has been used. The production plant consists of two exchange columns for 15 N separation and two 18 O separation columns feeded with nitrogen oxides, depleted of 15 N, from the top of the first 15 N separation column. The by-products nitric acid and sulphuric acid, both depleted of 15 N and 18 O, are of commercial interest. (author)

  4. Application of the bidimensional ion-exchange chromatography for the laboratory preparation of different 15N enrichments and depletions

    International Nuclear Information System (INIS)

    Farjo, K.

    1989-01-01

    The ion-exchange application of the bidimensional solid/liquid technique for the preparation of different 15 N-abundances utilizing the isotope exchange system NH 4 + /NH 3 · aq is reported and the application of the technique for the separation of nitrogen isotopes is briefly discussed. (author)

  5. Fertilizer nitrogen prescription for cotton by 15N recovery method under integrated nutrient management using soil test crop response function

    International Nuclear Information System (INIS)

    Arulmozhiselvan, K.; Govindaswamy, M.; Chellamuthu, S.

    2007-01-01

    Fertilizer efficiency is a vital parameter in prescription functions to compute fertilizer requirements of crops for achieving a specific yield target. In Soil Test Crop Response (STCR) function, nitrogen fertilizer efficiency is calculated by Apparent N Recovery (ANR) method, which includes the effect of added N interaction (ANI) on soil N reserves. In order to exclude soil effect and refine STCR function, the real efficiency of fertilizer N was estimated by 15 N recovery method. By fitting 15 N recovery in the function, the fertilizer N required for a specific yield target of cotton was estimated. The estimated N requirement by 15 N recovery method was lesser than ANR method when available soil N relatively increased. The approach also fine-tuned the N contributing efficiency of soil, farmyard manure and Azospirillum under Integrated Nutrient Management (INM). For achieving 25 q of seed cotton yield in a soil having 220 kg of available N ha -1 , the predicted N requirement was 159 kg ha -1 under ANR method, whereas in 15 N recovery method fertilizer N to be applied was 138 kg ha -1 with urea alone and 79 kg ha -1 with urea + FYM + Azospirillum. (author)

  6. Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G

    International Nuclear Information System (INIS)

    Cai Ling; Kosov, Daniel S.; Fushman, David

    2011-01-01

    We performed density functional calculations of backbone 15 N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3. The applicability of several computational models developed previously (Cai et al. in J Biomol NMR 45:245–253, 2009) to compute 15 N shielding tensors of alpha-helical residues is assessed. We show that the proposed quantum chemical computational model is capable of predicting isotropic 15 N chemical shifts for an entire protein that are in good correlation with experimental data. However, the individual components of the predicted 15 N shielding tensor agree with experiment less well: the computed values show much larger spread than the experimental data, and there is a profound difference in the behavior of the tensor components for alpha-helix/turns and beta-sheet residues. We discuss possible reasons for this.

  7. Use of 15N Natural Abundance and N Species Concentrations to Assess N-Cycling in Constructed and Natural Coastal

    International Nuclear Information System (INIS)

    Aelion, W.C.M.; Engle, M.R.; Aelion, W.C.M.; Ma, H.

    2010-01-01

    Natural abundance of N stable isotopes used in combination with concentrations may be useful indicators of N-cycling in wetlands. Concentrations and 15 N signatures of NO 3 -, NH 4 and sediment organic nitrogen (SON) were measured in two impacted coastal golf course retention ponds and two natural marshes. Limited NO 3 was detected in natural site surface water or pore water, but both isotopic signature and concentrations of NO 3 - in surface water of impacted sites indicated anthropogenic inputs. In natural sites, NH 4 concentrations were greatest in deeper pore water and least in surface water, suggesting diffusion predominates. The natural sites had greater % SON, and 15 N indicated that the natural sites also had greater NH 4 + released from SON mineralization than impacted sites. In NO 3 --limited systems, neither concentrations nor 15 N natural abundance was able to provide information on N-cycling, while processes associated with NH 4 + were better elucidated by using both concentrations and 15 N natural abundance

  8. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem delta15N.

    Science.gov (United States)

    Averill, Colin; Finzi, Adrien

    2011-04-01

    It is hypothesized that decreasing mean annual temperature and rates of nitrogen (N) cycling causes plants to switch from inorganic to organic forms of N as the primary mode of N nutrition. To test this hypothesis, we conducted field experiments and collected natural-abundance delta15N signatures of foliage, soils, and ectomycorrhizal sporocarps along a steep elevation-climate gradient in the White Mountains, New Hampshire, USA. Here we show that with increasing elevation organic forms of N became the dominant source of N taken up by hardwood and coniferous tree species based on dual-labeled glycine uptake analysis, an important confirmation of an emerging theory for the biogeochemistry of the N cycle. Variation in natural abundance foliar delta15N with elevation was also consistent with increasing organic N uptake, though a simple, mass balance model demonstrated that the uptake of delta15N depleted inorganic N, rather than fractionation upon transfer of N from mycorrhizal fungi, best explains variations in foliar delta15N with elevation.

  9. Improved diffusion technique for 15N:14N analysis of ammonium and nitrate from aqueous samples by stable isotope spectrometry

    International Nuclear Information System (INIS)

    Goerges, T.; Dittert, K.

    1998-01-01

    Nitrogen (N) isotope ratio mass spectrometry (IRMS) by Dumas combustion and continuous flow mass spectrometry has become a wide-spread tool for the studies of N turnover. The speed and labor efficiency of 15N determinations from aqueous solutions such as soil solutions or soil extracts are often limited by sample preparation. Several procedures for the conversion of dissolved ammonium (NH4+) or nitrate NO3- to gaseous ammonia and its subsequent trapping in acidified traps have been elaborated in the last decades. They are based on the use of acidified filters kept either above the respective solution or in floating PTFE envelopes. In this paper, we present an improved diffusion method with a fixed PTFE trap. The diffusion containers are continuously kept in a vertical rotary shaker. Quantitative diffusion can thus be achieved in only three days. For solutions with NH4+ levels of only 1 mg N kg-1 and NO3- concentrations of 12 mg N kg-1, recovery rates of 98.8-102% were obtained. By addition of 15N labeled and non-labeled NH4+ and NO3- it was shown that no cross-contamination from NH4+ to NO3- or vice versa takes place even when one form is labeled to more than 1 at %15N while the other form has natural 15N content. The method requires no intermediate step of ammonia volatilization before NO3- conversion

  10. Anthropogenic nitrogen input traced by means of δ 15N values in macroalgae: Results from in-situ incubation experiments

    International Nuclear Information System (INIS)

    Deutsch, Barbara; Voss, Maren

    2006-01-01

    The macroalgae species Fucus vesiculosus (Phaeophyta), Polysiphonia sp., and Ceramium rubrum (Rhodophyta) originally grown at an unpolluted brackish site of the southern Baltic Sea were incubated for 10 and 14 days at 12 stations along a salinity gradient in a highly polluted estuary. We have expected an adaptation of the initially low δ 15 N values to the higher ones within the incubation period. In addition to the macroalgae the δ 15 N values of NO 3 - were measured to evaluate fractionation processes of the source nitrate. Inside the estuary, δ 15 N-NO 3 - values were 6.2-9.7 per mille , indicating anthropogenic nitrogen sources. The red macroalgae adequately reflected the nitrate isotope values in the surrounding waters, whereas for F. vesiculosus the results were not that clear. The reasons were assumed to be higher initial δ 15 N values of F. vesiculosus and presumably a too slow nitrogen uptake and growth rate. The method of macroalgae incubations seems suitable as a simple monitoring to study the influence of anthropogenic nitrogen loading in an estuarine environment

  11. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    Energy Technology Data Exchange (ETDEWEB)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J. [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  12. Rapid mass spectrometric analysis of 15N-Leu incorporation fidelity during preparation of specifically labeled NMR samples

    DEFF Research Database (Denmark)

    Truhlar, Stephanie M E; Cervantes, Carla F; Torpey, Justin W

    2008-01-01

    . MALDI TOF-TOF MS/MS data provide additional information that shows where the "extra" (15)N labels are incorporated, which can be useful in confirming ambiguous assignments. The described procedure provides a rapid technique to monitor the fidelity of selective labeling that does not require a lot...

  13. Simultaneous determination of 14N and 15N isotopes in opium by proton induced γ-ray emission technique

    International Nuclear Information System (INIS)

    Pritty Rao; Reddy, G.L.N.; Vikram Kumar, S.; Ramana, J.V.; Raju, V.S.; Sanjiv Kumar

    2012-01-01

    The paper describes the simultaneous determination of 14 N and 15 N isotopes in opium by proton induced γ-ray emission (PIGE) technique. The isotopic ratio of 14 N and 15 N is a useful parameter for assigning provenance of (seized) illicit drugs. The measurement, non-destructive in nature, is performed on pellets made up of opium powders and is based on the prompt detection of 2.313 and 4.4 MeV γ-rays emanating from 14 N(p,p'γ) 14 N and 15 N(p,αγ) 12 C nuclear reactions respectively, induced simultaneously by 3.6-3.8 MeV proton beam. Positive as well as negative deviations from the natural isotopic abundance (99.63:0.37) were observed in the samples. The precision of the measurements is about 4%. The methodology provides an easy and rapid approach to determine the isotopic ratio of 14 N and 15 N and has been used for the first time in the analysis of opium. (author)

  14. Use of stable nitrogen isotope 15N in investigating nitrogen uptake by plants from allylisothiocyanate decomposition products

    International Nuclear Information System (INIS)

    Dolejskova, J.; Kovar, J.

    1976-01-01

    The assimilability of nitrogen from allylisothiocyanate or from its nitrogenous decomposition products by plants was investigated using 15 N-labelled allylisothiocyanate. The results show that plant nitrogen assimilation from allylisothiocyanate is the higher, the lower the total nitrogen content of the nutritive medium. (author)

  15. Variation in hair δ13C and δ15N values in long-tailed macaques (Macaca fascicularis) from Singapore

    Science.gov (United States)

    Schillaci, Michael A.; Castellini, J. Margaret; Stricker, Craig A.; Jones-Engel, Lisa; Lee, Benjamin P.Y.-H.

    2014-01-01

    Much of the primatology literature on stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ13C and δ15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ13C but not δ15N. The range of variation in δ13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ13C value but mid-range mean δ15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.

  16. Nitrogen dynamics in stream wood samples incubated with [14C]lignocellulose and potassium[15N]nitrate

    International Nuclear Information System (INIS)

    Aumen, N.G.; Bottomley, P.J.; Gregory, S.V.

    1985-01-01

    Surface wood samples obtained from a Douglas fir log incubated in vitro with [ 14 C]lignocellulose in a defined mineral salts medium supplemented with 10 mg of N liter -1 of 15 N-labeled NO 3 - (50 atom % 15 N). Evolution of 14 CO 2 , distribution and isotopic dilution of 15 N, filtrate N concentrations, and the rates of denitrification, N 2 fixation, and respiration were measured at 6, 12, and 18 days of incubation. The organic N content of the lignocellulose-wood sample mixture had increased from 132 μg of N to a maximum of 231 μg of N per treatment after 6 days of incubation. Rates of [ 14 C]lignocellulose decomposition were greatest during the first 6 days and then began to decline over the remaining 12 days. Total CO 2 evolution was also highest at day 6 and declined steadily over the remaining duration of the incubation. Filtrate NH 4 + -N increased from background levels to a final value of 57 μg of N per treatment. Filtrate NO 3 - N completely disappeared by day 6, and organic N showed a slight decline between days 12 and 18. The majority of the 15 N that could be recovered appeared in the particulate organic fraction by day 6 (41 μg of N), and the filtrate NH 4 + N fraction contained 11 μg of 15 N by day 18. The 15 N enrichment values of the filtrate NH 4 + and the inorganic N associated with the particulate fraction had increased to approximately 20 atom % 15 N by 18 days of incubation, whereas the particulate organic fraction reached its highest enrichment by day 6. Measurements of N 2 fixation and denitrification indicated an insignificant gain or loss of N from the experimental system by these processes. The data show that woody debris in stream ecosystems might function as a rapid and efficient sink for exogenous N, resulting in stimulation of wood decomposition and subsequent activation of other N cycling processes

  17. Measuring denitrification after grassland renewal and grassland conversion to cropland by using the 15N gas-flux method

    Science.gov (United States)

    Buchen, Caroline; Eschenbach, Wolfram; Flessa, Heinz; Giesemann, Anette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2015-04-01

    Denitrification, the reduction of oxidized forms of inorganic N to N2O and N2 is an important pathway of gaseous nitrogen losses. Measuring denitrification, especially the reduction of N2O to N2, expressed in the product ratio (N2O/(N2O + N2)), is rather difficult and hence rarely performed under field conditions. But using the 15N gas-flux method allows determining N transformation processes in their natural environment. In order to develop effective climate mitigation strategies understanding the N2O source is essential. We used the 15N gas-flux method to determine N2O and N2 emissions following grassland renewal and conversion techniques. Therefore we selected three different treatments: control (C), mechanical grassland renovation (GR) (autumn 2013) and grassland conversion to maize (GM) (spring 2014) from field plot trials on two different sites (Histic Gleysoil and Plaggic Anthrosol) near Oldenburg, Lower Saxony, Germany. We applied 15N labeled KNO3- (60 atom. % 15N) at a rate equivalent to common farming practices (150 kg N*ha-1) using needle injection of fertilizer solution in three different depths (10 cm, 15 cm, 20 cm) for homogeneous soil labeling up to 30 cm in microplots. During the first 10 days after application (May 2014) gas flux measurements from closed chambers were performed every second day and then weekly following a period of 8 weeks. Gas samples were analyzed for δ15N of N2 and N2O by IRMS according to Lewicka-Szczebak et al. (2013). Concentration and 15N enrichment of NO3- in soil water was determined on weekly samples using the SPIN-MAS technique (Stange et al. 2007). Fluxes of N2 and N2O evolved from the 15N labeled soil nitrogen pool were calculated using the equations of Spott et al. (2006). Peak events of N2 and N2O emissions occurred during the first 10 days of measurement, showing differences in soil types, as well as treatment variations. N2 fluxes up to 178 g*ha-1*day-1 and N2O fluxes up to 280 g*ha-1*day-1 were measured on the

  18. Comparative effects of application of coated and non-coated urea in clayey and sandy paddy soil microcosms examined by the 15N tracer technique. 2. Effects on soil microbial biomass N and microbial 15N immobilization

    International Nuclear Information System (INIS)

    Acquaye, Solomon; Inubushi, Kazuyuki

    2004-01-01

    Nitrogen fertilizer and soil types exert an impact on plant and soil microbial biomass (SMB). A 15 N tracer experiment was conducted to compare the effects of the application of controlled-release coated urea (CRCU) and urea on SMB in gley (clayey) and sandy paddy soils. The fertilizers were applied at the rate of 8 g N m -2 for CRCU as deep-side placement and 10 g N m -2 for urea mixed into soil or applied into floodwater. The soil type and soil layer (surface: few millimeter depth of surface soil to include benthic algae; subsurface: 1 to 20 cm depth), but not the fertilizer type, affected the amount of microbial biomass N (B N ). On an area basis, subsurface soil layers contained about 2-3 times the amount of B N in the surface layers. The seasonal average B N amount i.e. at 1 to 20 cm depth, in the gley soil was 1.67 g N m -2 , compared to 1.20 g N m -2 for the sandy soil. The proportion of B N in total soil N was significantly influenced by the soil type and soil layer, and was higher for the surface layers of both soils and subsurface layer of the sandy soil than for the subsurface layer of gley soil. Soil type, soil layer, and fertilizer type significantly influenced the amount of microbial biomass 15 N (B 15N ). Unlike B N , the amount of B 15N was significantly higher in the surface (11.9-177.3 mg N m -2 ) than in the subsurface soil layers (4.8-83.6 mg N m -2 ), especially with urea application between 60 and 120 DAT (days after transplanting). At 30 DAT, the subsurface layer of the sandy soil showed a higher B 15N (218 mg N m -2 ) amount than the surface layer (133.4 mg N m -2 ). Sandy soil (4.8-218 mg N m -2 ) and urea (6.2-218 mg N m -2 ) induced a larger increase of the amount of B 15 N than the gley soil (6.2-83.6 mg N m -2 ) and CRCU (4.8-40 mg Nm -2 ). Again, the sandy soil, surface soil layers, and urea induced a higher proportion (%) of B 15N in B N than the gley soil, subsurface soil layers, and CRCU, respectively. The soil type affected B N

  19. Distribution, and uptake by rice plants of 15N-labeled ammonium applied in mudballs in paddy soils

    International Nuclear Information System (INIS)

    Ventura, Wilbur; Yoshida, Tomio

    1978-01-01

    A 1974 field experiment determined the distribution, and uptake by rice plants, of ammonium fertilizer at 60 kg N/ha applied in mudballs into the reduced layer of paddy soil. The fertilizer-carrying mudballs were placed at the center of four hills. At the center of the plot, one 15 N-labeled mudball was applied and the 15 N content of the plants surrounding the site of placement were determined. For comparison, labeled ammonium fertilizer was basally incorporated with the entire puddled layer and a topdress application was made 39 days before heading. There was little movement of the ammonium nitrogen horizontally from the site of placement so that the distribution of 15 N was restricted to the four adjacent plant hills. The distribution of incorporated ammonium fertilizer with the puddled layer was likewise restricted to the four adjacent rice plants but topdressing, with the unavoidable disturbance of the floodwater, resulted to a wide distribution of the 15 N-labeled fertilizer. In all the methods of application, there was an uneven uptake of 15 N among four plants adjacent to the site of placement. An increase of at least 10% in the efficiency of ammonium fertilizer was obtained by the deep placement of ammoniated mudballs as compared to the common practice of incorporating the fertilizer with the puddled soil layer. Topdressing at 39 days before heading, however, was as efficient as mudballs applied at the same stage of growth. There was no significant increase in grain yield by deep placement of fertilizer because of the high initial nitrogen content of the soil. (author)

  20. /sup 15/N study on dietary urea utility in young pigs fed with a low protein diet

    Energy Technology Data Exchange (ETDEWEB)

    Niiyama, M; Kagota, K; Iwase, T; Namioka, S [Hokkaido Univ., Sapporo (Japan)

    1978-10-01

    To investigate effect of a low protein diet on urea utilization, a tracer study was conducted with /sup 15/N-urea on pigs fed a low protein diet (DCP 5.7%) with 2% urea (group B), and on pigs fed and optimal protein diet (DCP 13.3%) with 2% urea (group A). /sup 15/N was incorporated into protein of liver, serum and muscle, which were obtained 8 days after the last administration of /sup 15/N-urea. The /sup 15/N incorporation rate into the tissue protein tended to be higher in group B than in group A. Approximately 70% of /sup 15/N, however, was excreted into urine within 48 hours in group B. A comparison was made on growth and urea level in blood and urine to evaluate efficacy of the administered urea on growth between group B pigs and pigs fed the same low protein diet without urea supplementation (group C). Since group B pigs always maintained a higher level of blood urea, they were considered to have had more ammonia nitrogen which was available for protein synthesis than group C animals. A similar amount of urea to ingested dose, however, was excessively eliminated in urine. The increased ammonia nitrogen by urea ingestion may be excreted in form of urinary urea in group B pigs. There was no difference in growth between group B and group C animals; therefore, poor efficacy of administered urea on growth may have resulted not only from its loss into urine in early stage after ingestion, but also to poor utility of ammonia for protein synthesis.

  1. A 15N study on dietary urea utility in young pigs fed with a low protein diet

    International Nuclear Information System (INIS)

    Niiyama, Masayoshi; Kagota, Katsumoto; Iwase, Toshio; Namioka, Shigeo

    1978-01-01

    To investigate effect of a low protein diet on urea utilization, a tracer study was conducted with 15 N-urea on pigs fed a low protein diet (DCP 5.7%) with 2% urea (group B), and on pigs fed and optimal protein diet (DCP 13.3%) with 2% urea (group A). 15 N was incorporated into protein of liver, serum and muscle, which were obtained 8 days after the last administration of 15 N-urea. The 15 N incorporation rate into the tissue protein tended to be higher in group B than in group A. Approximately 70% of 15 N, however, was excreted into urine within 48 hours in group B. A comparison was made on growth and urea level in blood and urine to evaluate efficacy of the administered urea on growth between group B pigs and pigs fed the same low protein diet without urea supplementation (group C). Since group B pigs always maintained a higher level of blood urea, they were considered to have had more ammonia nitrogen which was available for protein synthesis than group C animals. A similar amount of urea to ingested dose, however, was excessively eliminated in urine. The increased ammonia nitrogen by urea ingestion may be excreted in form of urinary urea in group B pigs. There was no difference in growth between group B and group C animals; therefore, poor efficacy of administered urea on growth may have resulted not only from its loss into urine in early stage after ingestion, but also to poor utility of ammonia for protein synthesis. (author)

  2. Estimation of the endogenous N proportions in ileal digesta and faeces in 15N-labelled pigs

    International Nuclear Information System (INIS)

    Simon, O.; Bergner, H.

    1987-01-01

    4 castrated male pigs 40 kg fitted with simple 'T' cannulas in the terminal ileum were given 15 N-labelled ammonium salts, added to a low protein diet, for 6 days. Excretion of 15 N in urine and feces was monitored daily throughout the labelling and subsequent experimental periods. During the experimental period the pigs were given a diet based on wheat and fish meal, supplemented with varying levels of partially hydrolyzed straw meal to give crude fiber contents ranging from 40 to 132 g/kg. After adaptation to the particular levels of straw meal, feces and ileal digesta were collected during successive 24 h periods. N digestibility values were determined by the chromium oxide ratio method. The retention of 15 N-labelled non-specific N was 0.46 of the dose given. The validity of using urine values as a measure of 15 N abundance in endogenous N was demonstrated by the similarity of 15 N abundance in urine immediately before slaughter at the end of the experiment and in the digestive secretory organs thereafter. The average amount of endogenous N passing the terminal ileum was 3.4 g/day or 0.30-0.50 of total ileal N flow. This was not affected by dietary fiber level. The proportion of fecal N which was of endogenous origin was similar to that in ileal digesta, suggesting similar utilization of endogenous and residual dietary N by hindgut bacteria. Half the endogenous N entering the large intestine was reabsorbed there. Increasing dietary crude fiber from 40 to 132 g/kg increased fecal endogenous N excretion from 1.3 to 2.0 g/animal and day. (author)

  3. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    Science.gov (United States)

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic δ13C and δ15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes—resident and transient—collected across ~25° of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in δ15N values of ~2.5‰ through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable δ15N and δ13C values throughout the remainder of their lives, whereas δ15N values of most (n = 11) increased by ~1.5‰, suggestive of an ontogenetic increase in trophic level. Significant differences in mean δ13C and δ15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean

  4. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Seminoff

    Full Text Available Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15N values of bulk skin, with distinct "low δ(15N" and "high δ(15N" groups. δ(15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation

  5. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Science.gov (United States)

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  6. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 10

    International Nuclear Information System (INIS)

    Gruhn, K.; Hennig, A.

    1989-01-01

    Over a period of 4 days 12 colostomized laying hens daily received 36 g coarse wheat meal containing 14.37 atom-% 15 N excess ( 15 N') together with a conventional ration. After the homogenisation of each oviduct N and 15 N' were determined. After the precipitation with TCA the 15 N' of the amino acids was analysed in both the precipitate and the supernatant. In addition, the free amino acids and the peptides were determined in the TCA soluble fraction. The atom-% 15 N' in the total N and in the non-basic amino acid N showed a parallel decrease; it diminshed from 1.75 atom-% 15 N' to 0.64. Of the three basic amino acids, lysine shows the lowest labelling at all four measuring points. The quotas of non-basic amino acid 14 N and 15 N' in the total 14 N and 15 N' of the oviduct are the same and amount to 53%. In contrast to this, the quota of the 14 N of the basic amino acids in the total 14 N of the oviduct only amounts to 21.6% and that of 15 N' only to 15.4%. The average atom-% 15 N' of the free amino acids 12 h after the last 15 N application is 1.54 and is considerably above that of the peptides with 1.15 atom-% 15 N'. 36 h after the last 15 N application the ascertained value of 1.25 is identical in both fractions. The labelling of the free amino acids decreases more quickly than that of the peptides the more time has passed after the last 15 N application. (author)

  7. Dynamics of amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 1

    International Nuclear Information System (INIS)

    Hennig, A.; Gruhn, K.; Kirchner, E.

    1987-01-01

    In a 6-day preliminary period with a pelleted ration 12 colostomized laying hybrids received 15 N-labelled wheat protein over 4 days. The labelling of the wheat was 14.37 atom-% 15 N excess ( 15 N'). During the 4-day application of 15 N-labelled wheat protein each hen consumed 12.08 g N, 3.52 g lysine, 2.12 g histidine, 4.41 g arginine, of which were 540 mg 15 N', 18.1 mg lysine 15 N', 21.5 mg histidine 15 N' and 47.9 mg arginine 15 N'. Heavy nitrogen was determined in urine and its uric acid N in the daily urine samples of the individual animals. The average daily urine N excretion was 54% of the total nitrogen consumed with the ration. The labelling of the urine N reached a plateau on the fourth day of the experiment with 3.2 atom-% 15 N'. On an average of the total experiment the quota of heavy nitrogen of the uric acid in the total 15 N' of the urine was 83.4% and that of uric acid nitrogen in the total urine nitrogen 80.8%. (author)

  8. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study

    International Nuclear Information System (INIS)

    Sahu, Sarata C.; Bhuyan, Abani K.; Udgaonkar, Jayant B.; Hosur, R.V.

    2000-01-01

    Backbone dynamics of uniformly 15 N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 deg. C, pH 6.6, using 15 N relaxation data obtained from proton-detected 2D { 1 H}- 15 N NMR spectroscopy. 15 N spin-lattice relaxation rate constants (R 1 ), spin-spin relaxation rate constants (R 2 ), and steady-state heteronuclear { 1 H}- 15 N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15 N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (τ m ) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme

  9. Comparison of three 15N methods to correct for microbial contamination when assessing in situ protein degradability of fresh forages.

    Science.gov (United States)

    Kamoun, M; Ammar, H; Théwis, A; Beckers, Y; France, J; López, S

    2014-11-01

    The use of stable (15)N as a marker to determine microbial contamination in nylon bag incubation residues to estimate protein degradability was investigated. Three methods using (15)N were compared: (15)N-labeled forage (dilution method, LF), (15)N enrichment of rumen solids-associated bacteria (SAB), and (15)N enrichment of rumen liquid-associated bacteria (LAB). Herbage from forages differing in protein and fiber contents (early-cut Italian ryegrass, late-cut Italian ryegrass, and red clover) were freeze-dried and ground and then incubated in situ in the rumen of 3 steers for 3, 6, 12, 24, and 48 h using the nylon bag technique. The (15)N-labeled forages were obtained by fertilizing the plots where herbage was grown with (15)NH4 (15)NO3. Unlabeled forages (obtained from plots fertilized with NH4NO3) were incubated at the same time that ((15)NH4)2SO4 was continuously infused into the rumen of the steers, and then pellets of labeled SAB and LAB were isolated by differential centrifugation of samples of ruminal contents. The proportion of bacterial N in the incubation residues increased from 0.09 and 0.45 g bacterial N/g total N at 3 h of incubation to 0.37 and 0.85 g bacterial N/g total N at 48 h of incubation for early-cut and late-cut ryegrass, respectively. There were differences (P forage (late-cut ryegrass) was 0.51, whereas the corrected values were 0.85, 0.84, and 0.77 for the LF, SAB, and LAB methods, respectively. With early-cut ryegrass and red clover, the differences between uncorrected and corrected values ranged between 6% and 13%, with small differences among the labeling methods. Generally, methods using labeled forage or labeled SAB and LAB provided similar corrected degradability values. The accuracy in estimating the extent of degradation of protein in the rumen from in situ disappearance curves is improved when values are corrected for microbial contamination of the bag residue.

  10. Plot-size for {sup 15}N-fertilizer recovery studies by tanzania-grass; Tamanho da parcela para estudos de recuperacao de fertilizante-{sup 15}N por capim-tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Martha Junior, Geraldo Bueno [EMBRAPA Cerrados, Planaltina, DF (Brazil)], e-mail: gbmartha@cpac.embrapa.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis], e-mail: pcotrive@cena.usp.br; Corsi, Moacyr [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Zootecnia], e-mail: moa@esalq.usp.br

    2009-07-01

    The understanding of the N dynamics in pasture ecosystems can be improved by studies using the {sup 15}N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for {sup 15}N-fertilizer recovery experiments with irrigated Panicum maximum cv. Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing) in the winter, spring and summer seasons were considered. A 1 m{sup 2} plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with {sup 15}N negatively affected the N derived from fertilizer (Npfm) recovered in herbage.The lowest decline in Npfm values were observed for moderate and light grazing intensities. This fact might be explained by the vigorous growth characteristics of these plants. Increasing the grazing intensity decreased the tussock mass and, the smaller the tussock mass, the greater was the dependence on fertilizer nitrogen. (author)

  11. Simple approach for the preparation of 15-15N2-enriched water for nitrogen fixation assessments: Evaluation, application and recommendations

    Directory of Open Access Journals (Sweden)

    Isabell eKlawonn

    2015-08-01

    Full Text Available Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2 fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15-15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15-15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15-15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥5 min. Optionally, water can be degassed at low-pressure (≥950 mbar for ten minutes prior to the 15-15N2 gas addition to indirectly facilitate the 15-15N2 dissolution. This preparation of 15-15N2-enriched water can be done within one hour using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15-15N2-enriched water. Notably, the addition of 15-15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15-15N2-enriched water with glass, plastic and rubber ware during its preparation. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn increased by up to 0.1 nmol L-1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15-15N2. The 15-15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15-15N2 equilibration. This method achieved a 15N-atom excess of 6.6±1.7% when adding 2 mL 15-15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments.

  12. Investigations on the transformation of N-fertilizer and the mineralization of organic N using 15N Pt. 1

    International Nuclear Information System (INIS)

    Latkovics, Gy.-ne

    1979-01-01

    A composting experiment was set up on chernozem-type brown forest soil to investigate the transformation of nitrogen fertilizer and the mineralization of organic N. For the average soil sample from the ploughed layer the pH value was 7.1, the mineral N content 2.85 mg, the fixed ammonium content 15.98 mg and the total N 140.8 mg100/g soil. The humus content was 1.91%. In the experiment 15 N labelled ammonium nitrate was used, and, as 15 N labelled organic matter, ground, air-dried rye-grass and bean stalks and with approximately the same N content as the 0.4% of the soil quantity measured. The values obtained by chemical methods and isotope indication show that the N-loss during composting was negligible and that the methods tested are suitable for the investigation of the transformation processes of nitrogen. (author)

  13. Using Whole Stream {delta}{sup 15}N Additions to Understand the Effects of Land Use Change on Stream Function

    Energy Technology Data Exchange (ETDEWEB)

    Deegan, L. A.; Neill, C.; Thomas, S.; Haupert, C. [Marine Biological Laboratory, Woods Hole, MA (United States); Victoria, R. L.; Krusche, A. V.; Ballester, M. V.R. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2013-05-15

    In this paper we introduce an emerging new technique; the use of {delta}{sup 15}N stable isotope tracers to understand both short term and long term alterations in stream ecosystem nitrogen biogeochemistry and food web dynamics. The use of {delta}{sup 15}N isotopes to determine stream nitrogen cycling was developed in small tundra streams in Alaska (USA), but a network of researchers using similar technique has rapidly grown to answer questions about nitrogen cycling and stream food webs in a variety of ecosystem types and subject to human modifications. Here we provide an overview of some of the information that can be provided using stable isotope additions and describe the general approach of an isotope addition experiment. To illustrate the scope of isotope applicability some examples are provided of work undertaken in the Brazilian Amazon. (author)

  14. Facile measurement of {sup 1}H-{sup 15}N residual dipolar couplings in larger perdeuterated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fitzkee, Nicholas C.; Bax, Ad, E-mail: bax@nih.go [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2010-10-15

    We present a simple method, ARTSY, for extracting {sup 1}J{sub NH} couplings and {sup 1}H-{sup 15}N RDCs from an interleaved set of two-dimensional {sup 1}H-{sup 15}N TROSY-HSQC spectra, based on the principle of quantitative J correlation. The primary advantage of the ARTSY method over other methods is the ability to measure couplings without scaling peak positions or altering the narrow line widths characteristic of TROSY spectra. Accuracy of the method is demonstrated for the model system GB3. Application to the catalytic core domain of HIV integrase, a 36 kDa homodimer with unfavorable spectral characteristics, demonstrates its practical utility. Precision of the RDC measurement is limited by the signal-to-noise ratio, S/N, achievable in the 2D TROSY-HSQC spectrum, and is approximately given by 30/(S/N) Hz.

  15. Alanine flux in obese and healthy humans as evaluated by 15N- and 2H3-labeled alanines

    International Nuclear Information System (INIS)

    Hoffer, L.J.; Yang, R.D.; Matthews, D.E.; Bistrian, B.R.; Bier, D.M.; Young, V.R.

    1988-01-01

    Estimates of plasma alanine flux as measured in humans using L-[ 15 N]-alanine or L-[3,3,3- 2 H 3 ]alanine were compared by simultaneous intravenous infusion of both tracers. Plasma isotope enrichments were measured by chemical ionization gas chromatography-mass spectrometry. In 16 obese women before and during a hypocaloric diet and in 4 normal men in the postabsorptive and fed states, the fluxes were highly correlated (r2 = 0.93) although plasma alanine flux with the 2 H tracer was two to three times greater than that obtained with [ 15 N]alanine. The fluxes decreased with the hypocaloric diet in obese subjects and increased during the fed state in healthy adults. Thus, although the estimates of alanine flux differed according to the tracer used, both appear to give equivalent information about changes in alanine kinetics induced by the nutritional conditions examined

  16. O potencial da rotulação metabólica de 15N para a pesquisa de esquizofrenia

    Directory of Open Access Journals (Sweden)

    Michaela D. Filiou

    2013-01-01

    Full Text Available Pesquisas em psiquiatria ainda necessitam de estudos não dirigidos por hipóteses para revelar fundamentos neurobiológicos e biomarcadores moleculares para distúrbios psiquiátricos. Metodologias proteômicas disponibilizam uma série de ferramentas para esses fins. Apresentamos o princípio de rotulação metabólica utilizando 15N para proteômica quantitativa e suas aplicações em modelos animais de fenótipos psiquiátricos com um foco particular em esquizofrenia. Exploramos o potencial de rotulação metabólica por 15N em diferentes tipos de experimentos, bem como suas considerações metodológicas.

  17. Mercury and stable isotopes (δ15N and δ13C as tracers during the ontogeny of Trichiurus lepturus

    Directory of Open Access Journals (Sweden)

    Ana Paula Madeira Di Beneditto

    Full Text Available This study applies total mercury (THg concentration and stable isotope signature (δ15N and δ13C to evaluate the trophic status and feeding ground of Trichiurus lepturus during its ontogeny in northern Rio de Janeiro, south-eastern Brazil. The trophic position of T. lepturus is detected well by THg and δ15N as the sub-adult planktivorous specimens are distinct from the adult carnivorous specimens. The δ13C signatures suggest a feeding ground associated with marine coastal waters that are shared by fish in different ontogenetic phases. The diet tracers indicated that the fish feeding habits do not vary along seasons of the year, probably reflecting the prey availability in the study area. This fish has economic importance and the concentration of THg was compared to World Health Organization limit, showing that the adult specimens of T. lepturus are very close to the tolerable limit for safe regular ingestion.

  18. Precision analysis of 15N-labelled samples with the emission spectrometer NOI-5 for nitrogen balance in field trials

    International Nuclear Information System (INIS)

    Lippold, H.

    1984-01-01

    A technique was adapted for the preparation of samples with 15 N to be analyzed with the emission spectrometer NOI-5. This technique is based on methods of analyzing 15 N labelled gas samples in denitrification experiments. Nitrogen released from ammonium compounds by using hypobromite is injected into a repeatedly usable gaseous discharge tube where it is freed from water traces by means of the molecular sieve 5A. The described procedure of activating the molecular sieve allows to record spectra of reproducible quality thus promising an accuracy of analysis of +- 0.003 at% in the range of natural isotope frequency and the possibility of soil nitrogen analysis in field trials with fertilizers of low nitrogen content (3 to 6.5 at%; corresponding with 0.055 to 0.14% N/sub t/ of soils) without being dependent on mass spectrometers. (author)

  19. Olive and citrus tree crops and their fertilization in Greece: Field studies with 15N labelled fertilizers

    International Nuclear Information System (INIS)

    Papanicolaou, E.P.

    1982-01-01

    Fertilizer use for tree crops in Greece is increasing rapidly, however, fertilizer experiments with olive and citrus tree crops have given results which were often inconclusive. The value of using isotopically labelled fertilizers to directly measure fertilizer uptake is thus obvious. A preliminary experiment determined that relatively low enriched 15 N fertilizers (1.0-1.5% atom excess) could be accurately detected in citrus trees. The concentration of added N was higher in the leaves than in the wood and fruit. In a second study foliarly applied 15 N urea was found to be taken up more efficiently than broadcast urea or ammonium sulphate. In an initial sampling distribution of N among the plant parts was similar to that of the initial study, although a final harvest and analysis must still be conducted. (author)

  20. 1H, 13C and 15N chemical shift assignments of the thioredoxin from the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

    Science.gov (United States)

    Garcin, Edwige B; Bornet, Olivier; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2011-10-01

    Thioredoxins are ubiquitous key antioxidant enzymes which play an essential role in cell defense against oxidative stress. They maintain the redox homeostasis owing to the regulation of thiol-disulfide exchange. In the present paper, we report the full resonance assignments of (1)H, (13)C and (15)N atoms for the reduced and oxidized forms of Desulfovibrio vulgaris Hildenborough thioredoxin 1 (Trx1). 2D and 3D heteronuclear NMR experiments were performed using uniformly (15)N-, (13)C-labelled Trx1. Chemical shifts of 97% of the backbone and 90% of the side chain atoms were obtained for the oxidized and reduced form (BMRB deposits with accession number 17299 and 17300, respectively).

  1. The dynamics of the optically driven Lambda transition of the 15N-V- center in diamond.

    Science.gov (United States)

    González, Gabriel; Leuenberger, Michael N

    2010-07-09

    Recent experimental results demonstrate the possibility of writing quantum information in the ground state triplet of the (15)N-V(-) center in diamond by means of an optically driven spin non-conserving two-photon Lambda transition in the presence of a strong applied electric field. Our calculations show that the hyperfine interaction in the (15)N-V(-) center is capable of mediating such a transition. We use a density matrix approach to describe the exact dynamics for the allowed optical spin non-conserving transitions between two sublevels of the ground state triplet. This approach allows us to calculate the Rabi oscillations, by means of which we obtain a Rabi frequency with an upper bound determined by the hyperfine interaction. This result is crucial for the success of implementing optically driven quantum information processing with the N-V center in diamond.

  2. Influence of levels of nitrogen and management on seed cotton yield and 15N recovery by cotton

    International Nuclear Information System (INIS)

    Arulmozhiselvan, K.; Govindaswamy, M.

    1999-01-01

    Cotton var.MCU.5 showed varied response to N levels under different management practices. Higher yields were associated at 60-80 kg N ha -1 under combined application of urea, FYM and azospirillum. Whereas urea alone registered higher yield at 100-120 kg N ha -1 , high 15 N recovery (35.84%) was found to be associated with urea + FYM combination. (author)

  3. Mutable Lewis and Bronsted Acidity of Aluminated SBA-15 as Revealed by NMR of Adsorbed Pyridine-(15)N

    Czech Academy of Sciences Publication Activity Database

    Gurinov, A. A.; Rozhkova, Yu. A.; Zukal, Arnošt; Čejka, Jiří; Shenderovich, I, G.

    2011-01-01

    Roč. 27, č. 19 (2011), s. 12115-12123 ISSN 0743-7463 R&D Projects: GA AV ČR KAN100400701; GA ČR GA203/08/0604 Institutional research plan: CEZ:AV0Z40400503 Keywords : 15N NMR * post-synthesis alumination * phase Beckmann rearrangement Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.186, year: 2011

  4. Attempt at estimating the rate of symbiotic fixation of nitrogen in the Lupine by natural isotopic tracing (/sup 15/N)

    Energy Technology Data Exchange (ETDEWEB)

    Amarger, Noelle [INRA Centre de Recherches de Dijon, 21 (France). Lab. de Microbiologie des Sols; Mariotti, Andre; Mariotti, Francoise [Paris-6 Univ., 75 (France)

    1977-06-06

    The rate of nitrogen fixation by a Rhizobium-Leguminous plant pair has been determined by natural isotopic tracing (/sup 15/N). After determining the isotopic fractionation coefficients between atmospheric nitrogen and plant nitrogen on the one hand (epsilon=-0.9) and nitrogen of the substrate and plant nitrogen on the other hand (epsilon=-1.1), the rate of nitrogen fixation by way of mixed nutrition cultures was calculated. The method is more accurate than standard methods.

  5. FAO/IAEA - interregional training course on the use of 15N in soil science and plant nutrition

    International Nuclear Information System (INIS)

    Faust, H.

    1981-03-01

    This training manual provides an introduction for the basic methodology and principles of application of the stable isotope 15 N. After preliminary remarks on stable isotope terminology fundamentals, experimental problems and methods of quantitative nitrogen determination in soil and plant studies are reported in the main part of the manual. An appendix with a compilation of different parameters such as natural abundance of stable isotopes, selected atomic weights and multiples of them conversion factors of chemical compounds, and much more concludes the manual

  6. 15N NMR spectroscopic investigation of nitrous and nitric acids in sulfuric acid solutions of varying acidities

    International Nuclear Information System (INIS)

    Prakash, G.K.S.; Heiliger, L.; Olah, G.A.

    1990-01-01

    Both nitrous and nitric acids were studied in sulfuric acid solutions of varying acid strengths by 15 N NMR spectroscopy. The study gives new insights into the nature of intermediates present at different acid strengths. Furthermore, we have also discovered a novel redox reaction between NO 2 + and NO + ions involving the intermediacy of their respective acids. A mechanism is proposed to explain the observed results. 13 refs., 2 figs., 1 tab

  7. Synthesis of (+-)-(1,1'- sup 15 N sub 2 , 2'- sup 13 C)-trans-3'-methylnicotine

    Energy Technology Data Exchange (ETDEWEB)

    Sirimanne, S.R.; Maggio, V.L.; Patterson, D.G. Jr. (Department of Health and Human Services, Atlanta, GA (United States))

    1992-03-01

    The synthesis of ({+-})- (1,1'-{sup 15}N{sub 2}, 2'-{sup 13}C)-trans-3'-methylnicotine is reported. {sup 15}N-3-Bromopyridine obtained from bromination of pyridine was formylated with nBuLi/(carbonyl-{sup 13}C)-methyl formate. The resulting {sup 15}n-Pyridine-3-({sup 13}C-carbonyl)-carboxaldehyde was reacted with {sup 15}N-methylamine and then the resulting Schiff's base was condensed with succinic anhydride to give ({+-})- (1,1'-{sup 15}N{sub 2}, 5'-{sup 13}C)-trans-4'-carboxycotinine. Reduction with lithium aluminum hydride and mesylation followed by reduction with Zn/NaI gave ({+-})-(1,1'-{sup 15}N{sub 2}, 2'-{sup 13}C)-trans-3'-methylnicotine. (Author).

  8. Affordable uniform isotope labeling with {sup 2}H, {sup 13}C and {sup 15}N in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for {sup 15}N and {sup 13}C with yields comparable to expression in full media. For {sup 2}H,{sup 15}N and {sup 2}H,{sup 13}C,{sup 15}N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  9. The excretion of isotope in urea and ammonia for estimating protein turnover in man with [15N]glycine

    International Nuclear Information System (INIS)

    Fern, E.B.; Garlick, P.J.; McNurlan, M.A.; Waterlow, J.C.

    1981-01-01

    Four normal adults were given [ 15 N]-glycine in a single dose either orally or intravenously. Rates of whole-body protein turnover were estimated from the excretion of 15 N in ammonia and in urea during the following 9 h. The rate derived from urea took account of the [ 15 N]urea retained in body water. In postabsorptive subjects the rates of protein synthesis given by ammonia were equal to those from urea, when the isotope was given orally, but lower when an intravenous dose was given. In subjects receiving equal portions of food every 2 h rates of synthesis calculated from ammonia were much lower than those from urea whether an oral or intravenous isotope was given. Comparison of rates obtained during the postabsorptive and absorptive periods indicated regulation by food intake primarily of synthesis when measurements were made on urea, but regulation primarily of breakdown when measurements were made on ammonia. These inconsistencies suggest that changes in protein metabolism might be assessed better by correlating results given by different end-products, and it is suggested that the mean value given by urea and ammonia will be useful for this purpose. (author)

  10. Excretion of isotope in urea and ammonia for estimating protein turnover in man with (/sup 15/N)glycine

    Energy Technology Data Exchange (ETDEWEB)

    Fern, E B; Garlick, P J; McNurlan, M A; Waterlow, J C [London School of Hygiene and Tropical Medicine (UK)

    1981-01-01

    Four normal adults were given (/sup 15/N)-glycine in a single dose either orally or intravenously. Rates of whole-body protein turnover were estimated from the excretion of /sup 15/N in ammonia and in urea during the following 9 h. The rate derived from urea took account of the (/sup 15/N)urea retained in body water. In postabsorptive subjects the rates of protein synthesis given by ammonia were equal to those from urea, when the isotope was given orally, but lower when an intravenous dose was given. In subjects receiving equal portions of food every 2 h rates of synthesis calculated from ammonia were much lower than those from urea whether an oral or intravenous isotope was given. Comparison of rates obtained during the postabsorptive and absorptive periods indicated regulation by food intake primarily of synthesis when measurements were made on urea, but regulation primarily of breakdown when measurements were made on ammonia. These inconsistencies suggest that changes in protein metabolism might be assessed better by correlating results given by different end-products, and it is suggested that the mean value given by urea and ammonia will be useful for this purpose.

  11. Influence of organic N Sources on N transformation and uptake by lupine plants using 15N technique

    International Nuclear Information System (INIS)

    Abdel-Salam, A.A.; Gadalla, A.M.; Abdel- Aziz, H.A.; Galal, Y.G.M.; EL-degwy, S.M.

    2008-01-01

    A pot experiment was carried out under greenhouse conditions to evaluate the comparative efficiency and transformation of nitrogen applied either as mineral or organic forms. The obtained data showed that shoot dry weight was enhanced by compost and its mixture with leucaena. When organic sources were combined with 15 N, the leucaena.compost mixture (LC p ) gave the highest yield, and the other two were not significantly different from each other. Reinforcing the organic N with mineral N caused an average greater N.uptake over the non reinforced treatment. Similar trend was noticed with root system. Nitrogen uptake by roots was increased according to the order of LC > L > C. N derived from fertilizer (% Ndff) by lupine shoots was significantly affected by fertilizer addition either alone or reinforced with organic plant residues. Both, the portions (%) or absolute values (mg pot -1 ) of Ndff were increased by adding the organic residues. The highest value of Ndfs was recorded with application of leucaena followed by compost, then Leucaena + compost. Portion Ndfa reflected an effective response of lupines plants to Rhizobium inoculation. Addition of LC mixture combined with 15 N-fertilizer had enhanced the N 2 fixation and increased Ndfa value by about 66.7 % over those recorded with 15 N0 treatment. Organic amendment of leucaena could be an efficient source for N to infertile sandy soils

  12. Influence of canopy drip on the indicative N, S and δ15N content in moss Hypnum cupressiforme

    International Nuclear Information System (INIS)

    Skudnik, Mitja; Jeran, Zvonka; Batič, Franc; Simončič, Primož; Lojen, Sonja; Kastelec, Damijana

    2014-01-01

    Samples of Hypnum cupressiforme were collected at two types of site in forest areas: within the forest stand and within forest openings, and analyzed for N and S concentrations and δ 15 N. Mosses sampled within forest openings reflect the atmospheric N deposition; however, no influence of throughfall N deposition on the N in the moss that was sampled within the forest stand was found, nor was any influence of S deposition on the S in the moss found. For the N and S concentrations in the mosses sampled within forest openings, the within-site variability was comparable to the between-site variability, and for the δ 15 N, the within-site variability was lower than the between-site. The results showed that a short distance ( 15 N content in moss on atmospheric deposition. • Moss sampled within forest openings reflect the atmospheric N but not S deposition. • Higher N and S content was found in mosses sampled in areas within the forest stand. • Metadata describing the boundary condition of moss sampling location is important. - H. cupressiforme reflects the atmospheric deposition of N but not S; a distance less than 1 m between the sampling site and the nearest tree crown increases the N and S concentrations in the moss

  13. Patterns of δ13C and δ15N in wolverine Gulo gulo tissues from the Brooks Range, Alaska

    Directory of Open Access Journals (Sweden)

    Fredrik DALERUM

    2009-06-01

    Full Text Available Knowledge of carnivore diets is essential to understand how carnivore populations respond demographically to variations in prey abundance. Analysis of stable isotopes is a useful complement to traditional methods of analyzing carnivore diets. We used data on d13C and d15N in wolverine tissues to investigate patterns of seasonal and annual diet variation in a wolverine Gulo gulo population in the western Brooks Range, Alaska, USA. The stable isotope ratios in wolverine tissues generally reflected that of terrestrial carnivores, corroborating previous diet studies on wolverines. We also found variation in d13C and d15N both between muscle samples collected over several years and between tissues with different assimilation rates, even after correcting for isotopic fractionation. This suggests both annual and seasonal diet variation. Our results indicate that data on d13C and d15N holds promise for qualitative assessments of wolverine diet changes over time. Such temporal variation may be important indicators of ecological responses to environmental perturbations, and we suggest that more refined studies of stable isotopes may be an important tool when studying temporal change in diets of wolverines and similar carnivores [Current Zoology 55(3: 188–192, 2009].

  14. Auto-inducing media for uniform isotope labeling of proteins with 15N, 13C and 2H

    International Nuclear Information System (INIS)

    Guthertz, Nicolas; Klopp, Julia; Winterhalter, Aurélie; Fernández, César; Gossert, Alvar D.

    2015-01-01

    Auto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with 15 N, 13 C and/or 2 H in E. coli is presented. So far, auto-inducing media have not found widespread application in the NMR field, because of the prohibitively high cost of labeled lactose, which is an essential ingredient of such media. Here, we propose using lactose that is only selectively labeled on the glucose moiety. It can be synthesized from inexpensive and readily available substrates: labeled glucose and unlabeled activated galactose. With this approach, uniformly isotope labeled proteins were expressed in unattended auto-inducing cultures with incorporation of 13 C, 15 N of 96.6 % and 2 H, 15 N of 98.8 %. With the present protocol, the NMR community could profit from the many advantages that auto-inducing media offer

  15. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    Science.gov (United States)

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  16. Interpreting Precambrian δ15N: lessons from a new modern analogue, the volcanic crater lake Dziani Dzaha

    Science.gov (United States)

    Ader, M.; Cadeau, P.; Jezequel, D.; Chaduteau, C.; Fouilland, E.; Bernard, C.; Leboulanger, C.

    2017-12-01

    Precambrian nitrogen biogeochemistry models rely on δ15N signatures in sedimentary rocks, but some of the underlying assumptions still need to be more robustly established. Especially when measured δ15N values are above 3‰. Several processes have been proposed to explain these values: non-quantitative reduction of nitrate to N2O/N2 (denitrification), non-quantitative oxidation of ammonium to N2O/N2, or ammonia degassing to the atmosphere. The denitrification hypothesis implies oxygenation of part the water column, allowing nitrate to accumulate. The ammonium oxidation hypothesis implies a largely anoxic water column, where ammonium can accumulates, with limited oxygenation of surface waters. This hypothesis is currently lacking modern analogues to be supported. We propose here that the volcanic crater lake Dziani Dzaha (Mayotte, Indian Ocean) might be one of them, on the basis of several analogies including: permanently anoxic conditions at depth in spite of seasonal mixing; nitrate content below detection limit in the oxic surface waters; accumulation of ammonium at depth during the stratified season; primary productivity massively dominated by cyanobacteria. One aspect may restrict the analogy: the pH value of 9-9.5. In this lake, δ15N values of primary producers and ammonium range from 6 to 9‰ and are recorded with a positive offset in the sediments (9ammonium was partly oxidized to N2O/N2.

  17. Ammonium absorption mechanism of rice seedling roots and 15N-labelling pattern of their glutamine-amide group, 2

    International Nuclear Information System (INIS)

    Arima, Yasuhiro; Kumazawa, Kikuo

    1975-01-01

    The processes of producing glutamine and asparagine at the initial stage of the absorption and assimilation of ammonia in rice seedling roots were examined in relation to glutamic acid, aspartic acid and ammonia by 15 N-labelling method. When ( 15 NH 4 ) 2 SO 4 was absorbed into the roots, 15 N concentration appeared very high in glutamine-amide radical and ammonia. It was also higher in amide radical than in amino radical in both glutamine and asparagine, while 15 N concentration in the amino radical of glutamine and asparagine were far lower than that of corresponding glutamine acid and aspartic acid. From these facts, glutamine-amide radical seems to be produced directly from the ammonia in culture media at the contact point of root cells and the culture media, while there is some possibility that asparagine-amide radical is formed from other amino compounds than ammonia. Also the amino radical of aspartic acid seems to be produced not only by the transamination from glutamic acid but also by the reductive amination of oxalautic acid by ammonium. (Kobatake, H.)

  18. Fertilizer 15N balance in a coffee cropping system: a case study in Brazil Balanço do 15N do fertilizante em uma cultura de café: um estudo de caso no Brasil

    Directory of Open Access Journals (Sweden)

    Tatiele Anete Bergamo Fenilli

    2008-08-01

    Full Text Available Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0_1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0

  19. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 11

    International Nuclear Information System (INIS)

    Gruhn, K.; Zander, R.

    1989-01-01

    Over a period of 4 days 12 colostomized laying hens daily received 36 g 15 N-labelled wheat with 15 N excess ( 15 N') of 14.37 atom-% together with a conventional feed mixture for laying hens. The labelling of the lysine N in the wheat was 13.58 atom-%, that of histidine N 14.38 and that of arginine 15 N' 13.63 atom-% 15 N'. Three hens each were butchered 12, 36, 60 and 108 h after the last 15 N' feeding. The first three hens did not receive any feed before being butchered. The following three hens each received the unlabelled feed ration for another 1, 2 or 4 days, resp., after the main period until they were butchered. The total of skeleton muscles, heart and stomach muscle (without inner skin) of each hen were combined into one sample, cut thinly, drenched with fluid nitrogen and pulverized. N, 15 N' and the basic and non-basic amino acids as well as their 15 N' were determined in the individual samples. In contrast to the organs, the proteins in the muscle tissue have a long half-life so that a slight decrease of atom-% 15 N' in the muscles could only be detected after 108 h. The 14 N and 15 N' quota of the non-basic amino acids in the total nitrogen of the muscles is 50 %. The 14 N quota of the basic amino acids is 30% and the 15 N' quota only 22.5% in the total muscle N. The heavy nitrogen of the free lysine in the TCA soluble N fraction is hardly detectable 36 h and 60 h after the last 15 N' supply and not at all after 108 h. In contrast to this, the other two free basic amino acids remain significantly higher labelled in dependence on the last butchering time. (author)

  20. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 6

    International Nuclear Information System (INIS)

    Gruhn, K.; Kirchner, E.

    1988-01-01

    12 colostomized laying hens received, together with a conventional feed ration, 15 N-labelled wheat with a 15 N excess ( 15 N') of 14.37 atom-% over 4 days. 3 animals each were butchered after 12 h, 36 h, 60 h and 108 h after the last 15 N' application and, apart from various organs, the contents and the tissue of the gastrointestinal tract of each hen was divided into 3 fractions. TCA precipitation was carried out with the contents and the tissue of the 3 fractions. Nitrogen and its atom-% 15 N' were determined in the supernatant and the precipitate. The 15 N' amount in the contents of the crop and the stomachs, the small and large intestines is still considerable 12 h after the last 15 N wheat feeding and still clearly detectable 108 h after it. The TCA precipitable amounts of 14 N and 15 N' of the contents of crop and stomach and that of the small intestine agree well; they are 75% and 50% resp. of the total N. The amount of atom-% 15 N' of the contents of the small and large intestines remains the same up to 36 h after the last 15 N' application and is higher at the following measuring points in the contents of the large intestine. A close correlation could be ascertained between the atom-% 15 N' in the contents and tissue of the small and large intestines. The TCA soluble N quotas of both 14 N and 15 N' in the pancreas are above 50%. (author)

  1. Determination of symbiotic nitrogen fixation by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.

    1982-01-01

    A direct method to determine the total symbiotic nitrogen fixation during the leguminous plants cycles has been, developed, by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment, of about 1 atom % excess. The soil explored by the root system of leguminous plants was confined by means of a chamber in the field and by sealed pots in greenhouse experiments in order to maintain the soil air labelled with sup(15)N sub(2). The average sup(15)N concentration in the soil atmosphere, necessary to calculate dinitrogen fixation, was obtained by integration of the exponential functions of isotope dilution. Those functions were obtained by periodic sampling and analysis of the N sub(2) in the soil atmosphere. The field experiment with labelled atmosphere was carried out from the 22 sup(nd) to the 31 sup(st) day of the bean crop cycle and 5.5 mg N/plant (24% of total plant N) was derived from fixation. In pot experiments, under greenhouse conditions, integrated determination of fixation was made in Phaseolus beans (from the 19 sup(th) to the 67 sup(th) day from planting) and in soybeans (from the 24 sup(th) to the 70 sup(th) day from planting). The soil atmosphere was labelled with sup(15)N sub(2) in both cases. Average fixation obtained for Phaseolus beans was 80 mg N/plant (65% of total plant N) and for soybeans 265 mg N/plant (71% of total plant N). Evaluation of the basic concept of the isotope dilution method to determine nitrogen fixation in pots experiments, as proposed by Fried and Middelboe (1977) has also been made in the present paper. Simultaneous determinations of fixation in soybeans, using the isotope dilution method of Fried and Middelboe, natural variation of the sup(15)N/ sup(14)N ratios, and total-N differences, indicated the same results for pot experiments, harvested at the end of the plant cycle. (author)

  2. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient

    Science.gov (United States)

    Mckee, Karen L.; Feller, Ilka C.; Popp, Marianne; Wanek, Wolfgang

    2002-01-01

    Mangrove islands in Belize are characterized by a unique switching from nitrogen (N) to phosphorus (P) limitation to tree growth from shoreline to interior. Fertilization has previously shown that Rhizophora mangle (red mangrove) fringe trees (5–6 m tall) growing along the shoreline are N limited; dwarf trees (!1.5 m tall) in the forestinterior are P limited; and transition trees (2–4 m tall) are co-limited by both N and P.  Growth patterns paralleled a landward decrease in soil flushing by tides and an increase in bioavailable N, but P availability remained consistently low across the gradient. Stable isotopic composition was measured in R. mangle leaves to aid in explaining this nutrient switching pattern and growth variation. Along control transects, leaf !15N decreased from "0.10‰ (fringe) to #5.38‰ (dwarf). The !15N of N-fertilized trees also varied spatially, but the values were consistently more negative (by $3‰) compared to control trees. Spatial variation in !15N values disappeared when the trees were fertilized with P, and values averaged "0.12‰, similar to that in control fringe trees. Neither variation in source inputs nor microbial fractionation could fully account for the observed patterns in !15N. The results instead suggest that the lower !15N values in transition and dwarf control trees were due to plant fractionation as a consequence of slower growth and lower N demand. P fertilization increased N demand and decreased fractionation. Although leaf !13C was unaffected by fertilization, values increased from fringe (#28.6‰) to transition (#27.9‰) to dwarf (#26.4‰) zones, indicating spatial variation in environmental stresses affecting stomatal conductance or carboxylation. The results thus suggest an interaction of external supply, internal demand, and plant ability to acquire nutrients under different hydro-edaphic conditions that vary across this tree-height gradient. The findings not only aid in understanding

  3. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    Directory of Open Access Journals (Sweden)

    Belén Martínez-Alcántara

    Full Text Available Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L. grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95% ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  4. Using 15N-glycine trace technique to observe the influence of growth hormone on the rate of whole body protein metabolism in dwarfism

    International Nuclear Information System (INIS)

    Wu Jingchuan; Wu Zhen; Wu Jizong

    1993-01-01

    The changes of whole body protein metabolism was studied using one oral dose 15 N-glycine. Urine 15 N excretion 24 hours before and after injected growth hormone (GH) was measured in 9 cases of dwarfism. The results showed that in children with growth hormone deficiency (CHD) with low nitrogen balance, rate of protein syntheses and 15 N retention capability were significantly increased after treatment with GH. Children with constitutional growth delay (CGD) with normal parameters of nitrogen balance showed no difference before and after treatment of GH. It was concluded that 15 N trace might be a supplementary tool for the diagnosis and differential diagnosis of dwarfism

  5. Acúmulo de nutrientes e destino do nitrogênio (15N aplicado em pomar jovem de laranjeira Nutrients accumulation and fate of nitrogen (15N in Young bearing orange trees

    Directory of Open Access Journals (Sweden)

    Rodrigo Marcelli Boaretto

    2007-01-01

    Full Text Available Informações sobre absorção de nutrientes em pomares cítricos são importantes para recomendações do manejo da fertilidade do solo. Contudo, estudos sobre a distribuição dos nutrientes na planta e a validação das doses de nitrogênio (N recomendadas são escassos na literatura brasileira. O presente trabalho avaliou (i o acúmulo de nutrientes e a distribuição do N (15N aplicado em citros e (ii validou a dose de N recomendada para pomares em início de produção. Em laranjeiras 'Pêra' sobre limoeiro 'Cravo', com 3 a 4 anos de idade, foram aplicadas doses de 150; 300; 450 e 600 g de N por planta, como sulfato de amônio, divididas em três parcelas, entre a primavera e o verão. Incluiu-se um tratamento-testemunha sem N. No mesmo pomar, em outras três plantas, aplicaram-se 300 g por planta de N-[(15NH42SO 4] enriquecido em 15N, para estudar o destino do N do fertilizante no pomar. Foram avaliadas a produção de frutos e o aproveitamento do 15N pela biomassa da planta. A eficiência do fertilizante, estimada com base na absorção de N pela planta, variou entre 20% e 27% do total aplicado. Os frutos exportaram 35% do N absorvido do fertilizante, e a dose de 400 g de N proporcionou a máxima produção de laranjas.Information about nutrient absorption of citrus orchards is important to establish guidelines for best soil fertility management. However, studies on the fate of applied N fertilizers and validation of nitrogen (N dose recommendations are scarce in the literature. The present work evaluated (i the accumulation of nutrients and the distribution of N (15N applied to citrus orchard and (ii validated the N fertilization rate applied to young bearing orange trees. Three- to four-year-old Pêra sweet orange trees Pera grafted on Rangpur lime were fertilized with 150, 300, 450, and 600 g of N per tree, as ammonium sulfate, split in three applications from spring to summer. A control treatment without N was included. In the same

  6. Relations between 15N excretion in feces after oral intake of 15N-urea and urea concentration in the blood dependent on the crude fiber intake of pigs

    International Nuclear Information System (INIS)

    Bergner, H.; Tegtmeier, B.

    1985-01-01

    9 pigs (33 kg live weight at the beginning of the experiment) received in 3 consecutive series of experiments (3 animals/group) a basic barley ration of 1.0 - 1.2 kg per animal and day. In groups 1 to 9 the following supplements were given: (1) without N supplement, (2) 10.5 g urea, (3) 79 g dried skim milk, (4) 11 g urea, (5) without N supplement, (6) 110 g horse bean coarse meal, (7) without N supplement, (8) 95 g dried skim milk, (9) 120 g horse bean coarse meal. In groups 1 - 6 rations were supplemented with 150 - 165 g dry matter of partly hydrolyzed straw meal per animal and day. After 20 days the animals received a single dosis of 0.5 g/kg/sup 0.75/ 15 N-urea (72.1 atom-% 15 N excess) with the morning meal of the first day of the experiment. During the four days of the experiment groups 1 - 6, due to the straw meal supplement, excreted significantly higher N amounts than the corresponding groups 7 - 9. In comparison with the first day of the experiment (1 h after the morning meal) the urea concentration in the blood decreased to the following percentage in the order of the groups 1 - 9: 64; 65; 77; 54; 64; 73; 82; 88; 84 on the second day of the experiment (1 h before the evening meal). Between the excretion of 15 N excess in feces (y = mg) during the four days of the experiment and the concentration of urea in the blood (x = mmol/l) there was the following significant negative correlation: y = -40.1 x + 340. Urea elimination by means of urea inflow into the large intestine and subsequent bacterial protein synthesis (in the presence of fermentable crude fiber) significantly decreased urea concentration in the blood. (author)

  7. Compound-specific amino acid δ15N patterns in marine algae: Tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean

    Science.gov (United States)

    McCarthy, Matthew D.; Lehman, Jennifer; Kudela, Raphael

    2013-02-01

    Stable nitrogen isotopic analysis of individual amino acids (δ15N-AA) has unique potential to elucidate the complexities of food webs, track heterotrophic transformations, and understand diagenesis of organic nitrogen (ON). While δ15N-AA patterns of autotrophs have been shown to be generally similar, prior work has also suggested that differences may exist between cyanobacteria and eukaryotic algae. However, δ15N-AA patterns in differing oceanic algal groups have never been closely examined. The overarching goals of this study were first to establish a more quantitative understanding of algal δ15N-AA patterns, and second to examine whether δ15N-AA patterns have potential as a new tracer for distinguishing prokaryotic vs. eukaryotic N sources. We measured δ15N-AA from prokaryotic and eukaryotic phytoplankton cultures and used a complementary set of statistical approaches (simple normalization, regression-derived fractionation factors, and multivariate analyses) to test for variations. A generally similar δ15N-AA pattern was confirmed for all algae, however significant AA-specific variation was also consistently identified between the two groups. The relative δ15N fractionation of Glx (glutamine + glutamic acid combined) vs. total proteinaceous N appeared substantially different, which we hypothesize could be related to differing enzymatic forms. In addition, the several other AA (most notably glycine and leucine) appeared to have strong biomarker potential. Finally, we observed that overall patterns of δ15N values in algae correspond well with the Trophic vs. Source-AA division now commonly used to describe variable AA δ15N changes with trophic transfer, suggesting a common mechanistic basis. Overall, these results show that autotrophic δ15N-AA patterns can differ between major algal evolutionary groupings for many AA. The statistically significant multivariate results represent a first approach for testing ideas about relative eukaryotic vs. prokaryotic

  8. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    Science.gov (United States)

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  9. Stable isotope analysis (δ13C and δ15N of soil nematodes from four feeding groups

    Directory of Open Access Journals (Sweden)

    Carol Melody

    2016-09-01

    Full Text Available Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000 to achieve required minimum sample weights (typically >100 µg C and N. Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS of C and N using microgram samples (typically 20 µg dry weight, was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus, bacterial feeders (Plectus and Rhabditis, omnivores (Aporcelaimidae and Qudsianematidae and plant feeder (Rotylenchus. Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290 or δ13C (p = 0.706 between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr. Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2 and the predators (1.73 mUr2, but largest for omnivores (3.83 mUr2

  10. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals†

    Science.gov (United States)

    Hartman, Joshua D.; Kudla, Ryan A.; Day, Graeme M.; Mueller, Leonard J.; Beran, Gregory J. O.

    2016-01-01

    The performance of fragment-based ab initio 1H, 13C, 15N and 17O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. 1H, 13C, 15N, and 17O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same 1H, 13C, 15N, and 17O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tertbutyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  11. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    Science.gov (United States)

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.

  12. Variations in natural abundances of 15N and 13C in potassium fed lentil plants grown under water stress

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shammaa, M.

    2009-01-01

    The impact of two K-fertilizer treatments [K0 (0) and K1 (150 kg K 2 O/ha)] on dry matter production and N 2 fixation (Ndfa) by Lentil (Lens culinaris.) was evaluated in a pot experiment. The plants were also subjected to three soil moisture regimes starting from bud flower initiation stage to pod formation (low, 45-50%. Moderate, 55-60% and high 75-80% of field capacity, abbreviated as FC1, FC2 and FC3, respectively). The 15 N natural abundance technique (%δ 15 N) was employed to evaluate N 2 fixation using barley as a reference crop. Moreover, the carbon isotope discrimination (%Δ 13 C) was determined to assess factors responsible for crop performance variability in the different treatments. Water restriction occurring during the post-flowering period considerably affects growth and N 2 -fixation. However, K-fertilizer enhanced plant performance by overcoming water shortage influences. The delta 15 N values in lentils ranged from +0.67 to +1.36% depending on soil moisture and K-fertilizer treatments. Whereas, those of N 2 fixation and the reference plant were -0.45 and +2.94%, respectively. Consequently, Ndfa% ranged from 45 and 65%. Water stress reduced Δ 13 C values in the FC1K0 And FC1K1 treatments. However, K fertilizer enhanced the whole plants Δ 13 C along with dry matter yield and N 2 fixation. The water stressed plants amended with K (FC1K1) seemed to be the best treatment because of its highest pod yield, high N balance and N 2 -fixation with low consumption of irrigation water. This illustrates the ecological and economical importance of K-fertilizer in alleviating water stress occurring during the post-flowering period of lentil.(Authors)

  13. Wheat Yield Production Grown on Sandy Soil as Fertilized by Different N-Sources Using 15N-Technique

    International Nuclear Information System (INIS)

    Ismail, M. M.; Soliman, S. M.; El-Akel, E. A.; El-Sherbieny, A. E.; Awad, E. A. M.

    2007-01-01

    A pot experiment was carried out to evaluate the ability of some plant residues to meet total N demand of wheat crop in sandy soil and their performance to reduce chemical N fertilizer requirements. Residue-N sources, i.e. soybean and wheat residues were compared to ammonium sulfate as inorganic N source as well as mixtures of residue-N sources and (NH 4 )SO 4 in ratios of (3:1), (1:1) and (1:3), respectively. The nitrogen application rate in all amended pots was kept at 100 mg N pot -1 . The obtained results could be summarized as follows: 1) ry weight of straw and grains of wheat crop was significantly increased this at the addition of nitrogen sources as a result of N-uptake increased. The highest value was observed at the application treatment ratios of (1:1) and (1:3) on the basis of (residue: ammonium sulfate), which can be arranged in this order: Soybean > wheat + soybean > wheat residues. 2) he value of N derived from residues (Ndfr) and fertilizer (Ndff), as well as 15N -recovery ratios can be arranged in this order: Ammonium sulfate > soybean residue > Soybean + wheat residue > wheat residue. 3) he values indicated that 15N -labelled soybean residue in combination with ordinary, ammonium sulfate at the ratios of (*25: 75) and (*50: 50), respectively was found to be effective on 15N -recovery ratios in the straw and grains of wheat crop. 4) he present study indicates that the entire N requirements of wheat crop cannot be met by the separate application of any residue-N source examined.

  14. Determination of biological nitrogen fixation capacities of winter and spring lentil varieties by using ''1''5N methodology

    International Nuclear Information System (INIS)

    Akin, A.

    2001-01-01

    In order to determine the biological nitrogen fixation capacities of winter and spring varieties of lentil which have of agronomic importance under the Central Anatolia region, the field experiments (winter and spring) were carried out. In both experiments, the effects of two different iconoclasts and different harvesting times on the biological nitrogen fixation capacities of lentil varieties, were investigated. The field experiments were conducted using by randomized block design as split-split plot for 4 replications. Barley was selected as the reference crop and 20 cm row spacing were used for lentil and barley. Inoculations were done immediately before sowing. 10.0 kg N/ ha for lentil varieties as 10.0 % ''1''5N atom excess and 40.0 kg N/ ha for barley (reference crop) as 2.0 % ''1''5N atom excess ammonium sulphate fertilizer were applied. In addition, 60.0 kgP 2 O 5 / ha were applied as triple superphosphate for all treatments. Plants were harvested at the different growth stages and than plant materials prepared for the analysis. Total nitrogen and % ''1''5N atom excess analysis were done by Kjeldahl method and Emission spectrometer, respectively. The amount of nitrogen fixation capacities of winter and spring lentil varieties were calculated according to the A-Value method (IAEA 1990). The results showed us that the winter varieties of lentil had higher dry matter yields and nitrogen fixation capacities than the spring varieties. Inoculation treatments had no statistically significant effects on the percentage of nitrogen derived from atmosphere (% Ndfa) and the amount of fixed nitrogen (kg N/ ha) for both experiments. In comparison between the harvesting times, the highest amount of fixed nitrogen was found at the pod formation stage for all cultivars. The average amounts of % Ndfa and fixed nitrogen (kg N/ ha) were 75.0 and 70.0 for winter cultivars, 70.0 and 45.0 for spring cultivars, respectively

  15. Saline irrigation water and its effect on N.use efficiency, growth and yield of Sorghum plant using 15N

    International Nuclear Information System (INIS)

    Abd El-Latteef, E.M.

    2010-01-01

    Series of pot experiments were conducted and randomly arranged under greenhouse conditions for evaluating the effect of irrigation with saline water (alternative source) in combination with different organic sources (amendments) i.e. leucaena plant residue (LU), Quail feces (QF) and chicken manure (ChM) added in different percentages against the mineral form (ammonium sulfate) either in ordinary or 15 N labeled (2 and 5% 15 N atom excess) forms, on sorghum growth and nutrients acquisition. Artificial saline water with different EC and SAR values was prepared at laboratory using computer program designed by the author with guiding of the designed Package named Artificial Saline Irrigation Water (ASIW) (Manual of Salinity Research Methods). In addition, proline acid was also sprayed (foliar) on leaves of sorghum plants at different concentrations. The experimental results indicated the positive effect of organic amendments, as compared to mineral fertilizer, and foliar application of proline acid on enhancement of plant growth and nutrient uptake. This phenomenon was pronounced under water salinity conditions. In this regard, increasing of water salinity levels induced reduction in plant growth as well as nutrients acquisition. Data of 14 N/ 15 N ratio analysis pointed out enhancement of N derived from mineral source as affected by organic amendments. At the same time, considerable amounts of N was derived from organic sources and utilized by plants. The superiority of organic sources on each others was fluctuated depending on interaction with water salinity levels and proline concentrations. In conclusion, organic additives and proline acid has an improvement effects especially under adverse condition of irrigation water salinity.

  16. Characterization of Nitrogen Uptake Pattern in Malaysian Rice MR219 at Different Growth Stages Using 15N Isotope

    Directory of Open Access Journals (Sweden)

    Mohammad Mu’az Hashim

    2015-09-01

    Full Text Available Nitrogen (N use efficiency is usually less than 50%, and it remains a major problem in rice cultivation. Controlled release fertilizer (CRF technology is one of the well-known efforts to overcome this problem. The efficiency of CRF, however, is very much dependent on the timing of nutrient release. This study was conducted to determine the precise time of N uptake by rice as a guideline to develop efficient CRF. Fertilizer N uptake by rice at different growth stages was investigated by using 15N isotopic technique. Rice was planted in pots, with 15N urea as N source at the rate of 120 kg/hm2. Potassium and phosphorus were applied at the same rate of 50 kg/hm2. Standard agronomic practices were employed throughout the growing periods. Rice plants were harvested every two weeks until maturation at the 14th week and analyzed for total N and 15N content. Nitrogen derived from fertilizer was calculated. Total N uptake in plants consistently increased until the 11th week. After that, it started to plateau and finally declined. Moreover, N utilization by rice plants peaked at 50%, which occurred during the 11th week after transplanting. N derived from fertilizer in rice plants were in the range of 18.7% to 40.0% in all plant tissues. The remaining N was derived from soil. Based on this study, N release from CRF should complete by the 11th week after planting to ensure the maximum fertilizer N uptake by rice plants. Efficient CRF should contribute to higher N derived from fertilizer which also resultedin a higher total N uptake by rice plants, increasing the potential of rice to produce higher yield while at the same time of reducing loss.

  17. δ15N and nutrient stoichiometry of water, aquatic organisms and environmental implications in Taihu lake, China.

    Science.gov (United States)

    Tao, Yu; Dan, Dai; Kun, Lei; Chengda, He; Haibing, Cong; Guo, Fu; Qiujin, Xu; Fuhong, Sun; Fengchang, Wu

    2018-06-01

    Nitrogen pollution has become a worldwide problem and the source identification is important for the development of pertinent control measures. In this study, isotope end members (rain, nitrogen fertilizer, untreated/treated sewage), and samples (river water discharging to Taihu lake, lake water, aquatic organisms of different trophic levels) were taken during 2010-2015 to examine their δ 15 N values and nutrient stoichiometry. Results indicated that phytoplankton (primary producers), which directly take up and incorporate N from the lake water, had a similar δ 15 N value (14.1‰ ± 3.2) to the end member of treated sewage (14.0‰ ± 7.5), and the most frequently observed δ 15 N value in the lake water was 8-12‰, both indicating the dominant impact of the sewage discharge. Relationship analysis between N isotope value of nitrate and nitrate concentration indicated that different N cycling existed between the algae-dominated northwest lake (NW) and the macrophyte-dominated southeast lake (SE), which is a result of both impacts of river inputs and denitrification. Our nutrient stoichiometry analysis showed that the lake water had a significantly higher N:P ratio than that of algae (p economic development in the watershed further confirmed that the rapid population increase and urbanization have resulted in a great change in the N loading and source proportion. We suggest that although P control is necessary in terms of eutrophication control, N pollution control is urgent for the water quality and ecological recovery for Taihu lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The influence of tannin, pectin and polyethylene glycol on attachment of 15N-labelled rumen microorganisms to cellulose

    International Nuclear Information System (INIS)

    Bento, M.H.L.; Acamovic, T.; Makkar, H.P.S.

    2005-01-01

    The microbial attachment to and gas production from α-cellulose (Sigma; C-8002) without and with mimosa tannin (MT), pectin (P), polyethylene glycol (PEG), MT + P or MT + PEG, were investigated using the in vitro gas production system. Microbial attachment based on 15 N-labelled rumen microorganisms in the residual pellet after 24 h incubation was estimated, which varied from 113.7 to 161.3 μg 15 N per g residual pellet. C + MT had the lowest microbial attachment (P 2 = 0.84, P 15 N) in the residual pellet measured for C + MT (0.054) and C + MT + P (0.159), compared with the other treatments (0.32 for C; 0.34 for C + P; 0.33 for C + PEG; and 0.33 for C + MT + PEG). A MT concentration of 194 g/kg diet reduced microbial attachment and activity of rumen microorganisms in vitro. Polyethylene glycol counteracted the effect of MT on microbial attachment and activity. Pectin exerted a beneficial effect on attachment and fermentation in the initial hours of incubation. A ratio of pectin to MT of 1:1 improved microbial activity of C + MT but inhibition of microbial activity by MT remained at 24 h as indicated by the lower gas production of C + MT + P compared with the control. The results support the hypothesis that there is considerable interaction between tannins, microbes and non-starch-polysaccharides (NSP) in animal feeds and that these interactions may influence the functional ability of microbes in the gastrointestinal tract of animals. (author)

  19. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    Directory of Open Access Journals (Sweden)

    J. K. Schjoerring

    2012-05-01

    Full Text Available Seasonal changes in nitrogen (N pools, carbon (C content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3 exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the Γ value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of Γ differed considerably among the different tissues. Green leaves and stems generally had substantially lower Γ values than senescent leaves and litter. Substantial peaks in Γ were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in Γ also appeared during the winter, coinciding with increasing δ15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, δ13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. δ15N and δ13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  20. Impact of UV-B (290-320 nm) radiation on photosynthesis-mediated uptake of 15N-ammonia and 15N-nitrate of several marine diatoms

    International Nuclear Information System (INIS)

    Doehler, G.; Stolter, H.

    1986-01-01

    The marine diatoms Ditylum brigthwellii, Lithodesmium variabile, Odontella sinensis, Synedra planctonica and Thalassiosira rotula grown at 18 0 C under normal air conditions (0.035 vol.% CO 2 ) were exposed to different levels (439 and 717 J m -2 d -1 , weighted) of UV-B radiation for 2 d (5 h/d). Pigmentation, protein and total nitrogen content were reduced linearly to the dose of UV-B radiation. Photosynthesis-mediated uptake of 15 N-ammonia was more affected by UV-B irradiance in all tested diatoms than that of 15 N-nitrate. A species-dependent behavior in the assimilation of inorganic nitrogenous compounds has been observed: Synedra was a very sensitive species to UV-B radiation whereas the same UV-B doses had no effect on the assimilation rate of ammonia and nitrate of the Lithodesmium cells. The results were discussed with reference to the inhibition of the enzymes of the nitrogen metabolism. (author)

  1. Uniform {sup 15}N- and {sup 15}N/{sup 13}C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W. [Abbott Laboratories, Abbott Park, IL (United States)

    1994-12-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly {sup 15}N-and {sup 15}N/{sup 13}C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the {phi} angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

  2. Determination of the free radical concentration ratio in the copolymerization of methyl acrylate and styrene. Application of radical trapping and 15N NMR spectroscopy

    NARCIS (Netherlands)

    Kelemen, P.; Klumperman, B.

    2004-01-01

    15N-labeled nitroxides are employed to trap propagating radicals in the copolymn. of styrene and Me acrylate. The resulting polymeric alkoxyamines are analyzed by 15N NMR.The assignment of the obsd. bands to the two possible end groups of the propagating copolymer chain is achieved by comparison of

  3. Nitrogen incorporation and retention by bacteria, algae, and fauna in a subtropical, intertidal sediment: An in situ 15N-labeling study

    NARCIS (Netherlands)

    Veuger, B.; Eyre, B.D.; Maher, D.; Middelburg, J.J.

    2007-01-01

    We performed a 15N-labeling study to investigate nitrogen incorporation and retention by the benthic microbial community (bacteria and benthic microalgae) and fauna in the intertidal sediment of the subtropical Australian Brunswick Estuary. The main experiment involved an in situ 15N pulse–chase

  4. 15N enrichment of soil NH4+-N as an alternative non-N2-fixing reference for assessing varietal differences in N2 fixation of rice

    International Nuclear Information System (INIS)

    Shrestha, R.K.; Ladha, J.K.

    1996-01-01

    A pot experiment in the greenhouse was conducted to assess the usefulness of 15 N enrichment of soil NH 4 + -N as an alternative to a non-fixing reference plant to determine varietal differences in N 2 fixation among rice varieties. Diverse rice genotypes were grown in a 15 N stabilized soil obtained after 6 wk of application under flooded conditions. Atom % 15 N excess of soil NH 4 + -N was decreased exponentially with amount of N mineralized (r=99). Close agreement was observed between the 15 N enrichment of reference rice plant and 15 N enrichment of KCl extractable NH 4 + -N from unplanted pots maintained in the greenhouse. Whole plant atom % 15 N excess was inversely correlated within growth duration. Therefore, it was necessary to calculate Ndfa within growth duration. Ndfa estimated within the growth duration using 15 N enrichment of soil NH 4 + -N and reference rice genotype correlated almost perfectly (r=998). Thus the study demonstrated the potential of using 15 N enrichment of soil NH 4 + -N as a non-N 2 fixing reference for reliable estimate of biological nitrogen fixation by nonlegumes under flooded conditions. (author)

  5. δ15N values of atmospheric N species simultaneously collected using sector-based samplers distant from sources - Isotopic inheritance and fractionation

    Science.gov (United States)

    Savard, Martine M.; Cole, Amanda; Smirnoff, Anna; Vet, Robert

    2017-08-01

    The nitrogen isotope ratios (δ15N) of atmospheric N species are commonly suggested as indicators of N emission sources. Therefore, numerous research studies have developed analytical methodologies and characterized primary (gases) and secondary emission products (mostly precipitation and aerosols) from various emitters. These previous studies have generally collected either reduced or oxidized N forms, and sampled them separately prior to determining their δ15N values. Distinctive isotopic signals have been reported for emissions from various sources, and seasonality of the δ15N values has been frequently attributed to shifts in relative contributions from sources with different isotopic signals. However, theoretical concepts suggest that temperature effects on isotopic fractionation may also affect the δ15N values of atmospheric reaction products. Here we use a sector-based multi-stage filter system to simultaneously collect seven reduced and oxidized N species downwind from five different source types in Alberta, Canada. We report δ15N values obtained with a state-of-the-art gold-furnace pre-concentrator online with an isotope ratio mass spectrometer (IRMS) to provide representative results even for oxidized-N forms. We find that equilibrium isotope effects and their temperature dependence play significant roles in determining the δ15N values of the secondary emission products. In the end, seasonal δ15N changes here are mainly caused by temperature effects on fractionation, and the δ15N values of only two N species from one source type can be retained as potential fingerprints of emissions.

  6. Quantitative analysis of 15N labeled positional isomers of glutamine and citrulline via electrospray ionization tandem mass spectrometry of their dansyl derivatives

    Science.gov (United States)

    The enteral metabolism of glutamine and citrulline are intertwined because, while glutamine is one of the main fuel sources for the enterocyte, citrulline is one of its products. It has been shown that the administration of 15N labeled glutamine results in the incorporation of the 15N label into cit...

  7. Variability of δ15N in soil and plants at a New Zealand hill country site: correlations with soil chemistry and nutrient inputs

    International Nuclear Information System (INIS)

    Hawke, D.J.

    2000-01-01

    This study investigated 15 N enrichment and nutrient cycling in hill country used for semi-extensive pastoral agriculture, at a site where pre-European seabird breeding occurred. Soil (>15 cm) and plant samples were taken from 18 ridgeline and sideslope transects. Three stock camps (locations which grazing animals frequent) were identified within the study area, two on the ridgeline and one on the sideslope. Soil 15 N enrichment was greatest at stock camps, and lowest where stock input was minimal. Soil natural abundance 15 N (815N) was therefore an index of stock nutrient inputs. Soil δ 15 N increased with decreasing C:N ratio, consistent with N loss through volatilisation and/or nitrate leaching from net mineralisation. Plant δ 15 N from stock camps was lower than its associated soil, implying that 15 N enrichment of plant-available N was lower than that of total soil N. However, the correlation between plant δ 15 N and soil δ 15 N varied between stock camps, indicating differences in N cycling. Olsen P was higher at stock camps, although again differences were found between stock camps. Total P and N were correlated neither with stock camps nor topography, but were higher than expected from parent material concentrations and literature results, respectively. It is postulated that significant contributions of both elements from former seabird breeding remain in the soil. Copyright (2000) CSIRO Publishing

  8. Distribution Of 15N Fertilizer Added To Sandy Soil Under Drip Irrigation System As Affected By Irrigation Frequencies

    International Nuclear Information System (INIS)

    GADALLA, A.M.; GALAL, Y.G.M.; EL-GENDY, R.W.; ISMAIL, M.M.; EL-DEGWY, S.M.; KASSAB, M.F.

    2009-01-01

    Neutron moisture meter and stable nitrogen isotope ( 15 N) were used to follow horizontal and vertical water movement and N-fertilizer added to soil before and after irrigation. The data indicated that soil moisture distribution and values of total hydraulic potential depend on soil moisture content. Characterization of nitrogen in soil for all sites around the emitter indicated spatial variability with different soil depths due to leaching and volatilization processes. Moreover, water movement and flow direction greatly were characterized by active evaporation depth which was 30 cm.

  9. The study on effect of zeolite on nitrogen use efficiency of corn by 15N-isotope dilution method

    International Nuclear Information System (INIS)

    Li Changhong; Li Huaxing; Zhang Xinming; Liu Yuanjin

    2002-01-01

    A pot experiment was carried out to study the effect of natural zeolite on nitrogen use efficiency of corn by using 15 N-isotope dilution method. The results showed that application of zeolite could improve the corn growth and enhance the biomass of the corn seedling. By using zeolite, nitrogen use efficiency (NUE) of corn was increased by 23.2%-33.1% as compared with no-zeolite treatment; and the residual nitrogen has no significant difference between zeolite treatment and no-zeolite treatment

  10. Oxygen 18 concentration profile measurements near the surface by 18O(p,α)15N resonance reaction

    International Nuclear Information System (INIS)

    Amsel, G.; David, D.

    1975-01-01

    The method of spectrum reduction in nuclear reaction microanalysis does not allow to obtain depth resolutions better than the order of 2000A. Resolutions of the order of 200A may be obtained by using the narrow resonance technique, when applied to thin films. The latter technique was extended to thick targets, with deep concentration profiles presenting a sharp gradient near the surface. This method is presented and illustrated by the study of 18 O profiles in oxygen diffusion measurements in growing ZrO 2 , using the 629keV resonance of the reaction 18 O(p,α) 15 N [fr

  11. Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile

    Science.gov (United States)

    Perakis, Steven S.; Compton, J.E.; Hedin, L.O.

    2005-01-01

    Accelerated nitrogen (N) inputs can drive nonlinear changes in N cycling, retention, and loss in forest ecosystems. Nitrogen processing in soils is critical to understanding these changes, since soils typically are the largest N sink in forests. To elucidate soil mechanisms that underlie shifts in N cycling across a wide gradient of N supply, we added 15NH415NO3 at nine treatment levels ranging in geometric sequence from 0.2 kg to 640 kg NA? ha-1A? yr-1 to an unpolluted old-growth temperate forest in southern Chile. We recovered roughly half of tracers in 0-25 cm of soil, primarily in the surface 10 cm. Low to moderate rates of N supply failed to stimulate N leaching, which suggests that most unrecovered 15N was transferred from soils to unmeasured sinks above ground. However, soil solution losses of nitrate increased sharply at inputs > 160 kg NA? ha-1A? yr-1, corresponding to a threshold of elevated soil N availability and declining 15N retention in soil. Soil organic matter (15N in soils at the highest N inputs and may explain a substantial fraction of the 'missing N' often reported in studies of fates of N inputs to forests. Contrary to expectations, N additions did not stimulate gross N cycling, potential nitrification, or ammonium oxidizer populations. Our results indicate that the nonlinearity in N retention and loss resulted directly from excessive N supply relative to sinks, independent of plant-soil-microbial feedbacks. However, N additions did induce a sharp decrease in microbial biomass C:N that is predicted by N saturation theory, and which could increase long-term N storage in soil organic matter by lowering the critical C:N ratio for net N mineralization. All measured sinks accumulated 15N tracers across the full gradient of N supply, suggesting that short-term nonlinearity in N retention resulted from saturation of uptake kinetics, not uptake capacity, in plant, soil, and microbial pools.

  12. Measurement of the denitrification in soil monoliths from grassland and arable soil by means of 15N techniques

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.

    1980-01-01

    Losses of fertilizer nitrogen by denitrification were determined in soil monoliths from two sites (loess chernozem and clay ranker). The monoliths were isolated by driving plastic pipes into the plots, and fertilized with 15 N-labelled ammonium nitrate. Emission spectrometric techniques were applied to measure the N 2 and N 2 O quantities released in the isolated atmospheric layer above the monolith. The considerable losses, especially on grassland soils (up to a maximum of 30 kg N/ha), indicate the influence of rainfalls and mean temperature at the 5 dates of sampling (end of March to mid-October). (author)

  13. Fate of 15N-labelled urea as affected by organic amendments and oils applied to rice

    International Nuclear Information System (INIS)

    Singh, G.R.; Singh, T.A.

    1987-01-01

    The present study was undertaken to explore the possibility of using 2 organic compounds (p-benzoquinone and catechol), 2 oils (neem oil (Azadirachta indica A. Juss) and linseed oil (Linum usitatissimum Linn.) oil) and 3 polyphenolic plant residues, viz. catechu (Acacia catechu (L.f.) Willd.), babul acacia (Acacia nilotica (Linn.) Willd. ex Del. sub.indica (Benth.) Brenan, syn. A. arabica (Lamk.) Willd.) and yellow myrobalan (Terminalia chebula Retz.) when applied with 15 N-tagged urea to observe their effectiveness in decreasing N losses. (author). 8 refs

  14. Nuclear astrophysics deep underground the case of the 15N(p,γ)16O reaction at LUNA

    CERN Document Server

    Mazzocchi, Chiara

    2010-01-01

    Measuring nuclear reactions of astrophysical interest at the relevant energies is not always possible on the Earth’s surface because of the cosmic-ray background that dominates the spectra. The LUNA collaboration exploits the lowbackground enviroment of Gran Sasso National Laboratory to study these reactions at or close to the Gamow peak. The latest experimental efforts included the measurement of the 15N(p,γ)16O at beam energies between 77 and 350 keV. The status of these measurements is summarised in this contribution.