WorldWideScience

Sample records for nanoparticles zno nps

  1. The Interactions between ZnO Nanoparticles (NPs and α-Linolenic Acid (LNA Complexed to BSA Did Not Influence the Toxicity of ZnO NPs on HepG2 Cells

    Yiwei Zhou

    2017-04-01

    Full Text Available Background: Nanoparticles (NPs entering the biological environment could interact with biomolecules, but little is known about the interaction between unsaturated fatty acids (UFA and NPs. Methods: This study used α-linolenic acid (LNA complexed to bovine serum albumin (BSA for UFA and HepG2 cells for hepatocytes. The interactions between BSA or LNA and ZnO NPs were studied. Results: The presence of BSA or LNA affected the hydrodynamic size, zeta potential, UV-Vis, fluorescence, and synchronous fluorescence spectra of ZnO NPs, which indicated an interaction between BSA or LNA and NPs. Exposure to ZnO NPs with the presence of BSA significantly induced the damage to mitochondria and lysosomes in HepG2 cells, associated with an increase of intracellular Zn ions, but not intracellular superoxide. Paradoxically, the release of inflammatory cytokine interleukin-6 (IL-6 was decreased, which indicated the anti-inflammatory effects of ZnO NPs when BSA was present. The presence of LNA did not significantly affect all of these endpoints in HepG2 cells exposed to ZnO NPs and BSA. Conclusions: the results from the present study indicated that BSA-complexed LNA might modestly interact with ZnO NPs, but did not significantly affect ZnO NPs and BSA-induced biological effects in HepG2 cells.

  2. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor

    Arciniegas-Grijalba, P. A.; Patiño-Portela, M. C.; Mosquera-Sánchez, L. P.; Guerrero-Vargas, J. A.; Rodríguez-Páez, J. E.

    2017-06-01

    In this work, a methodology of synthesis was designed to obtain ZnO nanoparticles (ZnO NPs) in a controlled and reproducible manner. The nanoparticles obtained were characterized using infrared spectroscopy, X-ray diffraction, and transmission electron microscopy (TEM). Also, we determined the antifungal capacity in vitro of zinc oxide nanoparticles synthesized, examining their action on Erythricium salmonicolor fungy causal of pink disease. To determine the effect of the quantity of zinc precursor used during ZnO NPs synthesis on the antifungal capacity, 0.1 and 0.15 M concentrations of zinc acetate were examined. To study the inactivation of the mycelial growth of the fungus, different concentrations of ZnO NPs of the two types of synthesized samples were used. The inhibitory effect on the growth of the fungus was determined by measuring the growth area as a function of time. The morphological change was observed with high-resolution optical microscopy (HROM), while TEM was used to observe changes in its ultrastructure. The results showed that a concentration of 9 mmol L-1 for the sample obtained from the 0.15 M and at 12 mmol L-1 for the 0.1 M system significantly inhibited growth of E. salmonicolor. In the HROM images a deformation was observed in the growth pattern: notable thinning of the fibers of the hyphae and a clumping tendency. The TEM images showed a liquefaction of the cytoplasmic content, making it less electron-dense, with the presence of a number of vacuoles and significant detachment of the cell wall.

  3. Toxic effect of different metal bearing nanoparticles (ZnO NPs, TiO2 NPs, SiO2 NPs, Ag NPs) toward marine phytoplankton

    Schiavo, Simona

    2016-01-01

    Abstract The advent of nanotechnology and the commercialization of several nanoparticle-containing-products call to a thorough assessment of the environmental risks derived from the exposure to these new materials. The most important criticisms of new nano-structured materials are represented by the emerging properties, the absence of a dedicate regulation, the increasing world-market, the implementation of the application fields. At “nano” size, materials show different physicochemical p...

  4. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds.

    Ali, Sameh Samir; Morsy, Reda; El-Zawawy, Nessma Ahmed; Fareed, Mervat F; Bedaiwy, Mohamed Yaser

    2017-01-01

    Increasing of multidrug resistance (MDR) remains an intractable challenge for burn patients. Innovative nanomaterials are also in high demand for the development of new antimicrobial biomaterials that inevitably have opened new therapeutic horizons in medical approaches and lead to many efforts for synthesizing new metal oxide nanoparticles (NPs) for better control of the MDR associated with the polymicrobial burn wounds. Recently, it seems that metal oxides can truly be considered as highly efficient inorganic agents with antimicrobial properties. In this study, zinc peroxide NPs (ZnO 2 -NPs) were synthesized using the co-precipitation method. Synthesized ZnO 2 -NPs were characterized by X-ray diffraction, Fourier transformed infrared, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and ultraviolet-visible spectroscopy. The characterization techniques revealed synthesis of the pure phase of non-agglomerated ZnO 2 -NPs having sizes in the range of 15-25 nm with a transition temperature of 211°C. Antimicrobial activity of ZnO 2 -NPs was determined against MDR Pseudomonas aeruginosa (PA) and Aspergillus niger (AN) strains isolated from burn wound infections. Both strains, PA6 and AN4, were found to be more susceptible strains to ZnO 2 -NPs. In addition, a significant decrease in elastase and keratinase activities was recorded with increased concentrations of ZnO 2 -NPs until 200 µg/mL. ZnO 2 -NPs revealed a significant anti-inflammatory activity against PA6 and AN4 strains as demonstrated by membrane stabilization, albumin denaturation, and proteinase inhibition. Moreover, the results of in vivo histopathology assessment confirmed the potential role of ZnO 2 -NPs in the improvement of skin wound healing in the experimental animal models. Clearly, the synthesized ZnO 2 -NPs have demonstrated a competitive capability as antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory candidates, suggesting that the

  5. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  6. Photoluminescent ZnO Nanoparticles and Their Biological Applications

    Zheng-Yong Zhang

    2015-05-01

    Full Text Available During the past decades, numerous achievements concerning luminescent zinc oxide nanoparticles (ZnO NPs have been reported due to their improved luminescence and good biocompatibility. The photoluminescence of ZnO NPs usually contains two parts, the exciton-related ultraviolet (UV emission and the defect-related visible emission. With respect to the visible emission, many routes have been developed to synthesize and functionalize ZnO NPs for the applications in detecting metal ions and biomolecules, biological fluorescence imaging, nonlinear multiphoton imaging, and fluorescence lifetime imaging. As the biological applications of ZnO NPs develop rapidly, the toxicity of ZnO NPs has attracted more and more attention because ZnO can produce the reactive oxygen species (ROS and release Zn2+ ions. Just as a coin has two sides, both the drug delivery and the antibacterial effects of ZnO NPs become attractive at the same time. Hence, in this review, we will focus on the progress in the synthetic methods, luminescent properties, and biological applications of ZnO NPs.

  7. Enhanced antimicrobial activity in biosynthesized ZnO nanoparticles

    Kumari, Niraj; Kumari, Priti; Jha, Anal K.; Prasad, K.

    2018-05-01

    Biological synthesis of different metallic and/or oxide nanoparticles and their applications especially in agriculture and biomedical sciences are gaining prominence nowadays due to their handy and reproducible synthetic protocols which are cost-effective and eco-friendly. In this work, green synthesis of zinc oxide nanoparticles (ZnO NPs) using the alcoholic extract of Azadirachta indica as a reducing and stabilizing agent has been presented. Formation of ZnO NPs was confirmed by X-ray diffraction, scanning and transmission electron microscopy techniques. The phytochemicals responsible for nano-transformation were principally alkaloids, flavanoids, terpenoids, tannins and organic acids present in the Azadirachta indica leaves. The synthesized ZnO NPs were used for antimicrobial assays by disc diffusion method against Staphylococcus aureus and Candida albicans. Results showed that ZnO NPs may act as antimicrobial agent especially against skin infections.

  8. Trioctylphosphine-assisted morphology control of ZnO nanoparticles

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  9. In situ detection of the Zn(2+) release process of ZnO NPs in tumour cells by confocal laser scanning fluorescence microscopy.

    Song, Wenshuang; Tang, Xiaoling; Li, Yong; Sun, Yang; Kong, Jilie; Qingguang, Ren

    2016-08-01

    The use of zinc oxide (ZnO) nanoparticles (NPs) for cancer is not yet clear for human clinical applications, which is primarily due to the lack of a better understanding of the action mechanisms and cellular consequences of the direct exposure of cells to these NPs. In this work, the authors have selected zinquin ethyl ester, a Zn(2+)-specific fluorescent molecular probe, to efficiently differentiate ZnO NPs and Zn(2+), and combined with confocal laser scanning microscopy (CLSM) to in situ study the Zn(2+) release process of ZnO NPs in cancer cell system through detecting the change of Zn(2+) level over time. During the experiments, the authors have designed the test group ZnO-2 in addition to assess the influence of a long-term storage on the characteristics of ZnO NPs in aqueous solution, and the Zn(2+) release process of ZnO NPs in cancer cell system. After three-month storage at room temperature, the release process became earlier and faster, which was consistent with previous results of transmission electron microscope, UV-Vis and PL spectra. It is a good detection method that combination of Zn(2+)-specific fluorescent molecular probe and CLSM, which will be helpful for ZnO NPs using in clinical research.

  10. Reducing ZnO nanoparticle cytotoxicity by surface modification.

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N; Martin, Lisandra L; Hughes, Anthony E; Wright, Paul F A; Turney, Terence W

    2014-06-07

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.

  11. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions

    Bhuvaneshwari, M.; Iswarya, V. [Centre for Nanobiotechnology, VIT University, Vellore 632014 (India); Archanaa, S. [Department of Biotechnology, IIT Madras (India); Madhu, G.M. [Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, Bangalore (India); Kumar, G.K. Suraish [Department of Biotechnology, IIT Madras (India); Nagarajan, R. [Department of Chemical Engineering, IIT Madras (India); Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore 632014 (India); Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com [Centre for Nanobiotechnology, VIT University, Vellore 632014 (India)

    2015-05-15

    Highlights: • The cytotoxicity of ZnO NPs with two hydrodynamic sizes towards freshwater algae. • Size dependent toxicity under UV-C, dark and visible light conditions. • Cytotoxicity principally due to ZnO NPs not the released Zn{sup 2+} ions. • The internalization of ZnO NPs leads to membrane damage and ROS production. - Abstract: Continuous increase in the usage of ZnO nanoparticles in commercial products has exacerbated the risk of release of these particles into the aquatic environment with possible harmful effects on the biota. In the current study, cytotoxic effects of two types of ZnO nanoparticles, having different initial effective diameters in filtered and sterilized lake water medium [487.5 ± 2.55 nm for ZnO-1 NPs and 616.2 ± 38.5 nm for ZnO-2 NPs] were evaluated towards a dominant freshwater algal isolate Scenedesmus obliquus in UV-C, visible and dark conditions at three exposure concentrations: 0.25, 0.5 and 1 mg/L. The toxic effects were found to be strongly dependent on the initial hydrodynamic particle size in the medium, the exposure concentrations and the irradiation conditions. The loss in viability, LDH release and ROS generation were significantly enhanced in the case of the smaller sized ZnO-1 NPs than in the case of ZnO-2 NPs under comparable test conditions. The toxicity of both types of ZnO NPs was considerably elevated under UV-C irradiation in comparison to that in dark and visible light conditions, the effects being more enhanced in case of ZnO-1 NPs. The size dependent dissolution of the ZnO NPs in the test medium and possible toxicity due to the released Zn{sup 2+} ions was also noted. The surface adsorption of the nanoparticles was substantiated by scanning electron microscopy. The internalization/uptake of the NPs by the algal cells was confirmed by fluorescence microscopy, transmission electron microscopy, and elemental analyses.

  12. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions

    Bhuvaneshwari, M.; Iswarya, V.; Archanaa, S.; Madhu, G.M.; Kumar, G.K. Suraish; Nagarajan, R.; Chandrasekaran, N.; Mukherjee, Amitava

    2015-01-01

    Highlights: • The cytotoxicity of ZnO NPs with two hydrodynamic sizes towards freshwater algae. • Size dependent toxicity under UV-C, dark and visible light conditions. • Cytotoxicity principally due to ZnO NPs not the released Zn 2+ ions. • The internalization of ZnO NPs leads to membrane damage and ROS production. - Abstract: Continuous increase in the usage of ZnO nanoparticles in commercial products has exacerbated the risk of release of these particles into the aquatic environment with possible harmful effects on the biota. In the current study, cytotoxic effects of two types of ZnO nanoparticles, having different initial effective diameters in filtered and sterilized lake water medium [487.5 ± 2.55 nm for ZnO-1 NPs and 616.2 ± 38.5 nm for ZnO-2 NPs] were evaluated towards a dominant freshwater algal isolate Scenedesmus obliquus in UV-C, visible and dark conditions at three exposure concentrations: 0.25, 0.5 and 1 mg/L. The toxic effects were found to be strongly dependent on the initial hydrodynamic particle size in the medium, the exposure concentrations and the irradiation conditions. The loss in viability, LDH release and ROS generation were significantly enhanced in the case of the smaller sized ZnO-1 NPs than in the case of ZnO-2 NPs under comparable test conditions. The toxicity of both types of ZnO NPs was considerably elevated under UV-C irradiation in comparison to that in dark and visible light conditions, the effects being more enhanced in case of ZnO-1 NPs. The size dependent dissolution of the ZnO NPs in the test medium and possible toxicity due to the released Zn 2+ ions was also noted. The surface adsorption of the nanoparticles was substantiated by scanning electron microscopy. The internalization/uptake of the NPs by the algal cells was confirmed by fluorescence microscopy, transmission electron microscopy, and elemental analyses

  13. Hierarchical nanoflowers assembled with Au nanoparticles decorated ZnO nanosheets toward enhanced photocatalytic properties

    Yu, Cuiyan; Yu, Yanlong; Xu, Tao

    2017-01-01

    Hierarchical nanoflowers assembled with Au nanoparticles (NPs) decorated ZnO nanosheets (Au-ZnO nanosheet flowers, AZNSFs) were successful synthesized. The AZNSFs showed more efficient activity to photodegradation of RhB than that of pure ZnO nanosheet flowers and commercial ZnO nanopowders. The ...

  14. AuNPs Hybrid Black ZnO Nanorods Made by a Sol-Gel Method for Highly Sensitive Humidity Sensing

    Hongyan Zhang

    2018-01-01

    Full Text Available A highly sensitive self-powered humidity sensor has been realized from AuNPs hybrid black zinc oxide (ZnO nanorods prepared through a sol-gel method. XRD pattern reveals that both ZnO and ZnO/AuNPs exhibit a wurtzite structure. ZnO/AuNPs nanorods grow in a vertical alignment, which possesses high uniformity and forms dense arrays with a smaller diameter than that of ZnO nanoparticles. All ZnO/AuNPs and pure black ZnO show lower band gap energy than the typically reported 3.34 eV of pure ZnO. Furthermore, the band gap of ZnO/AuNPs nanocomposites is effectively influenced by the amount of AuNPs. The humidity sensing tests clearly prove that all the ZnO/AuNPs humidity sensors exhibit much higher response than that of ZnO sensors, and the sensitivity of such ZnO/AuNPs nanorods (6 mL AuNPs display a change three orders higher than that of pure ZnO with relative humidity (RH ranging from 11% to 95% at room temperature. The response and recovery time of the ZnO/AuNPs are 5.6 s and 32.4 s, respectively. This study of the construction of semiconductor/noble metal sensors provides a rational way to control the morphology of semiconductor nanomaterials and to design a humidity sensor with high performance.

  15. Effect of temperature on the characteristics of ZnO nanoparticles ...

    7

    worked on self assembly of ZnO NPs produced by nanosecond pulsed laser ablation (PLA) in aqueous media [4]. They reported that the small ZnO nanoparticles were obtained .... monitor the optical properties of quantum-sized particles [17]. If the size of nanoparticles increases, their resonance absorption spectrum peak ...

  16. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  17. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Zhan Shu

    2017-02-01

    Full Text Available Abstract Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs and silver (Ag into zinc oxide (ZnO nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs and Ag nanoparticles (Ag NPs with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  18. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming

    2017-02-01

    Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  19. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  20. Oxygen Vacancy-Mediated ZnO Nanoparticle Photocatalyst for Degradation of Methylene Blue

    Qiuping Zhang

    2018-02-01

    Full Text Available ZnO nanoparticles (NPs are synthesized by deoxidizing ZnO powder in a vacuum drying process. This process reduces the size of the NPs and increases the concentration of oxygen vacancies on their surfaces. ZnO NPs with sufficient oxygen vacancies are highly effective for the photodecomposition of methylene blue (MB dye in water under ultraviolet irradiation. The MB degradation efficiency exceeds 99 percent after 50 min of light irradiation, and the catalytic property of the NPs remains stable over several complete degradation cycles. It is revealed that the concentration of oxygen vacancies on the surface, and the photocatalytic activity, are both higher for smaller NPs. Oxygen vacancies reduce the recombination rate of photo-generated charge carriers by capturing the electrons and hence, improve the efficiency of redox reactions. In addition, a smaller particle size leads to a larger specific surface area and a higher photonic efficiency for the ZnO NPs.

  1. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study.

    Shaymurat, Talgar; Gu, Jianxiu; Xu, Changshan; Yang, Zhikun; Zhao, Qing; Liu, Yuxue; Liu, Yichun

    2012-05-01

    The effects of zinc oxide nanoparticles (ZnO NPs) on the root growth, root apical meristem mitosis and mitotic aberrations of garlic (Allium sativum L.) were investigated. ZnO NPs caused a concentration-dependent inhibition of root length. When treated with 50 mg/L ZnO NPs for 24 h, the root growth of garlic was completely blocked. The 50% inhibitory concentration (IC(50)) was estimated to be 15 mg/L. The mitosis index was also decreased in a concentration- and time-dependent manner. ZnO NPs also induced several kinds of mitotic aberrations, mainly consisted of chromosome stickiness, bridges, breakages and laggings. The total percentage of abnormal cells increased with the increase of ZnO NPs concentration and the prolongation of treatment time. The investigation provided new information for the possible genotoxic effects of ZnO NPs on plants.

  2. Potato extract as reducing agent and stabiliser in a facile green one-step synthesis of ZnO nanoparticles

    Buazar, Foad; Bavi, M.; Kroushawi, Feisal

    2016-01-01

    A facile green recipe was developed to synthesise highly pure, safe and durable zinc oxide nanoparticles (ZnO Nps) using homemade starch-rich potato extract. The ZnO Nps were synthesised using zinc nitrate and potato extract, and the whole reaction is carried out for 30 min at 80 °C...

  3. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

    Dutta, R K; Nenavathu, Bhavani P; Gangishetty, Mahesh K; Reddy, A V R

    2012-06-01

    Recent studies indicated the role of ROS toward antibacterial activity. In our study we report ROS mediated membrane lipid oxidation of Escherichia coli treated with ZnO nanoparticles (NPs) as supported by detection and spectrophotometric measurement of malondialdehyde (MDA) by TBARS (thiobarbituric acid-reactive species) assay. The antibacterial effects of ZnO NPs were studied by measuring the growth curve of E. coli, which showed concentration dependent bacteriostatic and bacteriocidal effects of ZnO NPs. The antibacterial effects were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, antibacterial effect of ZnO NPs was found to decrease by introducing histidine to the culture medium treated with ZnO NPs. The ROS scavenging action of histidine was confirmed by treating histidine to the batch of Escherichia coli+ZnO NPs at the end of the lag phase of the growth curve (Set-I) and during inoculation (Set-II). A moderate bacteriostatic effect (lag in the E. coli growth) was observed in Set-II batch while Set-I showed no bacteriostatic effect. From these evidences we confirmed that the antibacterial effect of bare as well as TG capped ZnO NPs were due to membrane lipid peroxidation caused by the ROS generated during ZnO NPs interaction in culture medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Effect of ZnO nanoparticles in the oxygen uptake during aerobic wastewater treatment

    Cervantes-Avilés, Pabel; Brito, Elcia M. S. [University of Guanajuato, Engineering Division, Department of Civil Engineering & Environmental Engineering (Mexico); Duran, Robert [Université de Pau et des Pays de l’Adour, Equipe Environment et Microbiologie (France); Martínez, Arodí Bernal; Cuevas-Rodríguez, Germán, E-mail: german28@ugto.mx [University of Guanajuato, Engineering Division, Department of Civil Engineering & Environmental Engineering (Mexico)

    2016-07-15

    The increased use of ZnO nanoparticles (NPs) in everyday products indicates the importance of studying NPs release to the wastewater and its possible effect on biological process for wastewater treatment. Therefore, the aim of this work was to study the effect of the presence of ZnO NPs in aerobic wastewater treatment. The results indicated that the oxygen uptake rate of microorganisms is inhibited for concentrations higher than 473 mg L{sup −1} of ZnO NPs. The diversity of microorganisms involved in wastewater treatment was reduced in presence of ZnO NPs. Related to morphological interaction between ZnO NPs and suspended biomass, physical damage in flocs structure were observed in presence of ZnO NPs. However, the internalization of Zn compounds in microorganisms not presented mechanical damage in the membrane cell. These findings suggest that inhibition in oxygen uptake was caused for negative effect that ZnO NPs induces in aerobic microorganisms involved in wastewater treatment.

  5. Noble silver nanoparticles (AgNPs) synthesis and characterization ...

    Nanotechnology is rapidly growing with nanoparticles produced and utilized in a wide range of pharmaceutical and commercial products throughout the world. In this study, fig (Ficus carica) leaf extracts were used for ecofriendly extracellular synthesis of stable silver nanoparticles (AgNPs) by treating an aqueous silver ...

  6. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm-1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  7. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  8. Synthesis and physicochemical characterizations and antimicrobial activity of ZnO nanoparticles

    Sharma, Bhumika K.; Patel, Kinjal; Roy, Debesh R.

    2018-05-01

    Nanoparticles exhibit very interesting and useful physicochemical properties when they interact with substrates and goes through some physicochemical and/or biological processes. ZnO is known to be a highly demanding nanomaterial due to its discreet properties, shapes and sizes. A detail experimental study on the synthesis, characterization and antibacterial activity of ZnO nanoparticles (NPs) is performed. ZnO NPs are synthesized using chemical precipitation method. The understanding of crystal structure, morphology and elemental compositions are explained using Powder X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) respectively. Fourier transform infrared spectroscopy (FTIR) is performed to achieve the information on the presence of various functional groups. The antibacterial activity of these ZnO NPs is investigated in terms of Zone of Inhibition (ZOI) against Escherichia coli (Gram negative) microorganisms.

  9. Photocatalytic antibacterial effect of ZnO nanoparticles into coaxial electrospun PCL fibers to prevent infections from skin injuries

    Prado-Prone, G.; Silva-Bermúdez, P.; García-Macedo, J. A.; Almaguer-Flores, A.; Ibarra, C.; Velasquillo-Martínez, C.

    2017-02-01

    Antibacterial studies of inorganic nanoparticles (nps) have become important due to the increased bacterial resistance against antibiotics. We used Zinc oxide nanoparticles (ZnO nps), which possess excellent photocatalytic properties with a wide band gap (Eg), are listed as "generally recognized as safe" by the Food and Drug Administration (FDA) and have shown antibacterial activity (AA) against many bacterial strains. The AA of ZnO nps is partly attributed to the production of Reactive Oxygen Species (ROS) by photocatalysis. When ZnO nps in aqueous media are illuminated with an energy water and Oxygen molecules to generate hydroxyl-radical (OH• ), superoxide-radical (O2 •- ) and hydrogen-peroxide (H2O2). These ROS induce cell membrane damage resulting in cell death. However, the application of inorganic nps in medical treatments is limited due to the possible long-term side effects of nps release. To prevent its release, ZnO nps were dispersed into Polycaprolactone (PCL) fibers obtained by electrospinning technique. To optimize the use of ZnO nps concentration, we developed coreshell coaxial electrospun fibers where the core corresponded to PCL and the shell to a mixture of ZnO nps/PCL. Thus, ZnO nps were only dispersed on the surface of the fibers increasing its superficial contact area. We evaluated the AA against E. coli of different electrospun ZnO nps/PCL fibers under two different conditions: UVA pre-illumination and darkness. Preliminary results suggest that the AA against E. coli is better when electrospun ZnO nps/PCL were preilluminated with UVA than under darkness conditions.

  10. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    Manjunath, K.; Ravishankar, T.N. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura Talluk (India); Kumar, Dhanith [Department of Chemistry, B.M.S. Instsitute of Technology, Yelahanka, Bangalore (India); Priyanka, K.P; Varghese, Thomas [Nanoscience Research Centre, Department of Physics, Nirmala College, Muvattupuzha, Kerala (India); Naika, H.Raja [Department of Studies and Research in Environmental Science, Tumkur University, Tumkur (India); Nagabhushana, H. [CNR Rao Center for Advanced Materials, Tumkur University, Tumkur (India); Sharma, S.C. [Chattisgarh Swami Vivekananda Technical University, Bhilai (India); Dupont, J. [Institute of Chemistry, Laboratory of Molecular Catalysis, UFRGS, Porto Alegre (Brazil); Ramakrishnappa, T. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura Talluk (India); Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Department of Chemistry, B.M.S. Instsitute of Technology, Yelahanka, Bangalore (India)

    2014-09-15

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterial and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm{sup −1} associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains.

  11. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    Manjunath, K.; Ravishankar, T.N.; Kumar, Dhanith; Priyanka, K.P; Varghese, Thomas; Naika, H.Raja; Nagabhushana, H.; Sharma, S.C.; Dupont, J.; Ramakrishnappa, T.; Nagaraju, G.

    2014-01-01

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterial and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm −1 associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains

  12. Ultraviolet photosensors fabricated with Ag nanowires coated with ZnO nanoparticles

    Shen, Guan-Hung [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    We have developed a simple low temperature process to coat zinc oxide (ZnO) nanoparticles (NPs) on Ag nanowires (NWs) with well-controlled morphology. Triethanolamine (TEA) was employed to react with zinc acetate (Zn(CH{sub 3}COO){sub 2}) forming ZnO NPs. TEA was also found to enhance the nucleation and binding of ZnO NPs on the Ag nanowire surfaces facilitating a complete coverage of Ag nanowire surfaces with ZnO NPs. The effects of the process parameters including reaction time and reaction temperature were studied. The surfaces of 60 nm diameter Ag NWs could be completely covered with ZnO NPs with the final diameters of Ag-NWs@ZnO (core–shell NWs) turning into the range from 100 nm to 450 nm. The Ag-NWs@ZnO was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray mapping analysis, X-ray diffraction, and photoluminescence spectra. Finally, ultraviolet (UV) photosensors were fabricated using Ag-NWs@ZnO. They were found to improve photosensitivity with greatly enhanced fast response by reducing the recovery time by 2 orders, in comparison with the UV-sensors using single-crystalline ZnO NWs. - Highlights: • Solution process to coat ZnO nanoparticles on Ag nanowires has been developed. • Ultraviolet photosensing of ZnO nanoparticles coated on the Ag nanowires was found. • High defect concentration of ZnO nanoparticles enhanced the photosensing properties.

  13. Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer

    Prashanthi, K.; Zhang, H.; Thundat, T. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada); Ramgopal Rao, V. [Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai (India)

    2012-02-15

    Local piezoelectric properties of ZnO nanoparticles (NPs) embedded in a photo-epoxy polymer are investigated by piezoresponse force microscopy (PFM). Integrating ZnO NPs into a photosensitive SU-8 polymer matrix not only retains the highly desired piezoelectric properties of the ZnO, but also preserves photosensitivity and optical transparency of the SU-8 polymer. These results have strong implications for simple photolithography based low-cost fabrication of piezoelectric microelectromechanicalsystems (MEMS) and nanoelectromechanicalsystems (NEMS) in both sensing and energy harvesting applications. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Nanoscaled Electrocatalytic Optically Modulated ZnO Nanoparticles through Green Process of Punica granatum L. and Their Antibacterial Activities

    Xolile Fuku

    2016-01-01

    Full Text Available Most recently, green synthesis of metal oxide nanoparticles has become an interesting subject of the nanoscience and nanotechnology. The use of plant systems has been deemed a green route and a dependable method for nanoparticle biosynthesis, owing to its environmental friendly nature. The present work demonstrates the bioreductive green synthesis of nanosized zinc oxide (ZnO using peel extracts of pomegranate. Highly crystalline ZnO nanoparticles (ZnO NPs which are 5 nm in particle size were characterised by HRTEM and XRD. FT-IR spectra confirmed the presence of the biomolecules and formation of plant protein-coated ZnO NPs and also the pure ZnO NPs. Electrochemical investigation revealed the redox properties and the conductivity of the as-prepared ZnO nanoparticles. The optical band gap of ZnO NPs was calculated to be 3.48 eV which indicates that ZnO NPs can be used in metal oxide semiconductor-based devices. Further, the nanomaterials were also found to be good inhibitors of bacterial strains at both low and high concentrations of 5–10 mg mL−1.

  15. Vegetable Peel Waste for the Production of ZnO Nanoparticles and its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities

    Surendra, T. V.; Roopan, Selvaraj Mohana; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Sarkar, Gargi; Suthindhiran, K.

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles, and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera ( M. oleifera) was evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis) spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX. ZnO NPs were shown sized 40-45 nm and spherical in shape. The degradation percentage of ZnO NPs was calculated as 94% at 70 min and the rate of the reaction -k = 0.0282. The synthesized ZnO NPs were determined for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic activities.

  16. Reducing ZnO nanoparticles toxicity through silica coating

    Sing Ling Chia

    2016-10-01

    Full Text Available ZnO NPs have good antimicrobial activity that can be utilized as agents to prevent harmful microorganism growth in food. However, the use of ZnO NPs as food additive is limited by the perceived high toxicity of ZnO NPs in many earlier toxicity studies. In this study, surface modification by silica coating was used to reduce the toxicity of ZnO NPs by significantly reducing the dissolution of the core ZnO NPs. To more accurately recapitulate the scenario of ingested ZnO NPs, we tested our as synthesized ZnO NPs in ingestion fluids (synthetic saliva and synthetic gastric juice to determine the possible forms of ZnO NPs in digestive system before exposing the products to colorectal cell lines. The results showed that silica coating is highly effective in reducing toxicity of ZnO NPs through prevention of the dissociation of ZnO NPs to zinc ions in both neutral and acidic condition. The silica coating however did not alter the desired antimicrobial activity of ZnO NPs to E. coli and S. aureus. Thus, silica coating offered a potential solution to improve the biocompatibility of ZnO NPs for applications such as antimicrobial agent in foods or food related products like food packaging. Nevertheless, caution remains that high concentration of silica coated ZnO NPs can still induce undesirable cytotoxicity to mammalian gut cells. This study indicated that upstream safer-by-design philosophy in nanotechnology can be very helpful in a product development.

  17. Characterization of spatial manipulation on ZnO nanocomposites consisting of Au nanoparticles, a graphene layer, and ZnO nanorods

    Huang, Shen-Che; Lu, Chien-Cheng; Su, Wei-Ming; Weng, Chen-Yuan; Chen, Yi-Cian; Wang, Shing-Chung; Lu, Tien-Chang; Chen, Ching-Pang; Chen, Hsiang

    2018-01-01

    Three types of ZnO-based nanocomposites were fabricated consisting of 80-nm Au nanoparticles (NPs), a graphene layer, and ZnO nanorods (NRs). To investigate interactions between the ZnO NRs and Au nanoparticle, multiple material analysis techniques including field-emission scanning electron microscopy (FESEM), surface contact angle measurements, secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic characterizations were performed. Results indicate that incorporating a graphene layer could block the interaction between the ZnO NRs and the Au NPs. Furthermore, the Raman signal of the Au NPs could be enhanced by inserting a graphene layer on top of the ZnO NRs. Investigation of these graphene-incorporated nanocomposites would be helpful to future studies of the physical properties and Raman analysis of the ZnO-based nanostructure design.

  18. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo

    2017-06-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.

  19. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    Gloria, E. Campillo; Ederley, Vélez; César, Hincapié; Gladis, Morales; Jaime, Osorio; Oscar, Arnache; José, Ignacio Uribe; Franklin, Jaramillo

    2017-01-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO 3 ) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) – Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV–visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λ max ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. (paper)

  20. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    Yi-Huang Hsueh

    Full Text Available Zinc oxide nanoparticles (ZnO NPs are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm, with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  1. Fabrication and characterizations of ZnO nanorods/Au nanoparticle composites on the electropolished Ti substrate

    Chen, Hsiang, E-mail: hchen@ncnu.edu.tw [National Chi Nan University, No.1, Daxue Rd., Puli Township, Nantou County 545, Taiwan, ROC (China); Yeh, Yih-Min [WuFeng University, No. 117, Sec 2, Chiankuo Rd, Minhsiung, Chiayi County 62153, Taiwan, ROC (China); Chen, Jian-Zhi [National Chi Nan University, No.1, Daxue Rd., Puli Township, Nantou County 545, Taiwan, ROC (China); Liu, Song-Ming [WuFeng University, No. 117, Sec 2, Chiankuo Rd, Minhsiung, Chiayi County 62153, Taiwan, ROC (China); Huang, Bo Yun; Wu, Zhi-Huei; Tsai, Shaung-Lin; Chang, Hung-Wei; Chu, Yu-Cheng; Liao, Chuan Hao [National Chi Nan University, No.1, Daxue Rd., Puli Township, Nantou County 545, Taiwan, ROC (China)

    2013-12-31

    Au nanoparticles (NPs) were spread on ZnO nanorods (NRs) on the polished Ti substrate to form Au/ZnO nanocomposites. Multiple material analyses including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analyses, Fourier-transform infrared spectrometer (FTIR) and images taken by optical microscope were performed on Au NPs of 2 nm and 20 nm on ZnO NRs. The FESEM and optical images under optical microscope indicate that 20 nm NPs can form more and larger clusters than 2 nm NPs on ZnO nanorod. Furthermore, more Au can be detected by EDS and XRD. We studied the behaviors of Au NPs on ZnO NR applications for future potential biosensing and antiseptic devices. - Highlights: • Nanocomposites of Au nanoparticles were spread on ZnO nanorods on Ti substrate. • Multiple material analyses were performed on 2 nm and 20 nm nanoparticles. • 20 nm nanoparticles formed more and larger clusters. • Optical images show well-distributed nanoparticle ZnO nanorods.

  2. Can visible light impact litter decomposition under pollution of ZnO nanoparticles?

    Du, Jingjing; Zhang, Yuyan; Liu, Lina; Qv, Mingxiang; Lv, Yanna; Yin, Yifei; Zhou, Yinfei; Cui, Minghui; Zhu, Yanfeng; Zhang, Hongzhong

    2017-11-01

    ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m -1 vs 0.45 m -1 ), and visible light would increase the inhibitory effect (0.24 m -1 ), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.

    Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex

    2012-06-01

    This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.

  4. Cytotoxicity of Ultra-pure TiO{sub 2} and ZnO Nanoparticles Generated by Laser Ablation

    Jeong, Minju; Park, Jeong Min; Lee, Eun Jeong; Cho, Yea Seul; Lee, Chunghyun; Kim, Jeong Moo; Hah, Sang Soo [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-11-15

    This paper aims to address the cellular toxicity of ultra-pure titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) nanoparticles (NPs) frequently employed in sunscreens as inorganic physical sun blockers to provide protection against adverse effects of ultraviolet (UV) radiation including UVB (290-320 nm) and UVA (320-400 nm). In consideration that the production and the use of inorganic NPs have aroused many concerns and controversies regarding their safety and toxicity and that microsized TiO{sub 2} and ZnO have been increasingly replaced by TiO{sub 2} and ZnO NPs (< 100 nm), it is very important to directly investigate a main problem related to the intrinsic/inherent toxicity of these NPs and/or their incompatibility with biological objects. In the present study, we took advantage of the laser-assisted method called laser ablation for generation of TiO{sub 2} and ZnO NPs. NPs were prepared through a physical process of irradiating solid targets in liquid phase, enabling verification of the toxicity of ultra-pure NPs with nascent surfaces free from any contamination. Our results show that TiO{sub 2} NPs are essentially non-poisonous and ZnO NPs are more toxic than TiO{sub 2} NPs based on the cell viability assays.

  5. Cytotoxic effects of ZnO nanoparticles on mouse testicular cells

    Han Z

    2016-10-01

    Full Text Available Zhe Han,1,* Qi Yan,1,* Wei Ge,2 Zhi-Guo Liu,1 Sangiliyandi Gurunathan,3 Massimo De Felici,4 Wei Shen,2 Xi-Feng Zhang1 1College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, People’s Republic of China; 2Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China; 3Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea; 4Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy *These authors contributed equally to this work Background: Nanoscience and nanotechnology are developing rapidly, and the applications of nanoparticles (NPs have been found in several fields. At present, NPs are widely used in traditional consumer and industrial products, however, the properties and safety of NPs are still unclear and there are concerns about their potential environmental and health effects. The aim of the present study was to investigate the potential toxicity of ZnO NPs on testicular cells using both in vitro and in vivo systems in a mouse experimental model. Methods: ZnO NPs with a crystalline size of 70 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The cytotoxicity of the ZnO NPs was examined in vitro on Leydig cell and Sertoli cell lines, and in vivo on the testes of CD1 mice injected with single doses of ZnO NPs.Results: ZnO NPs were internalized by Leydig cells and Sertoli cells, and this resulted in cytotoxicity in a time- and dose-dependent manner through the induction of apoptosis. Apoptosis likely occurred as a consequence of DNA damage (detected as γ-H2AX and RAD51 foci caused by increase in reactive oxygen

  6. Gel-combustion-synthesized ZnO nanoparticles for visible light ...

    Zinc oxide nanoparticles (ZnO NPs) synthesized by the gel combustion technique using a bio-fuel, cassava starch (root tubers of Manihot esculenta), have been characterized by various techniques. The X-ray diffractionpattern reveals hexagonal wurtzite structure. The particle size averaged around 45nm with an excellent ...

  7. xanthen-11-ones by ZnO Nanoparticles Catalyzed Three Co

    NICO

    Highly effective zinc oxide nanoparticles catalyzed solvent-free synthesis of some tetrahydrobenzo[a]xanthen-11-one derivatives ... efficient, green and simple method for the preparation of ... Characterization of ZnO NPs structure was continued by SEM ... catalysts may be related to higher surface area available for.

  8. A perspective of mitochondrial dysfunction in rats treated with silver and titanium nanoparticles (AgNPs and TiNPs).

    Pereira, Lilian Cristina; Pazin, Murilo; Franco-Bernardes, Mariana Furio; Martins, Airton da Cunha; Barcelos, Gustavo Rafael Mazzaron; Pereira, Márcio Cesar; Mesquita, João Paulo; Rodrigues, Jairo Lisboa; Barbosa, Fernando; Dorta, Daniel Junqueira

    2018-05-01

    Nanotechnology is a growing branch of science that deals with the development of structural features bearing at least one dimension in the nano range. More specifically, nanomaterials are defined as objects with dimensions that range from 1 to 100 nm, which give rise to interesting properties. In particular, silver and titanium nanoparticles (AgNPs and TiNPs, respectively) are known for their biological and biomedical properties and are often used in consumer products such as cosmetics, food additives, kitchen utensils, and toys. This situation has increased environmental and occupational exposure to AgNPs and TiNPs, which has placed demand for the risk assessment of NPs. Indeed, the same properties that make nanomaterials so attractive could also prove deleterious to biological systems. Of particular concern is the effect of NPs on mitochondria because these organelles play an essential role in cellular homeostasis. In this scenario, this work aimed to study how AgNPs and TiNPs interact with the mitochondrial respiration chain and to analyze how this interaction interferes in the bioenergetics and oxidative state of the organelles after sub-chronic exposure. Mitochondria were exposed to the NPs by gavage treatment for 21 days to check whether co-exposure of the organelles to the two types of NPs elicited any mitochondrion-NP interaction. More specifically, male Wistar rats were randomly assigned to four groups. Groups I, II, III, and IV received mineral oil, TiNPs (100 μg/kg/day), AgNPs (100 μg/kg/day), and TiNPs + AgNPs (100 μg/kg/day), respectively, by gavage. The liver was immediately removed, and the mitochondria were isolated and used within 3 h. Exposure of mitochondria to TiNPs + AgNPs lowered the respiratory control ratio, causing an uncoupling effect in the oxidative phosphorylation system. Moreover, both types of NPs induced mitochondrial swelling. Extended exposure of mitochondria to the NPs maintained increased ROS levels and

  9. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants

    Liu, Xueqin [Southwest University, College of Resources and Environment (China); Wang, Fayuan, E-mail: wfy1975@163.com; Shi, Zhaoyong [Henan University of Science and Technology, Agricultural College (China); Tong, Ruijian [Luoyang Normal University, Life Science Department (China); Shi, Xiaojun, E-mail: shixj@swu.edu.cn [Southwest University, College of Resources and Environment (China)

    2015-04-15

    Little is known about the relationships between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops. The present pot culture experiment studied Zn bioavailability in soil spiked with different doses of ZnO NPs, using the diethylenetriaminepentaacetic acid (DTPA) extraction method, as well as the toxicity and Zn accumulation in maize plants. Results showed that ZnO NPs exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase), ranging from stimulatory (100–200 mg/kg) through to neutral (400 mg/kg) and toxic effect (800–3200 mg/kg). Both Zn concentration in shoots and roots correlated positively (P < 0.01) with ZnO NPs dose and soil DTPA-extractable Zn concentration. The BCF of Zn in shoots and roots ranged from 1.02 to 3.83 when ZnO NPs were added. In most cases, the toxic effects on plants elicited by ZnO NPs were overall similar to those caused by bulk ZnO and soluble Zn (ZnSO{sub 4}) at the same doses, irrespective of some significant differences suggesting a higher toxicity of ZnO NPs. Oxidative stress in plants via superoxide free radical production was induced by ZnO NPs at 800 mg/kg and above, and was more severe than the same doses of bulk ZnO and ZnSO{sub 4}. Although significantly lower compared to bulk ZnO and ZnSO{sub 4}, at least 16 % of the Zn from ZnO NPs was converted into DTPA-extractable (bioavailable) forms. The dissolved Zn{sup 2+} from ZnO NPs may make a dominant contribution to their phytotoxicity. Although low amounts of ZnO NPs exhibited some beneficial effects, the accumulation of Zn from ZnO NPs into maize tissues could pose potential health risks for both plants and human.

  10. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants

    Liu, Xueqin; Wang, Fayuan; Shi, Zhaoyong; Tong, Ruijian; Shi, Xiaojun

    2015-01-01

    Little is known about the relationships between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops. The present pot culture experiment studied Zn bioavailability in soil spiked with different doses of ZnO NPs, using the diethylenetriaminepentaacetic acid (DTPA) extraction method, as well as the toxicity and Zn accumulation in maize plants. Results showed that ZnO NPs exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase), ranging from stimulatory (100–200 mg/kg) through to neutral (400 mg/kg) and toxic effect (800–3200 mg/kg). Both Zn concentration in shoots and roots correlated positively (P < 0.01) with ZnO NPs dose and soil DTPA-extractable Zn concentration. The BCF of Zn in shoots and roots ranged from 1.02 to 3.83 when ZnO NPs were added. In most cases, the toxic effects on plants elicited by ZnO NPs were overall similar to those caused by bulk ZnO and soluble Zn (ZnSO 4 ) at the same doses, irrespective of some significant differences suggesting a higher toxicity of ZnO NPs. Oxidative stress in plants via superoxide free radical production was induced by ZnO NPs at 800 mg/kg and above, and was more severe than the same doses of bulk ZnO and ZnSO 4 . Although significantly lower compared to bulk ZnO and ZnSO 4 , at least 16 % of the Zn from ZnO NPs was converted into DTPA-extractable (bioavailable) forms. The dissolved Zn 2+ from ZnO NPs may make a dominant contribution to their phytotoxicity. Although low amounts of ZnO NPs exhibited some beneficial effects, the accumulation of Zn from ZnO NPs into maize tissues could pose potential health risks for both plants and human

  11. Microwave assisted synthesis of ZnO nanoparticles for lighting and dye removal application

    Kumar, Vijay, E-mail: vijays_phy@rediffmail.com [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Gohain, M. [Department of Chemistry, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Som, S.; Kumar, Vinod [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Bezuindenhoudt, B.C.B. [Department of Chemistry, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Swart, Hendrik C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2016-01-01

    In this study, we report on the synthesis of ZnO nanoparticles (NPs) via the microwave-assisted technique. The as-synthesized ZnO nanoparticles were annealed at 500 °C for three hours. The ZnO NPs were characterized by X-ray diffraction (XRD) and scanning electron microscopic techniques. XRD results confirmed the formation of as-synthesized ZnO powder oriented along the (101) direction. The Kubelka–Munk function has been employed to determine the band gap of the ZnO powder. ZnO powder has been studied by photoluminescence (PL) before and after annealing to identify the emission of defects in the visible range. The intensity of the PL emission has decreased after annealing. The synthesized ZnO samples were also studied for methyl orange dye removal from waste water. It has been found that the as-synthesized ZnO shows better adsorption behaviour as compared to the annealed sample.

  12. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response

    Hira eZafar

    2016-04-01

    Full Text Available Nanoparticles (NPs have diverse properties in comparison to respective chemicals due to structure, surface area ratio, morphology, and reactivity. Toxicological effects of metallic NPs to organisms including plants have been reported. However, to the authors’ knowledge there is no report on the effect of NPs on in vitro culture of plant explants. In this study, ZnO NPs at 500-1500 mg/L badly affected Brassica nigra seed germination and seedling growth and raised antioxidative activities and antioxidants concentrations. On the other hand, culturing the stem explants of B. nigra on Murashige and Skoog (MS medium in presence of low concentration of ZnO NPs (1-20 mg/L produced white thin roots with thick root hairs. At 10 mg/L ZnO NPs shoots emergence was also observed. The developed calli/roots showed 79% DPPH (2,2-diphenyl-1-picryl hydrazyl radical scavenging activity at 10 mg/L. While total antioxidant and reducing power potential were also significantly different in presence of ZnO NPs. Non enzymatic antioxidative molecules, phenolics (up to 0.15 µg GAE/mg FW and flavonoids (up to 0.22 µg QE/mg FW, also raised and found NPs concentration dependent. We state that ZnO NPs may induce roots from explants cultured on appropriate medium and can be cultured for production of valuable secondary metabolites.

  13. Structural, spectroscopic and anti-microbial inspection of PEG capped ZnO nanoparticles for biomedical applications

    Meshram, J. V.; Koli, V. B.; Kumbhar, S. G.; Borde, L. C.; Phadatare, M. R.; Pawar, S. H.

    2018-04-01

    Zinc oxide (ZnO) nanoparticles (NPs) have a wide range of biomedical applications. Present study demonstrates the new methodology in sol-gel technology for synthesizing Polyethylene glycol (PEG) capped ZnO NPs and its size effect on anti-microbial activity. The reaction time was increased from 1 h to 5 h for the synthesis of ZnO NPs at 130 °C. The size of PEG capped ZnO NPs is increased from 10 to 84 nm by increasing the reaction upto 5 h. The x-ray diffraction studies and transmission electron microscopy analysis reveals the phase purity and hexagonal wurtzite crystal structure with uniform PEG capping on the surface of ZnO NPs. UV–visible spectroscopy exhibits the peak at 366 nm which is attributed to ZnO NPs. No adverse effect is observed in case of absorbance spectroscopy. Further, Fourier transforms infrared spectroscopy and thermo gravimetric analysis depicts the adsorption of PEG molecules on the ZnO NPs surface. The anti-microbial activities for both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria were studied by optical density (OD) mesurement. The remarkable anti-microbial activity was observed for PEG capped ZnO NPs synthesized at 1 h reaction time showing higher activity in comparison with that synthesized from 2 h to 5 h reaction time. The microbial growth was found to be inhibited after 10 h OD measurement for both the bacteria. The anti-microbial activity may be attributed to the generation of ROS and H2O2. However, these generated species plays a vital role in inhibition of microbial growth. Hence, PEG capped ZnO NPs has promising biomedical applications.

  14. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells

    Kang, Tianshu; Guan, Rongfa; Chen, Xiaoqiang; Song, Yijuan; Jiang, Han; Zhao, Jin

    2013-11-01

    There has been rapid growth in nanotechnology in both the public and private sectors worldwide, but concern about nanosafety exists. To assess size-dependent cytotoxicity on human cancer cells, we studied the cytotoxic effect of three kinds of zinc oxide nanoparticles (ZnO NPs) on human epithelial colorectal adenocarcinoma (Caco-2) cells. Nanoparticles were first characterized by size, distribution, and intensity. Multiple assays have been adopted to measure the cell activity and oxidative stress. The cytotoxicity of ZnO NPs was time dependent and dose dependent. The 24-h exposure was chosen to confirm the viability and accessibility of the cells and taken as the appropriate time for the following test system. The IC50 value was found at a low concentration. The oxidative stress elicited a significant reduction in glutathione with increase in reactive oxygen species and lactate dehydrogenase. The toxicity resulted in a deletion of cells in the G1 phase and an accumulation of cells in the S and G2/M phases. One type of metallic oxide (ZnO) exerted different cytotoxic effects according to different particle sizes. Data from the previous experiments showed that 26-nm ZnO NPs appeared to have the highest toxicity to Caco-2 cells. The study demonstrated the toxicity of ZnO NPs to Caco-2 cells and the impact of particle size, which could be useful in the medical applications.

  15. Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions.

    García-Gómez, Concepción; Obrador, Ana; González, Demetrio; Babín, Mar; Fernández, María Dolores

    2017-07-01

    The present study has investigated the toxicity of ZnO NPs to bean (Phaseolus vulgaris) and tomato (Solanum lycopersicon) crops grown to maturity under greenhouse conditions using an acidic (soil pH5.4) and a calcareous soil (soil pH8.3). The potentially available Zn in the soils and the Zn accumulation in the leaves from NPs applied to the soil (3, 20 and 225mgZnkg -1 ) and changes in the chlorophylls, carotenoids and oxidative stress biomarkers were measured at 15, 30, 60 and 90days and compared with those caused by bulk ZnO and ZnSO 4 . The available Zn in the soil and the leaf Zn content did not differ among the Zn chemical species, except in the acidic soil at the highest concentration of Zn applied as Zn ions, where the highest values of the two variables were found. The ZnO NPs showed comparable Zn toxicity or biostimulation to their bulk counterparts and Zn salts, irrespective of certain significant differences suggesting a higher activity of the Zn ion. The treatments altered the photosynthetic pigment concentration and induced oxidative stress in plants. ROS formation was observed at Zn plant concentrations ranging from 590 to 760mgkg -1 , but the effects on the rest of the parameters were highly dependent on the plant species, exposure time and especially soil type. In general, the effects were higher in the acidic soil than in the calcareous soil for the bean and the opposite for the tomato. The similar uptakes and toxicities of the different Zn forms suggest that the Zn ions derived from the ZnO NPs exerted a preferential toxicity in plants. However, several results obtained in soils treated with NPs at 3mgZnkg -1 soil indicated that may exist other underlying mechanisms related to the intrinsic nanoparticle properties, especially at low NP concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.

    Pal, Bappaditya; Giri, P K

    2011-10-01

    Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.

  17. Spectroscopic characterization and docking studies of ZnO nanoparticle modified with BSA

    Ledesma, Ana E.; Chemes, Doly María; Frías, María de los Angeles; Guauque Torres, Maria del Pilar

    2017-01-01

    Highlights: • The ZnO NPs have synthesized at moderate temperature and conjugated with BSA to elucidate the characteristics of best binding site in the protein cavity. • The Docking studies have successfully applied to identify the amino acids residues involved in the interaction. • The cytotoxicity of ZnO NPs and ZnO-BSA NPs and esterase-like activity of the protein have evaluated, with very promising results for medical applications. - Abstract: Nanoparticles (NP) into a biological environment are an interesting topic for diagnosis and therapy in applications for medicine or environment and the knowledge about this interaction is important from the perspective of safe use of nanomaterials. In the current study, we characterized the type of interaction and the orientation of bovine serum albumin (BSA) adsorbed on ZnO nanoparticle surfaces as a function of size, using molecular docking. To probe experimentally different theoretical hypothesis about the interaction, ZnO-NPs were prepared in aqueous solution, and then were bioconjugated with BSA. Transmission electron microscopy (TEM) and Raman spectroscopy confirm the spherical shape of NP and the irreversible adsorption of BSA on NP surface. Raman and Infrared spectroscopy (FTIR) reveal that BSA interaction with ZnO nanoparticle produced a conformational rearrangement into protein, observing changes in Tyr and Trp environment, a minor percentage of α-helix structure and a more extended chain. The fluorescence analysis demonstrated that when BSA concentration higher than 30 μM is used the signal due to the self-oligomerization of protein overlaps with the ZnO nanoparticle emission. The results predicted that the most probable interaction site is near to domain IB and IIA and ionic interactions are the major responsible for the binding. Thermal stability studies reveals that the denaturalization temperature of BSA increase from 57 °C to 65 °C in presence of ZnO NP and their esterase-like activity was

  18. Spectroscopic characterization and docking studies of ZnO nanoparticle modified with BSA

    Ledesma, Ana E., E-mail: anael@unse.edu.ar [CITSE-UNSE, CONICET, FCEyT, RN 9, km 1125, 4206 Santiago del Estero (Argentina); Chemes, Doly María [INQUINOA, UNT, CONICET, FBQyF, San Lorenzo 456, San Miguel de Tucumán CPA T4000ILI, Tucumán (Argentina); Frías, María de los Angeles [Laboratory of Biointerphases and Biomimetic Systems, (CITSE) National University of Santiago del Estero and CONICET, 4206, RN 9- Km 1125, Santiago del Estero (Argentina); Guauque Torres, Maria del Pilar [CITSE-UNSE, CONICET, FCEyT, RN 9, km 1125, 4206 Santiago del Estero (Argentina)

    2017-08-01

    Highlights: • The ZnO NPs have synthesized at moderate temperature and conjugated with BSA to elucidate the characteristics of best binding site in the protein cavity. • The Docking studies have successfully applied to identify the amino acids residues involved in the interaction. • The cytotoxicity of ZnO NPs and ZnO-BSA NPs and esterase-like activity of the protein have evaluated, with very promising results for medical applications. - Abstract: Nanoparticles (NP) into a biological environment are an interesting topic for diagnosis and therapy in applications for medicine or environment and the knowledge about this interaction is important from the perspective of safe use of nanomaterials. In the current study, we characterized the type of interaction and the orientation of bovine serum albumin (BSA) adsorbed on ZnO nanoparticle surfaces as a function of size, using molecular docking. To probe experimentally different theoretical hypothesis about the interaction, ZnO-NPs were prepared in aqueous solution, and then were bioconjugated with BSA. Transmission electron microscopy (TEM) and Raman spectroscopy confirm the spherical shape of NP and the irreversible adsorption of BSA on NP surface. Raman and Infrared spectroscopy (FTIR) reveal that BSA interaction with ZnO nanoparticle produced a conformational rearrangement into protein, observing changes in Tyr and Trp environment, a minor percentage of α-helix structure and a more extended chain. The fluorescence analysis demonstrated that when BSA concentration higher than 30 μM is used the signal due to the self-oligomerization of protein overlaps with the ZnO nanoparticle emission. The results predicted that the most probable interaction site is near to domain IB and IIA and ionic interactions are the major responsible for the binding. Thermal stability studies reveals that the denaturalization temperature of BSA increase from 57 °C to 65 °C in presence of ZnO NP and their esterase-like activity was

  19. Comparative toxicity assessment of CeO{sub 2} and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: Use of advanced microscopic and spectroscopic techniques

    Bandyopadhyay, Susmita [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); Plascencia-Villa, German; Jose-Yacaman, Miguel [Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer First cytotoxicity study of CeO{sub 2} and ZnO nanoparticles to Sinorhizobium meliloti. Black-Right-Pointing-Pointer First report upon the mechanisms of CeO{sub 2} and ZnO NPs toxicity to S. meliloti. Black-Right-Pointing-Pointer ZnO NPs were found to be bactericidal in lower concentration. Black-Right-Pointing-Pointer CeO{sub 2} NPs had bacteriostatic effect on S. meliloti. - Abstract: Cerium oxide (CeO{sub 2}) and zinc oxide (ZnO) nanoparticles (NPs) are extensively used in a variety of instruments and consumer goods. These NPs are of great concern because of potential toxicity towards human health and the environment. The present work aimed to assess the toxic effects of 10 nm CeO{sub 2} and ZnO NPs towards the nitrogen fixing bacterium Sinorhizobium meliloti. Toxicological parameters evaluated included UV/Vis measurement of minimum inhibitory concentration, disk diffusion tests, and dynamic growth. Ultra high-resolution scanning transmission electron microscopy (STEM) and infrared spectroscopy (FTIR) were utilized to determine the spatial distribution of NPs and macromolecule changes in bacterial cells, respectively. Results indicate that ZnO NPs were more toxic than CeO{sub 2} NPs in terms of inhibition of dynamic growth and viable cells counts. STEM images revealed that CeO{sub 2} and ZnO NPs were found on bacterial cell surfaces and ZnO NPs were internalized into the periplasmic space of the cells. FTIR spectra showed changes in protein and polysaccharide structures of extra cellular polymeric substances present in bacterial cell walls treated with both NPs. The growth data showed that CeO{sub 2} NPs have a bacteriostatic effect, whereas ZnO NPs is bactericidal to S. meliloti. Overall, ZnO NPs were found to be more toxic than CeO{sub 2} NPs.

  20. Effects of ZnO nanoparticles and Zn{sup 2+} on fluvial biofilms and the related toxicity mechanisms

    Xu, Yi; Wang, Chao [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Hou, Jun, E-mail: hhuhjyhj@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Dai, Shanshan [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Peifang, E-mail: pfwang2005@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Miao, Lingzhan; Lv, Bowen; Yang, Yangyang; You, Guoxiang [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2016-02-15

    Zinc oxide nanoparticles (ZnO NPs) used in consumer products are largely released into the environment through the wastewater stream. The health hazard of ZnO NPs and the contribution of dissolved Zn{sup 2+} in toxicity of ZnO NPs has attracted extensive worldwide attention. In this study, the toxic effects of ZnO nanoparticles (ZnO NPs) and the effects of dissolved Zn{sup 2+} on fluvial biofilms were investigated. At the end of the exposure time (21 days), scanning electron microscopy (SEM) images and bioaccumulation experiments revealed that large quantities of ZnO NPs were adsorbed on the biofilm. The algal biomasses were significantly decreased by six- and eleven-fold compared with the control (1.43 μg/L) by exposure to concentrations of 100 mg/L ZnO NPs and 7.85 mg/L Zn{sup 2+}, respectively. Moreover, under the same exposure conditions, the quantum yields presented contents of 53.33 and 33.33% relative to the control, and a shift in the community composition that manifested as a strong reduction in diatoms was observed from 7 days and reached 15.63 and 6.25% of the control after 21 days of exposure, respectively. The reductions in bacteria viability and reactive oxygen species (ROS) production were noticeably enhanced following exposure to 100 mg/L ZnO NPs and 7.85 mg/L Zn{sup 2+}, respectively. Additionally, the acute and rapid toxicity of Zn{sup 2+} and the increasing toxicity of the ZnO NPs with increased bioaccumulation were noted in the exposure experiment. - Highlights: • Fluvial biofilm was exposed to ZnO NPs and the dissolved Zn{sup 2+}. • Chl-a and Φ{sub M} decreased at high doses (100 and 7.85 mg/L of ZnO NPs and Zn{sup 2+}). • A shift in the algae community composition was observed at high dosage levels. • The enhanced production of ROS declined the bacteria viability. • Zn{sup 2+} was more toxic than that of the ZnO-NPs.

  1. Effects of ZnO nanoparticles and Zn"2"+ on fluvial biofilms and the related toxicity mechanisms

    Xu, Yi; Wang, Chao; Hou, Jun; Dai, Shanshan; Wang, Peifang; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang; You, Guoxiang

    2016-01-01

    Zinc oxide nanoparticles (ZnO NPs) used in consumer products are largely released into the environment through the wastewater stream. The health hazard of ZnO NPs and the contribution of dissolved Zn"2"+ in toxicity of ZnO NPs has attracted extensive worldwide attention. In this study, the toxic effects of ZnO nanoparticles (ZnO NPs) and the effects of dissolved Zn"2"+ on fluvial biofilms were investigated. At the end of the exposure time (21 days), scanning electron microscopy (SEM) images and bioaccumulation experiments revealed that large quantities of ZnO NPs were adsorbed on the biofilm. The algal biomasses were significantly decreased by six- and eleven-fold compared with the control (1.43 μg/L) by exposure to concentrations of 100 mg/L ZnO NPs and 7.85 mg/L Zn"2"+, respectively. Moreover, under the same exposure conditions, the quantum yields presented contents of 53.33 and 33.33% relative to the control, and a shift in the community composition that manifested as a strong reduction in diatoms was observed from 7 days and reached 15.63 and 6.25% of the control after 21 days of exposure, respectively. The reductions in bacteria viability and reactive oxygen species (ROS) production were noticeably enhanced following exposure to 100 mg/L ZnO NPs and 7.85 mg/L Zn"2"+, respectively. Additionally, the acute and rapid toxicity of Zn"2"+ and the increasing toxicity of the ZnO NPs with increased bioaccumulation were noted in the exposure experiment. - Highlights: • Fluvial biofilm was exposed to ZnO NPs and the dissolved Zn"2"+. • Chl-a and Φ_M decreased at high doses (100 and 7.85 mg/L of ZnO NPs and Zn"2"+). • A shift in the algae community composition was observed at high dosage levels. • The enhanced production of ROS declined the bacteria viability. • Zn"2"+ was more toxic than that of the ZnO-NPs.

  2. Comparative study on toxicity of ZnO and TiO2 nanoparticles on Artemia salina: effect of pre-UV-A and visible light irradiation.

    Bhuvaneshwari, M; Sagar, Bhawana; Doshi, Siddharth; Chandrasekaran, N; Mukherjee, Amitava

    2017-02-01

    This study evaluated the toxicity potential of ZnO and TiO 2 nanoparticles under pre-UV-A irradiation and visible light condition on Artemia salina. The nanoparticle suspension was prepared in seawater medium and exposed under pre-UV-A (0.23 mW/cm 2 ) and visible light (0.18 mW/cm 2 ) conditions. The aggregation profiles of both nanoparticles (NPs) and dissolution of ZnO NPs under both irradiation conditions at various kinetic intervals (1, 24, 48 h) were studied. The 48-h LC 50 values were found to be 27.62 and 71.63 mg/L for ZnO NPs and 117 and 120.9 mg/L for TiO 2 NPs under pre-UV-A and visible light conditions. ZnO NPs were found to be more toxic to A. salina as compared to TiO 2 NPs. The enhanced toxicity was observed under pre-UV-A-irradiated ZnO NPs, signifying its phototoxicity. Accumulation of ZnO and TiO 2 NPs into A. salina depends on the concentration of particles and type irradiations. Elimination of accumulated nanoparticles was also evident under both irradiation conditions. Other than ZnO NPs, the dissolved Zn 2+ also had a significant effect on toxicity and accumulation in A. salina. Increased catalase (CAT) activity in A. salina indicates the generation of oxidative stress due to NP interaction. Thus, this study provides an understanding of the toxicity of photoreactive ZnO and TiO 2 NPs as related to the effects of pre-UV-A and visible light irradiation.

  3. Biogenic ZnO nanoparticles synthesized using L. aculeata leaf ...

    The antifungal activity of ZnO nanoparticles were determined using the well diffusion method. All the ... 1. Introduction. Nanoparticles have gained increasing importance because ... The synthesis of nanoparticles by conventional physical.

  4. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity

    Wingett D

    2016-07-01

    Full Text Available Denise Wingett,1–3 Panagiota Louka,1 Catherine B Anders,2 Jianhui Zhang,4 Alex Punnoose2,41Department of Biological Sciences, 2Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 3Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 4Department of Physics, Boise State University, Boise, ID, USA Abstract: ZnO nanoparticles (NPs have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic

  5. Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles

    Mehta, S.K.; Singh, Kulvinder; Umar, Ahmad; Chaudhary, G.R.; Singh, Sukhjinder

    2012-01-01

    Graphical abstract: Systematic representation of the fabricated amperometric hydrazine chemical sensor based on ZnO NPs/Au modified electrode. Highlights: ► Synthesis of well-crystalline ZnO NPs has been achieved in aqueous solution. ► ZnO NPs act as efficient electron mediators for hydrazine sensor. ► Extremely high sensitivity and low-detection limit have been obtained. - Abstract: Using well-crystalline ZnO nanoparticles (NPs), an ultra high sensitive hydrazine amperometric sensor has been fabricated and reported in this paper. The ZnO NPs have been synthesized by very simple aqueous solution process at 90 °C and characterized in detail in terms of their morphological, compositional, structural and optical properties. The detailed investigations reveal that the synthesized products are well-crystalline NPs, possessing wurtzite hexagonal phase and exhibit good optical properties. The fabricated amperometric hydrazine sensor exhibits ultra-high sensitivity of ∼97.133 μA cm −2 μM −1 and very low-detection limit of 147.54 nM. To the best of our knowledge, this is the first report in which an ultra-high sensitivity and low-detection limit have been obtained for the hydrazine chemical sensor based on ZnO nanostructures.

  6. Influence of EDC/NHS coupling chemistry on stability and cytotoxicity of ZnO nanoparticles modified with proteins

    Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2017-05-01

    The toxicity of ZnO nanoparticles (NPs) is a growing concern due to its increasing use in several products including sunscreens, paints, pigments and ceramics for its antibacterial, antifungal, anti-corrosive and UV filtering properties. The toxicity of ZnO NPs is mostly attributed to the Zn2+ release causing an increase in the intracellular reactive oxygen species (ROS) level. The surface modification with a biocompatible ligand or a polymer can be a good strategy to reduce dissolution based toxicity. In two previous studies, the conflicting results with EDC/NHS coupling chemistry for ZnO NPs were reported. In this study, the same surface modification strategy with an emphasis on the stability of ZnO NPs is clarified. First, the density of -OH groups on the ZnO NPs is increased with hydrogen peroxide (H2O2) treatment, and then a silica coating on the ZnO NPs (Si-ZnO) surface is performed. Finally, a covalent attachment of bovine serum albumin (BSA) on three different concentrations of ZnO-Si is carried out by EDC/NHS coupling chemistry. ZnO NPs have a very high dissolution rate under acidic conditions of EDC/NHS coupling chemistry as determined from the ICP-MS analysis. In addition, the amount of ZnO NPs in coupling reaction has an important effect on the dissolution rate of Zn2+ and dependently BSA attached on the ZnO NP surfaces. Finally, the cytotoxicity of the BSA modified Si-ZnO NPs on human lung cancer (A549) and human skin fibroblast (HSF) is evaluated. Although an increased association of BSA modified ZnO NPs with cells was observed, the modification significantly decreased their cytotoxicity. This can be explained with the decreased active surface area of ZnO NPs with the surface modification. However, an increase in the mitochondrial depolarization and ROS production was observed depending on the amount of BSA coverage.

  7. Optical Properties of ZnO Nanoparticles Capped with Polymers

    Atsushi Noguchi

    2011-06-01

    Full Text Available Optical properties of ZnO nanoparticles capped with polymers were investigated. Polyethylene glycol (PEG and polyvinyl pyrrolidone (PVP were used as capping reagents. ZnO nanoparticles were synthesized by the sol-gel method. Fluorescence and absorption spectra were measured. When we varied the timing of the addition of the polymer to the ZnO nanoparticle solution, the optical properties were drastically changed. When PEG was added to the solution before the synthesis of ZnO nanoparticles, the fluorescence intensity increased. At the same time, the total particle size increased, which indicated that PEG molecules had capped the ZnO nanoparticles. The capping led to surface passivation, which increased fluorescence intensity. However, when PEG was added to the solution after the synthesis of ZnO nanoparticles, the fluorescence and particle size did not change. When PVP was added to the solution before the synthesis of ZnO nanoparticles, aggregation of nanoparticles occurred. When PVP was added to the solution after the synthesis of ZnO nanoparticles, fluorescence and particle size increased. This improvement of optical properties is advantageous to the practical usage of ZnO nanoparticles, such as bioimaging

  8. Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells.

    Lee, Pei-Ling; Chen, Bo-Chia; Gollavelli, Ganesh; Shen, Sin-Yu; Yin, Yu-Sheng; Lei, Shiu-Ling; Jhang, Cian-Ling; Lee, Woan-Ruoh; Ling, Yong-Chien

    2014-07-30

    Zinc oxide nanoparticles (ZnO NPs) exhibit novel physiochemical properties and have found increasing use in sunscreen products and cosmetics. The potential toxicity is of increasing concern due to their close association with human skin. A time-of-flight secondary ion mass spectrometry (TOF-SIMS) and confocal laser scanning microscopy (CLSM) imaging method was developed and validated for rapid and sensitive cytotoxicity study of ZnO NPs using human skin equivalent HaCaT cells as a model system. Assorted material, chemical, and toxicological analysis methods were used to confirm their shape, size, crystalline structure, and aggregation properties as well as dissolution behavior and effect on HaCaT cell viability in the presence of various concentrations of ZnO NPs in aqueous media. Comparative and correlative analyses of aforementioned results with TOF-SIMS and CLSM imaging results exhibit reasonable and acceptable outcome. A marked drop in survival rate was observed with 50μg/ml ZnO NPs. The CLSM images reveal the absorption and localization of ZnO NPs in cytoplasm and nuclei. The TOF-SIMS images demonstrate elevated levels of intracellular ZnO concentration and associated Zn concentration-dependent (40)Ca/(39)K ratio, presumably caused by the dissolution behavior of ZnO NPs. Additional validation by using stable isotope-labeled (68)ZnO NPs as tracers under the same experimental conditions yields similar cytotoxicity effect. The imaging results demonstrate spatially-resolved cytotoxicity relationship between intracellular ZnO NPs, (40)Ca/(39)K ratio, phosphocholine fragments, and glutathione fragments. The trend of change in TOF-SIMS spectra and images of ZnO NPs treated HaCaT cells demonstrate the possible mode of actions by ZnO NP involves cell membrane disruption, cytotoxic response, and ROS mediated apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa

    Li, Junli; Sang, Hyunkyu; Guo, Huiyuan; Popko, James T.; He, Lili; White, Jason C.; Parkash Dhankher, Om; Jung, Geunhwa; Xing, Baoshan

    2017-04-01

    Fungicides have extensively been used to effectively combat fungal diseases on a range of plant species, but resistance to multiple active ingredients has developed in pathogens such as Sclerotinia homoeocarpa, the causal agent of dollar spot on cool-season turfgrasses. Recently, ZnO and Ag nanoparticles (NPs) have received increased attention due to their antimicrobial activities. In this study, the NPs’ toxicity and mechanisms of action were investigated as alternative antifungal agents against S. homoeocarpa isolates that varied in their resistance to demethylation inhibitor (DMI) fungicides. S. homoeocarpa isolates were treated with ZnO NPs and ZnCl2 (25-400 μg ml-1) and Ag NPs and AgNO3 (5-100 μg ml-1) to test antifungal activity of the NPs and ions. The mycelial growth of S. homoeocarpa isolates regardless of their DMI sensitivity was significantly inhibited on ZnO NPs (≥200 μg ml-1), Ag NPs (≥25 μg ml-1), Zn2+ ions (≥200 μg ml-1), and Ag+ ions (≥10 μg ml-1) amended media. Expression of stress response genes, glutathione S-transferase (Shgst1) and superoxide dismutase 2 (ShSOD2), was significantly induced in the isolates by exposure to the NPs and ions. In addition, a significant increase in the nucleic acid contents of fungal hyphae, which may be due to stress response, was observed upon treatment with Ag NPs using Raman spectroscopy. We further observed that a zinc transporter (Shzrt1) might play an important role in accumulating ZnO and Ag NPs into the cells of S. homoeocarpa due to overexpression of Shzrt1 significantly induced by ZnO or Ag NPs within 3 h of exposure. Yeast mutants complemented with Shzrt1 became more sensitive to ZnO and Ag NPs as well as Zn2+ and Ag+ ions than the control strain and resulted in increased Zn or Ag content after exposure. This is the first report of involvement of the zinc transporter in the accumulation of Zn and Ag from NP exposure in filamentous plant pathogenic fungi. Understanding the molecular

  10. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination.

    Zhang, Ruichang; Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen; Luo, Yongming; Christie, Peter

    2015-07-01

    Toxicity of engineered nanoparticles on organisms is of concern worldwide due to their extensive use and unique properties. The impacts of ZnO nanoparticles (ZnO NPs) on seed germination and root elongation of corn (Zea mays L.) and cucumber (Cucumis sativus L.) were investigated in this study. The role of seed coats of corn in the mitigation toxicity of nanoparticles was also evaluated. ZnO NPs (1,000 mg L(-1)) reduced root length of corn and cucumber by 17 % (p < 0.05) and 51 % (p < 0.05), respectively, but exhibited no effects on germination. In comparison with Zn(2+), toxicity of ZnO NPs on the root elongation of corn could be attributed to the nanoparticulate ZnO, while released Zn ion from ZnO could solely contribute to the inhibition of root elongation of cucumber. Zn uptake in corn exposed to ZnO NPs during germination was much higher than that in corn exposed to Zn(2+), whereas Zn uptake in cucumber was significantly correlated with soluble Zn in suspension. It could be inferred that Zn was taken up by corn and cucumber mainly in the form of ZnO NPs and soluble Zn, respectively. Transmission electron microscope confirmed the uptake of ZnO NPs into root of corn. Although isolation of the seed coats might not be the principal factor that achieved avoidance from toxicity on germination, seed coats of corn were found to mitigate the toxicity of ZnO NPs on root elongation and prevent approximately half of the Zn from entering into root and endosperm.

  11. Defect induced ferromagnetism in undoped ZnO nanoparticles

    Rainey, K.; Chess, J.; Eixenberger, J.; Tenne, D. A.; Hanna, C. B.; Punnoose, A., E-mail: apunnoos@boisestate.edu [Department of Physics, Boise State University, Boise, Idaho 83725 (United States)

    2014-05-07

    Undoped ZnO nanoparticles (NPs) with size ∼12 nm were produced using forced hydrolysis methods using diethylene glycol (DEG) [called ZnO-I] or denatured ethanol [called ZnO-II] as the reaction solvent; both using Zn acetate dehydrate as precursor. Both samples showed weak ferromagnetic behavior at 300 K with saturation magnetization M{sub s} = 0.077 ± 0.002 memu/g and 0.088 ± 0.013 memu/g for ZnO-I and ZnO-II samples, respectively. Fourier transform infrared (FTIR) spectra showed that ZnO-I nanocrystals had DEG fragments linked to their surface. Photoluminescence (PL) data showed a broad emission near 500 nm for ZnO-II which is absent in the ZnO-I samples, presumably due to the blocking of surface traps by the capping molecules. Intentional oxygen vacancies created in the ZnO-I NPs by annealing at 450 °C in flowing Ar gas gradually increased M{sub s} up to 90 min and x-ray photoelectron spectra (XPS) suggested that oxygen vacancies may have a key role in the observed changes in M{sub s}. Finally, PL spectra of ZnO showed the appearance of a blue/violet emission, attributed to Zn interstitials, whose intensity changes with annealing time, similar to the trend seen for M{sub s}. The observed variation in the magnetization of ZnO NP with increasing Ar annealing time seems to depend on the changes in the number of Zn interstitials and oxygen vacancies.

  12. Structural properties of perovskite films on zinc oxide nanoparticles-reduced graphene oxide (ZnO-NPs/rGO) prepared by electrophoretic deposition technique

    Bahtiar, Ayi; Nurazizah, Euis Siti; Latiffah, Efa; Risdiana, Furukawa, Yukio

    2018-02-01

    Perovskite solar cells highly believed as next generation solar cells to replace currently available inorganic silicon solar cells due to their high power conversion efficiency and easy processing to thin films using solution processing techniques. Performance and stability, however still need to be improved for mass production and widely used for public electricity generation. Perovskite solar cells are commonly deposited on Titanium Dioxide (TiO2) film as an effective electron transport layer (ETL). We used Zinc Oxide nanoparticles (ZnO-NPs) as ETL in perovskite solar cells due to the low temperature required for crystallization and can be formed into different shapes of nanostructures. However, perovskite film can easily degrade into insulating lead iodide due to deprotonation of the methylammoniumcation at the surface of ZnO-NPs, in particular when it stored in ambient air with high relative humidity. The degradation of perovskite layer is therefore needed to be overcome. Here, we capped ZnO-NPs with reduced graphene oxide (rGO) to overcome the degradation of perovskite film where ZnO-NPs is synthesized by sol-gel method. The average nanoparticle size of ZnO is 15 nm. ZnO-NPs and ZnO-NPs-rGO films are prepared using electrophoretic deposition technique, which can produce large area with good homogeneity and high reproducibility. The stability of perovskite layer can significantly be improved by capping ZnO with rGO, which is indicated by absence of color change of perovskite after storage for 5 (five) days in ambient air with relative humidity above 95%. Moreover, the X-Ray Diffaction peaks of perovskite film are more preserved when deposited on ZnO/rGO film than using only ZnO film. We strongly believe, by capping ZnO film with rGO, both the performance and stability of perovskite solar cells can be improved significantly.

  13. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Fatimah, Is, E-mail: isfatimah@uii.ac.id; Yudha, Septian P.; Mutiara, Nur Afisa Lintang [Chemistry Department, Islamic University of Indonesia Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta (Indonesia)

    2016-02-08

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  14. Degradation of 4-Chlorophenol Under Sunlight Using ZnO Nanoparticles as Catalysts

    Rajar, Kausar; Sirajuddin; Balouch, Aamna; Bhanger, M. I.; Sherazi, Tufail H.; Kumar, Raj

    2018-03-01

    Herein we demonstrate a simplistic microwave assisted chemical precipitation approach regarding the synthesis of zinc oxide nanoparticles. As-prepared ZnO nanoparticles (NPs) were characterized by UV-visible spectroscopy, Fourier transform infra-red spectroscopy, atomic force microscopy and x-ray diffractometry and scrutinized as photo-catalysts for degradation of 4-chlorophenol (4-CP) under sunlight. The study substantiated that 98.5% of 4-CP was degraded within 20 min in the absence of initiator like H2O2 which reflects an outstanding prospective use for ZnO NPs as photo-catalysts. The nanocatalysts were recycled four times and still showed catalytic efficiency up to 95.5% for degradation of 4-CP in the specified 20 min.

  15. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-01-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction

  16. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  17. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  18. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  19. Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles.

    Hernandez-Viezcas, J A; Castillo-Michel, H; Servin, A D; Peralta-Videa, J R; Gardea-Torresdey, J L

    2011-06-01

    The impact of metal nanoparticles (NPs) on biological systems, especially plants, is still not well understood. The aim of this research was to determine the effects of zinc oxide (ZnO) NPs in velvet mesquite (Prosopis juliflora-velutina). Mesquite seedlings were grown for 15 days in hydroponics with ZnO NPs (10 nm) at concentrations varying from 500 to 4000 mg L(-1). Zinc concentrations in roots, stems and leaves were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). Plant stress was examined by the specific activity of catalase (CAT) and ascorbate peroxidase (APOX); while the biotransformation of ZnO NPs and Zn distribution in tissues was determined by X-ray absorption spectroscopy (XAS) and micro X-ray fluorescence (μXRF), respectively. ICP-OES results showed that Zn concentrations in tissues (2102 ± 87, 1135 ± 56, and 628 ± 130 mg kg(-1) d wt in roots, stems, and leaves, respectively) were found at 2000 mg ZnO NPs L(-1). Stress tests showed that ZnO NPs increased CAT in roots, stems, and leaves, while APOX increased only in stems and leaves. XANES spectra demonstrated that ZnO NPs were not present in mesquite tissues, while Zn was found as Zn(II), resembling the spectra of Zn(NO(3))(2). The μXRF analysis confirmed the presence of Zn in the vascular system of roots and leaves in ZnO NP treated plants.

  20. Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity.

    Ates, Mehmet; Daniels, James; Arslan, Zikri; Farah, Ibrahim O; Rivera, Hilsamar Félix

    2013-01-01

    Brine shrimp (Artemia salina) larvae were exposed to different sizes of zinc (Zn) and zinc oxide (ZnO) nanoparticles (NPs) to evaluate their toxicity in marine aquatic ecosystems. Acute exposure was conducted in seawater with 10, 50 and 100 mg L(-1) concentrations of the NPs for 24 h and 96 h. Phase contrast microscope images confirmed the accumulation of the NPs inside the guts. Artemia were unable to eliminate the ingested particles, which was thought to be due to the formation of massive particles in the guts. Although the suspensions of the NPs did not exhibit any significant acute toxicity within 24 h, mortalities increased remarkably in 96 h and escalated with increasing concentration of NP suspension to 42% for Zn NPs (40-60 nm) (LC50∼ 100 mg L(-1)) and to about 34% for ZnO NPs (10-30 nm) (LC50 > 100 mg L(-1)). The suspensions of Zn NPs were more toxic to Artemia than those of ZnO NPs under comparable regimes. This effect was attributed to higher Zn(2+) levels (ca. up to 8.9 mg L(-1)) released to the medium from Zn NPs in comparison to that measured in the suspensions of ZnO NPs (ca. 5.5 mg L(-1)). In addition, the size of the nanopowders appeared to contribute to the observed toxicities. Although the suspensions possessed aggregates of comparable sizes, smaller Zn NPs (40-60 nm) were relatively more toxic than larger Zn NPs (80-100 nm). Likewise, the suspensions of 10-30 nm ZnO NPs caused higher toxicity than those of 200 nm ZnO NPs. Lipid peroxidation levels were substantially higher in 96 h (p < 0.05), indicating that the toxic effects were due to the oxidative stress.

  1. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity

    Othman, Basmah A.

    2016-04-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn2+ concentration prior to cell death. The response of the cells within the population to intracellular Zn2+ is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies.

  2. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity

    Othman, Basmah A.; Greenwood, Christina; AbuElela, Ayman; Bharath, Anil A.; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen; Porter, Alexandra E.

    2016-01-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn2+ concentration prior to cell death. The response of the cells within the population to intracellular Zn2+ is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies.

  3. Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles.

    Dhanalakshmi, A; Palanimurugan, A; Natarajan, B

    2018-09-01

    Mono, di and polysaccharides of glucose (C 6 H 12 O 6 ), sucrose (C 12 H 24 O 12 ) and starch (C 6 H 12 O 6 ) n bio-template ZnO nanoparticles (NPs) has prepared by chemical precipitation method. Saccharides bio-template ZnO (SBts-ZnO) NPs were efficiently prepared for their structural and optical properties were examined by using XRD, FE-SEM, AFM, FTIR, UV and PL techniques. All the samples are polycrystalline nature with a preferential orientation depending on the (1 0 1) plane. The reduction of crystalline size by utilizing glucose, sucrose and starch bio-template of ZnO NPs. FE-SEM images revealed that the spherical and nano-rods like morphologies for ZnO and SBts-ZnO NPs respectively. AFM recorded images shows spherical features that confirmed and also the morphological changes were noticed with the addition of polymers. Interaction of bio-templated saccharides (glucose G 1 , sucrose S 2 & starch S n ) molecules was proved by FTIR study. Optical absorbance and emission behaviours were investigated using UV-Vis and photoluminescence techniques. The antibacterial study revealed that SBts-ZnO have excellent antibacterial effect than ZnO. The S n -ZnO sample has potent antibacterial activity against the Proteus vulgaris followed by Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode

    Tian, Kun [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Alex, Saji [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Chemistry, Government College for Women, Thiruvananthapuram, Kerala 695014 (India); Siegel, Gene [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2015-01-01

    A novel electrochemical glucose sensor was developed by employing a composite film of plant-like Zinc oxide (ZnO) and chitosan stabilized spherical gold nanoparticles (AuNPs) on which Glucose oxidaze (GOx) was immobilized. The ZnO was deposited on an indium tin oxide (ITO) coated glass and the AuNPs of average diameter of 23 nm were loaded on ZnO as the second layer. The prepared ITO/ZnO/AuNPs/GOx bioelectrode exhibited a low value of Michaelis–Menten constant of 1.70 mM indicating a good bio-matrix for GOx. The studies of electrochemical properties of the electrode using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that, the presence of AuNPs provides significant enhancement of the electron transfer rate during redox reactions. The linear sweep voltammetry (LSV) shows that the ITO/ZnO/AuNPs/GOx based sensor has a high sensitivity of 3.12 μA·mM{sup −1}·cm{sup −2} in the range of 50 mg/dL to 400 mg/dL glucose concentration. The results show promising application of the gold nanoparticle modified plant-like ZnO composite bioelectrode for electrochemical sensing of glucose.

  5. ZnO nanorods arrays with Ag nanoparticles on the (002) plane derived by liquid epitaxy growth and electrodeposition process

    Yin Xingtian; Que Wenxiu; Shen Fengyu

    2011-01-01

    Well-aligned ZnO nanorods (NRs) arrays with Ag nanoparticles (NPs) on the (002) plane are obtained by combining a liquid epitaxy technique with an electrodeposition process. Cyclic voltammetry study is employed to understand the electrochemical behaviors of the electrodeposition system, and potentiostatic method is employed to deposit silver NPs on the ZnO NRs in the electrolyte with an Ag + concentration of 1 mM. X-ray diffraction analysis is used to study the crystalline properties of the as-prepared samples, and energy dispersive X-ray is adopted to confirm the composition at the surface of the deposited samples. Results indicate only a small quantity of silver can be deposited on the surface of the samples. Effect of the deposition potential and time on the morphological properties of the resultant Ag NPs/ZnO NRs are investigated in detail. Scanning electron microscopy images and transmission electron microscopy images indicate that the Ag NPs deposited on the (002) plane of the ZnO NRs with a large dispersion in diameter can be obtained by a single potentiostatic deposition process, while dense Ag NPs with a much smaller diameter dispersion on the top of the ZnO NRs, most of which locate on the conical tip of the ZnO NRs, can be obtained by a two-potentiostatic deposition process, The mechanism of this deposition process is also suggested.

  6. ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels.

    Bryant, Sheenah L; Eixenberger, Josh E; Rossland, Steven; Apsley, Holly; Hoffmann, Connor; Shrestha, Nisha; McHugh, Michael; Punnoose, Alex; Fologea, Daniel

    2017-12-16

    The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate. The macroscopic conductance of lysenin channels greatly diminished in the presence of cationic ZnO NPs. The inhibitory effects were asymmetrical relative to the direction of the electric field and addition site, suggesting electrostatic interactions between ZnO NPs and a binding site. Similar changes in the macroscopic conductance were observed when lysenin channels were reconstituted in neutral lipid membranes, implicating protein-NP interactions as the major contributor to the reduced transport capabilities. In contrast, no inhibitory effects were observed in the presence of anionic SnO 2 NPs. Additionally, we demonstrate that inhibition of ion transport is not due to the dissolution of ZnO NPs and subsequent interactions of zinc ions with lysenin channels. We conclude that electrostatic interactions between positively charged ZnO NPs and negative charges within the lysenin channels are responsible for the inhibitory effects on the transport of ions. These interactions point to a potential mechanism of cytotoxicity, which may not require NP internalization.

  7. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  8. Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites.

    Gandhi, P Rajiv; Jayaseelan, C; Mary, R Regina; Mathivanan, D; Suseem, S R

    2017-10-01

    The aim of the present study was to evaluate the acaricidal, pediculicidal and larvicidal effect of synthesized zinc oxide nanoparticles (ZnO NPs) using Momordica charantia leaf extract against the larvae of Rhipicephalus (Boophilus) microplus, adult of Pediculus humanus capitis, and the larvae of Anopheles stephensi, Culex quinquefasciatus. The ZnO NPs were characterized by using UV, XRD, FTIR and SEM-EDX. The SEM image confirms that the synthesized nanoparticles were spherical in shape with a size of 21.32 nm. The results of GC-MS analysis indicates the presence of the major compound of Nonacosane (C 29 H 60 ) in the M. charantia leaf extract. Cattle tick, head lice and mosquito larvae were exposed to a varying concentrations of the synthesized ZnO NPs and M. charantia leaf extract for 24 h. Compared to the leaf aqueous extract, biosynthesized ZnO NPs showed higher toxicity against R. microplus, P. humanus capitis, An. stephensi, and Cx. Quinquefasciatus with the LC 50 values of 6.87, 14.38, 5.42, and 4.87 mg/L, respectively. The findings revealed that synthesized ZnO NPs possess excellent anti-parasitic activity. These results suggest that the green synthesized ZnO NPs has the potential to be used as an ideal ecofriendly approach for the control of R. microplus, P. humanus capitis and the mosquito larvae of An. Stephensi and Cx. quinquefasciatus. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. An alternative approach to studying the effects of ZnO nanoparticles in cultured human lymphocytes: combining electrochemistry and genotoxicity tests.

    Branica, Gina; Mladinić, Marin; Omanović, Dario; Želježić, Davor

    2016-12-01

    Nanoparticle use has increased radically raising concern about possible adverse effects in humans. Zinc oxide nanoparticles (ZnO NPs) are among the most common nanomaterials in consumer and medical products. Several studies indicate problems with their safe use. The aim of our study was to see at which levels ZnO NPs start to produce adverse cytogenetic effects in human lymphocytes as an early attempt toward establishing safety limits for ZnO NP exposure in humans. We assessed the genotoxic effects of low ZnO NP concentrations (1.0, 2.5, 5, and 7.5 μg mL-1) in lymphocyte cultures over 14 days of exposure. We also tested whether low and high-density lymphocytes differed in their ability to accumulate ZnO NPs in these experimental conditions. Primary DNA damage (measured with the alkaline comet assay) increased with nanoparticle concentration in unseparated and high density lymphocytes. The same happened with the fragmentation of TP53 (measured with the comet-FISH). Nanoparticle accumulation was significant only with the two highest concentrations, regardless of lymphocyte density. High-density lymphocytes had significantly more intracellular Zn2+ than light-density ones. Our results suggest that exposure to ZnO NPs in concentrations above 5 μg mL-1 increases cytogenetic damage and intracellular Zn2+ levels in lymphocytes.

  10. A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube

    Sun, Hui; Tian, He; Yang, Yi; Xie, Dan; Zhang, Yu-Chi; Liu, Xuan; Ma, Shuo; Zhao, Hai-Ming; Ren, Tian-Ling

    2013-06-01

    In this paper, a novel flexible nanogenerator (FNG) made of zinc-oxide (ZnO) nanoparticles (NPs) and multiwall-carbon nanotubes (MW-CNTs) is presented. In this structure, ZnO NPs and MW-CNTs are mixed with polydimethylsiloxane (PDMS) uniformly to form an entire flexible nanogenerator. Serial tests illustrate that the output voltage and power density are as high as 7.5 V and 18.75 μW per cycle, respectively. Furthermore, by foot stamp on the FNG, a peak voltage as high as 30 V can be generated. Comparing to the control samples, it is also proved that adding MW-CNTs into the matrix could significantly enhance the output voltage from 0.8 to 7.5 V. In summary, our work indicates that the realization of flexible nanogenerators made of ZnO NPs and MW-CNTs is technologically feasible, which may bring out some important and interesting applications in energy harvesting.In this paper, a novel flexible nanogenerator (FNG) made of zinc-oxide (ZnO) nanoparticles (NPs) and multiwall-carbon nanotubes (MW-CNTs) is presented. In this structure, ZnO NPs and MW-CNTs are mixed with polydimethylsiloxane (PDMS) uniformly to form an entire flexible nanogenerator. Serial tests illustrate that the output voltage and power density are as high as 7.5 V and 18.75 μW per cycle, respectively. Furthermore, by foot stamp on the FNG, a peak voltage as high as 30 V can be generated. Comparing to the control samples, it is also proved that adding MW-CNTs into the matrix could significantly enhance the output voltage from 0.8 to 7.5 V. In summary, our work indicates that the realization of flexible nanogenerators made of ZnO NPs and MW-CNTs is technologically feasible, which may bring out some important and interesting applications in energy harvesting. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00866e

  11. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  12. Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles.

    Vivekanandhan, Singaravelu; Schreiber, Makoto; Mason, Cynthia; Mohanty, Amar Kumar; Misra, Manjusri

    2014-01-01

    The functionalization of ZnO powders with silver nanoparticles (AgNPs) through a novel maple leaf extract mediated biological process was demonstrated. Maple leaf extract was found to be a very effective bioreduction agent for the reduction of silver ions. The reduction rate of Ag(+) into Ag(0) was found to be much faster than other previously reported bioreduction rates and was comparable to the reduction rates obtained through chemical means. The functionalization of ZnO particles with silver nanoparticles through maple leaf extract mediated bioreduction of silver was investigated through UV-visible spectrophotometry, transmission electron microscopy (TEM), and X-ray diffraction analysis. It was found that the ZnO particles were coated with silver nanoparticles 5-20 nm in diameter. The photocatalytic ability of the ZnO particles functionalized with silver nanoparticles was found to be significantly improved compared to the photocatalytic ability of the neat ZnO particles. The silver functionalized ZnO particles reached 90% degradation of the dye an hour before the neat ZnO particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The effect of ZnO Nps of 20 nm on changes of enzyme and liver tissues of pregnant NMRI mice

    bager Seyed Alipour

    2015-01-01

    Full Text Available Background :Nowadays, nanotechnology has been developing rapidly and may have considerable effects on industry, society and the environment. In this research the toxicity properties of zinc oxide nanoparticles with a size of 20 nm on enzyme and liver tissue of NMRI mice were studied. Materials and Methods: This experimental study was performed in standard conditions on 25 NMRI mice with an average weight of 30 ± 3 g so that they received different doses of zinc oxide nanoparticles, an a days, for 15 days intraperitoneally. Then, blood samples were taken on day 17 of NMRI mice. The collected tissues were washed with saline and fixed in Boin΄s fluied buffer and stained with hematoxylin and eosin for histopathology evaluation. After data collection, statistical analysis was done using SAS software. Results: The results showed that activity of ALT enzyme at concentrations 50, 100, 150 and 200 mg/kg ZnO Nps at a significant level (p<0.05 increased in comparison with the control group. Histopathological investigation showed that zinc oxide nanoparticles caused severe damage in liver. Damaged liver cells develop leaky membranes and escape of intracellular enzymes into the bloodstream. Conclusion: Our findings showed that using different concentration of zinc oxide nanoparticles could be caused undesirable effects on liver with damage to hepatocyte and level elevation of liver enzymes.

  14. Spectroscopic characterization and docking studies of ZnO nanoparticle modified with BSA

    Ledesma, Ana E.; Chemes, Doly María; Frías, María de los Angeles; Guauque Torres, Maria del Pilar

    2017-08-01

    Nanoparticles (NP) into a biological environment are an interesting topic for diagnosis and therapy in applications for medicine or environment and the knowledge about this interaction is important from the perspective of safe use of nanomaterials. In the current study, we characterized the type of interaction and the orientation of bovine serum albumin (BSA) adsorbed on ZnO nanoparticle surfaces as a function of size, using molecular docking. To probe experimentally different theoretical hypothesis about the interaction, ZnO-NPs were prepared in aqueous solution, and then were bioconjugated with BSA. Transmission electron microscopy (TEM) and Raman spectroscopy confirm the spherical shape of NP and the irreversible adsorption of BSA on NP surface. Raman and Infrared spectroscopy (FTIR) reveal that BSA interaction with ZnO nanoparticle produced a conformational rearrangement into protein, observing changes in Tyr and Trp environment, a minor percentage of α-helix structure and a more extended chain. The fluorescence analysis demonstrated that when BSA concentration higher than 30 μM is used the signal due to the self-oligomerization of protein overlaps with the ZnO nanoparticle emission. The results predicted that the most probable interaction site is near to domain IB and IIA and ionic interactions are the major responsible for the binding. Thermal stability studies reveals that the denaturalization temperature of BSA increase from 57 °C to 65 °C in presence of ZnO NP and their esterase-like activity was improved.

  15. Characterization and photocatalytic properties of cotton fibers modified with ZnO nanoparticles using sol–gel spin coating technique

    Mohamed Shaban

    2016-09-01

    Full Text Available Zinc oxide nanoparticles (ZnO NPs were prepared using the sol–gel method. Cotton fibers were loaded with ZnO nanoparticles using sol–gel spin coating technique. The prepared ZnO NPs and ZnO-coated cotton were characterized by scanning electron microscope (SEM and energy dispersive X-ray spectroscopy (EDX. The self-cleaning property of ZnO-coated cotton and the photocatalytic removal of methyl orange dye from the contaminated water and cotton fibers were studied by measuring the optical absorbance after exposure to sunlight and Philips 200W lamp illumination. The results showed that the cotton loaded with ZnO nanoparticles could efficiently decompose 73% of methyl orange dye in the sunlight and 30.7% in the lamp illumination after 12 hours. ZnO nanoparticles decomposed methyl orange dye by 92.7% in the sunlight and 26.4% in the lamp illumination after 7 hours.

  16. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.

    Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon; Lee, Youn Su

    2012-03-01

    This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

  17. Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles

    Pradeev Raj, K.; Sadaiyandi, K.; Kennedy, A.; Thamizselvi, R.

    2016-01-01

    ZnO nanoparticles (NPs) and Strontium doped ZnO nanoparticles (2–6 mol %) (SZ-NPs) were synthesized via Co-precipitation method. Synthesized samples were investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Elemental dispersive spectroscopy (EDS), UV–visible, and Photoluminescence (PL) spectroscopy. Photocatalytic studies for Rhodamine B (RhB) dye in aqueous solution under UV–Vis radiation. XRD analysis confirms that all the samples have hexagonal wurtzite structure. The average crystallite size of the nanoparticles was in the range of 29–51 nm. From the Williamson –Hall (W-H) plot, a positive slope is inferred for pure and SZ-NPs, confirming the presence of tensile strain. SEM images reveal the synthesized NPs are in nanometer range with various shapes are observed. The presence of strontium (Sr) in the host lattice was confirmed by EDS spectroscopy. The optical analysis shows the absorption decreases on doping and shifts slightly towards the longer wavelength region. The band gap energy (Eg) decreases (3.32–3.03 eV) with the increase of Sr dopant concentration. The photoluminescence (PL) spectrum reveals the UV emission is strong near the band-edge region (NBE) (392 nm) and intrinsic defects resulted in series of Vis emissions around 400–560 nm. Kinetic studies on RhB dye indicates the degradation rate has increased with dopant concentration. The improved photocatalytic activity is observed due to the efficient charge separation, improved visible light absorption, inhibition of the electron-hole pair's recombination and better adsorptive of RhB dye molecule on the surface of SZ-NPs. Moreover, the reduction in the total organic carbon (TOC) results reveals the improved photocatalytic activity of strontium doped ZnO NPs. - Highlights: • Effective synthesis of ZnO and Sr−ZnO nanoparticles by co-precipitation method. • Samples were characterized by XRD, SEM, EDS, UV–Vis and PL technique. • Higher optical absorption and

  18. Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles

    Pradeev Raj, K., E-mail: pradeevraj@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore, 641 046, Tamilnadu (India); Department of Physics, CSI College of Engineering, Ooty, The Nilgiris, 643 215, Tamil Nadu (India); Sadaiyandi, K. [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivagangai, 630 003, Tamil Nadu (India); Kennedy, A. [Department of Physics, CSI College of Engineering, Ooty, The Nilgiris, 643 215, Tamil Nadu (India); Thamizselvi, R. [Department of Chemistry, L.R.G. Govt Arts College for Women, Tirupur, 641604, Tamil Nadu (India)

    2016-11-01

    ZnO nanoparticles (NPs) and Strontium doped ZnO nanoparticles (2–6 mol %) (SZ-NPs) were synthesized via Co-precipitation method. Synthesized samples were investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Elemental dispersive spectroscopy (EDS), UV–visible, and Photoluminescence (PL) spectroscopy. Photocatalytic studies for Rhodamine B (RhB) dye in aqueous solution under UV–Vis radiation. XRD analysis confirms that all the samples have hexagonal wurtzite structure. The average crystallite size of the nanoparticles was in the range of 29–51 nm. From the Williamson –Hall (W-H) plot, a positive slope is inferred for pure and SZ-NPs, confirming the presence of tensile strain. SEM images reveal the synthesized NPs are in nanometer range with various shapes are observed. The presence of strontium (Sr) in the host lattice was confirmed by EDS spectroscopy. The optical analysis shows the absorption decreases on doping and shifts slightly towards the longer wavelength region. The band gap energy (Eg) decreases (3.32–3.03 eV) with the increase of Sr dopant concentration. The photoluminescence (PL) spectrum reveals the UV emission is strong near the band-edge region (NBE) (392 nm) and intrinsic defects resulted in series of Vis emissions around 400–560 nm. Kinetic studies on RhB dye indicates the degradation rate has increased with dopant concentration. The improved photocatalytic activity is observed due to the efficient charge separation, improved visible light absorption, inhibition of the electron-hole pair's recombination and better adsorptive of RhB dye molecule on the surface of SZ-NPs. Moreover, the reduction in the total organic carbon (TOC) results reveals the improved photocatalytic activity of strontium doped ZnO NPs. - Highlights: • Effective synthesis of ZnO and Sr−ZnO nanoparticles by co-precipitation method. • Samples were characterized by XRD, SEM, EDS, UV–Vis and PL technique. • Higher optical absorption

  19. ZnO nanowire/TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method

    Gan Xiaoyan; Li Xiaomin; Gao Xiangdong; Zhuge Fuwei; Yu Weidong

    2010-01-01

    Hybrid ZnO/TiO 2 photoanodes for dye-sensitized solar cells were prepared by combining ZnO nanowire (NW) arrays and TiO 2 nanoparticles (NPs) with the assistance of the ultrasonic irradiation assisted dip-coating method. Results show that the ultrasonic irradiation was an efficient way to promote the gap filling of TiO 2 NPs in the interstices of ZnO NWs. Hybrid ZnO NW/TiO 2 NP electrodes prepared with ultrasonic treatment exhibited better gap filling efficiency and higher visible absorptance. The overall conversion efficiency of the hybrid electrode was 0.79%, representing 35% improvement compared with that of the traditional one (0.58%). The enlarged surface area and improved attachments of TiO 2 NPs onto the walls of ZnO NWs induced by the application of ultrasonic irradiation may be the underlying reason. Electrochemical impedance spectroscopy measurements indicated that hybrid electrodes combined the advantages of improved electron transport along the ZnO NWs and increased surface area provided by infiltrated TiO 2 NPs, both of which are responsible for the improved cell efficiency.

  20. Electrochemical characteristics of coated steel with poly(N-methyl pyrrole) synthesized in presence of ZnO nanoparticles

    Mahmoudian, M.R., E-mail: M_R_mahmoudian@yahoo.com [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman (Iran, Islamic Republic of); Basirun, W.J.; Alias, Y. [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Khorsand Zak, A. [Low Dimensional Materials Research Center, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-31

    Poly(N-methyl pyrrole) (PMPy) coating was electrodeposited on steel substrates in mixed electrolytes of dodecyl benzene sulphonic acid with oxalic acid in the absence and the presence of ZnO nanoparticles (NPs). The morphology and compositions were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy and Energy-dispersive X-ray spectroscopy. Electrode/coating/electrolyte system was studied by Electrochemical Impedance Spectroscopy. The comparison between the pore resistance (R{sub po}) of synthesized PMPy in the absence and presence of ZnO NPs indicated that the existence of ZnO increased the R{sub po} of the coating. The FESEM micrographs indicated that the size of micro-spherical grains in the morphology of PMPy is significantly reduced and the surface area of PMPy is increased with the presence of ZnO NPs. The increase of the ability to interact with the ions liberated during the corrosion reaction of steel and the increase of the rate probability for the occurrence of cathodic reduction of oxygen on the PMPy with the increase of the surface area can be considered as reasons for improvement of protective properties of synthesized PMPy in the presence of ZnO NPs.

  1. Investigating the Implementation of ZnO Nanoparticles as a Tunable UV Detector for Different Skin Types

    Mosayebi, Pegah; Dorranian, Davoud; Behzad, Kasra

    A facile chemical reduction method was used to synthesize ZnO nanoparticles (NPs) in ethylene glycol solvent at two different calcination temperatures. As a result of variation in the calcination temperature, ZnO NPs with two different sizes were achieved. The NPs were investigated for their structural and optical characteristics using X-ray diffraction and ultraviolet (UV)-Vis spectroscopy. The synthesized ZnO NPs exhibited a hexagonal structure with sizes of 46 and 65nm. The synthesized NPs were then used to investigate dye photocatalytic behavior of products as a tunable UV detector for different skin types. The dye degradation and decolorization of methylene blue in the presence of ZnO NP, following UV radiation as a function of time, were studied at different pH levels. The optical absorption spectra were then taken every 15min for all samples. The UV-Vis spectroscopy spectra revealed that optical absorption of solution was decreased upon UV exposure as a function of time. Photocatalytic reaction indicated that the dye degradation and decolorization rate were accelerated with the increase of pH level. Therefore, a tunable UV detector for different skin types could be engineered by varying the pH level of solution to avoid human skin burning.

  2. Plant-mediated green synthesis of ZnO nanoparticles using Garcinia gummi-gutta seed extract: Photoluminescence, screening of their catalytic activity in antioxidant, formylation and biodiesel production

    Raghavendra, M.; Yatish, K. V.; Lalithamba, H. S.

    2017-08-01

    The green synthesis of multifunctional ZnO nanoparticles (NPs) was prepared by treatment of zinc nitrate with an extract of Garcinia gummi-gutta seed by the combustion method. The ZnO NPs were characterized by XRD, scanning electron microscopy, UV-visible, FTIR spectroscopic techniques. The prepared ZnO NPs were evaluated for photoluminescence (PL), antioxidant properties and also utilized as a catalyst for the formylation of aromatic amines and biodiesel production. The study reveals that the reaction is simple, mild and environmental friendly. Furthermore, the reaction results in excellent yield of products.

  3. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry.

    Ahmed, Shakeel; Annu; Chaudhry, Saif Ali; Ikram, Saiqa

    2017-01-01

    Nanotechnology is emerging as an important area of research with its tremendous applications in all fields of science, engineering, medicine, pharmacy, etc. It involves the materials and their applications having one dimension in the range of 1-100nm. Generally, various techniques are used for syntheses of nanoparticles (NPs) viz. laser ablation, chemical reduction, milling, sputtering, etc. These conventional techniques e.g. chemical reduction method, in which various hazardous chemicals are used for the synthesis of NPs later become liable for innumerable health risks due to their toxicity and endangering serious concerns for environment, while other approaches are expensive, need high energy for the synthesis of NPs. However, biogenic synthesis method to produce NPs is eco-friendly and free of chemical contaminants for biological applications where purity is of concerns. In biological method, different biological entities such as extract, enzymes or proteins of a natural product are used to reduce and stabilised formation of NPs. The nature of these biological entities also influence the structure, shape, size and morphology of synthesized NPs. In this review, biogenic synthesis of zinc oxide (ZnO) NPs, procedures of syntheses, mechanism of formation and their various applications have been discussed. Various entities such as proteins, enzymes, phytochemicals, etc. available in the natural reductants are responsible for synthesis of ZnO NPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Electrosynthesis and characterization of ZnO nanoparticles as inorganic component in organic thin-film transistor active layers

    Picca, Rosaria Anna; Sportelli, Maria Chiara; Hötger, Diana; Manoli, Kyriaki; Kranz, Christine; Mizaikoff, Boris; Torsi, Luisa; Cioffi, Nicola

    2015-01-01

    Highlights: • PSS-capped ZnO NPs were synthesized via a green electrochemical-thermal method • The influence of electrochemical conditions and temperature was studied • Spectroscopic data show that PSS functionalities are retained in the annealed NPs • Nanostructured ZnO improved the performance of P3HT-based thin film transistors - Abstract: ZnO nanoparticles have been prepared via a green electrochemical synthesis method in the presence of a polymeric anionic stabilizer (poly-sodium-4-styrenesulfonate, PSS), and then applied as inorganic component in poly-3-hexyl-thiophene thin-film transistor active layers. Different parameters (i.e. current density, electrolytic media, PSS concentration, and temperature) influencing nanoparticle synthesis have been studied. The resulting nanomaterials have been investigated by transmission electron microscopy (TEM) and spectroscopic techniques (UV-Vis, infrared, and x-ray photoelectron spectroscopies), assessing the most suitable conditions for the synthesis and thermal annealing of nanostructured ZnO. The proposed ZnO nanoparticles have been successfully coupled with a poly-3-hexyl-thiophene thin-film resulting in thin-film transistors with improved performance.

  5. A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles

    Xue, Jingzhe; Luo, Zhihui; Li, Ping; Ding, Yaping; Cui, Yi; Wu, Qingsheng

    2014-07-01

    Here we reported a residue-free green nanotechnology which synergistically enhance the pesticides efficiency and successively eliminate its residue. We built up a composite antifungal system by a simple pre-treating and assembling procedure for investigating synergy. Investigations showed 0.25 g/L ZnO nanoparticles (NPs) with 0.01 g/L thiram could inhibit the fungal growth in a synergistic mode. More importantly, the 0.25 g/L ZnO NPs completely degraded 0.01 g/L thiram under simulated sunlight irradiation within 6 hours. It was demonstrated that the formation of ZnO-thiram antifungal system, electrostatic adsorption of ZnO NPs to fungi cells and the cellular internalization of ZnO-thiram composites played important roles in synergy. Oxidative stress test indicated ZnO-induced oxidative damage was enhanced by thiram that finally result in synergistic antifungal effect. By reducing the pesticides usage, this nanotechnology could control the plant disease economically, more significantly, the following photocatalytic degradation of pesticide greatly benefit the human social by avoiding negative influence of pesticide residue on public health and environment.

  6. Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles

    Sadeghi, Meysam; Yekta, Sina; Ghaedi, Hamed

    2016-07-01

    In this study, zinc oxide nanoparticles (ZnO NPs) have been surveyed to decontaminate the chloroethyl phenyl sulfide as a sulfur mustard agent simulant. Prior to the reaction, ZnO NPs were successfully prepared through sol-gel method in the absence and presence of polyvinyl alcohol (PVA). PVA was utilized as a capping agent to control the agglomeration of the nanoparticles. The formation, morphology, elemental component, and crystalline size of nanoscale ZnO were certified and characterized by SEM/EDX, XRD, and FT-IR techniques. The decontamination (adsorption and destruction) was tracked by the GC-FID analysis, in which the effects of polarity of the media, such as isopropanol, acetone and n-hexane, reaction time intervals from 1 up to 18 h, and different temperatures, including 25, 35, 45, and 55 °C, on the catalytic/decontaminative capability of the surface of ZnO NPs/PVA were investigated and discussed, respectively. Results demonstrated that maximum decontamination (100 %) occurred in n-hexane solvent at 55 °C after 1 h. On the other hand, the obtained results for the acetone and isopropanol solvents were lower than expected. GC-MS chromatograms confirmed the formation of hydroxyl ethyl phenyl sulfide and phenyl vinyl sulfide as the destruction reaction products. Furthermore, these chromatograms proved the role of hydrolysis and elimination mechanisms on the catalyst considering its surface Bronsted and Lewis acid sites. A non-polar solvent aids material transfer to the reactive surface acid sites without blocking these sites.

  7. Effect of Mg(2+), Ca(2+), Sr(2+) and Ba(2+) metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans.

    Haja Hameed, Abdulrahman Syedahamed; Karthikeyan, Chandrasekaran; Senthil Kumar, Venugopal; Kumaresan, Subramanian; Sasikumar, Seemaisamy

    2015-01-01

    The antifungal ability of pure and alkaline metal ion (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) doped ZnO nanoparticles (NPs) prepared by the co-precipitation method was tested against the pathogenic yeast, Candida albicans (C. albicans), and the results showed that the Mg-doped ZnO NPs possessed greater effect than the other alkaline metal ion doped ZnO NPs. The impact of the concentration of Mg doped ZnO sample on the growth of C. albicans was also studied. The Minimal Fungicidal Concentration (MFC) of the Mg doped ZnO NPs was found to be 2000 μg/ml for which the growth of C. albicans was completely inhibited. The ZnO:Mg sample (1.5mg/ml) with various concentrations of histidine reduced the fungicidal effect of the nanoparticles against C. albicans, which was deliberately explained by the role of ROS. The ZnO:Mg sample added with 5mM of histidine scavenged the ample amount of generated ROS effectively. The binding of the NPs with fungi was observed by their FESEM images and their electrostatic attraction is confirmed by the zeta potential measurement. Copyright © 2015. Published by Elsevier B.V.

  8. Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells

    Lee, Pei-Ling; Chen, Bo-Chia; Gollavelli, Ganesh [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Shen, Sin-Yu [Graduate Institute of Medical Science, Taipei Medical University, Taipei 11031, Taiwan (China); Yin, Yu-Sheng; Lei, Shiu-Ling [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Jhang, Cian-Ling; Lee, Woan-Ruoh [Department of Dermatology, Taipei Medical University, Taipei 11031, Taiwan (China); Ling, Yong-Chien, E-mail: ycling@mx.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Graduate Institute of Medical Science, Taipei Medical University, Taipei 11031, Taiwan (China)

    2014-07-30

    Highlights: • Assorted material, chemical, and toxicological analysis methods were used to confirm the shape, size, crystalline structure, and aggregation properties of ZnO NPS as well as their dissolution behavior and effect on HaCaT cell viability. • The developed TOF-SIMS and CLSM imaging method for rapid and sensitive study of ZnO NPs in HaCaT cells was validated by comparative and correlative analyses to aforementioned experimental results. • The imaging results demonstrate spatially-resolved cytotoxicity relationship between intracellular ZnO NPs concentration, {sup 40}Ca/{sup 39}K ratio, phosphocholine fragments, and glutathione fragments. CLSM images reveal the localization of ZnO NPs in cytoplasm and nuclei. • The trend of change in TOF-SIMS spectra and images of ZnO NPs treated HaCaT cells demonstrate the possible mode of actions by ZnO NP involves cell membrane disruption, cytotoxic response, and ROS mediated apoptosis. - Abstract: Zinc oxide nanoparticles (ZnO NPs) exhibit novel physiochemical properties and have found increasing use in sunscreen products and cosmetics. The potential toxicity is of increasing concern due to their close association with human skin. A time-of-flight secondary ion mass spectrometry (TOF-SIMS) and confocal laser scanning microscopy (CLSM) imaging method was developed and validated for rapid and sensitive cytotoxicity study of ZnO NPs using human skin equivalent HaCaT cells as a model system. Assorted material, chemical, and toxicological analysis methods were used to confirm their shape, size, crystalline structure, and aggregation properties as well as dissolution behavior and effect on HaCaT cell viability in the presence of various concentrations of ZnO NPs in aqueous media. Comparative and correlative analyses of aforementioned results with TOF-SIMS and CLSM imaging results exhibit reasonable and acceptable outcome. A marked drop in survival rate was observed with 50 μg/ml ZnO NPs. The CLSM images reveal the

  9. Immunotoxicity of Silver Nanoparticles (AgNPs) on the Leukocytes of Common Bottlenose Dolphins (Tursiops truncatus).

    Li, Wen-Ta; Chang, Hui-Wen; Yang, Wei-Cheng; Lo, Chieh; Wang, Lei-Ya; Pang, Victor Fei; Chen, Meng-Hsien; Jeng, Chian-Ren

    2018-04-04

    Silver nanoparticles (AgNPs) have been extensively used and are considered as an emerging contaminant in the ocean. The environmental contamination of AgNPs is expected to increase greatly over time, and cetaceans, as the top ocean predators, will suffer the negative impacts of AgNPs. In the present study, we investigate the immunotoxicity of AgNPs on the leukocytes of cetaceans using several methods, including cytomorphology, cytotoxicity, and functional activity assays. The results reveal that 20 nm Citrate-AgNPs (C-AgNP 20 ) induce different cytomorphological alterations and intracellular distributions in cetacean polymorphonuclear cells (cPMNs) and peripheral blood mononuclear cells (cPBMCs). At high concentrations of C-AgNP 20 (10 and 50 μg/ml), the time- and dose-dependent cytotoxicity in cPMNs and cPBMCs involving apoptosis is demonstrated. C-AgNP 20 at sub-lethal doses (0.1 and 1 μg/ml) negatively affect the functional activities of cPMNs (phagocytosis and respiratory burst) and cPBMCs (proliferative activity). The current study presents the first evidence of the cytotoxicity and immunotoxicity of AgNPs on the leukocytes of cetaceans and improves our understanding of environmental safety concerning AgNPs. The dose-response data of AgNPs on the leukocytes of cetaceans are invaluable for evaluating the adverse health effects in cetaceans and for proposing a conservation plan for marine mammals.

  10. Improved performance of quantum dot light emitting diode by modulating electron injection with yttrium-doped ZnO nanoparticles

    Li, Jingling; Guo, Qiling; Jin, Hu; Wang, Kelai; Xu, Dehua; Xu, Yongjun; Xu, Gang; Xu, Xueqing

    2017-10-01

    In a typical light emitting diode (QD-LED), with ZnO nanoparticles (NPs) serving as the electron transport layer (ETL) material, excessive electron injection driven by the matching conduction band maximum (CBM) between the QD and this oxide layer usually causes charge imbalance and degrades the device performance. To address this issue, the electronic structure of ZnO NPs is modified by the yttrium (Y) doping method. We demonstrate that the CBM of ZnO NPs has a strong dependence on the Y-doping concentration, which can be tuned from 3.55 to 2.77 eV as the Y doping content increases from 0% to 9.6%. This CBM variation generates an enlarged barrier between the cathode and this ZnO ETL benefits from the modulation of electron injection. By optimizing electron injection with the use of a low Y-doped (2%) ZnO to achieve charge balance in the QD-LED, device performance is significantly improved with maximum luminance, peak current efficiency, and maximal external quantum efficiency increase from 4918 cd/m2, 11.3 cd/A, and 4.5% to 11,171 cd/m2, 18.3 cd/A, and 7.3%, respectively. This facile strategy based on the ETL modification enriches the methodology of promoting QD-LED performance.

  11. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160?nm and an average length of 2??m. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255?nm...

  12. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  13. Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. speciosa.

    Sai Saraswathi, V; Tatsugi, J; Shin, Paik-Kyun; Santhakumar, K

    2017-02-01

    Synthesis of metal oxide nanoparticles using novel methodologies always attracts great importance in research. The use of plant extract to synthesize nano-particle has been considered as one of the eco-friendly methods. This paper describes the biosynthetic route of preparation of zinc oxide nanoparticles (ZnO NPs) from the Lagerstroemia speciosa leaf extract. This approach appears to be low-cost preparation and alternative method to conventional methods. Highly stable and hexagonal phase ZnO NPs with average particle size of 40nm were synthesized and characterized by UV-Vis absorption spectroscopy (surface Plasmon resonance), Fourier transform infrared spectroscopy (surface functionalities), X-ray Diffraction analysis (crystallinity), TEM and SEM (size and morphology), Energy Dispersive X-ray spectroscopy (elemental composition), Thermogravimetric analysis (weight loss) and Zeta potential (stability). The preliminary phytochemical experiments identify the possible chemical groups present in leaves extract. The photocatalytic properties of ZnO NPs were studied using UV-Vis spectroscopy by exposing methyl orange to sunlight and it is found to be degraded up to 93.5% within 2h. The COD values were significantly reduced from 5600mg/L to 374mg/L after 100min of solar radiation. The hemolytic activity of synthesized zinc oxide nanoparticles was performed on human erythrocyte cells. Thus the present study provides a simple and eco-friendly method for the preparation of multifunctional property of ZnO NPs utilizing the biosynthetic route. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-01-01

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag + to Ag 0 . A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO 2 . Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  15. Biosynthesis and characterization of ZnO nanoparticles using the aqueous leaf extract of Imperata cylindrica L.

    Saputra, I. S.; Yulizar, Y.

    2017-04-01

    ZnO nanoparticles (ZnO NPs) were biosynthesized.The growth was observed by a sol-gel method. ZnO were successfully formed through the reaction of zinc nitrate tetrahydrate Zn(NO3)2.4H2O precursor with aqueous leaf extract of Imperata cylindrica L (ICL). The structural and optical properties of ZnO were investigated. The as-synthesized products were characterized by UV-Visible (UV-Vis), UV diffuse reflectance spectroscopy (UV-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). UV-Vis absorption data showed hydrolysis and characteristic of absorption peak at 300 nm of Zn(OH)2. UV-DRS confirmed that ZnO NPs has the indirect band gap at 3.13 eV. FTIR spectrum revealed the functional groups and indicated the presence of protein as the capping and stabilizing agent on the ZnO surface. Powder XRD studies indicated the formation of pure wurtzite hexagonal structure with particle size of 11.9 nm. The detailed morphological and structural characterizations revealed that the synthesized products were hexagonal nanochip.

  16. Effects of annealing atmosphere on ZnO{sup -} ions-implanted silica glass: synthesis of Zn and ZnO nanoparticles

    Kuiri, P K [Department of Physics, Achhruram Memorial College, P.O. Jhalda, Purulia 723202 (India); Mahapatra, D P, E-mail: kuiripk@gmail.co [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2010-10-06

    The effects of annealing atmosphere (argon or oxygen) on Zn nanoparticles (NPs), embedded in silica glass, synthesized by implanting 50 keV ZnO{sup -} ions to a fluence of 7 x 10{sup 16} cm{sup -2} have been studied. Optical absorption (OA) measurements carried out on the as-implanted samples have been found to result in a surface plasmon resonance (SPR) band centred at {approx}255 nm due to the presence of Zn NPs in the silica glass. An increase in SPR peak intensity with a corresponding reduction of its full width at half maximum have been seen in the OA spectrum taken from the as-implanted sample following annealing in Ar ambient at 700 {sup 0}C for 2 h, indicating a growth in the size of Zn NPs. However, annealing the as-implanted sample in O{sub 2} gas at 700 {sup 0}C for 2 h has been found to result in a steep absorption edge at {approx}364 nm in the OA spectrum which indicates the formation of ZnO NPs. These ZnO NPs show quantum confinement effects due to their small sizes. No observable photoluminescence (PL) emission has been seen from Zn NPs, whereas an excitonic band at {approx}368 nm and three deep-level PL emission bands at {approx}453 nm, {approx}521 nm and {approx}650 nm, respectively, have been seen from ZnO NPs. It was argued that the deep-level PLs were due to the singly ionized oxygen vacancies located at ZnO NPs' surfaces. These observations suggest that ZnO NPs were formed due to oxidation of Zn NPs via interaction with the indiffusing O{sub 2} molecules during annealing in O{sub 2} ambient, but not with the interaction of the implanted oxygen in silica glass.

  17. The Effect of SiO2 Shell on the Suppression of Photocatalytic Activity of TiO2 and ZnO Nanoparticles

    Lee, Min Hee; Lee, Choon Soo; Patil, Umakant Mahadev; Kochuveedu, Saji Thomas

    2012-01-01

    In this study, we investigate the potential use of TiO 2 SiO 2 and ZnO SiO 2 core/shell nanoparticles (NPs) as effective UV shielding agent. In the typical synthesis, SiO 2 was coated over different types of TiO 2 (anatase and rutile) and ZnO by sol-gel method. The synthesized TiO 2 SiO 2 and ZnO SiO 2 Nps were characterized by UV-Vis, XRD, Sem and TEM. The UV-vis absorbance and transmittance spectra of core shell NPs showed an efficient blocking effect in the UV region and more than 90% transmittance in the visible region. XRD and SAED studies confirmed the formation of amorphous SiO 2 coated over the TiO 2 and ZnO NPs. The FESEM and TEM images shows that coating of SiO 2 over the surface of anatase, rutile TiO 2 and ZnO NPs resulted in the increase in particle size by ∼30 nm. In order to study the UV light shielding capability of the samples, photocatalytic degradation of methylene blue dye on TiO 2 SiO 2 and ZnO SiO 2 NPs was performed. Photocatalytic activity for both types of TiO 2 NPs was partially suppressed. In comparison, the photocatalytic activity of ZnO almost vanished after the SiO 2 coating

  18. Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method

    Zang, Zhigang; Tang, Xiaosheng

    2015-01-01

    Highlights: • A dual phase hydrothermal method was developed to synthesize ZnO nanoparticles. • ZnO nanoparticles show a stability and solubility in the aqueous environment. • ZnO nanoparticles with a blue emission wavelength at around 420 nm and small size (30 nm). • ZnO nanoparticles as biological labeling agent was also shown. - Abstract: A facile synthesis method for the formation of ZnO nanoparticles by using a double-phase reaction was demonstrated in this paper. The morphology of the synthesized ZnO nanoparticles shows a flower-shape. Hydrogen peroxide was used as a unique oxygenic source to promote the formation of ZnO in the presence of organic zinc precursor. The as-synthesized ZnO nanoparticles also show a stability and solubility in the aqueous environment. The structure and properties of ZnO nanoparticles were investigated by the transmission electron microscopy (TEM) and X-ray diffraction (XRD) as well as UV–vis and photoluminescence spectroscopy. The as-prepared hydrophobic colloidal ZnO nanoparticles could be modified to become water-soluble via ligand exchange with amineothanethiol⋅HCl while retaining the photoluminescence properties. In addition, the potential application for biological label of water-soluble ZnO nanoparticles were also demonstrated. These results not only have applications towards using colloidal ZnO nanoparticles effectively in biological fluorescence imaging, but also promote its application in the field of targeted drug delivery

  19. Exploring the Behavior and Metabolic Transformations of SeNPs in Exposed Lactic Acid Bacteria. Effect of Nanoparticles Coating Agent

    Maria Palomo-Siguero

    2017-08-01

    Full Text Available The behavior and transformation of selenium nanoparticles (SeNPs in living systems such as microorganisms is largely unknown. To address this knowledge gap, we examined the effect of three types of SeNP suspensions toward Lactobacillus delbrueckii subsp. bulgaricus LB-12 using a variety of techniques. SeNPs were synthesized using three types of coating agents (chitosan (CS-SeNPs, hydroxyethyl cellulose (HEC-SeNPs and a non-ionic surfactant, surfynol (ethoxylated-SeNPs. Morphologies of SeNPs were all spherical. Transmission electron microscopy (TEM was used to locate SeNPs in the bacteria. High performance liquid chromatography (HPLC on line coupled to inductively coupled plasma mass spectrometry (ICP-MS was applied to evaluate SeNP transformation by bacteria. Finally, flow cytometry employing the live/dead test and optical density measurements at 600 nm (OD600 were used for evaluating the percentages of bacteria viability when supplementing with SeNPs. Negligible damage was detected by flow cytometry when bacteria were exposed to HEC-SeNPs or CS-SeNPs at a level of 10 μg Se mL−1. In contrast, ethoxylated-SeNPs were found to be the most harmful nanoparticles toward bacteria. CS-SeNPs passed through the membrane without causing damage. Once inside, SeNPs were metabolically transformed to organic selenium compounds. Results evidenced the importance of capping agents when establishing the true behavior of NPs.

  20. Ether gas-sensor based on Au nanoparticles-decorated ZnO microstructures

    Roberto López

    Full Text Available An ether gas-sensor was fabricated based on gold nanoparticles (Au-NPs decorated zinc oxide microstructures (ZnO-MS. Scanning electron microscope (SEM and high-resolution transmission electron microscope (HRTEM measurements were performed to study morphological and structural properties, respectively, of the ZnO-MS. The gas sensing response was evaluated in a relatively low temperature regime, which ranged between 150 and 250 °C. Compared with a sensor fabricated from pure ZnO-MS, the sensor based on Au-NPs decorated ZnO-MS showed much better ether gas response at the highest working temperature. In fact, pure ZnO-MS based sensor only showed a weak sensitivity of about 25%. The improvement of the ether gas response for sensor fabricated with Au-NPs decorated ZnO-MS was attributed to the catalytic activity of the Au-NPs. Keywords: ZnO microstructures, Au nanoparticles, Ether, Gas sensor

  1. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter.

    Moghaddasi, Sahar; Fotovat, Amir; Khoshgoftarmanesh, Amir Hossein; Karimzadeh, F; Khazaei, Hamid Reza; Khorassani, Reza

    2017-10-01

    There is a gap of knowledge for the fate, effects and bioavailability of coated and uncoated ZnO nanoparticles (NPs) in soil. Moreover, little is known about the effects of soil properties on effects of NPs on plants. In this study, the availability ZnO NPs in two soils with different organic matter content (one treated with cow manure (CM) and the other as untreated) was compared with their bulk particles. Results showed that coated and uncoated ZnO NPs can be more bioaccessible than their bulk counterpart and despite their more positive effects at low concentration (soil untreated with CM. The concentration of 1000mgkg -1 of ZnO NPs, decreased shoot dry biomass (52%) in the soil untreated with CM but increased shoot dry biomass (35%) in CM-treated soil compared to their bulk counterpart. In general, plants in the CM-treated soil showed higher Zn concentration in their tissues compared with those in untreated soil. The difference in shoot Zn concentration between CM-treated and untreated soil for NPs treatments was more than bulk particles treatment. This different percentage at 100mgkg -1 of bulk particles was 20.6% and for coated and uncoated NPs were 37% and 32%, respectively. Generally, the distribution of ZnO among Zn fractions in soil (exchangeable, the metal bound to carbonates, Fe-Mn oxides, organic matter and silicate minerals and the residual fraction) changed based on applied Zn concentration, Zn source and soil organic matter content. The root tip deformation under high concentration of NPs (1000mgkg -1 treatment ) was observed by light microscopy in plants at the soil untreated with CM. It seems that root tip deformation is one of the specific effects of NPs which in turn inhibits plant growth and nutrients uptake by root. The transmission electron microcopy image showed the aggregation of NPs inside the plant cytoplasm and their accumulation adjacent to the cell membrane. Copyright © 2017. Published by Elsevier Inc.

  2. Role of nickel doping on structural, optical, magnetic properties and antibacterial activity of ZnO nanoparticles

    Vijayaprasath, G.; Murugan, R. [School of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Palanisamy, S.; Prabhu, N.M. [Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Mahalingam, T. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011 (Japan); Ravi, G., E-mail: gravicrc@gmail.com [School of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2016-04-15

    Highlights: • The XRD analyses revealed that the synthesizes nickel doped ZnO (Zn{sub 1−x}Ni{sub x}O, x = 0.0, 0.03, 0.06 and 0.09) nanostructures have hexagonal wurtzite structure. • The photoluminescence measurements revealed that the broad emission was composed of different bands due to zinc and oxygen vacancies. • X-ray photoelectron spectroscopy (XPS) confirmed the Ni incorporation in ZnO lattice as Ni{sup 2+} ions. • Room temperature ferromagnetism was observed due to the oxygen vacancies and zinc interstitials are the main reasons for ferromagnetism in Ni doped ZnO NPs. - Abstract: Zn{sub 1−x}Ni{sub x}O nanoparticles were synthesized by co-precipitation method. The crystallite sizes of the synthesized samples found to decrease from 38 to 26 nm with increase in nickel concentration. FTIR spectra confirmed the presence of Zn−O stretching bands at 577, 573, 569 and 565 cm{sup −1} in the respective ZnO NPs. Optical absorption spectra revealed the red shifted and estimated band gap is found to decrease with increase of Ni doping concentration. The PL spectra of all the samples exhibited a broad emission at 390 nm in the visible range. The carriers (donors) bounded on the Ni sites were observed from the micro Raman spectroscopic studies. Pure and Ni doped ZnO NPs showed significant changes in the M–H loop, especially the diamagnetic behavior changed into ferromagnetic nature for Ni doped samples. The antiferromagnetic super-exchange interactions between Ni{sup 2+} ions is increased in higher Ni doped ZnO NPs and also their antibacterial activity has been studied.

  3. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    Aly, Shawkat Mohammede

    2014-06-12

    Fluorescence enhancement of organic fluorophores shows tremendous potential to improve image contrast in fluorescence-based bioimaging. Here, we present an experimental study of the interaction of two cationic porphyrins, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride (TMPyP) and meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin chloride (TMAP), with cationic surfactant-stabilized zinc oxide nanoparticles (ZnO NPs) based on several steady-state and time-resolved techniques. We show the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic porphyrins. For TMPyP, we observe a sixfold increase in the fluorescence intensity of TMPyP upon addition of ZnO NPs. Our experimental results indicate that the electrostatic binding of TMPyP with the surface of ZnO NPs increases the symmetry of the porphyrin macrocycle. This electronic communication hinders the rotational relaxation of the meso unit and/or decreases the intramolecular CT character between the cavity and the meso substituent of the porphyrin, resulting in the enhancement of the intensity of the fluorescence. For TMAP, on the other hand, the different type and nature of the positive charge resulting in the development of the CT band arise from the interaction with the surface of ZnO NPs. This observation is confirmed by the femtosecond transient absorption spectroscopy, which provides clear spectroscopic signatures of photoinduced electron transfer from TMAP to ZnO NPs. © 2014 American Chemical Society.

  4. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells

    Hsiao, I-Lun; Huang, Yuh-Jeen

    2011-01-01

    Although novel nanomaterials are being produced and applied in our daily lives at a rapid pace, related health and environmental toxicity assessments are lagging behind. Recent reports have concluded that the physicochemical properties of nanoparticles (NPs) have a crucial influence on their toxicities and should be evaluated during risk assessments. Nevertheless, several controversies exist regarding the biological effects of NP size and surface area. In addition, relatively few reports describe the extents to which the physicochemical properties of NPs influence their toxicity. In this study, we used six self-synthesized and two commercial ZnO and TiO 2 nanomaterials to evaluate the effects of the major physicochemical properties of NPs (size, shape, surface area, phase, and composition) on human lung epithelium cells (A549). We characterized these NPs using transmission electron microscopy, X-ray diffraction, the Brunauer-Emmett-Teller method, and dynamic laser scattering. From methyl thiazolyl tetrazolium (MTT) and Interleukin 8 (IL-8) assays of both rod- and sphere-like ZnO NPs, we found that smaller NPs had greater toxicity than larger ones-a finding that differs from those of previous studies. Furthermore, at a fixed NP size and surface area, we found that the nanorod ZnO particles were more toxic than the corresponding spherical ones, suggesting that both the size and shape of ZnO NPs influence their cytotoxicity. In terms of the effect of the surface area, we found that the contact area between a single NP and a single cell was more important than the total specific surface area of the NP. All of the TiO 2 NP samples exhibited cytotoxicities lower than those of the ZnO NP samples; among the TiO 2 NPs, the cytotoxicity increased in the following order: amorphous > anatase > anatase/rutile; thus, the phase of the NPs can also play an important role under size-, surface area-, and shape-controlled conditions. - Research Highlights: → Evaluate the

  5. ZnO and TiO{sub 2} nanoparticles as novel antimicrobial agents for oral hygiene: a review

    Khan, Shams Tabrez, E-mail: shamsalig75@gmail.com; Al-Khedhairy, Abdulaziz A. [King Saud University, Department of Zoology, College of Science (Saudi Arabia); Musarrat, Javed [AMU, Department of Agricultural Microbiology, Faculty of Agricultural Sciences (India)

    2015-06-15

    Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO{sub 2} NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO{sub 2} NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance.

  6. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review

    Khan, Shams Tabrez; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2015-06-01

    Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO2 NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO2 NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance.

  7. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review

    Khan, Shams Tabrez; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2015-01-01

    Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO 2 NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO 2 NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance

  8. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid

    Hou, Chao [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Liu, Hongying, E-mail: liuhongying@hdu.edu.cn [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Dan; Yang, Chi [Department of Pharmacy, Nantong University, Nantong 226001 (China); Zhang, Mingzhen [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2016-05-05

    In this study, ZnO nanorods-Au nanoparticles (ZnO NRs-Au NPs) hybrids were prepared using an in-situ plasma sputtering-assisted method without any template. Characterization results from scanning electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy showed that Au NPs are highly dispersed and tightly anchored on the surface of ZnO NRs. The size and surface coverage of Au NPs were well controlled by plasma sputtering time. Moreover, the hybrids exhibited excellent electrocatalytic properties towards oxidation of ascorbic acid (AA) and uric acid (UA) due to large surface area of Au NPs and ZnO NRs, and thus can be used as electrochemical sensors. Differential pulse voltammetry results showed that AA and UA could be detected simultaneously by ZnO NRs-Au NPs hybrids modified glassy carbon electrode. The linear ranges for AA and UA are 0.1 to 4 mM and 0.01 to 0.4 mM, respectively. The results suggest promising future applications in clinical diagnosis. - Highlights: • ZnO nanorods-Au nanoparticles were synthesized by in-situ plasma sputtering method. • Influence of sputtering time on the formation of Au nanoparticles was studied. • It exhibited a strong electrocatalytic activity toward the oxidation of ascorbic acid and uric acid. • A portable and cheap approach for simultaneous detection of ascorbic acid and uric acid was developed.

  9. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid

    Hou, Chao; Liu, Hongying; Zhang, Dan; Yang, Chi; Zhang, Mingzhen

    2016-01-01

    In this study, ZnO nanorods-Au nanoparticles (ZnO NRs-Au NPs) hybrids were prepared using an in-situ plasma sputtering-assisted method without any template. Characterization results from scanning electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy showed that Au NPs are highly dispersed and tightly anchored on the surface of ZnO NRs. The size and surface coverage of Au NPs were well controlled by plasma sputtering time. Moreover, the hybrids exhibited excellent electrocatalytic properties towards oxidation of ascorbic acid (AA) and uric acid (UA) due to large surface area of Au NPs and ZnO NRs, and thus can be used as electrochemical sensors. Differential pulse voltammetry results showed that AA and UA could be detected simultaneously by ZnO NRs-Au NPs hybrids modified glassy carbon electrode. The linear ranges for AA and UA are 0.1 to 4 mM and 0.01 to 0.4 mM, respectively. The results suggest promising future applications in clinical diagnosis. - Highlights: • ZnO nanorods-Au nanoparticles were synthesized by in-situ plasma sputtering method. • Influence of sputtering time on the formation of Au nanoparticles was studied. • It exhibited a strong electrocatalytic activity toward the oxidation of ascorbic acid and uric acid. • A portable and cheap approach for simultaneous detection of ascorbic acid and uric acid was developed.

  10. Potential risks of TiO{sub 2} and ZnO nanoparticles released from sunscreens into outdoor swimming pools

    Jeon, Soo-kyung [Center for Water Resource Cycle, Green City Technology Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Energy Environment Policy and Technology, Green School, Korea University (KU)-Korea Institute of Science and Technology (KIST), Seoul 136-701 (Korea, Republic of); Kim, Eun-ju [Center for Water Resource Cycle, Green City Technology Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Lee, Jaesang [Energy Environment Policy and Technology, Green School, Korea University (KU)-Korea Institute of Science and Technology (KIST), Seoul 136-701 (Korea, Republic of); Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Seunghak, E-mail: seunglee@kist.re.kr [Center for Water Resource Cycle, Green City Technology Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Energy Environment Policy and Technology, Green School, Korea University (KU)-Korea Institute of Science and Technology (KIST), Seoul 136-701 (Korea, Republic of)

    2016-11-05

    Highlights: • Nanoparticles from sunscreen products can be released into public pools. • Nanoparticles and organic ingredients can generate reactive oxygen species (ROS). • A negative impact of ROS should not be significant in swimming pool. - Abstract: The potential risks of nanoparticles (NPs) in sunscreens being released into swimming water were evaluated by a series of laboratory experiments simulating the fate and transport of NPs in outdoor swimming pools. NPs released from sunscreen-applied skin were estimated using pig skins covered with five different commercial sunscreens containing TiO{sub 2}, ZnO, or both at various concentrations. Assuming that the swimming water treatment processes consisted of filtration, UV irradiation, heating, and chlorination, possible removal of the released NPs by each process was estimated. Generation of hydrogen peroxide (H{sub 2}O{sub 2}) by the NPs under sunlight and after UV photochemical treatment were measured, and the H{sub 2}O{sub 2} concentration possibly present in the swimming pool was calculated based on some specific scenarios of operating an outdoor swimming pool. It was found that a significant amount of the NPs in sunscreens could be released into the swimming water, and accumulate during circulation through the treatment system. However, the concentration of H{sub 2}O{sub 2} possibly present in the swimming pool should be below the level at which an adverse effect to bathers is concerned.

  11. Potential risks of TiO_2 and ZnO nanoparticles released from sunscreens into outdoor swimming pools

    Jeon, Soo-kyung; Kim, Eun-ju; Lee, Jaesang; Lee, Seunghak

    2016-01-01

    Highlights: • Nanoparticles from sunscreen products can be released into public pools. • Nanoparticles and organic ingredients can generate reactive oxygen species (ROS). • A negative impact of ROS should not be significant in swimming pool. - Abstract: The potential risks of nanoparticles (NPs) in sunscreens being released into swimming water were evaluated by a series of laboratory experiments simulating the fate and transport of NPs in outdoor swimming pools. NPs released from sunscreen-applied skin were estimated using pig skins covered with five different commercial sunscreens containing TiO_2, ZnO, or both at various concentrations. Assuming that the swimming water treatment processes consisted of filtration, UV irradiation, heating, and chlorination, possible removal of the released NPs by each process was estimated. Generation of hydrogen peroxide (H_2O_2) by the NPs under sunlight and after UV photochemical treatment were measured, and the H_2O_2 concentration possibly present in the swimming pool was calculated based on some specific scenarios of operating an outdoor swimming pool. It was found that a significant amount of the NPs in sunscreens could be released into the swimming water, and accumulate during circulation through the treatment system. However, the concentration of H_2O_2 possibly present in the swimming pool should be below the level at which an adverse effect to bathers is concerned.

  12. ZnO nanoparticles based fiber optic gas sensor

    Narasimman, S.; Sivacoumar, R.; Alex, Z. C. [MEMS and Sensor Division, School of Electronics Engineering, VIT University, Vellore 632 014 (India); Balakrishnan, L., E-mail: bslv85@gmail.com; Meher, S. R. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632 014 (India)

    2016-05-23

    In this work, ZnO nanoparticles were synthesized by simple aqueous chemical route method. The synthesized ZnO nanoparticles were characterized by X-ray diffraction and scanning electron microscope. The sensitivity of the nanoparticles was studied for different gases like acetone, ammonia and ethanol in terms of variation in spectral light intensity. The XRD and SEM analysis confirms the formation of hexagonal wurtzite structure with the grain size of 11.2 nm. The small cladding region of the optical fiber was replaced with the synthesized nanoparticles. The light spectrum was recorded for different gas concentrations. The synthesized nanoparticles showed high sensitivity towards ammonia in low ppm level and acetone in high ppm level.

  13. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo

    Tavares, Priscila; Balbinot, Fernanda; Martins de Oliveira, Hugo; Elibio Fagundes, Gabriela; Venâncio, Mireli; Vieira Ronconi, João Vitor; Merlini, Aline; Streck, Emílio L.; Marques da Silva, Paula; Moraes de Andrade, Vanessa

    2012-01-01

    Silver nanoparticles (Ag-NPs) are the most prominent nanoproducts. Due to their antimicrobial activity, they have been incorporated in different materials, such as catheters, clothes, electric home appliance, and many others. The genotoxicity of Ag-NPs (5–45 nm), in different concentrations and times of exposure, was evaluated by the comet assay in in vitro and in vivo conditions, respectively, using human peripheral blood and Swiss mice. The results showed the genotoxic effect of Ag-NPs in vitro, in all the doses tested in the initial hour of exposure, possibly through the reactive oxygen species generation. Nevertheless, the values for this damage decrease with time, indicating that the DNA may have been restored by the repair system. In the in vivo conditions, we found no genotoxicity of Ag-NPs in any hour of exposure and any dose investigated, which can be attributed to the activation of a cellular antioxidant network and the hydrophobic nature of Ag-NPs. Now, it is absolutely necessary to investigate the role of Ag-NPs in different cell lines in vivo.

  14. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo

    Tavares, Priscila; Balbinot, Fernanda; Martins de Oliveira, Hugo; Elibio Fagundes, Gabriela [PPGCS, Universidade do Extremo Sul Catarinense, Laboratorio de Biologia Celular e Molecular (Brazil); Venancio, Mireli; Vieira Ronconi, Joao Vitor; Merlini, Aline [Universidade do Extremo Sul Catarinense, Laboratorio de Sintese de Complexos Multifuncionais (Brazil); Streck, Emilio L. [Programa de Pos-Graduacao em Ciencias da Saude, Unidade Academica de Ciencias da Saude, Universidade do Extremo Sul Catarinense, Laboratorio de Fisiopatologia Experimental (Brazil); Marques da Silva, Paula [Universidade do Extremo Sul Catarinense, Laboratorio de Sintese de Complexos Multifuncionais (Brazil); Moraes de Andrade, Vanessa, E-mail: vmoraesdeandrade@yahoo.com.br [PPGCS, Universidade do Extremo Sul Catarinense, Laboratorio de Biologia Celular e Molecular (Brazil)

    2012-03-15

    Silver nanoparticles (Ag-NPs) are the most prominent nanoproducts. Due to their antimicrobial activity, they have been incorporated in different materials, such as catheters, clothes, electric home appliance, and many others. The genotoxicity of Ag-NPs (5-45 nm), in different concentrations and times of exposure, was evaluated by the comet assay in in vitro and in vivo conditions, respectively, using human peripheral blood and Swiss mice. The results showed the genotoxic effect of Ag-NPs in vitro, in all the doses tested in the initial hour of exposure, possibly through the reactive oxygen species generation. Nevertheless, the values for this damage decrease with time, indicating that the DNA may have been restored by the repair system. In the in vivo conditions, we found no genotoxicity of Ag-NPs in any hour of exposure and any dose investigated, which can be attributed to the activation of a cellular antioxidant network and the hydrophobic nature of Ag-NPs. Now, it is absolutely necessary to investigate the role of Ag-NPs in different cell lines in vivo.

  15. Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles

    Sharifalhoseini, Zahra [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Entezari, Mohammad H., E-mail: entezari@um.ac.ir [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of)

    2015-10-01

    Graphical abstract: Enhancement of the corrosion protection of electroless Ni–P layer by ZnO nanoparticles deposition and the comparison with the classical and sonochemical Ni–P coatings. - Highlights: • Unique effects of ultrasound were investigated on the anticorrosive performance of electroless Ni–P coating. • Sonoynthesis of ZnO NPs and its deposition were performed on the surface of Ni–P coating. • ZnO as an anticorrosive has a critical role in the multifunctional surfaces. • Electrochemical properties of all fabricated samples were compared with each other. - Abstract: Ni–P coatings were deposited through electroless nickel plating in the presence and absence of ultrasound. The simultaneous synthesis of ZnO nanoparticle and its deposition under ultrasound were also carried out on the surface of Ni–P layer prepared by the classical method. The morphology of the surfaces and the chemical composition were determined by scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS), respectively. Electrochemical techniques were applied for the corrosion behavior studies. The Ni–P layer deposited by ultrasound showed a higher anticorrosive property than the layer deposited by the classical method. The ZnO nanoparticles deposited on the surface of Ni–P layer significantly improved the corrosion resistance.

  16. Direct Precipitation and Characterization of ZnO Nanoparticles

    A. H. Moharram

    2014-01-01

    Full Text Available ZnO nanoparticles are prepared through hydrolysis and condensation of zinc acetate dihydrate by potassium hydroxide in alcoholic medium at low temperatures. Thermal gravimetric analysis (TGA of the precursor is made in order to specify the temperature range over which the weight loss and thermal effect are significant. X-ray diffraction of the as-prepared specimens shows that the hexagonal (a=3.2459 Å, c=5.1999 Å structure is the predominant crystallographic structure. According to Scherer’s formula, the average size of the nanoparticles is 22.4 ± 0.6 nm. The structural properties of the synthesized ZnO nanoparticles have been confirmed using the TEM micrographs. The optical energy gap of the ZnO nanoparticles, as obtained from applying Tauc’s equation, is equal to 3.52 eV, which is higher than that of the bulk material. Absorption peak of the as-prepared sample is 298 nm which is highly blue shifted as compared to the bulk (360 nm. Large optical energy gap and highly blue shifted absorption edge confirm that the prepared ZnO nanoparticle exhibits strong quantum confinement effect.

  17. New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects

    Chibber, Sandesh; Ansari, Shakeel Ahmed; Satar, Rukhsana

    2013-01-01

    Nanomaterials and nanotechnology have attracted more and more attention due to their wide ranges of applications in various fields. With a high level of surface energy, high magnetism, high surface area, and low melting point, engineered nanoparticles (ENPs) has been widely used in industry for various applications. Metal nanoparticles, in particular, have been shown to cause significant biological effects. Review discusses cytotoxic to neurotoxic effects of CuO, ZnO, and TiO 2 nanoparticles based on the scenario drawn from various in vitro and in vivo studies. ENPs such as TiO 2 and ZnO NPs have great practical importance in industrial applications. CuO NPs is also widely used in biomedical applications as catalyst supports, drug carriers, and gene delivery. However, study conducted on TiO 2 NPs have forecast that oxidative DNA damage could be attributed due to reduced glutathione levels with concomitant increase in lipid peroxidation and reactive oxygen species generation. Moreover, there are many evidences showing that ZnO NP and CuO NPs generates ROS production and can cause cell death in different types of cultured cell. Nanoparticle toxicity is assessed by set of tests designed to characterize a given risk and also the mechanism for related outcomes. Conclusively, it becomes more and more important for nanotechnologist to understand the potential health effects of ENPs and what new methodology can be applied to reveal problems like gene silencing and inhibition in antioxidant defense mechanism which can be occurred on severe effects to oxidative stress by ENPs.

  18. New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects

    Chibber, Sandesh; Ansari, Shakeel Ahmed; Satar, Rukhsana

    2013-04-01

    Nanomaterials and nanotechnology have attracted more and more attention due to their wide ranges of applications in various fields. With a high level of surface energy, high magnetism, high surface area, and low melting point, engineered nanoparticles (ENPs) has been widely used in industry for various applications. Metal nanoparticles, in particular, have been shown to cause significant biological effects. Review discusses cytotoxic to neurotoxic effects of CuO, ZnO, and TiO2 nanoparticles based on the scenario drawn from various in vitro and in vivo studies. ENPs such as TiO2 and ZnO NPs have great practical importance in industrial applications. CuO NPs is also widely used in biomedical applications as catalyst supports, drug carriers, and gene delivery. However, study conducted on TiO2 NPs have forecast that oxidative DNA damage could be attributed due to reduced glutathione levels with concomitant increase in lipid peroxidation and reactive oxygen species generation. Moreover, there are many evidences showing that ZnO NP and CuO NPs generates ROS production and can cause cell death in different types of cultured cell. Nanoparticle toxicity is assessed by set of tests designed to characterize a given risk and also the mechanism for related outcomes. Conclusively, it becomes more and more important for nanotechnologist to understand the potential health effects of ENPs and what new methodology can be applied to reveal problems like gene silencing and inhibition in antioxidant defense mechanism which can be occurred on severe effects to oxidative stress by ENPs.

  19. Anti-microbial surfaces: An approach for deposition of ZnO nanoparticles on PVA-Gelatin composite film by screen printing technique

    Meshram, J.V.; Koli, V.B.; Phadatare, M.R.; Pawar, S.H., E-mail: shpawar1946@gmail.com

    2017-04-01

    Initially micro-organisms get exposed to the surfaces, this demands development of anti-microbial surfaces to inhibit their proliferation. Therefore, herein, we attempt screen printing technique for development of PVA-GE/ZnO nanocomposite (PG/ZnO) films. The synthesis of PG/ZnO nanocomposite includes two steps as: (i) Coating of Zinc Oxide nanoparticles (ZnO NPs) by poly ethylene glycol in order to be compatible with organic counterparts. (ii) Deposition of coated nanoparticles on the PG film surface. The results suggest the enhancement in anti-microbial activity of PG/ZnO nanocomposite over pure ZnO NPs against both Gram positive Bacillus subtilis and Gram negative Escherichia coli from zone of inhibition. The uniformity in deposition is further confirmed by scanning electron microscopy (SEM) images. The phase identification of ZnO NPs and formation of PG/ZnO nanocomposite has been confirmed by X-ray diffraction (XRD) analysis and UV–vis spectroscopy (UV–vis). The Attenuated total reflection Spectroscopy (ATR) analysis indicates the ester bond between PVA and gelatin molecules. The thermal stability of nanocomposite is studied by thermogravimetric analysis (TGA) revealing increase in crystallinity due to ZnO NPs which could be utilized to inhibit the growth of micro-organisms. The tensile strength is found to be higher and percent elongation is double of PG/ZnO nanocomposite than PG composite film. - Highlights: • Synthesis of PG/ZnO nanocomposite by screen printing technique • Antimicrobial activity is due presence of ZnO nanoparticles on PG composite. • Improved tensile strength due to ZnO nanoparticles.

  20. TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties

    Han, Chengliang; Zhu, Dejie; Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong

    2016-06-01

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe3O4 NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe3O4 with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe3O4 NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe3O4 NPs exhibited superparamagnetic behavior and the saturation magnetization (Ms) was about 70 emu/g, which had potential applications in magnetic science and technology.

  1. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs)

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-04-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modelled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modelled demonstrated a nice fitting of modelling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability and discrimination ability of the array was achieved.

  2. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs

    Marcello Mascini

    2018-04-01

    Full Text Available In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved.

  3. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Utah State University, Department of Biological Engineering (United States); McLean, Joan E. [Utah State University, Utah Water Research Laboratory (United States); Latta, Drew E. [Argonne National Laboratory, Biosciences Division (United States); Manangon, Eliana [University of Utah, Department of Geology and Geophysics (United States); Britt, David W. [Utah State University, Department of Biological Engineering (United States); Johnson, William P. [University of Utah, Department of Geology and Geophysics (United States); Boyanov, Maxim I. [Argonne National Laboratory, Biosciences Division (United States); Anderson, Anne J. [Utah State University, Department of Biological Engineering (United States)

    2012-09-15

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat (Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly (p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  4. Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer

    Cao, Sheng

    2017-04-19

    Colloidal ZnO nanoparticle (NP) films are recognized as efficient electron transport layers (ETLs) for quantum dot light-emitting diodes (QD-LEDs) with good stability and high efficiency. However, because of the inherently high work function of such films, spontaneous charge transfer occurs at the QD/ZnO interface in such a QD-LED, thus leading to reduced performance. Here, to improve the QD-LED performance, we prepared Ga-doped ZnO NPs with low work functions and tailored band structures via a room-temperature (RT) solution process without the use of bulky organic ligands. We found that the charge transfer at the interface between the CdSe/ZnS QDs and the doped ZnO NPs was significantly weakened because of the incorporated Ga dopants. Remarkably, the as-assembled QD-LEDs, with Ga-doped ZnO NPs as the ETLs, exhibited superior luminances of up to 44 000 cd/m2 and efficiencies of up to 15 cd/A, placing them among the most efficient red-light QD-LEDs ever reported. This discovery provides a new strategy for fabricating high-performance QD-LEDs by using RT-processed Ga-doped ZnO NPs as the ETLs, which could be generalized to improve the efficiency of other optoelectronic devices.

  5. Monocrystalline solar cells performance coated by silver nanoparticles: Effect of NPs sizes from point of view Mie theory

    Elnoby, Rasha M.; Mourad, M. Hussein; Elnaby, Salah L. Hassab; Abou Kana, Maram T. H.

    2018-05-01

    Solar based cells coated by nanoparticles (NPs) acknowledge potential utilizing as a part of photovoltaic innovation. The acquired silicon solar cells (Si-SCs) coated with different sizes of silver nanoparticles (Ag NPs) as well as uncoated were fabricated in our lab. The sizes and optical properties of prepared NPs were characterized by spectroscopic techniques and Mie theory respectively. The reflectivity of Si-SCs showed reduction of this property as the size of NPs increased. Electrical properties as open circuit current, fill factor and output power density were assessed and discussed depending on point of view of Mie theory for the optical properties of NPs. Also, photostabilities of SCs were assessed using diode laser of wavelength 450 nm and power 300 mW. Coated SCs with the largest Ag NPs size showed the highest Photostability due to its highest scattering efficiency according to Mie theory concept.

  6. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  7. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles

    Morozov, Iu.G., E-mail: yugmor@hotmail.com [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Academician Osipyan Street 8, Chernogolovka, Moscow Region 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Academician Osipyan Street 8, Chernogolovka, Moscow Region 142432 (Russian Federation); Ortega, D., E-mail: daniel.ortega@imdea.org [Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco 28049, Madrid (Spain); Mafina, M.-K., E-mail: m.k.mafina@qmul.ac.uk [School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 231, London E1 4NS (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-06-05

    Highlights: • Levitation-jet aerosol synthesis of Zn particles capped by ZnO nanoparticles (NPs). • TEM, XRD, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between unit-cell volume of crystal lattice and maximum magnetization. - Abstract: Spherical zinc particles ranging from 42 to 760 nm in average size and capped with plate-like zinc oxide particles of 10–30 nm in sizes have been prepared by levitation-jet aerosol synthesis through condensation of zinc vapor in an inert/oxidizer gas flow. The nanoparticles have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), BET measurements, ultra violet visible (UV–vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, X-ray electron spectroscopy (XPS), superconducting quantum interference device (SQUID), and vibrating-sample magnetometer (VSM). Magnetic and XRD data indicate that the observed ferromagnetic ordering related to the changes in unit-cell volume of Zn in the Zn/ZnO interface of the nanoparticles. These results are in good correlation with the optical measurements data.

  8. Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity.

    Bharti, Dattatraya B; Bharati, A V

    2017-05-01

    ZnO nanoparticles (NPs) with a granular morphology were synthesized using a hydrothermal method. Structural analysis revealed that ZnO NPs had a single crystal wurtzite hexagonal structure. Solvent polarity was responsible for varying and controlling their size and morphology. The process was very trouble free and scalable. In addition, it could be used for fundamental studies on tunable morphology formation. This hydrothermal method showed different morphology with different co-surfactants such as a floral-like or wire-like belt sheet structures etc. Based on their surface morphology, the same material had different applications as a catalyst in various organic reactions and also could be used as a photocatalyst and fuel cell, solar cell or in semiconductors etc. X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy and photoluminescence of the resulting product was performed to study its purity, morphology and size, plus its optical properties via measurement of band gap energy and light absorbance. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis

    Hu, Jin; You, Ning; Yu, Zhe; Zhou, Gang [College of Physics Science and Technology, Yangzhou University, Yangzhou 225002 (China); Xu, Xiaoyong, E-mail: xxy@yzu.edu.cn [College of Physics Science and Technology, Yangzhou University, Yangzhou 225002 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2016-08-21

    Two-dimensional (2D) materials, especially the inorganic 2D nanosheets (NSs), are of particular interest due to their unique structural and electronic properties, which are favorable for photoelectronic applications such as photocatalysis. Here, we design and fabricate the ultrathin 2D ZnO NSs decorated with Au nanoparticles (AuNPs), though molecular modelling 2D hydrothermal growth and followed by surface modification are used as an effective photocatalyst for photocatalytic organic dye degradation and hydrogen production. The ultrathin 2D nature enables ultrahigh atom ratio near surface to proliferate the active sites, and the Au plasmon plays a promoting role in the visible-light absorption and photogenerated charge separation, thus integrating the synergistic benefits to boost the redox reactions at catalyst/electrolyte interface. The AuNPs-decorated ZnO NSs yield the impressive photocatalytic activities such as the dye degradation rate constant of 7.69 × 10{sup −2} min{sup −1} and the hydrogen production rate of 350 μmol h{sup −1} g{sup −1}.

  10. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines.

    Jafari, Alireza; Mosavari, Nader; Movahedzadeh, Farahnaz; Nodooshan, Saeedeh Jafari; Safarkar, Roya; Moro, Rossella; Kamalzadeh, Morteza; Majidpour, Ali; Boustanshenas, Mina; Mosavi, Tahereh

    2017-09-01

    The purpose of this research project was to infection of human macrophages (THP-1) cell lines by H 37 Rv strain of Mycobacterium tuberculosis (H 37 RvMTB) and find out the ratio/dilution of mixture silver (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) whose ability to eliminate phagocytized bacteria compared to rifampicin. The colloidal Ag NPs and ZnO NPs were synthesized and their characteristics were evaluated. The THP-1 cell lines were infected with different concentration of H 37 RvMTB. Next, the infected cells were treated with different ratios/dilutions of Ag NPs, ZnO NPs and rifampicin. The THP-1 were lysed and were cultured in Lowenstein-Jensen agar medium, for eight weeks. The TEM and AFM images of NPs and H 37 RvMTB were supplied. It is observed that Ag NPs, 2 Ag :8 ZnO and 8 Ag :2 ZnO did not have any anti-tubercular effects on phagocytized H 37 RvMTB. Conversely, ZnO NPs somehow eliminated 18.7 × 10 4  CFU ml -1 of H 37 RvMTB in concentration of ∼ 0.468 ppm. To compare with 40 ppm of rifampicin, ∼ 0.663 ppm of 5 Ag :5 ZnO had the ability to kill of H 37 RvMTB, too. Based on previous research, ZnO NPs had strong anti-tubercular impact against H 37 RvMTB to in-vitro condition, but it was toxic in concentration of ∼ 0.468 ppm to both of THP-1 and normal lung (MRC-5) cell lines. It also seems that 5 Ag :5 ZnO is justified because in concentration of ∼ 0.663 ppm of 5 Ag :5 ZnO , phagocytized H 37 RvMTB into the THP-1 had died without any toxicity effects against THP-1 and also MRC-5 cell lines. It is obvious that the mixture of colloidal silver and zinc oxide NPs with ratio of 5 Ag :5 ZnO would be trustworthy options as anti-tubercular nano-drugs in future researches. Copyright © 2017. Published by Elsevier Ltd.

  11. Accumulation and Toxicity of CuO and ZnO Nanoparticles through Waterborne and Dietary Exposure of Goldfish (Carassius auratus)

    Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O.

    2014-01-01

    Dietary and waterborne exposure to CuO and ZnO nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a tenfold higher accumulation in the intestine. The heart, brain and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p≥0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p<0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. PMID:24860999

  12. Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method

    Raj, K. Pradeev [Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Department of Physics, CSI College of Engineering, Ooty 643215, Tamil Nadu (India); Sadayandi, K. [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivagangai 630003, Tamil Nadu (India)

    2016-04-15

    This present study brings the synthesis of Zinc oxide (ZnO) nanoparticles (NPs) by the standard aqueous chemical route technique. The impact of calcination temperature on the extent of the ZnO nanoparticles is studied for its lattice constraints. X-ray diffraction (XRD) affirms the hexagonal Wurtzite structure of the synthesized ZnO nanoparticles. From the Williamson–Hall (W–H) plot, positive slope is inferred for pure and calcined ZnO NPs and confirms the presence of tensile strain. From the SEM images it is found that the crystallinity enhances with calcination temperature. From the optical studies, it is found that the band gap energy decreases with improved transmission. The Photoluminescence (PL) spectrum reveals the UV emission is strong near the band-edge. The emission peaks around 400–480 nm result in blue emission and the peaks around 540–560 nm result in green emission. Decrease in band gap energy and enhancement in PL studies reveal the red shift of the calcined ZnO exhibiting solid quantum confinements.

  13. Dynamic recovery and optical properties changes in He-implanted ZnO nanoparticles

    Lee, J.-K.; Harriman, T.A.; Lucca, D.A.; Jung, H.S.; Ryan, D.B.; Nastasi, M.

    2007-01-01

    A study of the effects of ion-implanted He + on the photoluminescence (PL) of ZnO nanoparticles is presented. This investigation is motivated by the need to further understand the effects of damage resulting from the implantation process on the luminescence response of the nanoparticles. ZnO nanoparticles were synthesized by reacting zinc acetate with lithium hydroxide. The nanoparticle suspension was then dip coated on SiO 2 substrates producing thin films of ZnO nanoparticles, which were then implanted with He + ions at either room temperature or 400 deg. C. Following implantation, the PL spectrum of the ZnO nanoparticles was investigated and compared to that obtained from He-implanted bulk ZnO. Change in the overall luminescence efficiency was found to depend on both the size of the nanoparticles and the implantation temperature, and is attributed to the dynamic recovery of collision cascades in the ZnO nanoparticles. In addition, a comparison of He + -implanted ZnO nanoparticles with He + -implanted ZnO single crystals indicates that the origin of the green luminescence occurring from the ZnO nanoparticles is near-surface complex defects

  14. Blue light irradiation triggers the antimicrobial potential of ZnO nanoparticles on drug-resistant Acinetobacter baumannii.

    Yang, Ming-Yeh; Chang, Kai-Chih; Chen, Liang-Yu; Wang, Po-Ching; Chou, Chih-Chiang; Wu, Zhong-Bin; Hu, Anren

    2018-03-01

    Photodynamic inactivation (PDI) is a non-invasive and safe therapeutic method for microbial infections. Bacterial antibiotic resistance is caused by antibiotics abuse. Drug-resistant Acinetobacter spp. is a serious problem in hospitals around the world. These pathogens from nosocomial infections have high mortality rates in frailer people, and Acinetobacter spp. is commonly found in immunocompromised patients. Visible light is safer than ultraviolet light (UV) for PDI of nosocomial pathogens with mammalian cells. Zinc oxide nanoparticles (ZnO-NPs) were used in this study as an antimicrobial agent and a photosensitizer. ZnO is recognized as safe and has extensive usage in food additives, medical and cosmetic products. In this study, we used 0.125 mg/ml ZnO-NPs combined with 10.8 J/cm 2 blue light (BL) on Acinetobacter baumannii (A. baumannii) that could significantly reduce microbial survival. However, individual exposure to ZnO-NPs does not affect the viability of A. baumannii. BL irradiation could trigger the antimicrobial ability of ZnO nanoparticles on A. baumannii. The mechanism of photocatalytic ZnO-NPs treatment for sterilization occurs through bacterial membrane disruptions. Otherwise, the photocatalytic ZnO-NPs treatment showed high microbial eradication in nosocomial pathogens, including colistin-resistant and imipenem-resistant A. baumannii and Klebsiella pneumoniae. Based on our results, the photocatalytic ZnO-NPs treatment could support hygiene control and clinical therapies without antibiotics to nosocomial bacterial infections. Copyright © 2018. Published by Elsevier B.V.

  15. Synthesis Al complex and investigating effect of doped ZnO nanoparticles in the electrical and optical efficiency of OLEDS

    Shahedi, Zahra; Jafari, Mohammad Reza

    2017-01-01

    In this study, an organometallic complex based on aluminum ions is synthesized. And it is utilized as fluorescent material in the organic light-emitting diodes (OLEDs). The synthesized complex was characterized using XRD, UV-Vis, FT-IR as well as PL spectroscopy analyses. The energy levels of Al complex were determined by cyclic voltammetry measurements. Then, the effects of ZnO nanoparticles (NPs) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS, on the electrical and optical performance of the organic light-emitting diodes have been investigated. For this purpose, two samples containing ITO/PEDOT:PSS/PVK/Alq3/PBD/Al with two different concentration and two samples containing ITO/PEDOT:PSS:ZnO/PVK/Alq3/PBD/Al with two different concentration were prepared. Then, hole transport, electron transport and emissive layers were deposited by the spin coating method and the cathode layer (Al) was deposited by the thermal evaporation method. The OLED simulation was also done by constructing the model and choosing appropriate parameters. Then, the experimental data were collected and the results interpreted both qualitatively and quantitatively. The results of the simulations were compared with experimental data of the J-V spectra. Comparing experimental data and simulation results showed that the electrical and optical efficiency of the samples with ZnO NPs is appreciably higher than the samples without ZnO NPs.

  16. Biochar alleviates the toxicity of imidacloprid and silver nanoparticles (AgNPs) to Enchytraeus albidus (Oligochaeta).

    Nyoka, Ngitheni Winnie-Kate; Kanyile, Sthandiwe Nomthandazo; Bredenhand, Emile; Prinsloo, Godfried Jacob; Voua Otomo, Patricks

    2018-04-01

    The present study investigated the use of biochar for the alleviation of the toxic effects of a nanosilver colloidal dispersion and a chloronicotinyl insecticide. The survival and reproduction of the potworm Enchytraeus albidus were assessed after exposure to imidacloprid and silver nanoparticles (AgNPs). E. albidus was exposed to 0, 25, 50, 100, 200, and 400 mg imidacloprid/kg and 0, 5, 25, 125, and 625 mg Ag/kg for 21 days in 10% biochar amended and non-biochar amended OECD artificial soil. In both exposure substrates, the effects of imidacloprid on survival were significant in the two highest treatments (p imidacloprid. In the case of AgNPs, significant mortality was only observed in the highest AgNP treatments in both the amended and non-amended soils (p imidacloprid/kg in the non-amended soil and a higher EC 50  = 46.23 mg imidacloprid/kg in the biochar-amended soil. This indicated a 2-fold decrease in imidacloprid toxicity due to biochar amendment. A similar observation was made in the case of AgNPs where a reproduction EC 50  = 166.70 mg Ag/kg soil in the non-amended soil increased to an EC 50  > 625 mg Ag/kg soil (the highest AgNP treatment) in the amended soil. This indicated at least a 3.7-fold decrease in AgNPs toxicity due to biochar amendment. Although more studies may be needed to optimize the easing effects of biochar on the toxicity of these chemicals, the present results show that biochar could be useful for the alleviation of the toxic effects of imidacloprid and silver nanoparticles in the soil.

  17. A prototype Ultraviolet Light Sensor based on ZnO Nanoparticles/Graphene Oxide Nanocomposite Using Low Temperature Hydrothermal Method

    Al-Fandi, M; Oweis, R; Khwailah, H; Al-Hattami, S; Al-Shawwa, E; Albiss, B A; Al-Akhras, M-Ali; Qutaish, H; AlZoubi, T

    2015-01-01

    A new prototype UV nanosensor using ZnO nanoparticles (NPs)/graphene oxide (GO) nanocomposite (ZnO-NP/GO) on silicon substrate is reported in this paper. The hybrid nanocomposite structure has been developed by an optimized hydrothermal process at low growth temperature (∼50 °C). In this hybrid nanosensor, the ZnO nanoparticles act as UV- absorbing and charge carrier generating material, while graphene with its superior electrical conductivity has been used as a charge transporting material. Various nanostructure characterization techniques were intensively utilized including SEM, EDX, XRD, FTIR and UV-VIS. Also, the I-V measurement was employed to evaluate the prototype sensor. The morphological SEM analysis showed that the ZnO-NPs (average diameter of 20 nm) were dispersed evenly on the GO sheets. As well, the EDX spectra confirmed the exact chemical composition of the intended structure. The room temperature UV-VIS measurement revealed an enhanced optical absorption of UV-light at an absorption band centered on 375 nm. The improved optical and electrical properties were observed at an optimum relative concentration of 1:10. Under UV light illumination, the measured I-V characteristic of the prototype detector exhibited a considerable photocurrent increase of the ZnO-NP/GO nanocomposite compared to pristine ZnO nanostructure. These results can be promising for future enhanced UV- sensing applications. (paper)

  18. Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants.

    Sehmi, Sandeep K; Noimark, Sacha; Pike, Sebastian D; Bear, Joseph C; Peveler, William J; Williams, Charlotte K; Shaffer, Milo S P; Allan, Elaine; Parkin, Ivan P; MacRobert, Alexander J

    2016-09-30

    Healthcare-associated infections pose a serious risk for patients, staff, and visitors and are a severe burden on the National Health Service, costing at least £1 billion annually. Antimicrobial surfaces significantly contribute toward reducing the incidence of infections as they prevent bacterial adhesion and cause bacterial cell death. Using a simple, easily upscalable swell-encapsulation-shrink method, novel antimicrobial surfaces have been developed by incorporating metal oxide nanoparticles (NPs) and crystal violet (CV) dye into medical-grade polyurethane sheets. This study compares the bactericidal effects of polyurethane incorporating ZnO, Mg-doped ZnO, and MgO. All metal oxide NPs are well defined, with average diameters ranging from 2 to 18 nm. These materials demonstrate potent bactericidal activity when tested against clinically relevant bacteria such as Escherichia coli and Staphylococcus aureus . Additionally, these composites are tested against an epidemic strain of methicillin-resistant Staphylococcus aureus (MRSA) that is rife in hospitals throughout the UK. Furthermore, we have tested these materials using a low light intensity (∼500 lx), similar to that present in many clinical environments. The highest activity is achieved from polymer composites incorporating CV and ∼3 nm ZnO NPs, and the different performances of the metal oxides have been discussed.

  19. Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles

    Siddiquey, Iqbal Ahmed; Furusawa, Takeshi; Sato, Masahide; Suzuki, Noboru

    2008-01-01

    A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO 2 . The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency

  20. Low-cost mercury (II) ion sensor by biosynthesized gold nanoparticles (AuNPs)

    Guerrero, Jet G.; Candano, Gabrielle Jackie; Mendoza, Aileen Nicole; Paderanga, Marciella; Cardino, Krenz John; Locsin, Alessandro; Bibon, Cherilou

    2017-11-01

    Biosynthesis of gold nanoparticles has attracted the curiosity of scientists over the past few decades. Nanoparticles have been proven to exhibit enhanced properties and offer a variety of applications in different fields of study. Utilizing nanoparticles instead of bulky equipment and noxious chemicals has become more convenient; reagents needed for synthesis have been proven to be benign (mostly aqueous solutions) and are cost-effective. In this study, gold nanoparticles were biosynthesized using guyabano (Annonamuricata) peel samples as the source of reducing agents. The optimum concentration ratio of gold chloride to guyabano extract was determined to be 1:7. Characterization studies were accomplished using UV Vis Spectroscopy, Fourier Transform Electron Microscopy (FTIR) and Scanning Electron Microscopy (SEM). Spectroscopic maximum absorbance was found to be at 532 nm thereby confirming the presence of gold nanoparticles. Hydroxyl (O-H stretching), carbonyl (C=O stretching), and amide (N-H stretching) functional groups shown in the FTIR spectra are present on possible reducing agents such as phenols, alkaloids, and saponins found in the plant extract. SEM images revealed spherical shaped nanoparticles with mean diameter of 23.18 nm. It was observed that the bio-synthesized AuNPs were selective to mercury ions through uniform color change from wine red to yellow. A novel smartphone-based mercury (II) ions assay was developed using the gold nanoparticles. A calibration curve correlated the analytical response (Red intensity) to the concentrations of Hg 2+ ions. Around 94% of the variations in the intensity is accounted for by the variations in the concentration of mercury (II) ions suggesting a good linear relationship between the two variables. A relative standard deviation (RSD) of less than 1% was achieved at all individual points. The metal sensor displayed a sensitivity of 0.039 R.I./ppm with an LOD of 93.79 ppm. Thus, the bio-fabricated gold nanoparticles

  1. Analytical characterization of engineered ZnO nanoparticles relevant for hazard assessment

    Bragaru, Adina; Kusko, Mihaela; Vasile, Eugeniu; Simion, Monica; Danila, Mihai; Ignat, Teodora; Mihalache, Iuliana; Pascu, Razvan; Craciunoiu, Florea

    2013-01-01

    The optoelectronic properties of zinc oxide nanoparticles (ZnO-NPs) have determined development of novel applications in catalysis, paints, wave filters, UV detectors, transparent conductive films, solar cells, or sunscreens. While the immediate advantages of using nano-ZnO in glass panel coatings and filter screens for lamps, as protecting products against bleaching, have been demonstrated, the potential environmental effect of the engineered NPs and the associated products was not fully estimated; this issue being of utmost importance, as these materials will be supplied to the market in quantities of tons per year, equating to thousands of square meters. In this study, ZnO-NPs with commercial name Zincox™ have been subjected to a comprehensive characterization, relevant for hazard assessment, using complementary physico-chemical methods. Therefore, the morphological investigations have been corroborated with XRD pattern analyses and UV–Vis absorption related properties resulting an excellent correlation between the geometrical sizes revealed by microscopy (8.0–9.0 nm), and, respectively, the crystallite size (8.2–9.5 nm) and optical size (7.8 nm) calculated from the last two techniques’ data. Furthermore, the hydrodynamic diameter of ZnO-NPs and stability of aqueous dispersions with different concentration of nanoparticles have been analyzed as function of significant solution parameters, like concentration, pH and solution ionic strength. The results suggest that solution chemistry exerts a strong influence on ZnO dissolution stability, the complete set of analyses providing useful information toward better control of dosage during biotoxicological tests.

  2. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H 2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between “on” and “off” states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (V Zn  + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, V Zn  + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μ B . The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism

  3. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between "on" and "off" states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (VZn + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, VZn + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μB. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  4. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes

    Hou, Jun; Miao, Lingzhan; Wang, Chao; Wang, Peifang; Ao, Yanhui; Qian, Jin; Dai, Shanshan

    2014-01-01

    Highlights: • Temporal and spatial inhibitory effects of ZnO NPs on biofilms were investigated. • 50 mg/L nano-ZnO inhibited the microbial activities only in biofilm outer layer. • Adsorbed ZnO NPs had no adverse effects on the cell membrane integrity of biofilms. • Dissolution of ZnO NPs to toxic zinc ions was the main mechanism of toxicity. - Abstract: The presence of ZnO NPs in waste streams can negatively affect the efficiency of biological nutrient removal from wastewater. However, details of the toxic effects of ZnO NPs on microbial activities of wastewater biofilms have not yet been reported. In this study, the temporal and spatial inhibitory effects of ZnO NPs on the O 2 respiration activities of aerobic wastewater biofilms were investigated using an O 2 microelectrode. The resulting time–course microelectrode measurements demonstrated that ZnO NPs inhibited O 2 respiration within 2 h. The spatial distributions of net specific O 2 respiration were determined in biofilms with and without treatment of 5 or 50 mg/L ZnO NPs. The results showed that 50 mg/L of nano-ZnO inhibited the microbial activities only in the outer layer (∼200 μm) of the biofilms, and bacteria present in the deeper parts of the biofilms became even more active. Scanning electron microscopy (SEM) analysis showed that the ZnO NPs were adsorbed onto the biofilm, but these NPs had no adverse effects on the cell membrane integrity of the biofilms. It was found that the inhibition of O 2 respiration induced by higher concentrations of ZnO NPs (50 mg/L) was mainly due to the release of zinc ions by dissolution of the ZnO NPs

  6. Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes

    Hou, Jun [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Miao, Lingzhan, E-mail: mlz1988@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Chao, E-mail: hhuhjy973@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Peifang; Ao, Yanhui; Qian, Jin; Dai, Shanshan [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2014-07-15

    Highlights: • Temporal and spatial inhibitory effects of ZnO NPs on biofilms were investigated. • 50 mg/L nano-ZnO inhibited the microbial activities only in biofilm outer layer. • Adsorbed ZnO NPs had no adverse effects on the cell membrane integrity of biofilms. • Dissolution of ZnO NPs to toxic zinc ions was the main mechanism of toxicity. - Abstract: The presence of ZnO NPs in waste streams can negatively affect the efficiency of biological nutrient removal from wastewater. However, details of the toxic effects of ZnO NPs on microbial activities of wastewater biofilms have not yet been reported. In this study, the temporal and spatial inhibitory effects of ZnO NPs on the O{sub 2} respiration activities of aerobic wastewater biofilms were investigated using an O{sub 2} microelectrode. The resulting time–course microelectrode measurements demonstrated that ZnO NPs inhibited O{sub 2} respiration within 2 h. The spatial distributions of net specific O{sub 2} respiration were determined in biofilms with and without treatment of 5 or 50 mg/L ZnO NPs. The results showed that 50 mg/L of nano-ZnO inhibited the microbial activities only in the outer layer (∼200 μm) of the biofilms, and bacteria present in the deeper parts of the biofilms became even more active. Scanning electron microscopy (SEM) analysis showed that the ZnO NPs were adsorbed onto the biofilm, but these NPs had no adverse effects on the cell membrane integrity of the biofilms. It was found that the inhibition of O{sub 2} respiration induced by higher concentrations of ZnO NPs (50 mg/L) was mainly due to the release of zinc ions by dissolution of the ZnO NPs.

  7. Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide

    Hussain, Muhammad; Sun, Hongyu; Karim, Shafqat; Nisar, Amjad; Khan, Maaz; Ul Haq, Anwar; Iqbal, Munawar; Ahmad, Mashkoor

    2016-01-01

    Flower-like hierarchical Zinc oxide nanostructures synthesized by co-precipitation method have been hydrothermally functionalized with 8 nm Au NPs and 15 nm Ag nanoparticles. The photocatalytic and electrochemical performance of these structures are investigated. XPS studies show that the composite exhibits a strong interaction between noble metal nanoparticles (NPs) and Zinc oxide nanoflowers. The PL spectra exhibit UV emission arising due to near band edge transition and show that the reduced PL intensities of Au–ZnO and Ag–ZnO composites are responsible for improved photocatalytic activity arising due to increase in defects. Moreover, the presence of Au NPs on ZnO surface remarkably enhances photocatalytic activity as compared to Ag–ZnO and pure ZnO due to the higher catalytic activity and stability of Au NPs. On the other hand, Ag–ZnO-modified glassy carbon electrode shows good amperometric response to hydrogen peroxide (H_2O_2), with linear range from 1 to 20 µM, and detection limit of 2.5 µM (S/N = 3). The sensor shows high and reproducible sensitivity of 50.8 μA cm"−"2 μM"−"1 with a fast response less than 3 s and good stability as compared to pure ZnO and Au–ZnO-based sensors. All these results show that noble metal NPs-functionalized ZnO base nanocomposites exhibit great prospects for developing efficient non-enzymatic biosensor and environmental remediators.Graphical abstractZnO nanoflowers functionalized with noble metal nanoparticles enhance photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide.

  8. Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide

    Hussain, Muhammad [PINSTECH, Nanomaterials Research Group, Physics Division (Pakistan); Sun, Hongyu [Tsinghua University, Laboratory of Advanced Materials and The State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering Beijing, National Center for Electron Microscopy (China); Karim, Shafqat; Nisar, Amjad; Khan, Maaz [PINSTECH, Nanomaterials Research Group, Physics Division (Pakistan); Ul Haq, Anwar [PINSTECH, Non-destructive testing Group (Pakistan); Iqbal, Munawar [University of the Punjab, Centre for High Energy Physics (Pakistan); Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [PINSTECH, Nanomaterials Research Group, Physics Division (Pakistan)

    2016-04-15

    Flower-like hierarchical Zinc oxide nanostructures synthesized by co-precipitation method have been hydrothermally functionalized with 8 nm Au NPs and 15 nm Ag nanoparticles. The photocatalytic and electrochemical performance of these structures are investigated. XPS studies show that the composite exhibits a strong interaction between noble metal nanoparticles (NPs) and Zinc oxide nanoflowers. The PL spectra exhibit UV emission arising due to near band edge transition and show that the reduced PL intensities of Au–ZnO and Ag–ZnO composites are responsible for improved photocatalytic activity arising due to increase in defects. Moreover, the presence of Au NPs on ZnO surface remarkably enhances photocatalytic activity as compared to Ag–ZnO and pure ZnO due to the higher catalytic activity and stability of Au NPs. On the other hand, Ag–ZnO-modified glassy carbon electrode shows good amperometric response to hydrogen peroxide (H{sub 2}O{sub 2}), with linear range from 1 to 20 µM, and detection limit of 2.5 µM (S/N = 3). The sensor shows high and reproducible sensitivity of 50.8 μA cm{sup −2} μM{sup −1} with a fast response less than 3 s and good stability as compared to pure ZnO and Au–ZnO-based sensors. All these results show that noble metal NPs-functionalized ZnO base nanocomposites exhibit great prospects for developing efficient non-enzymatic biosensor and environmental remediators.Graphical abstractZnO nanoflowers functionalized with noble metal nanoparticles enhance photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide.

  9. Green method for producing hierarchically assembled pristine porous ZnO nanoparticles with narrow particle size distribution

    Escobedo-Morales, A.; Téllez-Flores, D.; Ruiz Peralta, Ma. de Lourdes; Garcia-Serrano, J.; Herrera-González, Ana M.; Rubio-Rosas, E.; Sánchez-Mora, E.; Olivares Xometl, O.

    2015-01-01

    A green method for producing pristine porous ZnO nanoparticles with narrow particle size distribution is reported. This method consists in synthesizing ZnO 2 nanopowders via a hydrothermal route using cheap and non-toxic reagents, and its subsequent thermal decomposition at low temperature under a non-protective atmosphere (air). The morphology, structural and optical properties of the obtained porous ZnO nanoparticles were studied by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and nitrogen adsorption–desorption measurements. It was found that after thermal decomposition of the ZnO 2 powders, pristine ZnO nanoparticles are obtained. These particles are round-shaped with narrow size distribution. A further analysis of the obtained ZnO nanoparticles reveals that they are hierarchical self-assemblies of primary ZnO particles. The agglomeration of these primary particles at the very early stage of the thermal decomposition of ZnO 2 powders provides to the resulting ZnO nanoparticles a porous nature. The possibility of using the synthesized porous ZnO nanoparticles as photocatalysts has been evaluated on the degradation of rhodamine B dye. - Highlights: • A green synthesis method for obtaining porous ZnO nanoparticles is reported. • The obtained ZnO nanoparticles have narrow particle size distribution. • This method allows obtaining pristine ZnO nanoparticles avoiding unintentional doping. • A growth mechanism for the obtained porous ZnO nanoparticles is proposed

  10. A Combined SAXS/SANS Study for the in Situ Characterization of Ligand Shells on Small Nanoparticles: The Case of ZnO.

    Schindler, T; Schmiele, M; Schmutzler, T; Kassar, T; Segets, D; Peukert, W; Radulescu, A; Kriele, A; Gilles, R; Unruh, T

    2015-09-22

    ZnO nanoparticles (NPs) have great potential for their use in, e.g., thin film solar cells due to their electro-optical properties adjustable on the nanoscale. Therefore, the production of well-defined NPs is of major interest. For a targeted production process, the knowledge of the stabilization layer of the NPs during and after their formation is of particular importance. For the study of the stabilizer layer of ZnO NPs prepared in a wet chemical synthesis from zinc acetate, only ex situ studies have been performed so far. An acetate layer bound to the surface of the dried NPs was found; however, an in situ study which addresses the stabilizing layer surrounding the NPs in a native dispersion was missing. By the combination of small angle scattering with neutrons and X-rays (SANS and SAXS) for the same sample, we are now able to observe the acetate shell in situ for the first time. In addition, the changes of this shell could be followed during the ripening process for different temperatures. With increasing size of the ZnO core (d(core)) the surrounding shell (d(shell)) becomes larger, and the acetate concentration within the shell is reduced. For all samples, the shell thickness was found to be larger than the maximum extension of an acetate molecule with acetate concentrations within the shell below 50 vol %. Thus, there is not a monolayer of acetate molecules that covers the NPs but rather a swollen shell of acetate ions. This shell is assumed to hinder the growth of the NPs to larger macrostructures. In addition, we found that the partition coefficient μ between acetate in the shell surrounding the NPs and the total amount of acetate in the solution is about 10% which is in good agreement with ex situ data determined by thermogravimetric analysis.

  11. Tunable photophysical processes of porphyrin macrocycles on the surface of ZnO nanoparticles

    Parida, Manas R.

    2015-01-23

    We investigated the impact of the molecular structure of cationic porphyrins on the degree of electrostatic interactions with zinc oxide nanoparticles (ZnO NPs) using steady-state and time-resolved fluorescence and transient absorption spectroscopy. Our results demonstrate that the number of cationic pyridinium units has a crucial impact on the photophysics of the porphyrin macrocycle. Fluorescence enhancement, relative to initial free porphyrin fluorescence, was found to be tuned from 3.4 to 1.3 times higher by reducing the number of cationic substituents on the porphyrin from 4 to 2. The resulting enhancement of the intensity of the fluorescence is attributed to the decrease in the intramolecular charge transfer (ICT) character between the porphyrin cavity and its meso substituent. The novel findings reported in this work provide an understanding of the key variables involved in nanoassembly, paving the way toward optimizing the interfacial chemistry of porphyrin-ZnO NP assembly for photodynamic therapy and energy conversion.

  12. Study of fungicidal properties of colloidal silver nanoparticles (AgNPs on trout egg pathogen, Saprolegnia sp.

    Seyed Ali Johari

    2015-05-01

    Full Text Available Silver nanoparticles (AgNPs are known to have bactericidal and fungicidal effects. Since, there is few information available on the interaction of colloidal nanosilver with fish pathogens. Hence, the current study investigated the effects of colloidal AgNPs on the in vitro growth of the fish pathogen Saprolegnia sp.. Before the experiments, various important properties of AgNPs were well-characterized. The antifungal activity of AgNPs was then evaluated by determining the minimum inhibitory concentrations (MICs using two-fold serial dilutions of colloidal nanosilver in a glucose yeast extract agar at 22ºC. The growth of Saprolegnia sp. on the AgNPs agar treatments was compared to that of nanosilver-free agar as controls. The results showed that AgNPs have an inhibitory effect on the in vitro growth of the tested fungi. The MIC of AgNPs for Saprolegnia sp. was calculated at 1800 mg/L, which is equal to 0.18 percent. It seems that AgNPs could be a proper replacement for teratogenic and toxic agents, such as malachite green. In addition, the indirect use of AgNPs could be a useful method for providing new antifungal activity in aquaculture systems.

  13. Monodispersed spherical shaped selenium nanoparticles (SeNPs) synthesized by Bacillus subtilis and its toxicity evaluation in zebrafish embryos

    Chandramohan, Subburaman; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2018-02-01

    Selenium is one of the essential elements involved in antioxidative and antiinflammatory effects in human body. By naturally, selenium ions are metabolised and converted into nano selenium. Now a days there is an increasing attention on applications of nanoparticles in therapeutic field. In the present study Bacillus subtilis was used to convert sodium selenite to SeNPs. The synthesized SeNPs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X ray spectroscopy (EDX). The presence of SeNPs was confirmed by the formation of red colour. The bands were sharp with broad absorption peaks at 3562 cm-1 and 1678-1 cm in FTIR which showed that the bacterial proteins were responsible for the reduction of sodium selenite to SeNPs. The average size of the SeNPs was 334 nm and were spherical in shape with uniform distribution. The XRD data confirmed that SeNPs were of amorphous in nature. The zeta potential of SeNPs was negative in charge which indicated high stability. In the present study zebrafish embryos were used to study the toxicity of SeNPs and the results showed that the concentration beyond 10 μg ml-1 leads to toxic effects in embryos/hatchlings. The lesser concentration of SeNPs can be useful in various biomedical applications.

  14. Genesis of ZnO nanoparticles

    Silva, M.N. da; Pulcinelli, S.H.; Santilli, C.V.

    2014-01-01

    Zinc oxide is a semiconductor with direct band gap, of 3,37 eV, and high excitons energy (60 MeV). The main key for comprehension of the mechanisms that rules particle formation, lay in a full understanding of the first step of formation and growing of this nanoparticle. Zinc oxide nanoparticle were prepared through modification in the method first proposed by Spanhel & Anderson, the characterization techniques were followed by UV-Vis spectroscopy and small angle X ray scattering (SAXS). The results have shown that in the reaction first step we have nanoparticle size between 0,32 e 2,0 nm, whose growing steps can be described by Diffusion-limited cluster-cluster aggregation (DLCA), where self-similar primary structures aggregate keeping the initial morphology. (author)

  15. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells.

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-01-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  16. Synthesis of ZNO nanoparticles by Sol-Gel processing

    Savi, B.M.; Rodrigues, L.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    The aim of this study was to obtain and characterize ZnO nanoparticles by Sol-Gel technique. ZnCl 2 , Zn(NO 3 ) 2 , NaOH were used as precursors for the synthesis. NaOH was dissolved in distilled water at a concentration of 1.0 M with agitation to the desired reaction temperature (50°C and 90°C). 0.5 M ZnCl 2 and 0.5 M Zn(NO3)2 were added by dripping (60 and 30 min). The powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. Nano ZnO particles were obtained with crystallite size between 20 and 40 nm (HR-TEM and XRD). The results of UV-Vis spectrometry show that the band gap energy, given by the absorbance at 300 nm depends on the precursor used. (author)

  17. Synthesis and characterization of organically linked ZnO nanoparticles

    Chory, Christine; Riedel, Ingo; Parisi, Juergen [Energy and Semiconductor Research Laboratory (EHF), University of Oldenburg, Carl-von Ossietzky-Strasse 9-11, 26129 Oldenburg (Germany); Kruska, Carsten; Heimbrodt, Wolfram [Department of Physics and Material Sciences Center, Philipps-University Marburg, Renthof 5, 35032 Marburg (Germany); Feser, Clemens [NEXT ENERGY - EWE Research Centre for Energy Technology e.V., Carl-von Ossietzky-Strasse 15, 26129 Oldenburg (Germany); Beenken, Wichard J.D. [Department of Theoretical Physics I, Ilmenau University of Technology, Weimarer Strasse 25, 98693 Ilmenau (Germany); Hoppe, Harald [Department of Experimental Physics I, Ilmenau University of Technology, Weimarer Strasse 32, 98693 Ilmenau (Germany)

    2012-11-15

    We report on the solution-based synthesis and characterization of three-dimensional networks of ZnO nanoparticles where the formation of structures is achieved by covalently linking the nanocrystals with bifunctional organic ligands. The colloidal synthesis will be presented with application of two ligands that vary in size and binding sites. Furthermore we report on structural characterization of dried powders and thin films by means of X-ray diffraction and electron microscopy in order to examine the regularity of the structures. We also present first investigations of the optical properties and electrical conductance behavior in lateral direction of the differently linked hybrid ZnO networks. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Synthesis and characterization of organically linked ZnO nanoparticles

    Chory, Christine; Riedel, Ingo; Parisi, Juergen; Kruska, Carsten; Heimbrodt, Wolfram; Feser, Clemens; Beenken, Wichard J.D.; Hoppe, Harald

    2012-01-01

    We report on the solution-based synthesis and characterization of three-dimensional networks of ZnO nanoparticles where the formation of structures is achieved by covalently linking the nanocrystals with bifunctional organic ligands. The colloidal synthesis will be presented with application of two ligands that vary in size and binding sites. Furthermore we report on structural characterization of dried powders and thin films by means of X-ray diffraction and electron microscopy in order to examine the regularity of the structures. We also present first investigations of the optical properties and electrical conductance behavior in lateral direction of the differently linked hybrid ZnO networks. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Revisiting magnetism of capped Au and ZnO nanoparticles: Surface band structure and atomic orbital with giant magnetic moment

    Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)

    2011-10-15

    In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Evaluation of Cytotoxic Effects of Different Concentrations of Porous Hollow Au Nanoparticles (PHAuNPs) on Cells

    Rao, S.; Tata, U.; Lin, V.K.; Chiao, J.C.; Huang, Ch.; Hao, Y.; Wu, P.; Arora, N.; Ahn, J.

    2014-01-01

    Nanoparticles (NPs) have been introduced as a suitable alternative in many in vivo bio applications. The risks of utilizing nanoparticles continue to be an ongoing research. Furthermore, the various chemicals used in their synthesis influence the cytotoxic effects of nanoparticles. We have investigated the cytotoxicity of Porous Hollow Au Nanoparticles (PHAuNPs) on cancer cell lines PC-3, PC-3ML, and MDA-MB-231 and the normal cell line PNT1A. Cell proliferation for the different cells in the presence of different concentrations of the PHAuNPs was assessed after 24 hours and 72 hours of incubation using MTT assay. The study also included the cytotoxic evaluation of pegylated PHAuNPs. Identical cell seeding densities, particle concentrations, and incubation times were employed for these two types of Au nanoparticles. Our results indicated that (1) impact on cell proliferation was concentration dependent and was different for the different cell types without cellular necrosis and (b) cellular proliferation might be impacted more based on the cell line.

  1. Effects of the Absorption Behaviour of ZnO Nanoparticles on Cytotoxicity Measurements

    Nigar Najim

    2014-01-01

    Full Text Available ZnO absorbs certain wavelengths of light and this behavior is more pronounced for nanoparticles of ZnO. As many toxicity measurements rely on measuring light transmission in cell lines, it is essential to determine how far this light absorption influences experimental toxicity measurements. The main objective was to study the ZnO absorption and how this influenced the cytotoxicity measurements. The cytotoxicity of differently sized ZnO nanoparticles in normal and cancer cell lines derived from lung tissue (Hs888Lu, neuron-phenotypic cells (SH-SY5Y, neuroblastoma (SH-SY5Y, human histiocytic lymphoma (U937, and lung cancer (A549 was investigated. Our results demonstrate that the presence of ZnO affected the cytotoxicity measurements due to the absorption characteristic of ZnO nanoparticles. The data revealed that the ZnO nanoparticles with an average particle size of around 85.7 nm and 190 nm showed cytotoxicity towards U937, SH-SY5Y, differentiated SH-SY5Y, and Hs888Lu cell lines. No effect on the A549 cells was observed. It was also found that the cytotoxicity of ZnO was particle size, concentration, and time dependent. These studies are the first to quantify the influence of ZnO nanoparticles on cytotoxicity assays. Corrections for absorption effects were carried out which gave an accurate estimation of the concentrations that produce the cytotoxic effects.

  2. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities

    Pavithra, N. S.; Lingaraju, K.; Raghu, G. K.; Nagaraju, G.

    2017-10-01

    In the present work, Zinc oxide nanoparticles (ZnO Nps) have been successfully prepared through a simple, effective and low cost solution combustion method using Zn (NO3)2·6H2O as an oxidizer, chakkota (Common name = Pomelo) fruit juice as novel fuel. X-ray diffraction pattern indicates the hexagonal wurtzite structure with average crystallite size of 22 nm. ZnO Nps were characterized with the aid of different spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Photoluminescence and UV-Visible spectroscopy. FTIR shows characteristic ZnO vibrational mode at 393 cm- 1. SEM images show that the particles are agglomerated. TEM image shows the size of the particles are about 10-20 nm. Further, in order to establish practical applicability of the synthesized ZnO Nps, photocatalytic degradation of methylene blue (MB) dye as a model system was studied in presence of UV (665 nm) light. In addition to this, the antibacterial activity was screen against 3 bacterial strains and electrochemical sensor performance towards the quantification of dopamine at nano molar concentrations was also explored.

  3. Uniform distribution of ZnO nanoparticles on the surface of grpahene and its enhanced photocatalytic performance

    Xue, Bing; Zou, Yingquan

    2018-05-01

    Herein, a ZnO-graphene nanocomposite photocatalyst was obtained by a facile one-step photochemical method. Both the reduction of graphene oxide (GO) and uniform loading of ZnO nanoparticles (NPs) on the surface of graphene were achieved during the photochemical reaction process using GO as the precursor of graphene and zinc chloride (ZnCl2) as the single source of ZnO. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of ZnO/rGO composites was studied by the photodegradation of methylene blue (MB) dye. The as-prepared ZnO/rGO photocatalyst possesses great adsorptivity of dyes (e.g., MB) and high charge separation properties. After receiving the photoelectrons from ZnO, graphene plane can effectively transfer the photoelectrons, thereby showing highly efficient photocatalytic degradation towards pollutants. The effective introduction of rGO significantly improved the photocatalysis and sensing properties of ZnO, and we believe that the as-prepared ZnO/rGO nanocomposite would be promising for practical applications in future nanotechnology.

  4. Blue shift in the luminescence spectra of MEH-PPV films containing ZnO nanoparticles

    Ton-That, Cuong; Phillips, Matthew R.; Nguyen, Thien-Phap

    2008-01-01

    Luminescence properties of nanocomposites consisting of ZnO nanoparticles in a conjugated polymer, poly [2-methoxy-5-(2'-ethyl hexyloxy)-phenylene vinylene] (MEH-PPV), were investigated. Photoluminescence measurements reveal a blue shift in the emission spectrum of MEH-PPV upon incorporation of ZnO nanoparticles into the polymer film while the emission is increasingly quenched with increasing ZnO concentration. In contrast, the structure of the polymer and its conjugation length are not affected by the presence of ZnO nanoparticles (up to 16 wt% ZnO) as revealed by Raman spectroscopy. The blue shift and photoluminescence quenching are explained by the separation of photogenerated electron-hole pairs at the MEH-PPV/ZnO interface and the charging of the nanoparticles

  5. Interaction and photodegradation characteristics of fluorescein dye in presence of ZnO nanoparticles.

    Bardhan, Munmun; Mandal, Gopa; Ganguly, Tapan

    2011-04-01

    The interaction between xanthene dye Fluorescein (Fl) and zinc oxide (ZnO) nanoparticles is investigated under physiological conditions. From the analysis of the steady state and time resolved spectroscopic studies in aqueous solution static mode is found to be responsible in the mechanism of fluorescence quenching of the dye Fl in presence of ZnO. ZnO nanoparticles are used as photocatalyst in order to degrade Fl dye. At pH 7, a maximum degradation efficiency of 44.4% of the dye has been achieved in presence of ZnO as a nanophotocatalyst and the photodegradation follows second-order kinetics.

  6. Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light

    Dong, Guanying; Du, Bin; Liu, Lei; Zhang, Weiwei; Liang, Yujie; Shi, Honglong; Wang, Wenzhong, E-mail: wzhwangmuc@163.com

    2017-03-31

    Highlights: • ZnO/CuO nanoparticle/dandelion heterostructures were fabricated for the first time. • ZnO/CuO nanoparticle/dandelion heterostructures show enhanced PEC activity. • ZnO nanoparticle loading contents have significant effect on PEC water splitting. • Interaction, charge transfer and enhanced mechanism of photocatalyst were proposed. • p-n junction drives the photoexcited charges efficient separation. - Abstract: Here we report an easy and large-scale synthesis of three-dimensional (3D) ZnO nanoparticle-loaded CuO dandelion (denoted as n-ZnO/p-CuO nanoparticle/dandelion) heterostructures and their photoelectrochemical (PEC) water splitting under simulated solar light illumination. CuO dandelions were fabricated by a facile and cost-effective chemical strategy, in which the ribbon-like CuO nanoplates were first formed and then assembled into dandelion-like architectures. ZnO nanoparticle-loaded CuO dandelion heterostructures were fabricated by calcining Zn(Ac){sub 2}-loaded CuO dandelions. High resolution transmission electron microscope (HRTEM) studies demonstrate that intimate p-n junction is built between p-CuO and n-ZnO interface. The n-ZnO/p-CuO nanoparticle/dandelion photoelectrodes exhibit significant improvement in PEC water splitting to CuO dandelion photoelectrodes. The correlation between photocurrents and different loading contents of ZnO nanoparticles (NPs) is studied in which the n-ZnO/p-CuO nanoparticle/dandelion heterostructures with loading 4.6 wt% ZnO NPs show higher photocathodic current. The efficient separation of the photogenerated electrons and holes driven by the intimate p-n junction between p-type CuO and n-type ZnO interface is mainly contributed to the enhanced photoanode current. The achieved results in the present study offer a very useful strategy for designing p-n junction photoelectrodes for efficiency and low-cost PEC cells for clean solar hydrogen production.

  7. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles.

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-08-19

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c -axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  8. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles

    Zafar Hussain Ibupoto

    2013-08-01

    Full Text Available Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD and field emission scanning electron microscopy (FESEM techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002 peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  9. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells

    Song, Yijuan; Guan, Rongfa; Lyu, Fei; Kang, Tianshu; Wu, Yihang; Chen, Xiaoqiang

    2014-01-01

    Highlights: • The characterization of Ag NPs and ZnO NPs. • The various morphologies of Caco-2 cells stained with AO/EB. • The viability of Caco-2 cells after Ag NPs and ZnO NPs exposure. • The cytotoxicity of Ag NPs and ZnO NPs on Caco-2 cells by oxidative stress assays. - Abstract: With the increasing applications of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) in foods and cosmetics, the concerns about the potential toxicities to human have been raised. The aims of this study are to observe the cytotoxicity of Ag NPs and ZnO NPs to human epithelial colorectal adenocarcinoma (Caco-2) cells in vitro, and to discover the toxicity mechanism of nanoparticles on Caco-2 cells. Caco-2 cells were exposed to 10, 25, 50, 100, 200 μg/mL of Ag NPs and ZnO NPs (90 nm). AO/EB double staining was used to characterize the morphology of the treated cells. The cell counting kit-8 (CCK-8) assay was used to detect the proliferation of the cells. Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) assay were used to explore the oxidative damage of Caco-2 cells. The results showed that Ag NPs and ZnO NPs (0–200 μg/mL) had highly significant effect on the Caco-2 cells activity. ZnO NPs exerted higher cytotoxicity than Ag NPs in the same concentration range. ZnO NPs have dose-depended toxicity. The LD 50 of ZnO NPs in Caco-2 cells is 0.431 mg/L. Significant depletion of SOD level, variation in GSH level and release of ROS in cells treated by ZnO NPs were observed, which suggests that cytotoxicity of ZnO NPs in intestine cells might be mediated through cellular oxidative stress. While Caco-2 cells treated with Ag NPs at all experimental concentrations showed no cellular oxidative damage. Moreover, the cells’ antioxidant capacity increased, and reached the highest level when the concentration of Ag NPs was 50 μg/mL. Therefore, it can be concluded that Ag NPs are safer antibacterial material in food packaging materials than

  10. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells

    Song, Yijuan [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018 (China); Guan, Rongfa, E-mail: rongfaguan@163.com [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018 (China); Lyu, Fei [Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014 (China); Kang, Tianshu; Wu, Yihang [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018 (China); Chen, Xiaoqiang [Hubei University of Technology, Wuhan 430068 (China)

    2014-11-15

    Highlights: • The characterization of Ag NPs and ZnO NPs. • The various morphologies of Caco-2 cells stained with AO/EB. • The viability of Caco-2 cells after Ag NPs and ZnO NPs exposure. • The cytotoxicity of Ag NPs and ZnO NPs on Caco-2 cells by oxidative stress assays. - Abstract: With the increasing applications of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) in foods and cosmetics, the concerns about the potential toxicities to human have been raised. The aims of this study are to observe the cytotoxicity of Ag NPs and ZnO NPs to human epithelial colorectal adenocarcinoma (Caco-2) cells in vitro, and to discover the toxicity mechanism of nanoparticles on Caco-2 cells. Caco-2 cells were exposed to 10, 25, 50, 100, 200 μg/mL of Ag NPs and ZnO NPs (90 nm). AO/EB double staining was used to characterize the morphology of the treated cells. The cell counting kit-8 (CCK-8) assay was used to detect the proliferation of the cells. Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) assay were used to explore the oxidative damage of Caco-2 cells. The results showed that Ag NPs and ZnO NPs (0–200 μg/mL) had highly significant effect on the Caco-2 cells activity. ZnO NPs exerted higher cytotoxicity than Ag NPs in the same concentration range. ZnO NPs have dose-depended toxicity. The LD{sub 50} of ZnO NPs in Caco-2 cells is 0.431 mg/L. Significant depletion of SOD level, variation in GSH level and release of ROS in cells treated by ZnO NPs were observed, which suggests that cytotoxicity of ZnO NPs in intestine cells might be mediated through cellular oxidative stress. While Caco-2 cells treated with Ag NPs at all experimental concentrations showed no cellular oxidative damage. Moreover, the cells’ antioxidant capacity increased, and reached the highest level when the concentration of Ag NPs was 50 μg/mL. Therefore, it can be concluded that Ag NPs are safer antibacterial material in food packaging materials

  11. Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells

    Ku, C-H; Wu, J-J [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2007-12-19

    ZnO nanowire (NW)-layered basic zinc acetate (LBZA)/ZnO nanoparticle (NP) composite electrodes with different NP occupying extents have been synthesized using a simple wet-chemical route for use in dye-sensitized solar cells (DSSCs). By employing mercurochrome as the sensitizer, superior efficiencies ({eta}) of 1.27-2.37% are obtained using the ZnO NW-LBZA/ZnO NP composite electrodes composed of a 5.5 {mu}m thick NW array with different NP occupying extents in comparison with the ZnO NW DSSC ({eta} = 0.45%). It suggests that the ZnO NW-LBZA/ZnO NP composite films which possess a considerable enlarged surface area by NPs growth, without sacrificing electron transport efficiency of single-crystalline ZnO NWs at the same time, are promising photoanodes for use in DSSCs. In addition to the extent of NP occupation, the overall efficiency of the ZnO NW-LBZA/ZnO NP composite DSSC is also influenced by the thickness of the composite film as well as the LBZA fraction and the cracks within the composite. The fraction of LBZA affected by the NP growth period and post-annealing conditions is found to play a crucial role in electron transport through the composite anode. Up to now, a high efficiency DSSC of 3.2% is achieved using a mercurochrome-sensitized and 6.2 {mu}m thick NW-NP composite film.

  12. Organometallic synthesis of ZnO nanoparticles for gas sensing: towards selectivity through nanoparticles morphology

    Ryzhikov, Andrey; Jońca, Justyna; Kahn, Myrtil; Fajerwerg, Katia [Laboratoire de Chimie de Coordination (LCC), CNRS (France); Chaudret, Bruno [Laboratoire de Physique et de Chimie de Nano-objets (LPCNO), INSA, UPS, CNRS (France); Chapelle, Audrey [Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), CNRS (France); Ménini, Philippe [Université Toulouse III, Paul Sabatier (France); Shim, Chang Hyun [Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), CNRS (France); Gaudon, Alain [Alpha M.O.S. SA (France); Fau, Pierre, E-mail: pierre.fau@lcc-toulouse.fr [Laboratoire de Chimie de Coordination (LCC), CNRS (France)

    2015-07-15

    ZnO nanoparticles (NP) with different morphologies such as nanorods (NR), isotropic NP, and cloud-like (CL) structures have been synthesized by an organometallic route. The prepared ZnO nanostructures have been deposited on miniaturized silicon gas sensor substrates by an inkjet method, and their responses to CO, C{sub 3}H{sub 8}, and NH{sub 3} gases have been studied at different operating temperatures (340–500 °C) and relative humidity of 50 %. It is noteworthy that the morphology of the nanostructure of the sensitive layer is maintained after thermal treatment. The morphology of ZnO NP significantly influences the sensor response level and their selectivity properties to reducing gases. Among the three different ZnO types, sensors prepared with NR show the highest response to both CO and C{sub 3}H{sub 8}. Sensors made of isotropic NP and CL structures show a lower but similar response to CO. From all investigated nanostructures, sensors made of CL structures show the weakest response to C{sub 3}H{sub 8}. With NH{sub 3} gas, no effect of the morphology of the ZnO sensitive layer has been evidenced. These different responses highlight the important role of the nanostructure of the ZnO sensitive layer and the nature of the target gas on the detection properties of the sensors. Graphical Abstract: Three different ZnO nanoparticles morphologies (cloud-like, dots, rods) have been employed as sensitive layers in chemoresistive sensors for the selective detection of CO, C{sub 3}H{sub 8} and NH{sub 3}.

  13. Rapid visual detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) based on hydrophobic effect.

    Zheng, Li-Qing; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2014-01-01

    In this work, a rapid, sensitive and low-cost colorimetric method for detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) was developed. The quaternary ammonium surfactants induce the aggregation of Ag NPs through the hydrophobic effect, which is a novel aggregation mechanism of Ag NPs. The addition of cationic surfactant results in color change of Ag NPs solution from yellow to red and finally to colorless, which is due to the broadening of the surface plasmon band. The color change was monitored using a UV-vis spectrophotometer. The LOD of different cationic surfactants was in the range of 0.5-5 µM. More importantly, this detection method was successfully utilized to the disinfectant residual sample. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  14. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  15. Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L

    Qu Jiao; Yuan Xing; Wang Xinhong; Shao Peng

    2011-01-01

    A field survey and greenhouse experiments were conducted using Physalis alkekengi L. to investigate strategies of phytoremediation. In addition, ZnO nanoparticles were synthesized using P. alkekengi. P. alkekengi plants grew healthily at Zn levels from 50 to 5000 mg kg -1 in soils. The plants incorporated Zn into their aerial parts (with mean dry weight values of 235-10,980 mg kg -1 ) and accumulated biomass (with a mean dry weight of 25.7 g plant -1 ) during 12 weeks. The synthesized ZnO nanoparticles showed a polydisperse behavior and had a mean size of 72.5 nm. The results indicate that P. alkekengi could be used for the remediation of zinc-contaminated soils. Moreover, the synthetic method of synthesizing ZnO nanoparticles from Zn hyperaccumulator plants constitutes a new insight into the recycling of metals in plant sources. - Highlights: → P. alkekengi plants were used to remediate the Zn-contaminated soils. → Zn in P. alkekengi plants were used as a material to synthesize ZnO nanoparticles. → P. alkekengi plants absorbed large amounts of Zn from soils into its aerial parts. → The synthesized ZnO nanoparticles were not uniform. → The mean size of synthesized ZnO nanoparticles was 72.5 nm. - ZnO nanoparticles were synthesized using P. alkekengi plants, which absorbed large amounts of Zn from contaminated soils.

  16. Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L

    Qu Jiao, E-mail: qujiao@bhu.edu.cn [School of Urban and Environmental Sciences, Northeast Normal University, No. 5268 Renmin street, Changchun 130024 (China); Yuan Xing, E-mail: yuanx@nenu.edu.cn [School of Urban and Environmental Sciences, Northeast Normal University, No. 5268 Renmin street, Changchun 130024 (China); Wang Xinhong; Shao Peng [School of Urban and Environmental Sciences, Northeast Normal University, No. 5268 Renmin street, Changchun 130024 (China)

    2011-07-15

    A field survey and greenhouse experiments were conducted using Physalis alkekengi L. to investigate strategies of phytoremediation. In addition, ZnO nanoparticles were synthesized using P. alkekengi. P. alkekengi plants grew healthily at Zn levels from 50 to 5000 mg kg{sup -1} in soils. The plants incorporated Zn into their aerial parts (with mean dry weight values of 235-10,980 mg kg{sup -1}) and accumulated biomass (with a mean dry weight of 25.7 g plant{sup -1}) during 12 weeks. The synthesized ZnO nanoparticles showed a polydisperse behavior and had a mean size of 72.5 nm. The results indicate that P. alkekengi could be used for the remediation of zinc-contaminated soils. Moreover, the synthetic method of synthesizing ZnO nanoparticles from Zn hyperaccumulator plants constitutes a new insight into the recycling of metals in plant sources. - Highlights: > P. alkekengi plants were used to remediate the Zn-contaminated soils. > Zn in P. alkekengi plants were used as a material to synthesize ZnO nanoparticles. > P. alkekengi plants absorbed large amounts of Zn from soils into its aerial parts. > The synthesized ZnO nanoparticles were not uniform. > The mean size of synthesized ZnO nanoparticles was 72.5 nm. - ZnO nanoparticles were synthesized using P. alkekengi plants, which absorbed large amounts of Zn from contaminated soils.

  17. Positron annihilation studies in ZnO nanoparticles

    Sharma, S. K.; Pujari, P. K.; Sudarshan, K.; Dutta, D.; Mahapatra, M.; Godbole, S. V.; Jayakumar, O. D.; Tyagi, A. K.

    2009-04-01

    We report results on positron annihilation spectroscopic (PAS) studies using lifetime and coincidence Doppler broadening techniques in zinc oxide (ZnO) nanoparticles (4 to 40 nm) synthesized by solid state pyrolytic reaction followed by annealing in the temperature range of 200 ∘C to 800 ∘C. Positron lifetime in the nanoparticles are observed to be higher than bulk lifetime in all the cases. Theoretical calculation of lifetime indicates the presence of either Zn or (Zn, O) vacancy clusters which migrate and anneal out at high temperature. Comparison of ratio spectra from coincidence Doppler broadening measurement and calculated electron momentum distribution indicates the presence of either Zn or (Zn, O) vacancies. In addition, photoluminescence (PL) measurements have been carried out to examine the role of defects on the intensity of emission in the visible region.

  18. Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method

    Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.; Miron, I.; Sfirloaga, P.; Rusu, E.

    2015-01-01

    TiO 2 /ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO 2 . The obtained ZnO, TiO 2 and TiO 2 /ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO 2 and ZnO phases in TiO 2 /ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO 2 nanoparticles have a spherical shape, and TiO 2 /ZnO core–shell nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO 2 /ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO 2 /ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO 2 /ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO 2 /ZnO core–shell nanoparticles were investigated. • The activation energy of TiO 2 /ZnO core–shell nanoparticles was about E a = 101 meV

  19. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan 430072 (China)

    2014-01-21

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H{sub 2} in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between “on” and “off” states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (V{sub Zn} + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, V{sub Zn} + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μ{sub B}. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  20. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer.

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S; Atif, Muhammad; Ansari, Anees A; Willander, Magnus

    2013-09-30

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  1. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer

    Anees A. Ansari

    2013-09-01

    Full Text Available In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  2. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract

    Renata Dobrucka

    2016-07-01

    Full Text Available Zinc oxide (ZnO has broad applications in various areas. Nanoparticle synthesis using plants is an alternative to conventional physical and chemical methods. It is known that the biological synthesis of nanoparticles is gaining importance due to its simplicity, eco-friendliness and extensive antimicrobial activity. Also, in this study we report the synthesis of ZnO nanoparticles using Trifolium pratense flower extract. The prepared ZnO nanoparticles have been characterized by UV–Vis absorption spectroscopy, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, and scanning electron microscopy (SEM with Energy dispersive X-ray analysis (EDX. Besides, this study determines the antimicrobial efficacy of the synthesized ZnO nanoparticles against clinical and standard strains of S. aureus and P. aeruginosa and standard strain of E. coli.

  3. Growth of ZnO nanoparticles from nanowhisker precursor with a simple solvothermal route

    Wang Chunlei; Wang Enbo; Shen Enhong; Gao Lei; Kang Zhenhui; Tian Chungui; Zhang Chao; Lan Yang

    2006-01-01

    Methods of preparing nanoparticles have long been a topic experiencing extensive investigation. Among those methods developed, using template or polymer and surfactant as capping reagents were often effective. However, obtaining nanoparticles in high amounts and high purity still remains an unresolved challenge. Here, a simple two-step solvothermal method without using any surfactant or coating reactant to prepare ZnO nanoparticles with high purity in large scale was developed. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-prepared ZnO nanoparticles, and the formation process of the nanoparticles was discussed finally

  4. Recovery of thermal-degraded ZnO photodetector by embedding nano silver oxide nanoparticles

    Hu, Zhan-Shuo [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hung, Fei-Yi, E-mail: fyhung@mail.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Kuan-Jen [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); The Instrument Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Shoou-Jinn [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hsieh, Wei-Kang; Liao, Tsai-Yu; Chen, Tse-Pu [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2013-08-15

    The degraded performance of annealed ZnO-based photodetector can be recovered by embedding Ag{sub 2}O nanoparticles resulted from the transformation of as-deposited Ag layer. After thermal treatment, the electrons were attracted at the interface between ZnO and Ag{sub 2}O. The excess Ag{sup +} ions form the cluster to incorporate into the interstitial sites of ZnO lattice to create a larger amount of lattice defects for the leakage path. The photo-current of ZnO film with Ag{sub 2}O nanoparticles is less than annealed ZnO film because the photo-induced electrons would flow into Ag{sub 2}O side. ZnO photodetector with the appropriate Ag{sub 2}O nanoparticles possesses the best rejection ratio.

  5. Cu2ZnSn(S,Se)4 from CuxSnSy nanoparticle precursors on ZnO nanorod arrays

    Kavalakkatt, Jaison; Lin, Xianzhong; Kornhuber, Kai; Kusch, Patryk; Ennaoui, Ahmed; Reich, Stephanie; Lux-Steiner, Martha Ch.

    2013-01-01

    Solar cells with Cu 2 ZnSnS 4 absorber thin films have a potential for high energy conversion efficiencies with earth-abundant and non-toxic elements. In this work the formation of CZTSSe from Cu x SnS y nanoparticles (NPs) deposited on ZnO nanorod (NR) arrays as precursors for zinc is investigated. The NPs are prepared using a chemical route and are dispersed in toluene. The ZnO NRs are grown on fluorine doped SnO 2 coated glass substrates by electro deposition method. A series of samples are annealed at different temperatures between 300 °C and 550 °C in selenium containing argon atmosphere. To investigate the products of the reaction between the precursors the series is analyzed by means of X-ray diffraction (XRD) and Raman spectroscopy. The morphology is recorded by scanning electron microscopy (SEM) images of broken cross sections. The XRD measurements and the SEM images show the disappearing of ZnO NRs with increasing annealing temperature. Simultaneously the XRD and Raman measurements show the formation of CZTSSe. The formation of secondary phases and the optimum conditions for the preparation of CZTSSe is discussed. - Highlights: ► Cu x SnS y nanoparticles are deposited on ZnO nanorod arrays. ► Samples are annealed at different temperatures (300–550 °C) in Se/Ar-atmosphere. ► Raman spectroscopy, X-ray diffraction and electron microscopy are performed. ► ZnO disappears with increasing annealing temperature. ► With increasing temperature Cu x SnS y and ZnO form Cu 2 ZnSn(S,Se) 4

  6. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-01

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a

  7. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of ...

    The zinc oxide (ZnO) nanoparticles functions as highly effective catalyst for the reactions of various o-hydroxy ... the synthesis of relatively large and complex molecules .... of ethylene diamine in hydrothermal ZnO nanorod syn- thesis. Di- and ...

  8. Complete transformation of ZnO and CuO nanoparticles in ...

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticulates is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. Although a number of studies have discussed the transformation of nanoparticles during

  9. Efficient light extraction from GaN LEDs using gold-coated ZnO nanoparticles

    Alhadidi, A.

    2015-11-01

    We experimentally demonstrate the effect of depositing gold-coated ZnO nanoparticles on the surface of GaN multi-quantum well LED structures. We show that this method can significantly increase the amount of extracted light.

  10. Room temperature ferromagnetism in Mg-doped ZnO nanoparticles

    Singh, Jaspal; Vashihth, A.; Gill, Pritampal Singh; Verma, N. K.

    2015-01-01

    Zn 1-x Mg x O (x = 0, 0,10) nanoparticles were successfully synthesized using sol-gel method. X-ray diffraction (XRD) confirms that the synthesized nanoparticles possess wurtzite phase having hexagonal structure. Morphological analysis was carried out using transmission electron microscopy (TEM) which depicts the spherical morphology of ZnO nanoparticles. Energy dispersive spectroscopy (EDS) showed the presence of Mg in ZnO nanoparticles. Electron spin resonance (ESR) signal was found to be decreasing with increasing of Mg-doping concentration. The room temperature ferromagnetism was observed in undoped and Mg-doped ZnO nanoparticles. The increase of Mg-doping concentration resulted in decrease of saturation magnetization value which could be attributed to decrease of oxygen vacancies present in host nanoparticles

  11. UV-cured polymeric films containing ZnO and silver nanoparticles with UV–vis light-assisted photocatalytic activity

    Podasca, Viorica E.; Buruiana, Tinca; Buruiana, Emil C.

    2016-01-01

    Highlights: • Synthesis of photopolymerized films containing ZnO and/or Ag NPs is reported. • Photopolymerization of the acrylic monomers occurred with conversions of 57–90%. • XRD, EDX, and TEM analyses proved the uniform distribution of NPs in the matrix. • MB was photodegradated using the hybrid films under UV–vis irradiation. - Abstract: Hybrid polymer composites incorporating preformed ZnO alone or its mixture with Ag nanoparticles created during UV irradiation of some urethane acrylic monomers including trietoxysilylpropyl carbamoyloxyethyl methacrylate were synthesized and characterized by spectroscopic ("1H ("1"3C) NMR, FTIR, UV–vis, fluorescence, X-ray diffraction) and microscopic (AFM, ESEM/EDX, TEM) techniques. The results confirmed that the double bond conversion measured through FTIR spectroscopy varied in the range of 57–90% (after 60 s of irradiation), exhibiting formulation composition dependence. In the crosslinked polymer networks the existence of individual nanoparticles with primarily spherical shape and sizes between 5 and 15 nm for ZnO, and around 3 nm for in situ photogenerated silver nanoparticles was evidenced. Additionally, the photocatalytic effect of the photopolymerized hybrid films was investigated by determining the decomposition rate of the methylene blue (MB) in ethanol (over 90%) under UV (2.7 × 10"−"2 s"−"1) and visible irradiation (2.9 × 10"−"2 min"−"1). It was found that the composite films containing a higher amount of ZnO-Ag nanoparticles placed in water induced the photodecomposition of MB (∼87% after 100 min of visible irradiation; k = 2.1 × 10"−"2 min"−"1). The good efficiency of the NPs from these polymer films make them attractive for applications in photocatalysis of organic dye molecules.

  12. UV-cured polymeric films containing ZnO and silver nanoparticles with UV–vis light-assisted photocatalytic activity

    Podasca, Viorica E.; Buruiana, Tinca; Buruiana, Emil C., E-mail: emilbur@icmpp.ro

    2016-07-30

    Highlights: • Synthesis of photopolymerized films containing ZnO and/or Ag NPs is reported. • Photopolymerization of the acrylic monomers occurred with conversions of 57–90%. • XRD, EDX, and TEM analyses proved the uniform distribution of NPs in the matrix. • MB was photodegradated using the hybrid films under UV–vis irradiation. - Abstract: Hybrid polymer composites incorporating preformed ZnO alone or its mixture with Ag nanoparticles created during UV irradiation of some urethane acrylic monomers including trietoxysilylpropyl carbamoyloxyethyl methacrylate were synthesized and characterized by spectroscopic ({sup 1}H ({sup 13}C) NMR, FTIR, UV–vis, fluorescence, X-ray diffraction) and microscopic (AFM, ESEM/EDX, TEM) techniques. The results confirmed that the double bond conversion measured through FTIR spectroscopy varied in the range of 57–90% (after 60 s of irradiation), exhibiting formulation composition dependence. In the crosslinked polymer networks the existence of individual nanoparticles with primarily spherical shape and sizes between 5 and 15 nm for ZnO, and around 3 nm for in situ photogenerated silver nanoparticles was evidenced. Additionally, the photocatalytic effect of the photopolymerized hybrid films was investigated by determining the decomposition rate of the methylene blue (MB) in ethanol (over 90%) under UV (2.7 × 10{sup −2} s{sup −1}) and visible irradiation (2.9 × 10{sup −2} min{sup −1}). It was found that the composite films containing a higher amount of ZnO-Ag nanoparticles placed in water induced the photodecomposition of MB (∼87% after 100 min of visible irradiation; k = 2.1 × 10{sup −2} min{sup −1}). The good efficiency of the NPs from these polymer films make them attractive for applications in photocatalysis of organic dye molecules.

  13. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Moura, Ana P. de [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Freire, Poliana G. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Silva, Luis F. da; Longo, Elson [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Munoz, Rodrigo A.A. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Lima, Renata C., E-mail: rclima@iqufu.ufu.br [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil)

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  14. Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study

    Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-05-01

    First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.

  15. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

    Jinzhang Liu

    2014-04-01

    Full Text Available One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  16. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods.

    Liu, Jinzhang; Notarianni, Marco; Rintoul, Llew; Motta, Nunzio

    2014-01-01

    One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  17. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis.

    Gupta, Govind Sharan; Senapati, Violet Aileen; Dhawan, Alok; Shanker, Rishi

    2017-06-01

    The extensive use of zinc oxide nanoparticles (ZnO NPs) in cosmetics, sunscreens and healthcare products increases their release in the aquatic environment. The present study explored the possible interaction of ZnO NPs with montmorillonite clay minerals in aqueous conditions. An addition of ZnO NPs on clay suspension significantly (pclay particles from 1652±90nm to 2158±13nm due to heteroagglomeration. The electrokinetic measurements showed a significant (pclay association (-1.37±0.03μmcm/Vs) that results to the electrostatic interaction between ZnO NPs and clay particles. The attenuated total reflectance Fourier transform infrared spectroscopy analysis of ZnO NPs-clay association demonstrated the binding of ZnO NPs with the Si-O-Al region on the edges of clay particles. The increase in size of ZnO NPs-clay heteroagglomerates further leads to their sedimentation at 24h. Although, the stability of ZnO NPs in the clay suspension was decreased due to heteroagglomeration, but the bioavailability and toxicity of ZnO NPs-clay heteroagglomerates in Tetrahymena pyriformis was enhanced. These observations provide an evidence on possible mechanisms available in natural environment that can facilitate nanoparticles entry into the organisms present in lower trophic levels of the food web. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag(+).

    Hartmann, Georg; Baumgartner, Tanja; Schuster, Michael

    2014-01-07

    For the quantification of silver nanoparticles (Ag-NPs) in environmental samples using cloud point extraction (CPE) for selective enrichment, surface modification of the Ag-NPs and matrix effects can play a key role. In this work we validate CPE with respect to the influence of different coatings and naturally occurring matrix components. The Ag-NPs tested were functionalized with inorganic and organic compounds as well as with biomolecules. Commercially available NPs and NPs synthesized according to methods published in the literature were used. We found that CPE can extract almost all Ag-NPs tested with very good efficiencies (82-105%). Only Ag-NPs functionalized with BSA (bovine serum albumin), which is a protein with the function to keep colloids in solution, cannot be extracted. No or little effect of environmentally relevant salts, organic matter, and inorganic colloids on the CPE of AgNPs was found. Additionally we used CPE to observe the in situ formation of Ag-NPs produced by the reduction of Ag(+) with natural organic matter (NOM).

  19. Annealing Heat Treatment of ZnO Nanoparticles Grown on Porous Si Substrate Using Spin-Coating Method

    K. A. Eswar

    2014-01-01

    Full Text Available ZnO nanoparticles were successfully deposited on porous silicon (PSi substrate using spin-coating method. In order to prepare PSi, electrochemical etching was employed to modify the Si surface. Zinc acetate dihydrate was used as a starting material in ZnO sol-gel solution preparation. The postannealing treatments were investigated on morphologies and photoluminescence (PL properties of the ZnO thin films. Field emission scanning electron microscopy (FESEM results indicate that the thin films composed by ZnO nanoparticles were distributed uniformly on PSi. The average sizes of ZnO nanoparticle increase with increasing annealing temperature. Atomic force microscopic (AFM analysis reveals that ZnO thin films annealed at 500°C had the smoothest surface. PL spectra show two peaks that completely correspond to nanostructured ZnO and PSi. These findings indicate that the ZnO nanostructures grown on PSi are promising for application as light emitting devices.

  20. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil

    Kool, Pauline L.; Diez Ortiz, Maria; Gestel, Cornelis A.M. van

    2011-01-01

    The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl 2 were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants K f of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl 2 respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl 2 , respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size. - Highlights: → ZnO nanoparticles and non-nano ZnO were equally toxic to Folsomia candida in soil. → Pore water from soil spiked with ZnO nanoparticles showed saturation with zinc suggesting aggregation. → Pore water based EC50 values for ZnO nanoparticles and ZnCl 2 were similar. → ZnO nanoparticle toxicity in soil was most probably due to Zn dissolution from the nanoparticles. - ZnO nanoparticle toxicity to springtails in soil can be explained from Zn dissolution but not from particle size.

  1. ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation

    Lamba, Randeep; Umar, Ahmad; Mehta, S.K.; Kansal, Sushil Kumar

    2015-01-01

    ZnO doped SnO 2 nanoparticles were synthesized by facile and simple hydrothermal technique and used as an effective photocatalyst for the photocatalytic degradation of harmful and toxic organic dye. The prepared nanoparticles were characterized in detail using different techniques for morphological, structural and optical properties. The characterization results revealed that the synthesized nanoparticles possess both crystal phases of tetragonal rutile phase of pure SnO 2 and wurtzite hexagonal phase of ZnO. In addition, the nanoparticles were synthesized in very high quantity with good crystallinity. The photocatalytic activity of prepared nanoparticles was evaluated by the photocatalytic degradation of methylene blue (MB) dye. Detailed photocatalytic experiments based on the effects of irradiation time, catalyst dose and pH were performed and presented in this paper. The detailed photocatalytic experiments revealed that the synthesized ZnO doped SnO 2 nanoparticles heterojunction photocatalyst exhibit best photocatalytic performance when the catalyst dose was 0.25 g/L and pH = 10. ZnO doped SnO 2 nanoparticles heterojunction photocatalyst was also compared with commercially available TiO 2 (PC-50), TiO 2 (PC-500) and SnO 2 and interestingly ZnO doped SnO 2 nanoparticles exhibited superior photocatalytic performance. The presented work demonstrates that the prepared ZnO doped SnO 2 nanoparticles are promising material for the photocatalytic degradation of organic dyes and toxic chemicals. - Highlights: • Synthesis of well-crystalline ZnO-doped SnO 2 nanoparticles. • Excellent morphological, crystalline and photoluminescent properties. • Efficient environmental remediation using ZnO-doped SnO 2 nanoparticles.

  2. ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues.

    Bocca, Beatrice; Caimi, Stefano; Senofonte, Oreste; Alimonti, Alessandro; Petrucci, Francesco

    2018-07-15

    This study sought to develop analytical methods to characterize titanium dioxide (TiO 2 ) and zinc oxide (ZnO) nanoparticles (NPs), including the particle size distribution and concentration, in cream and spray sunscreens with different sun protection factor (SPF). The Single Particle Inductively Coupled Plasma-Mass Spectrometry (SP ICP-MS) was used as screening and fast method to determine particles size and number. The Asymmetric Flow-Field Flow Fractionation (AF4-FFF) as a pre-separation technique was on-line coupled to the Multi-Angle Light Scattering (MALS) and ICP-MS to determine particle size distributions and size dependent multi-elemental concentration. Both methods were optimized in sunscreens in terms of recovery, repeatability, limit of detection and linear dynamic range. Results showed that sunscreens contained TiO 2 particles with an average size of ≤107 nm and also a minor number of ZnO particles sized ≤98 nm. The higher fraction of particles <100 nm was observed in sunscreens with SPF 50+ (ca. 80%); the lower percentage (12-35%) in sunscreens with lower SPF values. Also the higher TiO 2 (up to 24% weight) and ZnO (ca. 0.25% weight) concentrations were found in formulations of SPF 50+. Creamy sunscreens could be considered safe containing TiO 2 and ZnO NPs less than the maximum allowable concentration of 25% weight as set by the European legislation. On the contrary, spray products required additional considerations with regard to the potential inhalation of NPs. The developed methods can contribute to the actual demand for regulatory control and safety assessment of metallic NPs in consumers' products. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. TEA controllable preparation of magnetite nanoparticles (Fe{sub 3}O{sub 4} NPs) with excellent magnetic properties

    Han, Chengliang, E-mail: clhan@issp.ac.cn [Department of Chemical and Material Engineering, Hefei University, Hefei 230601 (China); Zhu, Dejie [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong [Department of Chemical and Material Engineering, Hefei University, Hefei 230601 (China)

    2016-06-15

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe{sub 3}O{sub 4} NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe{sub 3}O{sub 4} with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe{sub 3}O{sub 4} NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe{sub 3}O{sub 4} NPs exhibited superparamagnetic behavior and the saturation magnetization (M{sub s}) was about 70 emu/g, which had potential applications in magnetic science and technology. - Highlights: • The Fe{sub 3}O{sub 4} NPs are synthesized by a simple and low-cost hydrothermal approach. • The triethanolamine (TEA) played vital roles in the formation of Fe{sub 3}O{sub 4} NPs. • Our samples exhibited superparamagnetic and excellent dispersing properties in water.

  4. A layer-by-layer ZnO nanoparticle-PbS quantum dot self-assembly platform for ultrafast interfacial electron injection

    Eita, Mohamed Samir

    2014-08-28

    Absorbent layers of semiconductor quantum dots (QDs) are now used as material platforms for low-cost, high-performance solar cells. The semiconductor metal oxide nanoparticles as an acceptor layer have become an integral part of the next generation solar cell. To achieve sufficient electron transfer and subsequently high conversion efficiency in these solar cells, however, energy-level alignment and interfacial contact between the donor and the acceptor units are needed. Here, the layer-by-layer (LbL) technique is used to assemble ZnO nanoparticles (NPs), providing adequate PbS QD uptake to achieve greater interfacial contact compared with traditional sputtering methods. Electron injection at the PbS QD and ZnO NP interface is investigated using broadband transient absorption spectroscopy with 120 femtosecond temporal resolution. The results indicate that electron injection from photoexcited PbS QDs to ZnO NPs occurs on a time scale of a few hundred femtoseconds. This observation is supported by the interfacial electronic-energy alignment between the donor and acceptor moieties. Finally, due to the combination of large interfacial contact and ultrafast electron injection, this proposed platform of assembled thin films holds promise for a variety of solar cell architectures and other settings that principally rely on interfacial contact, such as photocatalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water.

    Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey

    We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, "ready for use" MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours.

  6. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water

    Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey

    2014-01-01

    We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, “ready for use” MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours.

  7. The crystallization and physical properties of Al-doped ZnO nanoparticles

    Chen, K.J. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Fang, T.H. [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Hung, F.Y. [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: fyhung@mail.mse.ncku.edu.tw; Ji, L.W. [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Chang, S.J.; Young, S.J. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Hsiao, Y.J. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2008-07-15

    Un-doped Al (0-9 at.%) nanoparticles and doped ZnO powders were prepared by the sol-gel method. The nanoparticles were heated at 700-800 deg. C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.

  8. The crystallization and physical properties of Al-doped ZnO nanoparticles

    Chen, K.J.; Fang, T.H.; Hung, F.Y.; Ji, L.W.; Chang, S.J.; Young, S.J.; Hsiao, Y.J.

    2008-01-01

    Un-doped Al (0-9 at.%) nanoparticles and doped ZnO powders were prepared by the sol-gel method. The nanoparticles were heated at 700-800 deg. C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles

  9. Magnetic nanoparticles as a seed layer for growing ZnO nanowires for optical applications

    AlSalhi, M S; Atif, M; Ansari, Anees A; Khun, K; Ibupoto, Z H; Willander, M

    2013-01-01

    In the present work, cerium oxide CeO 2 nanoparticles were synthesised by sol-gel method and used for the growth of ZnO nanorods. The synthesised nanoparticles were studied by x-ray diffraction technique [XRD]. Furthermore, these nanoparticles were used as seed layer for the growth of ZnO nanorods by following the hydrothermal growth method. The structural study of ZnO nanorods was carried out by using field emission scanning electron microscopy [FESEM], and x-ray diffraction [XRD] techniques. This study demonstrated that the grown ZnO nanorods are well align, uniform, good in crystal quality and possess diameter of less than 200 nm. Energy dispersive x-rays [EDX] revealed that the ZnO nanorods are only composed of zinc, cerium as seed atom and oxygen atoms and no any other impurity in the grown nanorods. Moreover, photoluminescence [PL] approach was applied for the optical characterisation and it was observed that the near-band-edge emission [NBE] was same to that of zinc acetate seed layer, however the green emission and orange/red emission peaks were slightly raised due to possible higher level of defects in the cerium oxide seeded ZnO nanorods. This study provides an alternative approach for the synthesis of controlled ZnO nanorods using cerium oxide nanoparticles as seed nucleation layer which in reverse describe the application of these nanoparticles as well as due to controlled morphology of ZnO nanorods the performance of nanodevices based on ZnO can be increased using these particles as seed.

  10. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    Kumar, Shalendra; Vats, Prashant; Gautam, S.; Gupta, V.P.; Verma, K.D.; Chae, K.H.; Hashim, Mohd; Choi, H.K.

    2014-01-01

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L 3,2 edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L 3,2 -edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L 3,2 -edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior

  11. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  12. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO.

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-15

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles' green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  13. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor

    Sharma, Deepak; Pandey, Krishna Murari [National Institute of Technology Silchar, Assam (India). Dept. of Mechanical Engineering

    2017-03-15

    A novel and facile approach for size-tunable synthesis of ZnO nanoparticle (NPs) is reported. Size-tuning was attained by using PEG (polyethylene glycol) of molecular weights 400 and 4000. ZnO NPs was synthesized using homogeneous chemical precipitation followed by hydrothermal. Here triethylamine (TEA) was used as a hydroxylating agent. As-synthesized ZnO NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) analysis. Synthesized ZnO nanoparticle was used for the preparation of ZnO-water based nanofluid and its application in heat transfer enhancement in light water nuclear reactor. In this work, ZnO-water based nanofluid of different volume concentration (1%, 2% and 3%) and particle size of 10 nm and 20 nm is used for enhancement in heat transfer in annular channel by using two phase approach. The particle size of 10 nm gives better result for enhancing the heat transfer rate in comparison to 20 nm particle size in nuclear reactor.

  14. Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories

    Jacobsen, Nicklas Raun; Stoeger, Tobias; van den Brule, Sybille

    2015-01-01

    Inhalation is the main pathway of ZnO exposure in the occupational environment but only few studies have addressed toxic effects after pulmonary exposure to ZnO nanoparticles (NP). Here we present results from three studies of pulmonary exposure and toxicity of ZnO NP in mice. The studies were...

  15. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    Javed, Rabia [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Usman, Muhammad, E-mail: uk_phy@yahoo.com [Department of Physics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, School of Science and Engineering, Lahore University of Management Sciences, Lahore 54729 (Pakistan); Tabassum, Saira; Zia, Muhammad [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2016-11-15

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  16. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-01-01

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  17. Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte

    Shah, Jyoti; Kumar Kotnala, Ravinder

    2017-09-01

    In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.

  18. Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles

    Patel, Prayas Chandra; Ghosh, Surajit; Srivastava, P.C., E-mail: pcsrivastava50@gmail.com

    2016-09-15

    Graphical abstract: The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. - Highlights: • Phase change of cubic ZnS to hexagonal ZnO via heat treatment. • Band gap was found to decrease with increasing calcinations temperature. • ZnO samples have higher magnetic moment than ZnS. • Blocking Temperature of the samples is well above room temperature. • Maximum negative%MR with saturation value ∼38% was found for sample calcined at 600° C. - Abstract: The present work concentrates on the synthesis of cubic ZnS and hexagonal ZnO semiconducting nanoparticle from same precursor via co-precipitation method. The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. From the analysis of influence of calcination temperature on the structural, optical and vibrational properties of the samples, an optimum temperature was found for the total conversion of ZnS nanoparticles to ZnO. Role of quantum confinement due to finite size is evident from the blue shift of the fundamental absorption in UV–vis spectra only in the ZnS nanoparticles. The semiconducting nature of the prepared samples is confirmed from the UV–vis, PL study and transport study. From the magnetic and transport studies, pure ZnO phase was found to be more prone to magnetic field.

  19. Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles

    Singh, A.K.; Viswanath, V.; Janu, V.C.

    2009-01-01

    Zinc oxide nanoparticles were synthesized using chemical method in alcohol base. During synthesis three capping agents, i.e. triethanolamine (TEA), oleic acid and thioglycerol, were used and the effect of concentrations was analyzed for their effectiveness in limiting the particle growth. Thermal stability of ZnO nanoparticles prepared using TEA, oleic acid and thioglycerol capping agents, was studied using thermogravimetric analyzer (TGA). ZnO nanoparticles capped with TEA showed maximum weight loss. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for structural and morphological characterization of ZnO nanoparticles. Particle size was evaluated using effective mass approximation method from UV-vis spectroscopy and Scherrer's formula from XRD patterns. XRD analysis revealed single crystal ZnO nanoparticles of size 12-20 nm in case of TEA capping. TEA, oleic acid and thioglycerol capped synthesized ZnO nanoparticles were investigated at room temperature photoluminescence for three excitation wavelengths i.e. 304, 322 and 325 nm, showing strong peaks at about 471 nm when excited at 322 and 325 nm whereas strong peak was observed at 411 for 304 nm excitation.

  20. Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell

    Hongsith, Kritsada [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP center), CHE, Bangkok 10400 (Thailand); Hongsith, Niyom [Thailand Center of Excellence in Physics (ThEP center), CHE, Bangkok 10400 (Thailand); School of Science, University of Phayao, Phayao 56000 (Thailand); Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP center), CHE, Bangkok 10400 (Thailand); Singjai, Pisith [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Choopun, Supab, E-mail: supab99@gmail.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP center), CHE, Bangkok 10400 (Thailand)

    2013-07-31

    The semiconducting layers of ZnO nanoparticles (ZN), ZnO powder (ZP) and ZnO nanopowder (ZNP) were designed and fabricated for double-layered semiconducting photoelectrode in dye-sensitized solar cells (DSSCs). The under-layer was ZN, which was prepared by simple and cost-effective sparking technique onto F-doped tin oxide (FTO) glass substrate and its thickness was controlled by number of sparking cycles for 0, 10, 25, 50 and 100 rounds under atmospheric pressure. Then, ZP or ZNP was screened on to ZN to form double-layered photoelectrode. Here, the DSSC structures were FTO/double-layered ZnO/Eosin Y/electrolyte/Pt counterelectrode. The best results of DSSCs were observed with J{sub sc} of 4.71 mA/cm{sup 2} and 5.56 mA/cm{sup 2} and photoconversion efficiency of 1.11% and 1.14% at 50 sparking cycles for ZP and ZNP over-layers, respectively. The efficiency enhancement can be explained by combination effects of electron and light scattering. Moreover, the modified equation of short circuit current density was developed and effectively used to explain the efficiency enhancement. - Highlights: • Effect of under-layer thickness is investigated. • Simple and cost-effective sparking technique is used for ZnO nanoparticles. • Efficiency enhancement can be explained by both electron and light scattering. • Modified equation of short circuit current density was developed for enhancement.

  1. Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell

    Hongsith, Kritsada; Hongsith, Niyom; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Singjai, Pisith; Choopun, Supab

    2013-01-01

    The semiconducting layers of ZnO nanoparticles (ZN), ZnO powder (ZP) and ZnO nanopowder (ZNP) were designed and fabricated for double-layered semiconducting photoelectrode in dye-sensitized solar cells (DSSCs). The under-layer was ZN, which was prepared by simple and cost-effective sparking technique onto F-doped tin oxide (FTO) glass substrate and its thickness was controlled by number of sparking cycles for 0, 10, 25, 50 and 100 rounds under atmospheric pressure. Then, ZP or ZNP was screened on to ZN to form double-layered photoelectrode. Here, the DSSC structures were FTO/double-layered ZnO/Eosin Y/electrolyte/Pt counterelectrode. The best results of DSSCs were observed with J sc of 4.71 mA/cm 2 and 5.56 mA/cm 2 and photoconversion efficiency of 1.11% and 1.14% at 50 sparking cycles for ZP and ZNP over-layers, respectively. The efficiency enhancement can be explained by combination effects of electron and light scattering. Moreover, the modified equation of short circuit current density was developed and effectively used to explain the efficiency enhancement. - Highlights: • Effect of under-layer thickness is investigated. • Simple and cost-effective sparking technique is used for ZnO nanoparticles. • Efficiency enhancement can be explained by both electron and light scattering. • Modified equation of short circuit current density was developed for enhancement

  2. Synergistic Effects of Zinc Oxide Nanoparticles and Fatty Acids on Toxicity to Caco-2 Cells

    Cao, Yi; Roursgaard, Martin; Kermanizadeh, Ali

    2015-01-01

    epithelial (Caco-2) cells. The ZnO NPs exposure concentration dependently induced cytotoxicity to Caco-2 cells showing as reduced proliferation and activity measured by 3 different assays. PA exposure induced cytotoxicity, and coexposure to ZnO NPs and PA showed the largest cytotoxic effects. The presence......Fatty acids exposure may increase sensitivity of intestinal epithelial cells to cytotoxic effects of zinc oxide (ZnO) nanoparticles (NPs). This study evaluated the synergistic effects of ZnO NPs and palmitic acid (PA) or free fatty acids (FFAs) mixture (oleic/PA 2:1) on toxicity to human colon...

  3. Investigation of the cytotoxic and antileishmanal effects of fagonia indica l. extract and extract mediated silver nanoparticles (AgNPs)

    Ullah, I.; Shinwari, Z. K.; Khalil, A. T.

    2017-01-01

    Leishmaniasis is one of the globally neglected tropical disease cause by protozoan parasite of the genus Leishmania. In Pakistan, cutaneous leishmaniasis is more sporadic in the Afghan refugee camps, which is concern for the local villager and Pakistani population. In the current study an approache was made to synthesise biogenic silver nanoparticles using Fagonia indica leaf extract. Furthermore, the antileishmanial activity of the nanoparticles was evaluated compared to the crude extracts against Leishmania tropica which is the causative agent of cutenious leishmaniasis. MTT cell viability assay was used to determine the non toxicological concentration of the extract and nanoparticle in macrophage cell lines (J774), and the antileishmanial activity. We found that silver nanoparticles are not toxic to macropage cell above 30 μg/ml. where as the IC/sub 50/ against leishmania parsites was calculated as 8.16+-0.63 μg/ml and 4.8+-0.819 μg/ml for extract and AgNPs respectively. We also determine the infection index of the parasite in the macrophage cell. The infectivity of parasites also decreases as compared to control group after activation of macrophages. We further, evaluate the mechanism of growth inhibition using Griess reagent for the estimation of nitrogen oxide. We found that both the extract and AgNPs produce an elevated level of nitrogen oxide free radical. These radical produce oxidative stress in the cell that lead to the reduced metabolic activities of the parasites and ultimate death. Overall, the results indicate that Fagonia indica leves extract and AgNPs are potent antileishmanial agents. (author)

  4. Synthesis and Characterization of Antireflective ZnO Nanoparticles Coatings Used for Energy Improving Efficiency of Silicone Solar Cells

    Pîslaru-Dǎnescu, Lucian; Chitanu, Elena; El-Leathey, Lucia-Andreea; Marinescu, Virgil; Marin, Dorian; Sbârcea, Beatrice-Gabriela

    2018-03-01

    The paper proposes a new and complex process for the synthesis of ZnO nanoparticles for antireflective coating corresponding to silicone solar cells applications. The process consists of two major steps: preparation of seed layer and hydrothermal growth of ZnO nanoparticles. Due to the fact that the seed layer morphology influences the ZnO nanoparticles proprieties, the process optimization of the seed layer preparation is necessary. Following the hydrothermal growth of the ZnO nanoparticles, antireflective coating of silicone solar cells is achieved. After determining the functional parameters of the solar cells provided either with glass or with ZnO, it is concluded that all the parameters values are superior in the case of solar cells with ZnO antireflection coating and are increasing along with the solar irradiance.

  5. Green method for producing hierarchically assembled pristine porous ZnO nanoparticles with narrow particle size distribution

    Escobedo-Morales, A., E-mail: alejandro.escobedo@correo.buap.mx [Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Téllez-Flores, D.; Ruiz Peralta, Ma. de Lourdes [Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Garcia-Serrano, J.; Herrera-González, Ana M. [Centro de Investigaciones en Materiales y Metalurgia, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca Tulancingo Km 4.5, Pachuca, Hidalgo (Mexico); Rubio-Rosas, E. [Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Sánchez-Mora, E. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, 72570 Puebla, Pue. (Mexico); Olivares Xometl, O. [Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico)

    2015-02-01

    A green method for producing pristine porous ZnO nanoparticles with narrow particle size distribution is reported. This method consists in synthesizing ZnO{sub 2} nanopowders via a hydrothermal route using cheap and non-toxic reagents, and its subsequent thermal decomposition at low temperature under a non-protective atmosphere (air). The morphology, structural and optical properties of the obtained porous ZnO nanoparticles were studied by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and nitrogen adsorption–desorption measurements. It was found that after thermal decomposition of the ZnO{sub 2} powders, pristine ZnO nanoparticles are obtained. These particles are round-shaped with narrow size distribution. A further analysis of the obtained ZnO nanoparticles reveals that they are hierarchical self-assemblies of primary ZnO particles. The agglomeration of these primary particles at the very early stage of the thermal decomposition of ZnO{sub 2} powders provides to the resulting ZnO nanoparticles a porous nature. The possibility of using the synthesized porous ZnO nanoparticles as photocatalysts has been evaluated on the degradation of rhodamine B dye. - Highlights: • A green synthesis method for obtaining porous ZnO nanoparticles is reported. • The obtained ZnO nanoparticles have narrow particle size distribution. • This method allows obtaining pristine ZnO nanoparticles avoiding unintentional doping. • A growth mechanism for the obtained porous ZnO nanoparticles is proposed.

  6. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    Kumar, Shalendra; Song, T.K.; Gautam, Sanjeev; Chae, K.H.; Kim, S.S.; Jang, K.W.

    2015-01-01

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L 3,2 NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L 3,2 edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles

  7. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Elbaum, Danek; Koper, Kamil; Stępień, Piotr

    2013-01-01

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles’ green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell. (paper)

  8. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Aggregation-based colorimetric sensor for determination of prothioconazole fungicide using colloidal silver nanoparticles (AgNPs)

    Ivrigh, Zahra Jafar-Nezhad; Fahimi-Kashani, Nafiseh; Hormozi-Nezhad, M. Reza

    2017-12-01

    There is a growing interest in developing high-performance sensors monitoring fungicides, due to their broadly usage and their adverse effects on humans and wildlife. In the present study, a colorimetric probe has been proposed for detection of prothioconazole based on aggregation of unmodified silver nanoparticles (AgNPs). Under optimized condition, linear relationships between the concentration of prothioconazole and the absorbance ratio of A500/A395 were found over the range of 0.01 μg·mL- 1 to 0.4 μg·mL- 1 with quantification limit as low as 1.7 ng·mL- 1. Furthermore, AgNPs color change from yellow to pink-orange in presence of prothioconazole, indicates highly sensitive naked-eye colorimetric assay for quantifying prothioconazole in real applications. The proposed approach was successfully used for the determination of prothioconazole in wheat flour and paddy water sample.

  10. Water-repellent coatings prepared by modification of ZnO nanoparticles

    Chakradhar, R. P. S.; Dinesh Kumar, V.

    Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.

  11. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Patil NA

    2016-09-01

    Full Text Available Nayana A Patil,1,2 WN Gade,2 Deepti D Deobagkar1 1Department of Zoology, Molecular Biology Research Laboratory, Centre of Advanced Studies, 2Department of Biotechnology, Proteomic Research Laboratory, Savitribai Phule Pune University, Pune, India Abstract: Titanium dioxide (TiO2 and zinc oxide (ZnO nanoparticles (NPs are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5 cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear

  12. Local transport properties, morphology and microstructure of ZnO decorated SiO{sub 2} nanoparticles

    Van Nostrand, Joseph E [Air Force Research Laboratory, Information Directorate, Rome, NY (United States); Cortez, Rebecca [Union College, Schenectady, NY (United States); Rice, Zachary P; Cady, Nathaniel C; Bergkvist, Magnus, E-mail: Joseph.VanNostrand@rl.af.mil [Albany College of Nanoscale Science and Engineering, Albany, NY (United States)

    2010-10-15

    We report on a novel, surfactant free method for achieving nanocrystalline ZnO decoration of an SiO{sub 2} nanoparticle at ambient temperature. The size distributions of the naked and decorated SiO{sub 2} nanoparticles are measured by means of dynamic light scattering, and a monodisperse distribution is observed for each. The morphology and microstructure of the nanoparticles are explored using atomic force microscopy and high resolution transmission electron microscopy. Investigation of the optical properties of the ZnO decorated SiO{sub 2} nanoparticles shows absorption at 350 nm. This blue shift in absorption as compared to bulk ZnO is shown to be consistent with quantum confinement effects due to the small size of the ZnO nanocrystals. Finally, the local electronic transport properties of the nanoparticles are explored by scanning conductance atomic force microscopy. A memristive hysteresis in the transport properties of the individual ZnO decorated SiO{sub 2} nanoparticles is observed. Optical absorption measurements suggest the presence of oxygen vacancies, whose migration and annihilation appear to contribute to the dynamic conduction properties of the ZnO decorated nanoparticles. We believe this to be the first demonstration of a ZnO decorated SiO{sub 2} nanoparticle, and this represents a simple yet powerful way of achieving the optical and electrical properties of ZnO in combination with the simplicity of SiO{sub 2} synthesis.

  13. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent

    M.S. Geetha

    2016-09-01

    Full Text Available Presently the progress of green chemistry in the synthesis of nanoparticles with the use of plants has engrossed a great attention. This study reports the synthesis of ZnO using latex of Euphorbia Jatropa as reducing agent. As prepared product was characterized by powder X-ray diffractometer (PXRD, Fourier transform infra-red spectroscopy (FTIR, scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS, transmission electron microscopy (TEM, X-ray photo electron spectroscopy (XPS, Rietveld refinement, UV–Visible spectroscopy and photoluminescence (PL. The concentration of plant latex plays an important role in controlling the size of the particle and its morphology. PXRD graphs showed the well crystallisation of the particles. The average particle size was calculated using Scherrer equation and advanced Williamson Hall (WH plots. The average particle size was around 15 nm. This result was also supported by SEM and TEM analyses. FTIR shows the characteristic peak of ZnO at 435 cm−1. SEM and TEM micrographs show that the particles were almost hexagonal in nature. EDS of SEM analysis confirmed that the elements are only Zn and O. EDS confirmed purity of ZnO. Atomic states were confirmed by XPS results. Crystal parameters were determined using Rietveld refinement. From UV–Visible spectra average energy gap was calculated which is ∼3.63 eV. PL studies showed UV emission peak at 392 nm and broad band visible emission centred in the range 500–600 nm. The Commission International de I'Eclairage and colour correlated temperature coordinates were estimated for ZnO prepared using 2 ml, 4 ml and 6 ml Jatropa latex. The results indicate that the phosphor may be suitable for white light emitting diode (WLED. The study fruitfully reveals simple, fast, economical and eco friendly method of synthesis of multifunctional ZnO nanoparticles (Nps.

  14. Microwave combustion synthesis of hexagonal prism shaped ZnO nanoparticles and effect of Cr on structural, optical and electrical properties of ZnO nanoparticles

    Yathisha, R.O. [Department of Chemistry, School of Chemical Sciences, Kuvempu University, Jnanasahyadri, Shankaraghatta 577 451, Karnataka (India); Nayaka, Y. Arthoba, E-mail: drarthoba@yahoo.co.in [Department of Chemistry, School of Chemical Sciences, Kuvempu University, Jnanasahyadri, Shankaraghatta 577 451, Karnataka (India); Vidyasagar, C.C. [Department of Chemistry, School of Basic Sciences, Ranichannamma University, Belgaum 591156, Karnataka (India)

    2016-09-15

    The synthesis and study of semiconducting nanostructure materials have become a considerable interdisciplinary area of research over the past few decades. The control of morphologies and effective doping by right dopant are the two tasks for the synthesis of semiconducting nanoparticles. The present work outlines the synthesis of ZnO and Cr-ZnO nanoparticles via microwave combustion method without using any fuel. The crystal morphology, optical and electrical properties were characterized by X-ray diffraction study (XRD), UV–Visible spectroscopy (UV–Vis), Scanning electron microscopy (SEM), Energy-dispersive analysis using X-rays (EDAX), Transmission electron microscopy (TEM) and Keithley source meter. The crystal size was determined from XRD, whose values were found to be decreased with increase in the concentration of Cr up to 2 wt% and further increase in the dopant concentration resulted the formation secondary phase (ZnCr{sub 2}O{sub 4}). Scanning electron micrographs shows the hexagonal prism structure of ZnO and Cr-ZnO nanoparticles. EDAX shows the existence of Cr ion in the Cr-ZnO. The optical properties and bandgap studies were undertaken by UV–Visible spectroscopy. I-V characterization study was performed to determine the electrical property of ZnO and Cr-ZnO films. - Highlights: • The prism shaped Zn{sub 1−x}Cr{sub x}O (0 ≤ x ≤ 0.15) was prepared by microwave combustion method. • Effect of Cr on the properties of ZnO was reported. • Change in crystal size was explained by lattice strain and Zener-Pinning effect. • The optical measurements shows up to 8 wt% of Cr doping had more efficient. • Compared to ZnO, Cr doped ZnO enhance the photo voltaic activity.

  15. Photocatalytic degradation of the Paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay

    Shakir, Mohammad; Faraz, Mohd; Sherwani, Mohd Asif; Al-Resayes, Saud I.

    2016-01-01

    The doping of semiconductor by rare earth metals nanoparticles is an effective way for increasing photocatalytic activity. Zinc oxide and Lanthanum doped Zinc oxide nanoparticles were synthesized by modifying the gel-combustion method. It was found that La can greatly enhance the cytotoxicity and photocatalytic activity of ZnO nanoparticles towards various cell lines and Paracetamol drug. These nanoparticles were characterized by various spectroscopic and other techniques which clearly revealed the presence of lanthanum ions. The absorption edge shifts towards the visible region after doping with La ions. This shift shows that the doping of La ions is favorable for absorbing the visible light. The comparative photocatalytic and cytotoxicity activity revealed that La doped ZnO nanoparticles remarkably enhanced activities as compared to the ZnO nanoparticles. The outcome of these studies offers valuable for planning La doped ZnO nanoparticles having cytotoxicity and photocatalytic activities helpful for the formulation of anticancer product and waste water remediation.

  16. Photocatalytic degradation of the Paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay

    Shakir, Mohammad, E-mail: shakir078@yahoo.com [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Faraz, Mohd [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Sherwani, Mohd Asif [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Al-Resayes, Saud I. [Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2016-08-15

    The doping of semiconductor by rare earth metals nanoparticles is an effective way for increasing photocatalytic activity. Zinc oxide and Lanthanum doped Zinc oxide nanoparticles were synthesized by modifying the gel-combustion method. It was found that La can greatly enhance the cytotoxicity and photocatalytic activity of ZnO nanoparticles towards various cell lines and Paracetamol drug. These nanoparticles were characterized by various spectroscopic and other techniques which clearly revealed the presence of lanthanum ions. The absorption edge shifts towards the visible region after doping with La ions. This shift shows that the doping of La ions is favorable for absorbing the visible light. The comparative photocatalytic and cytotoxicity activity revealed that La doped ZnO nanoparticles remarkably enhanced activities as compared to the ZnO nanoparticles. The outcome of these studies offers valuable for planning La doped ZnO nanoparticles having cytotoxicity and photocatalytic activities helpful for the formulation of anticancer product and waste water remediation.

  17. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  18. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties

    Diallo, A.; Ngom, B.D.; Park, E.; Maaza, M.

    2015-01-01

    This contribution reports for the 1st time on the synthesis and the main physical properties of ZnO nanoparticles synthesized by an entirely green physical-chemistral process using Aspalathus linearis's natural extract as an efficient reduction/oxidizing agent. Their structural and optical properties by electron microscopy, X-rays diffraction, Raman and X-rays photoemission spectroscopies as well as room temperature photoluminescence are reported. - Highlights: • 1st time report on synthesis of ZnO nanoparticles by a green process via Aspalathus linearis extract. • A. linearis's natural extract was used as an effective reduction/oxidizing agent. • Wurtzite nature of ZnO nanoparticles was confirmed via XRD, Raman, XPS and PL

  19. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties

    Diallo, A.; Ngom, B.D. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Park, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nelson Mandela African Institute for Science & Technology, Arusha (Tanzania, United Republic of); Maaza, M., E-mail: Maaza@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2015-10-15

    This contribution reports for the 1st time on the synthesis and the main physical properties of ZnO nanoparticles synthesized by an entirely green physical-chemistral process using Aspalathus linearis's natural extract as an efficient reduction/oxidizing agent. Their structural and optical properties by electron microscopy, X-rays diffraction, Raman and X-rays photoemission spectroscopies as well as room temperature photoluminescence are reported. - Highlights: • 1st time report on synthesis of ZnO nanoparticles by a green process via Aspalathus linearis extract. • A. linearis's natural extract was used as an effective reduction/oxidizing agent. • Wurtzite nature of ZnO nanoparticles was confirmed via XRD, Raman, XPS and PL.

  20. Effect of iron doping concentration on magnetic properties of ZnO nanoparticles

    Sharma, Prashant K.; Dutta, Ranu K.; Pandey, Avinash C.; Layek, Samar; Verma, H.C.

    2009-01-01

    The ZnO:Fe nanoparticles of mean size 3-10 nm were synthesized at room temperature by simple co-precipitation method. The crystallite structure, morphology and size estimation were performed by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM). The wurtzite structure of ZnO gradually degrades with the increasing Fe doping concentration. The magnetic behavior of the nanoparticles of ZnO with varying Fe doping concentration was investigated using a vibrating sample magnetometer (VSM). Initially these nanoparticles showed strong ferromagnetic behavior, however at higher doping percentage of Fe, the ferromagnetic behavior was suppressed and paramagnetic nature was observed. The enhanced antiferromagnetic interaction between neighboring Fe-Fe ions suppressed the ferromagnetism at higher doping concentrations of Fe. Room-temperature Moessbauer spectroscopy investigation showed Fe 3+ nature of the iron atom in ZnO matrix.

  1. In situ formation deposited ZnO nanoparticles on silk fabrics under ultrasound irradiation.

    Khanjani, Somayeh; Morsali, Ali; Joo, Sang W

    2013-03-01

    Deposition of zinc(II) oxide (ZnO) nanoparticles on the surface of silk fabrics was prepared by sequential dipping steps in alternating bath of potassium hydroxide and zinc nitrate under ultrasound irradiation. This coating involves in situ generation and deposition of ZnO in a one step. The effects of ultrasound irradiation, concentration and sequential dipping steps on growth of the ZnO nanoparticles have been studied. Results show a decrease in the particles size as increasing power of ultrasound irradiation. Also, increasing of the concentration and sequential dipping steps increase particle size. The physicochemical properties of the nanoparticles were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and wavelength dispersive X-ray (WDX). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Preparation of poly(N-vinylpyrrolidone-stabilized ZnO colloid nanoparticles

    Tatyana Gutul

    2014-04-01

    Full Text Available We propose a method for the synthesis of a colloidal ZnO solution with poly(N-vinylpyrrolidone (PVP as stabilizer. Stable colloidal solutions with good luminescence properties are obtained by using PVP as stabilizer in the synthesis of ZnO nanoparticles by a sol–gel method assisted by ultrasound. Nanoparticles with sizes of 30–40 nm in a PVP matrix are produced as a solid product. The colloidal ZnO/PVP/methanol solution, apart from the most intense PL band at 356 nm coming from the PVP, exhibits a strong PL band at 376 nm (3.30 eV which corresponds to the emission of the free exciton recombination in ZnO nanoparticles.

  3. Magnetic behavior of Co–Mn co-doped ZnO nanoparticles

    Li, Hengda; Liu, Xinzhong; Zheng, Zhigong

    2014-01-01

    Here, we report on systematic studies of the magnetic properties of Co and Mn co-doped ZnO nanoparticles prepared by a sol–gel technique. The effect of the concentration of the doping ions on the magnetic properties of Co and Mn co-doped ZnO nanoparticles is presented. X-ray diffraction characterizations (XRD) of co-doped ZnO nanoparticles are all wurtzite structure. The Zn 0.96 Co 0.02 Mn 0.02 O nanoparticles and Zn 0.94 Co 0.02 Mn 0.04 O nanoparticles display ferromagnetic behavior at room temperature. Superconducting quantum interference device (SQUID) magnetometer figures show that with the concentration of the Mn ions increased, the saturation magnetic moment (M s ) increased, and the magnetic is probably due to the co-doping of the Mn ions. Our results demonstrate that the Mn ions doping concentration play an important role in the ferromagnetic properties of Co–Mn co-doped ZnO nanoparticles at room temperature. - Highlights: • The effect of the doping ions on the magnetic properties is presented. • The magnetic is probably due to the co-doping of the Mn ions. • The Mn ions concentration play an important role in the ferromagnetic properties

  4. Oxygen vacancy induced by La and Fe into ZnO nanoparticles to modify ferromagnetic ordering

    Verma, Kuldeep Chand; Kotnala, R.K.

    2016-01-01

    We reported long-range ferromagnetic interactions in La doped Zn 0.95 Fe 0.05 O nanoparticles that mediated through lattice defects or vacancies. Zn 0.92 Fe 0.05 La 0.03 O (ZFLaO53) nanoparticles were synthesized by a sol–gel process. X-ray fluorescence spectrum of ZFLaO53 detects the weight percentage of Zn, Fe, La and O. X-ray diffraction shows the hexagonal Wurtzite ZnO phase. The Rietveld refinement has been used to calculate the lattice parameters and the position of Zn, Fe, La and O atoms in the Wurtzite unit cell. The average size of ZFLaO53 nanoparticles is 99 nm. The agglomeration type product due to OH ions with La results into ZnO nanoparticles than nanorods that found in pure ZnO and Zn 0.95 Fe 0.05 O sample. The effect of doping concentration to induce Wurtzite ZnO structure and lattice defects has been analyzed by Raman active vibrational modes. Photoluminescence spectra show an abnormal emission in both UV and visible region, and a blue shift at near band edge is formed with doping. The room temperature magnetic measurement result into weak ferromagnetism but pure ZnO is diamagnetic. However, the temperature dependent magnetic measurement using zero-field and field cooling at dc magnetizing field 500 Oe induces long-range ferromagnetic ordering. It results into antiferromagnetic Neel temperature of ZFLaO53 at around 42 K. The magnetic hysteresis is also measured at 200, 100, 50 and 10 K measurement that indicate enhancement in ferromagnetism at low temperature. Overall, the La doping into Zn 0.95 Fe 0.05 O results into enhanced antiferromagnetic interaction as well as lattice defects/vacancies. The role of the oxygen vacancy as the dominant defects in doped ZnO must form Bound magnetic polarons has been described. - Graphical abstract: The long-range ferromagnetic order in Zn 0.92 Fe 0.05 La 0.03 O nanoparticles at low temperature measurements involves oxygen vacancy as the medium of magnetic interactions. - Highlights: • The La and Fe doping

  5. Fate of Zinc and Silver Engineered Nanoparticles in Sewerage Networks

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage sy...

  6. In-situ PXRD studies of ZnO nanoparticle growth: How do various salts influence the hydrothermal growth of ZnO?

    Bøjesen, Espen Drath

    ZnO is a material of great scientific and everyday relevance; it is used widely in all sorts of application. Synthesis of ZnO nanoparticles can be performed by a wide assortment of methods and a tremendous variety of sizes and shapes, it has been suggested that ZnO is the one known compound showing...... the broadest range of nanostructures. Previously many different in-situ characterization methods have been used to investigate the ZnO formation under various synthesis conditions; these include UV-VIS and SAXS. These methods were primarily used to give information on particle size of ZnO formed using soft...... chemical methods and non-aqueous solvents. In our work we have studied the formation of ZnO during hydrothermal syntheses using in-situ powder X-ray diffraction, thus enabling us to extract crystallographic as well as microstructural information. The data was analyzed using Rietveld refinement and whole...

  7. Effects of humic acid on the interactions between zinc oxide nanoparticles and bacterial biofilms.

    Ouyang, Kai; Yu, Xiao-Ying; Zhu, Yunlin; Gao, Chunhui; Huang, Qiaoyun; Cai, Peng

    2017-12-01

    The effects of humic acid (HA) on interactions between ZnO nanoparticles (ZnO NPs) and Pseudomonas putida KT2440 biofilms at different maturity stages were investigated. Three stages of biofilm development were identified according to bacterial adenosine triphosphate (ATP) activity associated with biofilm development process. In the initial biofilm stage 1, the ATP content of bacteria was reduced by more than 90% when biofilms were exposed to ZnO NPs. However, in the mature biofilm stages 2 and 3, the ATP content was only slightly decreased. Biofilms at stage 3 exhibited less susceptibility to ZnO NPs than biofilms at stage 2. These results suggest that more mature biofilms have a significantly higher tolerance to ZnO NPs compared to young biofilms. In addition, biofilms with intact extracellular polymeric substances (EPS) showed higher tolerance to ZnO NPs than those without EPS, indicating that EPS play a key role in alleviating the toxic effects of ZnO NPs. In both pure ZnO NPs and ZnO-HA mixtures, dissolved Zn 2+ originating from the NPs significantly contributed to the overall toxicity. The presence of HA dramatically decreased the toxicity of ZnO NPs due to the binding of Zn 2+ on HA. The combined results from this work suggest that the biofilm maturity stages and environmental constituents (such as humic acid) are important factors to consider when evaluating potential risks of NPs to ecological systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple.

    Li, Wenhui; Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan; Qin, Yuyue

    2017-07-31

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce.

  9. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.

    2017-06-01

    The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  10. Influence of Nanosized Silicon Oxide on the Luminescent Properties of ZnO Nanoparticles

    Vitaliy Shvalagin

    2016-01-01

    Full Text Available For practical use of nanosized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of ZnO nanoparticles and obtain high-luminescent ZnO/SiO2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nanocrystals to the source solutions during the synthesis of ZnO nanoparticles. Then the quantum yield of luminescence of the obtained ZnO/SiO2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of ZnO nanocrystals on the surface of silica, which reduces the probability of separation of photogenerated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of ZnO nanoparticles. This way of increasing nano-ZnO luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  11. RETRACTED: Facile, eco-friendly and template free photosynthesis of cauliflower like ZnO nanoparticles using leaf extract of Tamarindus indica (L.) and its biological evolution of antibacterial and antifungal activities.

    Elumalai, K; Velmurugan, S; Ravi, S; Kathiravan, V; Ashokkumar, S

    2015-02-05

    In the present investigation, we chose the very simple and eco-friendly chemical method for synthesis of zinc oxide nanoparticles from leaf extract of Tamarindus indica (L.) (T. indica) and developed the new green route for synthesis of nanoparticles. Formed product has been studied by UV-vis absorption spectroscopy, Photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM) and with corresponding energy dispersive X-ray analysis (EDX). Mainly, the present results depicted that the synthesized nanoproducts are moderately stable, hexagonal phase, roughly spherical with maximum particles in size range within 19-37 nm in diameter. The antibacterial and fungal activities of aqueous extracts of T. indica were ended with corresponding disk diffusion and Minimum Inhibitory Concentration (MIC). The highest mean zones of inhibition were observed in the ZnO NPs (200 μg/mL) against Staphylococcus aureus (13.1±0.28). Finally, it can be concluded that microbial activity of ZnO NPs has more susceptible S. aureus than the other micro organisms. Further, the present investigation suggests that ZnO NPs has the potential applications for various medical and industrial fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Sea-Urchin-Like ZnO Nanoparticle Film for Dye-Sensitized Solar Cells

    Cheng-Wen Ma

    2015-01-01

    Full Text Available We present novel sea-urchin-like ZnO nanoparticles synthesized using a chemical solution method. Solution approaches to synthesizing ZnO nanostructures have several advantages including low growth temperatures and high potential for scaling up. We investigated the influence of reaction times on the thickness and morphology of sea-urchin-like ZnO nanoparticles, and XRD patterns show strong intensity in every direction. Dye-sensitized solar cells (DSSCs were developed using the synthesized ZnO nanostructures as photoanodes. The DSSCs comprised a fluorine-doped tin oxide (FTO glass with dense ZnO nanostructures as the working electrode, a platinized FTO glass as the counter electrode, N719-based dye, and I-/I3-liquid electrolyte. The DSSC fabricated using such nanostructures yielded a high power conversion efficiency of 1.16% with an incident photo-to-current efficiency (IPCE as high as 15.32%. Electrochemical impedance spectroscopy was applied to investigate the characteristics of DSSCs. An improvement in the electron transport in the ZnO photoanode was also observed.

  13. Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs) and Silver Nitrate (AgNO3) on Brassica sp.

    Vishwakarma, Kanchan; Shweta; Upadhyay, Neha; Singh, Jaspreet; Liu, Shiliang; Singh, Vijay P; Prasad, Sheo M; Chauhan, Devendra K; Tripathi, Durgesh K; Sharma, Shivesh

    2017-01-01

    Continuous formation and utilization of nanoparticles (NPs) have resulted into significant discharge of nanosized particles into the environment. NPs find applications in numerous products and agriculture sector, and gaining importance in recent years. In the present study, silver nanoparticles (AgNPs) were biosynthesized from silver nitrate (AgNO 3 ) by green synthesis approach using Aloe vera extract. Mustard ( Brassica sp.) seedlings were grown hydroponically and toxicity of both AgNP and AgNO 3 (as ionic Ag + ) was assessed at various concentrations (1 and 3 mM) by analyzing shoot and root length, fresh mass, protein content, photosynthetic pigments and performance, cell viability, oxidative damage, DNA degradation and enzyme activities. The results revealed that both AgNPs and AgNO 3 declined growth of Brassica seedlings due to enhanced accumulation of AgNPs and AgNO 3 that subsequently caused severe inhibition in photosynthesis. Further, the results showed that both AgNPs and AgNO 3 induced oxidative stress as indicated by histochemical staining of superoxide radical and hydrogen peroxide that was manifested in terms of DNA degradation and cell death. Activities of antioxidants, i.e., ascorbate peroxidase (APX) and catalase (CAT) were inhibited by AgNPs and AgNO 3. Interestingly, damaging impact of AgNPs was lesser than AgNO 3 on Brassica seedlings which was due to lesser accumulation of AgNPs and better activities of APX and CAT, which resulted in lesser oxidative stress, DNA degradation and cell death. The results of the present study showed differential impact of AgNPs and AgNO 3 on Brassica seedlings, their mode of action, and reasons for their differential impact. The results of the present study could be implied in toxicological research for designing strategies to reduce adverse impact of AgNPs and AgNO 3 on crop plants.

  14. Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs and Silver Nitrate (AgNO3 on Brassica sp.

    Kanchan Vishwakarma

    2017-10-01

    Full Text Available Continuous formation and utilization of nanoparticles (NPs have resulted into significant discharge of nanosized particles into the environment. NPs find applications in numerous products and agriculture sector, and gaining importance in recent years. In the present study, silver nanoparticles (AgNPs were biosynthesized from silver nitrate (AgNO3 by green synthesis approach using Aloe vera extract. Mustard (Brassica sp. seedlings were grown hydroponically and toxicity of both AgNP and AgNO3 (as ionic Ag+ was assessed at various concentrations (1 and 3 mM by analyzing shoot and root length, fresh mass, protein content, photosynthetic pigments and performance, cell viability, oxidative damage, DNA degradation and enzyme activities. The results revealed that both AgNPs and AgNO3 declined growth of Brassica seedlings due to enhanced accumulation of AgNPs and AgNO3 that subsequently caused severe inhibition in photosynthesis. Further, the results showed that both AgNPs and AgNO3 induced oxidative stress as indicated by histochemical staining of superoxide radical and hydrogen peroxide that was manifested in terms of DNA degradation and cell death. Activities of antioxidants, i.e., ascorbate peroxidase (APX and catalase (CAT were inhibited by AgNPs and AgNO3. Interestingly, damaging impact of AgNPs was lesser than AgNO3 on Brassica seedlings which was due to lesser accumulation of AgNPs and better activities of APX and CAT, which resulted in lesser oxidative stress, DNA degradation and cell death. The results of the present study showed differential impact of AgNPs and AgNO3 on Brassica seedlings, their mode of action, and reasons for their differential impact. The results of the present study could be implied in toxicological research for designing strategies to reduce adverse impact of AgNPs and AgNO3 on crop plants.

  15. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles

    Hanley, Cory; Layne, Janet; Feris, Kevin; Wingett, Denise [Department of Biological Sciences, Boise State University, Boise, ID 83725 (United States); Punnoose, Alex; Reddy, K M; Coombs, Isaac; Coombs, Andrew [Department of Physics, Boise State University, Boise, ID 83725 (United States)], E-mail: denisewingett@boisestate.edu

    2008-07-23

    Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here we examine the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells ({approx}28-35 x) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity, as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. Mechanisms of toxicity appear to involve the generation of reactive oxygen species, with cancerous T cells producing higher inducible levels than normal T cells. In addition, nanoparticles were found to induce apoptosis and the inhibition of reactive oxygen species was found to be protective against nanoparticle induced cell death. The novel findings of cell selective toxicity, towards potential disease causing cells, indicate a potential utility of ZnO nanoparticles in the treatment of cancer and/or autoimmunity.

  16. Solar-assisted synthesis of ZnO nanoparticles using lime juice: a green approach

    Hinge, Shruti P.; Pandit, Aniruddha B.

    2017-12-01

    Zinc oxide (ZnO) nanoparticles are those nanoparticles which have been synthesized in various morphologies and shapes. Their size and shape dependent properties and their applications in vivid sectors of science and technology make them interesting to synthesize. Present work reports a green method for ZnO nanoparticle synthesis using lime juice and sunlight. ZnO nanoparticles were also synthesized by conventionally used methods like heating, stirring or no heating and/or stirring. The nanoparticles were characterized using different techniques like UV-vis spectroscopy, scanning electron microscopy (SEM), x-ray diffraction (XRD) and dynamic light scattering (DLS). Thermo gravimetric analysis (TGA) was also carried out for the intermediate product to select the calcination temperature. Stoichiometric study reveals that the intermediate product formed is zinc citrate dihydrate. The synthesized calcined nanoparticles have good crystallinity, uniform shape, and high purity and were in the size range of 20-30 nm. These nanoparticles formed agglomerates of various shapes in the size range of 200-750 nm. This process is ecofriendly and is amiable for easy scale up.

  17. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles

    Hanley, Cory; Layne, Janet; Feris, Kevin; Wingett, Denise; Punnoose, Alex; Reddy, K M; Coombs, Isaac; Coombs, Andrew

    2008-01-01

    Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here we examine the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells (∼28-35 x) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity, as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. Mechanisms of toxicity appear to involve the generation of reactive oxygen species, with cancerous T cells producing higher inducible levels than normal T cells. In addition, nanoparticles were found to induce apoptosis and the inhibition of reactive oxygen species was found to be protective against nanoparticle induced cell death. The novel findings of cell selective toxicity, towards potential disease causing cells, indicate a potential utility of ZnO nanoparticles in the treatment of cancer and/or autoimmunity

  18. Reversible low adhesive to high adhesive superhydrophobicity transition on ZnO nanoparticle surfaces

    Li, Jian; Jing, Zhijiao; Yang, Yaoxia; Zha, Fei; Yan, Long; Lei, Ziqiang

    2014-01-01

    Superhydrophobic ZnO surfaces with water contact angle of 162° and sliding angle of 2° were fabricated successfully by spraying hydrophobic ZnO nanoparticle suspensions without limitations the shape and size of substrates. The as-prepared superhydrophobic ZnO surfaces are low adhesive and a water droplet easily rolls off with the surface slightly tilted. However, after being irradiated by UV light through a photomask, it becomes highly adhesive, on which a water droplet is firmly pinned without any movement. Further annealing the irradiated film, water droplets can roll off the surface again. Reversible transition between the low adhesive rolling state and high adhesive pinning state can be realized simply by UV illumination and heat treatment alternately. At the same time, the maximum adhesive force between the superhydrophobic ZnO surfaces and the water droplet changes from extreme low (∼5.1 μN) to very high (∼136.1 μN). When irradiated without a photomask, the surface became hydrophilic. Additionally, a water droplet can be transfered from the low adhesive superhydrophobic ZnO surfaces to the hydrophilic ZnO surfaces using the high adhesive superhydrophobic ZnO surfaces as a mechanical hand.

  19. Single-Step Antimicrobial And Moisture Management Finishing Of Pc Fabric Using Zno Nanoparticles

    Ashraf Munir

    2017-09-01

    Full Text Available Functionalization of textile fabrics with metal oxide nanoparticles can be used to add antibacterial and moisture management properties to them. Current work focuses on the development of these properties on polyester/cotton woven fabrics by treating them with zinc oxide nanoparticles for workwear and sportswear applications. Zinc oxide nanoparticles, prepared by sol-gel method, were applied on fabric samples, which were then tested for antibacterial and moisture management properties using standard test methods AATCC 147 with Staphylococcus aureus and AATCC 195, respectively. It was found that application of ZnO nanoparticles improved both these properties with smaller particle imparting larger effects on both of them.

  20. Magnetic properties of sol-gel synthesized C-doped ZnO nanoparticles

    Dung, Nguyen Duc, E-mail: dung.nguyenduc@hust.edu.vn [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet, Hanoi (Viet Nam); Son, Cao Thai; Loc, Pham Vu; Cuong, Nguyen Huu; Kien, Pham The; Huy, Pham Thanh [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet, Hanoi (Viet Nam); Ha, Ngo Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet, Hanoi (Viet Nam)

    2016-05-25

    ZnO doping with Carbon (C-doped ZnO) materials were prepared by sol-gel technique following with a heat treatment process. Single phase of Wurtzite crystal structure of ZnO was concluded via x-ray diffraction (XRD) with a large amount of excess C tracking by energy dispersive X-ray spectroscopy (EDX) analysis. Two types of ZnO crystals (twinning particles) with different grain sizes and shapes were identified via scanning electron microscopy (FE-SEM). The first type has a smaller grain size of about 20 nm and hexagonal shape. And the second type has a larger grain size of about 80–120 nm and round shape. C substitutions of both Zn and O sites to form C–O and C–Zn bonds were conclusively confirmed via x-ray photoelectron spectroscope (XPS). Experimental evidences for the co-existence of different ferromagnetic phases in the materials are reported and discussed. Two Curie points at high temperatures (>500 °C) are presented. A metamagnetic transition was observed at magnetic field H = 19.2 kOe which was related to the co-existence of ferromagnetic phases. These involve in the formation of twinning C-doped ZnO nanoparticles. - Highlights: • Formation of sol-gel prepared single phase wurtzite ZnO nanoparticles. • Two morphological C-doped ZnO nanoparticles of different grain sizes. • The room temperature ferromagnetism. • An abnormal metamagnetic transition at magnetic field H = 19.2 kOe. • Two different Curie points (T{sub C}) at 500–600 °C.

  1. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    Matinise, N.; Fuku, X.G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.

    2017-01-01

    Highlights: • Biosynthesis of ZnO nanoparticlesl by green process using Moringa Oliefera extract. • Electrochemical studies were confirmed by cyclic and Square wave voltammetry. • XRD, HRTEM, TGA/DSC, FTIR were used to characterized the nanoparticles. - Abstract: The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV–vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  2. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    Matinise, N., E-mail: nmatinise@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Fuku, X.G., E-mail: fuku@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Kaviyarasu, K., E-mail: kasinathankariyarasu@gmail.com [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Mayedwa, N., E-mail: nmyedi@gmail.com [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa)

    2017-06-01

    Highlights: • Biosynthesis of ZnO nanoparticlesl by green process using Moringa Oliefera extract. • Electrochemical studies were confirmed by cyclic and Square wave voltammetry. • XRD, HRTEM, TGA/DSC, FTIR were used to characterized the nanoparticles. - Abstract: The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV–vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  3. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors.

    López-Marzo, Adaris M; Hoyos-de-la-Torre, Raquel; Baldrich, Eva

    2018-03-20

    Gold nanoparticles (AuNPs) have been exploited as signal-producing tags in electrochemical biosensors. However, the electrochemical detection of AuNPs is currently performed using corrosive acid solutions, which may raise health and environmental concerns. Here, oxidant salts, and specifically the environmentally friendly and occupational safe NaNO 3 /NaCl mixture, have been evaluated for the first time as potential alternatives to the acid solutions traditionally used for AuNPs electrooxidation. In addition, a new strategy to improve the sensitivity of the biosensor through PEG-based ligand exchange to produce less compact and easier to oxidize AuNPs immunoconjugates is presented too. As we show, the electrochemical immunosensor using NaNO 3 /NaCl measurement solution for AuNPs electrooxidation and detection, coupled to the employment of PEG-capped nanoimmunoconjugates, produced results comparable to classical HCl detection. The procedure developed was next tested for human matrix metallopeptidase-9 (hMMP9) analysis, exhibiting a 0.18-23 ng/mL linear range, a detection limit of 0.06 ng/mL, and recoveries between 95 and 105% in spiked human plasma. These results show that the procedure developed is applicable to the analysis of protein biomarkers in blood plasma and could contribute to the development of more environmentally friendly AuNP-based electrochemical biosensors.

  4. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry.

    Jiang, Chuanjia; Hsu-Kim, Heileen

    2014-11-01

    The wide use of metal-based nanomaterials such as zinc oxide (ZnO) nanoparticles (NPs) has generated concerns regarding their environmental and health risks. For ZnO NPs, their toxicity in aquatic systems often depends on the release of dissolved zinc species, and the rate of dissolution is influenced by water chemistry, including the presence of zinc-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This paper reports the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved zinc in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. The effects of the deposition time and the electrochemical potential scan rate on the ASV measurement were consistent with expectations for dissolved phase measurements. The dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79 ± 19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension. Using ASV, the dissolution of ZnO NPs was studied, with or without Suwannee River Fulvic Acid (SRFA). Although SRFA diminished the ASV stripping current, dissolution of 20 nm ZnO NPs was significantly promoted at high fulvic acid to ZnO NP ratios. The ASV method described in this paper provides a useful tool for studying the dissolution kinetics of ZnO NPs in complex environmental matrices.

  5. Facile Synthesis of ZnO Nanoparticles and Their Photocatalytic Activity

    Lee, Jun Young; Ko, Sung Hyun; Kim, Sang Wook [Dongguk Univ., Yongin (Korea, Republic of); Lee, Sookeun; Kim, A Young [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of)

    2014-07-15

    This paper reports the facile synthesis methods of zinc oxide (ZnO) nanoparticles, using diethylene glycol (DEG) and polyethylene glycol (PEG400). The particle size and morphology were correlated with the PEG concentration and reaction time. With 0.75 mL of PEG400 in 150 mL of DEG and a 20 h reaction time, the ZnO nanoparticles began to disperse from a collective spherical grain shape. The ZnO nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and a N{sub 2} adsorption.desorption studies. The Brunauer-Emmett-Teller (BET) surface areas of and were 157.083, 141.559 and 233.249 m{sup 2}/g, respectively. The observed pore diameters of and were 63.4, 42.0 and 134.0 A, respectively. The pore volumes of and were 0.249, 0.148 and 0.781 cm{sup 3}/g, respectively. The photocatalytic activity of the synthesized ZnO nanoparticles was evaluated by methylene blue (MB) degradation, and the activity showed a good correlation with the N{sub 2} adsorption.desorption data.

  6. Safety evaluation of green synthesized Cola nitida pod, seed and seed shell extract-mediated silver nanoparticles (AgNPs using an Allium cepa assay

    Taofeek A. Yekeen

    2017-11-01

    Full Text Available The increase in the use of nanoparticles in various fields of human endeavours calls for the need to understand the toxic potential of green synthesized nanoparticles. Cytogenotoxic potentials of green synthesized Cola pod (Cp-AgNPs, seed (Cs-AgNPs and seed shell (Css-AgNPs silver nanoparticles and silver nitrate salts (Ags were evaluated using an A. cepa assay. Twenty onion bulbs were exposed to 0.01, 0.10, 1.0, 10.0, and 100.0 μg/ml AgNPs and Ags solutions. Microscopic evaluation was performed at 24, 48 and 72 h with 5000 cells per concentration scored for chromosomal aberrations, while the effects on the root growth were evaluated at 72 h. The observed dividing cells and mitotic inhibition were dose-dependent for the three AgNPs and Ags at 24, 48 and 72 h. Mitotic index obtained for 1.0, 10 and 100 μg/mL at all times of evaluation were less than half the value of the negative control, while cell arrest was only observed at 72 h at a concentration of 100 μg/mL for the three AgNPs. The chromosomal aberrations observed were c-mitosis, a chromosome bridge, a vagrant chromosome, and a sticky chromosome, which indicate the potential of AgNPs for genotoxicity. The mean root length of A. cepa treated with AgNPs showed a dose-dependent significant decrease compared to the control, indicating their inhibitory potential, but the mean root lengths were found to be lower at all concentrations compared to those treated with Ags, thus showing the attenuation of growth inhibition. The EC50 values revealed the order of growth inhibition as Ags>Cp-AgNPs>Css-AgNPs>Cs-AgNPs. The cytogenotoxic potential of the AgNPs suggests that caution should be exercised in their usage to prevent environmental pollution. Keywords: Green synthesis, Nanoparticles, Silver, Aberration, Allium cepa, Cola nitida

  7. Cu{sub 2}ZnSn(S,Se){sub 4} from Cu{sub x}SnS{sub y} nanoparticle precursors on ZnO nanorod arrays

    Kavalakkatt, Jaison, E-mail: jai.k@web.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universitaet Berlin, Berlin (Germany); Lin, Xianzhong; Kornhuber, Kai [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Kusch, Patryk [Freie Universitaet Berlin, Berlin (Germany); Ennaoui, Ahmed [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Reich, Stephanie [Freie Universitaet Berlin, Berlin (Germany); Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universitaet Berlin, Berlin (Germany)

    2013-05-01

    Solar cells with Cu{sub 2}ZnSnS{sub 4} absorber thin films have a potential for high energy conversion efficiencies with earth-abundant and non-toxic elements. In this work the formation of CZTSSe from Cu{sub x}SnS{sub y} nanoparticles (NPs) deposited on ZnO nanorod (NR) arrays as precursors for zinc is investigated. The NPs are prepared using a chemical route and are dispersed in toluene. The ZnO NRs are grown on fluorine doped SnO{sub 2} coated glass substrates by electro deposition method. A series of samples are annealed at different temperatures between 300 °C and 550 °C in selenium containing argon atmosphere. To investigate the products of the reaction between the precursors the series is analyzed by means of X-ray diffraction (XRD) and Raman spectroscopy. The morphology is recorded by scanning electron microscopy (SEM) images of broken cross sections. The XRD measurements and the SEM images show the disappearing of ZnO NRs with increasing annealing temperature. Simultaneously the XRD and Raman measurements show the formation of CZTSSe. The formation of secondary phases and the optimum conditions for the preparation of CZTSSe is discussed. - Highlights: ► Cu{sub x}SnS{sub y} nanoparticles are deposited on ZnO nanorod arrays. ► Samples are annealed at different temperatures (300–550 °C) in Se/Ar-atmosphere. ► Raman spectroscopy, X-ray diffraction and electron microscopy are performed. ► ZnO disappears with increasing annealing temperature. ► With increasing temperature Cu{sub x}SnS{sub y} and ZnO form Cu{sub 2}ZnSn(S,Se){sub 4}.

  8. Dose-dependent effect of silver nanoparticles (AgNPs on fertility and survival of Drosophila: An in-vivo study.

    Akanksha Raj

    Full Text Available Silver nanoparticles (AgNPs containing consumer products have been proliferating in the market due to its unique antimicrobial property, however, lack of in-depth knowledge about their potential effect on human health in a longer run is of great concern. Therefore, we investigated dose-dependent in vivo effect of AgNPs using Drosophila as a model system. Drosophila, a genetically tractable organism with distinct developmental stages, short life cycle and significant homology with human serves as an ideal organism to study nanomaterial-mediated toxicity. Our studies suggest that ingestion of AgNPs in Drosophila during adult stage for short and long duration significantly affects egg laying capability along with impaired growth of ovary. Additionally, dietary intake of AgNPs from larval stage has more deleterious effects that result in reduced survival, longevity, ovary size and egg laying capability at a further lower dosage. Interestingly, the trans-generational effect of AgNPs was also observed without feeding progeny with AgNPs, thereby suggesting its impact from previous generation. Our results strongly imply that higher doses of AgNPs and its administration early during development is detrimental to the reproductive health and survival of Drosophila that follows in generations to come without feeding them to AgNPs.

  9. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules.

    Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S

    2012-05-30

    Mucoadhesive chitosan based films, incorporated with insulin loaded nanoparticles (NPs) made of poly(ethylene glycol)methyl ether-block-polylactide (PEG-b-PLA) have been developed and characterised. Blank-NPs were prepared by double emulsion solvent evaporation technique with varying concentrations of the copolymer (5 and 10%, w/v). The optimised formulation was loaded with insulin (model protein) at initial loadings of 2, 5 and 10% with respect to copolymer weight. The developed NPs were analysed for size, size distribution, surface charge, morphology, encapsulation efficiency and drug release. NPs showing negative (ζ)-potential ( 300 nm and a polydispersity index (P.I.) of ≈ 0.2, irrespective of formulation process, were achieved. Insulin encapsulation efficiencies of 70% and 30% for NPs-Insulin-2 and NPs-Insulin-5 were obtained, respectively. The in vitro release behaviour of both formulations showed a classic biphasic sustained release of protein over 5 weeks which was influenced by pH of the release medium. Optimised chitosan films embedded with 3mg of insulin loaded NPs were produced by solvent casting with homogeneous distribution of NPs in the mucoadhesive matrix, which displayed excellent physico-mechanical properties. The drug delivery system has been designed as a novel platform for potential buccal delivery of macromolecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Precipitated nickel doped ZnO nanoparticles with enhanced low temperature ethanol sensing properties

    Umadevi Godavarti

    2017-12-01

    Full Text Available The Zn1-xNixO nanoparticles have been synthesized by novel co-precipitation method and systematically characterized by XRD, SEM, TEM and photo luminescence. The XRD patterns confirm the hexagonal wurzite structure without secondary phases in Ni substituted ZnO samples. SEM and TEM are used for the estimation of particle shape and size. In PL study there is a peak in the range of 380–390 nm in all samples that is attributed to the oxygen vacancies. Gas sensing tests reveal that Ni doped ZnO sensor has remarkably enhanced performance compared to pure ZnO detected at an optimum temperature 100 °C. It could detect ethanol gas in a wide concentration range with very high response, fast response–recovery time, good selectivity and stable repeatability. The possible sensing mechanism is discussed. The high response of ZnO Nanoparticles was attributed to large contacting surface area for electrons, oxygen, target gas molecule, and abundant channels for gas diffusion. The superior sensing features indicate the present Ni doped ZnO as a promising nanomaterial for gas sensors. The response time and recovery time of undoped is 75 s and 60 s and 0.25 at% Ni are found to be 60 s and 45 s at 100 °C respectively.

  11. Fabrication and characterization of Zinc Oxide (ZnO) nanoparticle by sol-gel method

    Siswanto; Akwalia, Putri Riski; Rochman, Nurul T.

    2017-01-01

    Currently, nanomaterial is an interestingfield of study. This is due to its chemical and physical properties that are superior to that of large-sized materials. One nanomaterial widely studied is zinc oxide (ZnO). In this study, a synthesis of ZnO nanoparticles made by Sol-Gel method was conducted. The process parameters used are variations in pH, in increasing order, of 7; 8; 9; 10; 11; and 12. There are two principal reactions to produce a compound oxide, namely hydrolysis and condensation. NaOH is an agent for the hydrolysis of (CH 3 COO) 2 Zn resultingin Zn (OH) 2 . Subsequently, condensation produces ZnO. Calcination was carried out at a temperature of 80 ° C for 1 hour. The ccharacterization of the samples showed that the condition of pH 12 produced the best sample with a size of 73.8 nm and ZnO percentage of 100%. Although pH 7 produced a particle size of 1.3 nm, the percentage of ZnO formed was only 42.9%. The calcination process was performed to remove CH 3 COONa. However, the process can lead to aggregation of ZnO particles to each other, which increases the particle size. (paper)

  12. Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel.

    Gopala Krishna, Prashanth; Paduvarahalli Ananthaswamy, Prashanth; Trivedi, Priyanka; Chaturvedi, Vinita; Bhangi Mutta, Nagabhushana; Sannaiah, Ananda; Erra, Amani; Yadavalli, Tejabhiram

    2017-06-01

    In this study, we report the synthesis, structural and morphological characteristics of zinc oxide (ZnO) nanoparticles using solution combustion synthesis method where lemon juice was used as the fuel. In vitro anti-tubercular activity of the synthesized ZnO nanoparticles and their biocompatibility studies, both in vitro and in vivo were carried out. The synthesized nanoparticles showed inhibition of Mycobacterium tuberculosis H37Ra strain at concentrations as low as 12.5μg/mL. In vitro cytotoxicity study performed with normal mammalian cells (L929, 3T3-L1) showed that ZnO nanoparticles are non-toxic with a Selectivity Index (SI) >10. Cytotoxicity performed on two human cancer cell lines DU-145 and Calu-6 indicated the anti-cancer activity of ZnO nanoparticles at varied concentrations. Results of blood hemolysis indicated the biocompatibility of ZnO nanoparticles. Furthermore, in vivo toxicity studies of ZnO nanoparticles conducted on Swiss albino mice (for 14days as per the OECD 423 guidelines) showed no evident toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Responses of human cells to ZnO nanoparticles: a gene transcription study†

    Moos, Philip J.; Olszewski, Kyle; Honeggar, Matthew; Cassidy, Pamela; Leachman, Sancy; Woessner, David; Cutler, N. Shane; Veranth, John M.

    2013-01-01

    The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells. PMID:21769377

  14. Synthesis of Mn doped ZnO nanoparticles with biocompatible capping

    Sharda; Jayanthi, K.; Chawla, Santa

    2010-01-01

    Free standing nanoparticles of ZnO doped with transition metal ion Mn have been prepared by solid state reaction method at 500 deg. C. X-ray diffraction (XRD) analysis confirmed high quality monophasic wurtzite hexagonal structure with particle size of 50 nm and no signature of dopant as separate phase. Incorporation of Mn has been confirmed with EDS. Bio-inorganic interface was created by capping the nanoparticles with heteromultifunctional organic stabilizer mercaptosuccinic acid (MSA). The surface morphological studies by scanning electron microscopy (SEM) showed formation of spherical particles and the nanoballs grow in size uniformly with MSA capping. MSA capping has been confirmed with thermo gravimetric analysis (TGA) and FTIR. Photoluminescence (PL) studies show that the ZnO:Mn 2+ particles are excitable by blue light and emits in orange and red. Occurrence of room temperature ferromagnetism in Mn doped ZnO makes such biocompatible luminescent magnetic nanoparticles very promising material.

  15. Parametric analysis of the growth of colloidal ZnO nanoparticles synthesized in alcoholic medium

    Fonseca, A. S.; Figueira, P. A.; Pereira, A. S.; Santos, R. J.; Trindade, T.; Nunes, M. I.

    2017-01-01

    The growth kinetics of nanosized ZnO was studied considering the influence of different parameters (mixing degree, temperature, alcohol chain length, reactant concentration and Zn/OH ratios) on the synthesis reaction and modelling the outputs using typical kinetic growth models, which were then evaluated by means of a sensitivity analysis. The Zn/OH ratio, the temperature and the alcohol chain length were found to be essential parameters to control the growth of ZnO nanoparticles, whereas zinc acetate concentration (for Zn/OH = 0.625) and the stirring during the ageing stage were shown to not have significant influence on the particle size growth. This last operational parameter was for the first time investigated for nanoparticles synthesized in 1-pentanol, and it is of outmost importance for the implementation of continuous industrial processes for mass production of nanosized ZnO and energy savings in the process. Concerning the nanoparticle growth modelling, the results show a different pattern from the more commonly accepted diffusion-limited Ostwald ripening process, i.e. the Lifshitz–Slyozov–Wagner (LSW) model. Indeed, this study shows that oriented attachment occurs during the early stages whereas for the later stages the particle growth is well represented by the LSW model. This conclusion contributes to clarify some controversy found in the literature regarding the kinetic model which better represents the ZnO NPs’ growth in alcoholic medium.

  16. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes

    Yao, Shenglian; Feng, Xujia; Lu, Jiaju; Zheng, Yudong; Wang, Xiumei; Volinsky, Alex A.; Wang, Lu-Ning

    2018-06-01

    Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.

  17. Stability and toxicity of ZnO quantum dots: Interplay between nanoparticles and bacteria

    Bellanger, Xavier, E-mail: xavier.bellanger@univ-lorraine.fr [Université de Lorraine and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR 7564, 15 Avenue du Charmois, 54500 Vandoeuvre-lès-Nancy (France); Billard, Patrick, E-mail: patrick.billard@univ-lorraine.fr [Université de Lorraine and CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Boulevard des Aiguillettes, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Schneider, Raphaël, E-mail: raphael.schneider@univ-lorraine.fr [Université de Lorraine and CNRS, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France); Balan, Lavinia, E-mail: lavinia.balan@uha.fr [Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, CNRS, 15 rue Jean Starcky, 68093 Mulhouse (France); Merlin, Christophe, E-mail: christophe.merlin@univ-lorraine.fr [Université de Lorraine and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR 7564, 15 Avenue du Charmois, 54500 Vandoeuvre-lès-Nancy (France)

    2015-02-11

    Graphical abstract: - Highlights: • Dilution of aminosilane-capped ZnO QDs dramatically increases their dissolution. • Bacteria limit Zn{sup 2+} leakage from ZnO QDs in a physiological-dependent process. • Implementation of biosensors for assessing free metal promotes QDs instability. • Dialysis combined to ICP allows studying QDs stability without prior dilution. - Abstract: The toxicity of quantum dots (QDs) has been commonly attributed to the release of metal ions from the core as well as to the production of reactive oxygen species. However, the information related to the stability of the nanoparticles are relatively scarce although this parameter may strongly influence their toxicity. The stability of aminosilane-capped ZnO QDs, here used as model nanoparticles, was investigated by inductively coupled plasma-optical emission spectrometer (ICP-OES) and whole cell biosensors using a dialysis setup to separate the QDs from the leaked Zn{sup 2+} ions. The integrity of the ZnO QDs appeared strongly affected by their dilution in aqueous medium, whereas the nanoparticles were slightly stabilized by bacteria. Our results demonstrate some inadequacy between the implementation and use of whole cell biosensors, and the monitoring of metal release from QDs.

  18. Parametric analysis of the growth of colloidal ZnO nanoparticles synthesized in alcoholic medium

    Fonseca, A. S. [National Research Centre for the Working Environment (Denmark); Figueira, P. A.; Pereira, A. S. [Universidade de Aveiro, Departamento de Química—CICECO (Portugal); Santos, R. J. [Universidade do Porto, Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia (Portugal); Trindade, T. [Universidade de Aveiro, Departamento de Química—CICECO (Portugal); Nunes, M. I., E-mail: isanunes@ua.pt [Universidade de Aveiro, Centre for Environmental and Marine Studies (CESAM), Dep. de Ambiente e Ordenamento (Portugal)

    2017-02-15

    The growth kinetics of nanosized ZnO was studied considering the influence of different parameters (mixing degree, temperature, alcohol chain length, reactant concentration and Zn/OH ratios) on the synthesis reaction and modelling the outputs using typical kinetic growth models, which were then evaluated by means of a sensitivity analysis. The Zn/OH ratio, the temperature and the alcohol chain length were found to be essential parameters to control the growth of ZnO nanoparticles, whereas zinc acetate concentration (for Zn/OH = 0.625) and the stirring during the ageing stage were shown to not have significant influence on the particle size growth. This last operational parameter was for the first time investigated for nanoparticles synthesized in 1-pentanol, and it is of outmost importance for the implementation of continuous industrial processes for mass production of nanosized ZnO and energy savings in the process. Concerning the nanoparticle growth modelling, the results show a different pattern from the more commonly accepted diffusion-limited Ostwald ripening process, i.e. the Lifshitz–Slyozov–Wagner (LSW) model. Indeed, this study shows that oriented attachment occurs during the early stages whereas for the later stages the particle growth is well represented by the LSW model. This conclusion contributes to clarify some controversy found in the literature regarding the kinetic model which better represents the ZnO NPs’ growth in alcoholic medium.

  19. Speciation of ZnO and CuO nanoparticles exposed to culture medium and lymphocyte cells

    U.S. Environmental Protection Agency — Spectral fits and linear combination data for ZnO and CuO nanoparticles exposure during toxicity testing. This dataset is associated with the following publication:...

  20. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Sue Hung-Jue

    2011-01-01

    Full Text Available Abstract The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene. A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers.

  1. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Insight about electrical properties of low-temperature solution-processed Al-doped ZnO nanoparticle based layers for TFT applications

    Diallo, Abdou Karim; Gaceur, Meriem; Fall, Sadiara; Didane, Yahia; Ben Dkhil, Sadok; Margeat, Olivier, E-mail: margeat@cinam.univ-mrs.fr; Ackermann, Jörg; Videlot-Ackermann, Christine, E-mail: videlot@cinam.univ-mrs.fr

    2016-12-15

    Highlights: • Al-doped ZnO (AZO) nanoparticles. • Impact of dispersion state and solid state on electrical properties. • Extrinsic doping with Al for high conducting AZO nanoparticle based layers. • Low-temperature operating nanoparticulate AZO TFTs. - Abstract: Aluminium-doped zinc oxide nanoparticles (NPs) with controlled Al doping contents (AZO{sub x} with x = 0–0.8 at% of Al) were explored as new oxide semiconductor materials to study the impact of doping on both solution and solid states. Polycrystalline AZO{sub x} thin films were produced by spin-coating the dispersions following by a thermal post-treatment at low-temperature (80 °C or 150 °C). The coated AZO{sub x} films were employed as active layer in thin-film transistors. Morphology and microstructure were studied by scanning electron microscopy and X-ray diffraction. The impact on the device performances (mobility, conductivity, charge carrier density) of Al-doping content together with the solution state was examined. Spin-coated films delivered an electron mobility up to 3 × 10{sup −2} cm{sup 2}/Vs for the highest Al-doping ratio AZO{sub 0.8}. Despite highly different morphologies, extrinsic doping with aluminium significantly increases the conductivity of low temperature solution-processed AZO{sub x} NPs series based layers by several orders of magnitude from AZO{sub 0} to AZO{sub 0.8}.

  3. Highly efficient green light harvesting from Mg doped ZnO nanoparticles: Structural and optical studies

    Sharma, Sarla, E-mail: mail2sarlasharma@gmail.com [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Vyas, Rishi [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Sharma, Neha [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Singh, Vidyadhar [Okinawa Institute of Science and Technology, Graduate University, Okinawa 9040495 (Japan); Singh, Arvind [Department of Physics, Institute of Chemical Technology, Mumbai 400 019 (India); Kataria, Vanjula; Gupta, Bipin Kumar [National Physical Laboratory (CSIR), New Delhi 110012 (India); Vijay, Y.K. [Department of Physics, University of Rajasthan, Jaipur 302055 (India)

    2013-03-05

    Graphical abstract: Demonstration of highly efficient green light emission harvesting from Mg doped ZnO nanoparticles were synthesized via facile wet chemical route with an average particle size ∼15 nm. The resulted nanoparticles exhibit intense green emission peaking at 530 nm upon 325 nm excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg and beyond it exhibits a decrees in emission. The obtained highly luminescent green emission of ZnO nanoparticle would be an ultimate choice for next generation optoelectronics device materials. Highlights: ► Zn{sub 1−x}Mg{sub x}O nanoparticles were prepared by mechanochemical processing. ► High blue emission intensity was observed contrary to previous reports. ► Blue emission is suggested to be originating from the high density of defects. ► Defect density in as-milled condition is very high resulting in high emission. ► Mg promoted non-radiative recombination and lowered intensities. -- Abstract: Highly efficient green light emission was observed from Mg doped ZnO nanoparticles synthesized via facile wet chemical route with an average particle size ∼15 nm. The XRD analysis confirmed the growth of wurtzite phase of ZnO nanoparticles. Moreover, the optical properties of these nanoparticles were investigated by different spectroscopic techniques. The resulted nanoparticles exhibit intense green emission peaking at 530 nm (2.34 eV) upon 325 nm (3.81 eV) excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg, and beyond it exhibits a decrees in emission. Furthermore, by varying the band gap from 3.50 to 3.61 eV, the PL spectra showed a near band edge (NBE) emission at wavelength around 370 nm (3.35 eV) and a broad deep level emission in the visible region. The obtained highly

  4. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N.; Han, Jin Wook; Han, Sung-Hwan

    2010-01-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs (∼80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm 2 under 80 mW/cm 2 irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  5. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Jin Wook, E-mail: jwhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of)

    2010-09-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs ({approx}80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm{sup 2} under 80 mW/cm{sup 2} irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  6. Dynamic equilibrium of endogenous selenium nanoparticles in selenite-exposed cancer cells: a deep insight into the interaction between endogenous SeNPs and proteins.

    Bao, Peng; Chen, Song-Can; Xiao, Ke-Qing

    2015-12-01

    Elemental selenium (Se) was recently found to exist as endogenous nanoparticles (i.e., SeNPs) in selenite-exposed cancer cells. By sequestrating critical intracellular proteins, SeNPs appear capable of giving rise to multiple cytotoxicity mechanisms including inhibition of glycolysis, glycolysis-dependent mitochondrial dysfunction, microtubule depolymerization and inhibition of autophagy. In this work, we reveal a dynamic equilibrium of endogenous SeNP assembly and disassembly in selenite-exposed H157 cells. Endogenous SeNPs are observed both in the cytoplasm and in organelles. There is an increase in endogenous SeNPs between 24 h and 36 h, and a decrease between 36 h and 72 h according to transmission electron microscopy results and UV-Vis measurements. These observations imply that elemental Se in SeNPs could be oxidized back into selenite by scavenging superoxide radicals and ultimately re-reduced into selenide; then the assembly and disassembly of SeNPs proceed simultaneously with the sequestration and release of SeNP high-affinity proteins. There is also a possibility that the reduction of elemental Se to selenide pathway may lie in selenite-exposed cancer cells, which results in the assembly and disassembly of endogenous SeNPs. Genome-wide expression analysis results show that endogenous SeNPs significantly altered the expression of 504 genes, compared to the control. The endogenous SeNPs induced mitochondrial impairment and decreasing of the annexin A2 level can lead to inhibition of cancer cell invasion and migration. This dynamic flux of endogenous SeNPs amplifies their cytotoxic potential in cancer cells, thus provide a starting point to design more efficient intracellular self-assembling systems for overcoming multidrug resistance.

  7. Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating

    Rostami, M.; Rasouli, S.; Ramezanzadeh, B.; Askari, A.

    2014-01-01

    Highlights: • Corrosion inhibitive pigment based on ZnOCo was synthesized through combustion method. • Doping ZnO nanoparticle with Co enhanced its inhibition properties considerably. • ZnOCo nanoparticle could enhance corrosion protective performance of epoxy coating. • Co doped ZnO nanoparticles behaved as efficient barrier and inhibitive pigment. - Abstract: Co doped ZnO nanoparticles were synthesized by combustion method. Then, the epoxy nanocomposites were prepared using various amounts of nanoparticles. Salt spray and electrochemical impedance spectroscopy (EIS) were used in order to investigate the corrosion inhibition effects of nanoparticles on the steel substrate. The morphology and composition of the films precipitated on the steel surface were investigated by scanning electron microscope (SEM) and energy dispersive spectroscopy. Results revealed that the corrosion inhibition properties of ZnO nanoparticle were significantly enhanced after doping with Co. Moreover, Co doped ZnO nanoparticles enhanced the corrosion resistance of the epoxy coating effectively

  8. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

    Jose Alberto Alvarado

    2013-01-01

    Full Text Available ZnO colloidal nanoparticles were synthesized, the average size of these nanoparticles is around 25 nm with hexagonal form. It was noted that stabilization depends directly on the purifying process; in this work we do not change the nature of the solution as a difference from Meulekamp's method, and we do not use any alkanes to remove the byproducts; only a centrifuge to remove those ones was used, thereby the stabilization increases up to 24 days. It is observed from the results that only three times of washing is enough to prevent the rapid aging process. The effect of annealing process on the composition, size, and geometrical shape of ZnO nanoparticles was studied in order to know whether the annealing process affects the crystallization and growth of the nanoparticles. After the synthesis, the colloidal nanoparticles were deposited by spin coating technique showing that the formed nanoparticles have no uniformly deposition pattern. But is possible to deposit those ones in glass substrates. A possible deposition process of the nanoparticles is proposed.

  9. Zinc oxide nanoparticles and SH-SY5Y cell line

    Zheng, Jinghui

    The Arctic and sub-arctic regions are impacted by the growth of the global nanotechnology industry. Nanomaterials have unique chemical and physical properties that may lead to toxicological effects that interfere with normal cellular metabolism. Zinc oxide nanoparticles (ZnO NPs) are now very common and widely used in daily life. In industry, ZnO NPs are used to protect different materials from damage caused by UV exposure. The scientific literature suggests that ZnO NPs can have negative impacts on both living organisms and plants. However, there is a paucity of research on the mechanisms by which ZnO NPs may affect the neuronal cells. This study investigates how ZnO NPs interact with the neuroblastoma cell line SH-SY5Y. Using transmission electron microscopy, we observed that the ZnO NPs form 36 nm particles on average, and increase the level of vascular endothelial growth factor (VEGF) in extracellular fluid, as measured by an enzyme-linked immunosorbent assay (ELISA). Moreover, ZnO NPs, in presence of tumor necrosis factor-alpha (TNF-alpha), can also decrease the level of extracellular VEGF compared with TNF-alpha treatment alone. These findings suggest the basis for more studies on understanding the mechanism by which ZnO NPs impact cytokine signaling. Another direction is using ELISA technology to observe the interactions of NPs with different cell types such as neuronal stem cells.

  10. Co-Doped ZnO nanoparticles: minireview.

    Djerdj, Igor; Jaglicić, Zvonko; Arcon, Denis; Niederberger, Markus

    2010-07-01

    Diluted magnetic semiconductors with a Curie temperature exceeding 300 K are promising candidates for spintronic devices and spin-based electronic technologies. We review recent achievements in the field of one of them: Co-doped ZnO at the nanoparticulate scale.

  11. Synthesizing Zno Nanoparticles by High-Energy Milling and Investigating Their Antimicrobial Effect

    N Mohammadi

    2015-07-01

    Results: The study results demonstrated that size of the synthesized nanoparticles was within the range of 20 -90 nm and their morphology was reported as nanorod and nanoparticles with multifaceted cross-section. An increase in the density of nanoparticles resulted in a rise in the antimicrobial effect. Moreover, Staphylococcus aureus bacteria inhibition zone was 3±0.5 and 7±0.5 mm respectively at the density of 6 and 10 mM. The MIC and MBC of ZnO nanoparticles provided for Staphylococcus aureus were observed 3±3 and 2.5±0 mg/ml, whereas they were reported 7.5±0 and 8±0 mg/ml for Escherichia coli bacteria. Conclusion: The findings of the present study revealed that ZnO nanomaterials could be synthesized by applying high-energy milling on micron-scaled ZnO particles. In addition, they can be utilized in food packaging and preservation process.

  12. Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers

    Dybowska, Agnieszka D., E-mail: a.dybowska@nhm.ac.u [Department of Mineralogy, Natural History Museum London, Cromwell Road, London, SW7 5BD (United Kingdom); Croteau, Marie-Noele [U.S. Geological Survey, 345 Middlefield Road, MS 496, Menlo Park, CA 94025 (United States); Misra, Superb K.; Berhanu, Deborah [Department of Mineralogy, Natural History Museum London, Cromwell Road, London, SW7 5BD (United Kingdom); Luoma, Samuel N. [Department of Mineralogy, Natural History Museum London, Cromwell Road, London, SW7 5BD (United Kingdom); U.S. Geological Survey, 345 Middlefield Road, MS 496, Menlo Park, CA 94025 (United States); Christian, Paul; O' Brien, Paul [School of Chemistry, University of Manchester, M13 9PL, Manchester (United Kingdom); Valsami-Jones, Eugenia [Department of Mineralogy, Natural History Museum London, Cromwell Road, London, SW7 5BD (United Kingdom)

    2011-01-15

    Understanding the behavior of engineered nanoparticles in the environment and within organisms is perhaps the biggest obstacle to the safe development of nanotechnologies. Reliable tracing is a particular issue for nanoparticles such as ZnO, because Zn is an essential element and a common pollutant thus present at elevated background concentrations. We synthesized isotopically enriched (89.6%) with a rare isotope of Zn ({sup 67}Zn) ZnO nanoparticles and measured the uptake of {sup 67}Zn by L. stagnalis exposed to diatoms amended with the particles. Stable isotope technique is sufficiently sensitive to determine the uptake of Zn at an exposure equivalent to lower concentration range (<15 {mu}g g{sup -1}). Without a tracer, detection of newly accumulated Zn is significant at Zn exposure concentration only above 5000 {mu}g g{sup -1} which represents some of the most contaminated Zn conditions. Only by using a tracer we can study Zn uptake at a range of environmentally realistic exposure conditions. - ZnO nanoparticles with distinct isotopic composition can be tailor synthesized to be used as tracers of environmental fate and uptake by organisms.

  13. Methodology for sample preparation and size measurement of commercial ZnO nanoparticles

    Pei-Jia Lu

    2018-04-01

    Full Text Available This study discusses the strategies on sample preparation to acquire images with sufficient quality for size characterization by scanning electron microscope (SEM using two commercial ZnO nanoparticles of different surface properties as a demonstration. The central idea is that micrometer sized aggregates of ZnO in powdered forms need to firstly be broken down to nanosized particles through an appropriate process to generate nanoparticle dispersion before being deposited on a flat surface for SEM observation. Analytical tools such as contact angle, dynamic light scattering and zeta potential have been utilized to optimize the procedure for sample preparation and to check the quality of the results. Meanwhile, measurements of zeta potential values on flat surfaces also provide critical information and save lots of time and efforts in selection of suitable substrate for particles of different properties to be attracted and kept on the surface without further aggregation. This simple, low-cost methodology can be generally applied on size characterization of commercial ZnO nanoparticles with limited information from vendors. Keywords: Zinc oxide, Nanoparticles, Methodology

  14. Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers

    Dybowska, Agnieszka D.; Croteau, Marie-Noele; Misra, Superb K.; Berhanu, Deborah; Luoma, Samuel N.; Christian, Paul; O'Brien, Paul; Valsami-Jones, Eugenia

    2011-01-01

    Understanding the behavior of engineered nanoparticles in the environment and within organisms is perhaps the biggest obstacle to the safe development of nanotechnologies. Reliable tracing is a particular issue for nanoparticles such as ZnO, because Zn is an essential element and a common pollutant thus present at elevated background concentrations. We synthesized isotopically enriched (89.6%) with a rare isotope of Zn ( 67 Zn) ZnO nanoparticles and measured the uptake of 67 Zn by L. stagnalis exposed to diatoms amended with the particles. Stable isotope technique is sufficiently sensitive to determine the uptake of Zn at an exposure equivalent to lower concentration range ( -1 ). Without a tracer, detection of newly accumulated Zn is significant at Zn exposure concentration only above 5000 μg g -1 which represents some of the most contaminated Zn conditions. Only by using a tracer we can study Zn uptake at a range of environmentally realistic exposure conditions. - ZnO nanoparticles with distinct isotopic composition can be tailor synthesized to be used as tracers of environmental fate and uptake by organisms.

  15. Kinetics activity of Yersinia Intermedia Against ZnO Nanoparticles Either Synergism Antibiotics by Double-Disc Synergy Test Method.

    Fathi Azar Khavarani, Motahareh; Najafi, Mahla; Shakibapour, Zahra; Zaeifi, Davood

    2016-03-01

    Bacterial resistance to the commonly used antibacterial agents is an increasing challenge in the medicine, and a major problem for the health care systems; the control of their spread is a constant challenge for the hospitals. In this study, we have investigated the antimicrobial activity of the Zinc Oxide nanoparticles against clinical sample; Yersinia intermedia bacteria. Nanoparticle susceptibility constants and death kinetic were used to evaluate the antimicrobial characteristics of the Zinc Oxide (ZnO) against the bacteria. Antimicrobial tests were performed with 10 8 cfu.mL -1 at baseline. At first, Minimum Inhibitory Concentration (MIC) of ZnO was determined and then nanoparticle suspension at one and two times of the MIC was used for death kinetic and susceptibility constant assay at 0 to 360 min treatment time. ZnO nanoparticles with size ranging from 10 to 30 nm showed the highest susceptibility reaction against Y. intermedia (Z=39.06 mL.μg -1 ). The process of Y. intermedia death in ZnO suspension was assumed to follow the first-order kinetics and the survival ratio of bacteria decreased with the increasing treatment time. An increased concentration of the nanoparticle was seen to enhance the bactericidal action of the nanoparticle. Then we performed the best ratio of the nanoparticles on semi-sensitive and resistance antibiotic for the bacteria. However, based on experimental results, synergy of ZnO nanoparticles and Oxacilin was determined and Y. intermedia showed a higher sensitivity compared to the ZnO nanoparticles alone. The results of the present study illustrates that ZnO has a strong antimicrobial effect and could potentially be employed to aid the bacterial control. It could also improve- antibacterial effects in combination with the antibiotics.

  16. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto; Selvamani, S.; Raja, T. S. Gokul [Advanced Nanomaterials Research Laboratory, Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil - 629 180 (India)

    2016-05-23

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB) by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.

  17. ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate

    Shoeb, M; Singh, Braj R; Khan, Javed A; Khan, Wasi; Naqvi, Alim H; Singh, Brahma N; Singh, Harikesh B

    2013-01-01

    Zinc oxide nanoparticles (ZnO NPs) have attracted great attention because of their superior optical properties and wide application in biomedical science. However, little is known about the anticandidal activity of ZnO NPs against Candida albicans (C. albicans). This study was designed to develop the green approach to synthesize ZnO NPs using egg white (denoted as EtZnO NPs) and investigated its possible mechanism of antimicrobial activity against C. albicans 077. It was also notable that anticandidal activity of EtZnO NPs is correlated with reactive oxygen species (ROS) production in a dose dependent manner. Protection of histidine against ROS clearly suggests the implication of ROS in anticandidal activity of EtZnO NPs. This green approach based on egg white-mediated synthesis of ZnO NPs paves the way for developing cost effective, eco-friendly and promising antimicrobial nanomaterial for applications in medicine. (paper)

  18. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans

    Wang Huanhua; Wick, Robert L.; Xing Baoshan

    2009-01-01

    Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al 2 O 3 and TiO 2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC 50 ) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC 50 for ZnO NPs (2.3 mg L -1 ) and bulk ZnO was not significantly different, but significantly different between Al 2 O 3 NPs (82 mg L -1 ) and bulk Al 2 O 3 (153 mg L -1 ), and between TiO 2 NPs (80 mg L -1 ) and bulk TiO 2 (136 mg L -1 ). Oxide solubility influenced the toxicity of ZnO and Al 2 O 3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. - ZnO, Al 2 O 3 and TiO 2 nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans

  19. Toxicity of nanoparticulate and bulk ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} to the nematode Caenorhabditis elegans

    Wang Huanhua; Wick, Robert L. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2009-04-15

    Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC{sub 50}) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC{sub 50} for ZnO NPs (2.3 mg L{sup -1}) and bulk ZnO was not significantly different, but significantly different between Al{sub 2}O{sub 3} NPs (82 mg L{sup -1}) and bulk Al{sub 2}O{sub 3} (153 mg L{sup -1}), and between TiO{sub 2} NPs (80 mg L{sup -1}) and bulk TiO{sub 2} (136 mg L{sup -1}). Oxide solubility influenced the toxicity of ZnO and Al{sub 2}O{sub 3} NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. - ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans.

  20. Variation in Structural and Optical Properties of Al Doped ZnO Nanoparticles Synthesized by Sol-gel Process

    Vanaja Aravapalli

    2017-04-01

    Full Text Available This article focuses on analyzing structural and optical properties of Al doped ZnO (AZO synthesized with two different precursors aluminum chloride and aluminum nitrate. The nanoparticles were successfully fabricated and characterized at room temperature by sol-gel process. The objective of improving properties of ZnO nanoparticles by introducing dopants was successful with formation of nanoparticles having different crystalline sizes, optical absorption and luminescence properties. The two different sources influenced properties of ZnO. The particles with less crystalline size obtained from aluminum nitrate. Change in morphology from spherical to bar like morphology proved from SEM spectra. Presence of functional groups predicted from FTIR spectra. PL spectra proved UV emission and visible emission for AZO nanoparticles synthesized using dopant sources aluminum chloride and aluminum nitrate respectively. The obtained properties prove successful utilization of AZO nanoparticles as building materials in fabrication of optoelectronic devices.

  1. Bactericidal, structural and morphological properties of ZnO2 nanoparticles synthesized under UV or ultrasound irradiation

    Colonia, R; Solís, J L; Gómez, M

    2014-01-01

    Nanoparticles of ZnO 2 were synthesized by a sol–gel method using Zn(CH 3 COO) 2 and H 2 O 2 in an aqueous solution exposed to either ultraviolet (UV) or ultrasound irradiation. X-ray diffraction and scanning electron microscopy showed that the nanostructures consisted of spherical blackberry-like clusters. Nanoparticles fabricated by using UV irradiation had smaller sizes and narrower size distributions than nanoparticles prepared by using ultrasound. Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used as test microorganisms, and the antibacterial activity of the ZnO 2 nanoparticles was studied by use of the well diffusion agar bacteriological test. ZnO 2 nanoparticles synthetized using UV had the best antibacterial properties. The inhibition zone was largest for B. subtilis but was present also for S. aureus and E. coli. (paper)

  2. Synthesis and characterization of ZnO nanoparticles for photocatalysis application

    Mazzo, Tatiana Martelli; Minervino, Gabriela Bosco; Medalha Filho, Carlos Alberto, E-mail: tatimazzo@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Baixada Santista, SP (Brazil); Oliveira, Regiane Cristina; Longo, Elson [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: The search for more effective ways to prevent and remedy environmental problems has a strong academic and technological appeal. Based on the study of a variety of compounds, zinc oxide (ZnO) is an excellent candidate for the synthesis of multifunctional nanoparticles due to their potential technological application in various fields [1]. In this work, we were synthesized flowers-like ZnO by coprecipitation and hydrothermal microwave methods. All materials were characterized by X-Ray Diffraction, Micro-Raman spectroscopy and scanning electron microscopy. All XRD patterns correspond to hexagonal structure, which is in agreement with the respective JCPDS card no. 36-1451 for pure ZnO phase with group space group (P63mc) and two molecular formula units per unit cell (Z = 2). Analysis of Micro-Raman spectroscopy showed the presence of vibrational modes in all samples and confirmed the hexagonal ZnO structure. The microscopy images clearly show a change of the morphology of the sample obtained by the co- precipitation method in comparison with those obtained by hydrothermal microwave method. In accordance with the photodegradation the results revealed that the ZnO processed at 140 deg C for 32 minutes have higher photocatalytic efficiency degradation. The Rodamine B dye was completely decolorized at 30 minutes. The pseudo-first order model indicate an increasing in the (k) values with the increase microwave processing time and that improve the ZnO photocatalytic performance. In this work we reported a low-temperature way to prepare the ZnO photocatalytic semiconductor and the results showed a great potential of this material for that application. References: [1] Pearton, S. J; Norton, D. P; et al, Journal of Science and Technology. 22 (2004) 932-948 [2] Kansal, S. K.; Kaur, N. Nanoscale Research Letters 4 (2009) 709-716. (author)

  3. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania); Vodnar, Dan Cristian [University of Agricultural Sciences and Veterinary Medicine, Department of Food Science and Technology, 3-5 Manastur Street, 400372 Cluj-Napoca (Romania); Katona, Gabriel [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania)

    2015-12-23

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  4. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-01-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn 2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs

  5. Controllable synthesis of ZnO nanoparticles with high intensity visible photoemission and investigation of its mechanism

    Lv Yunbo; Xiao Wen; Li Weiyan; Xue Junmin; Ding Jun

    2013-01-01

    ZnO is known as a good photoluminescent semiconductor due to its ability to emit visible light. However, the visible emission mechanism is still under debate. In this work, we have successfully synthesized nanoparticles using LiOH, KOH and NaOH as bases and have achieved visible emission of various colours, such as blue, cyan, green and orange. We demonstrate that LiOH is the most efficient base to control the properties of ZnO nanoparticle emission by varying LiOH concentration. Moreover, detailed studies by TEM, UV and XRD show that ZnO particle size plays an important role in the colour of the emitted light and smaller particles tend to emit shorter wavelength photons. The visible emission is suggested to arise from an electron transition from the conduction band to a deep-trapped defect state. Our experimental results suggest the presence of oxygen vacancies on the ZnO nanoparticle surface. (paper)

  6. Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer

    Juliasih, N; Buchari; Noviandri, I

    2017-01-01

    The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 – 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room. (paper)

  7. Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors

    Fang, Linxia; Zhang, Baoliang; Li, Wei; Zhang, Jizhong; Huang, Kejing; Zhang, Qiuyu

    2014-01-01

    We report a facile strategy to synthesize ZnO-graphene nanocomposites as an advanced electrode material for high-performance supercapacitors. The ZnO-graphene nanocomposites have been fabricated via a facile, low-temperature in situ wet chemistry process. During this process, high dispersed ZnO nanoparticles are embedded in graphene nanosheets, leading to sandwich-structured ZnO-graphene nanocomposites. Thus, intimate interfacial contact between ZnO nanoparticles and graphene nanosheets are achieved, which facilitates electrochemical activity and enhance electrochemical properties due to fast electron transfer. The as-prepared ZnO-graphene nanocomposites exhibit a maximum specific capacitance of 786 F g −1 and excellent cycle life with capacity retention of about 92% after 500 cycles. This facile design and rational synthesis offers an effective strategy to enhance the electrochemical performance of supercapacitors and shows promising potential for large-scale application in energy storage

  8. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak [University of Ljubljana, Department of Biology, Biotechnical Faculty (Slovenia); Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd, E-mail: gorazd.drevensek@mf.uni-lj.si [University of Ljubljana, Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine (Slovenia)

    2016-10-15

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes (n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  9. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells

    Ramasamy M

    2014-08-01

    Full Text Available Mohankandhasamy Ramasamy,1 Minakshi Das,1 Seong Soo A An,1 Dong Kee Yi2 1Division of Bionanotechnology, Gachon University, Seongnam, 2Department of Chemistry, Myongji University, Yongin, South Korea Abstract: The wide-scale applications of zinc oxide (ZnO nanoparticles (NPs in ­photocatalysts, gas sensors, and cosmetics may cause toxicity to humans and environments. Therefore, the aim of the present study was to reduce the toxicity of ZnO NPs by coating them with a silica (SiO2 layer, which could be used in human applications, such as cosmetic preparations. The sol–gel method was used to synthesize core ZnO with SiO2-shelled NPs (SiO2/ZnO NPs with varying degrees of coating. Diverse studies were performed to analyze the toxicity of NPs against cells in a dose- and time-dependent manner. To ensure the decreased toxicity of the produced SiO2/ZnO NPs, cytotoxicity in membrane damage and/or intracellular reactive oxygen species (ROS were assessed by employing 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, 2',7'-dichlorofluorescin, and lipid peroxide estimations. The cores of ZnO NPs exhibited cytotoxicity over time, regardless of shell thickness. Nevertheless, the thicker SiO2/ZnO NPs revealed reduced enzyme leakage, decreased peroxide production, and less oxidative stress than their bare ZnO NPs or thinner SiO2/ZnO NPs. Therefore, thicker SiO2/ZnO NPs moderated the toxicity of ZnO NPs by restricting free radical formation and the release of zinc ions, and decreasing surface contact with cells. Keywords: zinc oxide, silica coating, photostability, human dermal fibroblast, membrane damage, oxidative stress

  10. Zn subcellular distribution in liver of goldfish (carassius auratus with exposure to zinc oxide nanoparticles and mechanism of hepatic detoxification.

    Wenhong Fan

    Full Text Available Zinc Oxide Nanoparticles (ZnO NPs have attracted increasing concerns because of their widespread use and toxic potential. In this study, Zn accumulations in different tissues (gills, liver, muscle, and gut of goldfish (Carassius auratus after exposure to ZnO NPs were studied in comparison with bulk ZnO and Zn(2+. And the technique of subcellular partitioning was firstly used on the liver of goldfish to study the hepatic accumulation of ZnO NPs. The results showed that at sublethal Zn concentration (2 mg/L, bioaccumulation in goldfish was tissue-specific and dependent on the exposure materials. Compared with Zn(2+, the particles of bulk ZnO and the ZnO NPs appeared to aggregate in the environmentally contacted tissues (gills and gut, rather than transport to the internal tissues (liver and muscle. The subcellular distributions of liver differed for the three exposure treatments. After ZnO NPs exposure, Zn percentage in metal-rich granule (MRG increased significantly, and after Zn(2+ exposure, it increased significantly in the organelles. Metallothionein-like proteins (MTLP were the main target for Zn(2+, while MRG played dominant role for ZnO NPs. The different results of subcellular distributions revealed that metal detoxification mechanisms of liver for ZnO NPs, bulk ZnO, and Zn(2+ were different. Overall, subcellular partitioning provided an interesting start to better understanding of the toxicity of nano- and conventional materials.

  11. The optical absorption of metal nanoparticles deposited on ZnO films

    Remeš, Zdeněk; Kromka, Alexander; Vaněček, Milan; Babchenko, Oleg; Stuchlíková, The-Ha; Červenka, Jiří; Hruška, Karel; Trung, T. Q.

    2010-01-01

    Roč. 207, č. 7 (2010), s. 1722-1725 ISSN 1862-6300 R&D Projects: GA MŠk LC510 EU Projects: European Commission(XE) 19670 - ATHLET Institutional research plan: CEZ:AV0Z10100521 Keywords : metal nanoparticles * morphology * optical properties * plasmons * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.458, year: 2010

  12. ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana

    Vaňková, Radomíra; Landa, Přemysl; Podlipná, Radka; Dobrev, Petre; Přerostová, Sylva; Langhansová, Lenka; Gaudinová, Alena; Moťková, Kateřina; Knirsch, Vojtěch; Vaněk, Tomáš

    2017-01-01

    Roč. 593, SEP 1 (2017), s. 535-542 ISSN 0048-9697 R&D Projects: GA MŠk LD14125; GA MŠk LD14120; GA MŠk 8G15003 Institutional support: RVO:61389030 Keywords : Abscisic acid * Cytokinin * Plant hormone * ZnO nanoparticle Subject RIV: DN - Health Impact of the Environment Quality OBOR OECD: Plant sciences, botany Impact factor: 4.900, year: 2016

  13. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)

    Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju

    2018-01-01

    We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.

  14. Effect of ZnO nanoparticles to mechanical properties of thixoformed Mg-Al-Zn alloy

    Kusharjanto; Soepriyanto, Syoni; Ardian Korda, Akhmad; Adi Dwiwanto, Supono

    2018-03-01

    Magnesium alloys are lightweight metallic materials with low mechanical properties. Therefore, in order to meet the requirements in various industrial sector applications such as automotive, aerospace and electronic frame, improvement strength and ductility is required. The purpose of this research is to investigate the effect of adding ZnO nanoparticles to changes in microstructure, hardness, mechanical properties regarding with yield and ultimate strength. In this research, the molten Mg-Al-Zn alloy is added ZnO nanoparticles with a various range of 0, 1; 3 and 5 wt% and then cooling in the room temperature. Futhermore, Mg-Al-Zn-ZnO is heated at a temperature of 530 °C (in the semi-solid temperature range 470 °C–595 °C or 53% solid fraction) and then thixoforming process is performed. The characterization results of the thixoforming product show that, the microstructure is globular in shape with maximum hardness value of 107.14 VHN, the yield strength of 214.87 MPa, and the ultimate tensile strength of 311.25 MPa in 5 wt% ZnO nanoparticles.

  15. Effect of titanium dioxide nanoparticles (TiO2 NPs) on the expression of mucin genes in human airway epithelial cells.

    Kim, Gui Ok; Choi, Yoon Seok; Bae, Chang Hoon; Song, Si-Youn; Kim, Yong-Dae

    2017-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are utilized with growing frequency for a wide variety of industrial applications. Recently, acute and chronic exposures to TiO 2 NPs have been found to induce inflammatory response in the human respiratory tract. However, the effect and mechanism underlying the induction of major airway mucins by TiO 2 NPs have not been elucidated. This study was conducted to characterize the effect of TiO 2 NPs, and the mechanism involved, on the expressions of airway mucins in human airway epithelial cells. In NCI-H292 cells and primary cultures of normal nasal epithelial cells, the effects of TiO 2 NPs and signaling pathway for airway mucin genes were investigated by reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassays and immunoblot analysis using several specific inhibitors and small interfering RNAs (siRNAs). TiO 2 NPs increased MUC5B expression and activated the phosphorylations of extracellular signal-related kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). U0126 (an ERK1/2 MAPK inhibitor) and SB203580 (a p38 MAPK inhibitor) inhibited TiO 2 NPs-induced MUC5B expression. And knockdown of ERK1, ERK2 and p38 MAPK using siRNAs significantly blocked TiO 2 NPs-induced MUC5B mRNA expression. Furthermore, Toll-like receptor 4 (TLR4) mRNA expression was increased by TiO 2 NPs, and knockdown by TLR4 siRNA significantly attenuated TiO 2 NPs-induced MUC5B mRNA expression and the TiO 2 NPs-induced phosphorylations of ERK1/2 and p38 MAPK. These results demonstrate for the first time that TiO 2 NPs induce MUC5B expression via TLR4-dependent ERK1/2 and p38 MAPK signaling pathways in respiratory epithelium.

  16. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm

    Jiang, Xujia; Wang, Xueting; Tong, Meiping; Kim, Hyunjung

    2013-01-01

    The significance of biofilm on the transport and deposition behaviors of ZnO nanoparticles were examined under a series of environmentally relevant ionic strength at two fluid velocities of 4 m-d −1 and 8 m-d −1 . Biofilm enhanced nanoparticles retention in porous media under all examined conditions. The greater deposition was also observed in extracellular polymeric substances (EPS) coated surfaces by employment of quartz microbalance with dissipation (QCM-D) system. Derjaguin–Landau–Verwey–Overbeek (DLVO) failed to interpret more ZnO nanoparticles deposition on biofilm (EPS) coated silica surfaces. Chemical interaction and physical morphology of biofilm contributed to this greater deposition (retention). Biofilm affected the spacial distribution of retained ZnO nanoparticles as well. Relatively steeper slope of retained profiles were observed in the presence of biofilm, corresponding to the greater deviation from colloid filtration theory (CFT). Pore space constriction via biofilm induced more nanoparticle trapped in the column inlet, leading to greater deviations (σln k f ) from the CFT. Highlights: ► Biofilm reduced the mobility of ZnO nanoparticles in column. ► DLVO and non-DLVO interactions contributed the more nanoparticles deposition. ► Biofilm also affected the spacial distribution of ZnO nanoparticles in column. ► Greater deviation from classic filtration theory was observed with biofilm. ► Physical structure of biofilm induced greater deviation from log-linear prediction. -- Biofilm enhanced ZnO nanoparticle deposition and altered spacial distribution in porous media

  17. The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace Slag as binder

    Ali Nazari

    2011-09-01

    Full Text Available In the present study, flexural strength together with pore structure, thermal behavior and microstructure of concrete containing ground granulated blast furnace slag with different amount of ZnO2 nanoparticles has been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impact the properties of concrete, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt. (%. ZnO2 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of 45 wt. (% of ground granulated blast furnace slag and physical and mechanical properties of the specimens was measured. ZnO2 nanoparticle as a partial replacement of cement up to 3 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration and hence increase flexural strength of concrete. The increased the ZnO2 nanoparticles' content more than 3 wt. (%, causes the reduced the flexural strength because of the decreased crystalline Ca(OH2 content required for C-S-H gel formation together with unsuitable dispersion of nanoparticles in the concrete matrix. ZnO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  18. Effect of Variable Doses of Zinc Oxide Nanoparticles on Male Albino Mice Behavior.

    Zahra, Javeria; Iqbal, Shahid; Zahra, Kiran; Javed, Zulha; Shad, Muhammad Aslam; Akbar, Atif; Ashiq, Muhammad Naeem; Iqbal, Furhan

    2017-02-01

    Zinc oxide nanoparticles (ZnO NPs) have diverse utility these days ranging from being part of nanosensors to be ingredient of cosmetics. Present study was designed to report the effect of variable doses of ZnO NPs on selected aspects of male albino mice behavior. Nano particles were synthesized by sol-gel auto-combustion method (Data not shown here). 10 week old male albino mice were divided into four experimental groups; group A, B and C were orally supplemented with 50 (low dose), 300 (medium dose) and 600 mg/ml solvent/kg body weight (high dose) of ZnO NPs for 4 days. Group D (control) orally received 0.2 M sodium phosphate buffer (solvent for ZnO NPs) for the same duration. A series of neurological tests (Rota rod, open field, novel object and light-dark box test) were conducted in all groups and performance was compared between ZnO NPs treated and control group. Muscular functioning during rota rod test was significantly improved in all ZnO NPs treated mice as compared to control group. While no significant differences in open field, novel object and light-dark box test performance were observed when data from studied parameters of specific ZnO NPs treatment were compared with the control group indicating that applied doses of ZnO NPs did not affect the exploratory, anxiolytic behavior and object recognition capability of adult male albino mice.

  19. Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps for hyperthermia and drug delivery applications in breast cancer.

    Kirtee D Wani

    Full Text Available Cinnamaldehyde, the bioactive component of the spice cinnamon, and its derivatives have been shown to possess anti-cancer activity against various cancer cell lines. However, its hydrophobic nature invites attention for efficient drug delivery systems that would enhance the bioavailability of cinnamaldehyde without affecting its bioactivity. Here, we report the synthesis of stable aqueous suspension of cinnamaldehyde tagged Fe3O4 nanoparticles capped with glycine and pluronic polymer (CPGF NPs for their potential application in drug delivery and hyperthermia in breast cancer. The monodispersed superparamagnetic NPs had an average particulate size of ∼ 20 nm. TGA data revealed the drug payload of ∼ 18%. Compared to the free cinnamaldehyde, CPGF NPs reduced the viability of breast cancer cell lines, MCF7 and MDAMB231, at lower doses of cinnamaldehyde suggesting its increased bioavailability and in turn its therapeutic efficacy in the cells. Interestingly, the NPs were non-toxic to the non-cancerous HEK293 and MCF10A cell lines compared to the free cinnamaldehyde. The novelty of CPGF nanoparticulate system was that it could induce cytotoxicity in both ER/PR positive/Her2 negative (MCF7 and ER/PR negative/Her2 negative (MDAMB231 breast cancer cells, the latter being insensitive to most of the chemotherapeutic drugs. The NPs decreased the growth of the breast cancer cells in a dose-dependent manner and altered their migration through reduction in MMP-2 expression. CPGF NPs also decreased the expression of VEGF, an important oncomarker of tumor angiogenesis. They induced apoptosis in breast cancer cells through loss of mitochondrial membrane potential and activation of caspase-3. Interestingly, upon exposure to the radiofrequency waves, the NPs heated up to 41.6 °C within 1 min, suggesting their promise as a magnetic hyperthermia agent. All these findings indicate that CPGF NPs prove to be potential nano-chemotherapeutic agents in breast cancer.

  20. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction

    Thurber Aaron

    2009-01-01

    Full Text Available Abstract Nanotechnology represents a new and enabling platform that promises to provide a range of innovative technologies for biological applications. ZnO nanoparticles of controlled size were synthesized, and their cytotoxicity toward different human immune cells evaluated. A differential cytotoxic response between human immune cell subsets was observed, with lymphocytes being the most resistant and monocytes being the most susceptible to ZnO nanoparticle-induced toxicity. Significant differences were also observed between previously activated memory lymphocytes and naive lymphocytes, indicating a relationship between cell-cycle potential and nanoparticle susceptibility. Mechanisms of toxicity involve the generation of reactive oxygen species, with monocytes displaying the highest levels, and the degree of cytotoxicity dependent on the extent of nanoparticle interactions with cellular membranes. An inverse relationship between nanoparticle size and cytotoxicity, as well as nanoparticle size and reactive oxygen species production was observed. In addition, ZnO nanoparticles induce the production of the proinflammatory cytokines, IFN-γ, TNF-α, and IL-12, at concentrations below those causing appreciable cell death. Collectively, these results underscore the need for careful evaluation of ZnO nanoparticle effects across a spectrum of relevant cell types when considering their use for potential new nanotechnology-based biological applications.

  1. Efficiency of Nb-Doped ZnO Nanoparticles Electrode for Dye-Sensitized Solar Cells Application

    Anuntahirunrat, Jirapat; Sung, Youl-Moon; Pooyodying, Pattarapon

    2017-09-01

    The technological of Dye-sensitized solar cells (DSSCs) had been improved for several years. Due to its simplicity and low cost materials with belonging to the part of thin films solar cells. DSSCs have numerous advantages and benefits among the other types of solar cells. Many of the DSSC devices had use organic chemical that produce by specific method to use as thin film electrodes. The organic chemical that widely use to establish thin film electrodes are Zinc Oxide (ZnO), Titanium Dioxide (TiO2) and many other chemical substances. Zinc oxide (ZnO) nanoparticles had been used in DSSCs applications as thin film electrodes. Nanoparticles are a part of nanomaterials that are defined as a single particles 1-100 nm in diameter. From a few year ZnO widely used in DSSC applications because of its optical, electrical and many others properties. In particular, the unique properties and utility of ZnO structure. However the efficiency of ZnO nanoparticles based solar cells can be improved by doped various foreign impurity to change the structures and properties. Niobium (Nb) had been use as a dopant of metal oxide thin films. Using specification method to doped the ZnO nanoparticles thin film can improved the efficiencies of DSSCs. The efficiencies of Nb-doped ZnO can be compared by doping 0 at wt% to 5 at wt% in ZnO nanoparticles thin films that prepared by the spin coating method. The thin film electrodes doped with 3 at wt% represent a maximum efficiencies with the lowest resistivity of 8.95×10-4 Ω·cm.

  2. Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles

    Mojtaba Amini

    2016-01-01

    Full Text Available Nanoparticles of the ZnO and TiO2 were synthesized and the physicochemical properties of the compounds were characterized by IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The XRD patterns of the ZnO and TiO2 nanoparticles could be indexed to hexagonal and rutile phase, respectively. Aggregated nanoparticles of ZnO and TiO2 with spherical-like shapes were observed with particle diameter in the range of 80-100 nm. These nanoparticles were used for photocatalytic degradation of various dyes, Rhodamine B (RhB, Methylene blue (MB and Acridine orange (AO under solar light irradiation at room temperature. Effect of the amount of catalyst on the rate of photodegradation was investigated. In general, because ZnO is unstable, due to incongruous dissolution to yield Zn(OH2 on the ZnO particle surfaces and thus leading to catalyst inactivation,the catalytic activity of the system for photodegradation of dyes decreased dramatically when TiO2 was replaced by ZnO.

  3. ZnO Nanoparticles Protect RNA from Degradation Better than DNA

    Jayden McCall

    2017-11-01

    Full Text Available Gene therapy and RNA delivery require a nanoparticle (NP to stabilize these nucleic acids when administered in vivo. The presence of degradative hydrolytic enzymes within these environments limits the nucleic acids’ pharmacologic activity. This study compared the effects of nanoscale ZnO and MgO in the protection afforded to DNA and RNA from degradation by DNase, serum or tumor homogenate. For double-stranded plasmid DNA degradation by DNase, our results suggest that the presence of MgO NP can protect DNA from DNase digestion at an elevated temperature (65 °C, a biochemical activity not present in ZnO NP-containing samples at any temperature. In this case, intact DNA was remarkably present for MgO NP after ethidium bromide staining and agarose gel electrophoresis where these same stained DNA bands were notably absent for ZnO NP. Anticancer RNA, polyinosinic-polycytidylic acid (poly I:C is now considered an anti-metastatic RNA targeting agent and as such there is great interest in its delivery by NP. For it to function, the NP must protect it from degradation in serum and the tumor environment. Surprisingly, ZnO NP protected the RNA from degradation in either serum-containing media or melanoma tumor homogenate after gel electrophoretic analysis, whereas the band was much more diminished in the presence of MgO. For both MgO and ZnO NP, buffer-dependent rescue from degradation occurred. These data suggest a fundamental difference in the ability of MgO and ZnO NP to stabilize nucleic acids with implications for DNA and RNA delivery and therapy.

  4. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl{sub 2} to Folsomia candida (Collembola) in relation to bioavailability in soil

    Kool, Pauline L., E-mail: pauline.kool@falw.vu.nl [Department of Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Diez Ortiz, Maria [Department of Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Pole de Recherche ROVALTAIN en Toxicologie Environnementale et Ecotoxicologie, Batiment Rhovalparc, BP 15173, 26958 Valence Cedex 9 (France); Gestel, Cornelis A.M. van [Department of Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2011-10-15

    The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl{sub 2} were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants K{sub f} of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl{sub 2} respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl{sub 2}, respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size. - Highlights: > ZnO nanoparticles and non-nano ZnO were equally toxic to Folsomia candida in soil. > Pore water from soil spiked with ZnO nanoparticles showed saturation with zinc suggesting aggregation. > Pore water based EC50 values for ZnO nanoparticles and ZnCl{sub 2} were similar. > ZnO nanoparticle toxicity in soil was most probably due to Zn dissolution from the nanoparticles. - ZnO nanoparticle toxicity to springtails in soil can be explained from Zn dissolution but not from particle size.

  5. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format.

    Heng, Boon Chin; Zhao, Xinxin; Xiong, Sijing; Ng, Kee Woei; Boey, Freddy Yin-Chiang; Loo, Joachim Say-Chye

    2011-06-01

    A parameter that has often been overlooked in cytotoxicity assays is the density and confluency of mammalian cell monolayers utilized for toxicology screening. Hence, this study investigated how different cell seeding densities influenced their response to cytotoxic challenge with ZnO nanoparticles. Utilizing the same volume (1 ml per well) and concentration range (5-40 μg/ml) of ZnO nanoparticles, contradictory results were observed with higher-density cell monolayers (BEAS-2B cells) obtained either by increasing the number of seeded cells per well (50,000 vs. 200,000 cells per well of 12-well plate) or by seeding the same numbers of cells (50,000) within a smaller surface area (12-well vs. 48-well plate, 4.8 vs. 1.2 cm(2), respectively). Further experiments demonstrated that the data may be skewed by inconsistency in the mass/number of nanoparticles per unit area of culture surface, as well as by inconsistent nanoparticle to cell ratio. To keep these parameters constant, the same number of cells (50,000 per well) were seeded on 12-well plates, but with the cells being seeded at the edge of the well for the experimental group (by tilting the plate) to form a dense confluent monolayer, as opposed to a sparse monolayer for the control group seeded in the conventional manner. Utilizing such an experimental set-up for the comparative evaluation of four different cell lines (BEAS-2B, L-929, CRL-2922 and C2C12), it was observed that the high cell density monolayer was consistently more resistant to the cytotoxic effects of ZnO nanoparticles compared to the sparse monolayer for all four different cell types, with the greatest differences being observed above a ZnO concentration of 10 μg/ml. Hence, the results of this study demonstrate the need for the standardization of cell culture protocols utilized for toxicology screening of nanoparticles, with respect to cell density and mass/number of nanoparticles per unit area of culture surface.

  6. Characterization and development of ZnO nanoparticles as a photosensitizer for diagnostic and treatment of cancer using lasers (abstract)

    Firdous, S.

    2011-01-01

    For over ongoing Biophotonics research we have characterized a cost expensive, and noninvasive Zinc Oxide (ZnO) nanoparticles (Np) and NRs of 11-15nm and nanorods (NRs) of 60-120nm diameter to use a photosensitizer in photodynamic therapy (PDT) of cancer. Confocal microscopy and light polarization techniques were employed to characterize the samples. Confocal microscopy of well known photosensitizer 5-Aminolavlonic acid (ALA) with ZnO and ALA without ZnO significant changes were seen and verified ZnO is tissue non toxic in dark, but enhances endogenous fluorescence in human cells. The fluorescence of ZnO with ALA is prominent if compared with other images. We observed that in dark ZnO is biosafe, biocompatible but cell toxic in the presence of 635nm laser light. ZnO conjugated photo-sensitizers being toxic under exposure of suitable light for malignant cells, and can be used as cancer cell killing drug. Mechanism of cytotoxicity appears to involve the generation of singlet oxygen inside the cell. The novel findings of cell-localized toxicity indicate a potential application of ZnO NRs with and without ALA can be used as efficient drug carrier, biomarker in diagnostic clinical applications, while ZnO NRs can be an appealing candidate for the PDT treatment of malignant diseases epically cancer. (author)

  7. Sorption of Th(IV) onto ZnO nanoparticles and diatomite-supported ZnO nanocomposite. Kinetics, mechanism and activation parameters

    Yusan, Sabriye; Aslani, Mahmut A.A.; Aytas, Sule [Ege Univ., Izmir (Turkey). Inst. of Nuclear Sciences; Bampaiti, Anastasia; Noli, Fotini [Aristotle University of Thessaloniki (Greece). Dept. of Chemistry; Erenturk, Sema [Istanbul Technical Univ., Ayazaga Campus, Maslak-Istanbul (Turkey). Energy Inst.

    2016-11-01

    In this study, for the first time ZnO nanoparticles and diatomite-supported ZnO nanocomposite have been utilized as adsorbent for the removal of Th(IV) ions from aqueous solutions under different experimental conditions. The Langmuir, Freundlich, Temkin and Dubinin- Radushkevich (D-R) isotherms were used to analyze the equilibrium data. The sorption equilibrium data were fitted well to the Langmuir isotherm with maximum sorption capacities values was found to be 1.105 mmol/g and 0.320 mmol/g for ZnO nanoparticles and diatomite supported ZnO nanocomposite, respectively. Pseudo-first and pseudo-second order equations, Intraparticle diffusion and Bangham's models were considered to evaluate the rate parameters and sorption mechanism. Sorption kinetics were better reproduced by the pseudo-second order model (R{sup 2} > 0.999), with an activation energy (E{sub a}) of +99.74 kJ/mol and +62.95 kJ/mol for ZnO nanoparticles and diatomite-supported ZnO nanocomposite, respectively. In order to specify the type of sorption reaction, thermodynamic parameters were also determined. The evaluated ΔG* and ΔH* indicate the non-spontaneous and endothermic nature of the reactions. The results of this work suggest that both of the used materials are fast and effective adsorbents for removing Th(IV) from aqueous solutions and chemical sorption plays a role in controlling the sorption rate.

  8. Anionic 11-mercaptoundecanoic acid capped ZnO nanoparticles

    Šimšíková, Michaela, E-mail: michaela.simsikova@ceitec.vutbr.cz [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Antalík, Marián [Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Šrobárova 2, 041 54 Košice (Slovakia); Department of Biophysics, Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice (Slovakia); Kaňuchová, Mária; Škvarla, Jiří [Institute of Montaneous Sciences and Environmental Protection, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Park Komenského 19, 043 84 Košice (Slovakia)

    2013-10-01

    The anionic zinc oxide nanoparticles have been prepared at room temperature by a precipitation method using ZnCl{sub 2} and NaOH and surface modification with 11-mercaptoundecanoic acid (MUA). Atomic force microscopy (AFM) was used for definition of morphology and size of prepared nanoparticles which was proved by measurements of particle size distribution using Zetasizer. Successful coating with MUA as surfactant was acknowledged by X-ray photoelectron spectroscopy and ATR FT-IR spectroscopy. The isoelectric point (IEP) of ZnO–MUA nanoparticles was obtained by measurements of zeta potential and FT-IR dependence on pH; the obtained value was approximately 3.58. The value of exchanged protons was 2.88 which indicates a positive binding cooperativity of modified nanoparticles.

  9. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community.

    Xu, Jiangbing; Luo, Xiaosan; Wang, Yanling; Feng, Youzhi

    2018-02-01

    The wide spread of nanoparticles (NPs) has caused tremendous concerns on agricultural ecosystem. Some metallic NPs, such as zinc oxide (ZnO), can be utilized as a nano-fertilizer when used at optimal doses. However, little is known about the responses of plant development and concomitant soil bacteria community to ZnO NPs. The present pot experiment studied the impacts of different doses of ZnO NPs and bulk ZnO (0, 1, 10, 100 mg ZnO/kg), on the growth of lettuce (Lactuca sativa L.) and the associated rhizospheric soil bacterial community. Results showed that at a dose of 10 mg/kg, ZnO NPs and bulk ZnO, enhanced the lettuce biomass and the net photosynthetic rate; whereas, the Zn content in plant tissue was higher in NPs treatment than in their bulk counterpart at 10 mg/kg dose or higher. For the underground observations, 10 mg/kg treatment doses (NPs or bulk) significantly changed the soil bacterial community structure, despite the non-significant variations in alpha diversity. Taxonomic distribution revealed that some lineages within Cyanobacteria and other phyla individually demonstrated similar or different responses to ZnO NPs and bulk ZnO. Moreover, some lineages associated with plant growth promotion were also influenced to different extents by ZnO NPs and bulk ZnO, suggesting the distinct microbial processes occurring in soil. Collectively, this study expanded our understanding of the influence of ZnO NPs on plant performance and the associated soil microorganisms.

  10. Genesis of ZnO nanoparticles; Genese de nanoparticulas de ZnO

    Silva, M.N. da; Pulcinelli, S.H.; Santilli, C.V., E-mail: marlonufla@yahoo.com.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica. Departamento de Fisico-Quimica

    2014-07-01

    Zinc oxide is a semiconductor with direct band gap, of 3,37 eV, and high excitons energy (60 MeV). The main key for comprehension of the mechanisms that rules particle formation, lay in a full understanding of the first step of formation and growing of this nanoparticle. Zinc oxide nanoparticle were prepared through modification in the method first proposed by Spanhel & Anderson, the characterization techniques were followed by UV-Vis spectroscopy and small angle X ray scattering (SAXS). The results have shown that in the reaction first step we have nanoparticle size between 0,32 e 2,0 nm, whose growing steps can be described by Diffusion-limited cluster-cluster aggregation (DLCA), where self-similar primary structures aggregate keeping the initial morphology. (author)

  11. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against perilous pathogens.

    Manukumar, H M; Umesha, S; Kumar, H N Naveen

    2017-09-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made an exciting area of drug delivery research. The present study investigated novel and simple route for synthesis of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) using chitosan and thymol as reducing, capping agent respectively to understand the therapeutic efficacy. The UV-vis spectroscopy, DLS, FT-IR, SEM, EDS, XRD used for characterization and radical scavenging activity, anti-microbial and biocompatibility was taken to ascertain an efficacy of novel T-C@AgNPs. The T-C@AgNPs intense peak at 490nm indicates the formation of nanoparticles and had average particle size of 28.94nm with spherical shape, monodisperse state in water, also exhibited excellent biocompatibility of cubic shaped pure silver element containing T-C@AgNPs. The antibacterial activity was studied for gram positive and gram negative food-borne pathogens and effective inhibition at 100μgmL -1 to S. aureus, S. epidermidis, S. haemolyticus (10.08, 10.00, 11.23mm) and S. typhimurium, P. aeruginosa and S. flexneri (9.28, 9.33, 12.03mm) compared to antibiotic Streptomycin. This study revealed the efficacy against multiple food-borne pathogens and therapeutic efficacy of T-C@AgNPs offers a valuable contribution in the area of nanotechnology. This proved to be a first-class novel antimicrobial material for the first time in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nanoparticles of ZnO doped with Mn: structural and morphological characteristics

    Bonifacio, Maria Aparecida Ribeiro; Lira, Helio de Lucena; Gama, Lucianna, E-mail: m_aparecidaribeiro@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Neiva, Laedna Souto [Universidade Federal do Cariri (UFCA), Juazeiro do Norte, CE (Brazil). Unidade Academica de Materiais; Kiminami, Ruth H. G. A. [Universidade Federal de Sao Carlos (USCar), SP (Brazil). Departamento de Engenharia de Materiais

    2017-07-15

    In this study, the effects of dopant concentrations on the structural and morphological characteristics of Zn{sub 1-x}Mn{sub x} O powders (x= 0.025, 0.05, 0.075, and 0.1 mole) synthesized by the Pechini method has been investigated. The powder was characterized by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET) specific surface, energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and Spectroscopy with Fourier transform (FTIR). An XRD analysis of the powder showed the formation of ZnO phase with a typical single phase wurtzite structure. The EDX analysis revealed Mn incorporated in the ZnO structure. The particle size calculated by BET ranged from 24 to 63 nm, confirming the nanometric size of the powder particles. The SEM analysis revealed irregular shaped particle agglomerates and the presence of nanosheets. From FTIR it was confirmed the wurtzite structure in ZnO and ZnO nanoparticles doped with Mn. (author)

  13. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...

  14. Dye-sensitized solar cells with ZnO nanoparticles fabricated at low temperature

    Cho, Sungjae; Moon, Byungjoon; Son, Dongick [Korea Institute of Science and Technology, Wanju (Korea, Republic of); Kwon, Byoungwook; Choi, Wonkook [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-11-15

    The authors investigated the microstructural and the electrical properties of ZnO based dyesensitized solar cells (DSSCs) fabricated using a low-temperature-processed(200 .deg. C) dye-sensitized ZnO-nanoparticle thin film and a Pt catalyst deposited on ITO/glass by using RF magnetron sputtering. A hydropolymer containing PEG (poly(ethylene glycol)) and PEO (poly ethylene oxide) was used to make uniformly-distributed ZnO nanoparticle layer that form a nano-porous ZnO network after heat treatment and was then dye sensitized and sandwiched between two electrodes in an electrolyte to make a DSSC device. The highest measured parameters, the short circuit current density (J{sub sc}), the open circuit potential(V{sub oc}), the fill factor(FF), and the power conversion efficiency (η), of the DSSC fabricated under optimized conditions were observed to be 4.93 mA/cm{sup 2}, 0.56 V, 0.40, and 1.12%, respectively.

  15. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    P R, Chithira; Theresa John, Teny, E-mail: teny@goa.bits-pilani.ac.in

    2017-05-15

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH{sup -}] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  16. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    P R, Chithira; Theresa John, Teny

    2017-01-01

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH - ] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  17. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  18. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2015-10-01

    Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Comparative study of Ni and Cu doped ZnO nanoparticles: Structural and optical properties

    Thakur, Shaveta; Thakur, Samita; Sharma, Jyoti; Kumar, Sanjay

    2018-05-01

    Nanoparticles of undoped and doped (0.1 M Ni2+ and Cu2+) ZnO are synthesized using chemical precipitation method. The crystallite size, morphology, chemical bonding and optical properties of as prepared nanoparticles are determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and UV-visible spectra. XRD analysis shows that the prepared samples are single phase and have hexagonal wurtzite structure. The crystallite size of the doped and undoped nanoparticles is determined using Scherrer method. The crystallite size is found to be increased with concentration of nickel and copper. All stretching and vibrational bands are observed at their specific positions through FTIR. The increase in band gap can be attributed to the different chemical nature of dopant and host cation.

  20. Crystal and electronic structure study of Mn doped wurtzite ZnO nanoparticles

    O.M. Ozkendir

    2016-08-01

    Full Text Available The change in the crystal and electronic structure properties of wurtzite ZnO nanoparticles was studied according to Mn doping in the powder samples. The investigations were conducted by X-ray Absorption Fine Structure Spectroscopy (XAFS technique for the samples prepared with different heating and doping processes. Electronic analysis was carried out by the collected data from the X-ray Absorption Near-Edge Structure Spectroscopy (XANES measurements. Additional crystal structure properties were studied by Extended-XAFS (EXAFS analysis. Longer heating periods for the undoped wurtzite ZnO samples were determined to own stable crystal geometries. However, for some doped samples, the distortions in the crystal were observed as a result of the low doping amounts of Mn which was treated as an impurity. Besides, the changes in oxygen locations were determined to create defects and distortions in the samples.

  1. Multiphonon scattering and non-radiative decay in ZnO nanoparticles

    Senthilkumar, K.; Tokunaga, M.; Okamoto, H.; Fujita, Y. [Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Senthilkumar, O. [Research Project Promotion Institute, Shimane University, Matsue 690-8504 (Japan); Lin, J.; Urban, B.; Neogi, A. [Department of Physics, University of North Texas, Denton 76203 (United States)

    2010-06-15

    ZnO nanoparticles were prepared using a simple evaporation technique at pressures of 75 and 760 torr. A wide visible emission was recorded from both samples using photoluminescence spectroscopy. The presence of green emission at 530 nm is due to deep level defects of vacant zinc V{sub Zn}, and/or their complexes in the ZnO band gap. The fundamental optical phonon modes were identified in addition to multiphonon combination of optical and acoustical overtones and nitrogen related local vibrational modes using Raman backscattering. The existence of multiphonons induces the non-radiative processes. The life time of both the radiative and non-radiative processes is discussed using time resolved photoluminescence spectroscopic results (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Studies on intrinsic defects related to Zn vacancy in ZnO nanoparticles

    Singh, V.P.; Das, D.; Rath, Chandana

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Williamson–Hall analysis of ZnO indicates strain in the lattice and size is of 20 nm. ► PL shows a broad emission peak in visible range due to native defects. ► Raman active modes corresponding to P6 3 mc and a few additional modes are observed. ► FTIR detects few local vibrational modes of hydrogen attached to zinc vacancies. ► V Zn -H and Zn + O divacancies are confirmed by PAS. -- Abstract: ZnO being a well known optoelectronic semiconductor, investigations related to the defects are very promising. In this report, we have attempted to detect the defects in ZnO nanoparticles synthesized by the conventional coprecipitation route using various spectroscopic techniques. The broad emission peak observed in photoluminescence spectrum and the non zero slope in Williamson–Hall analysis indicate the defects induced strain in the ZnO lattice. A few additional modes observed in Raman spectrum could be due to the breakdown of the translation symmetry of the lattice caused by defects and/or impurities. The presence of impurities can be ruled out as XRD pattern shows pure wurtzite structure. The presence of the vibrational band related to the Zn vacancies (V Zn ), unintentional hydrogen dopants and their complex defects confirm the defects in ZnO lattice. Positron life time components τ 1 and τ 2 additionally support V Zn attached to hydrogen and to a cluster of Zn and O di-vacancies respectively.

  3. Preparation of cytocompatible luminescent and magnetic nanohybrids based on ZnO, Zn{sub 0.95}Ni{sub 0.05}O and core-shell ZnO-Fe{sub 2}O{sub 3} polymer grafted nanoparticles for biomedical imaging

    Balti, I., E-mail: Imenbalti12@yahoo.fr [Universite de Carthage, Departement de Chimie, Unite de recherche UR11ES30, Faculte des sciences de Bizerte (Tunisia); Barrere, A., E-mail: amelie.barrere@univ-paris13.fr; Gueguen, V., E-mail: virginie.gueguen@univ-paris13.fr; Poussard, L., E-mail: loic.poussard@materianova.be; Pavon-Djavid, G., E-mail: graciela.pavon@univ-paris13.fr; Meddahi-Pelle, A., E-mail: anne.pelle@inserm.fr [Universite Paris 13, Laboratoire de bio-ingenierie des polymeres cardiovasculaires, Inserm U698, Institut Galilee (France); Rabu, P., E-mail: pierre.rabu@ipcms.unistra.fr [Departement de Chimie des Materiaux Inorganiques, IPCMS UMR7504, CNRS-UDS, 23 (France); Smiri, L. S., E-mail: lsmiri@gmail.com [Universite de Carthage, Departement de Chimie, Unite de recherche UR11ES30, Faculte des sciences de Bizerte (Tunisia); Jouini, N., E-mail: jouini@univ-paris13.fr [Universite Paris 13, Laboratoire de Sciences des Procedes et des Materiaux, LSPM, CNRS UPR 3407, Institut Galilee (France); Chaubet, F., E-mail: frederic.chaubet@univ-paris13.fr [Universite Paris 13, Laboratoire de bio-ingenierie des polymeres cardiovasculaires, Inserm U698, Institut Galilee (France)

    2012-12-15

    ZnO, Zn{sub 0.95}Ni{sub 0.05}O and core-shell ZnO-{gamma}-Fe{sub 2}O{sub 3} nanoparticles (NPs) have been prepared by forced hydrolysis in polyol medium and then coated via the 'grafting from' approach with poly(sodium-4-styrenesulfonate) and poly(sodium-4-styrenesulfonate-co-sodium methacrylate) in the case of ZnO. The surface-initiated atom transfer radical polymerization occurred from the surface-functionalized NPs with {alpha}-bromoisobutyric acid as initiator. The polymer chains were grown from the surface to yield hybrid NPs with a 1-3-nm thick organic shell. FT-IR, TGA and electron microscopy evidenced the presence of a polymer layer on the surface of NPs. Magnetic and optical properties of bare and coated NPs have been measured. Eventually, the weak cytotoxicity of coated NPs on human endothelial cell allows considering their potentialities as new tools for nanomedicine and biomedical imaging.

  4. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

    Andersson-Willman, Britta; Gehrmann, Ulf; Cansu, Zekiye; Buerki-Thurnherr, Tina; Krug, Harald F.; Gabrielsson, Susanne; Scheynius, Annika

    2012-01-01

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO 2 and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO 2 or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cells (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO 2 nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO 2 and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO 2 nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO 2 or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO 2 and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. -- Highlights: ► ZnO nanoparticles induce cell death of MDDC but not of PBMC. ► ZnO nanoparticles induce caspase activation and DNA fragmentation in MDDC. ► TiO 2 nanoparticles are taken up by MDDC but have no effect on their phenotype. ► ZnO nanoparticles induce a significant reduction of CD16 expression on NK cells. ► ZnO and TiO 2

  5. Effects of subtoxic concentrations of TiO{sub 2} and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

    Andersson-Willman, Britta; Gehrmann, Ulf; Cansu, Zekiye [Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm (Sweden); Buerki-Thurnherr, Tina; Krug, Harald F. [Laboratory for Materials — Biology Interactions, Swiss Federal Laboratories of Materials Testing and Research, St. Gallen (Switzerland); Gabrielsson, Susanne [Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm (Sweden); Scheynius, Annika, E-mail: annika.scheynius@ki.se [Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm (Sweden)

    2012-10-01

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO{sub 2} and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO{sub 2} or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cells (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO{sub 2} nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO{sub 2} and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO{sub 2} nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO{sub 2} or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO{sub 2} and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. -- Highlights: ► ZnO nanoparticles induce cell death of MDDC but not of PBMC. ► ZnO nanoparticles induce caspase activation and DNA fragmentation in MDDC. ► TiO{sub 2} nanoparticles are taken up by MDDC but have no effect on their phenotype. ► ZnO nanoparticles induce a significant reduction of CD16

  6. Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge.

    Kim, Cheol-Su; Nguyen, Hai-Duong; Ignacio, Rosa Mistica; Kim, Jae-Hyun; Cho, Hyeon-Cheol; Maeng, Eun Ho; Kim, Yu-Ri; Kim, Meyoung-Kon; Park, Bae-Keun; Kim, Soo-Ki

    2014-01-01

    While zinc oxide (ZnO) nanoparticles (NPs) have been recognized to have promising applications in biomedicine, their immunotoxicity has been inconsistent and even contradictory. To address this issue, we investigated whether ZnO NPs with different size (20 or 100 nm) and electrostatic charge (positive or negative) would cause immunotoxicity in vitro and in vivo, and explored their underlying molecular mechanism. Using Raw 264.7 cell line, we examined the immunotoxicity mechanism of ZnO NPs as cell viability. We found that in a cell viability assay, ZnO NPs with different size and charge could induce differential cytotoxicity to Raw 264.7 cells. Specifically, the positively charged ZnO NPs exerted higher cytotoxicity than the negatively charged ones. Next, to gauge systemic immunotoxicity, we assessed immune responses of C57BL/6 mice after oral administration of 750 mg/kg/day dose of ZnO NPs for 2 weeks. In parallel, ZnO NPs did not alter the cell-mediated immune response in mice but suppressed innate immunity such as natural killer cell activity. The CD4(+)/CD8(+) ratio, a marker for matured T-cells was slightly reduced, which implies the alteration of immune status induced by ZnO NPs. Accordingly, nitric oxide production from splenocyte culture supernatant in ZnO NP-fed mice was lower than control. Consistently, serum levels of pro/anti-inflammatory (interleukin [IL]-1β, tumor necrosis factor-α, and IL-10) and T helper-1 cytokines (interferon-γ and IL-12p70) in ZnO NP-fed mice were significantly suppressed. Collectively, our results indicate that different sized and charged ZnO NPs would cause in vitro and in vivo immunotoxicity, of which nature is an immunosuppression.

  7. Experimental and numerical optical characterization of plasmonic copper nanoparticles embedded in ZnO fabricated by ion implantation and annealing

    Le, Khai Q. [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh City (Viet Nam); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Nguyen, Hieu P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States); Ngo, Quang Minh [Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Canimoglu, Adil [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Can, Nurdogan, E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-06-05

    Here we describe the successfully fabrication of metal nanoparticle crystals by implanting copper (Cu) ions into single zinc oxide (ZnO) crystals with ion energy of 400 keV at ion doses of 1 × 10{sup 16} to 1 × 10{sup 17} ions/cm{sup 2}. After implantation and post-annealing treatment, the Cu implanted ZnO produces a broad range of luminescence emissions, ranging from green to yellow. A green luminescence peak at 550 nm could be ascribed to the isolated Cu ions. The changes in luminescence emission bands between the initial implant and annealed suggest that the implants give rise to clustering Cu nanoparticles in the host matrix but that the annealing process dissociates these. Numerical modelling of the Cu nanoparticles was employed to simulate their optical properties including the extinction cross section, electron energy loss spectroscopy and cathodoluminescence. We demonstrate that the clustering of nanoparticles generates Fano resonances corresponding to the generation of multiple resonances, while the isolation of nanoparticles results in intensity amplification. - Highlights: • We present the fabrication of metal nanoparticle crystals by implanting Cu into ZnO. • The luminescence properties were studied at different annealing temperature. • Numerical modelling of the Cu nanoparticles was employed. • We demonstrate that the clustering of nanoparticles generates Fano resonances.

  8. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury

    Jarujamrus, Purim; Amatatongchai, Maliwan; Thima, Araya; Khongrangdee, Thatsanee; Mongkontong, Chakrit

    2015-05-01

    In this work, selective colorimetric sensors for simple and rapid detection of Hg(II) ions based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction were developed. The average diameter of synthesized AgNPs was 8.3 ± 1.4 nm which was characterized by transmission electron microscopy (TEM). The abrupt change in absorbance of the unmodified AgNPs was observed which progressively decreased and slightly shifted to the blue wavelength as the concentration of Hg(II) increased, indicating the oxidation of Ag(0) to Ag(I) occurred. It appears that the AgNPs were oxidized by Hg(II), resulting in disintegration of the AgNPs into smaller particles as well as mediating the reduction of Hg(II) to Hg(0) adsorbed onto the surface of AgNPs. The adsorption of Hg(0) resulted in the lack of sufficient charges on AgNPs surfaces due to the decrease in the surface coverage of negatively charged citrate molecules, which then leaded to enlargement of AgNPs. The calibration curve of this technique was demonstrated from 0.5 to 7 ppm (r2 = 0.995), the limit of detection (LOD) was 0.06 ppm (SDblank/slope of calibration curve) with the precision (RSD, n = 4) of 3.24-4.53. Interestingly, the results show a significant enhance in the Hg(II) analytical sensitivity when Cu(II) is doped onto the unmodified AgNPs, which improves the quantitative detection limit to 0.008 ppm. In addition, greater selectivity toward Hg(II) compared with the other metal ions tested was observed. Furthermore, the percentage recoveries of spiked drinking water, tap water and SRM1641d (mercury in water) were in acceptable range with a good precision (RSD) which were in agreement with the values obtained from graphite furnace atomic absorption spectrometer (GFAAS). The technique proposed in this study provides a rapid, simple, sensitive and selective detection method for Hg(II) in water samples.

  9. Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers.

    Dybowska, Agnieszka D; Croteau, Marie-Noele; Misra, Superb K; Berhanu, Deborah; Luoma, Samuel N; Christian, Paul; O'Brien, Paul; Valsami-Jones, Eugenia

    2011-01-01

    Understanding the behavior of engineered nanoparticles in the environment and within organisms is perhaps the biggest obstacle to the safe development of nanotechnologies. Reliable tracing is a particular issue for nanoparticles such as ZnO, because Zn is an essential element and a common pollutant thus present at elevated background concentrations. We synthesized isotopically enriched (89.6%) with a rare isotope of Zn (67Zn) ZnO nanoparticles and measured the uptake of 67Zn by L. stagnalis exposed to diatoms amended with the particles. Stable isotope technique is sufficiently sensitive to determine the uptake of Zn at an exposure equivalent to lower concentration range (<15 μg g(-1)). Without a tracer, detection of newly accumulated Zn is significant at Zn exposure concentration only above 5000 μg g(-1) which represents some of the most contaminated Zn conditions. Only by using a tracer we can study Zn uptake at a range of environmentally realistic exposure conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Antibacterial Composite Layers on Ti: Role of ZnO Nanoparticles

    Roguska A.

    2016-03-01

    Full Text Available Problem of Post-operative infections of implant materials caused by bacterial adhesion to their surfaces is very serious. Enhancement of antibacterial properties is potentially beneficial for biomaterials value. Therefore, the metallic and metallic oxide nanoparticles attract particular attention as antimicrobial factors. The aim of this work was to create nanotubular (NT oxide layers on Ti with the addition of ZnO nanoparticles, designed for antibacterial biomedical coatings. Antimicrobial activities of titanium, TiO2 NT and ZnO/TiO2 NT surfaces were evaluated against bacterial strain typical for orthopaedic infections: S. epidermidis. TiO2 NT alone killed the free bacterial cells significantly but promoted their adhesion to the surfaces. The presence of moderate amount of ZnO nanoparticles significantly reduced the S. epidermidis cells adhesion and viability of bacterial cells in contact with modified surfaces. However, higher amount of loaded nanoZnO showed the reduced antimicrobial properties than the medium amount, suggesting the overdose effect.

  11. Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers

    Dybowska, A.D.; Croteau, M.-N.; Misra, S.K.; Berhanu, D.; Luoma, S.N.; Christian, P.; O'Brien, P.; Valsami-Jones, E.

    2011-01-01

    Understanding the behavior of engineered nanoparticles in the environment and within organisms is perhaps the biggest obstacle to the safe development of nanotechnologies. Reliable tracing is a particular issue for nanoparticles such as ZnO, because Zn is an essential element and a common pollutant thus present at elevated background concentrations. We synthesized isotopically enriched (89.6%) with a rare isotope of Zn (67Zn) ZnO nanoparticles and measured the uptake of 67Zn by L. stagnalis exposed to diatoms amended with the particles. Stable isotope technique is sufficiently sensitive to determine the uptake of Zn at an exposure equivalent to lower concentration range (<15 ??g g-1). Without a tracer, detection of newly accumulated Zn is significant at Zn exposure concentration only above 5000 ??g g-1 which represents some of the most contaminated Zn conditions. Only by using a tracer we can study Zn uptake at a range of environmentally realistic exposure conditions. ?? 2010 Elsevier Ltd. All rights reserved.

  12. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties

    Ali, Attarad; Ambreen, Sidra; Javed, Rabia; Tabassum, Saira [Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ul Haq, Ihsan [Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Zia, Muhammad, E-mail: ziachaudhary@gmail.com [Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2017-05-01

    Zinc oxide (ZnO) nanostructures are synthesized in various organic solvents (acetone, chloroform, ethyl acetate, ethanol and methanol) and water via coprecipitation process using zinc acetate as precursor. The resultant ZnO nanoparticles, nano rods and nano sheets are characterized by UV–vis spectrophotometric analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The variable size and geometry of nanoparticles depend upon medium used for synthesis. The synthesized ZnO nanostructures exhibit minor to moderate antioxidative (DPPH based free radical scavenging activity, total antioxidative potential and total reducing power) response. Mild to moderate antibacterial and antifungal activities, excellent antileishmanial potential (IC50 up to 3.76), and good cytotoxic perspective (LD50 up to 49.4) is also observed by the synthesized ZnO NPs. The nanoparticles also exhibit moderate α-amylase inhibition response. Furthermore the nanostructures are evaluated for methylene blue photodegradation response within 60 min time period. It is found that organic solvent alters shape, size and other physio-chemical properties of ZnO that ultimately modulate the biological, chemical, and environmental properties. - Highlights: • Zinc oxide nanoparticles are fabricated in different solvents using co-precipitation method • SEM, XRD and FTIR analysis confirms variation in physical and chemical characteristics of synthesized ZnO NPs • The synthesized ZnO demonstrates variation in biological, phytochemical and photodegradable properties.

  13. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties

    Ali, Attarad; Ambreen, Sidra; Javed, Rabia; Tabassum, Saira; Ul Haq, Ihsan; Zia, Muhammad

    2017-01-01

    Zinc oxide (ZnO) nanostructures are synthesized in various organic solvents (acetone, chloroform, ethyl acetate, ethanol and methanol) and water via coprecipitation process using zinc acetate as precursor. The resultant ZnO nanoparticles, nano rods and nano sheets are characterized by UV–vis spectrophotometric analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The variable size and geometry of nanoparticles depend upon medium used for synthesis. The synthesized ZnO nanostructures exhibit minor to moderate antioxidative (DPPH based free radical scavenging activity, total antioxidative potential and total reducing power) response. Mild to moderate antibacterial and antifungal activities, excellent antileishmanial potential (IC50 up to 3.76), and good cytotoxic perspective (LD50 up to 49.4) is also observed by the synthesized ZnO NPs. The nanoparticles also exhibit moderate α-amylase inhibition response. Furthermore the nanostructures are evaluated for methylene blue photodegradation response within 60 min time period. It is found that organic solvent alters shape, size and other physio-chemical properties of ZnO that ultimately modulate the biological, chemical, and environmental properties. - Highlights: • Zinc oxide nanoparticles are fabricated in different solvents using co-precipitation method • SEM, XRD and FTIR analysis confirms variation in physical and chemical characteristics of synthesized ZnO NPs • The synthesized ZnO demonstrates variation in biological, phytochemical and photodegradable properties.

  14. Characterization of size and morphology of ZnO and Fe2O3 nanoparticles in dispersive media by SAXS

    Wang Bing; Wang Meng; Zhu Motao; Zhao Yuliang; Wu Zhonghua

    2007-01-01

    The size and shape of ZnO and Fe 2 O 3 nano-particles in 1% sodium carboxy methyl cellulose were measured by small-angle X-ray scattering (SAXS) of synchrotron radiation. Compared with the TEM results, the SAXS results indicated that the ZnO and Fe 2 O 3 nano-particles in 1% sodium carboxy methyl cellulose were agglomerated. However, the size and shape of the agglomerated particles were almost unchanged along with the increase of particle concentration, indicating that the particles in 1% sodium carboxy methyl cellulose were stable. (authors)

  15. The effect of ZnO nanoparticles on improved oil recovery in spontaneous imbibition mechanism of heavy oil production

    Tajmiri, M.; Ehsani, M. R.; Mousavi, S. M.; Roayaei, E.; Emadi, A.

    2015-07-01

    Spontaneous imbibition (SI) gets a controversial subject in oil- wet carbonate reservoirs. The new concept of nanoparticles applications in an EOR area have been recently raised by researches about oil viscosity reduction and generate emulsion without surfactant. But a lot of questions have been remained about which nanoparticles can alter wettability from oil- wet to water- wet to improve oil recovery. This study introduces the new idea of adding ZnO nanoparticles (0.2%wt concentration) by experimental work on oil recovery. The main goals of this research were to prove that ZnO nanoparticles have the ability to reduce viscosity and also alter wettability. The ultimate objective was to determine the potential of these nanoparticles to imbibe into and displace oil. Through the use of Amott- cell, laboratory tests were conducted in two experiments on four cylindrical core samples (three sandstones and one carbonate) were taken from real Iranian heavy oil reservoir. In the first experiment, core samples were saturated by crude oil and in the second experiment, nanoparticles were flooding into core samples and then saturated by crude oil for about two weeks and after that they were immersed in distilled water and the amount of recovery was monitored during 30 days for both tests. We expected that ZnO nanoparticles decreased the surface tension which reduced the capillary forces through SI and wettability alteration took place towards a more water-wet system and caused the oil relative permeability to increase which dominated the gravitational forces to pull out the oil. Our results proved this expectation from ZnO nanoparticles clearly because carbonate core was oil- wet and the capillary pressure was high and negative to push water into the core so the original oil in place (OOIP) was zero whereas by adding ZnO nanoparticles OOIP was increased to 8.89%. SI yielded recovery values from 17.3, 2 and 15 without nanoparticles to 20.68, 17.57 and 36.2 % OOIP with

  16. Assessing Germination Response of Wheat and Wild Oat to Different Levels of ZnO Nanoparticles

    Ehsan Zeidali

    2018-02-01

    variations within a species are essential for seedling establishment at different habitats (Grundy et al., 1996. Germination of various plants has a different response to nanoparticles. Application of nanoparticles that have a positive effect on germination and growth of crop and a negative effect on weed can be useful in weed control. Materials and Methods: In order to study the effect of different concentrations of ZnO on germination characteristics of wild oat and two genotypes of wheat, an experiment was conducted with a factorial arrangement based on completely randomized design with four replications in research laboratory of Ilam University. The experimental treatments were plant genotypes (wild oat and Behrang and Sivand genotypes of wheat and different concentrations of ZnO (0, 10, 100 and 500 ppm. Germination of seeds was determined by placing 30 seed in a 9-cm-diam Petri dish containing two layers of Whatman No. 1 filter paper, moistened with 5 ml of distilled water or a treatment solution. The treatments of ZnO were applied in Agar complex. After treatment, the dishes were sealed with paraffin tape, and placed in the dark in an incubator at 25 °C. The number of seeds germinated was counted every day. Seedling and radicle length, seedling and radicle dry weight and germination rate were measured. Data were subjected to two-way analysis of variance (ANOVA and the difference between treatment means was separated using Duncan test. A significance level of 95% was applied by SAS 9.2. Results and Discussion: The results showed that the simple and interaction effects of genotype and ZnO had a significant effect (P ≤ 0.01 on all studied traits. The plumule length of both wheat genotypes was increased to 100 ppm ZnO concentration and then was decreased. The plumule length of oat wild was increased by increasing ZnO concentration. Increase in ZnO concentration to 10 ppm caused a significant increment in the radical length of sivand genotype and wild oat, and the trait

  17. Engineered Nanoparticles as Potential Food Contaminants and Their Toxicity to Caco-2 Cells.

    Mao, Xiaomo; Nguyen, Trang H D; Lin, Mengshi; Mustapha, Azlin

    2016-08-01

    Engineered nanoparticles (ENPs), such as metallic or metallic oxide nanoparticles (NPs), have gained much attention in recent years. Increasing use of ENPs in various areas may lead to the release of ENPs into the environment and cause the contamination of agricultural and food products by ENPs. In this study, we selected two important ENPs (zinc oxide [ZnO] and silver [Ag] NPs) as potential food contaminants and investigated their toxicity via an in vitro model using Caco-2 cells. The physical properties of ENPs and their effects on Caco-2 cells were characterized by electron microscopy and energy dispersive X-ray spectroscopic (EDS) techniques. Results demonstrate that a significant inhibition of cell viability was observed after a 24-h of exposure of Caco-2 cells to 3-, 6-, and 12-mM ZnO NPs or 0.5-, 1.5-, and 3-mM Ag NPs. The noticeable changes of cells include the alteration in cell shape, abnormal nuclear structure, membrane blebbing, and cytoplasmic deterioration. The toxicity of ZnO NPs, but not that of Ag NPs after exposure to simulated gastric fluid, significantly decreased. Scanning transmission electron microscopy shows that ZnO and Ag NPs penetrated the membrane of Caco-2 cells. EDS results also confirm the presence of NPs in the cytoplasm of the cells. This study demonstrates that ZnO and Ag NPs have cytotoxic effects and can inhibit the growth of Caco-2 cells. © 2016 Institute of Food Technologists®

  18. Assessment of copper nanoparticles (Cu-NPs) and copper (II) oxide (CuO) induced hemato- and hepatotoxicity in Cyprinus carpio

    Noureen, Aasma; Jabeen, Farhat; Tabish, Tanveer A.; Yaqub, Sajid; Ali, Muhammad; Shakoor Chaudhry, Abdul

    2018-04-01

    Recently, Cu-based nanoparticles have drawn considerable attention for their various fascinating roles in multiple biological systems. It is recognized that their frequent use can create compatibility challenges for the recipient systems. Nevertheless, it is unclear how various biological interactions affect the compatibility of Cu oxide II (CuO) and Cu oxide nanoparticles (Cu-NPs) for different organisms. Consequently, it has been difficult to perform structured risk assessments for their use in biological systems. Therefore, this study compared the effects of different doses of waterborne Cu-NPs and CuO on the blood and liver of selected groups of Cyprinus (C) carpio. These fish while housed in suitable water tanks were exposed to one of the following treatments for 14 d: control (no added Cu) or 0.5 or 1 or 1.5 mg Cu as Cu-NPs or CuO l-1 of water. We found significant changes in all assessed blood parameters of fish in response to increasing doses from 0 to 1.5 mg of Cu-NPs or CuO. Similarly, increased levels of lipid peroxide and reduced glutathione (GSH) were also observed in the livers of C. carpio in Cu-NPs or CuO treated groups. Enhanced levels of lipid peroxidation and GSH were also recorded in the Cu-NP treated groups compared with the CuO treated groups in a dose dependent manner. The lowest catalase activity was observed in the liver of C. carpio treated with the higer dose of Cu-NPs. Cu-NP or CuO exposure induced significant histological alterations in the liver of C. carpio including focal necrosis, cloudy swelling of hepatocytes, degenerative hepatocytes, vacuolization, pyknotic nuclei, damaged central vein, nuclear hypertrophy, dilated sinusoid, vacuolated degeneration, congestion, and complete degeneration in a dose dependent manner. Substantial alterations in blood and liver specimens were observed in the Cu-NP treated fish when compared with the CuO treated fish. It appeared that the Cu-NPs were more toxic than the CuO as shown by the hemato- and

  19. Magnetically separable core–shell ZnFe_2O_4@ZnO nanoparticles for visible light photodegradation of methyl orange

    Kulkarni, Suresh D.; Kumbar, Sagar; Menon, Samvit G.; Choudhari, K.S.; Santhosh, C.

    2016-01-01

    Highlights: • Phase pure, magnetic ZnFe_2O_4@ZnO nanoparticles synthesized with excellent yield. • ZnFe_2O_4@ZnO displayed higher UV photocatalytic efficiency than ZnO nanoparticles. • First report on visible light photodegradation of methyl orange by ZnFe_2O_4@ZnO. • Excellent reusability of ZnFe_2O_4@ZnO nanoparticles observed for azo dye removal. - Abstract: Visible light photodegradation of aqueous methyl orange using magnetically separable core–shell ZnFe_2O_4@ZnO nanoparticles is reported. A combination of low temperature (190 °C) microwave synthesis and hydrothermal method were used to prepare phase pure material with excellent yield (95%). The magnetic separability, surface area of 41 m"2/g and visible light absorption make ZnFe_2O_4@ZnO nanoparticles a good solar photocatalyst. ZnFe_2O_4@ZnO displayed greater UV photocatalytic efficiency than ZnO owing to the generation of large number of electron-hole pairs. Visible light photodegradation of MO using ZnFe_2O_4@ZnO nanoparticles is reported for the first time. Higher first order rate constants under both UV and visible light for core-shell nanoparticles suggested their superiority over its individual oxides. The ZnFe_2O_4@ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications.

  20. Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

    Tanujjal Bora

    2013-11-01

    Full Text Available In recent years, nanotechnology has gained significant interest for applications in the medical field. In this regard, a utilization of the ZnO nanoparticles for the efficient degradation of bilirubin (BR through photocatalysis was explored. BR is a water insoluble byproduct of the heme catabolism that can cause jaundice when its excretion is impaired. The photocatalytic degradation of BR activated by ZnO nanoparticles through a non-radiative energy transfer pathway can be influenced by the surface defect-states (mainly the oxygen vacancies of the catalyst nanoparticles. These were modulated by applying a simple annealing in an oxygen-rich atmosphere. The mechanism of the energy transfer process between the ZnO nanoparticles and the BR molecules adsorbed at the surface was studied by using steady-state and picosecond-resolved fluorescence spectroscopy. A correlation of photocatalytic degradation and time-correlated single photon counting studies revealed that the defect-engineered ZnO nanoparticles that were obtained through post-annealing treatments led to an efficient decomposition of BR molecules that was enabled by Förster resonance energy transfer.

  1. Band gap tuning of ZnO nanoparticles via Mg doping by femtosecond laser ablation in liquid environment

    Chelnokov, E.; Rivoal, M.; Colignon, Y.; Gachet, D.; Bekere, L.; Thibaudau, F.; Giorgio, S.; Khodorkovsky, V.; Marine, W.

    2012-01-01

    Highlights: ► Femtosecond laser ablation synthesis of Mg doped ZnO nanoparticles. ► Electronic properties of ZnO are modified by Mg. ► Band gap and exciton energy shifts to the blue. ► The exciton energy shift is saturated at Mg content of about 20%. ► Phase separation at Mg content is at more than 25%. ► Mechanism of exciton pinning – recombination via new surface states. - Abstract: We use multiphoton IR femtosecond laser ablation to induce non-thermal non-equilibrium conditions of the nanoparticle growth in liquids. Modifications of the electronic properties of ZnO NP were achieved by Mg ion doping of targets prepared from mixtures of Zn and Mg acetylacetonates. The nanoparticle sizes were 3–20 nm depending on the ablation conditions. X-ray fluorescence indicates that stoichiometric ablation and incorporation of Mg in nanocrystalline ZnO occurs. HRTEM observations show that nanoparticles retain their wurtzite structure, while at high Mg concentrations we detect the MgO rich domains. Exciton emissions exhibit relatively narrow bands with progressive and controlled blue shifts up to 184 meV. The exciton energy correlates to band edge absorption indicating strong modification of the NP band gaps. Stabilisation of the exciton blue shift is observed at high Mg concentration. It is accompanied by the formation of structure defects and ZnO/MgO phase separation within the nanoparticles.

  2. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico); Rangel-López, Edgar [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Castillo, Claudia G. [Facultad de Medicina, Universidad Autonoma de San Luis Potosi (Mexico); Santamaría, Abel [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Martinez-Castañon, Gabriel A. [Universidad Autonoma de San Luis Potosi, Facultad de Estomatologia (Mexico); Gonzalez, Carmen, E-mail: cgonzalez.uaslp@gmail.com, E-mail: gonzalez.castillocarmen@fcq.uaslp.mx [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico)

    2015-11-15

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO{sub 3}) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  3. Synthesis and characterization of manganese diselenide nanoparticles (MnSeNPs): Determination of capsaicin by using MnSeNP-modified glassy carbon electrode.

    Sukanya, Ramaraj; Sakthivel, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed Soliman

    2018-06-02

    A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct  = 29.52 Ω), a larger active surface area (0.089 cm 2 /g, and more efficient electrochemical oxidation of capsaicin compared to a MnS 2 /GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM -1  cm -2 . The method was applied to the determination of capsaicin in pepper samples. Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.

  4. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector; Rangel-López, Edgar; Castillo, Claudia G.; Santamaría, Abel; Martinez-Castañon, Gabriel A.; Gonzalez, Carmen

    2015-11-01

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  5. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector; Rangel-López, Edgar; Castillo, Claudia G.; Santamaría, Abel; Martinez-Castañon, Gabriel A.; Gonzalez, Carmen

    2015-01-01

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO 3 ) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells

  6. Functionalized ZnO Nanoparticles with Gallic Acid for Antioxidant and Antibacterial Activity against Methicillin-Resistant S. aureus

    Joomin Lee

    2017-11-01

    Full Text Available In this study, we report a new multifunctional nanoparticle with antioxidative and antibacterial activities in vitro. ZnO@GA nanoparticles were fabricated by coordinated covalent bonding of the antioxidant gallic acid (GA on the surface of ZnO nanoparticles. This addition imparts both antioxidant activity and high affinity for the bacterial cell membrane. Antioxidative activities at various concentrations were evaluated using a 2,2′-azino-bis(ethylbenzthiazoline-6-sulfonic acid (ABTS radical scavenging method. Antibacterial activities were evaluated against Gram-positive bacteria (Staphylococcus aureus: S. aureus, including several strains of methicillin-resistant S. aureus (MRSA, and Gram-negative bacteria (Escherichia coli. The functionalized ZnO@GA nanoparticles showed good antioxidative activity (69.71%, and the bactericidal activity of these nanoparticles was also increased compared to that of non-functionalized ZnO nanoparticles, with particularly effective inhibition and high selectivity for MRSA strains. The results indicate that multifunctional ZnO nanoparticles conjugated to GA molecules via a simple surface modification process displaying both antioxidant and antibacterial activity, suggesting a possibility to use it as an antibacterial agent for removing MRSA.

  7. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  8. Photocatalytic degradation of Reactive Black 5 and Malachite Green with ZnO and lanthanum doped nanoparticles

    Kaneva, N; Bojinova, A; Papazova, K

    2016-01-01

    Here we report the preparation of ZnO particles with different concentrations of La 3 + doping (0, 0.5 and 1 wt%) via sol-gel method. The nanoparticles are synthesized directly from Zn(CH 3 COO) 2 .2H 2 O in the presence of 1-propanol and triethylamine at 80°C. The conditions are optimized to obtain particles of uniform size, easy to isolate and purify. The nanoparticles are characterized by SEM, XRD and UV-Vis analysis. The photocatalytic properties of pure and La-doped ZnO are studied in the photobleaching of Malachite Green (MG) and Reactive Black 5 (RB5) dyes in aqueous solutions upon UV illumination. It is observed that the rate constant increases with the La loading up to 1 wt%. The doping helps to achieve complete mineralization of MG within a short irradiation time. 1 wt% La-doped ZnO nanoparticles show highest photocatalytic activity. The La 3+ doped ZnO particles degrade faster RB5 than MG. The reason is weaker N=N bond in comparison with the C-C bond between the central carbon atom and N,N-dimethylaminobenzyl in MG. The as-prepared ZnO particles can find practical application in photocatalytic purification of textile wastewaters. (paper)

  9. Improved performance of photoconductive gain hybrid UV detector by trap state engineering of ZnO nanoparticles

    Azadinia, M.; Fathollahi, M. R.; Mosadegh, M.; Boroumand, F. A.; Mohajerani, E.

    2017-10-01

    With the purpose of examining the impact of donor polymer on the performance of nanocomposite photodetectors (PDs) and to better understand the underlying physics, different wide-bandgap semiconducting polymers, poly(N-vinylcarbazole), poly(9, 9-di-n-octylfluorenyl-2, 7-diyl) , and [9,9'-dioctyl-fluorene-2,7-diyl]-copoly[diphenyl-p-tolyl-amine-4,4'-diyl] (BFE), are mixed with ZnO nanoparticles (NPs) to fabricate hybrid UV PDs. Three different polymer matrix nanocomposites were investigated that differ in the electron-trap depth in the nanocomposite and also the carrier tunneling energy at the interface. All the fabricated PDs exhibit strong photoconductive gain characteristics which can be attributed to trapped electron accumulation and band bending at the cathode interface. Experimental results show that the manipulation of the photoactive nanocomposite improves the PD properties simultaneously, namely, the external quantum efficiency (EQE, ˜104%), the maximum detectivity (D*, ˜1013 Jones), and the linear dynamic range (LDR, ˜85 dB). In addition, the gain bandwidth product of the device improves more than 50 times. Furthermore, the effect of the photogenerated carrier profile within the active layer is investigated experimentally by changing the direction of the incident light using a transparent cathode. Interestingly, under illumination through the Al cathode, faster photocurrent response, wider spectral range toward the deep UV region, and higher EQE in relatively low voltages are observed. These considerations might provide a general strategy to fabricate low-cost photoconductive PDs with a reasonably good combination of gain, response speed, LDR, and selectivity.

  10. SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect.

    Nikam, Pratibha R; Baviskar, Prashant K; Majumder, Sutripto; Sali, Jaydeep V; Sankapal, Babasaheb R

    2018-08-15

    Controlled growth of different sizes of cadmium selenide (CdSe) nanoparticles over well aligned ZnO nanorods have been performed using successive ionic layer adsorption and reaction (SILAR) technique at room temperature (27 °C) in order to form nano heterostructure solar cells. Deposition of compact layer of zinc oxide (ZnO) by SILAR technique on fluorine doped tin oxide (FTO) coated glass substrate followed by growth of vertically aligned ZnO nanorods array using chemical bath deposition (CBD) at low temperature (SILAR cycles for CdSe and with use of different electrolytes have been recorded as J-V characteristics and the maximum conversion efficiency of 0.63% have been attained with ferro/ferri cyanide electrolyte for 12 cycles CdSe coating over 1-D ZnO nanorods. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Fabrication of friction-reducing texture surface by selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs)

    Wang, Xinjian; Liu, Junyan; Wang, Yang; Fu, Yanan

    2017-02-01

    This paper reports a process of selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs) for the fabrication of full dense Cu friction-reducing texture on the metallic surface in ambient condition. This technique synthesizes pure Cu by chemical reduction route using an organic solvent during laser melting in the atmosphere environment, and provides a flexible additive manufacture approach to form complex friction-reduction texture on the metallic surface. Microtextures of ring and disc arrays have been fabricated on the stainless steel surface by SLM-IP Cu NPs. The friction coefficient has been measured under the lubricating condition of the oil. Disc texture surface (DTS) has a relatively low friction coefficient compared with ring texture surface (RTS), Cu film surface (Cu-FS) and the untreated substrate. The study suggests a further research on SLM-IP approach for complex microstructure or texture manufacturing, possibly realizing its advantage of flexibility.

  12. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production.

    Andersson-Willman, Britta; Gehrmann, Ulf; Cansu, Zekiye; Buerki-Thurnherr, Tina; Krug, Harald F; Gabrielsson, Susanne; Scheynius, Annika

    2012-10-01

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO(2) and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO(2) or ZnO nanoparticles at concentrations from 1 to 100μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cells (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO(2) nanoparticles. Non-toxic exposure, 10μg/mL, to TiO(2) and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO(2) nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO(2) or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO(2) and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Influence of Tb doping on the luminescence characteristics of ZnO nanoparticles

    Sharma, A.; Dhar, S.; Singh, B. P.; Kundu, T.; Spasova, M.; Farle, M.

    2012-01-01

    Structural and optical properties of the Tb-doped ZnO nanoparticles with average diameter ≈4 nm have been systematically investigated. Our X-ray diffraction studies show a contraction of the ZnO lattice with the increase of the Tb mole-fraction x for x ≤ 0.02 and an expansion beyond x ≈ 0.02. The photoluminescence spectra are found to be comprised of a near band edge ultra violet luminescence (UVL) and a broad green luminescence (GL) band. Under the atmospheric condition, the intensity of the GL band is found to increase with the Tb mole-fraction over the entire doping range. On the other hand, under the vacuum condition, it has been observed that the GL intensity decreases with the increase of x up to x ≈ 0.02 but further increase of x leads to a gradual revival of the GL emission. Our study suggests that for x ≤ 0.02, GL results due to the physisorption of certain groups on the surface of the nanoparticles (GL-groups). It is also found that in this Tb mole-fraction regime, Tb incorporates mostly on the surface of the nanoparticles and affects the UVL to GL intensity ratio by influencing the attachment of the GL-groups. However, for x > 0.02, GL originates not only from the GL-groups but also from certain point defects, which are likely to be generated due to the incorporation of Tb in the core of the nanoparticles. A simple rate equation model is introduced to get a quantitative understanding about the variation of the density of the centers responsible for the GL emission as a function of x under the atmospheric and the vacuum conditions.

  14. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles

    El-Kemary, Maged, E-mail: elkemary@yahoo.co [Photo- and Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh (Egypt); El-Shamy, Hany; El-Mehasseb, Ibrahim [Photo- and Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh (Egypt)

    2010-12-15

    We report the synthesis of nanostructure ZnO semiconductor with {approx}2.1 nm diameter using a chemical precipitation method. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties were investigated by UV-vis and fluorescence techniques. The absorption spectra exhibit a sharp absorption edge at {approx}334 nm corresponding to band gap of {approx}3.7 eV. The fluorescence spectra displayed a near-band-edge ultraviolet excitonic emission at {approx}410 nm and a green emission peak at {approx}525 nm, due to a transition of a photo-generated electron from the conduction band to a deeply trapped hole. The photocatalytic activity of the prepared ZnO nanoparticles has been investigated for the degradation of ciprofloxacin drug under UV light irradiation in aqueous solutions of different pH values. The results showed that the photocatalytic degradation process is effective at pH 7 and 10, but it is rather slow at pH 4. Higher degradation efficiency ({approx}50%) of the drug was observed at pH 10 after 60 min. Photodegradation of the drug follows a pseudo-first-order kinetics.

  15. The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines.

    Venugopal, K; Ahmad, H; Manikandan, E; Thanigai Arul, K; Kavitha, K; Moodley, M K; Rajagopal, K; Balabhaskar, R; Bhaskar, M

    2017-08-01

    The present study tried for a phyto-synthetic method of producing silver nanoparticles (Ag-NPs) with size controlled as and eco-friendly route that can lead to their advanced production with decorative tranquil morphology. By inducing temperature fluctuation of the reaction mixture from 25 to 80°C the plasmon resonance band raised slowly which had an ultimate effect on size and shape of Ag-NPs as shown by UV-visible spectroscopy and TEM results. The biosynthesized nanoparticles showed good cytotoxic impact against MCF-7, A549 and Hep2 cells compared to normal cell lines. Compared to control plates, the percentage of cell growth inhibition was found to be high with as concentrations of Ag-NPs becomes more as determined by MTT assay. The AO/EtBr staining observations demonstrated that the mechanism of cell death induced by Ag-NPs was due to apoptosis in cancer cells. These present results propose that the silver nanoparticles (Ag-NPs) may be utilized as anticancer agents for the treatment of various cancer types. However, there is a need for study of in vivo examination of these nanoparticles to find their role and mechanism inside human body. Further, studies we plan to do biomarker fabrication from the green synthesized plant extract nanoparticles like silver, gold and copper nanoparticles with optimized shape and sizes and their enhancement of these noble nanoparticles. Copyright © 2017. Published by Elsevier B.V.

  16. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer

    Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan

    2009-01-01

    The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.

  17. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions.

    González-Béjar, María; Peters, Kate; Hallett-Tapley, Geniece L; Grenier, Michel; Scaiano, Juan C

    2013-02-28

    Surface plasmon excitation of gold nanoparticles on ZnO in the presence of an aldehyde, an amine and phenylacetylene led to rapid and selective formation of propargylamines with good yields (50-95%) at room temperature. Plasmon mediated catalysis is the best available route for this ternary coupling.

  18. Photogeneration and decay of charge carriers in hybrid bulk heterojunctions of ZnO nanoparticles and conjugated polymers

    Quist, P.A.C.; Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J.; Savenije, T.J.; Siebbeles, L.D.A.

    2006-01-01

    The photogeneration and decay of charge carriers in blend films of ZnO nanoparticles (diam. 5 nm) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) or poly(3-hexylthiophene) (P3HT) were studied by means of microwave-photoconductance measurements. Excitation of the

  19. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge st...

  20. Vertically aligned ZnO nanorods via self-assembled spray pyrolyzed nanoparticles for dye-sensitized solar cells

    Dwivedi, Charu; Dutta, V

    2012-01-01

    Well-aligned zinc oxide (ZnO) nanorods are fabricated on indium-tin-oxide (ITO) coated glass substrates via self-assembly of ZnO nanoparticles created using continuous spray pyrolysis (CoSP) technique. The method involves pre-treatment by dip-coating the substrate with a solution comprising of zinc salt for creating a seed layer, and then spray-pyrolyzed ZnO nanoparticles self-assemble on the pre-treated substrate. The effect of the substrate pre-treatment and the deposition time (t dep ) of nanoparticles is investigated. The results show that the substrate pre-treatment influences the growth of ZnO nanorods which are absent without the pre-treatment. Nanoparticle collection and nanorod growth on different substrates are done simultaneously. The thin films of as-grown nanorods are used as photoelectrode materials to fabricate dye-sensitized solar cells (DSSCs) and the effect of nanorods grown for different times has been studied. The best performance with this cell structure is found for the layer with t dep =15 min, which showed a conversion efficiency of 1.77% for the cell area of 0.25 cm 2

  1. Efficient photocatalytic performance enhancement in Co-doped ZnO nanowires coupled with CuS nanoparticles

    Li, Wei; Wang, Guojing; Feng, Yimeng; Li, Zhengcao

    2018-01-01

    In this research, a kind of highly efficient semiconductor photocatalyst was fabricated by depositing CuS nanoparticles uniformly on the surface of Co-doped ZnO nanowires. ZnO nanowires were synthesized by hydrothermal method and CuS nanoparticles were modified by successive ionic layer adsorption and reaction (SILAR). By conducting methyl orange (MO) degradation experiments under the illumination of visible light, the photocatalytic activity of Co-doped ZnO nanowires modified with CuS nanoparticles was found to be nearly three times active when compared to bare ZnO nanowires. Its superior photocatalytic performance has two main reasons. The doped Co2+ ions can inhibit the recombination of photo-generated electron-hole pairs and decrease the optical bandgap, while the p-n heterostructure can enhance the visible light absorption ability and promote the separation of photo-excited charge carriers. Furthermore, the effect of the amount of deposited CuS nanoparticles on the photocatalysis was also investigated. The photocatalytic efficiency firstly raised along with the increment of SILAR cycle times and reached a maximum at 10 cycles but then decreased as the cycle times continue to increase. This originates from that an excessive amount of CuS would not only cover the active reacting sites, but also serve as recombination centers. Overall, this new nanostructure is expected to work as an efficient photocatalyst.

  2. FTIR and Raman spectroscopy of carbon nanoparticles in SiO2, ZnO and NiO matrices

    Katumba, G

    2008-11-01

    Full Text Available Coatings of carbon nanoparticles dispersed in SiO2, ZnO and NiO matrices on aluminium substrates have been fabricated by a sol–gel technique. Spectrophotometry was used to determine the solar absorptance and the thermal emittance of the composite...

  3. Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum-packaged Caixin.

    Liu, Qian; Zhang, Min; Fang, Zhong-xiang; Rong, Xiao-hong

    2014-09-01

    The sterilization of vacuum-packaged Caixin (Brassica chinensis L.), which is a green-leafy vegetable and also a low-acid food, remains a difficult problem. In this study, effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum-packaged Caixin were investigated. Addition of ZnO nanoparticle suspension at 0.01-0.02 g kg(-1) reduced the number of bacterial colonies. The antibacterial activity was enhanced with the increased amount of ZnO nanoparticles. Microwave heating (915 and 2450 MHz) was used to sterilize Caixin samples. Samples had good product quality (better greenness, chroma and hue angle values, lower browning index and acceptable texture) and the lowest total colony number under the microwave heating condition of 400 W 150 s (2450 MHz). The best sterilization condition was observed under 2450 MHz microwave (400 W 150 s) heating combined with 0.02 g kg(-1) ZnO nanoparticle addition, which led to a total colony number of <1 log CFU g(-1) in Caixin samples within 7 days. © 2014 Society of Chemical Industry.

  4. Boron-doped MnTe semiconductor-sensitized ZnO solar cells

    Administrator

    The B-doped MnTe semiconductor was grown on ZnO using two stages of the ... nanoparticles (NPs), i.e. MnTe and MnTe2 were observed with a diameter range of approximately ..... Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P.

  5. Electrochemical studies of Pu on prussian blue (PB)-gold nanoparticles (AuNPs) functionalized glassy carbon (GC) electrode

    Sharma, Manoj K.; Ambolikar, Arvind S.; Aggarwal, Suresh K.

    2011-01-01

    In electrochemical processes, electron transfer across the solid-liquid interface is the elementary step and electron transfer kinetics is significantly influenced by the interfacial properties. Therefore, preparation of well-defined electrochemical interface with highly controllable properties - larger effective surface area, increased mass transport, and better electronic interaction between the analyte and electrode - is significant for both fundamental and applied studies in electrochemistry. In the present work electrochemistry of Pu(IV)/Pu(III) is studied on multilayered AuNPs-PB-AuNPs functionalized electrode

  6. ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light

    Ashkarran, Ali Akbar; Mohammadi, Bahareh

    2015-01-01

    Graphical abstract: TEM image of ZnO–graphene composite. - Highlights: • Innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures. • Combination of bottom-up and top-down methods. • Decoration of ZnO nanoparticles on the surface of graphene. • Visible-light photocatalytic performance. - Abstract: We present an innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO–G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet–visible absorption spectroscopy (UV–vis). The results revealed that the ZnO–G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO–G nanostructures could be excited by visible-light (E ∼ 2.6 eV). The major enhancement in the photocatalytic activity of ZnO–G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO–G photocatalyst was proposed based on our observations

  7. ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light

    Ashkarran, Ali Akbar, E-mail: ashkarran@umz.ac.ir; Mohammadi, Bahareh

    2015-07-01

    Graphical abstract: TEM image of ZnO–graphene composite. - Highlights: • Innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures. • Combination of bottom-up and top-down methods. • Decoration of ZnO nanoparticles on the surface of graphene. • Visible-light photocatalytic performance. - Abstract: We present an innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO–G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet–visible absorption spectroscopy (UV–vis). The results revealed that the ZnO–G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO–G nanostructures could be excited by visible-light (E ∼ 2.6 eV). The major enhancement in the photocatalytic activity of ZnO–G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO–G photocatalyst was proposed based on our observations.

  8. Effects of humic acid on the interactions between zinc oxide nanoparticles and bacterial biofilms

    Ouyang, Kai; Yu, Xiao-Ying; Zhu, Yunlin; Gao, Chunhui; Huang, Qiaoyun; Cai, Peng

    2017-12-01

    The effects of humic acid (HA) on interactions between ZnO nanoparticles (ZnO NPs) and Pseudomonas putida KT2440 biofilms at different maturity stages were investigated. Three stages of biofilm development were identified according to bacterial adenosine triphosphate (ATP) activity associated with biofilm development process. In the initial biofilm stage 1, the ATP content of bacteria was reduced by more than 90% when biofilms were exposed to ZnO NPs. However, in the mature biofilm stages 2 and 3, the ATP content was only slightly decreased. Biofilms at stage 3 exhibited less susceptibility to ZnO NPs than biofilms at stage 2. These results suggest that more mature biofilms have a significantly higher tolerance to ZnO NPs compared to young biofilms. In addition, biofilms with intact extracellular poly-meric substances (EPS) showed higher tolerance to ZnO NPs than those without EPS, indicating that EPS play a key role in alleviating the toxic effects of ZnO NPs. In both pure ZnO NPs and ZnO-HA mixtures, dissolved Zn2+ originating from the NPs significantly contributed to the overall toxicity. The presence of HA dramatically decreased the toxicity of ZnO NPs due to the binding of Zn2+ on HA. The combined results from this work suggest that the biofilm maturity stages and environmental constituents (such as humic acid) are important factors to consider when evaluating potential risks of NPs to ecological systems.

  9. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Emission properties of Mn doped ZnO nanoparticles prepared by mechanochemical processing

    Sabri, Nurul Syahidah; Yahya, Ahmad Kamal [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); Talari, Mahesh Kumar, E-mail: talari@gmail.com [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia)

    2012-07-15

    Mechanochemical processing was reported to introduce lot of crystal defects which can significantly influence emission properties. Nevertheless, to the best of our knowledge, there are no reports on effect of mechanochemical processing on emission properties of transition metal ion doped ZnO. In this study, Zn{sub 1-x}Mn{sub x}O nanoparticles with different Mn content (x=0, 0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by mechanochemical processing to study the effect of Mn doping and processing on emission properties. Confirmation of nanoparticles size and nanocrystalline nature of hexagonal wurtzite ZnO structure is carried out using transmission electron microscopy (TEM) and selected area electron diffraction (SAED), respectively. The samples were also characterized using Fluorescence Spectroscope before and after heat-treatment. The emission studies revealed that blue emission intensity is stronger compared to UV and green emission in contrast to the earlier reports, where other synthesis routes were employed for the ZnO nanoparticles' preparation. The blue emission originates from the zinc interstitial (Zn{sub i}) and oxygen interstitial (O{sub i}) defects, which indicate that the mechanochemical route resulted in more interstitial defects compared to oxygen substitution (O{sub Zn}) and oxygen vacancy (V{sub o}) defects which otherwise would give green emission. Mn doping resulted in shifting of near-band-edge (NBE) emission and the reduction in the intensities of NBE, blue and green emissions. The initial red shift at lower Mn content could be due to s-d and p-d exchange interactions as well as band tailing effect where as the blue shift at higher Mn content can be attributed to the Burstein-Moss shift. The reduction in emission intensity could be due to non-radiative recombination processes promoted by Mn ions with increasing Mn content. - Highlights: Black-Right-Pointing-Pointer Zn{sub 1-x}Mn{sub x}O nanoparticles were prepared by mechanochemical

  11. Hybrid bulk heterojunction solar cells based on poly(3-hexylthiophene) and ZnO nanoparticles modified by side-chain functional polythiophenes

    Li, Fan; Du, Yanhui; Chen, Yiwang

    2012-01-01

    We report the investigation of the hybrid bulk heterojunction solar cells based on the blend of poly(3-hexylthiophene) (P3HT) and ZnO nanoparticles modified by side-chain thiol functional poly(3-thiophenehexanethiol) (P3HT-SH). Grafting of P3HT-SH onto ZnO nanoparticles can promote the dispersion of ZnO nanoparticles within P3HT matrix and facilitate electron injection process into ZnO nanoparticles, resulting in a more efficient photoinduced charge transfer than that in simple physical mixture of P3HT and non-modified ZnO nanoparticles (P3HT/ZnO). Furthermore, the performance of hybrid photovoltaic device based on P3HT/P3HT-SH-modified ZnO blend exhibits an improved device efficiency compared with P3HT/ZnO even before thermal treatment. After being annealed at 80 °C, the P3HT/P3HT-SH-modified ZnO device shows the power conversion efficiency as high as 0.68%, with the short-circuit current density of 1.89 mA/cm 2 , the open-circuit voltage of 0.599 V and a fill factor of 60.5% under AM 1.5 G illumination with 100 mW/cm 2 light intensity. - Highlights: ► Hybrid solar cells based on poly(3-hexylthiophene) and modified ZnO nanoparticlesZnO nanoparticles modified by side-chain functional polythiophenes ► Uniform dispersion and intimate contact between polymers and nanoparticles ► Efficient charge transfer leading to the improvement of device efficiency

  12. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)

    Elumalai, K. [Department of Physics, Annamalai University, Annamalai Nagar 608002 (India); Velmurugan, S., E-mail: drvelmurganphy@gmail.com [Department of Engineering Physics (FEAT), Annamalai University, Annamalai Nagar 608 002 (India)

    2015-08-01

    Graphical abstract: - Highlights: • Phenolic acid and flavonoid compounds play a major role in bioreduction reaction confirmed by FT-IR. • PL spectrum identified peaks were located in the range of the blue-violet spectrum. • XRD pattern confirmed ZnO hexagonal phase (wurtzite structure). • The result of (AFM) images depicted polycrystalline with porous nature of ZnO NPs. • Antimicrobial activities of green synthesized ZnO NPs were more potent than Bare ZnO and leaf of A. indica. - Abstract: The synthesis of metal and semiconductor nanoparticles is an expanding research area due to the potential applications in the development of novel technologies. Especially, biologically synthesized nanomaterial has become an important branch of nanotechnology. The present work, described the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf aqueous extract of Azadirachta indica (L.) and its antimicrobial activities. The nanoparticles was obtain characterized by UV–Vis spectroscopy, Photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM) analysis, Energy dispersive X-ray analysis (EDAX), Field emission scanning electron microscopy (FESEM) and Atomic force microscope (AFM) analysis. In this study we also investigated antimicrobial activity of green synthesized ZnO NPs. The results depicted concentration of ZnO NPs was increased (50, 100, 200 μg/mL) and also increase in antimicrobial activities was due to the increase of H{sub 2}O{sub 2} concentration from the surface of ZnO. However, green synthesized ZnO NPs was more potent than Bare ZnO and leaf of A. indica. Finally concluded the zinc oxide nanoparticles exhibited an interesting antimicrobial activity with both Gram positive and Gram negative bacterial and yeast at micromolar concentration.

  13. Photovoltage method for the research of CdS and ZnO nanoparticles and hybrid MEH-PPV/nanoparticle structures

    Toušková, J.; Toušek, J.; Rohovec, Jan; Růžička, A.; Polonskyi, O.; Urbánek, P.; Kuřitka, I.

    2014-01-01

    Roč. 16, č. 3 (2014), Art. 2314 ISSN 1388-0764 Institutional support: RVO:67985831 Keywords : CdS * energy conversion * MEH-PPV * nanoparticles * photovoltage spectra * transmission electron microscopy * ZnO Subject RIV: DD - Geochemistry Impact factor: 2.184, year: 2014

  14. Dissolution of metal and metal oxide nanoparticles in aqueous media

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-01-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. - Highlights: • Three different techniques used simultaneously to measure NPs dissolution. • ZnO-NPs are the most soluble, followed by CuO-NPs, carbon coated Cu-NPs and Ag-NPs. • Dissolution is an important process affecting the fate of nanoparticles. • Complementary techniques are needed to precisely determine dissolution of NPs. - Dissolution of several types of nanoparticles was examined in aqueous media using three complementary techniques

  15. Room-temperature sol–gel synthesis of organic ligand-capped ZnO nanoparticles

    Zobel, Mirijam, E-mail: mirijam.zobel@fau.de; Chatterjee, Haimantee [Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik (Germany); Matveeva, Galina; Kolb, Ute [Johannes Gutenberg-Universität, Institut für Physikalische Chemie (Germany); Neder, Reinhard B., E-mail: reinhard.neder@fau.de [Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik (Germany)

    2015-05-15

    Powders of zinc oxide nanoparticles with individual particle sizes below 10 nm in diameter are readily produced in base-induced sol–gel processes from ethanolic solutions of zinc acetate dihydrate. These particles are covered with acetate molecules and without further stabilization, they grow when stored as a powder. Here, we present three organic ligands, which reproducibly stabilize individual particle sizes <5 nm within the agglomerated powders for extended periods of time, up to months. Citric acid and 1,5-diphenyl-1,3,5-pentanetrione result in average diameters of 3 nm, whereas dimethyl-L-tartrate stabilizes 2.1 nm. X-ray diffraction and pair distribution function analysis were used to investigate the structural properties of the particles. TEM data confirm the individual particle size and crystallinity and show that the particles are agglomerated without structural coherence. Besides the introduction of these novel ligands for ZnO nanoparticles, we investigated, in particular, the influence of each synthesis step onto the final nanoparticle size in the powder. Previous studies often reported the employed synthesis parameters, but did not motivate the reasoning for their choice based on detailed experimental observations. Herein, we regard separately the steps of (i) the synthesis of the colloids, (ii) their precipitation, and (iii) the drying of the resulting gel to understand the role of the ligands therein. ZnO particles only covered with acetate grow to 5 nm during the drying process, whereas particles with any of the additional ligands retain their colloidal size of 2–3 nm. This clearly shows the efficient binding and effect of the presented ligands.

  16. Ultrasonic vibration imposed on nanoparticle-based ZnO film improves the performance of the ensuing perovskite solar cell

    Miao, Yihe; Du, Peng; Wang, Zhiyu; Chen, Qianli; Eslamian, Morteza

    2018-02-01

    This work focuses on the development of nearly annealing-free ZnO-based perovskite solar cells (PSCs), suitable for low-cost manufacturing of PSCs on flexible substrates. To this end, thin film of ZnO nanoparticles is employed as the electron transporting layer (ETL), because of its low-temperature solution-processability and high electron mobility. In order to remove the structural and surface defects, ultrasonic vibration is imposed on the substrate of the as-spun wet ZnO films for a short duration of 3 min. It is shown that the ultrasonic excitation bridges the ZnO nanoparticles (cold sintering), and brings about significant improvement in the ZnO film nanostructure and functionality. In addition, ethyl acetate (EA), as an emerging volatile anti-solvent, is employed to deposit the methylammonium (MA) lead halide perovskite thin film atop the ZnO ETL, in order to prepare perovskite layers that only need an annealing time of 30 s. The ZnO-based PSCs, with a simple structure and free of additional treatments, except for the ultrasonic vibration, exhibit a promising performance with a power conversion efficiency (PCE) of over 11%, 40% higher than that of the control device. The ultrasonic vibration treatment is facile, low-cost, environmentally friendly, and compatible with the scalable coating and printing techniques, such as spray and blade coating.

  17. Comparison of Antibacterial Effects of ZnO and CuO Nanoparticles Coated Brackets against Streptococcus Mutans.

    Ramazanzadeh, Baratali; Jahanbin, Arezoo; Yaghoubi, Masoud; Shahtahmassbi, Nasser; Ghazvini, Kiarash; Shakeri, Mohammadtaghi; Shafaee, Hooman

    2015-09-01

    During the orthodontic treatment, microbial plaques may accumulate around the brackets and cause caries, especially in high-risk patients. Finding ways to eliminate this microbial plaque seems to be essential. The aim of this study was to compare the antibacterial effects of nano copper oxide (CuO) and nano zinc oxide (ZnO) coated brackets against Streptococcus mutans (S.mutans) in order to decrease the risk of caries around the orthodontic brackets during the treatment. Sixty brackets were coated with nanoparticles of ZnO (n=20), CuO (n=20) and CuO-ZnO (n=20). Twelve uncoated brackets constituted the control group. The brackets were bonded to the crowns of extracted premolars, sterilized and prepared for antimicrobial tests (S.mutans ATCC35668). The samples taken after 0, 2, 4, 6 and 24 hours were cultured on agar plates. Colonies were counted 24 hours after incubation. One-way ANOVA and Tukey tests were used for statistical analysis. In CuO and CuO-ZnO coated brackets, no colony growth was seen after two hours. Between 0-6 hours, the mean colony counts were not significantly different between the ZnO and the control group (p>0.05). During 6-24 hours, the growth of S.mutans was significantly reduced by ZnO nanoparticles in comparison with the control group (pbrackets have better antimicrobial effect on S.mutans than ZnO coated brackets.

  18. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement—A comparative study

    Sedira, Sofiane, E-mail: sofianebilel@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Ayachi, Ahmed Abdelhakim, E-mail: ayachi-med@hotmail.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Lakehal, Sihem, E-mail: lakehal.lakehal@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Fateh, Merouane, E-mail: merouane.fateh@gmail.com [Microbiological Laboratory Engineering and Application, University of Constantine1, Constantine (Algeria); Achour, Slimane, E-mail: achourslimane11@yahoo.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria)

    2014-08-30

    Graphical abstract: - Highlights: • Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method. • Ag NPs exert their bactericidal effect mainly by Ag{sup +} ions. • CH{sub 3}COOH addition to Ag NPs improves bactericidal effect more than ZnO Qds addition. • E. coli and P. aeruginosa are more sensitive to NPs than K. pneumonia and S. aureus. - Abstract: Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag{sup +}. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag{sup +} release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV–vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM)

  19. Physico-chemical characteristics and cyto-genotoxic potential of ZnO and TiO{sub 2} nanoparticles on human colon carcinoma cells

    Barone, F; Bizzarri, L; Andreoli, C; Zijno, A; De Angelis, I [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); De Berardis, B [Department of Technology and Health, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Degan, P, E-mail: barone@iss.it [Molecular Mutagenesis and DNA Repair, Istituto Nazionale per la Ricerca sul Cancro, L.go R. Benzi 10, 16132 Genova (Italy)

    2011-07-06

    The aim of the present study is to investigate the role of the physico-chemical properties of ZnO and TiO{sub 2} NPs in the potential cytotoxicity, genotoxicity and oxidative DNA damage induction on Caco-2 cell line. As negative control, fine TiO{sub 2} particles were used. The characterization of particles was carried out by electron microscopy (SEM, TEM) using a Soft Imaging System. To evaluate the effects of ZnO and TiO{sub 2} NPs induced on Caco-2 viability, Neutral Red assay was performed after treatment with different particle concentrations. Our results showed a significant dose and time dependent effect after treatment with ZnO NPs. On the contrary, no effect was observed on Caco-2 cells exposed to TiO{sub 2} particles either in micro-and in nano-size. The role of surface in the cytotoxicity induced on Caco-2 was also considered. The levels of DNA 8-oxodG, as the main marker of oxidative DNA damage, were measured by high-performance liquid chromatography with electrochemical detection (HPLC/EC). A significant increase in the 8-oxodG levels was observed after 6 h exposure for both NPs. The estimation of the potential genotoxicity of the two NPs is ongoing by the cytokinesis-block micronucleus assay. Our preliminary results showed that a slight micronucleus increase in binucleated cells was detected in the dose range applied only for ZnO.

  20. Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles

    Lu, Lanlan; Li, Renjie; Fan, Ke [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Peng, Tianyou [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China)

    2010-05-15

    Dye-sensitized solar cells (DSSCs) were fabricated by using porous ZnO electrodes derived from home-made ZnO nanoparticles. Electrochemical impedance spectra and open-circuit photovoltage decay curves measurements were performed to investigate the photoelectrochemical characteristics of ZnO films annealed at different temperatures. The experimental results indicate that the effects of the bulk traps and the surface states within the ZnO films on the recombination processes of the photoinjected electrons in DSSCs depend on the annealing temperature. The DSSC based on the ZnO electrode annealed at 400 C exhibits an optimal energy conversion efficiency of 3.92% under the illumination of one sun simulated sunlight because the farthest decrease in the effects of both bulk traps and surface states at this film can maintain a lower charge recombination probability. This result indicates that the ZnO film electrode has promising application in the field of DSSCs, and the optimization of porous film fabrication condition is efficient for the improvement of ZnO-based DSSC's performances. (author)

  1. Wettability Alteration of Sandstone and Carbonate Rocks by Using ZnO Nanoparticles in Heavy Oil Reservoirs

    Masoumeh Tajmiri

    2015-10-01

    Full Text Available Efforts to enhance oil recovery through wettability alteration by nanoparticles have been attracted in recent years. However, many basic questions have been ambiguous up until now. Nanoparticles penetrate into pore volume of porous media, stick on the core surface, and by creating homogeneous water-wet area, cause to alter wettability. This work introduces the new concept of adding ZnO nanoparticles by an experimental work on wettability alteration and oil recovery through spontaneous imbibition mechanism. Laboratory tests were conducted in two experimental steps on four cylindrical core samples (three sandstones and one carbonate taken from a real Iranian heavy oil reservoir in Amott cell. In the first step, the core samples were saturated by crude oil. Next, the core samples were flooded with nanoparticles and saturated by crude oil for about two weeks. Then, the core samples were immersed in distilled water and the amount of recovery was monitored during 30 days for both steps. The experimental results showed that oil recovery for three sandstone cores changed from 20.74, 4.3, and 3.5% of original oil in place (OOIP in the absence of nanoparticles to 36.2, 17.57, and 20.68% of OOIP when nanoparticles were added respectively. Moreover, for the carbonate core, the recovery changed from zero to 8.89% of OOIP by adding nanoparticles. By the investigation of relative permeability curves, it was found that by adding ZnO nanoparticles, the crossover-point of curves shifted to the right for both sandstone and carbonate cores, which meant wettability was altered to water- wet. This study, for the first time, illustrated the remarkable role of ZnO nanoparticles in wettability alteration toward more water-wet for both sandstone and carbonate cores and enhancing oil recovery.

  2. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications.

    Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S

    2016-07-01

    In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Calder, Alyssa; Britt, David W. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); McLean, Joan E. [Utah Water Research Laboratory, Utah State University, Logan, UT 84322 (United States); Anderson, Anne J. [Department of Biology, Utah State University, Logan, UT 84322 (United States)

    2011-07-15

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: > Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). > Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. > The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. > Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. > The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  4. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    Dimkpa, Christian O.; Calder, Alyssa; Britt, David W.; McLean, Joan E.; Anderson, Anne J.

    2011-01-01

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: → Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). → Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. → The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. → Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. → The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  5. Surface strain engineering through Tb doping to study the pressure dependence of exciton-phonon coupling in ZnO nanoparticles

    Sharma, A.; Dhar, S.; Singh, B. P.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.

    2013-01-01

    A compressive hydrostatic strain has been found to develop in the ZnO lattice as a result of accumulation of Tb ions on the surface of the nanoparticles for Tb mole-fraction less than 0.04. This hydrostatic strain can be controlled up to ≈14 GPa by varying the Tb mole-fraction. Here, we have utilized this novel technique of surface strain engineering through Tb doping for introducing hydrostatic compressive strain in the lattice to study the pressure dependent electronic and vibrational properties of ZnO nanoparticles. Our study reveals that when subjected to pressure, nanoparticles of ZnO behave quite differently than bulk in many aspects. Unlike bulk ZnO, which is reported to go through a wurtzite to rock-salt structural phase transition at ≈8 GPa, ZnO nanoparticles do not show such transition and remain in wurtzite phase even at 14 GPa of pressure. Furthermore, the Grüneisen parameters for the optical phonon modes are found to be order of magnitude smaller in ZnO nanoparticles as compared to bulk. Our study also suggests an increase of the dielectric constant with pressure, which is opposite to what has been reported for bulk ZnO. Interestingly, it has also been found that the exciton-phonon interaction depends strongly upon pressure in this system. The exciton-phonon coupling has been found to decrease as pressure increases. A variational technique has been adopted to theoretically calculate the exciton-LO phonon coupling coefficient in ZnO nanoparticles as a function of pressure, which shows a good agreement with the experimental results. These findings imply that surface engineering of ZnO nanoparticles with Tb could indeed be an efficient tool to enhance and control the optical performance of this material

  6. Surface strain engineering through Tb doping to study the pressure dependence of exciton-phonon coupling in ZnO nanoparticles

    Sharma, A.; Dhar, S., E-mail: dhar@phy.iitb.ac.in; Singh, B. P. [Physics Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Nayak, C.; Bhattacharyya, D. [Applied Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Jha, S. N. [Raja Ramanna Centre for Advanced Technology (RRCAT), Indore (India)

    2013-12-07

    A compressive hydrostatic strain has been found to develop in the ZnO lattice as a result of accumulation of Tb ions on the surface of the nanoparticles for Tb mole-fraction less than 0.04. This hydrostatic strain can be controlled up to ≈14 GPa by varying the Tb mole-fraction. Here, we have utilized this novel technique of surface strain engineering through Tb doping for introducing hydrostatic compressive strain in the lattice to study the pressure dependent electronic and vibrational properties of ZnO nanoparticles. Our study reveals that when subjected to pressure, nanoparticles of ZnO behave quite differently than bulk in many aspects. Unlike bulk ZnO, which is reported to go through a wurtzite to rock-salt structural phase transition at ≈8 GPa, ZnO nanoparticles do not show such transition and remain in wurtzite phase even at 14 GPa of pressure. Furthermore, the Grüneisen parameters for the optical phonon modes are found to be order of magnitude smaller in ZnO nanoparticles as compared to bulk. Our study also suggests an increase of the dielectric constant with pressure, which is opposite to what has been reported for bulk ZnO. Interestingly, it has also been found that the exciton-phonon interaction depends strongly upon pressure in this system. The exciton-phonon coupling has been found to decrease as pressure increases. A variational technique has been adopted to theoretically calculate the exciton-LO phonon coupling coefficient in ZnO nanoparticles as a function of pressure, which shows a good agreement with the experimental results. These findings imply that surface engineering of ZnO nanoparticles with Tb could indeed be an efficient tool to enhance and control the optical performance of this material.

  7. Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles

    Sharma, Prashant K.; Dutta, Ranu K.; Pandey, Avinash C.

    2009-01-01

    The ZnO:Ni 2+ nanoparticles of mean size 2-12 nm were synthesized at room temperature by the simple co-precipitation method. The crystallite structure, morphology and size were determined by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The wurtzite structure of ZnO gradually degrades with the increasing Ni doping concentration and an additional NiO-associated diffraction peak was observed above 15% of Ni 2+ doping. The change in magnetic behavior of the nanoparticles of ZnO with varying Ni 2+ doping concentration was investigated using a vibrating sample magnetometer (VSM). Initially, these nanoparticles showed strong ferromagnetic behavior, however, at higher doping percentage of Ni 2+ , the ferromagnetic behavior was suppressed and paramagnetic nature was observed. The enhanced antiferromagnetic interaction between neighboring Ni-Ni ions suppressed the ferromagnetism at higher doping concentrations of Ni 2+ .

  8. Structural and room temperature ferromagnetic properties of Ni doped ZnO nanoparticles via low-temperature hydrothermal method

    Xu, Kun; Liu, Changzhen, E-mail: liuchangzhen94@163.com; Chen, Rui; Fang, Xiaoxiang; Wu, Xiuling; Liu, Jie

    2016-12-01

    A series of Zn{sub 1−x}Ni{sub x}O (x=0, 1%, 3%, 5%) nanoparticles have been synthesized via a low-temperature hydrothermal method. Influence of Ni doping concentration on the structure, morphology, optical properties and magnetism of the samples was investigated by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectrophotometer and vibrating sample magnetometer instruments. The results show that the undoped and doped ZnO nanoparticles are both hexagonal wurtzite structures. The surface analysis was performed using X-ray photoelectron spectroscopic studies. The images of SEM reveal that the structure of pure ZnO and Ni doped samples are nanoparticles which intended to form flakes with thickness of few nanometers, being overlain with each one to develop the network with some pores and voids. Based on the ultraviolet–visible (UV–vis) spectroscopy analysis, it indicates that the band gap energy decreases with the increasing concentration of Ni. Furthermore, The Ni doped ZnO samples didn't exhibit higher ultraviolet-light-driven photocatalytic activity compared to the undoped ZnO sample. Vibrating sample magnetometer was used for the magnetic property investigations, and the result indicates that room temperature ferromagnetism property of 3% Ni doped sample is attributed to oxygen vacancy and interaction between doped ions.

  9. Fate and behavior of ZnO- and Ag-