WorldWideScience

Sample records for nanoparticles alter cathepsin

  1. Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

    Llorens, Franc; Thüne, Katrin; Sikorska, Beata; Schmitz, Matthias; Tahir, Waqas; Fernández-Borges, Natalia; Cramm, Maria; Gotzmann, Nadine; Carmona, Margarita; Streichenberger, Nathalie; Michel, Uwe; Zafar, Saima; Schuetz, Anna-Lena; Rajput, Ashish; Andréoletti, Olivier; Bonn, Stefan; Fischer, Andre; Liberski, Pawel P; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2017-04-27

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.

  2. Plasma levels of cathepsins L, K, and V and risks of abdominal aortic aneurysms

    Lv, Bing-Jie; Lindholt, Jes S; Wang, Jing

    2013-01-01

    Cathepsin L (CatL), cathepsin K (CatK), and cathepsin V (CatV) are potent elastases implicated in human arterial wall remodeling. Whether plasma levels of these cathepsins are altered in patients with abdominal aortic aneurysms (AAAs) remains unknown....

  3. Cathepsin D inhibitors

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  4. [Effect of cryoconservation of platelets on polyamine level and cathepsin D activity].

    Kovtunova, M E; Selezneva, O M; Vorozhtsova, S I; Kunof, V K

    1992-01-01

    Alterations in activity of cathepsin D as well as in content of polyamines spermine, spermidine, x-fraction (apparently, acetyl spermidine) and putrescine were studied in blood platelets depending on conditions of conservation. The enzyme activity and content of polyamines correlated directly with duration of the cell concentrates storage. Cathepsin D and polyamines appear to be involved in responses to stress adaptation.

  5. Cathepsin L in human meningiomas

    Trinkaus, M.; Lah, T.T.; Vranic, A.; Dolenc, V.V.

    2003-01-01

    Background. Although meningiomas are considered as benign tumours, about 10% comprise a subgroup of a typical meningiomas, classified as WHO grade II, with greater likelihood of recurrences and/or aggressive behaviour, including the possibility of brain tissue invasion. The lysosomal cysteine endopeptidase cathepsin L plays a role in tumour cell invasion and malignant progression of cancer, and has been suggested as a prognostic marker for certain types of tumours. Results. In our study, we compared the expression of cathepsin L in 30 meningiomas with their clinical invasiveness. Cathepsin L was determined by immunohistochemical analysis, quantitative real-time RT-PCR and Northern blot. We showed that expression of cathepsin L protein was significantly higher (p=0.019) in 9 atypical than in 21 benign meningiomas. Within the group of benign meningiomas, expression of cathepsin L was significantly lower in the transitional histological subtype. We measured the levels of cathepsin LA type of RNA splicing variants: LA, LAI and LAII, but not LAIII and not the LB variant, the latter being several times lower than the LA type. In contrast to protein levels, the levels of cathepsin LA, AI, AII RNA variants did not differ between histological subtypes or between benign and a typical meningiomas. The expression of total measured cathepsin LA, AI, AII RNA variants in the samples, taken from the centre and the periphery of the tumours, also showed no statistically significant differences. Conclusions. These results indicate that cathepsin L protein over-expression may contribute to the development of the aggressive and possibly invasive character of a typical meningiomas and that it may be up regulated at the translational level. (author)

  6. Cathepsin H indirectly regulates morphogenetic protein-4 (BMP-4) in various human cell lines

    Rojnik, Matija; Jevnikar, Zala; Mirkovic, Bojana; Janes, Damjan; Zidar, Nace; Kikelj, Danijel; Kos, Janko

    2011-01-01

    Background Cathepsin H is a cysteine protease considered to play a major role in tumor progression, however, its precise function in tumorigenesis is unclear. Cathepsin H was recently proposed to be involved in processing of bone morphogenetic protein 4 (BMP-4) in mice. In order to clarify whether cathepsin H also regulates BMP-4 in humans, its impact on BMP-4 expression, processing and degradation was investigated in prostate cancer (PC-3), osteosarcoma (HOS) and pro-monocytic (U937) human cell lines. Materials and methods BMP-4 expression was founded to be regulated by cathepsin H using PCR array technology and confirmed by real time PCR. Immunoassays including Western blot and confocal microscopy were used to evaluate the influence of cathepsin H on BMP-4 processing. Results In contrast to HOS, the expression of BMP-4 mRNA in U937 and PC3 cells was significantly decreased by cathepsin H. The different regulation of BMP-4 synthesis could be associated with the absence of the mature 28 kDa cathepsin H form in HOS cells, where only the intermediate 30 kDa form was observed. No co-localization of BMP-4 and cathepsin H was observed in human cell lines and the multistep processing of BMP-4 was not altered in the presence of specific cathepsin H inhibitor. Isolated cathepsin H does not cleave mature recombinant BMP-4, neither with its amino- nor its endopeptidase activity. Conclusions Our results exclude direct proteolytic processing of BMP-4 by cathepsin H, however, they provide support for its involvement in the regulation of BMP-4 expression. PMID:22933963

  7. Localization of nuclear cathepsin L and its association with disease progression and poor outcome in colorectal cancer.

    Sullivan, Shane

    2012-02-01

    Previous in vitro studies have identified a nuclear isoform of Cathepsin L. The aim of this study was to examine if nuclear Cathepsin L exists in vivo and examine its association with clinical, pathological and patient outcome data. Cellular localization (nuclear and cytoplasmic) and expression levels v of Cathespin L in 186 colorectal cancer cases using immunohistochemistry. The molecular weight and activity of nuclear and cytoplasmic Cathepsin L in vivo and in vitro were assessed by Western blotting and ELISA, respectively. Epithelial nuclear staining percentage (p = 0.04) and intensity (p = 0.006) increased with advancing tumor stage, whereas stromal cytoplasmic staining decreased (p = 0.02). Using multivariate statistical analysis, survival was inversely associated with staining intensity in the epithelial cytoplasm (p = 0.01) and stromal nuclei (p = 0.007). In different colorectal cell lines and in vivo tumors, pro- and active Cathepsin L isoforms were present in both the cytoplasm and nuclear samples, with pro-Cathepsin L at 50 kDa and active Cathepsin L at 25 kDa. Purified nuclear and cytoplasmic fractions from cell lines and tumors showed active Cathepsin L activity. The identification of nuclear Cathepsin L may play an important prognostic role in colorectal disease progression and patient outcome. Moreover, these findings suggest that altering active nuclear Cathepsin L may significantly influence disease progression.

  8. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-01-01

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  9. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    Sepehrinia, Kazem; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu

    2016-05-15

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  10. Multiplex Cathepsin Zymography to Detect Amounts of Active Cathepsins K, L, S, and V.

    Platt, Manu O

    2017-01-01

    Cysteine cathepsins are powerful proteases that can degrade other proteins, among which are the extracellular matrix proteins collagen and elastin. Multiplex cathepsin zymography is an assay that can quantify the amount of active cathepsins in a cell or tissue preparation. This method works for measuring the amounts of active cathepsins K, L, S, and V in a cell or tissue preparation without requiring the use of antibodies for specific identification which tremendously reduces cost. This chapter will demonstrate the utility and interpretation of this method with mammalian cells and tissue to quantify amounts of active cathepsins K, L, S, and V without complicating signals of the procathepsin. Multiplex cathepsin zymography has many advantages: (1) it separates cathepsins K, L, S, and V by electrophoretic migration distance, (2) allows visual confirmation of cathepsin identity, (3) does not detect procathepsins, and (4) can be quantified with densitometry.

  11. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    Nanda, Himansu Sekhar

    2016-11-03

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  12. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    Nanda, Himansu Sekhar

    2016-01-01

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  13. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    Himansu Sekhar Nanda

    2016-11-01

    Full Text Available The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium-doped cerium oxide nanoparticles (SmCNPs as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy-ethoxy]-ethoxy}-hexyl triethoxysilane (MEEETES were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  14. Femtosecond Laser Irradiation of Plasmonic Nanoparticles in Polymer Matrix: Implications for Photothermal and Photochemical Material Alteration

    Anton A. Smirnov

    2014-11-01

    Full Text Available We analyze the opportunities provided by the plasmonic nanoparticles inserted into the bulk of a transparent medium to modify the material by laser light irradiation. This study is provoked by the advent of photo-induced nano-composites consisting of a typical polymer matrix and metal nanoparticles located in the light-irradiated domains of the initially homogeneous material. The subsequent irradiation of these domains by femtosecond laser pulses promotes a further alteration of the material properties. We separately consider two different mechanisms of material alteration. First, we analyze a photochemical reaction initiated by the two-photon absorption of light near the plasmonic nanoparticle within the matrix. We show that the spatial distribution of the products of such a reaction changes the symmetry of the material, resulting in the appearance of anisotropy in the initially isotropic material or even in the loss of the center of symmetry. Second, we analyze the efficiency of a thermally-activated chemical reaction at the surface of a plasmonic particle and the distribution of the product of such a reaction just near the metal nanoparticle irradiated by an ultrashort laser pulse.

  15. Cathepsin E deficiency impairs autophagic proteolysis in macrophages.

    Takayuki Tsukuba

    Full Text Available Cathepsin E is an endosomal aspartic proteinase that is predominantly expressed in immune-related cells. Recently, we showed that macrophages derived from cathepsin E-deficient (CatE(-/- mice display accumulation of lysosomal membrane proteins and abnormal membrane trafficking. In this study, we demonstrated that CatE(-/- macrophages exhibit abnormalities in autophagy, a bulk degradation system for aggregated proteins and damaged organelles. CatE(-/- macrophages showed increased accumulation of autophagy marker proteins such as LC3 and p62, and polyubiquitinated proteins. Cathepsin E deficiency also altered autophagy-related signaling pathways such as those mediated by the mammalian target of rapamycin (mTOR, Akt, and extracellular signal-related kinase (ERK. Furthermore, immunofluorescence microscopy analyses showed that LC3-positive vesicles were merged with acidic compartments in wild-type macrophages, but not in CatE(-/- macrophages, indicating inhibition of fusion of autophagosome with lysosomes in CatE(-/- cells. Delayed degradation of LC3 protein was also observed under starvation-induced conditions. Since the autophagy system is involved in the degradation of damaged mitochondria, we examined the accumulation of damaged mitochondria in CatE(-/- macrophages. Several mitochondrial abnormalities such as decreased intracellular ATP levels, depolarized mitochondrial membrane potential, and decreased mitochondrial oxygen consumption were observed. Such mitochondrial dysfunction likely led to the accompanying oxidative stress. In fact, CatE(-/- macrophages showed increased reactive oxygen species (ROS production and up-regulation of oxidized peroxiredoxin-6, but decreased antioxidant glutathione. These results indicate that cathepsin E deficiency causes autophagy impairment concomitantly with increased aberrant mitochondria as well as increased oxidative stress.

  16. [Research progress on cathepsin F of parasitic helminths].

    Qu, Zi-Gang; Fu, Bao-Quan

    2013-10-01

    Cathepsin F is an important member of papain-like subfamily in cysteine protease family. Cathepsin F of helminth parasites can hydrolyze the specific substrate, degrade host protein such as hemoglobin for nutrition, and be involved in invasion into host tissue. Therefore, cathepsin F serves as a potential target for parasitic disease immunodiagnosis, vaccine design and anti-parasite drug screening. This article reviews the structural characteristics and mechanisms of cathepsin F, and research advances on cathepsin F of parasitic helminths.

  17. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion.

    de Mingo Pulido, Álvaro; de Gregorio, Estefanía; Chandra, Shilpi; Colell, Anna; Morales, Albert; Kronenberg, Mitchell; Marí, Montserrat

    2018-01-01

    Natural killer T (NKT) cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ), and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB) and cathepsin S (CTSS), regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs), probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro .

  18. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion

    Álvaro de Mingo Pulido

    2018-02-01

    Full Text Available Natural killer T (NKT cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ, and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB and cathepsin S (CTSS, regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs, probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro.

  19. Aspartic cathepsin D degrades the cytosolic cysteine cathepsin inhibitor stefin B in the cells.

    Železnik, Tajana Zajc; Kadin, Andrey; Turk, Vito; Dolenc, Iztok

    2015-09-18

    Stefin B is the major general cytosolic protein inhibitor of cysteine cathepsins. Its main function is to protect the organism against the activity of endogenous potentially hazardous proteases accidentally released from lysosomes. In this study, we investigated the possible effect of endosomal/lysosomal aspartic cathepsins D and E on stefin B after membrane permeabilization. Loss of membrane integrity of lysosomes and endosomes was induced by a lysosomotropic agent L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe). The rat thyroid cell line FRTL-5 was selected as a model cell line owing to its high levels of proteases, including cathepsin D and E. Permeabilization of acid vesicles from FRTL-5 cells induced degradation of stefin B. The process was inhibited by pepstatin A, a potent inhibitor of aspartic proteases. However, degradation of stefin B was prevented by siRNA-mediated silencing of cathepsin D expression. In contrast, cathepsin E silencing had no effect on stefin B degradation. These results showed that cathepsin D and not cathepsin E degrades stefin B. It can be concluded that the presence of cathepsin D in the cytosol affects the inhibitory potency of stefin B, thus preventing the regulation of cysteine cathepsin activities in various biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficits

    Oswald Julia

    2011-07-01

    Full Text Available Abstract Background Cathepsin K is a cysteine peptidase known for its importance in osteoclast-mediated bone resorption. Inhibitors of cathepsin K are in clinical trials for treatment of osteoporosis. However, side effects of first generation inhibitors included altered levels of related cathepsins in peripheral organs and in the central nervous system (CNS. Cathepsin K has been recently detected in brain parenchyma and it has been linked to neurobehavioral disorders such as schizophrenia. Thus, the study of the functions that cathepsin K fulfils in the brain becomes highly relevant. Results Cathepsin K messenger RNA was detectable in all brain regions of wild type (WT mice. At the protein level, cathepsin K was detected by immunofluorescence microscopy in vesicles of neuronal and non-neuronal cells throughout the mouse brain. The hippocampus of WT mice exhibited the highest levels of cathepsin K activity in fluorogenic assays, while the cortex, striatum, and cerebellum revealed significantly lower enzymatic activities. At the molecular level, the proteolytic network of cysteine cathepsins was disrupted in the brain of cathepsin K-deficient (Ctsk-/- animals. Specifically, cathepsin B and L protein and activity levels were altered, whereas cathepsin D remained largely unaffected. Cystatin C, an endogenous inhibitor of cysteine cathepsins, was elevated in the striatum and hippocampus, pointing to regional differences in the tissue response to Ctsk ablation. Decreased levels of astrocytic glial fibrillary acidic protein, fewer and less ramified profiles of astrocyte processes, differentially altered levels of oligodendrocytic cyclic nucleotide phosphodiesterase, as well as alterations in the patterning of neuronal cell layers were observed in the hippocampus of Ctsk-/- mice. A number of molecular and cellular changes were detected in other brain regions, including the cortex, striatum/mesencephalon, and cerebellum. Moreover, an overall induction of

  1. UVA Causes Dual Inactivation of Cathepsin B and L Underlying Lysosomal Dysfunction in Human Dermal Fibroblasts

    Lamore, Sarah D.; Wondrak, Georg T.

    2013-01-01

    Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display ‘UVA-mimetic’ effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts. PMID:23603447

  2. Wettability Alteration of Sandstone and Carbonate Rocks by Using ZnO Nanoparticles in Heavy Oil Reservoirs

    Masoumeh Tajmiri

    2015-10-01

    Full Text Available Efforts to enhance oil recovery through wettability alteration by nanoparticles have been attracted in recent years. However, many basic questions have been ambiguous up until now. Nanoparticles penetrate into pore volume of porous media, stick on the core surface, and by creating homogeneous water-wet area, cause to alter wettability. This work introduces the new concept of adding ZnO nanoparticles by an experimental work on wettability alteration and oil recovery through spontaneous imbibition mechanism. Laboratory tests were conducted in two experimental steps on four cylindrical core samples (three sandstones and one carbonate taken from a real Iranian heavy oil reservoir in Amott cell. In the first step, the core samples were saturated by crude oil. Next, the core samples were flooded with nanoparticles and saturated by crude oil for about two weeks. Then, the core samples were immersed in distilled water and the amount of recovery was monitored during 30 days for both steps. The experimental results showed that oil recovery for three sandstone cores changed from 20.74, 4.3, and 3.5% of original oil in place (OOIP in the absence of nanoparticles to 36.2, 17.57, and 20.68% of OOIP when nanoparticles were added respectively. Moreover, for the carbonate core, the recovery changed from zero to 8.89% of OOIP by adding nanoparticles. By the investigation of relative permeability curves, it was found that by adding ZnO nanoparticles, the crossover-point of curves shifted to the right for both sandstone and carbonate cores, which meant wettability was altered to water- wet. This study, for the first time, illustrated the remarkable role of ZnO nanoparticles in wettability alteration toward more water-wet for both sandstone and carbonate cores and enhancing oil recovery.

  3. Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster

    Mishra, Monalisa; Sabat, Debabrat; Ekka, Basanti; Sahu, Swetapadma; P, Unnikannan; Dash, Priyabrat

    2017-08-01

    Zirconia nanoparticles (ZrO2 NPs) have been extensively used in teeth and bone implants and thus get a chance to interact with the physiological system. The current study investigated the oral administration of various concentrations of ZrO2 NPs synthesized by the hydrothermal method (0.25 to 5.0 mg L-1) on Drosophila physiology and behaviour. The size of the currently studied nanoparticle varies from 10 to 12 nm. ZrO2 NPs accumulated within the gut in a concentration-dependent manner and generate reactive oxygen species (ROS) only at 2.5 and 5.0 mg L-1 concentrations. ROS was detected by nitroblue tetrazolium (NBT) assay and 2',7'-dichlorofluorescein http://www.ncbi.nlm.nih.gov/pubmed/20370560 (H2DCF) staining. The ROS toxicity alters the larval gut structure as revealed by DAPI staining. The NP stress of larvae affects the Drosophila development by distressing pupa count and varying the phenotypic changes in sensory organs (eye, thorax bristle, wings). Besides phenotypic changes, flawed climbing behaviour against gravity was seen in ZrO2 NP-treated flies. All together, for the first time, we have reported that a ROS-mediated ZrO2 NP toxicity alters neuronal development and functioning using Drosophila as a model organism. [Figure not available: see fulltext.

  4. Cathepsin D SNP associated with increased risk of variant Creutzfeldt-Jakob disease

    Sanchez-Juan Pascual

    2008-04-01

    Full Text Available Abstract Background Variant Creutzfeldt-Jakob disease (vCJD originally resulted from the consumption of foodstuffs contaminated by bovine spongiform encephalopathy (BSE material, with 163 confirmed cases in the UK to date. Many thousands are likely to have been exposed to dietary infection and so it is important (for surveillance, epidemic modelling, public health and understanding pathogenesis to identify genetic factors that may affect individual susceptibility to infection. This study looked at a polymorphism in the cathepsin D gene (refSNP ID: rs17571 previously examined in Alzheimer's disease (AD. Methods Blood samples taken from 110 vCJD patients were tested for the C-T base change, and genotype data were compared with published frequencies for a control population using multiple logistic regression. Results There was a significant excess of the cathepsin D polymorphism TT genotype in the vCJD cohort compared to controls. The TT genotype was found to have a 9.75 fold increase in risk of vCJD compared to the CT genotype and a 10.92 fold increase compared to the CC genotype. Conclusion This mutation event has been observed to alter the protease activity of the cathepsin D protein and has been linked to an increase in amyloid beta plaque formation in AD. vCJD neuropathology is characterised by the presence of amyloid plaques, formed from the prion protein, and therefore alterations in the amyloid processing activity of cathepsin D may affect the neuropathogenesis of this disease.

  5. A broad survey of cathepsin K immunoreactivity in human neoplasms.

    Zheng, Gang; Martignoni, Guido; Antonescu, Cristina; Montgomery, Elizabeth; Eberhart, Charles; Netto, George; Taube, Janis; Westra, William; Epstein, Jonathan I; Lotan, Tamara; Maitra, Anirban; Gabrielson, Edward; Torbenson, Michael; Iacobuzio-Donahue, Christine; Demarzo, Angelo; Shih, Ie Ming; Illei, Peter; Wu, T C; Argani, Pedram

    2013-02-01

    Cathepsin K is consistently and diffusely expressed in alveolar soft part sarcoma (ASPS) and a subset of translocation renal cell carcinomas (RCCs). However, cathepsin K expression in human neoplasms has not been systematically analyzed. We constructed tissue microarrays (TMA) from a wide variety of human neoplasms, and performed cathepsin K immunohistochemistry (IHC). Only 2.7% of 1,140 carcinomas from various sites exhibited cathepsin K labeling, thus suggesting that among carcinomas, cathepsin K labeling is highly specific for translocation RCC. In contrast to carcinomas, cathepsin K labeling was relatively common (54.6%) in the 414 mesenchymal lesions studied, including granular cell tumor, melanoma, and histiocytic lesions, but not paraganglioma, all of which are in the morphologic differential diagnosis of ASPS. Cathepsin K IHC can be helpful in distinguishing ASPS and translocation RCC from some but not all of the lesions in their differential diagnosis.

  6. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  7. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. New method to discriminate between cathepsin B and cathepsin L in crude extracts from fish muscle based on a simple acidification procedure

    Godiksen, Helene; Nielsen, Henrik Hauch

    2007-01-01

    A new and simple method to distinguish between cathepsin B and cathepsin L in crude extracts of herring (Clupea harengus) muscle has been established. An acid treatment of crude extracts (exposed to pH 3 for 5 min) activated a latent form of cathepsin L and inactivated cathepsin B. Furthermore......, in neutral crude extract, the hydrolysis of benzyloxycarbonyl-L-phenylalanyl-L-arginyl-4-methylcoumarine (Z-Phe-Arg-MCA) (cathepsin B and cathepsin L substrates) was between 0% and 15% of the hydrolysis of benzyloxycarbonyl-L-arginyl-L-arginyl-7-amino-4-methylcoumarine (Z-Arg-Arg-MCA; cathepsin B substrate......). Cathepsin B activity is measured in neutral extract using the specific cathepsin B substrate Z-Arg-Arg-MCA and cathepsin L activity is measured in acid-treated extract with Z-Phe-Arg-MCA as substrate. The specific cathepsin B inhibitor, CA-074, did not inhibit the Z-Arg-Arg-MCA significantly without...

  9. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea

    Naghdi, Samira [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Jaleh, Babak [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Park, Soo Jin [Chemistry, Colloge of Natural Science, Inha University, 402-751 Incheon (Korea, Republic of)

    2016-02-28

    Graphical abstract: - Highlights: • Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were directly grown on graphene oxide (GO) using a facile microwave assistant method. • The effect of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite was examined. • Increasing urea concentration altered the morphology and decreased the particle size. • The increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. • The increase in urea concentration led to decreased thermal stability of the Fe{sub 2}O{sub 3} nanoparticles. - Abstract: Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were grown on graphene oxide (GO) using a simple microwave-assisted method. The effects of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite were examined. The as-prepared samples were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The Fe{sub 2}O{sub 3} nanoparticles were uniformly developed on GO sheets. The results showed that urea affects both Fe{sub 2}O{sub 3} morphology and particle size. In the absence of urea, the Fe{sub 2}O{sub 3} nanostructures exhibited a rod-like morphology. However, increasing urea concentration altered the morphology and decreased the particle size. The Raman results of GO/Fe{sub 2}O{sub 3} showed that the intensity ratio of D band to G band (I{sub D}/I{sub G}) was decreased by addition of urea, indicating that urea can preserve the GO sheets during synthesis of the composite from exposing more defects. The surface area and thermal stability of GO/Fe{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} were compared using the Brunauer–Emmett–Teller method and thermal gravimetric analysis, respectively. The results showed that the increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. However, the increase in urea

  10. Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier.

    Mansfield, Edward D H; de la Rosa, Victor R; Kowalczyk, Radoslaw M; Grillo, Isabelle; Hoogenboom, Richard; Sillence, Katy; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-08-16

    Functionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering. Diffusion coefficients were determined in water and in a mucin dispersion (using Nanoparticle Tracking Analysis), and penetration through a mucosal barrier was assessed using an ex vivo fluorescence technique. The addition of a single methylene group in the side chain significantly altered the penetration and diffusion of the materials in both mucin dispersions and mucosal tissue. Nanoparticles functionalised with poly(2-methyl-2-oxazoline) were significantly more diffusive than particles with poly(2-ethyl-2-oxazoline) while particles with poly(2-n-propyl-2-oxazoline) showed no significant increase compared to the unfunctionalised particles. These data show that variations in the polymer structure can radically alter their diffusive properties with clear implications for the future design of mucus penetrating systems.

  11. Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease.

    Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory

    2012-01-01

    Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Cathepsin E promotes pulmonary emphysema via mitochondrial fission.

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J

    2014-10-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Elastin Degradation by Cathepsin V Requires Two Exosites*

    Du, Xin; Chen, Nelson L. H.; Wong, Andre; Craik, Charles S.; Brömme, Dieter

    2013-01-01

    Cathepsin V is a highly effective elastase and has been implicated in physiological and pathological extracellular matrix degradation. However, its mechanism of action remains elusive. Whereas human cathepsin V exhibits a potent elastolytic activity, the structurally homologous cathepsin L, which shares a 78% amino acid sequence, has only a minimal proteolytic activity toward insoluble elastin. This suggests that there are distinct structural domains that play an important role in elastinolysis. In this study, a total of 11 chimeras of cathepsins V and L were generated to identify elastin-binding domains in cathepsin V. Evaluation of these chimeras revealed two exosites contributing to the elastolytic activity of cathepsin V that are distant from the active cleft of the protease and are located in surface loop regions. Replacement of exosite 1 or 2 with analogous residues from cathepsin L led to a 75 and 43% loss in the elastolytic activity, respectively. Replacement of both exosites yielded a non-elastase variant similar to that of cathepsin L. Identification of these exosites may contribute to the design of inhibitors that will only affect the elastolytic activity of cysteine cathepsins without interfering with other physiological protease functions. PMID:24121514

  14. TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development.

    Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien; Aarnio-Peterson, Megan; Sanman, Laura; Archer-Hartmann, Stephanie; Azadi, Parastoo; Bogyo, Matthew; Steet, Richard A

    2018-03-13

    Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-ß signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-ß-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-ß signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles.

    Cappello, Tiziana; Vitale, Valeria; Oliva, Sabrina; Villari, Valentina; Mauceri, Angela; Fasulo, Salvatore; Maisano, Maria

    2017-09-01

    The extensive use of copper oxide nanoparticles (CuO NPs) in many applications has raised concerns over their toxicity on environment and human health. Herein, the embryotoxicity of CuO NPs was assessed in the black sea urchin Arbacia lixula, an intertidal species commonly present in the Mediterranean. Fertilized eggs were exposed to 0.7, 10 and 20ppb of CuO NPs, until pluteus stage. Interferences with the normal neurotransmission pathways were observed in sea urchin embryos. In detail, evidence of cholinergic and serotoninergic systems affection was revealed by dose-dependent decreased levels of choline and N-acetyl serotonin, respectively, measured by nuclear magnetic resonance (NMR)-based metabolomics, applied for the first time to our knowledge on sea urchin embryos. The metabolic profile also highlighted a significant CuO NP dose-dependent increase of glycine, a component of matrix proteins involved in the biomineralization process, suggesting perturbed skeletogenesis accordingly to skeletal defects in spicule patterning observed previously in the same sea urchin embryos. However, the expression of skeletogenic genes, i.e. SM30 and msp130, did not differ among groups, and therefore altered primary mesenchyme cell (PMC) migration was hypothesized. Other unknown metabolites were detected from the NMR spectra, and their concentrations found to be reflective of the CuO NP exposure levels. Overall, these findings demonstrate the toxic potential of CuO NPs to interfere with neurotransmission and skeletogenesis of sea urchin embryos. The integrated use of embryotoxicity tests and metabolomics represents a highly sensitive and effective tool for assessing the impact of NPs on aquatic biota. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Silver nanoparticles alter learning and memory formation in an aquatic organism, Lymnaea stagnalis.

    Young, Austin; Protheroe, Amy; Lukowiak, Ken

    2017-06-01

    We tested the effect of silver nanoparticles (AgNPs) on the ability of the pond snail, Lymnaea stagnalis, to learn and form long-term memory (LTM) following operant conditioning of aerial respiration. We hypothesized that the AgNPs would act as a stressor and prevent learning and LTM formation. We tested snails exposed for either 72 h or only during training and testing for memory (i.e. 0.5 h) and found no difference between those treatments. We found that at a low concentration of AgNPs (5 μg/L) neither learning and nor memory formation were altered. When we increased the concentration of AgNPs (10 μg/L) we found that memory formation was enhanced. Finally, at a higher concentration (50 μg/L) memory formation was blocked. To determine if the disassociation of Ag + from the AgNPs caused the effects on memory we performed similar experiments with AgNO 3 and found similar concentration-dependent results. Finally, we found that snails perceive the AgNPs differently from Ag+ as there was context specific memory. That is, snails trained in AgNPs did not show memory when tested in Ag + and vice-versa. We believe that changes in memory formation may be a more sensitive determination of AgNPs on aquatic organisms than the determination of a LC 50 . Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes

    Oda, Kenzaburo; Luo, Yuqian; Yoshihara, Aya; Ishido, Yuko; Sekihata, Kengo

    2017-01-01

    Thyroglobulin (Tg) stored in thyroid follicles exerts a potent negative-feedback effect on each step of pre-hormone biosynthesis, including Tg gene transcription and iodine uptake and organification, by suppressing the expression of specific transcription factors that regulate these steps. Pre-hormones are stored in the follicular colloid before being reabsorbed. Following lysosomal proteolysis of its precursor, thyroid hormone (TH) is released from thyroid follicles. Although the suppressive effects of follicular Tg on each step of pre-hormone biosynthesis have been extensively characterized, whether follicular Tg accumulation also affects hormone reabsorption, proteolysis, and secretion is unclear. In this study we explored whether follicular Tg can regulate the expression and function of the lysosomal endopeptidases cathepsins. We found that in the rat thyroid cell line FRTL-5 follicular Tg induced cathepsin H mRNA and protein expression, as well as cathepsin H enzyme activity. Double immunofluorescence staining showed that Tg endocytosis promoted cathepsin H translocalization into lysosomes where it co-localized with internalized Tg. These results suggest that cathepsin H is an active participant in lysosome-mediated pre-hormone degradation, and that follicular Tg stimulates mobilization of pre-hormones by activating cathepsin H-associated proteolysis pathways. - Highlights: • Follicular Tg increases cathepsin H mRNA and protein levels in rat thyroid cells. • Follicular Tg increases cathepsin H enzyme activity in rat thyroid cells. • After Tg stimulation cathepsin H co-localizes to lysosomes with follicular Tg. • Cathepsin H promotes hormone secretion by lysosome-mediated mechanisms.

  18. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development.

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J

    2016-04-21

    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  19. Detection of femtomole quantities of mature cathepsin K with zymography.

    Li, Weiwei A; Barry, Zachary T; Cohen, Joshua D; Wilder, Catera L; Deeds, Rebecca J; Keegan, Philip M; Platt, Manu O

    2010-06-01

    Cathepsin K, the most potent mammalian collagenase, has been implicated in osteoporosis, cancer metastasis, atherosclerosis, and arthritis. Although procathepsin K is stable and readily detected, the active mature cathepsin K eludes detection by in vitro methods due to its shorter half-life and inactivation at neutral pH. We describe, for the first time, reliable detection, visualization, and quantification of mature cathepsin K to femtomole resolution using gelatin zymography. The specificity of the method was validated with cathepsin K knockdown using small interfering RNA (siRNA) transfection of human monocyte-derived macrophages, and enzymatic activity confirmed with benzyloxycarbonyl-glycine-proline-arginine-7-amino-4-methylcoumarin (Z-GPR-AMC) substrate hydrolysis was fit to a computational model of enzyme kinetics. Furthermore, cathepsin K zymography was used to show that murine osteoclasts secrete more cathepsin K than is stored intracellularly, and this was opposite to the behavior of the macrophages from which they were differentiated. In summary, this inexpensive, species-independent, antibody-free protocol describes a sensitive method with broad potential to elucidate previously undetectable cathepsin K activity. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Cathepsins are required for Toll-like receptor 9 responses

    Matsumoto, Fumi; Saitoh, Shin-ichiroh; Fukui, Ryutaroh; Kobayashi, Toshihiko; Tanimura, Natsuko; Konno, Kazunori; Kusumoto, Yutaka; Akashi-Takamura, Sachiko; Miyake, Kensuke

    2008-01-01

    Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9

  1. Role of Cathepsin S in Periodontal Inflammation and Infection

    S. Memmert

    2017-01-01

    Full Text Available Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1β and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1β and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.

  2. Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration

    Abdelhalim Mohamed

    2012-01-01

    Full Text Available Abstract Background Nanoparticles (NPs can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. Since the properties of NPs differ from that of their bulk materials, they are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the particle-size effect of gold nanoparticles (GNPs on the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use. Methods To investigate particle-size effect of GNPs on the hepatic tissue, a total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 ul of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days. Results In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and the sinusoids. The alterations in the hepatocytes were mainly summarized as hydropic degeneration, cloudy swelling, fatty degeneration, portal and lobular infiltrate by chronic inflammatory cells and congestive dilated central veins. Conclusions The induced histological alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These alterations were size-dependent with smaller ones induced the most effects and related with time exposure of GNPs. The appearance of hepatocytes cytoplasmic degeneration and nuclear destruction may suggest that GNPs interact with proteins and enzymes of the hepatic tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS generation which in turn may induce stress in the hepatocytes to

  3. Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeo rohita

    Saravanan, M.; Suganya, R.; Ramesh, M., E-mail: mathanramesh@yahoo.com; Poopal, R. K. [Bharathiar University, Unit of Toxicology, Department of Zoology, School of Life Sciences (India); Gopalan, N. [Bharathiar University, DRDO-BU (India); Ponpandian, N. [Bharathiar University, Department of Nanoscience and Technology (India)

    2015-06-15

    The wide use of iron oxide nanoparticles (Fe{sub 2}O{sub 3} NPs) in various applications has raised great concerns worldwide. In this work, we measured the potential harmful effects of Fe{sub 2}O{sub 3} NP (<50 nm) at concentrations of 1 and 25 mg/L on haematological, biochemical, and ionoregulatory responses in an Indian major carp, Labeo rohita for a short-term period of 96 h. The results revealed significant (P < 0.05) decreases in haemoglobin, haematocrit, mean cellular volume, mean cellular haemoglobin, protein, sodium (Na{sup +}), potassium (K{sup +}), chloride (Cl{sup −}) and gill Na{sup +}/K{sup +}-ATPase levels in both the concentrations. White blood cell, mean cellular haemoglobin concentration and glucose levels were significantly (P < 0.05) increased in response to both concentrations during the study period. However, no significant changes in red blood cell count and gill Na{sup +}/K{sup +}-ATPase (25 mg/L) activity were noticed compared to those of the respective control groups. Based on this study, it was found that the Fe{sub 2}O{sub 3} NPs do have prominent effects on freshwater fish L. rohita. Our data suggest that the alterations of these parameters can be used as nonspecific biomarkers to monitor the environmental risks arising from nanoparticles in aquatic ecosystem and also regulate the use, production and release of nanoparticles.

  4. Residue-specific annotation of disorder-to-order transition and cathepsin inhibition of a propeptide-like crammer from D. melanogaster.

    Tien-Sheng Tseng

    Full Text Available Drosophila melanogaster crammer is a novel cathepsin inhibitor involved in long-term memory formation. A molten globule-to-ordered structure transition is required for cathepsin inhibition. This study reports the use of alanine scanning to probe the critical residues in the two hydrophobic cores and the salt bridges of crammer in the context of disorder-to-order transition and cathepsin inhibition. Alanine substitution of the aromatic residues W9, Y12, F16, Y20, Y32, and W53 within the hydrophobic cores, and charged residues E8, R28, R29, and E67 in the salt bridges considerably decrease the ability of crammer to inhibit Drosophila cathepsin B (CTSB. Far-UV circular dichroism (CD, intrinsic fluorescence, and nuclear magnetic resonance (NMR spectroscopies show that removing most of the aromatic and charged side-chains substantially reduces thermostability, alters pH-dependent helix formation, and disrupts the molten globule-to-ordered structure transition. Molecular modeling indicates that W53 in the hydrophobic Core 2 is essential for the interaction between crammer and the prosegment binding loop (PBL of CTSB; the salt bridge between R28 and E67 is critical for the appropriate alignment of the α-helix 4 toward the CTSB active cleft. The results of this study show detailed residue-specific dissection of folding transition and functional contributions of the hydrophobic cores and salt bridges in crammer, which have hitherto not been characterized for cathepsin inhibition by propeptide-like cysteine protease inhibitors. Because of the involvements of cathepsin inhibitors in neurodegenerative diseases, these structural insights can serve as a template for further development of therapeutic inhibitors against human cathepsins.

  5. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin

    2012-01-01

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the int......We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs...

  6. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders

    2015-01-01

    that enter natural ecosystems, such as oceans and lakes, is increasing, and degradation of the disposed plastics produces smaller particles toward the nano scale. Therefore, it is of utmost importance to gain knowledge about how plastic nanoparticles enter and affect living organisms. Here we have...... administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene...

  7. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine

    Ingestion of nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface and a barrier between the body and the external environment, and is the site of essential nutrient abs...

  8. Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II

    Aaron C. Petrey

    2012-03-01

    The severe pediatric disorder mucolipidosis II (ML-II; also known as I-cell disease is caused by defects in mannose 6-phosphate (Man-6-P biosynthesis. Patients with ML-II exhibit multiple developmental defects, including skeletal, craniofacial and joint abnormalities. To date, the molecular mechanisms that underlie these clinical manifestations are poorly understood. Taking advantage of a zebrafish model of ML-II, we previously showed that the cartilage morphogenesis defects in this model are associated with altered chondrocyte differentiation and excessive deposition of type II collagen, indicating that aspects of development that rely on proper extracellular matrix homeostasis are sensitive to decreases in Man-6-P biosynthesis. To further investigate the molecular bases for the cartilage phenotypes, we analyzed the transcript abundance of several genes in chondrocyte-enriched cell populations isolated from wild-type and ML-II zebrafish embryos. Increased levels of cathepsin and matrix metalloproteinase (MMP transcripts were noted in ML-II cell populations. This increase in transcript abundance corresponded with elevated and sustained activity of several cathepsins (K, L and S and MMP-13 during early development. Unlike MMP-13, for which higher levels of protein were detected, the sustained activity of cathepsin K at later stages seemed to result from its abnormal processing and activation. Inhibition of cathepsin K activity by pharmacological or genetic means not only reduced the activity of this enzyme but led to a broad reduction in additional protease activity, significant correction of the cartilage morphogenesis phenotype and reduced type II collagen staining in ML-II embryos. Our findings suggest a central role for excessive cathepsin K activity in the developmental aspects of ML-II cartilage pathogenesis and highlight the utility of the zebrafish system to address the biochemical underpinnings of metabolic disease.

  9. Acid-Mediated Tumor Proteolysis: Contribution of Cysteine Cathepsins

    Jennifer M Rothberg

    2013-10-01

    Full Text Available One of the noncellular microenvironmental factors that contribute to malignancy of solid tumors is acidic peritumoral pH. We have previously demonstrated that extracellular acidosis leads to localization of the cysteine pro-tease cathepsin B on the tumor cell membrane and its secretion. The objective of the present study was to determine if an acidic extracellular pH such as that observed in vivo (i.e., pHe 6.8 affects the activity of proteases, e.g., cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional (3D cultures. For these studies, we used 1 3D reconstituted basement membrane overlay cultures of human carcinomas, 2 live cell imaging assays to assess proteolysis, and 3 in vivo imaging of active tumor proteases. At pHe 6.8, there were increases in pericellular active cysteine cathepsins and in degradation of dye-quenched collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of bound probe decreased in tumors in bicarbonate-treated mice, a treatment previously shown to increase peritumoral pHe and reduce local invasion of the tumors. Our results are consistent with the acid-mediated invasion hypothesis and with a role for cathepsin B in promoting degradation of a basement membrane protein substrate, i.e., type IV collagen, in an acidic peritumoral environment.

  10. Vaccine potential of recombinant cathepsin B against Fasciola gigantica.

    Chantree, Pathanin; Phatsara, Manussabhorn; Meemon, Krai; Chaichanasak, Pannigan; Changklungmoa, Narin; Kueakhai, Pornanan; Lorsuwannarat, Natcha; Sangpairoj, Kant; Songkoomkrong, Sineenart; Wanichanon, Chaitip; Itagaki, Tadashi; Sobhon, Prasert

    2013-09-01

    In Fasciola gigantica, cathepsin Bs, especially cathepsin B2 and B3 are expressed in early juvenile stages, and are proposed to mediate the invasion of host tissues. Thus they are thought to be the target vaccine candidates that can block the invasion and migration of the juvenile parasite. To evaluate their vaccine potential, the recombinant cathepsin B2 (rFgCatB2) and cathepsin B3 (rFgCatB3) were expressed in yeast, Pichia pastoris, and used to immunize mice in combination with Freund's adjuvant to evaluate the protection against the infection by F. gigantica metacercariae, and the induction of immune responses. Mice immunized with both recombinant proteins exhibited high percent of parasite reduction at 60% for rFgCatB2 and 66% for rFgCatB3. Immunization by both antigens induced continuously increasing levels of IgG1 and IgG2a with a higher level of IgG1 isotype, indicating the mixed Th1/Th2 responses with Th2 predominating. When examined individually, the higher levels of IgG1 and IgG2a were correlated with the lower numbers of worm recoveries. Thus, both cathepsin B2 and cathepsin B3 are plausible vaccine candidates whose potential should be further tested in large economic animals. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Altered Gene Transcription in Human Cells Treated with Ludox® Silica Nanoparticles

    Caterina Fede

    2014-08-01

    Full Text Available Silica (SiO2 nanoparticles (NPs have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30 having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with LudoxÒ silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes.

  12. Expression of Cathepsins B, D, and G in Isocitrate Dehydrogenase-Wildtype Glioblastoma

    Sabrina P. Koh

    2017-05-01

    Full Text Available AimTo investigate the expression of cathepsins B, D, and G, in relation to the cancer stem cell (CSC subpopulations, we have previously characterized within isocitrate dehydogenase (IDH-wildtype glioblastoma (IDHWGB.Methods3,3-Diaminobezidine (DAB immunohistochemical (IHC staining for cathepsins B, D, and G, was performed on 4μm-thick formalin-fixed paraffin-embedded IDHWGB samples obtained from six patients. Two representative DHWGB samples from the original cohort of patients were selected for immunofluorescent (IF IHC staining, to identify the localization of the cathepsins in relation to the CSC subpopulations. NanoString gene expression analysis and colorimetric in situ hybridization (CISH were conducted to investigate the transcriptional activation of genes encoding for cathepsins B, D, and G. Data obtained from cell counting of DAB IHC-stained slides and from NanoString analysis were subjected to statistical analyses to determine significance.ResultsCathepsin B and cathepsin D were detected in IDHWGB by DAB IHC staining. IF IHC staining demonstrated the expression of both cathepsin B and cathepsin D by the OCT4+ and SALL4+ CSC subpopulations. NanoString gene analysis and CISH confirmed the abundant transcript expression of these cathepsins. The transcriptional and translational expressions of cathepsin G were minimal and were confined to cells within the microvasculature.ConclusionThis study demonstrated the expression of cathepsin B and cathepsin D but not cathepsin G within the CSC subpopulations of IDHWGB at both the transcriptional and translational level. Cathepsin G was expressed at low levels and was not localized to the CSC population of IDHWGB. The novel finding of cathepsin B and cathepsin D in IDHWGB suggests the presence of bypass loops for the renin-angiotensin system, which may facilitate the production of angiotensin peptides. Elucidating the precise role of these cathepsins may lead to better understanding and more

  13. Aspartic cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus.

    Rojo, Liliana; Muhlia-Almazan, Adriana; Saborowski, Reinhard; García-Carreño, Fernando

    2010-11-01

    Acid digestive proteinases were studied in the gastric fluids of two species of clawed lobster (Homarus americanus and Homarus gammarus). An active protein was identified in both species as aspartic proteinase by specific inhibition with pepstatin A. It was confirmed as cathepsin D by mass mapping, N-terminal, and full-length cDNA sequencing. Both lobster species transcribed two cathepsin D mRNAs: cathepsin D1 and cathepsin D2. Cathepsin D1 mRNA was detected only in the midgut gland, suggesting its function as a digestive enzyme. Cathepsin D2 mRNA was found in the midgut gland, gonads, and muscle. The deduced amino acid sequence of cathepsin D1 and cathepsin D2 possesses two catalytic DTG active-site motifs, the hallmark of aspartic proteinases. The putatively active cathepsin D1 has a molecular mass of 36.4 kDa and a calculated pI of 4.14 and possesses three potential glycosylation sites. The sequences showed highest similarities with cathepsin D from insects but also with another crustacean cathepsin D. Cathepsin D1 transcripts were quantified during a starvation period using real-time qPCR. In H. americanus, 15 days of starvation did not cause significant changes, but subsequent feeding caused a 2.5-fold increase. In H. gammarus, starvation caused a 40% reduction in cathepsin D1 mRNA, and no effect was observed with subsequent feeding.

  14. Histopathological analysis of cellular localization of cathepsins in abdominal aortic aneurysm wall.

    Lohoefer, Fabian; Reeps, Christian; Lipp, Christina; Rudelius, Martina; Zimmermann, Alexander; Ockert, Stefan; Eckstein, Hans-Henning; Pelisek, Jaroslav

    2012-08-01

    An important feature of abdominal aortic aneurysm (AAA) is the destruction of vessel wall, especially elastin and collagen. Besides matrix metalloproteinases, cathepsins are the most potent elastolytic enzymes. The expression of cathepsins with known elastolytic and collagenolytic activities in the individual cells within AAA has not yet been determined. The vessel wall of 32 AAA patients and 10 organ donors was analysed by immunohistochemistry for expression of cathepsins B, D, K, L and S, and cystatin C in all cells localized within AAA. Luminal endothelial cells (ECs) of AAA were positive for cathepsin D and partially for cathepsins B, K and S. Endothelial cells of the neovessels and smooth muscle cells in the media were positive for all cathepsins tested, especially for cathepsin B. In the inflammatory infiltrate all cathepsins were expressed in the following pattern: B > D = S > K = L. Macrophages showed the highest staining intensity for all cathepsins. Furthermore, weak overall expression of cystatin C was observed in all the cells localized in the AAA with the exception of the ECs. There is markedly increased expression of the various cathepsins within the AAA wall compared to healthy aorta. Our data are broadly consistent with a role for cathepsins in AAA; and demonstrate expression of cathepsins D, B and S in phagocytic cells in the inflammatory infiltrate; and also may reveal a role for cathepsin B in lymphocytes. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  15. Upregulation of cathepsin S in psoriatic keratinocytes.

    Schönefuss, Alexander; Wendt, Wiebke; Schattling, Benjamin; Schulten, Roxane; Hoffmann, Klaus; Stuecker, Markus; Tigges, Christian; Lübbert, Hermann; Stichel, Christine

    2010-08-01

    Cathepsin S (CATS) is a cysteine protease, well known for its role in MHC class II-mediated antigen presentation and extracellular matrix degradation. Disturbance of the expression or metabolism of this protease is a concomitant feature of several diseases. Given this importance we studied the localization and regulation of CATS expression in normal and pathological human/mouse skin. In normal human skin CATS-immunostaining is mainly present in the dermis and is localized in macrophages, Langerhans, T- and endothelial cells, but absent in keratinocytes. In all analyzed pathological skin biopsies, i.e. atopic dermatitis, actinic keratosis and psoriasis, CATS staining is strongly increased in the dermis. But only in psoriasis, CATS-immunostaining is also detectable in keratinocytes. We show that cocultivation with T-cells as well as treatment with cytokines can trigger expression and secretion of CATS, which is involved in MHC II processing in keratinocytes. Our data provide first evidence that CATS expression (i) is selectively induced in psoriatic keratinocytes, (ii) is triggered by T-cells and (iii) might be involved in keratinocytic MHC class II expression, the processing of the MHC class II-associated invariant chain and remodeling of the extracellular matrix. This paper expands our knowledge on the important role of keratinocytes in dermatological disease.

  16. Errantum: Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins

    Lai JCK

    2010-12-01

    Full Text Available Lai JCK, Ananthakrishnan G, Jandhyam S, et al. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int J Nanomedicine. 2010;5:715–723.The wrong image was used in Figure 5 on page 719.

  17. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

    Verbovšek, Urška; van Noorden, Cornelis J. F.; Lah, Tamara T.

    2015-01-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts,

  18. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model.

    Garcia-Contreras, Rene; Sugimoto, Masahiro; Umemura, Naoki; Kaneko, Miku; Hatakeyama, Yoko; Soga, Tomoyoshi; Tomita, Masaru; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Nakajima, Hiroshi; Sakagami, Hiroshi

    2015-07-01

    Although nanoparticles (NPs) has afforded considerable benefits in various fields of sciences, several reports have shown their harmful effects, suggesting the necessity of adequate risk assessment. To clarify the mechanism of titanium dioxide nanoparticles (TiO2 NPs)-enhanced gingival inflammation, we conducted the full-scale metabolomic analyses of human gingival fibroblast cells treated with IL-1β alone or in combination with TiO2 NPs. Observation with transmission electron microscope demonstrated the incorporation of TiO2 NPs into vacuoles of the cells. TiO2 NPs significantly enhanced the IL-1β-induced prostaglandin E2 production and COX-1 and COX-2 protein expression. IL-1β reduced the intracellular concentrations of overall primary metabolites especially those of amino acid, urea cycle, polyamine, S-adenosylmethione and glutathione synthetic pathways. The addition of TiO2 NPs further augmented these IL-1β-induced metabolic changes, recommending careful use of dental materials containing TiO2 NPs towards patients with gingivitis or periodontitis. The impact of the present study is to identify the molecular targets of TiO2 NPs for the future establishment of new metabolic markers and therapeutic strategy of gingival inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Identification of interleukin-8 converting enzyme as cathepsin L.

    Ohashi, Kensaku; Naruto, Masanobu; Nakaki, Toshio; Sano, Emiko

    2003-06-26

    IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.

  20. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Fletcher, Paige; Holian, Andrij, E-mail: andrij.holian@umontana.edu

    2017-03-01

    NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1. - Highlights: • Silica and nanoparticles cause LMP in macrophages in vitro and in vivo. • Phagolysosome acidification is required for particle-induced LMP. • Cathepsin B and L are not required for nanoparticle-induced LMP. • Cathepsin B/L regulate the secretion of HMGB1 with particle exposure.

  1. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Fletcher, Paige; Holian, Andrij

    2017-01-01

    NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1. - Highlights: • Silica and nanoparticles cause LMP in macrophages in vitro and in vivo. • Phagolysosome acidification is required for particle-induced LMP. • Cathepsin B and L are not required for nanoparticle-induced LMP. • Cathepsin B/L regulate the secretion of HMGB1 with particle exposure.

  2. Expression and Localization of Cathepsins B, D, and G in Dupuytren’s Disease

    Kirin Tan, MB ChB

    2018-02-01

    Conclusions:. Cathepsins B, D, and G were expressed in the DD tissues, with cathepsins B and D localized to the primitive population in the endothelium of the microvessels, whereas cathepsin G was localized to phenotypic mast cells, suggesting the presence of bypass loops for the RAS.

  3. Localization profile of Cathepsin L in the brain of African giant rat ...

    Cathepsins, are members of the papain superfamily of mammalian lysosomal cysteine proteases. Among others there are two prominent members with broad substrate specificity, these are cathepsin B and cathepsin L that are known to be involved in the process of intra- and extra-cellular protein degradation and turnover.

  4. Coating with luminal gut-constituents alters adherence of nanoparticles to intestinal epithelial cells

    Heike Sinnecker

    2014-12-01

    Full Text Available Background: Anthropogenic nanoparticles (NPs have found their way into many goods of everyday life. Inhalation, ingestion and skin contact are potential routes for NPs to enter the body. In particular the digestive tract with its huge absorptive surface area provides a prime gateway for NP uptake. Considering that NPs are covered by luminal gut-constituents en route through the gastrointestinal tract, we wanted to know if such modifications have an influence on the interaction between NPs and enterocytes.Results: We investigated the consequences of a treatment with various luminal gut-constituents on the adherence of nanoparticles to intestinal epithelial cells. Carboxylated polystyrene particles 20, 100 and 200 nm in size represented our anthropogenic NPs, and differentiated Caco-2 cells served as model for mature enterocytes of the small intestine. Pretreatment with the proteins BSA and casein consistently reduced the adherence of all NPs to the cultured enterocytes, while incubation of NPs with meat extract had no obvious effect on particle adherence. In contrast, contact with intestinal fluid appeared to increase the particle-cell interaction of 20 and 100 nm NPs.Conclusion: Luminal gut-constituents may both attenuate and augment the adherence of NPs to cell surfaces. These effects appear to be dependent on the particle size as well as on the type of interacting protein. While some proteins will rather passivate particles towards cell attachment, possibly by increasing colloid stability or camouflaging attachment sites, certain components of intestinal fluid are capable to modify particle surfaces in such a way that interactions with cellular surface structures result in an increased binding.

  5. Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

    Samarel, A.M.; Ferguson, A.G.; Decker, R.S.; Lesch, M.

    1989-01-01

    To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed to media containing leupeptin, E 64, or chloroquine. Cathepsin D maturation was then evaluated in pulse-chase biosynthetic labeling experiments. None of the three agents affected the charge modification of procathepsin D within the Golgi apparatus. However, all three agents interfered with the subsequent proteolytic processing of procathepsin D isoforms to active cathepsin D. Both leupeptin and E 64 caused the intracellular accumulation of large amounts of a Mr 51,000 processing intermediate. Trace amounts of this intermediate were also detected in chloroquine-treated cells. Combined activity assay and radioimmunoassay of cell lysates indicated that this partially processed form of cathepsin D possessed proteolytic activity. Whereas low medium concentrations of leupeptin (10-100 microM) but not E 64 appeared to stimulate procathepsin D secretion, neither agent appeared to have a major effect on the rate of proenzyme secretion at doses required to inhibit proteolytic maturation (1-10 mM). Furthermore, pretreatment of cells with 10 mM leupeptin appeared only to delay, but not prevent, the intracellular transport of cathepsin D to lysosomes. In contrast, chloroquine increased procathepsin D secretion in a dose-dependent manner, diverting the majority of newly synthesized procathepsin D from the intracellular protease(s) responsible for proteolytic processing. These results suggest that cysteine proteases participate in the proteolytic maturation of procathepsin D during the transport of newly synthesized enzyme to lysosomes, but cysteine protease-mediated proteolytic processing is not required for cathepsin D activation or lysosomal translocation

  6. Cathepsin-D And Tnf-α in Bladder Cancer

    T. Salman

    1996-01-01

    Full Text Available In a study of 34 normal healthy controls, 35 patients with urinary tract bilharziasis and 93 bladder cancer patients (62 of them are operable cases and 31 are non-operable ones, serum tumor necrosis factor alpha (TNF-α and cytosolic Cathepsin-D were estimated. Though both potential markers were elevated in bladder cancer patients, neither Cathepsin-D nor TNF-α showed associations of prognostic value since there were no positive correlations with tumor stages, grades or association of tumors with bilharzia ova or lymph node involvement.

  7. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.

    Rossi, Lorenzo; Zhang, Weilan; Ma, Xingmao

    2017-10-01

    Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO 2 NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO 2 NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO 2 NPs (0, 500 mg kg -1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO 2 NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO 2 NPs shortened the root apoplastic barriers which allowed more Na + transport to shoots and less accumulation of Na + in plant roots. The altered Na + fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid

    Rogers, Kim R.; Bradham, Karen; Tolaymat, Thabet; Thomas, David J.; Hartmann, Thomas; Ma, Longzhou; Williams, Alan

    2012-01-01

    The bioavailability of ingested silver nanoparticles (AgNPs) depends in large part on initial particle size, shape and surface coating, properties which will influence aggregation, solubility and chemical composition during transit of the gastrointestinal tract. Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (SSF) (pH 1.5) and changes in size, shape, zeta potential, hydrodynamic diameter and chemical composition were determined during a 1 h exposure period using Surface Plasmon Resonance (SPR), High Resolution Transmission Electron Microscopy/Energy Dispersive X-ray Spectroscopy (TEM/EDS), Dynamic Light Scattering (DLS) and X-ray Powder Diffraction (XRD) combined with Rietveld analysis. Exposure of AgNPs to SSF produced a rapid decrease in the SPR peak at 414 nm and the appearance of a broad absorbance peak in the near infrared (NIR) spectral region. During exposure to SSF, changes in zeta potential, aggregation and morphology of the particles were also observed as well as production of silver chloride which appeared physically associated with particle aggregates. - Highlights: ► Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (pH 1.5). ► Particle changes in chemical composition, zeta potential, aggregation and morphology were observed. ► Silver chloride appeared to be physically associated with the particle aggregates.

  9. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid

    Rogers, Kim R., E-mail: rogers.kim@epa.gov [U.S. Environmental Protection Agency, Las Vegas, NV (United States); Bradham, Karen [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Tolaymat, Thabet [U.S. Environmental Protection Agency, Cincinnati, OH (United States); Thomas, David J. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Hartmann, Thomas; Ma, Longzhou [University of Nevada, Harry Reid Center for Environmental Studies, Las Vegas, NV (United States); Williams, Alan [U.S. Environmental Protection Agency, Las Vegas, NV (United States)

    2012-03-15

    The bioavailability of ingested silver nanoparticles (AgNPs) depends in large part on initial particle size, shape and surface coating, properties which will influence aggregation, solubility and chemical composition during transit of the gastrointestinal tract. Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (SSF) (pH 1.5) and changes in size, shape, zeta potential, hydrodynamic diameter and chemical composition were determined during a 1 h exposure period using Surface Plasmon Resonance (SPR), High Resolution Transmission Electron Microscopy/Energy Dispersive X-ray Spectroscopy (TEM/EDS), Dynamic Light Scattering (DLS) and X-ray Powder Diffraction (XRD) combined with Rietveld analysis. Exposure of AgNPs to SSF produced a rapid decrease in the SPR peak at 414 nm and the appearance of a broad absorbance peak in the near infrared (NIR) spectral region. During exposure to SSF, changes in zeta potential, aggregation and morphology of the particles were also observed as well as production of silver chloride which appeared physically associated with particle aggregates. - Highlights: Black-Right-Pointing-Pointer Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (pH 1.5). Black-Right-Pointing-Pointer Particle changes in chemical composition, zeta potential, aggregation and morphology were observed. Black-Right-Pointing-Pointer Silver chloride appeared to be physically associated with the particle aggregates.

  10. Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils.

    Nauder Faraday

    Full Text Available Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies.

  11. Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment

    Ortega-Gomez, Almudena; Salvermoser, Melanie; Rossaint, Jan; Pick, Robert; Brauner, Janine; Lemnitzer, Patricia; Tilgner, Jessica; de Jong, Renske J.; Megens, Remco T. A.; Jamasbi, Janina; Döring, Yvonne; Pham, Christine T.; Scheiermann, Christoph; Siess, Wolfgang; Drechsler, Maik; Weber, Christian; Grommes, Jochen; Zarbock, Alexander; Walzog, Barbara; Soehnlein, Oliver

    2016-01-01

    Therapeutic targeting of arterial leukocyte recruitment in the context of atherosclerosis has been disappointing in clinical studies. Reasons for such failures include the lack of knowledge of arterial-specific recruitment patterns. Here we establish the importance of the cathepsin G (CatG) in the

  12. Structure of the periodontium in cathepsin C-deficient mice

    de Haar, Susanne F.; Tigchelaar-Gutter, Wikky; Everts, Vincent; Beertsen, Wouter

    2006-01-01

    Papillon-Lefevre syndrome is characterized by increased susceptibility to early-onset periodontitis and is caused by mutations in the cathepsin C gene. How deficiency of the enzyme relates to an increased periodontal infection risk is still not entirely clear. One possibility is that the deficiency

  13. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    The intermediate filament protein, desmin, was purified from pork longissimus dorsi and incubated with either P-calpain, m-calpain or cathepsin B. Proteolysis of desmin was followed using SDS-PAGE and Western blotting. After incubation of desmin with the proteases, cleavage sites on the desmin mo...

  14. Complex modulation of peptidolytic activity of cathepsin D by sphingolipids

    Žebrakovská, Iva; Máša, Martin; Srp, Jaroslav; Horn, Martin; Vávrová, K.; Mareš, Michael

    2011-01-01

    Roč. 1811, č. 12 (2011), s. 1097-1104 ISSN 1388-1981 R&D Projects: GA AV ČR IAA400550705 Institutional research plan: CEZ:AV0Z40550506 Keywords : sphingolipid * phospholipid * inhibition * activation * cathepsin D * enzyme regulation Subject RIV: CE - Biochemistry Impact factor: 5.269, year: 2011

  15. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats

    Yang J

    2017-08-01

    Full Text Available Jing Yang,1,* Shifu Hu,1,* Meng Rao,1 Lixia Hu,2 Hui Lei,1 Yanqing Wu,1 Yingying Wang,1 Dandan Ke,1 Wei Xia,1,3 Chang-hong Zhu1,3 1Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 2Department of Histology and Embryology, Preclinical Medicine College, Xinxiang Medical University, Henan Province, Xinxiang, 3Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Abstract: Numerous studies have reported the accumulation of copper nanoparticles (Cu NPs in organs and the corresponding damage, although whether Cu NPs can be translocated to the ovaries and their ovarian toxicity are still unknown. In this study, three groups of female rats were injected with 3.12, 6.25, or 12.5 mg/kg Cu NPs for 14 consecutive days. The pathological changes, hormone levels, apoptosis and apoptotic proteins, oxidative stress, and gene expression characteristics in the ovaries were then investigated. The results demonstrated that the Cu NPs exhibited obvious accumulation in the rat ovaries, leading to ovarian injury, an imbalance of sex hormones, and ovarian cell apoptosis. Cu NP exposure activated caspase 3, caspase 8, caspase 9, and tBid, decreased the protein levels of Bcl-2, increased the expression levels of the proteins Bax and cytochrome c, and promoted malondialdehyde (MDA accumulation and superoxide dismutase (SOD reduction. Furthermore, gene microarray analysis showed that Cu NPs (12.5 mg/kg/d caused 321 differentially expressed genes. Of these, 180 and 141 genes were upregulated and downregulated, respectively. Hsd17b1, Hsd3b1, Hsd3b6, and Hsd3b were involved in steroid and hormone metabolism, whereas Mt3 and Cebpb were associated with apoptosis. Overall, these findings provide strong evidence that Cu NPs trigger both intrinsic and extrinsic

  16. The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes

    Geppert, Mark; Petters, Charlotte; Thiel, Karsten; Dringen, Ralf

    2013-01-01

    Iron oxide nanoparticles (IONPs) are considered for various diagnostic and therapeutic applications. Such particles are able to cross the blood–brain barrier and are taken up into brain cells. To test whether serum components affect the properties of IONPs and/or their uptake into brain cells, we have incubated dimercaptosuccinate-coated magnetic IONPs without and with fetal calf serum (FCS) and have exposed cultured brain astrocytes with IONPs in the absence or presence of FCS. Incubation with FCS caused a concentration-dependent increase in the average hydrodynamic diameter of the particles and of their zeta-potential. In the presence of 10 % FCS, the diameter of the IONPs increased from 57 ± 2 to 107 ± 6 nm and the zeta-potential of the particles from −22 ± 5 to −9 ± 1 mV. FCS affected also strongly the uptake of IONPs by cultured astrocytes. The efficient time- and temperature-dependent cellular accumulation of IONPs was lowered with increasing concentration of FCS by up to 90 %. In addition, in the absence of serum, endocytosis inhibitors did not alter the IONP accumulation by astrocytes, while chlorpromazine or wortmannin lowered significantly the accumulation of IONPs in the presence of FCS, suggesting that clathrin-mediated endocytosis and macropinocytosis are involved in astrocytic IONP uptake from serum-containing medium. These data demonstrate that the presence of FCS strongly affects the properties of IONPs as well as their accumulation by cultured brain cells.

  17. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L

    Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared; Dutch, Rebecca Ellis

    2006-01-01

    The Nipah virus fusion (F) protein is proteolytically processed to F 1 + F 2 subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsins can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form

  18. nanoparticles

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  19. Cathepsin D and Its Prognostic Value in Neuroepithelial Brain Tumors

    Pigac, Biserka; Dmitrović, Branko; Marić, Svjetlana; Mašić, Silvija

    2012-01-01

    Expression of Cathepsin D (Cath D) in some primary neuroepithelial brain tumors and its prognostic value were studied. The research included 65 samples of human primary neuroepithelial brain tumors. There were 50 glial tumors (10 diffuse astrocytomas (DA), 15 anaplastic astrocytomas (AA), 25 glioblastomas (GB), 15 embryonic tumors (15 medulloblastomas (MB) as well as 5 samples of normal brain tissue. Immunohistochemical method was applied to monitor diffuse positive reaction in the cytoplasm ...

  20. Structure of a Kunitz-type potato cathepsin D inhibitor

    Guo, J.; Erskine, P. T.; Coker, A. R.; Wood, S. P.; Cooper, J. B.; Mareš, Michael; Baudyš, Miroslav

    2015-01-01

    Roč. 192, č. 3 (2015), s. 554-560 ISSN 1047-8477 R&D Projects: GA ČR GA15-18929S; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : potato cathepsin D inhibitor * Kunitz-type protease inhibitor * protein X-ray structure * reactive-site loop * docking Subject RIV: CE - Biochemistry Impact factor: 2.570, year: 2015

  1. Cysteine cathepsins B and X promote epithelial-mesenchymal transition of tumor cells.

    Mitrović, Ana; Pečar Fonović, Urša; Kos, Janko

    2017-09-01

    Cathepsins B and X are lysosomal cysteine carboxypeptidases suggested as having a redundant role in cancer. They are involved in a number of processes leading to tumor progression but their role in the epithelial-mesenchymal transition (EMT) remains unknown. We have investigated the contribution of both cathepsins B and X in EMT using tumor cell lines differing in their expression of epithelial and mesenchymal markers and cell morphology. Higher levels of both cathepsins are shown to promote EMT and are associated with the mesenchymal-like cell phenotype. Moreover, simultaneous knockdown of the two peptidases triggers a reverse, mesenchymal to epithelial transition. Of the two cathepsins, cathepsin B appears to be the stronger promotor of EMT. Furthermore, we evaluated the involvement of cathepsin B and X in the transforming growth factor-β1 (TGF-β1) signaling pathway, one of the key signaling mechanisms triggering EMT in cancer. In MCF-7 cells the expression of cathepsin B was shown to depend on their activation with TGF-β1 while, for cathepsin X, a TGF-β1 independent mechanism of induction during EMT is indicated. EMT is thus shown to be another mechanism linking cathepsins B and X with tumor progression. With silencing of their expression or inhibition of enzymatic activity, the tumor cells could be reverted to less aggressive epithelial-like phenotype. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Cysteine Cathepsins as Regulators of the Cytotoxicity of NK and T Cells

    Perišić Nanut, Milica; Sabotič, Jerica; Jewett, Anahid; Kos, Janko

    2014-01-01

    Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes. PMID:25520721

  3. Cathepsin O is involved in the innate immune response and metamorphosis of Antheraea pernyi.

    Sun, Yu-Xuan; Zhu, Bao-Jian; Tang, Lin; Sun, Yu; Chen, Chen; Nadeem Abbas, Muhammad; Wang, Lei; Qian, Cen; Wei, Guo-Qing; Liu, Chao-Liang

    2017-11-01

    Cathepsins are key members of mammalian papain-like cysteine proteases that play an important role in the immune response. In this study, a fragment of cDNA encoding cathepsin O proteinase (ApCathepsin O) was cloned from Antheraea pernyi. It contains an open reading frame of 1170bp and encodes a protein with 390 amino acid residues, including a conserved I29 inhibitor domain and a peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) domain. Comparison with other previously reported cathepsin O proteins showed identity ranging from 45% to 79%. Quantitative real-time PCR (qRT-PCR) and Western blot analysis revealed that ApCathepsin O was highly expressed in the fat body; furthermore, the high expression during the pupal stage indicated that it might be involved during metamorphosis. After exposure to four different heat-killed pathogens (Escherichia coli, Beauveria bassiana, Micrococcus luteus, and A. pernyi nucleopolyhedrovirus), the expression levels of ApCathepsin O mRNA significantly increased and showed variable expression patterns. This indicates that ApCathepsin O is potentially involved in the innate immune system of A. pernyi. Interestingly, ApCathepsin O expression was upregulated after 20-hydroxyecdysone (20E) injection, which suggested that it might be regulated by 20E. In conclusion, ApCathepsin O is a protease that may play an important role in the innate immune response and metamorphosis of A. pernyi. Copyright © 2017. Published by Elsevier Inc.

  4. The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer

    Md Zahidul Islam Pranjol

    2015-11-01

    Full Text Available Epithelial ovarian cancer (EOC is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L.

  5. The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer.

    Pranjol, Md Zahidul Islam; Gutowski, Nicholas; Hannemann, Michael; Whatmore, Jacqueline

    2015-11-20

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L.

  6. Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer - molecularly distinct behavior of cathepsin K in breast cancer

    Andrade, Sheila Siqueira; Gouvea, Iuri Estrada; Silva, Mariana Cristina C.; Castro, Eloísa Dognani; Paula, Cláudia A. A. de; Okamoto, Debora; Oliveira, Lilian; Peres, Giovani Bravin; Ottaiano, Tatiana; Facina, Gil; Nazário, Afonso Celso Pinto; Campos, Antonio Hugo J. F. M.; Paredes-Gamero, Edgar Julian; Juliano, Maria; Silva, Ismael D. C. G. da; Oliva, Maria Luiza V.; Girão, Manoel J. B. C.

    2016-01-01

    Breast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and −4 are highly expressed, but PAR-3 shows low expression and unclear functions. Platelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGFβ monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells. We demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and −4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGFβ in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer. Cathepsin K induces platelet dysfunction and affects signaling in breast cancer cells. The online version of this article (doi:10.1186/s12885-016-2203-7) contains supplementary material, which is available to authorized users

  7. Fibrinogen and fibrin are novel substrates for Fasciola hepatica cathepsin L peptidases

    Mebius, Mirjam M.; Op Heij, Jody M J; Tielens, Aloysius G.M.; de Groot, Philip G; Urbanus, Rolf T; van Hellemond, Jaap J.

    2018-01-01

    Cathepsin peptidases form a major component of the secreted proteins of the blood-feeding trematodes Fasciola hepatica and Schistosoma mansoni. These peptidases fulfill many functions, from facilitating infection to feeding and immune evasion. In this study, we examined the Fasciola cathepsin L

  8. The development and characterization of an ELISA specifically detecting the active form of cathepsin K

    Sun, S; Karsdal, M A; Bay-Jensen, A C

    2013-01-01

    Cathepsin K plays essential roles in bone resorption and is intensely investigated as a therapeutic target for the treatment of osteoporosis. Hence an assessment of the active form of cathepsin K may provide important biological information in metabolic bone diseases, such as osteoporosis or anky...

  9. Serum cathepsin H as a potential prognostic marker in patients with colorectal cancer

    Schweiger, A; Christensen, Ib Jarle; Nielsen, Hans Jørgen

    2005-01-01

    Cathepsin H is a lysosomal cysteine protease that may participate in tumor progression. In order to evaluate its potential as a prognostic marker, its protein levels were measured by ELISA in preoperative sera from 324 patients with colorectal cancer. The level of cathepsin H was significantly...... increased in patient sera, the median level was 8.4 ng/mL versus 2.1 ng/mL in 90 healthy blood donors (p CEA). In survival analysis...... a significant difference was found between the group of patients with low cathepsin H (first tertile) who had a poor prognosis and the remaining patients (p = 0.03). The risk of patients was further stratified when cathepsin H levels were combined with CEA. Patients with high CEA and low cathepsin H had...

  10. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L

    Parker, Erica N; Song, Jiangli; Kishore Kumar, G D

    2015-01-01

    selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5μ......Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from......) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L...

  11. Juvenile-specific cathepsin proteases in Fasciola spp.: their characteristics and vaccine efficacies.

    Meemon, Krai; Sobhon, Prasert

    2015-08-01

    Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is one of the most neglected tropical zoonotic diseases. One sustainable control strategy against these infections is the employment of vaccines that target proteins essential for parasites' invasion and nutrition acquiring processes. Cathepsin proteases are the most abundantly expressed proteins in Fasciola spp. that have been tested successfully as vaccines against fasciolosis in experimental as well as large animals because of their important roles in digestion of nutrients, invasion, and migration. Specifically, juvenile-specific cathepsin proteases are the more effective vaccines because they could block the invasion and migration of juvenile parasites whose immune evasion mechanism has not yet been fully developed. Moreover, because of high sequence similarity and identity of cathepsins from juveniles with those of adults, the vaccines can attack both the juvenile and adult stages. In this article, the characteristics and vaccine potentials of juvenile-specific cathepsins, i.e., cathepsins L and B, of Fasciola spp. were reviewed.

  12. Prediction of Aggressive Human Prostate Cancer by Cathepsin B

    2008-03-01

    Cancer Res 2004;10(12 Pt 1):4118-4124. 28. Munoz E, Gomez F, Paz JI, Casado I, Silva JM, Corcuera MT, Alonso MJ. Ki-67 immunolabeling in pre...detected prostate cancer. J Pathol 2002;197(2):148-154. 34. Claudio PP, Zamparelli A, Garcia FU, Claudio L, Ammirati G, Farina A, Bovicelli A, Russo G...JA. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 2006;20(5):543-556. 47. Fernandez PL, Farre X, Nadal A

  13. Monoclonal antibody against recombinant Fasciola gigantica cathepsin L1H could detect juvenile and adult cathepsin Ls of Fasciola gigantica.

    Wongwairot, Sirima; Kueakhai, Pornanan; Changklungmoa, Narin; Jaikua, Wipaphorn; Sansri, Veerawat; Meemon, Krai; Songkoomkrong, Sineenart; Riengrojpitak, Suda; Sobhon, Prasert

    2015-01-01

    Cathepsin Ls (CatLs), the major cysteine protease secreted by Fasciola spp., are important for parasite digestion and tissue invasion. Fasciola gigantica cathepsin L1H (FgCatL1H) is the isotype expressed in the early stages for migration and invasion. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1H (rFgCatL1H) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with recombinant proFgCatL1H (rproFgCatL1H). This MoAb is an immunoglobulin (Ig)G1 with κ light chain isotype. The MoAb reacted specifically with rproFgCatL1H, the native FgCatL1H at a molecular weight (MW) 38 to 48 kDa in the extract of whole body (WB) of metacercariae and newly excysted juvenile (NEJ) and cross-reacted with rFgCatL1 and native FgCatLs at MW 25 to 28 kDa in WB of 2- and 4-week-old juveniles, adult, and adult excretory-secretory (ES) fractions by immunoblotting and indirect ELISA. It did not cross-react with antigens in WB fractions from other parasites, including Gigantocotyle explanatum, Paramphistomum cervi, Gastrothylax crumenifer, Eurytrema pancreaticum, Setaria labiato-papillosa, and Fischoederius cobboldi. By immunolocalization, MoAb against rFgCatL1H reacted with the native protein in the gut of metacercariae and NEJ and also cross-reacted with CatL1 in 2- and 4-week-old juveniles and adult F. gigantica. Therefore, FgCatL1H and its MoAb may be used for immunodiagnosis of both early and late fasciolosis in ruminants and humans.

  14. Differential expression of Cathepsin S and X in the spinal cord of a rat neuropathic pain model

    Schmitz Beate

    2008-08-01

    Full Text Available Abstract Background Ample evidence suggests a substantial contribution of cellular and molecular changes in the spinal cord to the induction and persistence of chronic neuropathic pain conditions. While for a long time, proteases were mainly considered as protein degrading enzymes, they are now receiving growing interest as signalling molecules in the pain pathology. In the present study we focused on two cathepsins, CATS and CATX, and studied their spatiotemporal expression and activity during the development and progression of neuropathic pain in the CNS of the rat 5th lumbar spinal nerve transection model (L5T. Results Immediately after the lesion, both cathepsins, CATS and CATX, were upregulated in the spinal cord. Moreover, we succeeded in measuring the activity of CATX, which was substantially increased after L5T. The differential expression of these proteins exhibited the same spatial distribution and temporal progression in the spinal cord, progressing up to the medulla oblongata in the late phase of chronic pain. The cellular distribution of CATS and CATX was, however, considerably different. Conclusion The cellular distribution and the spatio-temporal development of the altered expression of CATS and CATX suggest that these proteins are important players in the spinal mechanisms involved in chronic pain induction and maintenance.

  15. Low-Cost Method to Monitor Patient Adherence to HIV Antiretroviral Therapy Using Multiplex Cathepsin Zymography.

    Platt, Manu O; Evans, Denise; Keegan, Philip M; McNamara, Lynne; Parker, Ivana K; Roberts, LaDeidra M; Caulk, Alexander W; Gleason, Rudolph L; Seifu, Daniel; Amogne, Wondwossen; Penny, Clement

    2016-01-01

    Monitoring patient adherence to HIV antiretroviral therapy (ART) by patient survey is inherently error prone, justifying a need for objective, biological measures affordable in low-resource settings where HIV/AIDS epidemic is highest. In preliminary studies conducted in Ethiopia and South Africa, we observed loss of cysteine cathepsin activity in peripheral blood mononuclear cells of HIV-positive patients on ART. We optimized a rapid protocol for multiplex cathepsin zymography to quantify cysteine cathepsins, and prospectively enrolled 350 HIV-positive, ART-naïve adults attending the Themba Lethu Clinic, Johannesburg, South Africa, to test if suppressed cathepsin activity could be a biomarker of ART adherence (103 patients were included in final analysis). Poor adherence was defined as detectable viral load (>400 copies/ml) or simplified medication adherence questionnaire, 4-6 months after ART initiation. 86 % of patients with undetectable viral loads after 6 months were cathepsin negative, and cathepsin-positive patients were twice as likely to have detectable viral loads (RR 2.32 95 % CI 1.26-4.29). Together, this demonstrates proof of concept that multiplex cathepsin zymography may be an inexpensive, objective method to monitor patient adherence to ART. Low cost of this electrophoresis-based assay makes it a prime candidate for implementation in resource-limited settings.

  16. Low cost method to monitor patient adherence to HIV antiretroviral therapy using multiplex cathepsin zymography

    Platt, Manu O.; Evans, Denise; Keegan, Philip M.; McNamara, Lynne; Parker, Ivana K.; Roberts, LaDeidra M.; Caulk, Alexander W.; Gleason, Rudolph L.; Seifu, Daniel; Amogne, Wondwossen; Penny, Clement

    2015-01-01

    Monitoring patient adherence to HIV antiretroviral therapy (ART) by patient survey is inherently error-prone, justifying a need for objective, biological measures affordable in low resource settings where HIV/AIDS epidemic is highest. In preliminary studies conducted in Ethiopia and South Africa, we observed loss of cysteine cathepsin activity in peripheral blood mononuclear cells (PBMCs) of HIV-positive patients on ART. We optimized a rapid protocol for multiplex cathepsin zymography to quantify cysteine cathepsins, and prospectively enrolled 350 HIV-positive, ART naïve adults attending the Themba Lethu Clinic, Johannesburg, South Africa, to test if suppressed cathepsin activity could be a biomarker of ART adherence (103 patients were included in final analysis). Poor adherence was defined as detectable viral load (>400 copies/ml) or simplified medication adherence questionnaire (SMAQ), 4–6 months after ART initiation. 86% of patients with undetectable viral loads after 6 months were cathepsin negative, and cathepsin positive patients were twice as likely to have detectable viral loads (RR 2.32 95% CI 1.26–4.29). Together, this demonstrates proof of concept that multiplex cathepsin zymography may be an inexpensive, objective method to monitor patient adherence to ART. Low cost of this electrophoresis based assay makes it a prime candidate for implementation in resource limited settings. PMID:26589706

  17. Purification and Characterization of Cathepsin B from the Muscle of Horse Mackerel Trachurus japonicus

    Asami Yoshida

    2015-10-01

    Full Text Available An endogenous protease in fish muscle, cathepsin B, was partially purified and characterized from horse mackerel meat. On SDS-PAGE of the purified enzyme under reducing conditions, main protein bands were detected at 28 and 6 kDa and their respective N-terminal sequences showed high homology to heavy and light chains of cathepsin B from other species. This suggested that horse mackerel cathepsin B formed two-chain forms, similar to mammalian cathepsin Bs. Optimum pH and temperature of the enzyme were 5.0 and 50 °C, respectively. A partial cDNA encoding the amino acid sequence of 215 residues for horse mackerel cathepsin B was obtained by RT-PCR and cloned. The deduced amino acid sequence contains a part of light and heavy chains of cathepsin B. The active sites and an N-glycosylation site were conserved across species. We also confirmed that the modori phenomenon was avoided by CA-074, a specific inhibitor for cathepsin B. Therefore, our results suggest that natural cysteine protease inhibitor(s, such as oryzacystatin derived from rice, can apply to thermal-gel processing of horse mackerel to avoid the modori phenomenon. Meanwhile, this endogenous protease may be used for food processing, such as weaning meal and food for the elderly.

  18. Distribution of Cathepsin D Activity between Lysosomes and a Soluble Fraction of Marinating Brine.

    Szymczak, Mariusz

    2016-08-01

    This paper is the first ever to describe the phenomenon of bimodal distribution of cathepsin D in the lysosomal and soluble fractions of brine left after herring marinating. Up to 2 times higher cathepsin D activity was observed in the lysosome fraction. Activity of cathepsin D in brine increased according to the logarithmic function during low frequency-high power ultrasounds treatment or according to the linear function after multiple freezing-thawing of brine. Activity enhancement was achieved only in the brine devoid of lipids and suspension. Study results show also that measurement of lysosomal cathepsin D activity in the marinating brine requires also determining cathepsin E activity. Decreasing pore size of microfilter from 2.7 to 0.3 μm significantly reduced the lysosome content in the brine. The presence of lysosomes and the possibility of their separation as well as the likely release of cathepsins shall be considered during industrial application of the marinating brine, as new cathepsins preparations in fish and meat technology. © 2016 Institute of Food Technologists®

  19. Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles

    Jarrar Bashir M

    2011-09-01

    Full Text Available Abstract Background Gold nanoparticles (GNPs have important application for cell labeling and imaging, drug delivery, diagnostic and therapeutic purposes mainly in cancer. Nanoparticles (NPs are being increasingly exploited for medical applications. The aim of the present study was to investigate the particle-size and period effects of administration of GNPs on the renal tissue in an attempt to address their potential toxicity. Methods A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 μl of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days to investigate particle-size effect of GNPs on the renal tissue. Animals were randomly divided into groups, 6 GNPs-treated rats groups and one control group. Groups 1, 2 and 3 received infusion of 50 μl GNPs of size 10 nm (3 or 7 days, size 20 nm (3 or 7 days and 50 nm (3 or 7 days, respectively; while groups 4, 5 and 6 received infusion of 100 μl GNPs of size 10 nm, size 20 nm and 50 nm, respectively. Stained sections of control and treated rats kidneys were examined for renal tissue alterations induced by GNPs. Results In comparison with respective control rats, exposure to GNPs doses has produced the following renal tubular alterations: cloudy swelling, vacuolar degeneration, hyaline droplets and casts, anisokaryosis, karopyknosis, karyorrhexis and karyolysis. The glomeruli showed moderate congestion with no hypercelluraity, mesangial proliferation or basement membrane thickening. The histological alterations were mainly seen in the cortex and the proximal renal convoluted tubules were more affected than the distal ones. Conclusions The induced histological alterations might be an indication of injured renal tubules due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. The findings may suggest that GNPs interact with proteins and enzymes of the renal tissue

  20. Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography.

    Waniek, Peter J; Pacheco Costa, Juliana E; Jansen, Ana M; Costa, Jane; Araújo, Catarina A C

    2012-01-01

    Triatoma brasiliensis is considered one of the main vectors of Chagas disease commonly found in semi-arid areas of northeastern Brazil. These insects use proteases, such as carboxypeptidase B, aminopeptidases and different cathepsins for blood digestion. In the present study, two genes encoding cathepsin L from the midgut of T. brasiliensis were identified and characterized. Mature T. brasiliensis cathepsin L-like proteinases (TBCATL-1, TBCATL-2) showed a high level of identity to the cathepsin L-like proteinases of other insects, with highest similarity to Rhodnius prolixus. Both cathepsin L transcripts were highly abundant in the posterior midgut region, the main region of the blood digestion. Determination of the pH in the whole intestine of unfed T. brasiliensis revealed alkaline conditions in the anterior midgut region (stomach) and acidic conditions in the posterior midgut region (small intestine). Gelatine in-gel zymography showed the activity of at least four distinct proteinases in the small intestine and the cysteine proteinase inhibitors transepoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64) and cathepsin B inhibitor and N-(l-3-trans-propylcarbamoyl-oxirane-2-carbonyl)-l-isoleucyl-l-proline (CA-074) were employed to characterize enzymatic activity. E-64 fully inhibited cysteine proteinase activity, whereas in the samples treated with CA-074 residual proteinase activity was detectable. Thus, proteolytic activity could at least partially be ascribed to cathepsin L. Western blot analysis using specific anti cathepsin L antibodies confirmed the presence of cathepsin L in the lumen of the small intestine of the insects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. N-terminally truncated forms of human cathepsin F accumulate in aggresome-like inclusions.

    Jerič, Barbara; Dolenc, Iztok; Mihelič, Marko; Klarić, Martina; Zavašnik-Bergant, Tina; Gunčar, Gregor; Turk, Boris; Turk, Vito; Stoka, Veronika

    2013-10-01

    The contribution of individual cysteine cathepsins as positive mediators of programmed cell death is dependent on several factors, such as the type of stimuli, intensity and duration of the stimulus, and cell type involved. Of the eleven human cysteine cathepsins, cathepsin F is the only cathepsin that exhibits an extended N-terminal proregion, which contains a cystatin-like domain. We predicted that the wild-type human cathepsin F contains three natively disordered regions within the enzyme's propeptide and various amino acid stretches with high fibrillation propensity. Wild-type human cathepsin F and its N-terminally truncated forms, Ala(20)-Asp(484) (Δ(19)CatF), Pro(126)-Asp(484) (Δ(125)CatF), and Met(147)-Asp(484) (Δ(146)CatF) were cloned into the pcDNA3 vector and overexpressed in HEK 293T cells. Wild-type human cathepsin F displayed a clear vesicular labeling and colocalized with the LAMP2 protein, a lysosomal marker. However, all three N-terminally truncated forms of human cathepsin F were recovered as insoluble proteins, suggesting that the deletion of at least the signal peptides (Δ(19)CatF), results in protein aggregation. Noteworthy, they concentrated large perinuclear-juxtanuclear aggregates that accumulated within aggresome-like inclusions. These inclusions showed p62-positive immunoreactivity and were colocalized with the autophagy marker LC3B, but not with the LAMP2 protein. In addition, an approximately 2-3 fold increase in DEVDase activity was not sufficient to induce apoptotic cell death. These results suggested the clearance of the N-terminally truncated forms of human cathepsin F via the autophagy pathway, underlying its protective and prosurvival mechanisms. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Effect of altering local protein fluctuations using artificial intelligence

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  3. Effect of altering local protein fluctuations using artificial intelligence

    Katsuhiko Nishiyama

    2017-03-01

    Full Text Available The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  4. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  5. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    Saleh, Navid B.; Milliron, Delia J.; Aich, Nirupam; Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo

    2016-01-01

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  6. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    Saleh, Navid B., E-mail: navid.saleh@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States); Milliron, Delia J. [McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712 (United States); Aich, Nirupam [Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 (United States); Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States)

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  7. Purification and characterization of cathepsin B from the skeletal muscles of agama stellio stellio

    El-Jassabi, S.; Abu-Ghalyun, Y.

    1997-01-01

    1. Cathepsin b from the muscles of Jordanian lizard Agama stellio stellio was purified to homogeneity by a series of column chromatography on DEAE-sephadex, thio propyl sepharose and sephadex G-100 2. The molecular weight of cathepsin B isolated was to be 31800 dalton by using SDS-PAGE, and 33000 dalton by gel filtration, and its isoelectric point was measured to be 4.2 by isoelectric focusing. 3. Cathepsin B had ph optimum of 5.5, required a thiol-reducing reagent for activation and was inhibited by thiol-protease inhibitors. 4. The Km and K cat values for Z-Phe-Arg-Mca were determined to be 0.161mM and 238 S -1 . 5. Cathepsin B acted on oligopeptide substrates mainly as di peptidyl carboxypeptidase. (authors). 22 refs., 3 tabs., 2 figs

  8. Imaging Primary Mouse Sarcomas After Radiation Therapy Using Cathepsin-Activatable Fluorescent Imaging Agents

    Cuneo, Kyle C. [Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Mito, Jeffrey K.; Javid, Melodi P. [Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina (United States); Ferrer, Jorge M. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Kim, Yongbaek [Department of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul (Korea, Republic of); Lee, W. David [The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Bawendi, Moungi G. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Brigman, Brian E. [Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina (United States); Kirsch, David G., E-mail: david.kirsch@duke.edu [Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina (United States)

    2013-05-01

    Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.

  9. Serum and saliva levels of cathepsin L in patients with acute coronary syndrome.

    Mirzaii-Dizgah, Iraj; Riahi, Esmail

    2011-03-01

    Coronary artery disease (CAD) is the major cause of death nearly all over the world, and accurate and rapid diagnosis of CAD is of major medical and economic importance. The aim of this study was to evaluate the serum and saliva levels of cathepsin L in patients with acute coronary syndrome (ACS). In a cross-sectional study, 39 patients with ACS and 28 with controls were recruited to the study, and cathepsin L levels were measured in serum, resting saliva, and stimulated saliva obtained 12 and 24 h after the onset of ACS by ELISA method. Statistical analyses of Fisher's exact test, the Student's t-test or Kruskal-Wallis test were performed. Stimulated saliva cathepsin L levels in patients with ACS 12 hours but not 24 hours after admission showed significant decrease compared with that in control subjects. However, there were no significant differences in serum and unstimulated saliva cathepsin L levels between groups. Serum and saliva levels of cathepsin L remain unchanged in patients with ACS and hence may not be a promising factor in CAD risk assessment. It seems that serum and saliva cathepsin L may not be a good biomarker for CHD. CAD: Coronary artery disease, ACS: Acute coronary syndrome, CHD: Coronary heart disease, EU: Emergency unit, MI: Myocardial infarction. Cathepsin L, Acute coronary syndrome, Resting saliva, Stimulated saliva. How to cite this article: Mirzaii-Dizgah I, Riahi E. Serum and Saliva Levels of Cathepsin L in Patients with Acute Coronary Syndrome. J Contemp Dent Pract 2011;12(2):114-119.

  10. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  11. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  12. Gelatin Zymography Using Leupeptin for the Detection of Various Cathepsin L Forms.

    Hashimoto, Yoko

    2017-01-01

    Zymography is a highly sensitive method to assess the activities as well as molecular weights of enzymes in crude biological fluids and tissue extracts. Cathepsin L is a lysosomal cysteine proteinase that is optimally active at slightly acidic pH and is highly unstable in alkaline solutions such as electrode buffer (pH 8.3). Large amounts of cathepsin L are secreted by various cancer cells, where it promotes invasion and metastasis. Leupeptin is a tight-binding inhibitor of cysteine proteinases, and its complex with cathepsin L is stable in alkaline solutions. Moreover, leupeptin can be easily removed from the complex because it is a reversibly binding inhibitor. In addition, leupeptin is too small to influence the electrode migration distance of the complex with cathepsin L on a sodium dodecyl sulfate-polyacrylamide gel. Here, a novel gelatin zymography technique that employs leupeptin to detect pro-, intermediate, and mature cathepsin L forms on the basis of their gelatinolytic activities is described. Further, the differences in the glycosylation, phosphorylation, and processing statuses of lysosomal and secreted cathepsin L forms isolated from cultured HT 1080 cells are demonstrated using this method.

  13. [Changes in active cysteine cathepsins in lysosomes from tissues thyroid papillary carcinomas with various biological characteristics].

    Kalinichenko, O V; Myshunina, T M; Tron'ko, M D

    2013-01-01

    To clarify possible role of cysteine cathepsin H, B and L in the proteolytic processes that contribute to the progression of tumor growth in the thyroid, we studied their activity in lysosomes isolated from the tissue of papillary carcinomas. It was shown that for these enzymes there is a dependence of the changes in their activity on a number of biological characteristics of the tumors. Thus, the sharp increase in the activity ofcathepsin H observed in lysosomes of tissue carcinomas category T2 and T3, with intra-and ekstrathyroid and lymphatic invasion of tumor cells. An increase in the activity of cathepsin B is set in the lysosomes of tissue heterogeneous follicular structure, especially in the presence of solid areas, in comparison with typical papillary tumors and in the lysosomes of tissue carcinomas in intrathyroid and cathepsin L-at extrathyroid invasion. A common feature of the enzymes is to increase the activity of cathepsins in lysosomes of tissue nonencapsulated papillary carcinomas. These enzymes probably do not take part in the invasion of tumor cells into blood vessels and in the mechanisms of tumor metastasis to regional lymph nodes. The latter shows no changes in the activity of cathepsins in lysosomes of tissue carcinomas category N1. The results indicate the different role of cathepsin H, B and L in thyroid carcinogenesis, where each enzyme has its specific function.

  14. Profilin 1 as a Target for Cathepsin X Activity in Tumor Cells

    Pečar Fonović, Urša; Jevnikar, Zala; Rojnik, Matija; Doljak, Bojan; Fonović, Marko; Jamnik, Polona; Kos, Janko

    2013-01-01

    Cathepsin X has been reported to be a tumor promotion factor in various types of cancer; however, the molecular mechanisms linking its activity with malignant processes are not understood. Here we present profilin 1, a known tumor suppressor, as a target for cathepsin X carboxypeptidase activity in prostate cancer PC-3 cells. Profilin 1 co-localizes strongly with cathepsin X intracellularly in the perinuclear area as well as at the plasma membrane. Selective cleavage of C-terminal amino acids was demonstrated on a synthetic octapeptide representing the profilin C-terminal region, and on recombinant profilin 1. Further, intact profilin 1 binds its poly-L-proline ligand clathrin significantly better than it does the truncated one, as shown using cathepsin X specific inhibitor AMS-36 and immunoprecipitation of the profilin 1/clathrin complex. Moreover, the polymerization of actin, which depends also on the binding of poly-L-proline ligands to profilin 1, was promoted by AMS-36 treatment of cells and by siRNA cathepsin X silencing. Our results demonstrate that increased adhesion, migration and invasiveness of tumor cells depend on the inactivation of the tumor suppressive function of profilin 1 by cathepsin X. The latter is thus designated as a target for development of new antitumor strategies. PMID:23326535

  15. Profilin 1 as a target for cathepsin X activity in tumor cells.

    Urša Pečar Fonović

    Full Text Available Cathepsin X has been reported to be a tumor promotion factor in various types of cancer; however, the molecular mechanisms linking its activity with malignant processes are not understood. Here we present profilin 1, a known tumor suppressor, as a target for cathepsin X carboxypeptidase activity in prostate cancer PC-3 cells. Profilin 1 co-localizes strongly with cathepsin X intracellularly in the perinuclear area as well as at the plasma membrane. Selective cleavage of C-terminal amino acids was demonstrated on a synthetic octapeptide representing the profilin C-terminal region, and on recombinant profilin 1. Further, intact profilin 1 binds its poly-L-proline ligand clathrin significantly better than it does the truncated one, as shown using cathepsin X specific inhibitor AMS-36 and immunoprecipitation of the profilin 1/clathrin complex. Moreover, the polymerization of actin, which depends also on the binding of poly-L-proline ligands to profilin 1, was promoted by AMS-36 treatment of cells and by siRNA cathepsin X silencing. Our results demonstrate that increased adhesion, migration and invasiveness of tumor cells depend on the inactivation of the tumor suppressive function of profilin 1 by cathepsin X. The latter is thus designated as a target for development of new antitumor strategies.

  16. Highly Conserved Arg Residue of ERFNIN Motif of Pro-Domain is Important for pH-Induced Zymogen Activation Process in Cysteine Cathepsins K and L.

    Aich, Pulakesh; Biswas, Sampa

    2018-06-01

    Pro-domain of a cysteine cathepsin contains a highly conserved Ex 2 Rx 2 Fx 2 Nx 3 Ix 3 N (ERFNIN) motif. The zymogen structure of cathepsins revealed that the Arg(R) residue of the motif is a central residue of a salt-bridge/H-bond network, stabilizing the scaffold of the pro-domain. Importance of the arginine is also demonstrated in studies where a single mutation (Arg → Trp) in human lysosomal cathepsin K (hCTSK) is linked to a bone-related genetic disorder "Pycnodysostosis". In the present study, we have characterized in vitro Arg → Trp mutant of hCTSK and the same mutant of hCTSL. The R → W mutant of hCTSK revealed that this mutation leads to an unstable zymogen that is spontaneously activated and auto-proteolytically degraded rapidly. In contrast, the same mutant of hCTSL is sufficiently stable and has proteolytic activity almost like its wild-type counterpart; however it shows an altered zymogen activation condition in terms of pH, temperature and time. Far and near UV circular dichroism and intrinsic tryptophan fluorescence experiments have revealed that the mutation has minimal effect on structure of the protease hCTSL. Molecular modeling studies shows that the mutated Trp31 in hCTSL forms an aromatic cluster with Tyr23 and Trp30 leading to a local stabilization of pro-domain and supplements the loss of salt-bridge interaction mediated by Arg31 in wild-type. In hCTSK-R31W mutant, due to presence of a non-aromatic Ser30 residue such interaction is not possible and may be responsible for local instability. These differences may cause detrimental effects of R31W mutation on the regulation of hCTSK auto-activation process compared to altered activation process in hCTSL.

  17. Alterations of morphology of lymphoid organs and peripheral blood indicators under the influence of gold nanoparticles in rats

    Alla B. Bucharskaya

    2016-01-01

    Full Text Available At present, gold nanoparticles (GNPs are widely used in biomedical applications such as cancer diagnostics and therapy. Accordingly, the potential toxicity hazards of these nanomaterials and human safety concerns are gaining significant attention. Here, we report the effects of prolonged peroral administration of GNPs with different sizes (2, 15 and 50nm on morphological changes in lymphoid organs and indicators of peripheral blood of laboratory animals. The experiment was conducted on 24 white mongrel male rats weighing 180–220g, gold nanospheres sizes 2, 15 and 50nm were administered orally for 15 days at a dosage of 190μg/kg of animal body weight. The GNPs were conjugated with polyethylene glycol to increase their biocompatibility and bioavailability. The size-dependent decrease of the number of neutrophils and lymphocytes was noted in the study of peripheral blood, especially pronounced after administration of GNPs with size of 50nm. The stimulation of myelocytic germ of hematopoiesis was recorded at morphological study of the bone marrow. The signs of strengthening of the processes of differentiation and maturation of cellular elements were found in lymph nodes, which were showed as the increasing number of immunoblasts and large lymphocytes. The quantitative changes of cellular component morphology of lymphoid organs due to activation of migration, proliferation and differentiation of immune cells indicate the presence of immunostimulation effect of GNPs.

  18. Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification.

    Dongre, Arundhati; Clements, Debbie; Fisher, Andrew J; Johnson, Simon R

    2017-08-01

    Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001). Immunohistochemistry confirmed cathepsin K protein was expressed in LAM but not control lungs. Cathepsin K gene expression and protein and protease activity were detected in LAM-associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immunoreactivity predominantly co-localized with LAM-associated fibroblasts. In vitro, fibroblast extracellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced at pH 7 and 6. 621-101 cells reduced extracellular pH with acidification dependent on 621-101 mechanistic target of rapamycin activity and net hydrogen ion exporters, particularly sodium bicarbonate co-transporters and carbonic anhydrases, which were also expressed in LAM lung tissue. In LAM cell-fibroblast co-cultures, acidification paralleled cathepsin K activity, and both were reduced by sodium bicarbonate co-transporter (P ≤ 0.0001) and carbonic anhydrase inhibitors (P = 0.0021). Our findings suggest that cathepsin K activity is dependent on LAM cell-fibroblast interactions, and inhibitors of extracellular acidification may be potential therapies for LAM. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Do alterations in follicular fluid proteases contribute to human infertility?

    Cookingham, Lisa Marii; Van Voorhis, Bradley J; Ascoli, Mario

    2015-05-01

    Cathepsin L and ADAMTS-1 are known to play critical roles in follicular rupture, ovulation, and fertility in mice. Similar studies in humans are limited; however, both are known to increase during the periovulatory period. No studies have examined either protease in the follicular fluid of women with unexplained infertility or infertility related to advanced maternal age (AMA). We sought to determine if alterations in cathepsin L and/or ADAMTS-1 existed in these infertile populations. Patients undergoing in vitro fertilization (IVF) for unexplained infertility or AMA-related infertility were prospectively recruited for the study; patients with tubal or male factor infertility were recruited as controls. Follicular fluid was collected to determine gene expression (via quantitative polymerase chain reaction), enzyme concentrations (via enzyme-linked immunosorbent assays), and enzymatic activities (via fluorogenic enzyme cleavage assay or Western blot analysis) of cathepsin L and ADAMTS-1. The analysis included a total of 42 patients (14 per group). We found no statistically significant difference in gene expression, enzyme concentration, or enzymatic activity of cathepsin L or ADAMTS-1 in unexplained infertility or AMA-related infertility as compared to controls. We also found no statistically significant difference in expression or concentration with advancing age. Cathepsin L and ADAMTS-1 are not altered in women with unexplained infertility or AMA-related infertility undergoing IVF, and they do not decline with advancing age. It is possible that differences exist in natural cycles, contributing to infertility; however, our findings do not support a role for protease alterations as a common cause of infertility.

  20. Alteration in the expression of antioxidant and detoxification genes in Chironomus riparius exposed to zinc oxide nanoparticles.

    Gopalakrishnan Nair, Prakash M; Chung, Ill Min

    2015-12-01

    Zinc oxide nanoparticles (ZnONPs) are widely used in several commercial products due to their unique physicochemical properties. However, their release into the aquatic environments through various anthropogenic activities will lead to toxic effect in aquatic organisms. Although several investigations have been reported on the effect of ZnONPs in aquatic organisms using traditional end points such as survival, growth, and reproduction, the molecular level end points are faster and sensitive. In this study, the expression of different genes involved in oxidative stress response, detoxification, and cellular defense was studied in an ecotoxicologically important bio-monitoring organism Chironomus riparius in order to understand the subcellular effects of ZnONPs. The fourth instar larvae were exposed to 0, 0.2, 2, 10, and 20 mg/L of ZnONPs and Zn ions (in the form of ZnSO4.7H2O) for 24 and 48 h period. The expression of CuZn superoxide dismutase, manganese superoxide dismutase, catalase, phospholipid hydroperoxide glutathione peroxidase, thioredoxin reductase 1 and delta-3, sigma-4 and epsilon-1 classes of glutathione S-transferases, cytochrome p4509AT2, and heat shock protein 70 were studied using real-time polymerase chain reaction method. Gene expression results showed that the expression of genes related to oxidative stress response was more pronounced as a result of ZnONPs exposure as compared to Zn ions. The mRNA expression of genes involved in detoxification and cellular protection was also modulated. Significantly higher expression levels of oxidative stress-related genes shows that oxidative stress is an important mechanism of toxicity as a result of ZnONPs exposure in C. riparius. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis.

    Partanen, Sanna; Haapanen, Aleksi; Kielar, Catherine; Pontikis, Charles; Alexander, Noreen; Inkinen, Teija; Saftig, Paul; Gillingwater, Thomas H; Cooper, Jonathan D; Tyynelä, Jaana

    2008-01-01

    Cathepsin D (CTSD; EC 3.4.23.5) is a lysosomal aspartic protease, the deficiency of which causes early-onset and particularly aggressive forms of neuronal ceroid-lipofuscinosis in infants, sheep, and mice. Cathepsin D deficiencies are characterized by severe neurodegeneration, but the molecular mechanisms behind the neuronal death remain poorly understood. In this study, we have systematically mapped the distribution of neuropathologic changes in CTSD-deficient mouse brains by stereologic, immunologic, and electron microscopic methods. We report highly accentuated neuropathologic changes within the ventral posterior nucleus (ventral posteromedial [VPM]/ventral posterolateral [VPL]) of thalamus and in neuronal laminae IV and VI of the somatosensory cortex (S1BF), which receive and send information to the thalamic VPM/VPL. These changes included pronounced astrocytosis and microglial activation that begin in the VPM/VPL thalamic nucleus of CTSD-deficient mice and are associated with reduced neuronal number and redistribution of presynaptic markers. In addition, loss of synapses, axonal pathology, and aggregation of synaptophysin and synaptobrevin were observed in the VPM/VPL. These synaptic alterations are accompanied by changes in the amount of synaptophysin/synaptobrevin heterodimer, which regulates formation of the SNARE complex at the synapse. Taken together, these data reveal the somatosensory thalamocortical circuitry as a particular focus of pathologic changes and provide the first evidence for synaptic alterations at the molecular and ultrastructural levels in CTSD deficiency.

  2. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery

    Lee SJ

    2015-08-01

    Full Text Available Sang Joon Lee,1,* Young-Il Jeong,2,* Hyung-Kyu Park,3 Dae Hwan Kang,2,4 Jong-Suk Oh,3 Sam-Gyu Lee,5 Hyun Chul Lee31Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 2Biomedical Research Institute, Pusan National University Hospital, Busan, 3Department of Microbiology, Chonnam National University Medical School, Gwangju, 4Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, 5Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea*These authors contributed equally to this workBackground: Since cancer cells are normally over-expressed cathepsin B, we synthesized dendrimer-methoxy poly(ethylene glycol (MPEG-doxorubicin (DOX conjugates using a cathepsin B-cleavable peptide for anticancer drug targeting.Methods: Gly-Phe-Leu-Gly peptide was conjugated with the carboxylic acid end groups of a dendrimer, which was then conjugated with MPEG amine and doxorubicin by aid of carbodiimide chemistry (abbreviated as DendGDP. Dendrimer-MPEG-DOX conjugates without Gly-Phe-Leu-Gly peptide linkage was also synthesized for comparison (DendDP. Nanoparticles were then prepared using a dialysis procedure.Results: The synthesized DendGDP was confirmed with 1H nuclear magnetic resonance spectroscopy. The DendDP and DendGDP nanoparticles had a small particle size of less than 200 nm and had a spherical morphology. DendGDP had cathepsin B-sensitive drug release properties while DendDP did not show cathepsin B sensitivity. Further, DendGDP had improved anticancer activity when compared with doxorubicin or DendDP in an in vivo CT26 tumor xenograft model, ie, the volume of the CT26 tumor xenograft was significantly inhibited when compared with xenografts treated with doxorubicin or DendDP nanoparticles. The DendGDP nanoparticles were found to be relatively concentrated in the tumor tissue and

  3. Production and characterization of monoclonal antibodies against cathepsin B and cathepsin B-Like proteins of Naegleria fowleri.

    Seong, Gi-Sang; Sohn, Hae-Jin; Kang, Heekyoung; Seo, Ga-Eun; Kim, Jong-Hyun; Shin, Ho-Joon

    2017-12-01

    Naegleria fowleri causes fatal primary amoebic meningoencephalitis (PAM) in humans and experimental animals. In previous studies, cathepsin B (nfcpb) and cathepsin B-like (nfcpb-L) genes of N. fowleri were cloned, and it was suggested that refolding rNfCPB and rNfCPB-L proteins could play important roles in host tissue invasion, immune response evasion and nutrient uptake. In this study, we produced anti-NfCPB and anti-NfCPB-L monoclonal antibodies (McAb) using a cell fusion technique, and observed their immunological characteristics. Seven hybridoma cells secreting rNfCPB McAbs and three hybridoma cells secreting rNfCPB-L McAbs were produced. Among these, 2C9 (monoclone for rNfCPB) and 1C8 (monoclone for rNfCPB-L) McAb showed high antibody titres and were finally selected for use. As determined by western blotting, 2C9 McAb bound to N. fowleri lysates, specifically the rNfCPB protein, which had bands of 28 kDa and 38.4 kDa. 1C8 McAb reacted with N. fowleri lysates, specifically the rNfCPB-L protein, which had bands of 24 kDa and 34 kDa. 2C9 and 1C8 monoclonal antibodies did not bind to lysates of other amoebae, such as N. gruberi, Acanthamoeba castellanii and A. polyphaga in western blot analyses. Immuno-cytochemistry analysis detected NfCPB and NfCPB-L proteins in the cytoplasm of N. fowleri trophozoites, particularly in the pseudopodia and food-cup. These results suggest that monoclonal antibodies produced against rNfCPB and rNfCPB-L proteins may be useful for further immunological study of PAM. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cathepsin L is an immune-related protein in Pacific abalone (Haliotis discus hannai)--Purification and characterization.

    Shen, Jian-Dong; Cai, Qiu-Feng; Yan, Long-Jie; Du, Cui-Hong; Liu, Guang-Ming; Su, Wen-Jin; Ke, Caihuan; Cao, Min-Jie

    2015-12-01

    Cathepsin L, an immune-related protein, was purified from the hepatopancreas of Pacific abalone (Haliotis discus hannai) by ammonium sulfate precipitation and column chromatographies of SP-Sepharose and Sephacryl S-200 HR. Purified cathepsin L appeared as two bands with molecular masses of 28.0 and 28.5 kDa (namely cathepsin La and Lb) on SDS-PAGE under reducing conditions, suggesting that it is a glycoprotein. Peptide mass fingerprinting (PMF) analysis revealed that peptide fragments of 95 amino acid residues was high similarity to cathepsin L of pearl oyster (Pinctada fucata). The optimal temperature and pH of cathepsin L were 35 °C and pH 5.5. Cathepsin L was particularly inhibited by cysteine proteinase inhibitors of E-64 and leupeptin, while it was activated by metalloproteinase inhibitors EDTA and EGTA. The full-length cathepsin L cDNA was further cloned from the hepatopancreas by rapid PCR amplification of cDNA ends (RACE). The open reading frame of the enzyme was 981 bp, encoding 327 amino acid residues, with a conserved catalytic triad (Cys134, His273 and Asn293), a potential N-glycosylation site and conserved ERFNIN, GNYD, and GCGG motifs, which are characteristics of cathepsin L. Western blot and proteinase activity analysis revealed that the expression and enzyme activity of cathepsin L were significantly up-regulated in hepatopancreas at 8 h following Vibrio parahaemolyticus infection, demonstrating that cathepsin L is involved in the innate immune system of abalone. Our present study for the first time reported the purification, characterization, molecular cloning, and tissue expression of cathepsin L in abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cathepsin D, a Marker for the Metastatic Potential of Breast Cancer, May Regulate the Mitogenic Activity of Fibroblast Growth Factor 1

    Grieb, Teri

    1998-01-01

    .... Over the years, the data substantiating such a role for cathepsin D has been quite conflicting However, there is strong evidence that cathepsin D plays a role in the degradation of the extracellular matrix (ECM...

  6. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Niska K

    2015-02-01

    Full Text Available Karolina Niska,1 Katarzyna Pyszka,1 Cecylia Tukaj,2 Michal Wozniak,1 Marek Witold Radomski,3–5 Iwona Inkielewicz-Stepniak1 1Department of Medical Chemistry, 2Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland; 3School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland; 4Kardio-Med Silesia, 5Silesian Medical University, Zabrze, Poland Abstract: Titanium dioxide (TiO2 nanoparticles (NPs are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•- generation, superoxide dismutase (SOD activity and protein level, sirtuin 3 (SIR3 protein level, correlation between manganese (Mn SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1 cellular uptake of NPs; (2 increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3 ultrastructure changes; (4 decreased SOD and ALP activity; (5 decreased protein levels of SOD1, SOD2, and SIR3; (6 decreased total antioxidant capacity; (7 increased O2•- generation; and (8 enhanced lipid peroxidation (malondialdehyde level. The linear relationship between the protein level of MnSOD and SIR3 and between O2•- content and SIR3 protein level was observed. Importantly, the cytotoxic

  7. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Niska, Karolina; Pyszka, Katarzyna; Tukaj, Cecylia; Wozniak, Michal; Radomski, Marek Witold; Inkielewicz-Stepniak, Iwona

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm) for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP) activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•−2) generation, superoxide dismutase (SOD) activity and protein level, sirtuin 3 (SIR3) protein level, correlation between manganese (Mn) SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1) cellular uptake of NPs; (2) increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3) ultrastructure changes; (4) decreased SOD and ALP activity; (5) decreased protein levels of SOD1, SOD2, and SIR3; (6) decreased total antioxidant capacity; (7) increased O2•− generation; and (8) enhanced lipid peroxidation (malondialdehyde level). The linear relationship between the protein level of MnSOD and SIR3 and between O2•− content and SIR3 protein level was observed. Importantly, the cytotoxic effects of TiO2NPs were attenuated by the pretreatment of hFOB 1.19 cells with SOD, indicating the significant role of O2•− in the cell damage and death observed. Thus, decreased expression of SOD leading to increased oxidizing stress may underlie the nanotoxic effects of TiO2NPs on human osteoblasts. PMID:25709434

  8. Prevalence and clinical significance of cathepsin G antibodies in systemic sclerosis

    M. Favaro

    2011-09-01

    Full Text Available Objectives: To evaluate the prevalence and clinical significance of cathepsin G antibodies in patients affected with systemic sclerosis (SSc, scleroderma. Methods: 115 patients affected by SSc, 55 (47,8% with diffuse scleroderma (dSSc and 60 (52,2% with limited scleroderma (lSSc, were tested for cathepsin G antibodies by ELISA method. Moreover these sera were evaluated by indirect immunofluorescence (IIF on ethanol and formalin fixed human neutrophils. Results: By means of the ELISA method 16 (13,9% patients were found to be sera positive for anti-cathepsin G, 2 (12.5% of which showed a perinuclear fluorescence pattern (P-ANCA and 4 (25% an atypical ANCA staining, while 10 (62,5% were negative on IIF. The IIF on scleroderma sera revealed 5 (4,3% P-ANCA and 18 (15,7% atypical ANCA patterns. The anti-cathepsin G antibodies significantly prevailed in scleroderma sera (p=0.02 when their frequency was compared with that of healthy controls; while they were not significantly associated to any clinical or serological features of SSc patients. Conclusions: The anti-cathepsin G antibodies were significantly frequent in scleroderma sera; however, no clinical correlations were found. Thus, the significance of their presence in SSc still needs to be clarified.

  9. Expression, purification and auto-activation of cathepsin E from insect cells.

    Železnik, Tajana Z; Puizdar, Vida; Dolenc, Iztok

    2015-01-01

    Cathepsin E is an aspartic protease that belongs to the pepsin family. This protease is similar to cathepsin D but differs in its tissue distribution and cell localization. Elevated levels of this enzyme are linked to several tumors, including devastating pancreatic ductal adenocarcinoma. In this manuscript, we present a new protocol for the high-yield purification of recombinant human cathepsin E in the baculovirus expression system. The recombinant protein was produced by the Sf9 insect cell line and secreted into the medium in the form of an inactive zymogen. Procathepsin E was purified using ion-exchange and size exclusion chromatographies followed by pepstatin- and heparin-affinity chromatography steps. The zymogen was activated at an acidic pH, resulting in a high yield of the activated intermediate of cathepsin E. The enzymatic activity, stability, and molecular weight corresponded to those of cathepsin E. The new purification procedure will promote further studies of this enzyme to improve the understanding of its structure-function relationship and consequently enable the development of better therapeutic approaches.

  10. Identification, immunolocalization, and characterization analyses of an exopeptidase of papain superfamily, (cathepsin C) from Clonorchis sinensis.

    Liang, Pei; He, Lei; Xu, Yanquan; Chen, Xueqing; Huang, Yan; Ren, Mengyu; Liang, Chi; Li, Xuerong; Xu, Jin; Lu, Gang; Yu, Xinbing

    2014-10-01

    Cathepsin C is an important exopeptidase of papain superfamily and plays a number of great important roles during the parasitic life cycle. The amino acid sequence of cathepsin C from Clonorchis sinensis (C. sinensis) showed 54, 53, and 49% identities to that of Schistosoma japonicum, Schistosoma mansoni, and Homo sapiens, respectively. Phylogenetic analysis utilizing the sequences of papain superfamily of C. sinensis demonstrated that cathepsin C and cathepsin Bs came from a common ancestry. Cathepsin C of C. sinensis (Cscathepsin C) was identified as an excretory/secretory product by Western blot analysis. The results of transcriptional level and translational level of Cscathepsin C at metacercaria stage were higher than that at adult worms. Immunolocalization analysis indicated that Cscathepsin C was specifically distributed in the suckers (oral sucker and ventral sucker), eggs, vitellarium, intestines, and testis of adult worms. In the metacercaria, it was mainly detected on the cyst wall and excretory bladder. Combining with the results mentioned above, it implies that Cscathepsin C may be an essential proteolytic enzyme for proteins digestion of hosts, nutrition assimilation, and immune invasion of C. sinensis. Furthermore, it may be a potential diagnostic antigen and drug target against C. sinensis infection.

  11. Triterpene Acids from Frankincense and Semi-Synthetic Derivatives That Inhibit 5-Lipoxygenase and Cathepsin G

    Andreas Koeberle

    2018-02-01

    Full Text Available Age-related diseases, such as osteoarthritis, Alzheimer’s disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO pathway. Boswellic acids (BAs are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component. Here, we investigated whether, in addition to BAs, other triterpene acids from frankincense interfere with 5-LO and cathepsin G. We provide a comprehensive analysis of 17 natural tetra- or pentacyclic triterpene acids for suppression of 5-LO product synthesis in human neutrophils. These triterpene acids were also investigated for their direct interference with 5-LO and cathepsin G in cell-free assays. Furthermore, our studies were expanded to 10 semi-synthetic BA derivatives. Our data reveal that besides BAs, several tetra- and pentacyclic triterpene acids are effective or even superior inhibitors of 5-LO product formation in human neutrophils, and in parallel, inhibit cathepsin G. Their beneficial target profile may qualify triterpene acids as anti-inflammatory natural products and pharmacological leads for intervention with diseases related to aging.

  12. Triterpene Acids from Frankincense and Semi-Synthetic Derivatives That Inhibit 5-Lipoxygenase and Cathepsin G.

    Koeberle, Andreas; Henkel, Arne; Verhoff, Moritz; Tausch, Lars; König, Stefanie; Fischer, Dagmar; Kather, Nicole; Seitz, Stefanie; Paul, Michael; Jauch, Johann; Werz, Oliver

    2018-02-24

    Age-related diseases, such as osteoarthritis, Alzheimer's disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO) pathway. Boswellic acids (BAs) are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component. Here, we investigated whether, in addition to BAs, other triterpene acids from frankincense interfere with 5-LO and cathepsin G. We provide a comprehensive analysis of 17 natural tetra- or pentacyclic triterpene acids for suppression of 5-LO product synthesis in human neutrophils. These triterpene acids were also investigated for their direct interference with 5-LO and cathepsin G in cell-free assays. Furthermore, our studies were expanded to 10 semi-synthetic BA derivatives. Our data reveal that besides BAs, several tetra- and pentacyclic triterpene acids are effective or even superior inhibitors of 5-LO product formation in human neutrophils, and in parallel, inhibit cathepsin G. Their beneficial target profile may qualify triterpene acids as anti-inflammatory natural products and pharmacological leads for intervention with diseases related to aging.

  13. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    Inami, Yoshihiro; Yamashina, Shunhei; Izumi, Kousuke; Ueno, Takashi; Tanida, Isei; Ikejima, Kenichi; Watanabe, Sumio

    2011-01-01

    Highlights: → Acidification of autophagosome was blunted in steatotic hepatocytes. → Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. → Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. → Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  14. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    Inami, Yoshihiro [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Izumi, Kousuke [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Ueno, Takashi [Department of Biochemistry, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Tanida, Isei [Department of Biochemistry and Cell Biology, Laboratory of Biomembranes, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640 (Japan); Ikejima, Kenichi; Watanabe, Sumio [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2011-09-09

    Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  15. Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous α-synuclein fibrils.

    Tsujimura, Atsushi; Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tatebe, Harutsugu; Tokuda, Takahiko; Mizuno, Toshiki; Tanaka, Masaki

    2015-01-01

    The formation of intracellular aggregates containing α-synuclein (α-Syn) is one of the key steps in the progression of Parkinson's disease and dementia with Lewy bodies. Recently, it was reported that pathological α-Syn fibrils can undergo cell-to-cell transmission and form Lewy body-like aggregates. However, little is known about how they form α-Syn aggregates from fibril seeds. Here, we developed an assay to study the process of aggregate formation using fluorescent protein-tagged α-Syn-expressing cells and examined the aggregate forming activity of exogenous α-Syn fibrils. α-Syn fibril-induced formation of intracellular aggregates was suppressed by a cathepsin B specific inhibitor, but not by a cathepsin D inhibitor. α-Syn fibrils pretreated with cathepsin B in vitro enhanced seeding activity in cells. Knockdown of cathepsin B also reduced fibril-induced aggregate formation. Moreover, using LAMP-1 immunocytochemistry and live-cell imaging, we observed that these aggregates initially occurred in the lysosome. They then rapidly grew larger and moved outside the boundary of the lysosome within one day. These results suggest that the lysosomal protease cathepsin B is involved in triggering intracellular aggregate formation by α-Syn fibrils. Copyright © 2015. Published by Elsevier Inc.

  16. Modulation of cathepsin G expression in severe atopic dermatitis following medium-dose UVA1 phototherapy

    Altmeyer Peter

    2002-08-01

    Full Text Available Abstract Background During the last decade, medium-dose UVA1 phototherapy (50 J/cm2 has achieved great value within the treatment of severe atopic dermatitis (AD. The purpose of our study was to investigate to what extent UVA1 irradiation is able to modulate the status of protease activity by the use of a monoclonal antibody labeling cathepsin G. Methods In order to further elucidate the mechanisms by which medium-dose UVA1 irradiation leads to an improvement of skin status in patients with AD, biopsy specimens from 15 patients before and after treatment were analyzed immunohistochemically for proteolytic activation. Results Compared to lesional skin of patients with AD before UVA1 irradiation, the number of cells positive for cathepsin G within the dermal infiltrate decreased significantly after treatment. The decrease of cathepsin G+ cells was closely linked to a substantial clinical improvement in skin condition. Conclusions In summary, our findings demonstrated that medium-dose UVA1 irradiation leads to a modulation of the expression of cathepsin G in the dermal inflammatory infiltrate in patients with severe AD. Cathepsin G may attack laminin, proteoglycans, collagen I and insoluble fibronectin, to provoke proinflammatory events, to degrade the basement membrane, to destroy the tissue inhibitor of metalloproteinases and to increase the endothelial permeability. Therefore, its down-regulation by UVA1 phototherapy may induce the reduction of skin inflammation as well as improvement of the skin condition.

  17. Modulation of cathepsin G expression in severe atopic dermatitis following medium-dose UVA1 phototherapy

    Breuckmann, Frank; von Kobyletzki, Gregor; Avermaete, Annelies; Kreuter, Alexander; Altmeyer, Peter; Gambichler, Thilo

    2002-01-01

    Background During the last decade, medium-dose UVA1 phototherapy (50 J/cm2) has achieved great value within the treatment of severe atopic dermatitis (AD). The purpose of our study was to investigate to what extent UVA1 irradiation is able to modulate the status of protease activity by the use of a monoclonal antibody labeling cathepsin G. Methods In order to further elucidate the mechanisms by which medium-dose UVA1 irradiation leads to an improvement of skin status in patients with AD, biopsy specimens from 15 patients before and after treatment were analyzed immunohistochemically for proteolytic activation. Results Compared to lesional skin of patients with AD before UVA1 irradiation, the number of cells positive for cathepsin G within the dermal infiltrate decreased significantly after treatment. The decrease of cathepsin G+ cells was closely linked to a substantial clinical improvement in skin condition. Conclusions In summary, our findings demonstrated that medium-dose UVA1 irradiation leads to a modulation of the expression of cathepsin G in the dermal inflammatory infiltrate in patients with severe AD. Cathepsin G may attack laminin, proteoglycans, collagen I and insoluble fibronectin, to provoke proinflammatory events, to degrade the basement membrane, to destroy the tissue inhibitor of metalloproteinases and to increase the endothelial permeability. Therefore, its down-regulation by UVA1 phototherapy may induce the reduction of skin inflammation as well as improvement of the skin condition. PMID:12204095

  18. Identification and characterization of the novel reversible and selective cathepsin X inhibitors.

    Fonović, Urša Pečar; Mitrović, Ana; Knez, Damijan; Jakoš, Tanja; Pišlar, Anja; Brus, Boris; Doljak, Bojan; Stojan, Jure; Žakelj, Simon; Trontelj, Jurij; Gobec, Stanislav; Kos, Janko

    2017-09-13

    Cathepsin X is a cysteine peptidase involved in the progression of cancer and neurodegenerative diseases. Targeting this enzyme with selective inhibitors opens a new possibility for intervention in several therapeutic areas. In this study triazole-based reversible and selective inhibitors of cathepsin X have been identified. Their selectivity and binding is enhanced when the 2,3-dihydrobenzo[b][1,4]dioxine moiety is present as the R 1 substituent. Of a series of selected triazole-benzodioxine derivatives, compound 22 is the most potent inhibitor of cathepsin X carboxypeptidase activity (K i  = 2.45 ± 0.05 μM) with at least 100-fold greater selectivity in comparison to cathepsin B or other related cysteine peptidases. Compound 22 is not cytotoxic to prostate cancer cells PC-3 or pheochromocytoma PC-12 cells at concentrations up to 10 μM. It significantly inhibits the migration of tumor cells and increases the outgrowth of neurites, both processes being under the control of cathepsin X carboxypeptidase activity. Compound 22 and other characterized triazole-based inhibitors thus possess a great potential for further development resulting in several in vivo applications.

  19. TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors

    Anna Prudova

    2016-08-01

    Full Text Available Deregulated cathepsin proteolysis occurs across numerous cancers, but in vivo substrates mediating tumorigenesis remain ill-defined. Applying 8-plex iTRAQ terminal amine isotopic labeling of substrates (TAILS, a systems-level N-terminome degradomics approach, we identified cathepsin B, H, L, S, and Z in vivo substrates and cleavage sites with the use of six different cathepsin knockout genotypes in the Rip1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis. Among 1,935 proteins and 1,114 N termini identified by TAILS, stable proteolytic products were identified in wild-type tumors compared with one or more different cathepsin knockouts (17%–44% of 139 cleavages. This suggests a lack of compensation at the substrate level by other cathepsins. The majority of neo-N termini (56%–83% for all cathepsins was consistent with protein degradation. We validated substrates, including the glycolytic enzyme pyruvate kinase M2 associated with the Warburg effect, the ER chaperone GRP78, and the oncoprotein prothymosin-alpha. Thus, the identification of cathepsin substrates in tumorigenesis improves the understanding of cathepsin functions in normal physiology and cancer.

  20. Mannose 6-phosphate-independent targeting of cathepsin D to lysosomes in HepG2 cells

    Rijnboutt, S.; Kal, A. J.; Geuze, H. J.; Aerts, H.; Strous, G. J.

    1991-01-01

    We have studied the role of N-linked oligosaccharides and proteolytic processing on the targeting of cathepsin D to the lysosomes in the human hepatoma cell line HepG2. In the presence of tunicamycin cathepsin D was synthesized as an unglycosylated 43-kDa proenzyme which was proteolytically

  1. Inhibitory assay for degradation of collagen IV by cathepsin B with a surface plasmon resonance sensor.

    Shoji, Atsushi; Suenaga, Yumiko; Hosaka, Atsushi; Ishida, Yuuki; Yanagida, Akio; Sugawara, Masao

    2017-10-25

    We describe a simple method for evaluating the inhibition of collagen IV degradation by cathepsin B with a surface plasmon resonance (SPR) biosensor. The change in the SPR signal decreased with an increase in the concentration of cathepsin B inhibitors. The order of the inhibitory constant (Ki) obtained by the SPR method was CA074Me≈Z-Phe-Phe-FMK < leupeptin. This order was different from that obtained by benzyloxycarbonyl-Phe-Phe-Fluoromethylketone (Z-Phe-Phe-FMK) as a peptide substrate. The comparison of Ki suggested that CA074 and Z-Phe-Phe-FMK inhibited exopeptidase activity, and leupeptin inhibited the endopeptidase activity of cathepsin B more strongly. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities

    Delaissé, Jean-Marie; Andersen, Thomas L; Engsig, Michael T

    2003-01-01

    The best established proteolytic event of osteoclasts is bone matrix solubilization by the cysteine proteinase cathepsin K. Here, however, we draw the attention on osteoclastic activities depending on matrix metalloproteinases (MMPs). We discuss the observations supporting that MMPs contribute...... significantly to bone matrix solubilization in specific areas of the skeleton and in some developmental and pathological situations. Our discussion takes into account (1) the characteristics of the bone remodeling persisting in the absence of cathepsin K, (2) the ultrastructure of the resorption zone...... in response to inactivation of MMPs and of cathepsin K in different bone types, (3) bone resorption levels in MMP knockout mice compared to wild-type mice, (4) the identification of MMPs in osteoclasts and surrounding cells, and (5) the effect of different bone pathologies on the serum concentrations...

  3. Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini.

    Porntip Pinlaor

    Full Text Available The liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities.Here, we describe the cDNA, gene organization, phylogenetic relationships, immunolocalization, and functional characterization of the cathepsin F cysteine protease gene, here termed Ov-cf-1, from O. viverrini. The full length mRNA of 1020 nucleotides (nt encoded a 326 amino acid zymogen consisting of a predicted signal peptide (18 amino acids, aa, prosegment (95 aa, and mature protease (213 aa. BLAST analysis using the Ov-CF-1 protein as the query revealed that the protease shared identity with cathepsin F-like cysteine proteases of other trematodes, including Clonorchis sinensis (81%, Paragonimus westermani (58%, Schistosoma mansoni and S. japonicum (52%, and with vertebrate cathepsin F (51%. Transcripts encoding the protease were detected in all developmental stages that parasitize the mammalian host. The Ov-cf-1 gene, of approximately 3 kb in length, included seven exons interrupted by six introns; the exons ranged from 69 to 267 bp in length, the introns from 43 to 1,060 bp. The six intron/exon boundaries of Ov-cf-1 were conserved with intron/exon boundaries in the human cathepsin F gene, although the gene structure of human cathepsin F is more complex. Unlike Ov-CF-1, human cathepsin F zymogen includes a cystatin domain in the prosegment region. Phylogenetic analysis revealed that the fluke, human, and other cathepsin Fs branched together in a clade discrete from the cathepsin L cysteine proteases. A recombinant Ov-CF-1 zymogen that displayed low-level activity was expressed in the yeast Pichia pastoris. Although the recombinant protease did not autocatalytically process and

  4. Cathepsin B & L are not required for ebola virus replication.

    Marzi, Andrea; Reinheckel, Thomas; Feldmann, Heinz

    2012-01-01

    Ebola virus (EBOV), family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV). EBOV encodes one viral surface glycoprotein (GP), which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL), which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus) was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control), catB(-/-) and catL(-/-) mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.

  5. Cathepsin B & L are not required for ebola virus replication.

    Andrea Marzi

    Full Text Available Ebola virus (EBOV, family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV. EBOV encodes one viral surface glycoprotein (GP, which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL, which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control, catB(-/- and catL(-/- mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.

  6. Cathepsin K expression and activity in canine osteosarcoma.

    Schmit, J M; Pondenis, H C; Barger, A M; Borst, L B; Garrett, L D; Wypij, J M; Neumann, Z L; Fan, T M

    2012-01-01

    Cathepsin K (CatK) is a lysosomal protease with collagenolytic activity, and its secretion by osteoclasts is responsible for degrading organic bone matrix. People with pathologic bone resorption have higher circulating CatK concentrations. Canine osteosarcoma (OS) cells will possess CatK, and its secretion will be cytokine inducible. Circulating CatK concentrations will be increased in dogs with OS, and will be a surrogate marker of bone resorption. Fifty-one dogs with appendicular OS and 18 age- and weight-matched healthy control dogs. In a prospective study, expressions of CatK mRNA and protein were investigated in OS cells. The inducible secretion and proteolytic activity of CatK from OS cells was assessed in vitro. Serum CatK concentrations were quantified in normal dogs and dogs with OS and its utility as a bone resorption marker was evaluated in dogs with OS treated with palliative radiation and antiresorptive agents. Canine OS cells contain preformed CatK within cytoplasmic vesicles. In OS cells, TGFβ1 induced the secretion of CatK, which degraded bone-derived type I collagen in vitro. CatK concentrations were higher in dogs with OS than healthy dogs (11.3 ± 5.2 pmol/L versus 8.1 ± 5.0 pmol/L, P = .03). In a subset of dogs with OS, pretreatment CatK concentrations gradually decreased after palliative radiation and antiresorptive treatment, from 9.3 ± 3.2 pmol/L to 5.0 ± 3.1 pmol/L, P = .03. Canine OS is associated with pathologic bone resorption, and CatK inhibitors might aid in the management of canine OS-related malignant osteolysis. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  7. Effective DNA Inhibitors of Cathepsin G by In Vitro Selection

    Gatto, Barbara; Vianini, Elena; Lucatello, Lorena; Sissi, Claudia; Moltrasio, Danilo; Pescador, Rodolfo; Porta, Roberto; Palumbo, Manlio

    2008-01-01

    Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions. PMID:19325843

  8. Effective DNA Inhibitors of Cathepsin G by In Vitro Selection

    Manlio Palumbo

    2008-06-01

    Full Text Available Cathepsin G (CatG is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions.

  9. Activation of lysosomal cathepsins in pregnant bovine leukocytes.

    Talukder, Md Abdus Shabur; Balboula, Ahmed Zaky; Shirozu, Takahiro; Kim, Sung Woo; Kunii, Hiroki; Suzuki, Toshiyuki; Ito, Tsukino; Kimura, Koji; Takahashi, Masashi

    2018-06-01

    In ruminants, interferon-tau (IFNT) - mediated expression of interferon-stimulated genes in peripheral blood leukocytes (PBLs) can indicate pregnancy. Recently, type 1 IFN-mediated activation of lysosomes and lysosomal cathepsins (CTSs) was observed in immune cells. This study investigated the status of lysosomal CTSs and lysosomes in PBLs collected from pregnant (P) and non-pregnant (NP) dairy cows, and conducted in vitro IFNT stimulation of NP blood leukocytes. Blood samples were collected 0, 7, 14 and 18 days post-artificial insemination, and the peripheral blood mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs) separated. The fluorescent activity of CTSB and CTSK in PMNs significantly increased with the progress of pregnancy, especially on day 18. In vitro supplementation of IFNT significantly increased the activities of CTSB and CTSK in NP PBMCs and PMNs. CTSB expression was significantly higher in PBMCs and PMNs collected from P day-18 cows than from NP cows, whereas there was no difference in CTSK expression. IFNT increased CTSB expression but did not affect CTSK expression. Immunodetection showed an increase of CTSB in P day-18 PBMCs and PMNs. In vitro stimulation of IFNT increased CTSB in NP PBMCs and PMNs. Lysosomal acidification showed a significant increase in P day-18 PBMCs and PMNs. IFNT also stimulated lysosomal acidification. Expressions of lysosome-associated membrane protein (LAMP) 1 and LAMP2 were significantly higher in P day-18 PBMCs and PMNs. The results suggest that pregnancy-specific activation of lysosomal functions by CTS activation in blood leukocytes is highly associated with IFNT during maternal and fetal recognition of pregnancy. © 2018 Society for Reproduction and Fertility.

  10. Cathepsin K expression is increased in oral lichen planus.

    Siponen, Maria; Bitu, Carolina Cavalcante; Al-Samadi, Ahmed; Nieminen, Pentti; Salo, Tuula

    2016-11-01

    Oral lichen planus (OLP) is an idiopathic T-cell-mediated mucosal inflammatory disease. Cathepsin K (Cat K) is one of the lysosomal cysteine proteases. It is involved in many pathological conditions, including osteoporosis and cancer. The expression and role of Cat K in OLP are unknown. Twenty-five oral mucosal specimens diagnosed histopathologically as OLP and fourteen healthy controls (HC) were used to study the immunohistochemical (IHC) expression of Cat K. Colocalization of Cat K with CD1a, Melan-A, CD68, CD45, mast cell tryptase (MCT), and Toll-like receptors (TLRs) 4 and 9 were studied using double IHC and/or immunofluorescence (IF) staining. Expression of Cat K was also evaluated in OLP tissue samples before and after topical tacrolimus treatment. Cat K was expressed in a higher percentage of cells in the epithelial zone, and the staining intensity was stronger in the stroma in OLP compared to controls (P < 0.001). In OLP, Cat K was present mostly in melanocytes and macrophages and sporadically in basal keratinocytes, endothelial cells, and extracellularly. Cat K was found also in some fibroblasts in HC and OLP samples. Coexpression of Cat K and TLRs 4 and 9 was seen in some dendritic cells (presumably melanocytes) and macrophages. In OLP, tacrolimus treatment reduced the expression of Cat K in the epithelium but increased it in the stroma. These results suggest that Cat K is involved in the pathogenesis of OLP. Cat K possibly takes part in the modulation of matrix molecules and cellular receptors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Changes in collagenous tissue microstructures and distributions of cathepsin L in body wall of autolytic sea cucumber (Stichopus japonicus).

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Yan-Fei; Li, Dong-Mei; Dong, Xiu-Ping; Tan, Ming-Qian; Du, Ming; Zhu, Bei-Wei

    2016-12-01

    The autolysis of sea cucumber (Stichopus japonicus) was induced by ultraviolet (UV) irradiation, and the changes of microstructures of collagenous tissues and distributions of cathepsin L were investigated using histological and histochemical techniques. Intact collagen fibers in fresh S. japonicus dermis were disaggregated into collagen fibrils after UV stimuli. Cathepsin L was identified inside the surface of vacuoles in the fresh S. japonicus dermis cells. After the UV stimuli, the membranes of vacuoles and cells were fused together, and cathepsin L was released from cells and diffused into tissues. The density of cathepsin L was positively correlated with the speed and degree of autolysis in different layers of body wall. Our results revealed that lysosomal cathepsin L was released from cells in response to UV stimuli, which contacts and degrades the extracellular substrates such as collagen fibers, and thus participates in the autolysis of S. japonicus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi.

    Waleska Maldonado-Aguayo

    Full Text Available Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S as well as in an aspartic protease group (D. Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi.

  13. Biochemical characterization and structural modeling of human cathepsin E variant 2 in comparison to the wild-type protein

    Puizdar, Vida; Zajc, Tajana; Žerovnik, Eva; Renko, Miha; Pieper, Ursula; Eswar, Narayanan; Šali, Andrej; Dolenc, Iztok; Turk, Vito

    2014-01-01

    Cathepsin E splice variant 2 appears in a number of gastric carcinoma. Here, we report detecting this variant in HeLa cells using polyclonal antibodies and biotinylated inhibitor pepstatin A. An overexpression of GFP fusion proteins of cathepsin E and its splice variant within HEK-293T cells was performed to show their localization. Their distribution under a fluorescence microscope showed that they are colocalized. We also expressed variant 1 and variant 2 of cathepsins E, with propeptide and without it, in Echerichia coli. After refolding from the inclusion bodies, the enzymatic activity and circular dichroism spectra of the splice variant 2 were compared to those of the wild-type mature active cathepsins E. While full-length cathepsin E variant1 is activated at acid pH, the splice variant remains inactive. In contrast to the active cathepsin E, the splice variant 2 predominantly assumes β-sheet structure, prone to oligomerization, at least under in vitro conditions, as shown by Atomic Force Microscopy as shallow disk-like particles. A comparative structure model of splice variant 2 was computed based on its alignment to the known structure of cathepsin E intermediate (Protein Data Bank code 1TZS), and used to rationalize its conformational properties and loss of activity. PMID:22718633

  14. Inhibition of cathepsin X enzyme influences the immune response of THP-1 cells and dendritic cells infected with Helicobacter pylori

    Skvarc, Miha; Stubljar, David; Kopitar, Andreja Natasa; Jeverica, Samo; Tepes, Bojan; Kos, Janko; Ihan, Alojz

    2013-01-01

    The immune response to Helicobacter pylori importantly determines the outcome of infection as well as the success of eradication therapy. We demonstrate the role of a cysteine protease cathepsin X in the immune response to H. pylori infection. We analysed how the inhibition of cathepsin X influenced the immune response in experiments when THP-1 cells or dendritic cells isolated from patients were stimulated with 48 strains of H. pylori isolated from gastric biopsy samples of patients which had problems with the eradication of bacteria. The experiments, performed with the help of a flow cytometer, showed that the expression of Toll-like receptors (TLRs), especially TLR-4 molecules, on the membranes of THP-1 cells or dendritic cells was higher when we stimulated cells with H. pylori together with inhibitor of cathepsin X 2F12 compared to THP-1 cells or dendritic cells stimulated with H. pylori only, and also in comparison with negative control samples. We also demonstrated that when we inhibited the action of cathepsin X in THP-1 cells, the concentrations of pro-inflammatory cytokines were lower than when THP-1 cell were stimulated with H. pylori only. We demonstrated that inhibition of cathepsin X influences the internalization of TLR-2 and TLR-4. TLR-2 and TLR-4 redistribution to intra-cytoplasmic compartments is hampered if cathepsin X is blocked. The beginning of a successful immune response against H. pylori in the case of inhibition of cathepsin X is delayed

  15. Fasciola gigantica cathepsin L proteinase-based synthetic peptide for immunodiagnosis and prevention of sheep fasciolosis

    Ježek, Jan; El Ridi, R.; Salah, M.; Wagih, A.; Aziz, H. W.; Tallima, H.; El Shafie, M. H.; Khalek, T. A.; Ammou, F. F. A.; Strongylis, C.; Moussis, V.; Tsikaris, V.

    2008-01-01

    Roč. 90, č. 3 (2008), s. 349-357 ISSN 0006-3525 Institutional research plan: CEZ:AV0Z40550506 Keywords : cathepsin L proteinase * peptides * sequential oligopeptide carriers * synthetic peptide vaccine * Fasciiola gigantica Subject RIV: CC - Organic Chemistry Impact factor: 2.823, year: 2008

  16. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation

    Goyal, Shruti; Amar, Saroj Kumar [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow (India); Dubey, Divya; Pal, Manish Kumar [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Singh, Jyoti [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow (India); Verma, Ankit; Kushwaha, Hari Narayan [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Ray, Ratan Singh, E-mail: ratanray.2011@rediffmail.com [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India)

    2015-12-30

    Highlights: • Photodegradation and formation of photoproduct. • Involvement of ROS in PPD phototoxicity. • Role of ROS in DNA damage, CPD and micronuclei formation. • PPD induced lysosomal destabilization and release of cathepsin B. • Cleavage of Bid and activation of mitochondrial apoptosis. - Abstract: Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings.

  17. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation

    Goyal, Shruti; Amar, Saroj Kumar; Dubey, Divya; Pal, Manish Kumar; Singh, Jyoti; Verma, Ankit; Kushwaha, Hari Narayan; Ray, Ratan Singh

    2015-01-01

    Highlights: • Photodegradation and formation of photoproduct. • Involvement of ROS in PPD phototoxicity. • Role of ROS in DNA damage, CPD and micronuclei formation. • PPD induced lysosomal destabilization and release of cathepsin B. • Cleavage of Bid and activation of mitochondrial apoptosis. - Abstract: Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings.

  18. Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth.

    Elias Gounaris

    2008-08-01

    Full Text Available It has been estimated that up to 30% of detectable polyps in patients regress spontaneously. One major challenge in the evaluation of effective therapy of cancer is the readout for tumor regression and favorable biological response to therapy. Inducible near infra-red (NIR fluorescent probes were utilized to visualize intestinal polyps of mice hemizygous for a novel truncation of the Adenomatous Polyposis coli (APC gene. Laser Scanning Confocal Microscopy in live mice allowed visualization of cathepsin activity in richly vascularized benign dysplastic lesions. Using biotinylated suicide inhibitors we quantified increased activities of the Cathepsin B & Z in the polyps. More than (3/4 of the probe signal was localized in CD11b(+Gr1(+ myeloid derived suppressor cells (MDSC and CD11b(+F4/80(+ macrophages infiltrating the lesions. Polyposis was attenuated through genetic ablation of cathepsin B, and suppressed by neutralization of TNFalpha in mice. In both cases, diminished probe signal was accounted for by loss of MDSC. Thus, in vivo NIR imaging of focal cathepsin activity reveals inflammatory reactions etiologically linked with cancer progression and is a suitable approach for monitoring response to therapy.

  19. Prognostic and predictive value of cathepsin X in serum from colorectal cancer patients

    Vižin, Tjaša; Christensen, Ib Jarle; Wilhelmsen, Michael

    2014-01-01

    , but for patients in stages I-III with local resectable disease. The significant association of cathepsin X with survival in a group of patients who received no chemotherapy and the absence of this association in the group who received chemotherapy, suggest the possible predictive value for response to chemotherapy...

  20. A novel nonsense mutation in cathepsin C gene in an Egyptian ...

    Background: Cathepsin C gene (CTSC) (MIM#602365) is a lysosomal cysteine proteinase coding gene which encodes for CTSC protein that plays a major role in the activation of granule serine proteases, particularly leukocyte elastase and granzymes A and B. This activity was proposed to play a role in epithelial ...

  1. Oestrogen regulates the expression of cathepsin E-A-like gene ...

    Hang Zheng

    2018-02-28

    Feb 28, 2018 ... 1College of Animal Science and Veterinary Medicine, Henan Agricultural .... evaluated the expression regulation mechanism of the gene ... C with ad libitum water and food. ... embryonic liver following the method previously described .... Cloning and sequence analysis of chicken cathepsin E-A-like gene.

  2. Cathepsin L is crucial for the development of early experimental diabetic nephropathy

    Garsen, M.; Rops, A.; Dijkman, H.B.; Willemsen, B.K.; Kuppevelt, T.H. van; Russel, F.G.M.; Rabelink, T.J.; Berden, J.H.; Reinheckel, T.; Vlag, J. van der

    2016-01-01

    Proteinuria is one of the first clinical signs of diabetic nephropathy and an independent predictor for the progression to renal failure. Cathepsin L, a lysosomal cysteine protease, can be involved in the development of proteinuria by degradation of proteins that are important for normal podocyte

  3. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets

    Sojka, D.; Hartmann, D.; Bartošová-Sojková, P.; Dvořák, Jan

    2016-01-01

    Roč. 32, č. 9 (2016), s. 708-723 ISSN 1471-4922 R&D Projects: GA ČR GA13-11043S; GA ČR(CZ) GAP302/11/1481 Institutional support: RVO:61388963 Keywords : aspartic peptidases * cathepsin D * hemoglobinolysis * parasites * vectors Subject RIV: CE - Biochemistry Impact factor: 6.333, year: 2016

  4. Activation route of the Schistosoma mansoni cathepsin B1 drug target

    Jílková, Adéla; Horn, Martin; Řezáčová, Pavlína; Marešová, Lucie; Fajtová, Pavla; Brynda, Jiří; Vondrášek, Jiří; McKerrow, J. H.; Caffrey, C. R.; Mareš, Michael

    2015-01-01

    Roč. 22, č. 1 (2015), s. 39 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] Institutional support: RVO:61388963 ; RVO:68378050 Keywords : Schistosoma mansoni * cathepsin B1 * sulfated polysaccharides Subject RIV: CE - Biochemistry

  5. Crystal structure of cathepsin A, a novel target for the treatment of cardiovascular diseases

    Schreuder, Herman A., E-mail: herman.schreuder@sanofi.com; Liesum, Alexander, E-mail: alexander.liesum@sanofi.com; Kroll, Katja, E-mail: katja.kroll@sanofi.com; Böhnisch, Britta, E-mail: britta.boehnisch@sanofi.com; Buning, Christian, E-mail: christian.buning@sanofi.com; Ruf, Sven, E-mail: sven.ruf@sanofi.com; Sadowski, Thorsten, E-mail: thorsten.sadowski@sanofi.com

    2014-03-07

    Graphical abstract: - Highlights: • The structures of active cathepsin A and the inactive precursor are very similar. • The only major difference is the absence of a 40 residue activation domain. • The termini of the active catalytic core are held together by a disulfide bond. • Compound 1 reacts with the catalytic Ser150, building a tetrahedral intermediate. • Compound 2 is cleaved by the enzyme and a fragment remained bound. - Abstract: The lysosomal serine carboxypeptidase cathepsin A is involved in the breakdown of peptide hormones like endothelin and bradykinin. Recent pharmacological studies with cathepsin A inhibitors in rodents showed a remarkable reduction in cardiac hypertrophy and atrial fibrillation, making cathepsin A a promising target for the treatment of heart failure. Here we describe the crystal structures of activated cathepsin A without inhibitor and with two compounds that mimic the tetrahedral intermediate and the reaction product, respectively. The structure of activated cathepsin A turned out to be very similar to the structure of the inactive precursor. The only difference was the removal of a 40 residue activation domain, partially due to proteolytic removal of the activation peptide, and partially by an order–disorder transition of the peptides flanking the removed activation peptide. The termini of the catalytic core are held together by the Cys253–Cys303 disulfide bond, just before and after the activation domain. One of the compounds we soaked in our crystals reacted covalently with the catalytic Ser150 and formed a tetrahedral intermediate. The other compound got cleaved by the enzyme and a fragment, resembling one of the natural reaction products, was found in the active site. These studies establish cathepsin A as a classical serine proteinase with a well-defined oxyanion hole. The carboxylate group of the cleavage product is bound by a hydrogen-bonding network involving one aspartate and two glutamate side chains

  6. The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin.

    Lomas, D A; Stone, S R; Llewellyn-Jones, C; Keogan, M T; Wang, Z M; Rubin, H; Carrell, R W; Stockley, R A

    1995-10-06

    Neutrophil chemotaxis plays an important role in the inflammatory response and when excessive or persistent may augment tissue damage. The effects of inhibitors indicated the involvement of one or more serine proteinases in human neutrophil migration and shape change in response to a chemoattractant. Monospecific antibodies, chloromethylketone inhibitors, and reactive-site mutants of alpha 1-antitrypsin and alpha 1-antichymotrypsin were used to probe the specificity of the proteinases involved in chemotaxis. Antibodies specific for cathepsin G inhibited chemotaxis. Moreover, rapid inhibitors of cathepsin G and alpha-chymotrypsin suppressed neutrophil chemotaxis to the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and zymosan-activated serum in multiple blind well assays and to fMLP in migration assays under agarose. The concentrations of antichymotrypsin mutants that reduced chemotaxis by 50% would inactivate free cathepsin G with a half-life of 1.5-3 s, whereas the concentrations of chloromethylketones required to produce a similar inhibition of chemotaxis would inactivate cathepsin G with a half-life of 345 s. These data suggest different modes of action for these two classes of inhibitors. Indeed the chloromethylketone inhibitors of cathepsin G (Z-Gly-Leu-Phe-CMK) and to a lesser extent of chymotrypsin (Cbz-Gly-Gly-Phe-CMK) mediated their effect by preventing a shape change in the purified neutrophils exposed to fMLP. Antichymotrypsin did not affect shape change in response to fMLP even at concentrations that were able to reduce neutrophil chemotaxis by 50%. These results support the involvement of cell surface proteinases in the control of cell migration and show that antichymotrypsin and chloromethylketones have differing modes of action. This opens the possibility for the rational design of anti-inflammatory agents targeted at neutrophil membrane enzymes.

  7. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Patil NA

    2016-09-01

    Full Text Available Nayana A Patil,1,2 WN Gade,2 Deepti D Deobagkar1 1Department of Zoology, Molecular Biology Research Laboratory, Centre of Advanced Studies, 2Department of Biotechnology, Proteomic Research Laboratory, Savitribai Phule Pune University, Pune, India Abstract: Titanium dioxide (TiO2 and zinc oxide (ZnO nanoparticles (NPs are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5 cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear

  8. Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer.

    Chen, Binbin; Platt, Manu O

    2011-07-14

    Cathepsins K, L, and S are cysteine proteases upregulated in cancer and proteolyze extracellular matrix to facilitate metastasis, but difficulty distinguishing specific cathepsin activity in complex tissue extracts confounds scientific studies and employing them for use in clinical diagnoses. Here, we have developed multiplex cathepsin zymography to profile cathepsins K, L, and S activity in 10 μg human breast, lung, and cervical tumors by exploiting unique electrophoretic mobility and renaturation properties. Frozen breast, lung, and cervix cancer tissue lysates and normal organ tissue lysates from the same human patients were obtained (28 breast tissues, 23 lung tissues, and 23 cervix tissues), minced and homogenized prior to loading for cathepsin gelatin zymography to determine enzymatic activity. Cleared bands of cathepsin activity were identified and validated in tumor extracts and detected organ- and stage-specific differences in activity. Cathepsin K was unique compared to cathepsins L and S. It was significantly higher for all cancers even at the earliest stage tested (stage I for lung and cervix (n = 6, p zymography, yielded 100% sensitivity and specificity for 20 breast tissue samples tested (10 normal; 10 tumor) in part due to the consistent absence of cathepsin K in normal breast tissue across all patients. To summarize, this sensitive assay provides quantitative outputs of cathepsins K, L, and S activities from mere micrograms of tissue and has potential use as a supplement to histological methods of clinical diagnoses of biopsied human tissue.

  9. Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues.

    Wilder, Catera L; Park, Keon-Young; Keegan, Philip M; Platt, Manu O

    2011-12-01

    Cathepsins K, L, S, and V are cysteine proteases that have been implicated in tissue-destructive diseases such as atherosclerosis, tumor metastasis, and osteoporosis. Among these four cathepsins are the most powerful human collagenases and elastases, and they share 60% sequence homology. Proper quantification of mature, active cathepsins has been confounded by inhibitor and reporter substrate cross-reactivity, but is necessary to develop properly dosed therapeutic applications. Here, we detail a method of multiplex cathepsin zymography to detect and distinguish the activity of mature cathepsins K, L, S, and V by exploiting differences in individual cathepsin substrate preferences, pH effects, and electrophoretic mobility under non-reducing conditions. Specific identification of cathepsins K, L, S, and V in one cell/tissue extract was obtained with cathepsin K (37 kDa), V (35 kDa), S (25 kDa), and L (20 kDa) under non-reducing conditions. Cathepsin K activity disappeared and V remained when incubated at pH 4 instead of 6. Application of this antibody free, species independent, and medium-throughput method was demonstrated with primary human monocyte-derived macrophages and osteoclasts, endothelial cells stimulated with inflammatory cytokines, and normal and cancer lung tissues, which identified elevated cathepsin V in lung cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells

    Zavasnik-Bergant, T.; Vidmar, R.; Sekirnik, A.; Fonovic, M.; Salát, Jiří; Grunclová, Lenka; Kopáček, Petr; Turk, B.

    2017-01-01

    Roč. 7, JUN 30 (2017), č. článku 288. ISSN 2235-2988 R&D Projects: GA ČR GA13-11043S Institutional support: RVO:60077344 Keywords : cystatin OmC2 * tick saliva * cathepsin S * cathepsin C * lysosomal proteases * dpp1 * dipeptidyl peptidase 1 * dendritic cells Subject RIV: EC - Immunology OBOR OECD: Immunology Impact factor: 4.300, year: 2016

  11. Study of Low-grade Chronic Inflammatory Markers in Men with Central Obesity: Cathepsin S was Correlated with Waist Circumference

    Adriana Todingrante

    2013-08-01

    Full Text Available BACKGROUND: There is a prevalence increase of overweight and obesity in Indonesia. Central obesity can lead a variety of chronic diseases through the inflammatory process. There are some markers for low-grade chronic inflammatory, such as cathepsin S, high sensitivity C-reactive protein (hs-CRP, interleukin-1- beta (IL-1β. To our current interest that central obesity can lead to various chronic diseases through the inflammatory process, we conducted a study to investigate correlation of Cathepsin S, hs-CRP, IL-1β in men with central obesity. METHODS: A cross-sectional study was conducted. Seventy-eight selected subjects were examined to collect anthropometric data and prepared for sample collection. Collected samples were processed for the following biochemical analyses: fasting glucose, high density lipoprotein (HDL-cholesterol, triglyceride, serum glutamic oxaloacetic transaminase (SGOT, serum glutamate pyruvate transaminase (SGPT, cathepsin S, hs-CRP, and IL-1β. Data distribution and variable correlation were then statistically analyzed. RESULTS: There were significant correlations between waist circumference (WC and cathepsin S (p=0.030; r=0.214, hs-CRP and cathepsin S (p=0.007; r=0.276, triglyceride and IL-1β (p=0.019; r=-0.235, WC and systolic blood pressure (SBP (p=0.003; r=-0.312, WC and fasting glucose (p=0.000; r=0.380, WC and body mass index (BMI (p=0.000; r=0.708. CONCLUSIONS: Our study showed that cathepsin S was correlated with central obesity, suggesting that cathepsin S could be a potential inflammatory marker in central obesity in the future. KEYWORDS: obesity, inflammation, hs-CRP, cathepsin S, IL-1β, waist circumference.

  12. Transient expression of progesterone receptor and cathepsin-l in human granulosa cells during the periovulatory period.

    García, Víctor; Kohen, Paulina; Maldonado, Carola; Sierralta, Walter; Muñoz, Alex; Villarroel, Claudio; Strauss, Jerome F; Devoto, Luigi

    2012-03-01

    To study in vivo the progesterone receptor (PR) expression levels in human granulosa cells (GCs) during the periovulatory period and the affect of the protein kinase A (PKA) pathway on PR expression and cathepsin-L expression-activation. Experimental study. University research unit. Twenty-five women of reproductive age. Follicular fluid and GCs obtained from spontaneous cycles before and during the normal luteinizing hormone surge, and samples obtained 36 hours after human chorionic gonadotropin (hCG) administration in patients undergoing in vitro fertilization. To determine PR, cathepsin-L messenger RNA (mRNA) analysis via real-time polymerase chain reaction, and protein of PR, cathepsin-L, and PKA in human GCs. The Western blot analysis revealed that bands of PR (isoform A) were the most abundant and that mRNA (PR-A and PR-B) have a temporal pattern of expression throughout the periovulatory period. The protein levels of PR and cathepsin-L were up-regulated by hCG. The abundance of PR was diminished in the presence of PKA inhibitor, and cathepsin-L with PR receptor antagonist. The transient expression of PR in human GCs of the preovulatory follicle suggests that PR and its ligand play a role in the activation of cathepsin-L, which is presumably involved in the degradation of the follicular extracellular matrix during human ovulation. Copyright © 2012 American Society for Reproductive Medicine. All rights reserved.

  13. Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes

    Barascuk, Natasha; Skjøt-Arkil, Helene; Register, Thomas C

    2010-01-01

    BACKGROUND: Proteolytic degradation of Type I Collagen by proteases may play an important role in remodeling of atherosclerotic plaques, contributing to increased risk of plaque rupture.The aim of the current study was to investigate whether human macrophage foam cells degrade the extracellular...... matrix (ECM) of atherosclerotic plaques by cathepsin K mediated processes. METHODS: We 1) cultured human macrophages on ECM and measured cathepsin K generated fragments of type I collagen (C-terminal fragments of Type I collagen (CTX-I) 2) investigated the presence of CTX-I in human coronary arteries......-I in areas of intimal hyperplasia and in shoulder regions of advanced plaques. Treatment of human monocytes with M-CSF or M-CSF+LDL generated macrophages and foam cells producing CTX-I when cultured on type I collagen enriched matrix. Circulating levels of CTX-I were not significantly different in women...

  14. Effects of Chilling and Partial Freezing on Rigor Mortis Changes of Bighead Carp (Aristichthys nobilis) Fillets: Cathepsin Activity, Protein Degradation and Microstructure of Myofibrils.

    Lu, Han; Liu, Xiaochang; Zhang, Yuemei; Wang, Hang; Luo, Yongkang

    2015-12-01

    To investigate the effects of chilling and partial freezing on rigor mortis changes in bighead carp (Aristichthys nobilis), pH, cathepsin B, cathepsin B+L activities, SDS-PAGE of sarcoplasmic and myofibrillar proteins, texture, and changes in microstructure of fillets at 4 °C and -3 °C were determined at 0, 2, 4, 8, 12, 24, 48, and 72 h after slaughter. The results indicated that pH of fillets (6.50 to 6.80) was appropriate for cathepsin function during the rigor mortis. For fillets that were chilled and partially frozen, the cathepsin activity in lysosome increased consistently during the first 12 h, followed by a decrease from the 12 to 24 h, which paralleled an increase in activity in heavy mitochondria, myofibrils and sarcoplasm. There was no significant difference in cathepsin activity in lysosomes between fillets at 4 °C and -3 °C (P > 0.05). Partially frozen fillets had greater cathepsin activity in heavy mitochondria than chilled samples from the 48 to 72 h. In addition, partially frozen fillets showed higher cathepsin activity in sarcoplasm and lower cathepsin activity in myofibrils compared with chilled fillets. Correspondingly, we observed degradation of α-actinin (105 kDa) by cathepsin L in chilled fillets and degradation of creatine kinase (41 kDa) by cathepsin B in partially frozen fillets during the rigor mortis. The decline of hardness for both fillets might be attributed to the accumulation of cathepsin in myofibrils from the 8 to 24 h. The lower cathepsin activity in myofibrils for fillets that were partially frozen might induce a more intact cytoskeletal structure than fillets that were chilled. © 2015 Institute of Food Technologists®

  15. Atick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation

    Chmelař, Jindřich; Oliveira, C. J.; Řezáčová, Pavlína; Francischetti, I.M.B.; Kovářová, Zuzana; Pejler, G.; Kopáček, Petr; Ribeiro, J.M.C.; Mareš, Michael; Kopecký, Jan; Kotsyfakis, Michalis

    2011-01-01

    Roč. 117, č. 2 (2011), s. 736-744 ISSN 0006-4971 R&D Projects: GA AV ČR IAA600960811; GA MŠk(CZ) LC06009; GA ČR(CZ) GAP207/10/2183 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z40550506 Keywords : parasite serpin * IRS-2 * tick * Ixodes ricinus * platelet aggregation * inflammation * cathepsin G * chymase Subject RIV: EC - Immunology Impact factor: 9.898, year: 2011

  16. An Ectosteric Inhibitor of Cathepsin K Inhibits Bone Resorption in Ovariectomized Mice

    Panwar, Preety; Xue, Liming; Søe, Kent

    2017-01-01

    The potent cathepsin K (CatK) inhibitor, Tanshinone IIA sulfonic sodium (T06), was tested for its in vitro and in vivo antiresorptive activities. T06 binds in an ectosteric site of CatK remote from its active site and selectively inhibits collagen degradation with an IC50 value of 2.7±0.2μM (CatK...

  17. Structural Basis for Inhibition of Cathepsin B Drug Target from the Human Blood Fluke, Schistosoma mansoni

    Jílková, Adéla; Řezáčová, Pavlína; Lepšík, Martin; Horn, Martin; Váchová, Jana; Fanfrlík, Jindřich; Brynda, Jiří; McKerrow, J. H.; Caffrey, C. R.; Mareš, Michael

    2011-01-01

    Roč. 286, č. 41 (2011), s. 35770-35881 ISSN 0021-9258 R&D Projects: GA ČR GA203/09/1585; GA ČR GAP208/11/0295; GA MŠk OC09007 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : cathepsin B * schistosoma * crystal structure Subject RIV: CC - Organic Chemistry Impact factor: 4.773, year: 2011

  18. GILT expression in B cells diminishes cathepsin S steady-state protein expression and activity

    Phipps-Yonas, Hannah; Semik, Vikki; Hastings, Karen Taraszka

    2012-01-01

    MHC class II-restricted Ag processing requires protein degradation in the endocytic pathway for the activation of CD4+ T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) facilitates Ag processing by reducing protein disulfide bonds in this compartment. Lysosomal cysteine protease cathepsin S (CatS) contains disulfide bonds and mediates essential steps in MHC class II-restricted processing, including proteolysis of large polypeptides and cleavage of the invariant chain. We so...

  19. The role of cathepsin E in the antigen processing and presentation pathway.

    Free, P. F.

    2006-01-01

    Although much has been unravelled with regards to the mechanisms of proteolysis of exogenously derived antigen for presentation via histocompatibility class-II (MHC-II), key questions remain unresolved. The exact role of each proteolytic enzyme in this process is not understood. The aspartic proteinase cathepsin E is hypothesised to play an important role. The aim of this study is to examine this by the use of novel aspartic proteinase inhibitors based upon the aspartic proteinase inhibitor p...

  20. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation.

    Goyal, Shruti; Amar, Saroj Kumar; Dubey, Divya; Pal, Manish Kumar; Singh, Jyoti; Verma, Ankit; Kushwaha, Hari Narayan; Ray, Ratan Singh

    2015-12-30

    Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cathepsins: Proteases that are vital for survival but can also be fatal.

    Patel, Seema; Homaei, Ahmad; El-Seedi, Hesham R; Akhtar, Nadeem

    2018-06-06

    The state of enzymes in the human body determines the normal physiology or pathology, so all the six classes of enzymes are crucial. Proteases, the hydrolases, can be of several types based on the nucleophilic amino acid or the metal cofactor needed for their activity. Cathepsins are proteases with serine, cysteine, or aspartic acid residues as the nucleophiles, which are vital for digestion, coagulation, immune response, adipogenesis, hormone liberation, peptide synthesis, among a litany of other functions. But inflammatory state radically affects their normal roles. Released from the lysosomes, they degrade extracellular matrix proteins such as collagen and elastin, mediating parasite infection, autoimmune diseases, tumor metastasis, cardiovascular issues, and neural degeneration, among other health hazards. Over the years, the different types and isoforms of cathepsin, their optimal pH and functions have been studied, yet much information is still elusive. By taming and harnessing cathepsins, by inhibitors and judicious lifestyle, a gamut of malignancies can be resolved. This review discusses these aspects, which can be of clinical relevance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability.

    Zwicker, Jeffery D; Diaz, Nicolas A; Guerra, Alfredo J; Kirchhoff, Paul D; Wen, Bo; Sun, Duxin; Carruthers, Vern B; Larsen, Scott D

    2018-06-01

    The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Cathepsin X Cleaves Profilin 1 C-Terminal Tyr139 and Influences Clathrin-Mediated Endocytosis.

    Urša Pečar Fonović

    Full Text Available Cathepsin X, a cysteine carboxypeptidase, is upregulated in several types of cancer. Its molecular target in tumor cells is profilin 1, a known tumor suppressor and regulator of actin cytoskeleton dynamics. Cathepsin X cleaves off the C-terminal Tyr139 of profilin 1, affecting binding of poly-L-proline ligands and, consequently, tumor cell migration and invasion. Profilin 1 with mutations at the C-terminus, transiently expressed in prostate cancer cells PC-3, showed that Tyr139 is important for proper function of profilin 1 as a tumor suppressor. Cleaving off Tyr139 prevents the binding of clathrin, a poly-L-proline ligand involved in endocytosis. More profilin 1-clathrin complexes were present in PC-3 cells when cathepsin X was inhibited by its specific inhibitor AMS36 or silenced by siRNA. As a consequence, the endocytosis of FITC-labeled dextran and transferrin conjugate was significantly increased. These results constitute the first report of the regulation of clathrin-mediated endocytosis in tumor cells through proteolytic processing of profilin 1.

  4. Cathepsin X Cleaves Profilin 1 C-Terminal Tyr139 and Influences Clathrin-Mediated Endocytosis

    Pečar Fonović, Urša; Kos, Janko

    2015-01-01

    Cathepsin X, a cysteine carboxypeptidase, is upregulated in several types of cancer. Its molecular target in tumor cells is profilin 1, a known tumor suppressor and regulator of actin cytoskeleton dynamics. Cathepsin X cleaves off the C-terminal Tyr139 of profilin 1, affecting binding of poly-L-proline ligands and, consequently, tumor cell migration and invasion. Profilin 1 with mutations at the C-terminus, transiently expressed in prostate cancer cells PC-3, showed that Tyr139 is important for proper function of profilin 1 as a tumor suppressor. Cleaving off Tyr139 prevents the binding of clathrin, a poly-L-proline ligand involved in endocytosis. More profilin 1—clathrin complexes were present in PC-3 cells when cathepsin X was inhibited by its specific inhibitor AMS36 or silenced by siRNA. As a consequence, the endocytosis of FITC-labeled dextran and transferrin conjugate was significantly increased. These results constitute the first report of the regulation of clathrin-mediated endocytosis in tumor cells through proteolytic processing of profilin 1. PMID:26325675

  5. Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts

    Zhang Dongwei

    2011-11-01

    Full Text Available Abstract Background Lung fibrosis is characterized by fibroblast proliferation and the deposition of collagens. Curcumin, a polyphenol antioxidant from the spice tumeric, has been shown to effectively counteract fibroblast proliferation and reducing inflammation and fibrotic progression in animal models of bleomycin-induced lung injury. However, there is little mechanistic insight in the biological activity of curcumin. Here, we study the effects of curcumin on the expression and activity of cathepsins which have been implicated in the development of fibrotic lung diseases. Methods We investigated the effects of curcumin administration to bleomycin stimulated C57BL/6 mice and human fetal lung fibroblasts (HFL-1 on the expression of cathepsins K and L which have been implicated in matrix degradation, TGF-β1 modulation, and apoptosis. Lung tissues were evaluated for their contents of cathepsins K and L, collagen, and TGF-β1. HFL-1 cells were used to investigate the effects of curcumin and cathepsin inhibition on cell proliferation, migration, apoptosis, and the expression of cathepsins K and L and TGF-β1. Results Collagen deposition in lungs was decreased by 17-28% after curcumin treatment which was accompanied by increased expression levels of cathepsins L (25%-39% and K (41%-76% and a 30% decrease in TGF-β1 expression. Moreover, Tunel staining of lung tissue revealed a 33-41% increase in apoptotic cells after curcumin treatment. These in vivo data correlated well with data obtained from the human fibroblast line, HFL-1. Here, cathepsin K and L expression increased 190% and 240%, respectively, in the presence of curcumin and the expression of TGF-β1 decreased by 34%. Furthermore, curcumin significantly decreased cell proliferation and migration and increased the expression of surrogate markers of apoptosis. In contrast, these curcumin effects were partly reversed by a potent cathepsin inhibitor. Conclusion This study demonstrates that

  6. Cysteine and aspartic proteases cathepsins B and D determine the invasiveness of MCF10A neoT cells

    Premzl, J.; Kos, J.

    2003-01-01

    Background. Lysosomal cathepsins B and D have been reported to play a role in various processes leading to progression of malignant disease. In ras-transformed MCF10A neoT cells both enzymes show similar vesicular distribution in perinuclear and peripheral cytoplasmic regions. Results. The co-localization of cathepsins B and D in some vesicles as defined by confocal microscopy supports their co-ordinate activity in the proteolytic cascade. On the other hand, we showed that stefin A, an endogenous intracellular inhibitor of cysteine proteases, did not co-localize with cathepsin B and is presumably not involved in regulation of its enzymatic activity within the vesicles. Intracellular localization of both enzymes was confined to similar vesicles as the fluorescent degradation products of DQ-collagen IV either in individual cells or cell spheroids. The capability of these two enzymes to degrade collagen and other components of extracellular matrix is further supported by the results of Matrigel invasion assay. We showed that specific intracellular (CA-074 Me) and extracellular (CA-074) inhibitors of cathepsin B and pepstatin A, an inhibitor of cathepsin D, significantly reduced invasion of MCF10A neoT cells. Our results also show that in contrast to some other studies the activation peptide of pro-cathepsin D exhibited no mitogenic effect on MCF10A neoT, MCF-7 or HEK-293 cells. Conclusion. We conclude that lysosomal cysteine proteases cathepsins B and D predominantly participate in degradation of extracellular matrix and facilitate invasion of tumour cells. (author)

  7. Expression and Localization of Cathepsins B, D, and G in Two Cancer Stem Cell Subpopulations in Moderately Differentiated Oral Tongue Squamous Cell Carcinoma

    Therese Featherston

    2017-07-01

    Full Text Available AimWe have previously demonstrated the putative presence of two cancer stem cell (CSC subpopulations within moderately differentiated oral tongue squamous cell carcinoma (MDOTSCC, which express components of the renin–angiotensin system (RAS. In this study, we investigated the expression and localization of cathepsins B, D, and G in relation to these CSC subpopulations within MDOTSCC.Methods3,3-Diaminobenzidine (DAB and immunofluorescent (IF immunohistochemical (IHC staining was performed on MDOTSCC samples to determine the expression and localization of cathepsins B, D, and G in relation to the CSC subpopulations. NanoString mRNA analysis and colorimetric in situ hybridization (CISH were used to study their transcripts expression. Enzyme activity assays were performed to determine the activity of these cathepsins in MDOTSCC.ResultsIHC staining demonstrated expression of cathepsins B, D, and G in MDOTSCC. Cathepsins B and D were localized to CSCs within the tumor nests, while cathepsin B was localized to the CSCs within the peri-tumoral stroma, and cathepsin G was localized to the tryptase+ phenotypic mast cells within the peri-tumoral stroma. NanoString and CISH mRNA analyses confirmed transcription activation of cathepsins B, D, and G. Enzyme activity assays confirmed active cathepsins B and D, but not cathepsin G.ConclusionThe presence of cathepsins B and D on the CSCs and cathspsin G on the phenotypic mast cells suggest the presence of bypass loops for the RAS which may be a potential novel therapeutic target for MDOTSCC.

  8. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. In Vivo Molecular Imaging of Cathepsin and Matrix Metalloproteinase Activity Discriminates between Arthritic and Osteoarthritic Processes in Mice

    Eline A. Vermeij

    2014-01-01

    Full Text Available Rheumatoid arthritis (RA and osteoarthritis (OA are serologically and clinically distinctive, but at the local level, both diseases have many molecular pathways in common. In vivo molecular imaging can unravel the local pathologic processes involved in both diseases. In this study, we investigated matrix metalloproteinase (MMP and cathepsin activity during cartilage destruction, in an RA and an OA mouse model, using biophotonic imaging of substrate-based probes. Mice with collagen-induced arthritis (CIA or destabilization of the medial meniscus (DMM were imaged using near-infrared fluorescent probes, activated by several cathepsins or MMPs. Fluorescence signal intensity was compared to synovial gene expression, histology, and cartilage staining of a neoepitope of aggrecan cleaved by MMPs with the amino acids DIPEN. Increased cathepsin and MMP activity was seen during CIA, whereas the DMM model only showed increased MMP activity. DIPEN expression was seen only during CIA. A possible explanation can be differences in gene expressions; MMP3 and -13, known to produce DIPEN neoepitopes, were upregulated in the CIA model, whereas MMP12, known to be involved in elastin degradation and chemokine inhibition, was upregulated in the DMM model. Thus, molecular imaging showed no cathepsin activity at the time of cartilage damage in the DMM model, whereas both cathepsins and MMPs are active in the CIA model during disease progression.

  10. Impact of the Enhanced Permeability and Retention (EPR Effect and Cathepsins Levels on the Activity of Polymer-Drug Conjugates

    Amit K. Rajora

    2014-08-01

    Full Text Available Polymer-drug conjugates have demonstrated clinical potential in the context of anticancer therapy. However, such promising results have, to date, failed to translate into a marketed product. Polymer-drug conjugates rely on two factors for activity: (i the presence of a defective vasculature, for passive accumulation of this technology into the tumour tissue (enhanced permeability and retention (EPR effect and (ii the presence of a specific trigger at the tumour site, for selective drug release (e.g., the enzyme cathepsin B. Here, we retrospectively analyse literature data to investigate which tumour types have proved more responsive to polymer-drug conjugates and to determine correlations between the magnitude of the EPR effect and/or expression of cathepsin B. Lung, breast and ovarian cancers showed the highest response rate (30%, 47% and 41%, respectively for cathepsin-activated conjugates and 31%, 43%, 40%, across all conjugates. An analysis of literature data on cathepsin content in various tumour types showed that these tumour types had high cathepsin content (up to 3835 ng/mg for lung cancer, although marked heterogeneity was observed across different studies. In addition, these tumour types were also reported as having a high EPR effect. Our results suggest that a pre-screening of patient population could bring a more marked clinical benefit.

  11. Analysis of heparanase isoforms and cathepsin B in the plasma of patients with gastrointestinal carcinomas: analytical cross-sectional study

    Carina Mucciolo Melo

    Full Text Available CONTEXT AND OBJECTIVE: Heparanase-1 degrades heparan sulfate and has been correlated with tumor progression. Although the isoform heparanase-2 has no catalytic activity, it seems to be important for modulating heparanase-1 activity. Cathepsin B is a proteinase involved in tumor metastasis. The aim of this study was to analyze heparanase isoform expression and cathepsin B activity in plasma samples from patients with gastrointestinal carcinomas, compared with healthy individuals (control group. DESIGN AND SETTING: This was an analytical cross-sectional study. Peripheral blood samples were collected at a Brazilian public hospital, from 21 patients with histopathological diagnoses of gastrointestinal carcinomas and from 43 healthy individuals. The analyses were performed in two Brazilian medical schools. METHODS: Heparanase isoforms were identified and quantified in plasma samples by means of Western blot. The enzymatic activities of heparanase-1 and cathepsin B were also measured. RESULTS: The results demonstrated that the expression of both heparanase isoforms was significantly greater in plasma samples from gastrointestinal carcinoma patients, compared with the control group. Logistic regression analysis showed that increased heparanase-1 and heparanase-2 expression was exclusively dependent on the tumor. There was a significant increase in heparanase-1 and cathepsin B activity in the patients' plasma. CONCLUSION: Overexpression of heparanase-1 and heparanase-2, along with increased heparanase-1 and cathepsin B activity in plasma, is associated with the diagnosis of gastrointestinal carcinoma. These findings provide support for using non-invasive assays (plasma samples as an auxiliary method for diagnosing gastrointestinal tumors.

  12. Plasma cathepsin S and cystatin C levels and risk of abdominal aortic aneurysm: a randomized population-based study.

    Bing-Jie Lv

    Full Text Available BACKGROUND: Human abdominal aortic aneurysm (AAA lesions contain high levels of cathepsin S (CatS, but are deficient in its inhibitor, cystatin C. Whether plasma CatS and cystatin C levels are also altered in AAA patients remains unknown. METHODS AND RESULTS: Plasma samples were collected from 476 male AAA patients and 200 age-matched male controls to determine CatS and cystatin C levels by ELISA. Student's t test demonstrated higher plasma levels of total, active, and pro-CatS in AAA patients than in controls (P<0.001. ROC curve analysis confirmed higher plasma total, active, and pro-CatS levels in AAA patients than in controls (P<0.001. Logistic regression suggested that plasma total (odds ratio [OR] = 1.332, active (OR = 1.21, and pro-CatS (OR = 1.25 levels were independent AAA risk factors that associated positively with AAA (P<0.001. Plasma cystatin C levels associated significantly, but negatively, with AAA (OR = 0.356, P<0.001. Univariate correlation demonstrated that plasma total and active CatS levels correlated positively with body-mass index, diastolic blood pressure, and aortic diameter, but negatively with the lowest ankle-brachial index (ABI. Plasma cystatin C levels also correlated negatively with the lowest ABI. Multivariate linear regression showed that plasma total, active, and pro-CatS levels correlated positively with aortic diameter and negatively with the lowest ABI, whereas plasma cystatin C levels correlated negatively with aortic diameter and the lowest ABI, after adjusting for common AAA risk factors. CONCLUSIONS: Correlation of plasma CatS and cystatin C with aortic diameter and the lowest ABI suggest these serological parameters as biomarkers for human peripheral arterial diseases and AAA.

  13. Co-chaperone BAG2 Determines the Pro-oncogenic Role of Cathepsin B in Triple-Negative Breast Cancer Cells

    Kyung-Min Yang

    2017-12-01

    Full Text Available Summary: Triple-negative breast cancer (TNBC is considered incurable with currently available treatments, highlighting the need for therapeutic targets and predictive biomarkers. Here, we report a unique role for Bcl-2-associated athanogene 2 (BAG2, which is significantly overexpressed in TNBC, in regulating the dual functions of cathepsin B as either a pro- or anti-oncogenic enzyme. Silencing BAG2 suppresses tumorigenesis and lung metastasis and induces apoptosis by increasing the intracellular mature form of cathepsin B, whereas BAG2 expression induces metastasis by blocking the auto-cleavage processing of pro-cathepsin B via interaction with the propeptide region. BAG2 regulates pro-cathepsin B/annexin II complex formation and facilitates the trafficking of pro-cathespin-B-containing TGN38-positive vesicles toward the cell periphery, leading to the secretion of pro-cathepsin B, which induces metastasis. Collectively, our results uncover BAG2 as a regulator of the oncogenic function of pro-cathepsin B and a potential diagnostic and therapeutic target that may reduce the burden of metastatic breast cancer. : The mechanisms controlling the pro- and anti-oncogenic roles of cathepsin B are unclear. Yang et al. find that BAG2 is a regulator of the dual functions of its client protein, CTSB, facilitating the progression of TNBC. Keywords: BAG2, cathepsin B, TNBC, tumorigenesis, metastasis, breast cancer, TGN38

  14. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release.

    Chu, David S H; Johnson, Russell N; Pun, Suzie H

    2012-02-10

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylamido-terminated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK(10), containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(L)-lysine for nucleic acid binding, (ii) pHCath(D)K(10), containing the FKFL linker with oligo-(D)-lysine, and (iii) pH(D)Cath(D)K(10), containing all (D) amino acids. Cathepsin B degraded copolymers pHCathK(10) and pHCath(D)K(10) within 1 h while no degradation of pH(D)Cath(D)K(10) was observed. Polyplexes formed with pHCathK(10) copolymers show DNA release by 4 h of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(D)K(10) and pH(D)Cath(D)K(10) show no DNA release within 8 h. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK(10) was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Cathepsin activities and thermal properties of Nile tilapia (Oreochromis niloticus meat during ambient storage

    Tulakhun Nonthaput

    2017-06-01

    Full Text Available Understanding the postmortem changes at ambient aquatic temperature can be useful for estimating the time of death in environmental forensic studies when little information is available. Muscle degradation was investigated in Nile tilapia (Oreochromis niloticus in terms of the specific activities of cathepsins (B, H and L and the scavenging activities and thermal transition properties of myosin and actin, to assess postmortem changes with time (0, 1, 2, 4, 8, 12, 24 and 48 h after death. The study results are relevant to ambient temperatures in Thailand, (about 30 °C. The specific activities of the three cathepsin enzymes increased significantly with postmortem time (p < 0.05 and had a highly significant positive relationship (r = 0.987−0.997, p < 0.01, n = 32. Cathepsin H had the lowest specific activity and exhibited a different type of time profile. Its lowest specific activity was observed at 8 h, which indicated a significant role at this point in time after death. The radical scavenging activities substantially decreased with the time since death, especially within the first 1 h, while no changes occurred from 2 to 8 h, or from 12 to 24 h. The thermal properties of myosin and actin were observed up to a 24 h delay. The degradation of each protein fluctuated with the delay time; actin was more sensitive to postmortem delay than myosin. Overall, the findings from the current study might be used as primary data to estimate the time of death of an aquatic animal. A potential application is for environmental forensics in relation to fish kill events associated with pollution crimes or the mass death of exported fish under transportation insurance, as well as in animal cruelty investigations.

  16. EKSTRAKSI DAN KARAKTERISASI PARSIAL EKSTRAK KASAR ENZIM KATEPSIN DARI IKAN PATIN [Extraction and Partial Characterization of Crude Enzymes Cathepsin from Catfish

    Muhammad Zakiyul Fikri*

    2014-06-01

    Full Text Available Decomposition of protein by enzymatic process will lead to changes in odor, texture, and appearance of fish. The enzymes that play a role in the enzymatic process is primarily proteolytic enzymes. Cathepsin is one of the proteolytic enzymes found in animal tissue that hydrolyzes peptide bonds of proteins. This study aims to extract the cathepsin, characterize the crude extract derived from catfish. The stages of this research consist of the extraction and characterization of the cathepsin from catfish. Result of the extraction was crude extract of cathepsin with activity of 0.278 U/mL. The enzyme had optimum temperature of 50°C, pH 6 and substrate concentration of 2%. The activity of the cathepsin was inhibited by metal ions of Fe3+, Cu2+, Ca2+, but increased by metal ions of Mg2+.

  17. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host.

    Farah El Najjar

    Full Text Available Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.

  18. Protection against Fasciola gigantica infection in mice by vaccination with recombinant juvenile-specific cathepsin L.

    Sansri, Veerawat; Meemon, Krai; Changklungmoa, Narin; Kueakhai, Pornanan; Chantree, Pathanin; Chaichanasak, Pannigan; Lorsuwannarat, Natcha; Itagaki, Tadashi; Sobhon, Prasert

    2015-03-24

    Fasciola gigantica cathepsin L1H (FgCatL1H) is one of the major cathepsin L released by juveniles of F. gigantica to aid in the invasion of host's tissues. Due to its high sequence similarity with other cathepsin L (CatL) isoforms of late stage F. gigantica, it was considered to be a good vaccine candidate that can block all CatL-mediated protease activities and affect juveniles as well as adult parasites. In this study, recombinant proFgCatL1H protein expressed in yeast, Pichia pastoris, system was mixed with Freund's adjuvants and used to subcutaneously immunize mice that were later challenged with metacercariae of F. gigantica. The percentage of worm protection in the rproFgCatL1H-vaccinated mice compared to the non-immunized and adjuvant control mice were approximately 62.7% and 66.1%, respectively. Anti-rproFgCatL1H antisera collected from vaccinated mice reacted specifically with rproFgCatL1H and other cathepsin L isoforms of F. gigantica, but the antibodies did not cross react with antigens from other trematode and nematode parasites, including Eurytrema pancreaticum, Opisthorchis viverrini, Fischoederius cobboldi, Cotylophoron cotylophorum, Gigantocotyle explanatum, Paramphistomum cervi, and Setaria labiato-papillosa. The levels of IgG1 and IgG2a in mouse sera increased significantly at two weeks after immunization and were highest during the sixth to eighth weeks after immunization. The IgG1 level was higher than IgG2a at all periods of immunization, implicating the dominance of the Th2 response. The levels of IgG1 and IgG2a in the immune sera were shown to be strongly correlated with the numbers of worm recovery, and the correlation coefficient was higher for IgG1. The levels of serum aspartate aminotransferase and alanine transaminase were significantly lower in the sera of rproFgCatL1H-vaccinated mice than in the infected control mice indicating a lower degree of liver damage. This study demonstrated a high potential of FgCatL1H vaccine, and its

  19. Cathepsin B inhibitory activities of three new phthalate derivatives isolated from seahorse, Hippocampus Kuda Bleeler.

    Li, Yong; Qian, Zhong-Ji; Kim, Se-Kwon

    2008-12-01

    Three new phthalate acid derivatives, 2,12-diethyl-11-methylhexadecyl 2-ethyl-11-methylhexadecyl phthalate (1), 2-ethyldecyl 2-ethylundecyl phthalate (2), and bis(2-ethyldodecyl) phthalate (3), were isolated from seahorse, Hippocampus Kuda Bleeler, together with a known natural analog bis(2-ethylheptyl) phthalate (4). The structures of these compounds were elucidated mainly by means of the comprehensive analysis of their NMR spectroscopic data. The four phthalate derivatives showed dose-dependent cathepsin B inhibitions activities with IC(50) values of 0.13 mM (1), 0.21 mM (2), 0.18 mM (3), and 0.29 mM (4), respectively.

  20. IrCL1-The haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus

    Franta, Zdeněk; Sojka, Daniel; Frantová, Helena; Dvořák, Jan; Horn, Martin; Srba, Jindřich; Talacko, Pavel; Mareš, Michael; Schneider, E.; Craik, C. S.; McKerrow, J. H.; Caffrey, C. R.; Kopáček, Petr

    2011-01-01

    Roč. 41, č. 12 (2011), 1253-1262 ISSN 0020-7519 R&D Projects: GA AV ČR IAA600960910; GA ČR(CZ) GAP207/10/2183; GA ČR GPP502/11/P682; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z40550506 Keywords : tick gut * hemoglobin digestion * cathepsin L Subject RIV: EC - Immunology Impact factor: 3.393, year: 2011

  1. Modulation of cathepsin G expression in severe atopic dermatitis following medium-dose UVA1 phototherapy

    Breuckmann, Frank; von Kobyletzki, Gregor; Avermaete, Annelies; Kreuter, Alexander; Altmeyer, Peter; Gambichler, Thilo

    2002-01-01

    Abstract Background During the last decade, medium-dose UVA1 phototherapy (50 J/cm2) has achieved great value within the treatment of severe atopic dermatitis (AD). The purpose of our study was to investigate to what extent UVA1 irradiation is able to modulate the status of protease activity by the use of a monoclonal antibody labeling cathepsin G. Methods In order to further elucidate the mechanisms by which medium-dose UVA1 irradiation leads to an improvement of skin status in patients with...

  2. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets

    Sojka, Daniel; Hartmann, David; Bartošová-Sojková, Pavla; Dvořák, Jan

    2016-01-01

    Roč. 32, č. 9 (2016), s. 708-723 ISSN 1471-4922 R&D Projects: GA ČR GA14-33693S; GA ČR GA13-11043S; GA ČR(CZ) GAP302/11/1481 EU Projects: European Commission(XE) 248642 - SCHISTOSOMA PROTEASE Institutional support: RVO:60077344 ; RVO:68378050 Keywords : aspartic peptidases * cathepsin D * hemoglobinolysis * parasites * vectors Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 6.333, year: 2016

  3. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors.

    Allen, Paul; Bragg, Ryan A; Caffrey, Moya; Ericsson, Cecilia; Hickey, Michael J; Kingston, Lee P; Elmore, Charles S

    2017-02-01

    As part of a medicinal chemistry program aimed at developing a highly potent and selective cathepsin C inhibitor, tritium, carbon-14, and stable isotope-labeled materials were required. The synthesis of tritium-labeled methanesulfonate 5 was achieved via catalytic tritiolysis of a chloro precursor, albeit at a low radiochemical purity of 67%. Tritium-labeled AZD5248 was prepared via a 3-stage synthesis, utilizing amide-directed hydrogen isotope exchange. Carbon-14 and stable isotope-labeled AZD5248 were successfully prepared through modifications of the medicinal chemistry synthetic route, enabling the use of available labeled intermediates. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  5. Molecular cloning and functional characterization of cathepsin D from sea cucumber Apostichopus japonicus.

    Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Qin, Lei; Du, Ming

    2017-11-01

    Cathepsin D (CTSD, EC 3.4.23.5) belongs to aspartic protease family, which is located in lysosomes and is distributed in diverse tissues and cells. CTSD has a wide variety of physiological functions, owing to its proteolytic activity in degradating proteins and peptides. In the current study, the full length cDNA of sea cucumber (Apostichopus japonicus) cathepsin D (AjCTSD) was firstly cloned, then the association between AjCTSD and sea cucumber autolysis was investigated. The full length cDNA of AjCTSD was 2896 bp, with an open reading frame (ORF) for 391 amino acids. AjCTSD was widely expressed in body wall, muscle and intestine; the expression level was the highest in intestine, followed by muscle and body wall. Compared to fresh tissues, AjCTSD expression levels were significantly increased in all examined autolytic tissues. The purified recombinant AjCTSD promoted the degradation of sea cucumber muscle. In conclusion, AjCTSD contributed to sea cucumber muscle autolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Crystallographic, DFT and docking (cathepsin B) studies on an organotellurium(IV) compound

    Caracelli, Ignez; Maganhi, Stella H.; Zukerman-Schpector, Julio; Sousa Madureira, Lucas; Stefani, Helio A.; Guadagnin, Rafael C.; Tiekink, Edward R.T.

    2016-01-01

    Some biologically active organotellurium compounds exhibit inhibitory potency against cathepsin B. In this study, an alkyl derivative, viz. [CH 3 (CH 2 ) 2 C(I)=C(H)](nBu)TeI 2 , 1, has been structurally characterised by X-ray crystallography and shown to be coordinated within a C 2 I 2 donor set. When the stereochemically active lone pair of electrons is taken into account, a distorted trigonal bipyramidal geometry results with the iodide atoms in axial positions. Both intra- and inter-molecular Te..I interactions are also noted. If all interactions are considered, the coordination geometry is based on a Ψ-pentagonal bipyramidal geometry. An unusual feature of the structure is the curving of the functionalised C 5 chain. This feature has been explored by DFT methods and shown to arise as a result of close C-H..I interactions. A docking study (cathepsin B) was performed to understand the inhibition mechanism and to compare the new results with previous observations. Notably, 1 has the same pose exhibited by analogous biologically active compounds with aryl groups. Thus, the present study suggests that (alkyl) 2 TeX 2 compounds should also be evaluated for biological activity.

  7. Crystallographic, DFT and docking (cathepsin B) studies on an organotellurium(IV) compound

    Caracelli, Ignez; Maganhi, Stella H. [Univ. Federal de Sao Carlos (Brazil). BioMat; Zukerman-Schpector, Julio; Sousa Madureira, Lucas [Univ. Federal de Sao Carlos (Brazil). Lab. de Cristalografia, Estereodinamica e Modelagem Molecular; Stefani, Helio A. [Sao Paulo Univ. (Brazil). Dept. de Farmacia; Guadagnin, Rafael C. [Univ. Federal de Sao Paulo, Diadema (Brazil). Inst. e Ciencias Mabientais, Quimicas e Farmaceuticas; Tiekink, Edward R.T. [Sunway Univ., Selangor Darul Ehsan (Malaysia). Centre for Crystalline Materials

    2016-08-01

    Some biologically active organotellurium compounds exhibit inhibitory potency against cathepsin B. In this study, an alkyl derivative, viz. [CH{sub 3}(CH{sub 2}){sub 2}C(I)=C(H)](nBu)TeI{sub 2}, 1, has been structurally characterised by X-ray crystallography and shown to be coordinated within a C{sub 2}I{sub 2} donor set. When the stereochemically active lone pair of electrons is taken into account, a distorted trigonal bipyramidal geometry results with the iodide atoms in axial positions. Both intra- and inter-molecular Te..I interactions are also noted. If all interactions are considered, the coordination geometry is based on a Ψ-pentagonal bipyramidal geometry. An unusual feature of the structure is the curving of the functionalised C{sub 5} chain. This feature has been explored by DFT methods and shown to arise as a result of close C-H..I interactions. A docking study (cathepsin B) was performed to understand the inhibition mechanism and to compare the new results with previous observations. Notably, 1 has the same pose exhibited by analogous biologically active compounds with aryl groups. Thus, the present study suggests that (alkyl){sub 2}TeX{sub 2} compounds should also be evaluated for biological activity.

  8. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica.

    Siricoon, Sinee; Grams, Suksiri Vichasri; Grams, Rudi

    2012-12-01

    Cysteine proteases are important antigens in the liver fluke genus Fasciola, essential for infection, protection and nutrition. While their biochemistry, biological roles and application as vaccines have been thoroughly studied there is a lack of data concerning their regulation. In the present study we have continued our investigation of cysteine protease inhibitors in Fasciola gigantica and demonstrate, in comparison with FgStefin-1 and human cystatin C, that a second type 1 cystatin of the parasite, FgStefin-2, has been evolutionary adapted to block cathepsin B. The protein, which unusually for a type 1 cystatin carries a signal peptide, is expressed from the metacercarial to adult stage and located in the epithelial cells of the intestinal tract in all stages and in the prostate gland cells in adults. Both cell types may contribute to the released FgStefin-2 observed in the ES product of the parasite. Distinct isoforms of cathepsin B are essential for host tissue penetration during the early infection process and FgStefin-2 may act as key regulator, required to protect the minute juvenile from autoproteolysis. Expression in the prostate gland in the adult stage suggests an additional regulative role of cysteine protease activity in the reproductive system. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Lipotoxicity Mediated Cell Dysfunction and Death Involves Lysosomal Membrane Permeabilization and Cathepsin L Activity

    Almaguel, Frankis G.; Liu, Jo-Wen; Pacheco, Fabio J.; De Leon, Daisy; Casiano, Carlos A.; De Leon, Marino

    2010-01-01

    Lipotoxicity, which is triggered when cells are exposed to elevated levels of free fatty acids, involves cell dysfunction and apoptosis and is emerging as an underlying factor contributing to various pathological conditions including disorders of the central nervous system and diabetes. We have shown that palmitic acid (PA)-induced lipotoxicity (PA-LTx) in nerve growth factor-differentiated PC12 (NGFDPC12) cells is linked to an augmented state of cellular oxidative stress (ASCOS) and apoptosis, and that these events are inhibited by docosahexanoic acid (DHA). The mechanisms of PA-LTx in nerve cells are not well understood, but our previous findings indicate that it involves ROS generation, mitochondrial membrane permeabilization (MMP), and caspase activation. The present study used nerve growth factor differentiated PC12 cells (NGFDPC12 cells) and found that lysosomal membrane permeabilization (LMP) is an early event during PA-induced lipotoxicity that precedes MMP and apoptosis. Cathepsin L, but not cathepsin B, is an important contributor in this process since its pharmacological inhibition significantly attenuated LMP, MMP, and apoptosis. In addition, co-treatment of NGFDPC12 cells undergoing lipotoxicity with DHA significantly reduced LMP, suggesting that DHA acts by antagonizing upstream signals leading to lysosomal dysfunction. These results suggest that LMP is a key early mediator of lipotoxicity, and underscore the value of interventions targeting upstream signals leading to LMP for the treatment of pathological conditions associated with lipotoxicity. PMID:20043885

  10. Cathepsin B Expression and the Correlation with Clinical Aspects of Oral Squamous Cell Carcinoma.

    Yang, Wei-En; Ho, Chuan-Chen; Yang, Shun-Fa; Lin, Shu-Hui; Yeh, Kun-Tu; Lin, Chiao-Wen; Chen, Mu-Kuan

    2016-01-01

    Cathepsin B (CTSB), a member of the cathepsin family, is a cysteine protease that is widely distributed in the lysosomes of cells in various tissues. It is overexpressed in several human cancers and may be related to tumorigenesis. The main purpose of this study was to analyze CTSB expression in oral squamous cell carcinoma (OSCC) and its correlation with patient prognosis. Tissue microarrays were used to detect CTSB expression in 280 patients and to examine the association between CTSB expression and clinicopathological parameters. In addition, the metastatic effects of the CTSB knockdown on two oral cancer cell lines were investigated by transwell migration assay. Cytoplasmic CTSB expression was detected in 34.6% (97/280) of patients. CTSB expression was correlated with positive lymph node metastasis (p = 0.007) and higher tumor grade (p = 0.008) but not with tumor size and distant metastasis. In addition, multivariate analysis using a Cox proportional hazards model revealed a higher hazard ratio, demonstrating that CTSB expression was an independent unfavorable prognostic factor in buccal mucosa carcinoma patients. Furthermore, the Kaplan-Meier curve revealed that buccal mucosa OSCC patients with positive CTSB expression had significantly shorter overall survival. Moreover, treatment with the CTSB siRNA exerted an inhibitory effect on migration in OC2 and CAL27 oral cancer cells. We conclude that CTSB expression may be useful for determining OSCC prognosis, particularly for patients with lymph node metastasis, and may function as a biomarker of the survival of OSCC patients in Taiwan.

  11. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph; Reinheckel, Thomas

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex, resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.

  12. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  13. A novel approach for reliable detection of cathepsin S activities in mouse antigen presenting cells.

    Steimle, Alex; Kalbacher, Hubert; Maurer, Andreas; Beifuss, Brigitte; Bender, Annika; Schäfer, Andrea; Müller, Ricarda; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2016-05-01

    Cathepsin S (CTSS) is a eukaryotic protease mostly expressed in professional antigen presenting cells (APCs). Since CTSS activity regulation plays a role in the pathogenesis of various autoimmune diseases like multiple sclerosis, atherosclerosis, Sjögren's syndrome and psoriasis as well as in cancer progression, there is an ongoing interest in the reliable detection of cathepsin S activity. Various applications have been invented for specific detection of this enzyme. However, most of them have only been shown to be suitable for human samples, do not deliver quantitative results or the experimental procedure requires technical equipment that is not commonly available in a standard laboratory. We have tested a fluorogen substrate, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2, that has been described to specifically detect CTSS activities in human APCs for its potential use for mouse samples. We have modified the protocol and thereby offer a cheap, easy, reproducible and quick activity assay to detect CTSS activities in mouse APCs. Since most of basic research on CTSS is performed in mice, this method closes a gap and offers a possibility for reliable and quantitative CTSS activity detection that can be performed in almost every laboratory. Copyright © 2016. Published by Elsevier B.V.

  14. Design of a highly selective quenched activity-based probe and its application in dual color imaging studies of cathepsin S activity localization.

    Oresic Bender, Kristina; Ofori, Leslie; van der Linden, Wouter A; Mock, Elliot D; Datta, Gopal K; Chowdhury, Somenath; Li, Hao; Segal, Ehud; Sanchez Lopez, Mateo; Ellman, Jonathan A; Figdor, Carl G; Bogyo, Matthew; Verdoes, Martijn

    2015-04-15

    The cysteine cathepsins are a group of 11 proteases whose function was originally believed to be the degradation of endocytosed material with a high degree of redundancy. However, it has become clear that these enzymes are also important regulators of both health and disease. Thus, selective tools that can discriminate between members of this highly related class of enzymes will be critical to further delineate the unique biological functions of individual cathepsins. Here we present the design and synthesis of a near-infrared quenched activity-based probe (qABP) that selectively targets cathepsin S which is highly expressed in immune cells. Importantly, this high degree of selectivity is retained both in vitro and in vivo. In combination with a new green-fluorescent pan-reactive cysteine cathepsin qABP we performed dual color labeling studies in bone marrow-derived immune cells and identified vesicles containing exclusively cathepsin S activity. This observation demonstrates the value of our complementary cathepsin probes and provides evidence for the existence of specific localization of cathepsin S activity in dendritic cells.

  15. Tumor Necrosis Factor-α Induced Apoptosis in U937 Cells Promotes Cathepsin D-Independent Stefin B Degradation.

    Bidovec, Katja; Božič, Janja; Dolenc, Iztok; Turk, Boris; Turk, Vito; Stoka, Veronika

    2017-12-01

    Lysosomal cathepsins were previously found to be involved in tumor necrosis factor-α (TNFα)-induced apoptosis. However, there are opposing views regarding their role as either initiators or amplifiers of the signaling cascade as well as the order of molecular events during this process. In this study, we investigated the role of cathepsin D (catD) in TNFα/cycloheximide-induced apoptosis in U937 human monocytic cells. TNFα-induced apoptosis proceeds through caspase-8 activation, processing of the pro-apoptotic molecule Bid, mitochondrial membrane permeabilization, and caspase-3 activation. The translocation of lysosomal catD into the cytosol was a late event, suggesting that lysosomal membrane permeabilization and the release of cathepsins are not required for the induction of apoptosis, but rather amplifies the process through the generation of reactive oxygen species. For the first time, we show that apoptosis is accompanied by degradation of the cysteine cathepsin inhibitor stefin B (StfB). CatD did not exhibit a crucial role in this step. However, this degradation was partially prevented through pre-incubation with the antioxidant N-acetyl cysteine, although it did not prevent apoptosis and its progression. These results suggest that the degradation of StfB, as a response to TNFα, could induce a cell death amplification effect as a result of progressive damage to lysosomes during TNFα treatment. J. Cell. Biochem. 118: 4813-4820, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Synergistic apoptotic response between valproic acid and fludarabine in chronic lymphocytic leukaemia (CLL) cells involves the lysosomal protease cathepsin B

    Yoon, J-Y; Szwajcer, D; Ishdorj, G; Benjaminson, P; Xiao, W; Kumar, R; Johnston, J B; Gibson, S B

    2013-01-01

    Fludarabine, a nucleoside analogue, is commonly used in combination with other agents for the treatment of chronic lymphocytic leukaemia (CLL). In previous studies, valproic acid (VPA), an inhibitor of histone deacetylases, combined with fludarabine to synergistically increase apoptotic cell death in CLL cells. In the present study, we found that the combination of fludarabine and VPA decreases the level of the anti-apoptotic proteins Mcl-1 and XIAP in primary CLL cells. Treatment with fludarabine alone, or in combination with VPA, led to the loss of lysosome integrity, and chemical inhibition of the lysosomal protease cathepsin B, using CA074-Me, was sufficient to reduce apoptosis. VPA treatment increased cathepsin B levels and activities in primary CLL cells, thereby priming CLL cells for lysosome-mediated cell death. Six previously treated patients with relapsed CLL were treated with VPA, followed by VPA/fludarabine combination. The combined therapy resulted in reduced lymphocyte count in five out of six and reduced lymph node sizes in four out of six patients. In vivo VPA treatment increased histone-3 acetylation and cathepsin B expression levels. Thus, the synergistic apoptotic response with VPA and fludarabine in CLL is mediated by cathepsin B activation leading to a decrease in the anti-apoptotic proteins

  17. Construction of a plasmid coding for green fluorescent protein tagged cathepsin L and data on expression in colorectal carcinoma cells

    Tripti Tamhane

    2015-12-01

    Full Text Available The endo-lysosomal cysteine cathepsin L has recently been shown to have moonlighting activities in that its unexpected nuclear localization in colorectal carcinoma cells is involved in cell cycle progression (Tamhane et al., 2015 [1]. Here, we show data on the construction and sequence of a plasmid coding for human cathepsin L tagged with an enhanced green fluorescent protein (phCL-EGFP in which the fluorescent protein is covalently attached to the C-terminus of the protease. The plasmid was used for transfection of HCT116 colorectal carcinoma cells, while data from non-transfected and pEGFP-N1-transfected cells is also shown. Immunoblotting data of lysates from non-transfected controls and HCT116 cells transfected with pEGFP-N1 and phCL-EGFP, showed stable expression of cathepsin L-enhanced green fluorescent protein chimeras, while endogenous cathepsin L protein amounts exceed those of hCL-EGFP chimeras. An effect of phCL-EGFP expression on proliferation and metabolic states of HCT116 cells at 24 h post-transfection was observed.

  18. Single- and Double-Headed Chemical Probes for Detection of Active Cathepsin D in a Cancer Cell Proteome

    Nussbaumerová, Martina; Srp, Jaroslav; Máša, Martin; Hradilek, Martin; Šanda, Miloslav; Reiniš, Milan; Horn, Martin; Mareš, Michael

    2010-01-01

    Roč. 11, č. 11 (2010), s. 1538-1541 ISSN 1439-4227 R&D Projects: GA AV ČR IAA400550705 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : cathepsin D * cancer * activity-based probes Subject RIV: CE - Biochemistry Impact factor: 3.945, year: 2010

  19. Maternal exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis.

    Ebrahimzadeh Bideskan, Alireza; Mohammadipour, Abbas; Fazel, Alireza; Haghir, Hossein; Rafatpanah, Houshang; Hosseini, Mahmoud; Rajabzadeh, Aliakbar

    2017-07-05

    The usage of Titanium dioxide nanoparticles (TiO 2 -NPs) covers a vast area in different fields ranging from cosmetics and food to the production of drugs. Maternal exposure to TiO 2 -NPs during developmental period has been associated with hippocampal injury and with a decrease in learning and memory status of the offspring. However, little is known about its injury mechanism. This paper describes the in vivo neurotoxic effects of TiO 2 -NPs on rat offspring hippocampus during developmental period. Pregnant and lactating Wistar rats received intragastric TiO 2 -NPs (100mg/kg body weight) daily from gestational day (GD) 2 to (GD) 21 and postnatal day (PD) 2 to (PD) 21 respectively. Animals in the control groups received an equal volume of distilled water via gavage. At the end of the treatment process, offspring were deeply anesthetized and sacrificed. Then brains of each group were collected and sections of the rat offspring's brains were stained using TUNEL staining (for detection of apoptotic cells) and immunostaining (for neurogenesis). Moreover, the right hippocampus (n=6 per each group) were removed from the right hemisphere for evaluating the expression of Bax and Bcl-2 level. Results of histopatological examination by TUNEL staining showed that maternal exposure to TiO 2 -NPs during pregnancy and lactation periods increased apoptotic cells significantly (P<0.01) in the offspring hippocampus. The immunolabeling of double cortin (DCX) protein as neurogenesis marker also showed that TiO 2 -NPs reduced neurogenesis in the hippocampus of the offspring (P<0.05). Moreover, in comparison with the control group, the mRNA levels of Bax and Bcl-2 in the TiO 2 -NPs group significantly increased and decreased, respectively (P<0.01). These findings provide strong evidence that maternal exposure to TiO 2 -NPs significantly impact hippocampal neurogenesis and apoptosis in the offspring. The potential impact of nanoparticle exposure for millions of pregnant mothers and

  20. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  1. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling.

    Zhang, T; Rawson, D M; Tosti, L; Carnevali, O

    2008-04-01

    This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk

  2. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles.

    Oh, Jung-Hwa; Son, Mi-Young; Choi, Mi-Sun; Kim, Soojin; Choi, A-Young; Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Janghwan; Song, Chang Woo; Yoon, Seokjoo

    2016-05-15

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10-200μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion.

    Gogos, J A; Thompson, R; Lowry, W; Sloane, B F; Weintraub, H; Horwitz, M

    1996-08-01

    To identify genes regulated during skeletal muscle differentiation, we have infected mouse C2C12 myoblasts with retroviral gene trap vectors, containing a promoterless marker gene with a 5' splice acceptor signal. Integration of the vector adjacent to an actively transcribed gene places the marker under the transcriptional control of the endogenous gene, while the adjacent vector sequences facilitate cloning. The vector insertionally mutates the trapped locus and may also form fusion proteins with the endogenous gene product. We have screened several hundred clones, each containing a trapping vector integrated into a different endogenous gene. In agreement with previous estimates based on hybridization kinetics, we find that a large proportion of all genes expressed in myoblasts are regulated during differentiation. Many of these genes undergo unique temporal patterns of activation or repression during cell growth and myotube formation, and some show specific patterns of subcellular localization. The first gene we have identified with this strategy is the lysosomal cysteine protease cathepsin B. Expression from the trapped allele is upregulated during early myoblast fusion and downregulated in myotubes. A direct role for cathepsin B in myoblast growth and fusion is suggested by the observation that the trapped cells deficient in cathepsin B activity have an unusual morphology and reduced survival in low-serum media and undergo differentiation with impaired cellular fusion. The phenotype is reproduced by antisense cathepsin B expression in parental C2C12 myoblasts. The cellular phenotype is similar to that observed in cultured myoblasts from patients with I cell disease, in which there is diminished accumulation of lysosomal enzymes. This suggests that a specific deficiency of cathepsin B could contribute to the myopathic component of this illness.

  4. Identification of Chalcones as Fasciola hepatica Cathepsin L Inhibitors Using a Comprehensive Experimental and Computational Approach.

    Florencia Ferraro

    2016-07-01

    Full Text Available Increased reports of human infections have led fasciolosis, a widespread disease of cattle and sheep caused by the liver flukes Fasciola hepatica and Fasciola gigantica, to be considered an emerging zoonotic disease. Chemotherapy is the main control measure available, and triclabendazole is the preferred drug since is effective against both juvenile and mature parasites. However, resistance to triclabendazole has been reported in several countries urging the search of new chemical entities and target molecules to control fluke infections.We searched a library of forty flavonoid derivatives for inhibitors of key stage specific Fasciola hepatica cysteine proteases (FhCL3 and FhCL1. Chalcones substituted with phenyl and naphtyl groups emerged as good cathepsin L inhibitors, interacting more frequently with two putative binding sites within the active site cleft of the enzymes. One of the compounds, C34, tightly bounds to juvenile specific FhCL3 with an IC50 of 5.6 μM. We demonstrated that C34 is a slow-reversible inhibitor that interacts with the Cys-His catalytic dyad and key S2 and S3 pocket residues, determinants of the substrate specificity of this family of cysteine proteases. Interestingly, C34 induces a reduction in NEJ ability to migrate through the gut wall and a loss of motility phenotype that leads to NEJ death within a week in vitro, while it is not cytotoxic to bovine cells.Up to date there are no reports of in vitro screening for non-peptidic inhibitors of Fasciola hepatica cathepsins, while in general these are considered as the best strategy for in vivo inhibition. We have identified chalcones as novel inhibitors of the two main Cathepsins secreted by juvenile and adult liver flukes. Interestingly, one compound (C34 is highly active towards the juvenile enzyme reducing larval ability to penetrate the gut wall and decreasing NEJ´s viability in vitro. These findings open new avenues for the development of novel agents to control

  5. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles

    Oh, Jung-Hwa; Son, Mi-Young; Choi, Mi-Sun; Kim, Soojin; Choi, A-young; Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Janghwan; Song, Chang Woo; Yoon, Seokjoo

    2016-01-01

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10–200 μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24 h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24 h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. - Highlights: • This system served as a suitable model for developmental neurotoxicity testing. • Ag NPs induce the apoptosis in human neural cells by ROS generation. • Genes for development of neurons were dysregulated in response to Ag NPs. • Molecular events during early developmental neurotoxicity were proposed.

  6. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles

    Oh, Jung-Hwa [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of); Son, Mi-Young [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Department of functional genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Choi, Mi-Sun; Kim, Soojin; Choi, A-young [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Lee, Hyang-Ae; Kim, Ki-Suk [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of); Kim, Janghwan [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Department of functional genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Song, Chang Woo, E-mail: cwsong@kitox.re.kr [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of); Yoon, Seokjoo, E-mail: sjyoon@kitox.re.kr [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of)

    2016-05-15

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10–200 μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24 h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24 h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. - Highlights: • This system served as a suitable model for developmental neurotoxicity testing. • Ag NPs induce the apoptosis in human neural cells by ROS generation. • Genes for development of neurons were dysregulated in response to Ag NPs. • Molecular events during early developmental neurotoxicity were proposed.

  7. A cathepsin L-like protease from Strongylus vulgaris: an orthologue of Caenorhabditis elegans CPL-1.

    Ultaigh, Sinéad Nic An; Carolan, James C; Britton, Collette; Murray, Linda; Ryan, Michael F

    2009-04-01

    Cathespin L-like proteases (CPLs), characterized from a wide range of helminths, are significant in helminth biology. For example, in Caenorhabditis elegans CPL is essential for embryogenesis. Here, we report a cathepsin L-like gene from three species of strongyles that parasitize the horse, and describe the isolation of a cpl gene (Sv-cpl-1) from Strongylus vulgaris, the first such from equine strongyles. It encodes a protein of 354 amino acids with high similarity to other parasitic Strongylida (90-91%), and C.elegans CPL-1 (87%), a member of the same Clade. As S.vulgaris cpl-1 rescued the embryonic lethal phenotype of the C.elegans cpl-1 mutant, these genes may be orthologues, sharing the same function in each species. Targeting Sv-CPL-1 might enable novel control strategies by decreasing parasite development and transmission.

  8. Purification and characterization of cathepsin D from herring muscle ( Clupea harengus )

    Nielsen, L.B.; Nielsen, Henrik Hauch

    2001-01-01

    hamatus) and trout ovary (Oncorhynchus mykiss). Digestion of the P-chain of oxidized insulin resulted in preferential cleavage at Leu(15)-Tyr(16), (47%), Tyr(16)-Leu(17) (34%) and Ala(14)- Leu(15) (18%). Incubation with myofibrils from herring muscle at pH 4.23 showed that the enzyme mainly degraded......Cathepsin D was purified and concentrated 469-fold from a homogenate of Clupea harengus muscle. The purified enzyme is a monomer with a molecular weight of 38 000-39 000. It is inhibited by pepstatin and has optimal activity at pH 2.5 with hemoglobin as the substrate. The isoelectric point is at p...

  9. Targeting Cathepsin E in Pancreatic Cancer by a Small Molecule Allows In Vivo Detection

    Edmund J. Keliher

    2013-07-01

    Full Text Available When resectable, invasive pancreatic ductal adenocarcinoma (PDAC is most commonly treated with surgery and radiochemotherapy. Given the intricate local anatomy and locoregional mode of dissemination, achieving clean surgical margins can be a significant challenge. On the basis of observations that cathepsin E (CTSE is overexpressed in PDAC and that an United States Food and Drug Administration (FDA-approved protease inhibitor has high affinity for CTSE, we have developed a CTSE optical imaging agent [ritonavir tetramethyl-BODIPY (RIT-TMB] for potential intraoperative use.We show nanomolar affinity [half maximal inhibitory concentration (IC50 of 39.9 ± 1.2 nM] against CTSE of the RIT-TMB in biochemical assays and intracellular accumulation and target-to-background ratios that allow specific delineation of individual cancer cells. This approach should be useful for more refined surgical staging, planning, and resection with curative intent.

  10. E2-mediated cathepsin D (CTSD) activation involves looping of distal enhancer elements.

    Bretschneider, Nancy; Kangaspeska, Sara; Seifert, Martin; Reid, George; Gannon, Frank; Denger, Stefanie

    2008-08-01

    Estrogen receptor alpha (ERalpha) is a ligand dependent transcription factor that regulates the expression of target genes through interacting with cis-acting estrogen response elements (EREs). However, only a minority of ERalpha binding sites are located within the proximal promoter regions of responsive genes. Here we report the characterization of an ERE located 9kbp upstream of the TSS of the cathepsin D gene (CTSD) that up-regulates CTSD expression upon estrogen stimulation in MCF-7 cells. Using ChIP, we show recruitment of ERalpha and phosphorylated PolII at the CTSD distal enhancer region. Moreover, we determine the kinetics of transient CpG methylation on the promoter region of CTSD and for the first time, at a distal enhancer element. We show that ERalpha is crucial for long-distance regulation of CTSD expression involving a looping mechanism.

  11. Purification and characterization of cathepsin L in arrowtooth flounder (Atheresthes stomias) muscle.

    Visessanguan, Wonnop; Benjakul, Soottawat; An, Haejung

    2003-03-01

    A predominant, heat-activated proteinase in muscle extract of arrowtooth flounder (Atheresthes stomias) was purified to 55-fold by heat treatment, followed by a series of chromatographic separations. The apparent molecular mass of the purified enzyme was 27 kDa by size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteinase had high affinity and activity toward Z-Phe-Arg-NMec with K(m) and k(cat) values of 8.2 microM and 12.2/s, respectively. Activity was inhibited by sulfhydryl reagents and activated by reducing agents. The purified proteinase displayed optimal activity at pH 5.0-5.5 and 60 degrees C, respectively. Consistent with the properties of proteases from other species, the heat-activated proteinase in arrowtooth flounder can be identified as cathepsin L.

  12. Cathepsin D immobilized capillary reactors for on-flow screening assays.

    Cornelio, Vivian Estevam; de Moraes, Marcela Cristina; Domingues, Vanessa de Cassia; Fernandes, João Batista; da Silva, Maria Fátima das Gracas Fernandes; Cass, Quezia Bezerra; Vieira, Paulo Cezar

    2018-03-20

    The treatment of diseases using enzymes as targets has called for the development of new and reliable methods for screening. The protease cathepsin D is one such target involved in several diseases such as tumors, degenerative processes, and vital processes of parasites causing schistosomiasis. Herein, we describe the preparation of a fused silica capillary, cathepsin D (CatD)-immobilized enzyme reactor (IMER) using in a multidimensional High Performance Liquid Chromatography-based method (2D-HPLC) and zonal affinity chromatography as an alternative in the search for new ligands. The activity and kinetic parameters of CatD-IMER were evaluated by monitoring the product MOCAc-Gly-Lys-Pro-Ile-Leu-Phe (P-MOCAc) (K M  = 81.9 ± 7.49 μmol/L) generated by cleavage of the fluorogenic substrate MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-d-Arg-NH2 (S-MOCAc). Stability studies have indicated that CatD-IMER retained 20% of activity after 5 months, a relevant result, because proteases are susceptible to autoproteolysis in solution assays with free enzyme. In the search for inhibitors, 12 crude natural product extracts were analyzed using CatD-IMER as the target, resulting in the isolation of different classes of natural products. In addition, 26 compounds obtained from different species of plants were also screened, demonstrating the efficiency and reproducibility of the herein reported assay even in the case of complex matrices such as plant crude extracts. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. (BDMCA) Nanoparticles

    Erah

    Available online at http://www.tjpr.org. Research Article ... Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using .... Characterization of BDMCA nanoparticles. The nanoparticle ...

  14. Functional Magnetic Nanoparticles

    Gass, James

    Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.

  15. Molecular cloning, characterization and functional analysis of a novel juvenile-specific cathepsin L of Fasciola gigantica.

    Sansri, Veerawat; Changklungmoa, Narin; Chaichanasak, Pannigan; Sobhon, Prasert; Meemon, Krai

    2013-10-01

    Cathepsin L proteases are a major class of endopeptidases expressed at a high level in Fasciola parasites. Several isoforms of cathepsin L were detected and they may perform different functions during the parasite development. In this study, a complete cDNA encoding a cathepsin L protease was cloned from a newly excysted juvenile (NEJ) cDNA library of Fasciola gigantica and named FgCatL1H. It encoded a 326 amino acid preproenzyme which shared 62.8-83.1% and 39.5-42.9% identity to Fasciola spp. and mammalian cathepsins L, respectively. All functionally important residues previously described for cathepsin L were conserved in FgCatL1H. Phylogenetic analysis demonstrated that FgCatL1H belonged to a distinct group, clade 4, with respect to adult and other juvenile Fasciola cathepsin L genes. FgCatL1H expression was detected by RT-PCR, using gene specific primers, in metacercariae and NEJ, and the expression gradually decreased in advanced developmental stages. A recombinant proFgCatL1H (rproFgCatL1H) was expressed in the yeast Pichia pastoris, affinity purified, and found to migrate in SDS-PAGE at approximately 47.6 and 38.3kDa in glycosylated and deglycosylated forms, respectively. The molecular mass of the activated mature rFgCatL1H in glycosylated form was approximately 40.7kDa. Immunoblotting and immunohistochemistry using rabbit antibodies against rproFgCatL1H showed that FgCatL1H was predominantly expressed in epithelial cells of the digestive tract of metacercariae, NEJs and juveniles of F. gigantica. FgCatL1H could cleave the synthetic fluorogenic substrate Z-Phe-Arg-MCA preferentially over Z-Gly-Pro-Arg-MCA at an optimum pH of 6.5. It also showed hydrolytic activity against native substrates, including type I collagen, laminin, and immunoglobulin G (IgG) in vitro, suggesting possible roles in host tissue migration and immune evasion. Therefore, the FgCatL1H is a possible target for vaccine and chemotherapy for controlling F. gigantica infection. Copyright

  16. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation.

    Chen, W; Gao, B; Hao, L; Zhu, G; Jules, J; MacDougall, M J; Wang, J; Han, X; Zhou, X; Li, Y-P

    2016-10-01

    Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A cardinal role for cathepsin d in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci.

    Martin A Bewley

    2011-01-01

    Full Text Available The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D(-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function.

  18. Cathepsin C and plasma glutamate carboxypeptidase secreted from Fischer rat thyroid cells liberate thyroxin from the N-terminus of thyroglobulin.

    Suban, Dejan; Zajc, Tajana; Renko, Miha; Turk, Boris; Turk, Vito; Dolenc, Iztok

    2012-03-01

    The release of a thyroid hormone from thyroglobulin is controlled by a complex regulatory system. We focused on the extracellular action of two lysosomal enzymes, cathepsin C (catC, dipeptidyl peptidase I) and PGCP (lysosomal dipeptidase), on thyroglobulin, and their ability to liberate the hormone thyroxin. Cathepsin C, an exopeptidase, removes dipeptides from the N-terminus of substrates, and PGCP hydrolyses dipeptides to amino acids. In vitro experiments proved that cathepsin C removes up to 12 amino acids from the N-terminus of porcine thyroglobulin, including a dipeptide with thyroxin on position 5. The newly formed N-terminus, Arg-Pro-, was not hydrolysed further by cathepsin C. Cell culture experiments with FRTL-5 cell line showed localization of cathepsin C and PGCP and their secretion into the medium. Secretion of the active cathepsin C from FRTL-5 cells is stimulated by TSH, insulin, and/or somatostatin. The released enzymes liberate thyroxin from porcine thyroglobulin added to media. The hormone liberation can be reduced by synthetic inhibitors of cysteine proteinases and metalloproteinases. Additionally, we show that TSH, insulin, and/or somatostatin induce up-regulation of N-acetylglucosaminyltransferase 1, the enzyme responsible for the initiation of biosynthesis of hybrid and complex N-glycosylation of proteins. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp

    Jedličková, L.; Dvořáková, H.; Dvořák, J.; Kašný, M.; Ulrychová, Lenka; Vorel, J.; Žárský, V.; Mikeš, L.

    2018-01-01

    Roč. 11, Mar 6 (2018), č. článku 142. ISSN 1756-3305 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : cysteine peptidase * protease * cathepsin * S2 subsite * haematophagy * blood digestion Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.080, year: 2016 https:// parasites andvectors.biomedcentral.com/ articles /10.1186/s13071-018-2666-2

  20. Development of an SPR imaging biosensor for determination of cathepsin G in saliva and white blood cells

    Gorodkiewicz, E.; Wojtulewski, K.; Regulska, E.

    2011-01-01

    Cathepsin G (CatG) is an endopeptidase that is associated with the early immune response. The synthetic compound cathepsin G inhibitor I (CGI-I) was tested for its ability to inhibit the activity of CatG via a new surface plasmon resonance imaging assay. CGI-I was immobilized on the gold surface of an SPR sensor that was first modified with 1-octadecanethiol. A concentration of CGI-I equal to 4.0 μg.mL -1 and a pH of 8.0 were found to give the best results. The dynamic response of the sensor ranges from 0. 25 to 1. 5 ng.mL -1 , and the detection limit is 0. 12 ng.mL -1 . The sensor was applied to detect CatG in human saliva and white blood cells. (author)

  1. Active subsite properties, subsite residues and targeting to lysosomes or midgut lumen of cathepsins L from the beetle Tenebrio molitor.

    Damasceno, Ticiane F; Dias, Renata O; de Oliveira, Juliana R; Salinas, Roberto K; Juliano, Maria A; Ferreira, Clelia; Terra, Walter R

    2017-10-01

    Cathepsins L are the major digestive peptidases in the beetle Tenebrio molitor. Two digestive cathepsins L (TmCAL2 and TmCAL3) from it had their 3D structures solved. The aim of this paper was to study in details TmCAL3 specificity and properties and relate them to its 3D structure. Recombinant TmCAL3 was assayed with 64 oligopeptides with different amino acid replacements in positions P2, P1, P1' and P2'. Results showed that TmCAL3 S2 specificity differs from the human enzyme and that its specificities also explain why on autoactivation two propeptide residues remain in the enzyme. Data on free energy of binding and of activation showed that S1 and S2' are mainly involved in substrate binding, S1' acts in substrate binding and catalysis, whereas S2 is implied mainly in catalysis. Enzyme subsite residues were identified by docking with the same oligopeptide used for kinetics. The subsite hydrophobicities were calculated from the efficiency of hydrolysis of different amino acid replacements in the peptide and from docking data. The results were closer for S1 and S2' than for S1' and S2, indicating that the residue subsites that were more involved in transition state binding are different from those binding the substrate seen in docking. Besides TmCAL1-3, there are nine other cathepsins L, most of them more expressed at midgut. They are supposed to be directed to lysosomes by a Drosophila-like Lerp receptor and/or motifs in their prodomains. The mannose 6-phosphate lysosomal sorting machinery is absent from T. molitor transcriptome. Cathepsin L direction to midgut contents seems to depend on overexpression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The 3D structure and function of digestive cathepsin L-like proteinases of Tenebrio molitor larval midgut.

    Beton, Daniela; Guzzo, Cristiane R; Ribeiro, Alberto F; Farah, Chuck S; Terra, Walter R

    2012-09-01

    Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coli, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAL3) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut. Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut. CAL3 hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C26S) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 Å, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference.

    Louise Ford

    Full Text Available Cathepsin-like enzymes have been identified as potential targets for drug or vaccine development in many parasites, as their functions appear to be essential in a variety of important biological processes within the host, such as molting, cuticle remodeling, embryogenesis, feeding and immune evasion. Functional analysis of Caenorhabditis elegans cathepsin L (Ce-cpl-1 and cathepsin Z (Ce-cpz-1 has established that both genes are required for early embryogenesis, with Ce-cpl-1 having a role in regulating in part the processing of yolk proteins. Ce-cpz-1 also has an important role during molting.RNA interference assays have allowed us to verify whether the functions of the orthologous filarial genes in Brugia malayi adult female worms are similar. Treatment of B. malayi adult female worms with Bm-cpl-1, Bm-cpl-5, which belong to group Ia of the filarial cpl gene family, or Bm-cpz-1 dsRNA resulted in decreased numbers of secreted microfilariae in vitro. In addition, analysis of the intrauterine progeny of the Bm-cpl-5 or Bm-cpl Pro dsRNA- and siRNA-treated worms revealed a clear disruption in the process of embryogenesis resulting in structural abnormalities in embryos and a varied differential development of embryonic stages.Our studies suggest that these filarial cathepsin-like cysteine proteases are likely to be functional orthologs of the C. elegans genes. This functional conservation may thus allow for a more thorough investigation of their distinct functions and their development as potential drug targets.

  4. Delivery of rSLPI in a liposomal carrier for inhalation provides protection against cathepsin L degradation

    Gibbons, Aileen M.; McElvaney, Noel; Taggart, Clifford; Cryan, Sally-Ann

    2009-01-01

    Secretory leukocyte protease inhibitor (SLPI) is an endogenous serine protease inhibitor that protects the lungs from excessive tissue damage caused by leukocyte proteases released during inflammation. Recombinant SLPI (rSLPI) has shown potential as a treatment for inflammatory lung conditions. To date, its clinical application has been limited by rapid enzymatic cleavage by cathepsins and rapid clearance from the lungs after inhalation. In this study, rSLPI was encapsulated in 1,2-Dioleoyl-s...

  5. Functional expression and characterization of cathepsin B and L from the gut of the tick Ixodes ricinus

    Franta, Zdeněk; Pěničková, Helena; Dvorak, J.; Schneider, E. I.; Horn, Martin; Mareš, Michael; Sojka, Daniel; McKerrow, J. H.; Caffrey, C. R.; Kopáček, Petr

    2009-01-01

    Roč. 276, S1 (2009), s. 309-309 ISSN 1742-464X. [34th FEBS Congress: Life's Molecular Interactions. 04.07.2009-09.07.2009, Prague] R&D Projects: GA AV ČR IAA600960910; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z40550506 Keywords : cathepsin B and L * Ixodes ricinus * functionl expresssion Subject RIV: EB - Genetics ; Molecular Biology

  6. Alteration of gene expression by zinc oxide nanoparticles or zinc sulfate in vivo and comparison with in vitro data: A harmonious case.

    Zhang, Wei-Dong; Zhao, Yong; Zhang, Hong-Fu; Wang, Shu-Kun; Hao, Zhi-Hui; Liu, Jing; Yuan, Yu-Qing; Zhang, Peng-Fei; Yang, Hong-Di; Shen, Wei; Li, Lan

    2016-08-01

    Granulosa cells (GCs) are those somatic cells closest to the female germ cell. GCs play a vital role in oocyte growth and development, and the oocyte is necessary for multiplication of a species. Zinc oxide (ZnO) nanoparticles (NPs) readily cross biologic barriers to be absorbed into biologic systems that make them promising candidates as food additives. The objective of the present investigation was to explore the impact of intact NPs on gene expression and the functional classification of altered genes in hen GCs in vivo, to compare the data from in vivo and in vitro studies, and finally to point out the adverse effects of ZnO NPs on the reproductive system. After a 24-week treatment, hen GCs were isolated and gene expression was quantified. Intact NPs were found in the ovary and other organs. Zn levels were similar in ZnO-NP-100 mg/kg- and ZnSO4-100 mg/kg-treated hen ovaries. ZnO-NP-100 mg/kg and ZnSO4-100 mg/kg regulated the expression of the same sets of genes, and they also altered the expression of different sets of genes individually. The number of genes altered by the ZnO-NP-100 mg/kg and ZnSO4-100 mg/kg treatments was different. Gene Ontology (GO) functional analysis reported that different results for the two treatments and, in Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, 12 pathways (out of the top 20 pathways) in each treatment were different. These results suggested that intact NPs and Zn(2+) had different effects on gene expression in GCs in vivo. In our recent publication, we noted that intact NPs and Zn(2+) differentially altered gene expression in GCs in vitro. However, GO functional classification and KEGG pathway enrichment analyses revealed close similarities for the changed genes in vivo and in vitro after ZnO NP treatment. Furthermore, close similarities were observed for the changed genes after ZnSO4 treatments in vivo and in vitro by GO functional classification and KEGG pathway enrichment analyses. Therefore

  7. Synthesis and characterization of cobalt/gold bimetallic nanoparticles

    Cheng, Guangjun; Hight Walker, Angela R.

    2007-01-01

    Cobalt/gold (Co/Au) bimetallic nanoparticles are prepared by chemically reducing gold (III) chloride to gold in the presence of pre-synthesized Co nanoparticles. Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectrometry, and a superconducting quantum interference device (SQUID) magnetometer have been used to characterize as-prepared bimetallic nanoparticles. Our findings demonstrate Au not only grows onto Co nanoparticles, forming a surface coating, but also diffuses into Co nanoparticles. The introduction of Au alters the crystalline structure of Co nanoparticles and changes their magnetic properties. Dodecanethiols induce a reorganization of as-prepared Co/Au bimetallic nanoparticles

  8. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    Sun, Li; Wu, Zhou; Baba, Masashi [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan); Peters, Christoph [Institute fuer Molekulare Medizin und Zellforshung, Albert-Ludwings-Universitaet Freiburg, D-79104 Freiburg (Germany); Uchiyama, Yasuo [Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo (Japan); Nakanishi, Hiroshi, E-mail: nakan@dent.kyushu-u.ac.jp [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan)

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  9. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-01-01

    Research highlights: → Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. → CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. → CB-deficiency significantly increased the mean survival ratio of injured neurons. → Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy-induced mortor neuron

  10. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II.

    Criscitiello, Michael F; Ohta, Yuko; Graham, Matthew D; Eubanks, Jeannine O; Chen, Patricia L; Flajnik, Martin F

    2012-03-01

    The invariant chain (Ii) is the critical third chain required for the MHC class II heterodimer to be properly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells. Here, we report the isolation of the nurse shark Ii gene, and the comparative analysis of Ii splice variants, expression, genomic organization, predicted structure, and function throughout vertebrate evolution. Alternative splicing to yield Ii with and without the putative protease-protective, thyroglobulin-like domain is as ancient as the MHC-based adaptive immune system, as our analyses in shark and lizard further show conservation of this mechanism in all vertebrate classes except bony fish. Remarkable coordinate expression of Ii and class II was found in shark tissues. Conserved Ii residues and cathepsin L orthologs suggest their long co-evolution in the antigen presentation pathway, and genomic analyses suggest 450 million years of conserved Ii exon/intron structure. Other than an extended linker preceding the thyroglobulin-like domain in cartilaginous fish, the Ii gene and protein are predicted to have largely similar physiology from shark to man. Duplicated Ii genes found only in teleosts appear to have become sub-functionalized, as one form is predicted to play the same role as that mediated by Ii mRNA alternative splicing in all other vertebrate classes. No Ii homologs or potential ancestors of any of the functional Ii domains were found in the jawless fish or lower chordates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. [Cathepsin K as a biomarker of bone involvement in type 1 Gaucher disease].

    Bobillo Lobato, Joaquín; Durán Parejo, Pilar; Núñez Vázquez, Ramiro J; Jiménez Jiménez, Luis M

    2015-10-05

    Gaucher disease is an inherited disorder caused by deficit of acid β-glucocerebrosidase, responsible for the degradation of glucosylceramide to ceramide and glucose. Although the disorder is primarily hematologic, bone is the second most commonly affected structure. Cathepsin K (CATK) is an enzyme involved in bone remodelling process. It has been proposed that determination of its serum concentrations may provide additional information to other biomarkers. The study included 20 control subjects and 20 Gaucher type 1 patients from Andalusia and Extremadura regions. We analyzed the biomarkers of bone remodelling: the bone alkaline phosphatase (B-ALP), the N-terminal propeptide of type 1 procollagen (P1NP), the β carboxyterminal telopeptide of type 1 collagen (CTx) and the CATK through electrochemiluminescence and immunoassay techniques. There is an increase in levels of CATK, CATK/P1NP and CATK/B-ALP ratios in type 1 Gaucher patients compared to the control group. Considering the existence of skeletal manifestations in the patient group, the CATK and CATK/P1NP ratio showed higher levels in patients with bone damage compared to those without it. Although imaging studies are the gold standard for monitoring bone disease in type 1 Gaucher patients, the utility of CATK should be considered as a possible indicator of bone damage in these patients. Furthermore, this parameter can be used in the monitoring of the treatment of bone pathology. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  12. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy.

    Huang, Kun; Gao, Lu; Yang, Ming; Wang, Jiliang; Wang, Zheng; Wang, Lin; Wang, Guobin; Li, Huili

    2017-08-01

    Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Detection of oral squamous cell carcinoma metastasis with cathepsin D: An immunohistochemical approach

    Seema Kapoor

    2014-01-01

    Full Text Available Background: The lysosomal protease cathepsin D (CD has been associated with tumor progression in malignant tumors including oral squamous cell carcinoma (OSCC. The purpose of this study was to find out any association between the CD and lymph node metastasis and to study the correlation of CD with various clinicopathological parameters to aid in assessment of its role as a prognostic indicator. Materials and Methods: Immunohistochemical staining was performed on 20 OSCC samples with polyclonal antibody against CD. Positive results indicative of the presence of CD were further analyzed to determine any correlation between the CD and other clinicopathological parameters. Pearson Chi-square analyses, Spearsman correlation coefficient, Mann-Whitney test, Kruskal Wallis test and student t test were used for statistical analysis (P < 0.05. Results: Patients with lymph node metastasis showed statistically significant increase in CD expression (P < 0.01. Increasing tumor size seemed to correlate with increased CD expression (P < 0.05. Conclusion: Based on its association with other clinicopathological variables, CD expression can be used for the assessment of patient survival in cases of OSCC.

  14. Identification and characterization of Clonorchis sinensis cathepsin B proteases in the pathogenesis of clonorchiasis.

    Chen, Wenjun; Ning, Dan; Wang, Xiaoyun; Chen, Tingjin; Lv, Xiaoli; Sun, Jiufeng; Wu, De; Huang, Yan; Xu, Jin; Yu, Xinbing

    2015-12-21

    Human clonorchiasis is a prevailing food-borne disease caused by Clonorchis sinensis infection. Functional characterizations of key molecules from C. sinensis could facilitate the intervention of C. sinensis associated diseases. In this study, immunolocalization of C. sinensis cathepsin B proteases (CsCBs) in C. sinensis worms was investigated. Four CsCBs were expressed in Pichia pastoris yeast cells. Purified yCsCBs were measured for enzymatic and hydrolase activities in the presence of various host proteins. Cell proliferation, wound-healing and transwell assays were performed to show the effect of CsCBs on human cells. CsCBs were localized in the excretory vesicle, oral sucker and intestinal tract of C. sinensis. Recombinant yCsCBs from yeast showed active enzymatic activity at pH 5.0-5.5 and at 37-42 °C. yCsCBs can degrade various host proteins including human serum albumin, human fibronectin, human hemoglobin and human IgG. CsCBs were detected in liver tissues of mice and cancer patients afflicted with clonorchiasis. Various bioassays collectively demonstrated that CsCBs could promote cell proliferation, migration and invasion of human cancer cells. Our results demonstrated that CsCBs can degrade various human proteins and we proved that the secreted CsCBs are involved in the pathogenesis of clonorchiasis.

  15. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra; Sasaki, Ken-ichiro; Bruhl, Thomas; Hofmann, Wolf K.; Peters, Christoph; Reinheckel, Thomas; Pennacchio, Len A.; Abolmaali, Nasreddin D.; Chavakis, Emmanouil; Zeiher, Andreas M.; Dimmeler, Stefanie

    2004-01-15

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sites of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.

  16. Excision of foreign gene product with cathepsin D in chicken hepatoma cell line

    Sato, Masaharu; Kawashima, Tsuyoshi; Aosasa, Masayoshi; Horiuchi, Hiroyuki; Furusawa, Shuichi; Matsuda, Haruo

    2005-01-01

    To easily and rapidly recover exogenous gene products from chicken egg yolk, we constructed pVTG-catD (VTG, vitellogenin; catD, cathepsin D), a vector cassette carrying two catD-recognition signal peptides (catD-RSPs) in addition to the cloning site. An enhanced green fluorescence protein (EGFP)-encoding DNA fragment was ligated into the pVTG-catD. When the resultant construct pVTG-EGFP-catD containing histidine- and myc-tags was transfected into the chicken hepatoma cell line LMH, EGFP-expression at 24 h post-cultivation was confirmed by fluorescence microscopy. Because a signal peptide (NTVLAEF) encoded in pVTG-EGFP-catD is recognized by catD, the VTG-EGFP fusion protein digested with catD was detectable by Western blotting. Digested exogenous gene product was recovered with nickel resin. These results indicate that catD-recognition sites bearing pVTG-catD and His-tags are functional in chicken LMH cells. Therefore, the system described here may be of use in making excision exogenous gene products in the chicken and in creating homozygous knock-in chickens

  17. Cathepsin B Improves ß-Amyloidosis and Learning and Memory in Models of Alzheimer's Disease.

    Embury, Christine M; Dyavarshetty, Bhagyalaxmi; Lu, Yaman; Wiederin, Jayme L; Ciborowski, Pawel; Gendelman, Howard E; Kiyota, Tomomi

    2017-06-01

    Amyloid-ß (Aß) precursor protein (APP) metabolism engages neuronal endolysosomal pathways for Aß processing and secretion. In Alzheimer's disease (AD), dysregulation of APP leads to excess Aß and neuronal dysfunction; suggesting that neuronal APP/Aß trafficking can be targeted for therapeutic gain. Cathepsin B (CatB) is a lysosomal cysteine protease that can lower Aß levels. However, whether CatB-modulation of Aß improves learning and memory function deficits in AD is not known. To this end, progenitor neurons were infected with recombinant adenovirus expressing CatB and recovered cell lysates subjected to proteomic analyses. The results demonstrated Lamp1 deregulation and linkages between CatB and the neuronal phagosome network. Hippocampal injections of adeno-associated virus expressing CatB reduced Aß levels, increased Lamp1 and improved learning and memory. The findings were associated with the emergence of c-fos + cells. The results support the idea that CatB can speed Aß metabolism through lysosomal pathways and as such reduce AD-associated memory deficits.

  18. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro

    Fan, Qi; Wang, Xuedi; Zhang, Hanguang; Li, Chuanwei; Fan, Junhua; Xu, Jing

    2012-01-01

    Highlights: ► Cat S is highly expressed in HCC cells with high metastatic potential. ► Knockdown of Cat S inhibits growth and invasion of HCC cells. ► Knockdown of Cat S inhibits HCC-associated angiogenesis. ► Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.

  19. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  20. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis.

    David Freeman

    Full Text Available α-synuclein dysregulation is a critical aspect of Parkinson's disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson's disease, thus connecting these aspects of Parkinson's disease to the propagation of α-synuclein pathology in cells.

  1. Cathepsin X in serum from patients with colorectal cancer: relation to prognosis

    Vizin, Tjasa; Christensen, Ib Jarle; Nielsen, Hans Jørgen; Kos, Janko

    2012-01-01

    Background Up-regulation of lysosomal cysteine protease cathepsin X (Cat X) is associated with disorders of the immune system and neurodegenerative diseases, while its role in the development and progression of cancer is less understood. Enhanced secretion of pro-Cat X was observed in malignant processes, and therefore, the level of total serum Cat X rather than the active enzyme may better reflect the tumour status. Patients and methods Seventy-seven patients with colorectal cancer (CRC) were included in a retrospective study. Blood samples were collected prior to therapy. Using ELISA, the values of total Cat X were measured in serum. Groups of healthy persons (n=77), patients with adenomas (n=77) and patients with non-neoplastic findings (n=77) were included. Results Significant differences between the group of colorectal patients and the groups of healthy persons, adenoma patients and patients with non-malignant findings could not be shown (p=0.89). Within the group of CRC, higher levels of total Cat X significantly correlated to shorter overall survival (HR=2.08, 95% CI:1.07–4.05, p=0.028). Conclusions Total serum Cat X could be a useful prognostic indicator for determining survival of patients with CRC. Increased serum levels of total Cat X may reflect more aggressive tumour cell phenotypes and suggest the involvement of Cat X in processes involved in later stages of tumour progression. PMID:23077459

  2. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection.

    Iris J Gonzalez-Leal

    2014-09-01

    Full Text Available Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb and L (Ctsl play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC and macrophages (BMM from Ctsb-/- and Ctsl-/- mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb-/- BMDC express higher levels of MHC class II molecules than wild-type (WT and Ctsl-/- BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb-/- mice significantly up-regulated the levels of interleukin 12 (IL-12 expression, a key Th1-inducing cytokine. These findings indicate that Ctsb-/- BMDC display more pro-Th1 properties than their WT and Ctsl-/- counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression.

  3. Fasciola gigantica cathepsin B5 is an acidic endo- and exopeptidase of the immature and mature parasite.

    Siricoon, Sinee; Vichasri Grams, Suksiri; Lertwongvisarn, Kittisak; Abdullohfakeeyah, Muntana; Smooker, Peter M; Grams, Rudi

    2015-12-01

    Cysteine proteases of the liver fluke Fasciola have been described as essential molecules in the infection process of the mammalian host. Destinct cathepsin Bs, which are already expressed in the metacercarial stage and released by the newly excysted juvenile are major actors in this process. Following infection their expression is stopped and the proteins will not be detectable any longer after the first month of development. On the contrary, the novel cathepsin B5 of Fasciola gigantica (FgCB5) described in this work was also found expressed in later juvenile stages and the mature worm. Like all previously described Fasciola family members it was located in the cecal epithelium of the parasite. Western blot analysis of adult antigen preparations detected procathepsin B5 in crude worm extract and in small amounts in the ES product. In support of these data, the sera of infected rabbits and mice were reactive with recombinant FgCB5 in Western blot and ELISA. Biochemical analysis of yeast-expressed FgCB5 revealed that it has properties of a lysosomal hydrolase optimized for activity at acid pH and that it is able to efficiently digest a broad spectrum of host proteins. Unlike previously characterized Fasciola family members FgCB5 carries a histidine doublet in the occluding loop equivalent to residues His110 and His111 of human mature cathepsin B and consequently showed substantial carboxydipeptidyl activity which depends on these two residues. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Evaluation of matrix metalloproteinase and cysteine cathepsin activity in dentin hybrid layer by gelatin zymography.

    Mahalaxmi, Sekar; Madhubala, Manavalan Madhana; Jayaraman, Mahendran; Sathyakumar, Shanmugasundaram

    2016-01-01

    The aim of this study was to comparatively assess the gelatinolytic activity of matrix metalloproteinases(MMPs) and Cysteine Cathepsins (CCs) in the adhesive interface using etch and rinse adhesive at different time intervals using zymographic technique. Twenty freshly extracted non-carious human third molars were used in this study. Occlusal surfaces were ground flat and 1mm thick horizontal dentin slabs were obtained from each tooth using a diamond disc. The dentin surface was polished with 600-grit silicon-carbide paper. Five out of 20 samples were directly pulverized. In the remaining fifteen samples, the dentin was etched and adhesive was applied and light cured according to the manufacturer's instructions. A 1mm thick flowable composite was build up and light cured. Bonded specimens were cut vertically into 3 to 4 dentin slabs by means of diamond disc to expose the adhesive/dentin interfaces. These were then ground down to 500 µm thick resin-dentin interface using a hard tissue microtome. These sections were then pulverised into powder. Following this, every five samples were subjected to zymographic analysis after 1 day, 7 days and 21 days. Zymograms showed clear, thicker bands on all three isoforms in the etched samples compared to control samples at 1st and 7th day intervals and became inactive at 21st day for all three isoforms. MMP 9 activity was relatively higher when compared to CCs and MMP 2. Etch and rinse adhesive activated MMPs and CCs within the hybrid layer that remained active till 7th day and no gelatinolytic activity was found on 21st day and MMPs are more active compared to CCs and MMP-2.

  5. Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis.

    Chen, Wenjun; Wang, Xiaoyun; Lv, Xiaoli; Tian, Yanli; Xu, Yanquan; Mao, Qiang; Shang, Mei; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2014-09-01

    Clonorchis sinensis excretory/secretory products (ESP) have gained high attentions because of their potential to be vaccine candidates and drug targets in C. sinensis prevention. In this study, we extensively profiled the characteristics of four C. sinensis cathepsin B cysteine proteases (CsCB1, CsCB2, CsCB3, and CsCB4). Bioinformatics analysis showed all CsCBs contained signal peptides at the N-terminal. Functional domains and residues were found in CsCB sequences. We expressed four CsCBs and profiled immune responses followed by vaccine trials. Recombinant CsCBs could induce high IgG titers, indicating high immunogenicity of CsCB family. Additionally, ELISA results showed that both IgG1 and IgG2a levels apparently increased post-immunization with all four CsCBs, showing that combined Th1/Th2 immune responses were triggered by CsCB family. Both Real-time polymerase chain reaction (RT-PCR) and Western blotting confirmed that four CsCBs have distinct expression patterns in C. sinensis life stages. More importantly, we validated our hypothesis that CsCBs were C. sinensis excretory/secretory products. CsCBs could be recognized by C. sinensis-infected sera throughout the infection period, indicating that secreted CsCBs are immune triggers during C. sinensis infection. The protective effect was assessed by comparing the worm burden and egg per gram (EPG) between CsCB group and control group, showing that worm burden (P sinensis excretory/secretory products that may regulate host immune responses.

  6. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects.

    Payne, Christopher D; Deeg, Mark A; Chan, Melanie; Tan, Lai Hock; LaBell, Elizabeth Smith; Shen, Tong; DeBrota, David J

    2014-12-01

    The aim of this study was to assess the safety and tolerability, pharmacokinetics and pharmacodynamics of LY3000328 when administered as single escalating doses to healthy volunteers. This was a phase 1, placebo-controlled, dose escalation study with LY3000328 in 21 healthy male volunteers. Subjects were administered escalating LY3000328 doses up to 300 mg with food in this single dose study. Blood samples were collected at set times post-dose for the assessment of LY3000328 pharmacokinetics and the measurement of cathepsin S (CatS) activity, CatS mass and calculated CatS specific activity. All doses of LY3000328 were well tolerated, with linear pharmacokinetics up to the 300 mg dose. The pharmacodynamic activity of LY3000328 was measured ex vivo showing a biphasic response to LY3000328, where CatS activity declines, then returns to baseline, and then increases to a level above baseline. CatS mass was also assessed post-dose which increased in a dose-dependent manner, and continued to increase after LY3000328 had been cleared from the body. CatS specific activity was additionally calculated to normalize CatS activity for changes in CatS mass. This demonstrated the increase in CatS activity was attributable to the increase in CatS mass detected in plasma. A specific inhibitor of CatS which is cleared quickly from plasma may produce a transient decrease in plasma CatS activity which is followed by a more prolonged increase in plasma CatS mass which may have implications for the future clinical development of inhibitors of CatS. © 2014 The British Pharmacological Society.

  7. Substrate-derived triazolo- and azapeptides as inhibitors of cathepsins K and S.

    Galibert, Matthieu; Wartenberg, Mylène; Lecaille, Fabien; Saidi, Ahlame; Mavel, Sylvie; Joulin-Giet, Alix; Korkmaz, Brice; Brömme, Dieter; Aucagne, Vincent; Delmas, Agnès F; Lalmanach, Gilles

    2018-01-20

    Cathepsin (Cat) K is a critical bone-resorbing protease and is a relevant target for the treatment of osteoporosis and bone metastasis, while CatS is an attractive target for drugs in autoimmune diseases (e.g. rheumatoid arthritis), emphysema or neuropathic pain. Despite major achievements, current pharmacological inhibitors are still lacking in safety and may have damaging side effects. A promising strategy for developing safer reversible and competitive inhibitors as new lead compounds could be to insert non-cleavable bonds at the scissile P1-P1' position of selective substrates of CatS and CatK. Accordingly, we introduced a 1,4-disubstituted 1,2,3-triazole heterocycle that mimics most of the features of a trans-amide bond, or we incorporated a semicarbazide bond (azaGly residue) by replacing the α-carbon of the glycyl residue at P1 by a nitrogen atom. AzaGly-containing peptidomimetics inhibited powerfully their respective target proteases in the nM range, while triazolopeptides were weaker inhibitors (Ki in the μM range). The selectivity of the azaGly CatS inhibitor (1b) was confirmed by using spleen lysates from wild-type vs CatS-deficient mice. Alternatively, the azaGly bradykinin-derived CatK inhibitor (2b) potently inhibited CatK (Ki = 9 nM) and impaired its kininase activity in vitro. Molecular modeling studies support that the semicarbazide bond of 2b is more favorable than the 1,2,3-triazole linkage of the bradykinin-derived pseudopeptide 2a to preserve an effective affinity towards CatK, its protease target. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy.

    Hui Li

    Full Text Available The monitoring of pancreatic ductal adenocarcinoma (PDAC in high-risk populations is essential. Cathepsin E (CTSE is specifically and highly expressed in PDAC and pancreatic intraepithelial neoplasias (PanINs, and its expression gradually increases along with disease progression. In this study, we first established an in situ 7,12-dimethyl-1,2-benzanthracene (DMBA-induced rat model for PanINs and PDAC and then confirmed that tumorigenesis properties in this model were consistent with those of human PDAC in that CTSE expression gradually increased with tumor development using histology and immunohistochemistry. Then, using in vivo imaging of heterotopically implanted tumors generated from CTSE- overexpressing cells (PANC-1-CTSE in nude mice and in vitro imaging of PanINs and PDAC in DMBA-induced rats, the specificity of the synthesized CTSE-activatable probe was verified. Quantitative determination identified that the fluorescence signal ratio of pancreatic tumor to normal pancreas gradually increased in association with progressive pathological grades, with the exception of no significant difference between PanIN-II and PanIN-III grades. Finally, we monitored pancreatic carcinogenesis in vivo using confocal laser endomicroscopy (CLE in combination with the CTSE-activatable probe. A prospective double-blind control study was performed to evaluate the accuracy of this method in diagnosing PDAC and PanINs of all grades (>82.7%. This allowed us to establish effective diagnostic criteria for CLE in PDAC and PanINs to facilitate the monitoring of PDAC in high-risk populations.

  9. Drug-to-antibody determination for an antibody-drug-conjugate utilizing cathepsin B digestion coupled with reversed-phase high-pressure liquid chromatography analysis.

    Adamo, Michael; Sun, Guoyong; Qiu, Difei; Valente, Joseph; Lan, Wenkui; Song, Hangtian; Bolgar, Mark; Katiyar, Amit; Krishnamurthy, Girija

    2017-01-20

    Antibody drug conjugates or ADCs are currently being evaluated for their effectiveness as targeted chemotherapeutic agents across the pharmaceutical industry. Due to the complexity arising from the choice of antibody, drug and linker; analytical methods for release and stability testing are required to provide a detailed understanding of both the antibody and the drug during manufacturing and storage. The ADC analyzed in this work consists of a tubulysin drug analogue that is randomly conjugated to lysine residues in a human IgG1 antibody. The drug is attached to the lysine residue through a peptidic, hydrolytically stable, cathepsin B cleavable linker. The random lysine conjugation produces a heterogeneous mixture of conjugated species with a variable drug-to-antibody ratio (DAR), therefore, the average amount of drug attached to the antibody is a critical parameter that needs to be monitored. In this work we have developed a universal method for determining DAR in ADCs that employ a cathepsin B cleavable linker. The ADC is first cleaved at the hinge region and then mildly reduced prior to treatment with the cathepsin B enzyme to release the drug from the antibody fragments. This pre-treatment allows the cathepsin B enzyme unrestricted access to the cleavage sites and ensures optimal conditions for the cathepsin B to cleave all the drug from the ADC molecule. The cleaved drug is then separated from the protein components by reversed phase high performance liquid chromatography (RP-HPLC) and quantitated using UV absorbance. This method affords superior cleavage efficiency to other methods that only employ a cathepsin digestion step as confirmed by mass spectrometry analysis. This method was shown to be accurate and precise for the quantitation of the DAR for two different random lysine conjugated ADC molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Vaccination against Fasciola hepatica using cathepsin L3 and B3 proteases delivered alone or in combination.

    Wesołowska, Agnieszka; Basałaj, Katarzyna; Norbury, Luke J; Sielicka, Alicja; Wędrychowicz, Halina; Zawistowska-Deniziak, Anna

    2018-01-30

    No licensed vaccine is currently available for prevention of Fasciola hepatica infections. However, considering the alarming increase in drug resistance, there is an urgent need for a safe and fully effective vaccine against fasciolosis. Here, we tested if cathepsins L (FhCL3-1, FhCL3-2) and B (FhCB3) secreted by juvenile liver flukes are viable vaccine targets when delivered alone or in combination in a rat model. Since control over the early immune response is crucial for parasite's establishment in its host, it was hypothesised that targeting fluke juvenile stages may prove beneficial. Moreover, it was assumed that selected antigens will act in a cumulative manner to interfere with liver fluke migration and thereby will reduce F. hepatica infection. Recombinant FhCL3-1 and FhCL3-2 delivered alone reduced liver fluke burdens by 47 % and 63 %, respectively. A trivalent vaccine containing rFhCL3-1/CL3-2/CB3 did not increase the protective vaccine efficacy compared to the rFhCL3-2 vaccinated group (53 %), although, reductions in liver fluke wet weight (statistically significant) and liver damage score were most pronounced. Further, the highest IgG1 and IgG2a levels were seen in rFhCL3-2 vaccinated rats, the group for which the highest reduction in worm burden was demonstrated. Moreover, IgG1 and IgG2a levels in vaccinated rats were significantly elevated compared to those reported for control groups up to 4 week post-infection. While the mechanism of protection remains unknown, it appears that it depends on vaccine-induced antibodies directed against cathepsins. The obtained results imply that F. hepatica juvenile-specific cathepsins are promising vaccine candidates that induce responses that successfully target early migratory liver fluke stages. Now, the challenge is to evaluate these juvenile-specific cathepsins for use in livestock. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Structure, entanglements and dynamics of polymer nanocomposites containing spherical nanoparticles

    Karatrantos, A; Clarke, N; Composto, R J; Winey, K I

    2014-01-01

    We investigate the effect of nanoparticles on polymer structure, nanoparticle dynamics and topological constraints (entanglements) in polymer melts for nanoparticle loading above percolation threshold as high as 40.9% using stochastic molecular dynamics (MD) simulations. An increase in the number of entanglements (decrease of N e with 40.9% volume fraction of nanoparticles dispersed in the polymer matrix) in the nanocomposites is observed as evidenced by larger contour lengths of the primitive paths. Attraction between polymers and nanoparticles affects the entanglements in the nanocomposites and alters the primitive path. The diffusivity of small sized nanoparticles deviates significantly from the Stokes- Einstein relation

  12. ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression

    Rafn, Bo; Nielsen, Christian Thomas Friberg; Andersen, Sofie Hagel

    2012-01-01

    Aberrant ErbB2 receptor tyrosine kinase activation in breast cancer is strongly linked to an invasive disease. The molecular basis of ErbB2-driven invasion is largely unknown. We show that cysteine cathepsins B and L are elevated in ErbB2 positive primary human breast cancer and function...... as effectors of ErbB2-induced invasion in vitro. We identify Cdc42-binding protein kinase beta, extracellular regulated kinase 2, p21-activated protein kinase 4, and protein kinase C alpha as essential mediators of ErbB2-induced cysteine cathepsin expression and breast cancer cell invasiveness. The identified...

  13. Exploration of peptides that fit into the thermally vibrating active site of cathepsin K protease by alternating artificial intelligence and molecular simulation

    Nishiyama, Katsuhiko

    2017-08-01

    Eighteen tripeptides that fit into the thermally vibrating active site of cathepsin K were discovered by alternating artificial intelligence and molecular simulation. The 18 tripeptides fit the active site better than the cysteine protease inhibitor E64, and a better inhibitor of cathepsin K could be designed considering these tripeptides. Among the 18 tripeptides, Phe-Arg-Asp and Tyr-Arg-Asp fit the active site the best and their structural similarity should be considered in the design process. Interesting factors emerged from the structure of the decision tree, and its structural information will guide exploration of potential inhibitor molecules for proteases.

  14. Neutrophils Release Metalloproteinases during Adhesion in the Presence of Insulin, but Cathepsin G in the Presence of Glucagon

    Natalia V. Fedorova

    2018-01-01

    Full Text Available In patients with reperfusion after ischemia and early development of diabetes, neutrophils can attach to blood vessel walls and release their aggressive bactericide agents, which damage the vascular walls. Insulin and 17β-estradiol (E2 relieve the vascular complications observed in metabolic disorders. In contrast, glucagon plays an essential role in the pathophysiology of diabetes. We studied the effect of hormones on neutrophil secretion during adhesion to fibronectin. Amino acid analysis revealed that proteins secreted by neutrophils are characterized by a stable amino acid profile enriched with glutamate, leucine, lysine, and arginine. The total amount of secreted proteins defined as the sum of detected amino acids was increased in the presence of insulin and reduced in the presence of glucagon. E2 did not affect the amount of protein secretion. Proteome analysis showed that in the presence of insulin and E2, neutrophils secreted metalloproteinases MMP-9 and MMP-8 playing a key role in modulation of the extracellular matrix. In contrast, glucagon induced the secretion of cathepsin G, a key bactericide protease of neutrophils. Cathepsin G can promote the development of vascular complications because of its proinflammatory activity and ability to stimulate neutrophil adhesion via the proteolysis of surface receptors.

  15. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid; Gjerloev, Simon; Birk, Jesper; Roepke, Carsten; Norrild, Bodil

    2004-01-01

    Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation and induction of cell death. We have used the osteosarcoma cell line U2OS cells provided with E7 and the cdk2 inhibitor p21 (cip1/waf1) under inducible control, as a model system for the analysis of E7-mediated apoptosis. Our data shows that simultaneous expression of E7 and p21 proteins induces cell death, possibly because of conflicting growth control. Interestingly, E7/p21-induced cell death is associated with the activation of a newly identified mediator of apoptosis, namely cathepsin B. Activation of the cellular caspases is undetectable in cells undergoing E7/p21-induced apoptosis. To our knowledge, this is the first time a role for cathepsin B is reported in HPV-induced apoptotic signalling

  16. A pro-cathepsin L mutant is a luminal substrate for endoplasmic-reticulum-associated degradation in C. elegans.

    Mark T Miedel

    Full Text Available Endoplasmic-reticulum associated degradation (ERAD is a major cellular misfolded protein disposal pathway that is well conserved from yeast to mammals. In yeast, a mutant of carboxypeptidase Y (CPY* was found to be a luminal ER substrate and has served as a useful marker to help identify modifiers of the ERAD pathway. Due to its ease of genetic manipulation and the ability to conduct a genome wide screen for modifiers of molecular pathways, C. elegans has become one of the preferred metazoans for studying cell biological processes, such as ERAD. However, a marker of ERAD activity comparable to CPY* has not been developed for this model system. We describe a mutant of pro-cathepsin L fused to YFP that no longer targets to the lysosome, but is efficiently eliminated by the ERAD pathway. Using this mutant pro-cathepsin L, we found that components of the mammalian ERAD system that participate in the degradation of ER luminal substrates were conserved in C. elegans. This transgenic line will facilitate high-throughput genetic or pharmacological screens for ERAD modifiers using widefield epifluorescence microscopy.

  17. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes.

    Suman Kumar Nandy

    Full Text Available Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.

  18. Relation of bone mineral density with homocysteine and cathepsin K levels in postmenopausal women

    Madhukar Mittal

    2018-01-01

    Full Text Available Background: Homocysteine (HCY interferes with collagen cross-linking in bones and stimulates osteoclast activity. The activated osteoclasts secrete cathepsin K (CathK, a cysteine protease, in eminent quantity during bone resorption. Hyperhomocysteinemia may effect bone mineral density (BMD through CathK. We, therefore, examined the relation between HCY and BMD along with CathK, 25-hydroxyvit-D (25[OH]D, intact parathyroid hormone (iPTH, and Vitamin B12. Materials and Methods: We recruited a total of 93 postmenopausal women between the age group of 45–60 years, attending the Endocrinology outpatient department at King George's Medical University, Lucknow. BMD was done by DXA scan using Hologic QDR1000 system. Based on the WHO criteria, patients were segregated into three groups as follows; normal bone mass, osteopenia, and osteoporosis. All women underwent routine biochemical laboratory parameters, HCY, Vitamin B12, and CathK levels. Results: Among 93 postmenopausal women, 56% (52 had osteoporosis. Nineteen percent (18 had normal BMD (mean age, 53.22 ± 8.5 years and 23 (25% had osteopenia (mean age 52.86 ± 6.67 years. The mean age in the osteoporetic group was 56.2 ± 6.9 years. The median (interquartile range levels of HCY in the three groups were 14.5 μmol/L (12.2–24.7, 15.05 μmol/L (12.1–19.9 and 13.2 μmol/L (10.3–17.0, respectively. CathK levels were similar in three groups 7.6 ng/ml (7.0–80.5, 8.3 ng/ml (7.3–8.5, and 8.6 ng/ml (7.2–8.9. Both HCY and CathK were found positively associated with serum phosphorus (r = 0.584, P < 2.01 and r = 0.249, P < 0.05, respectively. Levels of HCY positively correlate with PTH (r = 0.303, P < 0.01 and inversely with Vitamin B12 (r = −0.248, P < 0.05. No significant association was seen between CathK level and 25(OH D, iPTH, serum calcium. Conclusion: Low bone mass by DXA is a significant problem in postmenopausal females. HCY and CathK do not reliably correlate with bone loss in

  19. Production and characterization of a monoclonal antibody against recombinant cathepsin L1 of Fasciola gigantica.

    Anuracpreeda, Panat; Srirakam, Thippawan; Pandonlan, Sudarat; Changklungmoa, Narin; Chotwiwatthanakun, Charoonroj; Tinikul, Yotsawan; Poljaroen, Jaruwan; Meemon, Krai; Sobhon, Prasert

    2014-08-01

    Monoclonal antibodies (MoAbs) against a recombinant cathepsin L1 of Fasciola gigantica (rFgCatL1) were produced in vitro by fusion of BALB/c mice spleen cells immunized with rFgCatL1 and mouse myeloma cells. Reactivity and specificity of these MoAbs were evaluated by indirect ELISA and immunoblotting techniques. Seven MoAb clones were selected from the stable hybridoma clones, namely 1E10, 1F5, 3D11, 4B10, 4D3, 4E3 and 5E7. Clones 1E10, 1F5 and 3D11 were IgM, whereas clones 4B10, 4D3, 4E3 and 5E7 were IgG1. All MoAbs had kappa light chain isotypes. All MoAbs reacted with rCatL1 at molecular weight (MW) 30kDa and with the native CatL1 at MW 27kDa in whole body (WB) extracts of metacercariae (Met), newly excysted juveniles (NEJ), 1, 3, 5-week-old juveniles (Ju), adult WB and adult excretory-secretory (ES) fractions, but not with adult tegumental antigens (TA). All of these MoAbs showed no cross-reactions with antigens of other parasites commonly found in ruminants and human, including Paramphistomum cervi, Eurytrema pancreaticum, Gigantocotyle explanatum, Schistosoma spindale, Schistosoma mansoni, Moniezia benedeni, Avitellina centripunctata, Trichuris sp., Haemonchus placei and Setaria labiato-papillosa. Localization of CatL1 in each developmental stages of F. gigantica by immunoperoxidase technique, using these MoAbs as probes, indicated that CatL1 was present at high concentration in the caecal epithelium and caecal lumen of metacercariae, NEJ, 1, 3, 5-week-old juveniles and adult fluke. This finding indicated that CatL1 is a copiously expressed parasite protein that is released into the ES, thus CatL1 and its MoAb could be a good candidate for immunodiagnosis of fasciolosis in ruminant and human. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis.

    Lindström, Erik; Rizoska, Biljana; Tunblad, Karin; Edenius, Charlotte; Bendele, Alison M; Maul, Don; Larson, Michael; Shah, Neha; Yoder Otto, Valerie; Jerome, Chris; Grabowska, Urszula

    2018-03-09

    MIV-711 is a highly potent and selective cathepsin K inhibitor. The current article summarizes the therapeutic effects of MIV-711 on joint pathology in rabbits subjected to anterior cruciate ligament transection (ACLT), and the prophylactic effects on joint pathology in dogs subjected to partial medial meniscectomy, two surgical models of osteoarthritis (OA). Starting 1 week after surgery, rabbits were dosed daily via oral gavage with either MIV-711 or vehicle (n = 7/group) for 7 weeks. The four treatment groups were: (1) sham + vehicle; (2) ACLT + vehicle; (3) ACLT + MIV-711, 30 µmol/kg and (4) ACLT + MIV-711, 100 µmol/kg. Subchondral bone and articular cartilage structures were assessed by µCT, histomorphometry, and scoring. Dogs subjected to partial medial meniscectomy received either MIV-711 (30 µmol/kg) or vehicle (n = 15/group) via oral gavage once daily, starting 1 day before meniscectomy, for 28 days. Cartilage degradation was assessed at the macroscopic and microscopic levels. The exposures of MIV-711 were assessed in both studies and biomarkers reflecting bone resorption (HP-1 in rabbits, CTX-I in dogs) and cartilage degradation (CTX-II) were measured. In ACLT rabbits, MIV-711 decreased HP-1 levels by up to 72% (p subchondral bone plate and reduced trabecular bone volume in the femur and tibia. These effects were reversed by MIV-711. ACLT resulted in cartilage thickening, which was attenuated by MIV-711. MIV-711 did not affect osteophyte formation or Mankin scores. In dogs, MIV-711 reduced CTX-I and CTX-II levels by 86% (p subchondral bone loss and partially attenuates cartilage pathology in two animal models of OA. These beneficial effects of MIV-711 on joint pathology are observed in conjunction with decreases in bone and cartilage biomarkers that have been shown to be clinically attainable in human. The data support the further development of MIV-711 for the treatment of OA.

  1. Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes.

    Zou, Fang; Lai, Xiaoyang; Li, Jing; Lei, Shuihong; Hu, Lei

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease due to progressive injury of islet cells mediated by T lymphocytes (T cells). Our previous studies have shown that only cathepsin G (CatG), not other proteases, is involved in the antigen presentation of proinsulin, and if the presentation is inhibited, the activation of CD4+ T cells induced by proinsulin is alleviated in T1DM patients, and CatG-specific inhibitor reduces the activation of CD4+ cells induced by proinsulin in T1DM patients. Therefore, we hypothesize that CatG may play an important role in the activation of CD4+ T cells in T1DM. To this end, mouse studies were conducted to demonstrate that CatG impacts the activation of CD4+ T cells in non-obese diabetic (NOD) mice. CatG gene expression and the activation of CD4+ T cells were examined in NOD mice. The effect of CatG inhibitor was investigated in NOD mice on the activation of CD4+ T cells, islet β cell function, islet inflammation and β-cell apoptosis. Furthermore, NOD mice were injected with CatG siRNA in early stage to observe the effect of CatG knockdown on the activation status of CD4+ T cells and the progression of diabetes. During the pathogenesis of diabetes, the expression level of CatG in NOD mice gradually increased and the CD4+ T cells were gradually activated, resulting in more TH1 cells and less TH2 and Treg cells. Treatment with CatG-specific inhibitor reduced the blood glucose level, improved the function of islet β cells and reduced the activation of CD4+ T cells. Early application of CatG siRNA improved the function of islet β cells, reduced islet inflammation and β cell apoptosis, and lowered the activation level of CD4+ T cells, thus slowing down the progression of diabetes.

  2. Host thin films incorporating nanoparticles

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  3. β-Endorphin biotransformation in brain: Formation of γ-endorphin by a synaptosomal plasma membrane associated endopeptidase distinct from cathepsin D

    Burbach, J.P.H.; Loeber, J.G.; Verhoef, J.; Kloet, E.R. de

    1980-01-01

    cSPM preparations of rat brain contain a peptidase activity which generates γ-endorphin from β-endorphin. Some properties of this enzyme were studied and compared with those of cathepsin D. Maximal accumulation of γ-endorphin upon digestion of β-endorphin with a cSPM preparation was found at neutral

  4. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons.

    Kikuta, Shogo; Murai, Yoshinaka; Tanaka, Eiichiro

    2017-01-01

    Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Smectite alteration

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  6. 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway

    Lee, Hye-Rim; Choi, Kyung-Chul

    2013-01-01

    Highlights: ► Cathepsins B and D were markedly enhanced by octylphenol (OP) in MCF-7 cells. ► OP may accelerate breast cancer cell growth and cathepsins via ER-mediated signaling. ► Breast cancer cells exposed with OP to mouse model were more aggressive. ► OP can promote metastasis through the amplification of cathepsins B and D via ER-mediated signaling pathway. -- Abstract: Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48 h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10 −6 M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of

  7. Amyloid β oligomers induce interleukin-1β production in primary microglia in a cathepsin B- and reactive oxygen species-dependent manner

    Taneo, Jun; Adachi, Takumi [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Yoshida, Aiko; Takayasu, Kunio [Responses to Environmental Signals and Stresses, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501 (Japan); Takahara, Kazuhiko, E-mail: ktakahar@zoo.zool.kyoto-u.ac.jp [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0081 (Japan); Inaba, Kayo [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0081 (Japan)

    2015-03-13

    Amyloid β (Aβ) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1β (IL-1β) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aβ aggregates on IL-1β production in mouse primary microglia. We prepared Aβ oligomer and fibril from Aβ (1–42) peptide in vitro. We analyzed the characteristics of these oligomers and fibrils by electrophoresis and atomic force microscopy. Interestingly, Aβ oligomers but not Aβ monomers or fibrils induced robust IL-1β production in the presence of lipopolysaccharide. Moreover, Aβ oligomers induced endo/phagolysosome rupture, which released cathepsin B into the cytoplasm. Aβ oligomer-induced IL-1β production was inhibited not only by the cathepsin B inhibitor CA-074-Me but also by the reactive oxygen species (ROS) inhibitor N-acetylcysteine. Random chemical crosslinking abolished the ability of the oligomers to induce IL-1β. Thus, multimerization and fibrillization causes Aβ oligomers to lose the ability to induce IL-1β. These results indicate that Aβ oligomers, but not fibrils, induce IL-1β production in primary microglia in a cathepsin B- and ROS-dependent manner. - Highlights: • We prepared amyloid β (Aβ) fibrils with minimum contamination of Aβ oligomers. • Primary microglia (MG) produced IL-1β in response to Aβ oligomers, but not fibrils. • Only Aβ oligomers induced leakage of cathepsin B from endo/phagolysosomes. • IL-1β production in response to Aβ oligomers depended on both cathepsin B and ROS. • Crosslinking reduced the ability of the Aβ oligomers to induce IL-1β from MG.

  8. Increased Plasma Cathepsin S at the Time of Percutaneous Transluminal Angioplasty is Associated with 6-Months’ Restenosis of the Femoropopliteal Artery

    Mijovski Mojca Bozic

    2018-01-01

    Full Text Available Background: We tested the hypothesis that increased levels of cathepsin S and decreased levels of cystatin C in plasma at the time of percutaneous transluminal angioplasty (PTA are associated with the occurrence of 6-months’ restenosis of the femoropopliteal artery (FPA. Methods: 20 patients with restenosis and 24 matched patients with patent FPA after a 6-months follow-up were in - cluded in this study. They all exhibited disabling claudication or critical limb ischemia and had undergone technically successful PTA. They were all receiving statins and ACE in hi - bitors (or angiotensin II receptor antagonist before the PTA and the therapy did not change throughout the observational period. Plasma concentrations of C-reactive protein were < 10 mg/L and of creatinine within the reference range at the time of the PTA. Plasma concentration and activity of cathepsin S, together with its potent inhibitor cystatin C, were measured the day before and the day after the PTA. Results: The increased plasma concentration and activity of cathepsin S at the time of PTA was associated with the occurrence of 6-months’ restenosis of FPA, independently of established risk factors (lesion complexity, infrapopliteal run-off vessels, type of PTA, age, gender, smoking, diabetes, lipids and of cystatin C. Plasma cystatin C concentration was not associated with restenosis and did not correlate with cathepsin S activity and concentration in the plasma. Conclusion: Increased level of plasma cathepsin S at the time of PTA is associated with 6-months’ restenosis of PTA, independently of established risk factors.

  9. Sildenafil Decreases BACE1 and Cathepsin B Levels and Reduces APP Amyloidogenic Processing in the SAMP8 Mouse.

    Orejana, Lourdes; Barros-Miñones, Lucía; Jordan, Joaquin; Cedazo-Minguez, Angel; Tordera, Rosa M; Aguirre, Norberto; Puerta, Elena

    2015-06-01

    The senescence-accelerated mouse-prone 8 (SAMP8), used as a model of aging, displays many established pathological features of Alzheimer's disease. Cognitive impairments and increased levels of hyperphosphorylated tau are found in the hippocampus of SAMP8 mice along with an increased β-secretase activity and amyloid-β (Aβ) depositions that increase in number and extent with age. Based on a previous study from our laboratory showing an amelioration of cognitive impairments and tau pathology by sildenafil, in this study we tested whether this drug could also modulate the amyloid precursor protein amyloidogenic processing in this mouse model. Our results show that the protein levels of the β-secretases β-site amyloid precursor protein cleaving enzyme 1 and cathepsin B are higher in the hippocampus of 9-month-old SAMP8 mice than those of age-matched senescence-resistant-1. Sildenafil (7.5mg/kg for 4 weeks) attenuated learning and memory impairments shown by SAMP8 mice in the passive avoidance test. The increased expression of β-site amyloid precursor protein cleaving enzyme 1 was also reduced by sildenafil, an effect paralleled to decreases in the activities of two β-site amyloid precursor protein cleaving enzyme 1 modulators, calpain and cyclin-dependent kinase 5 protein. Interestingly, sildenafil enhanced both Akt and glycogen synthase kinase-3β (ser9) phosphorylation, which could be mediating the reduction in cathepsin B levels found in the hippocampus of sildenafil-treated SAMP8 mice. Sildenafil-induced reduction in β-site amyloid precursor protein cleaving enzyme 1 and cathepsin B expression in SAMP8 mice was associated with a decrease in hippocampal Aβ42 levels which, in turn, could mediate the parallel decline in glial fibrillary acidic protein expression observed in these animals. These findings highlight the therapeutic potential of sildenafil in Alzheimer's disease pathogenesis. © The Author 2014. Published by Oxford University Press on behalf of

  10. (BDMCA) Nanoparticles

    Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using polycaprolactone as the polymer. The nanoparticles were characterised for drug content, particles size, in vitro drug release and the drug-polymer interaction. The in vivo properties of the formulations in male ...

  11. Intermetallic nanoparticles

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  12. Single nucleotide polymorphisms of cathepsin S and the risks of asthma attack induced by acaroid mites.

    Li, Chaopin; Chen, Qi; Jiang, Yuxin; Liu, Zhiming

    2015-01-01

    To investigate association between the three single nucleotide polymorphisms (SNPs, rs146456111, rs143154304 and rs147260142) in cathepsin S (Cat S) and the risks of allergic asthma attack induced by the acaroid mites in the Chinese population. A case-control study was performed in 412 cases and 454 volunteers/controls to evaluate the effects of three SNPs in Cat S on the risks of asthma attack. The genotypes were determined using polymerase chain reaction (PCR) and cleaved amplification polymorphism sequence-tagged sites (PCR-RFLP). The frequencies of genotypes and alleles in these SNPs in the asthmatic group were also analyzed between the two groups. The locus of rs146456111 in Cat S gene, the allele frequency of A and C in asthmatic group were significantly different from the control group (χ(2) = 184.425, P = 0.000), and the difference was significant regarding the distribution of the genotypes (AA, AC, and CC) between asthmatic subjects and normal controls (χ(2) = 177.915, P = 0.000). Logistic regression analysis revealed that the AC, CC, and AC + CC genotypes were significantly increased with the risk of asthma (AC vs. AA, OR = 4.013, 95% CI = 2.989-4.751, P = 0.000; CC vs. AA, OR = 3.167, 95% CI = 2.483-3.785, P = 0.000; AC + CC vs. AA, OR = 3.418, 95% CI = 2.381-4.214, P = 0.000, respectively), compared with AA genotype. Moreover, by comparison with allele A, allele C (OR = 2.187, 95% CI = 1.743-2.281, P asthma; For the locus of rs143154304, compared with the allele frequency G with A in control group, there was no difference (χ(2) = 1.434, P = 0.231) in that of asthmatic group, as well as the distributions of the genotypes (AA, AG, and GG) between asthmatic subjects and normal controls (χ(2) = 1.997, P = 0.369); Logistic regression analysis showed that the AG, GG, and AG + GG genotypes were no risk to asthma (AG vs. AA, OR = 0.991, 95% CI = 0.625-1.507, P = 0.968; GG vs. AA, OR = 0.812, 95% CI = 0.525-1.258, P = 0.352; AG + GG vs. AA, OR = 0.914, 95

  13. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

    Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang

    2018-04-26

    Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.

  14. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid

    2004-01-01

    Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation and induc......Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation......, possibly because of conflicting growth control. Interestingly, E7/p21-induced cell death is associated with the activation of a newly identified mediator of apoptosis, namely cathepsin B. Activation of the cellular caspases is undetectable in cells undergoing E7/p21-induced apoptosis. To our knowledge...

  15. Localization of Alkaline Phosphatase and Cathepsin D during Cell Restoration after Colchicine Treatment in Primary Cultures of Fetal Rat Hepatocytes

    Chida, Kohsuke; Taguchi, Meiko

    2011-01-01

    Localization of alkaline phosphatase (ALP) and cathepsin D (CAPD) in primary cultures of fetal rat hepatocytes was examined using double immunofluorescent staining in order to investigate the relationship between lysosome movement and the fate of ALP during cell restoration after microtubule disruption by colchicine. At 3 hr and 24 hr after colchicine treatment, numerous coarse dots containing ALP were observed throughout the cytoplasm, and some of these showed colocalization with CAPD. At 48 hr and 72 hr after colchicine treatment, although most of the dots containing ALP in the cytoplasm disappeared, dots containing CAPD remained. The present results suggest that the denatured ALP proteins remaining in the cytoplasm of hepatocytes during cell restoration after colchicine treatment are digested by lysosomes

  16. Induction of premalignant host responses by cathepsin x/z-deficiency in Helicobacter pylori-infected mice.

    Sabine Krueger

    Full Text Available Helicobacter pylori are responsible for the induction of chronic gastric inflammation progressing to atrophy, metaplasia, and gastric cancer. The overexpression of Cathepsin X/Z (Ctsz in H. pylori-infected mucosa and gastric cancer is mediated predominantly by an augmented migration of ctsz(-/-positive macrophages and the up-regulation of Ctsz in tumor epithelium. To explore the Ctsz-function in the context of chronic inflammation and the development of preneoplastic lesions, we used Ctsz-deficient mice in a H. pylori gastritis model. Ctsz (-/- and wild-type (wt mice were infected with H. pylori strain SS1. The mice were sacrificed at 24, 36, and 50 weeks post infection (wpi. The stomach was removed, and gastric strips were snap-frozen or embedded and stained with H&E. Tissue sections were scored for epithelial lesions and inflammation. Ki-67 and F4/80 immunostaining were used to measure epithelial cell proliferation and macrophage infiltration, respectively. The upregulation of compensating cathepsins and cytokines were confirmed by Western blotting and quantitative RT-PCR. SS1-infected wt and ctsz (-/- mice showed strong inflammation, foveolar hyperplasia, atrophy, and cystically-dilated glands. However, at 50 wpi, ctsz (-/- mice developed significantly more severe spasmolytic polypeptide-expressing metaplasia (SPEM, showed enhanced epithelial proliferation, and higher levels of infiltrating macrophages. Induction of cytokines was higher and significantly prolonged in ctsz (-/- mice compared to wt. Ctsz deficiency supports H. pylori-dependent development of chronic gastritis up to metaplasia, indicating a protective, but not proteolytic, function of Ctsz in inflammatory gastric disease.

  17. Systematic optimization of multiplex zymography protocol to detect active cathepsins K, L, S, and V in healthy and diseased tissue: compromise among limits of detection, reduced time, and resources.

    Dumas, Jerald E; Platt, Manu O

    2013-07-01

    Cysteine cathepsins are a family of proteases identified in cancer, atherosclerosis, osteoporosis, arthritis, and a number of other diseases. As this number continues to rise, so does the need for low cost, broad use quantitative assays to detect their activity and can be translated to the clinic in the hospital or in low resource settings. Multiplex cathepsin zymography is one such assay that detects subnanomolar levels of active cathepsins K, L, S, and V in cell or tissue preparations observed as clear bands of proteolytic activity after gelatin substrate SDS-PAGE with conditions optimal for cathepsin renaturing and activity. Densitometric analysis of the zymogram provides quantitative information from this low cost assay. After systematic modifications to optimize cathepsin zymography, we describe reduced electrophoresis time from 2 h to 10 min, incubation assay time from overnight to 4 h, and reduced minimal tissue protein necessary while maintaining sensitive detection limits; an evaluation of the pros and cons of each modification is also included. We further describe image acquisition by Smartphone camera, export to Matlab, and densitometric analysis code to quantify and report cathepsin activity, adding portability and replacing large scale, darkbox imaging equipment that could be cost prohibitive in limited resource settings.

  18. Systematic optimization of multiplex zymography protocol to detect active cathepsins K, L, S, and V in healthy and diseased tissue: compromise between limits of detection, reduced time, and resources

    Dumas, Jerald E.; Platt, Manu O.

    2013-01-01

    Cysteine cathepsins are a family of proteases identified in cancer, atherosclerosis, osteoporosis, arthritis and a number of other diseases. As this number continues to rise, so does the need for low cost, broad use quantitative assays to detect their activity and can be translated to the clinic in the hospital or in low resource settings. Multiplex cathepsin zymography is one such assay that detects subnanomolar levels of active cathepsins K, L, S, and V in cell or tissue preparations observed as cleared bands of proteolytic activity after gelatin substrate SDS-PAGE with conditions optimal for cathepsin renaturing and activity. Densitometric analysis of the zymogram provides quantitative information from this low cost assay. After systematic modifications to optimize cathepsin zymography, we describe reduced electrophoresis time from 2 hours to 10 minutes, incubation assay time from overnight to 4 hours, and reduced minimal tissue protein necessary while maintaining sensitive detection limits; an evaluation of the pros and cons of each modification is also included. We further describe image acquisition by smartphone camera, export to Matlab, and densitometric analysis code to quantify and report cathepsin activity, adding portability and replacing large scale, darkbox imaging equipment that could be cost prohibitive in limited resource settings. PMID:23532386

  19. (shell) nanoparticles

    the quasistatic approximation shows good agreement with the Mie theory results. .... medium, respectively, and f = (rcore/rshell)1/3 is the fraction of the total particle ..... [27] Michael Quinten, Optical properties of nanoparticle systems: Mie and ...

  20. Enhanced Autophagy and Reduced Expression of Cathepsin D Are Related to Autophagic Cell Death in Epstein-Barr Virus-Associated Nasal Natural Killer/T-Cell Lymphomas: An Immunohistochemical Analysis of Beclin-1, LC3, Mitochondria (AE-1), and Cathepsin D in Nasopharyngeal Lymphomas

    Hasui, Kazuhisa; Wang, Jia; Jia, Xinshan; Tanaka, Masashi; Nagai, Taku; Matsuyama, Takami; Eizuru, Yoshito

    2011-01-01

    This study investigated autophagy in 37 cases of nasopharyngeal lymphomas including 23 nasal natural killer (NK)/T-cell lymphomas (NKTCL), 3 cytotoxic T-cell lymphomas (cytotoxic-TML) and 9 B-cell lymphomas (BML) by means of antigen-retrieval immunohistochemistry of beclin-1, LC3, mitochondria (AE-1) and cathepsin D. Peculiar necrosis was noted in EBV + lymphomas comprising 21 NKTCL, 2 cytotoxic-TML and 1 BML. Lymphomas without peculiar necrosis showed high expression of beclin-1, macrogranular cytoplasmal stain of LC3 with sporadic nuclear stain, a hallmark of autophagic cell death (ACD), some aggregated mitochondria and high expression of cathepsin D, suggesting a state of growth with enhanced autophagy with sporadic ACD. EBV + NKTCL with the peculiar necrosis, showed significantly low level of macrogranular staining of LC3, aggregated mitochondria and low expression of cathepsin D in the cellular areas when degenerative lymphoma cells showed decreased beclin-1, significantly advanced LC3-labeled autophagy, residual aggregated mitochondria and significantly reduced expression of cathepsin D, suggesting advanced autophagy with regional ACD. Consequently it was suggested that enhanced autophagy and reduced expression of lysosomal enzymes induced regional ACD under EBV infection in NKTCL

  1. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    Ellen Melaleuca Menkhorst

    Full Text Available Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT invade through the differentiated uterine endometrium (the decidua to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8 M, medroxyprogesterone acetate (10(-7 M and cAMP (0.5 mM for 14 days. Conditioned media (CM was collected on day 2 (non-decidualized CM and 14 (decidualized CM of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1, dipeptidyl peptidase 1 (DPP1/cathepsin C and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro

  2. Treatment with a human recombinant monoclonal IgG antibody against oxidized LDL in atherosclerosis-prone pigs reduces cathepsin S in coronary lesions

    Poulsen, Christian Bo; Al-Mashhadi, Ahmed Ludvigsen; von Wachenfeldt, Karin

    2016-01-01

    and results Thirty-eight hypercholesterolemic minipigs with defective LDL receptors were injected with an oxLDL antibody or placebo weekly for 12 weeks. An 18F-fluorodeoxyglucose positron emission tomography (FDG PET) scan (n = 9) was performed before inclusion and after 3 months of treatment. Blood samples....... There was no effect of treatment on plasma lipid profile, vascular FDG-PET signal or the amount of atherosclerosis in any of the examined arteries. However, immunostaining of coronary lesions revealed reduced cathepsin S positivity in the treated group compared with placebo (4.8% versus 8.2% of intima area, p = 0.......03) with no difference in CD68 or CD163 positivity. Conclusions In hypercholesterolemic minipigs, treatment with a human recombinant monoclonal antibody against oxLDL reduced cathepsin S in coronary lesions without any effect on the burden of atherosclerosis or aortic FDG-PET signal....

  3. Chemical constituents of the stem bark of Vochysia thyrsoidea Pohl. (Vochysiaceae) and evaluation of their cytotoxicity and inhibitory activity against cathepsins B and K

    Sousa, Lorena Ramos Freitas de; Silva, Jame's A. da; Vieira, Paulo Cezar; Costa, Maisa Borges; Santos, Mirley Luciene dos; Menezes, Antonio Carlos Severo; Sbardelotto, Aline Borba; Pessoa, Claudia do O; Moraes, Manoel Odorico de

    2014-01-01

    A new flavonoid, catechin-3-O-(3 - O-trans-cinnamoyl)-α-rhamnopyranoside, along with known compounds, catechin-3-O-α-rhamnopyranoside, 3-oxo-urs-12-en-28-oic acid, 2,4,6-trimethoxybenzoic acid, 2-butyl-D-fructofuranoside and 1-butyl-D-fructofuranoside, has been isolated from the stem bark of V. thyrsoidea. These compounds were assayed for inhibition of protease activity (cathepsins B and K) and against cancer cell lines. Catechin-3-O-(3 - O-trans-cinnamoyl)-α-rhamnopyranoside showed moderate inhibitory activity (IC 50 = 62.02 µM) against cathepsin B while 2-butyl-D-fructofuranoside was the most potent against a strain of CNS (SF-295) and human leukemia (HL-60) with IC 50 = 36.80 μM and IC 50 = 25.37 μM, respectively (author)

  4. Activated cathepsin L is associated with the switch from autophagy to apoptotic death of SH-SY5Y cells exposed to 6-hydroxydopamine

    Li, Lingyun, E-mail: lingyunlee@126.com [Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 (China); Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Gao, Luyan [Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Song, Yunzhen; Qin, Zheng-Hong [Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 (China); Liang, Zhongqin, E-mail: liangzhongqin@suda.edu.cn [Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 (China)

    2016-02-12

    Autophagy and apoptosis are common responses to pathological damage in the process of Parkinson's disease (PD), and lysosome dysfunction may contribute to the etiology of PD's neurodegenerative process. In this study, we demonstrated that the neurotoxin 6-hydroxydopamine (6-OHDA) increased autophagy in SH-SY5Y cells, as determined by detection of the lysosome marker lysosomal-associated membrane protein1, the autophagy protein light chain 3 (LC3)-II and the autophagy substrate P62 protein. Meanwhile, autophagy repression with 3-methyladenine accelerated the activation of caspase-3 and PARP and aggravated the cell apoptotic death induced by 6-OHDA. Furthermore, we found that 6-OHDA treatment resulted in a transient increase in the intracellular and nuclear expression of cathepsin L (CTSL). The CTSL inhibitor, Z-FY-CHO, could promote autophagy, decrease accumulation of P62, and block activation of caspase-3 and PARP. Taken together, these results suggest that activation of autophagy may primarily be a protective process in SH-SY5Y cell death induced by 6-OHDA, and the nuclear translocation of CTSL could enhance the cell apoptotic cascade via disturbing autophagy-apoptotic systems in SH-SY5Y cells. Our findings highlight the potential role of CTSL in the cross talk between autophagy and apoptosis, which might be considered a therapeutic strategy for treatment of pathologic conditions associated with neurodegeneration. - Highlights: • Inhibition of autophagy aggravated the cell apoptotic death in SH-SY5Y cells. • Activation of cathepsin L impaired the autophagy pathway. • Activation of cathepsin L enhanced the cell apoptotic cascade. • Cathepsin L involves in the cross talk between autophagy and apoptosis.

  5. Effect of mefenamic acid on the immunity and hemostatic system of cancer patients and on the activity of cathepsin D-like protease in colonic cancer tissue

    Klyachkin, B.M.; Basargin, S.T.; Timofeev, I.V.; Khaliulin, Yu.G.; Dorofeev, S.A.; Alekseenko, L.D.; Gumenyuk, M.L.

    1992-01-01

    The study of the effect of sodium mefenaminate on radiation resistance of mice yielded positive results. Clinical investigations showed mefenamic acid to decrease the activity of cathepsin D-like protease in colonic cancer tissue. The acid field to affect the proteolytic activity of the normal mucosa. It revealed an immunomodulating activity and influenced the hemostatic system which usually manifested itself in amelioration of hypercoagulation

  6. Mapping the Pro-Peptide of the Schistosoma mansoni Cathepsin B1 Drug Target: Modulation of Inhibition by Heparin and Design of Mimetic Inhibitors

    Horn, Martin; Jílková, Adéla; Vondrášek, Jiří; Marešová, Lucie; Caffrey, C. R.; Mareš, Michael

    2011-01-01

    Roč. 6, č. 6 (2011), s. 609-617 ISSN 1554-8929 R&D Projects: GA ČR GA203/09/1585; GA AV ČR KJB400550516; GA AV ČR IAA400550705 Grant - others:NATO(XE) NATO LST/CLG 980187 Institutional research plan: CEZ:AV0Z40550506 Keywords : Schistosoma mansoni * cathepsin B * propeptide Subject RIV: CE - Biochemistry Impact factor: 6.446, year: 2011

  7. DNA nanoparticles with core-shell morphology.

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  8. Estrogens and growth factors induce the mRNA of the 52K-pro-cathepsin-D secreted by breast cancer cells

    Cavailles, V; Augereau, P; Garcia, M; Rochefort, H

    1988-03-25

    The estrogen-induced 52K protein secreted by human breast cancer cells is a lysosomal protease recently identified as a pro-cathepsin D by sequencing several cDNA clones isolated from MCF/sub 7/ cells. Using one of these clones, the authors detected, in MCF/sub 7/ cells a 2.2 kb mRNA whose level was rapidly increased 4- to 10-fold by estradiol, but not by other classes of steroids. Other mitogens, such as epidermal growth factor and insulin, also induced the 2.2 kb mRNA in a dose-dependent manner. Induction with epidermal growth factor was as rapid but was 2- to 3-fold lower than with estradiol. Antiestrogens had no effect on the 52K-cathepsin-D mRNA in MCF/sub 7/ cells, but became estrogen agonists in two antiestrogen-resistant sublines R/sub 27/ and LY2. The use of transcription and translation inhibitors and nuclear run-on experiments indicate that estradiol enhances transcription of the 52K-cathepsin-D gene in MCF/sub 7/ cells.

  9. The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development.

    Violeta Morin

    Full Text Available Proteolysis of sperm histones in the sea urchin male pronucleus is the consequence of the activation at fertilization of a maternal cysteine protease. We previously showed that this protein is required for male chromatin remodelling and for cell-cycle progression in the newly formed embryos. This enzyme is present in the nucleus of unfertilized eggs and is rapidly recruited to the male pronucleus after insemination. Interestingly, this cysteine-protease remains co-localized with chromatin during S phase of the first cell cycle, migrates to the mitotic spindle in M-phase and is re-located to the nuclei of daughter cells after cytokinesis. Here we identified the protease encoding cDNA and found a high sequence identity to cathepsin proteases of various organisms. A phylogenetical analysis clearly demonstrates that this sperm histone protease (SpHp belongs to the cathepsin L sub-type. After an initial phase of ubiquitous expression throughout cleavage stages, SpHp gene transcripts become restricted to endomesodermic territories during the blastula stage. The transcripts are localized in the invaginating endoderm during gastrulation and a gut specific pattern continues through the prism and early pluteus stages. In addition, a concomitant expression of SpHp transcripts is detected in cells of the skeletogenic lineage and in accordance a pharmacological disruption of SpHp activity prevents growth of skeletal rods. These results further document the role of this nuclear cathepsin L during development.

  10. Azilsartan increases levels of IL-10, down-regulates MMP-2, MMP-9, RANKL/RANK, Cathepsin K and up-regulates OPG in an experimental periodontitis model.

    Aurigena Antunes de Araújo

    Full Text Available AIMS: The aim of this study was to evaluate the effects of azilsartan (AZT on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs, receptor activator of nuclear factor κB ligand (RANKL, receptor activator of nuclear factor κB (RANK, osteoprotegerin (OPG, cyclooxygenase-2 (COX-2, and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. MATERIALS AND METHODS: Male Wistar albino rats were randomly divided into 5 groups of 10 rats each: (1 nonligated, water; (2 ligated, water; (3 ligated, 1 mg/kg AZT; (4 ligated, 5 mg/kg AZT; and (5 ligated, 10 mg/kg AZT. All groups were treated with saline or AZT for 10 days. Periodontal tissues were analyzed by histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1β, IL-10, TNF-α, myeloperoxidase (MPO, and glutathione (GSH were determined by ELISA. RESULTS: Treatment with 5 mg/kg AZT resulted in reduced MPO (p<0.05 and IL-1β (p<0.05, increased levels of IL-10 (p<0.05, and reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and increased expression of OPG. CONCLUSIONS: These findings reveal that AZT increases anti-inflammatory cytokines and GSH and decreases bone loss in ligature-induced periodontitis in rats.

  11. Development of cathepsin-L cysteine proteinase based Dot-enzyme-linked immunosorbent assay for the diagnosis of Fasciola gigantica infection in buffaloes.

    Varghese, Anju; Raina, O K; Nagar, Gaurav; Garg, Rajat; Banerjee, P S; Maharana, B R; Kollannur, Justin D

    2012-02-10

    Native cathepsin-L cysteine proteinase (28 kDa) was purified from the excretory secretory products of Fasciola gigantica and was used for sero-diagnosis of F. gigantica infection in buffaloes by Dot-enzyme-linked immunosorbent assay (Dot-ELISA). The test detected F. gigantica field infection in these animals with a sensitivity of ∼ 90%. No specific IgG antibody binding was displayed by sera obtained from 76 buffaloes considered to be Fasciola and other parasite-free by microscopic examination of faeces and necropsy examination of liver, rumen and intestine. Additionally, sera from 156 Fasciola-free buffaloes, yet infected with Gigantocotyle explanatum, Paramphistomum epiclitum, Gastrothylax spp., Strongyloides papillosus and hydatid cyst were all negative, indicating that F. gigantica cathepsin-L cysteine proteinase does not cross-react with these helminth parasites in natural infection of the host. The data indicated that cathepsin-L cysteine proteinase based Dot-ELISA reached ∼ 90% sensitivity and 100% specificity with relation to above parasites in the detection of bubaline fasciolosis. The present Dot-ELISA diagnostic assay is relevant to the field diagnosis of F. gigantica infection in buffaloes. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Molecular characterization of cathepsin B from Clonorchis sinensis excretory/secretory products and assessment of its potential for serodiagnosis of clonorchiasis

    Zhou Chenhui

    2011-07-01

    Full Text Available Abstract Background Cathepsin cysteine proteases play multiple roles in the life cycle of parasites such as food uptake, immune invasion and pathogenesis, making them valuable targets for diagnostic assays, vaccines and drugs. The purpose of this study was to identify a cathepsin B of Clonorchis sinensis (CsCB and to investigate its diagnostic value for human helminthiases. Results The predicted amino acid sequence of the cathepsin B of C. sinensis shared 63%, 52%, 50% identity with that of Schistosoma japonicum, Homo sapiens and Fasciola hepatica, respectively. Sequence encoding proenzyme of CsCB was overexpressed in Escherichia coli. Reverse transcription PCR experiments revealed that CsCB transcribed in both adult worm and metacercaria of C. sinensis. CsCB was identified as a C. sinensis excretory/secretory product by immunoblot assay, which was consistent with immunohistochemical localization showing that CsCB was especially expressed in the intestine of C. sinensis adults. Both ELISA and western blotting analysis showed recombinant CsCB could react with human sera from clonorchiasis and other helminthiases. Conclusions Our findings revealed that secreted CsCB may play an important role in the biology of C. sinensis and could be a diagnostic candidate for helminthiases.

  13. Potentiation of apoptosis by histone deacetylase inhibitors and doxorubicin combination: cytoplasmic cathepsin B as a mediator of apoptosis in multiple myeloma.

    Cheriyath, V; Kuhns, M A; Kalaycio, M E; Borden, E C

    2011-03-15

    Although inhibitors of histone deacetylase inhibitors (HDACis) in combination with genotoxins potentiate apoptosis, the role of proteases other than caspases in this process remained elusive. Therefore, we examined the potentiation of apoptosis and related mechanisms of HDACis and doxorubicin combination in a panel of myeloma cell lines and in 25 primary myelomas. At IC(50) concentrations, sodium butyrate (an HDACi) or doxorubicin alone caused little apoptosis. However, their combination potentiated apoptosis and synergistically reduced the viability of myeloma cells independent of p53 and caspase 3-7 activation. Potentiated apoptosis correlated with nuclear translocation of apoptosis-inducing factor, suggesting the induction of caspase 3- and 7-independent pathways. Consistent with this, butyrate and doxorubicin combination significantly increased the activity of cytoplasmic cathepsin B. Inhibition of cathepsin B either with a small-molecule inhibitor or downregulation with a siRNA reversed butyrate- and doxorubicin-potentiated apoptosis. Finally, ex vivo, clinically relevant concentrations of butyrate or SAHA (suberoylanilide hydroxamic acid, vorinostat, an HDACi in clinical testing) in combination with doxorubicin significantly (Pmediating apoptosis potentiated by HDACi and doxorubicin combinations in myeloma. Our results support a molecular model of lysosomal-mitochondrial crosstalk in HDACi- and doxorubicin-potentiated apoptosis through the activation of cathepsin B.

  14. Molecular cloning and anti-invasive activity of cathepsin L propeptide-like protein from Calotropis procera R. Br. against cancer cells.

    Kwon, Chang Woo; Yang, Hee; Yeo, SuBin; Park, Kyung-Min; Jeong, Ae Jin; Lee, Ki Won; Ye, Sang-Kyu; Chang, Pahn-Shick

    2018-12-01

    Cathepsin L of cancer cells has been shown to play an important role in degradation of extracellular matrix for metastasis. In order to reduce cell invasion, cathepsin L propeptide-like proteins which are classified as the I29 family in the MEROPS peptidase database were characterized from Calotropis procera R. Br., rich in cysteine protease. Of 19 candidates, the cloned and expressed recombinant SnuCalCp03-propeptide (rSnuCalCp03-propeptide) showed a low nanomolar K i value of 2.3 ± 0.2 nM against cathepsin L. A significant inhibition of tumor cell invasion was observed with H1975, HT29, MDA-BM-231, PANC1, and PC3 with a 76, 67, 67, 63, and 79% reduction, respectively, in invasion observed in the presence of 400 nM of the rSnuCalCp03-propeptide. In addition, thermal and pH study showed rSnuCalCp03-propeptide consisting of secondary structures was stable at a broad range of temperatures (30-70 °C) and pH (2-10, except for 5 which is close to the isoelectric point of 5.2).

  15. Collagenolytic activities of the major secreted cathepsin L peptidases involved in the virulence of the helminth pathogen, Fasciola hepatica.

    Mark W Robinson

    Full Text Available BACKGROUND: The temporal expression and secretion of distinct members of a family of virulence-associated cathepsin L cysteine peptidases (FhCL correlates with the entry and migration of the helminth pathogen Fasciola hepatica in the host. Thus, infective larvae traversing the gut wall secrete cathepsin L3 (FhCL3, liver migrating juvenile parasites secrete both FhCL1 and FhCL2 while the mature bile duct parasites, which are obligate blood feeders, secrete predominantly FhCL1 but also FhCL2. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that FhCL1, FhCL2 and FhCL3 exhibit differences in their kinetic parameters towards a range of peptide substrates. Uniquely, FhCL2 and FhCL3 readily cleave substrates with Pro in the P2 position and peptide substrates mimicking the repeating Gly-Pro-Xaa motifs that occur within the primary sequence of collagen. FhCL1, FhCL2 and FhCL3 hydrolysed native type I and II collagen at neutral pH but while FhCL1 cleaved only non-collagenous (NC, non-Gly-X-Y domains FhCL2 and FhCL3 exhibited collagenase activity by cleaving at multiple sites within the α1 and α2 triple helix regions (Col domains. Molecular simulations created for FhCL1, FhCL2 and FhCL3 complexed to various seven-residue peptides supports the idea that Trp67 and Tyr67 in the S2 subsite of the active sites of FhCL3 and FhCL2, respectively, are critical to conferring the unique collagenase-like activity to these enzymes by accommodating either Gly or Pro residues at P2 in the substrate. The data also suggests that FhCL3 accommodates hydroxyproline (Hyp-Gly at P3-P2 better than FhCL2 explaining the observed greater ability of FhCL3 to digest type I and II collagens compared to FhCL2 and why these enzymes cleave at different positions within the Col domains. CONCLUSIONS/SIGNIFICANCE: These studies further our understanding of how this helminth parasite regulates peptidase expression to ensure infection, migration and establishment in host tissues.

  16. Lipid nanoparticle interactions and assemblies

    Preiss, Matthew Ryan

    oxide nanoparticles encapsulated in the lipid bilayer, the local temperature and membrane fluidity could be observed. DLNAs were encapsulated with different sized nanoparticles and concentrations in order to observe the effect of the bilayer nanoparticles on the lipid bilayer's phase behavior and leakage. Two different sized nanoparticles were used, a 2 nm gold nanoparticle (GNP) much smaller than the thickness of the bilayer and a 4 nm GNP near the thickness of the lipid bilayer. The 2 nm GNPs were shown to affect the lipid bilayer differently than the 4 nm GNP. Specifically, the two nanoparticles altered the phase behavior and leakage differently in a temperature dependent fashion, demonstrating that embedded nanoparticle size can be used induce or inhibit bilayer leakage. A dual solvent exchange method was used to control the lipid surface composition of an iron oxide nanoparticle with a cationic lipid and a polyethylene glycol (PEG) lipid to produce lipid coated magnetic nanoparticles (LMNPs). PEG is well known for its ability to enhance the pharmacokinetics of nanostructures by preventing uptake by the immune system. By controlling the lipid surface composition, the surface charge and PEG conformation can be controlled which allowed the LMNPs to be used as an MRI contrast agent and a delivery system for siRNA that could be triggered with temperature.

  17. Synthesis of multifunctional gold nanoparticles for image guided therapy

    Laurent, Gautier

    2014-01-01

    The original properties of nanoparticles make them extremely attractive in the field of oncology. In fast, gold nanoparticles coated by macrocyclic ligands allow imaging and therapy with only one object. Therefore, multifunctional platforms are very promising for image-guided therapy, winch constitutes an important step towards personalization of treatment. This consists of stimulating the therapeutic activity of the nanoparticles when their accumulation is high within the tumor zone and low in healthy tissues. A higher selectivity of the treatment is therefore expected. Biodistribution study by SPECT/CT has shown free circulation, renal elimination and a moderate retention by the liver of the nanoparticles. However, this retention is not due to the opsonisation processes. The MRI study of rats' brain carrying a gliosarcoma has shown an accumulation of nanoparticles Au-at-FADOTAGA-Gd in the tumor. Moreover, the co-labeling of these nanoparticles by Ge and 64Cts2+ was successfully performed. As a result, PET/MRI images, a much researched combination but rarely achieved, were acquired on the same animal alter intravenous injection of the co-labeled nanoparticles. The radiosensitizing character of nanoparticles Au-at-TADOTAGA was confirmed by the follow up of tumor growth alter a treatment by MRT (microbeam irradiation) 15 minutes after intratumoral injection of nanoparticles. The therapeutic gain of this treatment has been validated by MRT 24 hours after intravenous injection of nanoparticles to rats carrying gliosarcoma (radioresistant tumor in radiosensitive organ). (author)

  18. Biopolymeric nanoparticles

    Sundar, Sushmitha; Kundu, Joydip; Kundu, Subhas C

    2010-01-01

    This review on nanoparticles highlights the various biopolymers (proteins and polysaccharides) which have recently revolutionized the world of biocompatible and degradable natural biological materials. The methods of their fabrication, including emulsification, desolvation, coacervation and electrospray drying are described. The characterization of different parameters for a given nanoparticle, such as particle size, surface charge, morphology, stability, structure, cellular uptake, cytotoxicity, drug loading and drug release, is outlined together with the relevant measurement techniques. Applications in the fields of medicine and biotechnology are discussed along with a promising future scope. (topical review)

  19. Spectroscopic exploration of interaction between PEG-functionalized Ag2S nanoparticles with bovine serum albumin

    Prasanth, S.; RitheshRaj, D.; Vineeshkumar, T. V.; Sudarsanakumar, C.

    2018-05-01

    The introduction of nanoparticles into biological fluids often leads to the formation of biocorona over the surface of nanoparticles. For the effective use of nanoparticles in biological applications it is very essential to understand their interactions with proteins. Herein, we investigated the interactions of Poly ethylene glycol capped Ag2S nanoparticles with Bovine Serum Albumin by spectroscopic techniques. By the addition of Ag2S nanoparticles, a ground state complex is formed. The CD spectroscopy reveals that the secondary structure of BSA is altered by complexation with PEG-Ag2S nanoparticles, while the overall tertiary structure remains closer to that of native BSA.

  20. Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma.

    Jian Wang

    Full Text Available The aim of this study was to characterize the oncogenic function and mechanism of Cathepsin Z (CTSZ at 20q13.3, a frequently amplified region in hepatocellular carcinoma (HCC. Real-time PCR were used to compare CTSZ expression between paired HCC tumor and non-tumor specimens. CTSZ gene was stably transfected into HCC line QGY-7703 cells and its role in tumorigenicity and cell motility was characterized by soft agar, wound-healing, transwell invasion and cell adhesion assay, and tumor xenograft mouse model. Western blot analysis was used to study expression of proteins associated with epithelial-mesenchymal transition (EMT.Upregulation of CTSZ was detected in 59/137 (43% of primary HCCs, which was significantly associated with advanced clinical stage (P = 0.000. Functional study found that CTSZ could increase colony formation in soft agar and promote cell motility. Further study found that the metastatic effect of CTSZ was associated with its role in inducing epithelial-mesenchymal transition (EMT by upregulating mesenchymal markers (fibronectin and vimentin and downregulating epithelial markers (E-cadherin and α-catenin. In addition, CTSZ could also upregulate proteins associated with extracellular matrix remodeling such as MMP2, MMP3 and MMP9. Taken together, our data suggested that CTSZ was a candidate oncogene within the 20q13 amplicon and it played an important role in HCC metastasis.

  1. Cathepsin B is up-regulated and mediates extracellular matrix degradation in trabecular meshwork cells following phagocytic challenge.

    Kristine Porter

    Full Text Available Cells in the trabecular meshwork (TM, a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment. Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB. Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.

  2. Molecular characterization and expression analysis of cathepsin C in Chinese giant salamander (Andrias davidianus after Aeromonas hydrophila infection

    Zisheng Wang

    2018-03-01

    Full Text Available Background: Cathepsin C (CTSC (dipeptidyl peptidase I, DPPI, is a member of the papain superfamily of cysteine proteases and involves in a variety of host reactions. However, the information of CTST in Chinese giant salamander (Andrias davidianus, an amphibian species with important evolutionary position and economic values, remained unclear. Results: The full-length salamander CTSC cDNA contained a 96 bp of 5′-UTR, a 1392 bp of ORF encoding 463 amino acids, and a 95 bp of 3′-UTR. The salamander CTSC possessed several sequence features similar to other reported CTSCs such as a signal peptide, a propeptide and a mature peptide. The active site triad of Cys, His and Asn were also found existing in salamander CTSC. Salamander CTSC mRNA was constitutively expressed in all the examined tissues with significantly variant expression level. The highest expression of CTSC was in intestine, followed with stomach, spleen, lung and brain. Following Aeromonas hydrophila infection for 12 h, salamander CTSC was significantly up-regulated in several tissues including lung, spleen, brain, kidney, heart, stomach and skin. Conclusion: CTSC plays roles in the immune response to bacterial infection, which provided valuable information for further studying the functions of CTSC in salamander. Keywords: cDNA, CTSC, Dipeptidyl peptidase I, Gene expression, Hydrophila, Immune, Peptide, Sequence, Tissue

  3. THE PROGNOSIS SIGNIFICANCE OF CATHEPSIN-D EXPRESSION IN THE DIFFERENT LOCATIONS IN AXILLARY NODES NEGATIVE CARCINOMA

    2001-01-01

    Objective: The aim of this study was to investigate Cathepsin-D (Cath-D) expression in different location and its relationship with prognosis in the axillary lymph nodes negative (ANN) breast cancer patients. Methods: Cath-D expression in 192 cases of breast carcinoma were examined by immunohistochemistry. Depending on different parts of expression, three evaluating methods were used, compared and analysed. Results: The positive rate of Cath-D expression in ANN breast cancer with poor prognosis group and axillary nodes positive (ANP) group were significantly higher than that in ANN breast cancer with good prognosis group (x2=23.20, P0.05). Cath-D expression in stromal cells had no statistical difference among the three groups (x2=1.56, P>0.05). When the Cath-D expression in cancer and stromal cells were counted into the positive rate, it was near the same (u1=0.47, u2=1.41, P>0.05). Conclusion: These results suggest that Cath-D expression is one of the powerful prognostic markers in ANN breast cancer. It's a reliable, practical, and convenient method to observe and evaluate Cath-D expression in cancer cells.

  4. Relationship between bcl-2, bax, beclin-1, and cathepsin-D proteins during postovulatory follicular regression in fish ovary.

    Morais, Roberto D V S; Thomé, Ralph G; Santos, Hélio B; Bazzoli, Nilo; Rizzo, Elizete

    2016-04-01

    In fish ovaries, postovulatory follicles (POFs) are key biomarkers of breeding and provide an interesting model for studying the relationship between autophagy and apoptosis. In this study, we investigated the immunohistochemical expression of autophagic and apoptotic proteins to improve the knowledge on the mechanisms regulating ovarian remodeling after spawning. Females from three neotropical fish species kept in captivity were submitted to hormonal induction. After ova stripping, ovarian sections were sampled daily until 5 days postspawning (dps). Similar events of POF regression were detected by histology, terminal transferase-mediated dUTP nick-end labeling (TUNEL), and electron microscopy in the three species: follicular cells hypertrophy, progressive disintegration of the basement membrane, gradual closing of the follicular lumen, theca thickening, and formation of large autophagic vacuoles preceding apoptosis of the follicular cells. Autophagic and apoptotic proteins were assessed by immunohistochemistry. Morphometric analysis of the immunolabeling revealed a more intense reaction for bcl-2 and beclin-1 (BECN1) in POFs at 0 to 1 dps and for bax at 2 to 3 dps (P family, BECN1, and cathepsin-D can be involved in the regulation of ovarian remodeling in teleost fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress.

    Liow, K Y; Chow, Sek C

    2018-01-01

    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.

  6. Robust Nanoparticles

    2015-01-21

    avenues for creating flexible conducting and semiconducting materials in a variety of simple or complex geometries. B. Conducting nanoparticle...coated with poly(MPC-co-DHLA) proved stable against challenging conditions, and resisted cyanide ion digestion. Au NRs coated with poly(MPC-co-DHLA

  7. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill under stress of NaCl and/or ZnO nanoparticles

    Hesham F. Alharby

    2016-11-01

    Full Text Available Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L−1 and ZnO-NPs (0, 15 and 30 mg L−1. Treatments with NaCl at both 3 and 6 g L−1 suppressed the mRNA levels of superoxide dismutase (SOD and glutathione peroxidase (GPX genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS–PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa. Keywords: Tomato, Salt stress, Nanoparticles, Gene expression, Real-time PCR, Polymorphism

  8. Interactions of Model Cell Membranes with Nanoparticles

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  9. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    Chandra, Sudeshna; Noronha, Glen; Dietrich, Sascha; Lang, Heinrich; Bahadur, Dhirendra

    2015-01-01

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH 2 CH 2 C(O)O(CH 2 CH 2 O) 9 CH 3 and CH 2 CH 2 C(O)O(CH 2 CH 2 O) 2 C 2 H 5 , respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe 3 O 4 ) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells

  10. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    Chandra, Sudeshna; Noronha, Glen [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Dietrich, Sascha; Lang, Heinrich [Technische Universität Chemnitz, Institute of Chemistry, Straße der Nationen 62, d-09111 Chemnitz (Germany); Bahadur, Dhirendra, E-mail: dhirenb@iitb.ac.in [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India)

    2015-04-15

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 9}CH{sub 3} and CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 2}C{sub 2}H{sub 5}, respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe{sub 3}O{sub 4}) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells.

  11. Tumor marker utility and prognostic relevance of cathepsin B, cathepsin L, urokinase-type plasminogen activator, plasminogen activator inhibitor type-1, CEA and CA 19-9 in colorectal cancer

    Herszényi, László; Farinati, Fabio; Cardin, Romilda; István, Gábor; Molnár, László D; Hritz, István; De Paoli, Massimo; Plebani, Mario; Tulassay, Zsolt

    2008-01-01

    Cathepsin B and L (CATB, CATL), urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 play an important role in colorectal cancer invasion. The tumor marker utility and prognostic relevance of these proteases have not been evaluated in the same experimental setting and compared with that of CEA and CA-19-9. Protease, CEA and CA 19-9 serum or plasma levels were determined in 56 patients with colorectal cancer, 25 patients with ulcerative colitis, 26 patients with colorectal adenomas and 35 tumor-free control patients. Protease, CEA, CA 19-9 levels have been determined by ELISA and electrochemiluminescence immunoassay, respectively; their sensitivity, specificity, diagnostic accuracy have been calculated and correlated with clinicopathological staging. The protease antigen levels were significantly higher in colorectal cancer compared with other groups. Sensitivity of PAI-1 (94%), CATB (82%), uPA (69%), CATL (41%) were higher than those of CEA or CA 19-9 (30% and 18%, respectively). PAI-1, CATB and uPA demonstrated a better accuracy than CEA or CA 19-9. A combination of PAI-1 with CATB or uPA exhibited the highest sensitivity value (98%). High CATB, PAI-1, CEA and CA 19-9 levels correlated with advanced Dukes stages. CATB (P = 0.0004), CATL (P = 0.02), PAI-1 (P = 0.01) and CA 19-9 (P = 0.004) had a significant prognostic impact. PAI-1 (P = 0.001), CATB (P = 0.04) and CA 19-9 (P = 0.02) proved as independent prognostic variables. At the time of clinical detection proteases are more sensitive indicators for colorectal cancer than the commonly used tumor markers. Determinations of CATB, CATL and PAI-1 have a major prognostic impact in patients with colorectal cancer

  12. Nanoparticles - A review | Mohanraj | Tropical Journal of ...

    ... been used as a physical approach to alter and improve the pharmacokinetic ... They have been used in vivo to protect the drug entity in the systemic ... effect of their characteristics and their applications in delivery of drug molecules and therapeutic genes. Keywords: nanoparticles, drug delivery, targeting, drug release

  13. Adsorption of amphipathic dendrons on polystyrene nanoparticles.

    Sakthivel, T; Florence, A T

    2003-03-18

    Adsorption of dendrons onto nanoparticles may provide new model structures which may be useful in drug and gene delivery. Tritiated amphipathic dendrons having three lipidic (C(14)) chains coupled to branched (dendritic) lysine head groups with 8, 16 or 32 free terminal amino groups have been synthesised by solid phase peptide techniques. The interaction between these tritiated dendrons and 200 nm polystyrene latex nanoparticles was investigated in phosphate buffered saline. The amount of dendron adsorbed increased with increasing concentration of dendrons and then decreased. Maximum adsorption of dendrons per gram of nanoparticles was found to be between 8.2 and 84 x 10(-6)M, the amounts adsorbed being inversely proportional to the number of amino groups present in the molecule. The number of dendron molecules adsorbed per nanoparticle was found to be between 430 and 4421. The degree of adsorption was found to be slightly altered by the temperature. Copyright 2002 Elsevier Science B.V.

  14. Selective Cathepsin S Inhibition with MIV-247 Attenuates Mechanical Allodynia and Enhances the Antiallodynic Effects of Gabapentin and Pregabalin in a Mouse Model of Neuropathic Pain.

    Hewitt, Ellen; Pitcher, Thomas; Rizoska, Biljana; Tunblad, Karin; Henderson, Ian; Sahlberg, Britt-Louise; Grabowska, Urszula; Classon, Björn; Edenius, Charlotte; Malcangio, Marzia; Lindström, Erik

    2016-09-01

    Cathepsin S inhibitors attenuate mechanical allodynia in preclinical neuropathic pain models. The current study evaluated the effects when combining the selective cathepsin S inhibitor MIV-247 with gabapentin or pregabalin in a mouse model of neuropathic pain. Mice were rendered neuropathic by partial sciatic nerve ligation. MIV-247, gabapentin, or pregabalin were administered alone or in combination via oral gavage. Mechanical allodynia was assessed using von Frey hairs. Neurobehavioral side effects were evaluated by assessing beam walking. MIV-247, gabapentin, and pregabalin concentrations in various tissues were measured. Oral administration of MIV-247 (100-200 µmol/kg) dose-dependently attenuated mechanical allodynia by up to approximately 50% reversal when given as a single dose or when given twice daily for 5 days. No behavioral deficits were observed at any dose of MIV-247 tested. Gabapentin (58-350 µmol/kg) and pregabalin (63-377 µmol/kg) also inhibited mechanical allodynia with virtually complete reversal at the highest doses tested. The minimum effective dose of MIV-247 (100 µmol/kg) in combination with the minimum effective dose of pregabalin (75 µmol/kg) or gabapentin (146 µmol/kg) resulted in enhanced antiallodynic efficacy without augmenting side effects. A subeffective dose of MIV-247 (50 µmol/kg) in combination with a subeffective dose of pregabalin (38 µmol/kg) or gabapentin (73 µmol/kg) also resulted in substantial efficacy. Plasma levels of MIV-247, gabapentin, and pregabalin were similar when given in combination as to when given alone. Cathepsin S inhibition with MIV-247 exerts significant antiallodynic efficacy alone, and also enhances the effect of gabapentin and pregabalin without increasing side effects or inducing pharmacokinetic interactions. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  16. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae: A Putative Target for Control of Citrus Huanglongbing.

    Taíse Fernanda da Silva Ferrara

    Full Text Available Huanglonbing (HLB is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB. DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM. The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM and CaneCPI-4 (Ki = 0.05 nM and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM. RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  17. Expression and Purification of Active Recombinant Cathepsin C (Dipeptidyl Aminopeptidase I of Kuruma Prawn Marsupenaeus japonicus in Insect Cells

    Gao-Feng Qiu

    2009-01-01

    Full Text Available Cathepsin C (CTSC is a lysosomal cysteine protease belonging to the papain superfamily. Our previous study showed that CTSC precursor (zymogen is localized exclusively in cortical rods (CRs of mature oocyte in the kuruma prawn Marsupenaeus japonicus, suggesting that CTSC might have roles on regulating release and/or formation of a jelly layer. In this study, enzymically active CTSC of the kuruma prawn was prepared by recombinant expression in the High Five insect cell line. The recombinant enzyme with a polyhistidine tag at its C-terminus was considered to be initially secreted into the culture medium as an inactive form of zymogen, because Western blot with anti-CTSC antibody detected a 51 kDa protein corresponding to CTSC precursor. After purification by affinity chromatography on nickel-iminodiacetic acid resin, the enzyme displayed three forms of 51, 31, and 30 kDa polypeptides. All of the forms can be recognized by antiserum raised against C-terminal polyhistidine tag, indicating that the 31 and 30 kDa forms were generated from 51 kDa polypeptide by removal of a portion of the N-terminus of propeptide. Following activation at pH 5.5 and 37∘C for 40 hours under native conditions, the recombinant CTSC (rCTSC exhibited increased activity against the synthetic substrate Gly-Phe-β-naphthylamide and optimal pH at around 5. The purified rCTSC will be useful for further characterization of its exact physiological role on CRs release and/or formation of a jelly layer in kuruma prawn.

  18. Profiling trait anxiety: transcriptome analysis reveals cathepsin B (Ctsb as a novel candidate gene for emotionality in mice.

    Ludwig Czibere

    Full Text Available Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait "anxiety". We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB or low (LAB anxiety-related behavior, and also show signs of comorbid depression-like behavior. We identified and confirmed sex-independent differences in the basal expression of 13 candidate genes, using tissue from the entire brain, including coronin 7 (Coro7, cathepsin B (Ctsb, muscleblind-like 1 (Mbnl1, metallothionein 1 (Mt1, solute carrier family 25 member 17 (Slc25a17, tribbles homolog 2 (Trib2, zinc finger protein 672 (Zfp672, syntaxin 3 (Stx3, ATP-binding cassette, sub-family A member 2 (Abca2, ectonucleotide pyrophosphatase/phosphodiesterase 5 (Enpp5, high mobility group nucleosomal binding domain 3 (Hmgn3 and pyruvate dehydrogenase beta (Pdhb. Additionally, we confirmed brain region-specific differences in the expression of synaptotagmin 4 (Syt4.Our identification of about 90 polymorphisms in Ctsb suggested that this gene might play a critical role in shaping our mouse model's behavioral endophenotypes. Indeed, the assessment of anxiety-related and depression-like behaviors of Ctsb knock-out mice revealed an increase in depression-like behavior in females. Altogether, our results suggest that Ctsb has significant effects on emotionality, irrespective of the tested mouse strain, making it a promising target for future pharmacotherapy.

  19. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D

    Yuan Li

    2017-02-01

    Full Text Available We aimed to investigate the effect of advanced glycation end products (AGEs on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs. Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT assay, real-time cell analyzer and 5-Ethynyl-2′-deoxyuridine (EdU staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3 II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  20. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D.

    Li, Yuan; Chang, Ye; Ye, Ning; Dai, Dongxue; Chen, Yintao; Zhang, Naijin; Sun, Guozhe; Sun, Yingxian

    2017-02-17

    We aimed to investigate the effect of advanced glycation end products (AGEs) on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs). Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay, real-time cell analyzer and 5-Ethynyl-2'-deoxyuridine (EdU) staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3) II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ) could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD) expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  1. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis.

    Hayami, Tadashi; Zhuo, Ya; Wesolowski, Gregg A; Pickarski, Maureen; Duong, Le T

    2012-06-01

    To investigate the disease modifying effects of cathepsin K (CatK) inhibitor L-006235 compared to alendronate (ALN) in two preclinical models of osteoarthritis (OA). Skeletally mature rabbits underwent sham or anterior cruciate ligament transection (ACLT)-surgery and were treated with L-006235 (L-235, 10 mg/kg or 50 mg/kg, p.o., daily) or ALN (0.6 mg/kg, s.c., weekly) for 8-weeks. ACLT joint instability was also induced in CatK(-/-) versus wild type (wt) mice and treated for 16-weeks. Changes in cartilage degeneration, subchondral bone volume and osteophyte area were determined by histology and μ-CT. Collagen type I helical peptide (HP-I), a bone resorption marker and collagen type II C-telopeptide (CTX-II), a cartilage degradation marker were measured. L-235 (50 mg/kg) and ALN treatment resulted in significant chondroprotective effects, reducing CTX-II by 60% and the histological Mankin score for cartilage damage by 46% in the ACLT-rabbits. Both doses of L-235 were more potent than ALN in protecting against focal subchondral bone loss, and reducing HP-I by 70% compared to vehicle. L-235 (50 mg/kg) and ALN significantly reduced osteophyte formation in histomorphometric analysis by 55%. The Mankin score in ACLT-CatK(-/-) mice was ~2.5-fold lower than the ACLT-wt mice and was not different from sham-CatK(-/-). Osteophyte development was not different among the groups. Inhibition of CatK provides significant benefits in ACLT-model of OA, including: 1) protection of subchondral bone integrity, 2) protection against cartilage degradation and 3) reduced osteophytosis. Preclinical evidence supports the role of CatK as a potential therapeutic target for the treatment of OA. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Mutation analysis of the cathepsin C gene in Indian families with Papillon-Lefèvre syndrome

    Srivastava Satish

    2003-07-01

    Full Text Available Abstract Background PLS is a rare autosomal recessive disorder characterized by early onset periodontopathia and palmar plantar keratosis. PLS is caused by mutations in the cathepsin C (CTSC gene. Dipeptidyl-peptidase I encoded by the CTSC gene removes dipeptides from the amino-terminus of protein substrates and mainly plays an immune and inflammatory role. Several mutations have been reported in this gene in patients from several ethnic groups. We report here mutation analysis of the CTSC gene in three Indian families with PLS. Methods Peripheral blood samples were obtained from individuals belonging to three Indian families with PLS for genomic DNA isolation. Exon-specific intronic primers were used to amplify DNA samples from individuals. PCR products were subsequently sequenced to detect mutations. PCR-SCCP and ASOH analyses were used to determine if mutations were present in normal control individuals. Results All patients from three families had a classic PLS phenotype, which included palmoplantar keratosis and early-onset severe periodontitis. Sequence analysis of the CTSC gene showed three novel nonsense mutations (viz., p.Q49X, p.Q69X and p.Y304X in homozygous state in affected individuals from these Indian families. Conclusions This study reported three novel nonsense mutations in three Indian families. These novel nonsense mutations are predicted to produce truncated dipeptidyl-peptidase I causing PLS phenotype in these families. A review of the literature along with three novel mutations reported here showed that the total number of mutations in the CTSC gene described to date is 41 with 17 mutations being located in exon 7.

  3. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    Liow, K.Y.; Chow, S.C.

    2013-01-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration

  4. The Diagnosis of Human Fascioliasis by Enzyme-Linked Immunosorbent Assay (ELISA) Using Recombinant Cathepsin L Protease

    Gonzales Santana, Bibiana; Vasquez Camargo, Fabio; Parkinson, Michael

    2013-01-01

    Background Fascioliasis is a worldwide parasitic disease of domestic animals caused by helminths of the genus Fasciola. In many parts of the world, particularly in poor rural areas where animal disease is endemic, the parasite also infects humans. Adult parasites reside in the bile ducts of the host and therefore diagnosis of human fascioliasis is usually achieved by coprological examinations that search for parasite eggs that are carried into the intestine with the bile juices. However, these methods are insensitive due to the fact that eggs are released sporadically and may be missed in low-level infections, and fasciola eggs may be misclassified as other parasites, leading to problems with specificity. Furthermore, acute clinical symptoms as a result of parasites migrating to the bile ducts appear before the parasite matures and begins egg laying. A human immune response to Fasciola antigens occurs early in infection. Therefore, an immunological method such as ELISA may be a more reliable, easy and cheap means to diagnose human fascioliasis than coprological analysis. Methodology/Principal findings Using a panel of serum from Fasciola hepatica-infected patients and from uninfected controls we have optimized an enzyme-linked immunosorbent assay (ELISA) which employs a recombinant form of the major F. hepatica cathepsin L1 as the antigen for the diagnosis of human fascioliasis. We examined the ability of the ELISA test to discern fascioliasis from various other helminth and non-helminth parasitic diseases. Conclusions/Significance A sensitive and specific fascioliasis ELISA test has been developed. This test is rapid and easy to use and can discriminate fasciola-infected individuals from patients harbouring other parasites with at least 99.9% sensitivity and 99.9% specificity. This test will be a useful standardized method not only for testing individual samples but also in mass screening programs to assess the extent of human fascioliasis in regions where this

  5. The diagnosis of human fascioliasis by enzyme-linked immunosorbent assay (ELISA) using recombinant cathepsin L protease.

    Gonzales Santana, Bibiana; Dalton, John P; Vasquez Camargo, Fabio; Parkinson, Michael; Ndao, Momar

    2013-01-01

    Fascioliasis is a worldwide parasitic disease of domestic animals caused by helminths of the genus Fasciola. In many parts of the world, particularly in poor rural areas where animal disease is endemic, the parasite also infects humans. Adult parasites reside in the bile ducts of the host and therefore diagnosis of human fascioliasis is usually achieved by coprological examinations that search for parasite eggs that are carried into the intestine with the bile juices. However, these methods are insensitive due to the fact that eggs are released sporadically and may be missed in low-level infections, and fasciola eggs may be misclassified as other parasites, leading to problems with specificity. Furthermore, acute clinical symptoms as a result of parasites migrating to the bile ducts appear before the parasite matures and begins egg laying. A human immune response to Fasciola antigens occurs early in infection. Therefore, an immunological method such as ELISA may be a more reliable, easy and cheap means to diagnose human fascioliasis than coprological analysis. Using a panel of serum from Fasciola hepatica-infected patients and from uninfected controls we have optimized an enzyme-linked immunosorbent assay (ELISA) which employs a recombinant form of the major F. hepatica cathepsin L1 as the antigen for the diagnosis of human fascioliasis. We examined the ability of the ELISA test to discern fascioliasis from various other helminth and non-helminth parasitic diseases. A sensitive and specific fascioliasis ELISA test has been developed. This test is rapid and easy to use and can discriminate fasciola-infected individuals from patients harbouring other parasites with at least 99.9% sensitivity and 99.9% specificity. This test will be a useful standardized method not only for testing individual samples but also in mass screening programs to assess the extent of human fascioliasis in regions where this zoonosis is suspected.

  6. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    Liow, K.Y.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2013-11-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration.

  7. Substrate Specificity of Cysteine Proteases Beyond the S2 Pocket: Mutagenesis and Molecular Dynamics Investigation of Fasciola hepatica Cathepsins L

    Ileana Corvo

    2018-04-01

    Full Text Available Cysteine proteases are widespread in all life kingdoms, being central to diverse physiological processes based on a broad range of substrate specificity. Paralogous Fasciola hepatica cathepsin L proteases are essential to parasite invasion, tissue migration and reproduction. In spite of similarities in their overall sequence and structure, these enzymes often exhibit different substrate specificity. These preferences are principally determined by the amino acid composition of the active site's S2 subsite (pocket of the enzyme that interacts with the substrate P2 residue (Schetcher and Berger nomenclature. Although secreted FhCL1 accommodates aliphatic residues in the S2 pocket, FhCL2 is also efficient in cleaving proline in that position. To understand these differences, we engineered the FhCL1 S2 subsite at three amino acid positions to render it identical to that present in FhCL2. The substitutions did not produce the expected increment in proline accommodation in P2. Rather, they decreased the enzyme's catalytic efficiency toward synthetic peptides. Nonetheless, a change in the P3 specificity was associated with the mutation of Leu67 to Tyr, a hinge residue between the S2 and S3 subsites that contributes to the accommodation of Gly in S3. Molecular dynamic simulations highlighted changes in the spatial distribution and secondary structure of the S2 and S3 pockets of the mutant FhCL1 enzymes. The reduced affinity and catalytic efficiency of the mutant enzymes may be due to a narrowing of the active site cleft that hinders the accommodation of substrates. Because the variations in the enzymatic activity measured could not be exclusively allocated to those residues lining the active site, other more external positions might modulate enzyme conformation, and, therefore, catalytic activity.

  8. Differential expression levels of collagen 1A2, tissue inhibitor of metalloproteinase 4, and cathepsin B in intracranial aneurysms.

    Babu, R Arun; Paul, Pradip; Purushottam, Meera; Srinivas, Dwarakanath; Somanna, Sampath; Jain, Sanjeev

    2016-01-01

    Intracranial aneurysms (IAs) express a variety of differentially expressed genes when compared to the normal artery. The aim of this study was to evaluate the expression level of a few genes in the aneurysm wall and to correlate them with various clinicoradiological factors. The mRNA level of collagen 1A2 (COL1A2), tissue inhibitor of metalloproteinase 4 (TIMP4), and cathepsin B (CTSB) genes were studied in 23 aneurysmal walls and 19 superficial temporal arteries harvested from 23 patients undergoing clipping of IAs, by real-time polymerase chain reaction method. The mean fold change of COL1A2 gene between the aneurysm sample and the superficial temporal artery (STA) sample was 2.46 ± 0.12, that of TIMP4 gene was 0.31 ± 0, and that of CTSB gene was 31.47 ± 39.01. There was a positive correlation of TIMP4 expression level with maximum diameter of aneurysm (P = 0.008) and fundus of aneurysm (P = 0.012). The mean fold change of CTSB of patients who had preoperative hydrocephalus in the computed tomogram (CT) scan of the head at admission was 56.16 and that of the patients who did not have hydrocephalus was 13.51 (P = 0.008). The mean fold change of CTSB of patients who developed fresh postoperative deficits or worsening of the preexisting deficits was 23.64 and that of the patients who did not develop was 42.22 (P = 0.039). COL1A2 gene and CTSB genes were overexpressed, and TIMP4 gene was underexpressed in the aneurysmal sac compared to STA and their expression levels were associated with a few clinicoradiological factors.

  9. A cysteine protease (cathepsin Z) from disk abalone, Haliotis discus discus: Genomic characterization and transcriptional profiling during bacterial infections.

    Godahewa, G I; Perera, N C N; Lee, Sukkyoung; Kim, Myoung-Jin; Lee, Jehee

    2017-09-05

    Cathepsin Z (CTSZ) is lysosomal cysteine protease of the papain superfamily. It participates in the host immune defense via phagocytosis, signal transduction, cell-cell communication, proliferation, and migration of immune cells such as monocytes, macrophages, and dendritic cells. Hence, CTSZ is also acknowledged as an acute-phase protein in host immunity. In this study, we sought to identify the CTSZ homolog from disk abalone (AbCTSZ) and characterize it at the molecular, genomic, and transcriptional levels. AbCTSZ encodes a protein with 318 amino acids and a molecular mass of 36kDa. The structure of AbCTSZ reveals amino acid sequences that are characteristic of the signal sequence, pro-peptide, peptidase-C1 papain family cysteine protease domain, mini-loop, HIP motif, N-linked glycosylation sites, active sites, and conserved Cys residues. A pairwise comparison revealed that AbCTSZ shared the highest amino acid homology with its molluscan counterpart from Crassostrea gigas. A multiple alignment analysis revealed the conservation of functionally crucial elements of AbCTSZ, and a phylogenetic study further confirmed a proximal evolutionary relationship with its invertebrate counterparts. Further, an analysis of AbCTSZ genomic structure revealed seven exons separated by six introns, which differs from that of its vertebrate counterparts. Quantitative real time PCR (qPCR) detected the transcripts of AbCTSZ in early developmental stages and in eight different tissues. Higher levels of AbCTSZ transcripts were found in trochophore, gill, and hemocytes, highlighting its importance in the early development and immunity of disk abalone. In addition, we found that viable bacteria (Vibrio parahaemolyticus and Listeria monocytogenes) and bacterial lipopolysaccharides significantly modulated AbCTSZ transcription. Collectively, these lines of evidences suggest that AbCTSZ plays an indispensable role in the innate immunity of disk abalone. Copyright © 2017. Published by Elsevier

  10. Cathepsin B Cleavage of vcMMAE-Based Antibody-Drug Conjugate Is Not Drug Location or Monoclonal Antibody Carrier Specific.

    Gikanga, Benson; Adeniji, Nia S; Patapoff, Thomas W; Chih, Hung-Wei; Yi, Li

    2016-04-20

    Antibody-drug conjugates (ADCs) require thorough characterization and understanding of product quality attributes. The framework of many ADCs comprises one molecule of antibody that is usually conjugated with multiple drug molecules at various locations. It is unknown whether the drug release rate from the ADC is dependent on drug location, and/or local environment, dictated by the sequence and structure of the antibody carrier. This study addresses these issues with valine-citrulline-monomethylauristatin E (vc-MMAE)-based ADC molecules conjugated at reduced disulfide bonds, by evaluating the cathepsin B catalyzed drug release rate of ADC molecules with different drug distributions or antibody carriers. MMAE drug release rates at different locations on ADC I were compared to evaluate the impact of drug location. No difference in rates was observed for drug released from the V(H), V(L), or C(H)2 domains of ADC I. Furthermore, four vc-MMAE ADC molecules were chosen as substrates for cathepsin B for evaluation of Michaelis-Menten parameters. There was no significant difference in K(M) or k(cat) values, suggesting that different sequences of the antibody carrier do not result in different drug release rates. Comparison between ADCs and small molecules containing vc-MMAE moieties as substrates for cathepsin B suggests that the presence of IgG1 antibody carrier, regardless of its bulkiness, does not impact drug release rate. Finally, a molecular dynamics simulation on ADC II revealed that the val-cit moiety at each of the eight possible conjugation sites was, on average, solvent accessible over 50% of its maximum solvent accessible surface area (SASA) during a 500 ns trajectory. Combined, these results suggest that the cathepsin cleavage sites for conjugated drugs are exposed enough for the enzyme to access and that the drug release rate is rather independent of drug location or monoclonal antibody carrier. Therefore, the distribution of drug conjugation at different

  11. 177Lu-labeled HPMA copolymers utilizing cathepsin B and S cleavable linkers: Synthesis, characterization and preliminary in vivo investigation in a pancreatic cancer model

    Ogbomo, Sunny M.; Shi, Wen; Wagh, Nilesh K.; Zhou, Zhengyuan; Brusnahan, Susan K.; Garrison, Jered C.

    2013-01-01

    Introduction: A major barrier to the advancement of therapeutic nanomedicines has been the non-target toxicity caused by the accumulation of the drug delivery systems in organs associated with the reticuloendothelial system, particularly the liver and spleen. Herein, we report the development of peptide based metabolically active linkers (MALs) that are enzymatically cleaved by cysteine cathepsin B and S, two proteases highly expressed in the liver and spleen. The overall goal of this approach is to utilize the MALs to lower the non-target retention and toxicity of radiolabeled drug delivery systems, thus resulting in higher diagnostic and radiotherapeutic efficacy. Methods: In this study three MALs (MAL0, MAL1 and MAL2) were investigated. MAL1 and MAL2 are composed of known substrates of cathepsin B and S, respectively, while MAL0 is a non-cleavable control. Both MAL1 and MAL2 were shown to undergo enzymatic cleavage with the appropriate cathepsin protease. Subsequent to conjugation to the HPMA copolymer and radiolabeling with 177 Lu, the peptide–polymer conjugates were renamed 177 Lu-metabolically active copolymers ( 177 Lu-MACs) with the corresponding designations: 177 Lu-MAC0, 177 Lu-MAC1 and 177 Lu-MAC2. Results: In vivo evaluation of the 177 Lu-MACs was performed in an HPAC human pancreatic cancer xenograft mouse model. 177 Lu-MAC1 and 177 Lu-MAC2 demonstrated 3.1 and 2.1 fold lower liver retention, respectively, compared to control ( 177 Lu-MAC0) at 72 h post-injection. With regard to spleen retention, 177 Lu-MAC1 and 177 Lu-MAC2 each exhibited a nearly fourfold lower retention, relative to control, at the 72 h time point. However, the tumor accumulation of the 177 Lu-MAC0 was two to three times greater than 177 Lu-MAC1 and 177 Lu-MAC2 at the same time point. The MAL approach demonstrated the capability of substantially reducing the non-target retention of the 177 Lu-labeled HPMA copolymers. Conclusions: While further studies are needed to optimize the

  12. Impact of cathepsin B-sensitive triggers and hydrophilic linkers on in vitro efficacy of novel site-specific antibody-drug conjugates.

    Bryden, Francesca; Martin, Camille; Letast, Stéphanie; Lles, Eva; Viéitez-Villemin, Inmaculada; Rousseau, Anaïs; Colas, Cyril; Brachet-Botineau, Marie; Allard-Vannier, Emilie; Larbouret, Christel; Viaud-Massuard, Marie-Claude; Joubert, Nicolas

    2018-03-14

    Herein we describe the synthesis and evaluation of four novel HER2-targeting, cathepsin B-sensitive antibody-drug conjugates bearing a monomethylauristatin E (MMAE) cytotoxic payload, constructed via the conjugation of cleavable linkers to trastuzumab using a site-specific bioconjugation methodology. These linkers vary by both cleavable trigger motif and hydrophilicity, containing one of two cathepsin B sensitive dipeptides (Val-Cit and Val-Ala), and engendered with either hydrophilic or hydrophobic character via application of a PEG 12 spacer. Through evaluation of physical properties, in vitro cytotoxicity, and receptor affinity of the resulting antibody-drug conjugates (ADCs), we have demonstrated that while both dipeptide triggers are effective, the increased hydrophobicity of the Val-Ala pair limits its utility within this type of linker. In addition, while PEGylation augments linker hydrophilicity, this change does not translate to more favourable ADC hydrophilicity or potency. While all described structures demonstrated excellent and similar in vitro cytotoxicity, the ADC with the ValCitPABMMAE linker shows the most promising combination of in vitro potency, structural homogeneity, and hydrophilicity, warranting further evaluation into its therapeutic potential.

  13. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  14. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

    Bang, Bo; Baadsgaard, Ole; Skov, Lone

    2004-01-01

    been demonstrated to play a role in the execution of programmed cell death induced by other stimuli, e.g. TNF-alpha. The purpose of the present study was therefore to investigate whether inhibitors of cysteine cathepsins and calpains could prevent UVB-induced apoptosis in HeLa cells and keratinocytes....... This was done by investigating the effect of the irreversible cysteine protease inhibitor zFA-fmk, the cathepsin B inhibitor CA-074-Me and the calpain inhibitor ALLN on the viability of UVB-irradiated human keratinocytes and HeLa cells. At concentrations of 10 microM and above zVAD-fmk conferred partial dose......-dependent protection against UVB-induced apoptosis in HeLa cells and keratinocytes. Moreover, caspase-3 activity was completely blocked at zVAD-fmk concentrations of 1 microM in HeLa cells. This indicates that caspase-independent mechanisms could be involved in UVB-induced apoptosis. However, the protease inhibitors z...

  15. The Feasibility of Enzyme Targeted Activation for Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine; Cathepsin D as a Potential Targeted Enzyme

    Gordon L. Amidon

    2012-03-01

    Full Text Available The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5¢-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5¢-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine and 5¢-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  16. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  17. Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope.

    Daniel Menezes-Souza

    2015-01-01

    Full Text Available The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis.We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis.The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions.

  18. Dissecting the active site of the collagenolytic cathepsin L3 protease of the invasive stage of Fasciola hepatica.

    Ileana Corvo

    Full Text Available A family of secreted cathepsin L proteases with differential activities is essential for host colonization and survival in the parasitic flatworm Fasciola hepatica. While the blood feeding adult secretes predominantly FheCL1, an enzyme with a strong preference for Leu at the S2 pocket of the active site, the infective stage produces FheCL3, a unique enzyme with collagenolytic activity that favours Pro at P2.Using a novel unbiased multiplex substrate profiling and mass spectrometry methodology (MSP-MS, we compared the preferences of FheCL1 and FheCL3 along the complete active site cleft and confirm that while the S2 imposes the greatest influence on substrate selectivity, preferences can be indicated on other active site subsites. Notably, we discovered that the activity of FheCL1 and FheCL3 enzymes is very different, sharing only 50% of the cleavage sites, supporting the idea of functional specialization. We generated variants of FheCL1 and FheCL3 with S2 and S3 residues by mutagenesis and evaluated their substrate specificity using positional scanning synthetic combinatorial libraries (PS-SCL. Besides the rare P2 Pro preference, FheCL3 showed a distinctive specificity at the S3 pocket, accommodating preferentially the small Gly residue. Both P2 Pro and P3 Gly preferences were strongly reduced when Trp67 of FheCL3 was replaced by Leu, rendering the enzyme incapable of digesting collagen. In contrast, the inverse Leu67Trp substitution in FheCL1 only slightly reduced its Leu preference and improved Pro acceptance in P2, but greatly increased accommodation of Gly at S3.These data reveal the significance of S2 and S3 interactions in substrate binding emphasizing the role for residue 67 in modulating both sites, providing a plausible explanation for the FheCL3 collagenolytic activity essential to host invasion. The unique specificity of FheCL3 could be exploited in the design of specific inhibitors selectively directed to specific infective stage

  19. The C-terminal subunit of artificially truncated human cathepsin B mediates its nuclear targeting and contributes to cell viability

    Dallner Claudia

    2005-04-01

    Full Text Available Abstract Background Splicing variants of human cathepsinB primary transcripts (CB(-2,3 result in an expression product product which lacks the signal peptide and parts of the propeptide. This naturally truncated Δ51CB is thus unable to follow the regular CB processing and sorting pathway. It is addressed to the mitochondria through an activated N-terminal mitochondrial targeting signal instead. Although Δ51CB is supposed to be devoid of the typical CB enzymatic activity, it might play a role in malignancies and trigger cell death/apoptosis independent from the function of the regular enzyme. Cytoplasmic presence of the mature CB might occur as a result of lysosomal damage. Results We investigated such "aberrant" proteins by artificial CB-GFP chimeras covering various sequence parts in respect to their enzymatic activity, their localization in different cell types, and the effects on the cell viability. Unlike the entire full length CB form, the artificial single chain form was not processed and did not reveal typical enzymatic CB activity during transient overexpression in large cell lung carcinoma cells. Δ51CB was found predominantly in mitochondria. In contrast, the shorter artificial CB constructs localized in the cytoplasm, inside the cell nucleus, and in the midbodies of dividing cells. Bleaching experiments revealed both mobile and immobile fractions of these constructs in the nucleus. Nuclear accumulation of artificially truncated CB variants led to disintegration of nuclei, followed by cell death. Conclusion We propose that cell death associated with CB is not necessarily triggered by its regular enzymatic activity but alternatively by a yet unknown activity profile of truncated CB. Cytoplasmic CB might be able to enter the cell nucleus. According to a mutational analysis, the part of CB that mediates its nuclear import is a signal patch within its heavy chain domain. The results suggest that besides the N-terminal signal peptide also

  20. Encapsulation of testosterone by chitosan nanoparticles.

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Phytosynthesis of nanoparticles: concept, controversy and application

    2014-01-01

    Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles. PMID:24910577

  2. Phytosynthesis of nanoparticles: concept, controversy and application

    Husen, Azamal; Siddiqi, Khwaja Salahuddin

    2014-05-01

    Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles.

  3. Rheumatoid Factor Positivity Is Associated with Increased Joint Destruction and Upregulation of Matrix Metalloproteinase 9 and Cathepsin K Gene Expression in the Peripheral Blood in Rheumatoid Arthritic Patients Treated with Methotrexate

    Elena V. Tchetina

    2013-01-01

    Full Text Available We evaluated changes in gene expression of mTOR, p21, caspase-3, ULK1, TNFα, matrix metalloproteinase (MMP-9, and cathepsin K in the whole blood of rheumatoid arthritic (RA patients treated with methotrexate (MTX in relation to their rheumatoid factor status, clinical, immunological, and radiological parameters, and therapeutic response after a 24-month follow-up. The study group consisted of 35 control subjects and 33 RA patients without previous history of MTX treatment. Gene expression was measured using real-time RT-PCR. Decreased disease activity in patients at the end of the study was associated with significant downregulation of TNFα expression. Downregulation of mTOR was observed in seronegative patients, while no significant changes in the expression of p21, ULK1, or caspase-3 were noted in any RA patients at the end of the study. The increase in erosion numbers observed in the seropositive patients at the end of the follow-up was accompanied by upregulation of MMP-9 and cathepsin K, while seronegative patients demonstrated an absence of significant changes in MMP-9 and cathepsin K expression and no increase in the erosion score. Our results suggest that increased expression of MMP-9 and cathepsin K genes in the peripheral blood might indicate higher bone tissue destruction activity in RA patients treated with methotrexate. The clinical study registration number is 0120.0810610.

  4. The highly antigenic 53/25 kDa Taenia solium protein fraction with cathepsin-L like activity is present in the oncosphere/cysticercus and induces non-protective IgG antibodies in pigs

    Zimic, Mirko; Pajuelo, Mónica; Gilman, Robert H.; Gutiérrez, Andrés H.; Rueda, Luis D.; Flores, Myra; Chile, Nancy; Verástegui, Manuela; Gonzalez, Armando; García, Héctor H.; Sheen, Patricia

    2011-01-01

    Cathepsin L-like proteases are secreted by several parasites including Taenia solium. The mechanism used by T. solium oncospheres to degrade and penetrate the intestine and infect the host is incompletely understood. It is assumed that intestinal degradation is driven by the proteolytic activity of enzymes secreted by the oncosphere. Blocking the proteolytic activity by an antibody response would prevent the oncosphere penetration and further infection. Serine and cysteine proteases including chymotrypsin, trypsin, elastase, and cathepsin L, are secreted by T. solium and Taenia saginata oncospheres when cultured in vitro, being potential vaccine candidates. However, the purification of a sufficient quantity of proteases secreted by oncospheres to conduct a vaccine trial is costly and lengthy. A 53/25 kDa cathepsin L-like fraction partially purified from T. solium cyst fluid was described previously as an important antigen for immunodiagnostics. In this study we found that this antigen is present in the T. solium oncosphere and is also secreted by the cysticercus. This protein fraction was tested for its ability to protect pigs against an oral challenge with T. solium oncospheres in a vaccine trial. IgG antibodies against the 53/25 kDa cathepsin L-like protein fraction were elicited in the vaccinated animals but did not confer protection. PMID:22119017

  5. Surface Characterization of Nanoparticles: Critical Needs and Significant Challenges

    Baer, Donald R.

    2011-01-01

    There is a growing recognition that nanoparticles and other nanostructured materials are sometimes inadequately characterized and that this may limit or even invalidate some of the conclusions regarding particle properties and behavior. A number of international organizations are working to establish the essential measurement requirements that enable adequate understanding of nanoparticle properties for both technological applications and for environmental health issues. Our research on the interaction of iron metal-core oxide-shell nanoparticles with environmental contaminants and studies of the behaviors of ceria nanoparticles, with a variety of medical, catalysis and energy applications, have highlighted a number of common nanoparticle characterization challenges that have not been fully recognized by parts of the research community. This short review outlines some of these characterization challenges based on our research observations and using other results reported in the literature. Issues highlighted include: (1) the importance of surfaces and surface characterization, (2) nanoparticles are often not created equal - subtle differences in synthesis and processing can have large impacts; (3) nanoparticles frequently change with time having lifetime implications for products and complicating understanding of health and safety impacts; (4) the high sensitivity of nanoparticles to their environment complicates characterization and applications in many ways; (5) nanoparticles are highly unstable and easily altered (damaged) during analysis.

  6. Nanoparticles in discotic liquid crystals

    Kumar, Sandeep

    The self-assembly of disc-shaped molecules creates discotic liquid crystals (DLCs). These nanomaterials of the sizes ranging from 2-6 nm are emerging as a new class of organic semiconducting materials. The unique geometry of columnar mesophases formed by discotic molecules is of great importance to study the one-dimensional charge and energy migration in organized systems. A number of applications of DLCs, such as, one-dimensional conductor, photoconductor, photovoltaic solar cells, light emitting diodes and gas sensors have been reported. The conductivity along the columns in columnar mesophases has been observed to be several orders of magnitude greater than in perpendicular direction and, therefore, DLCs are described as molecular wires. On the other hand, the fields of nanostructured materials, such as gold nanoparticles, quantum dots, carbon nanotubes and graphene, have received tremendous development in the past decade due to their technological and fundamental interest. Recently the hybridization of DLCs with various metallic and semiconducting nanoparticles has been realized to alter and improve their properties. These nanocomposites are not only of basic science interest but also lead to novel materials for many device applications. This article provides an overview on the development in the field of newly immersed discotic nanoscience. After a brief introduction of DLCs, the article will cover the inclusion of various zero-, one- and two-dimensional nanoparticles in DLCs. Finally, an outlook into the future of this newly emerging intriguing field of discotic nanoscience research will be provided.

  7. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells.

    Gabriel C Baltazar

    Full Text Available Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide (PLGA 502 H, PLGA 503 H and poly (DL-lactide (PLA colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity.

  8. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell-cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors. Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

  9. O3 Nanoparticles

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tao

    2016-01-01

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal

  10. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    Mandiwana, V

    2015-09-01

    Full Text Available the biodistribution of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([(sup153)Sm]Sm(sub2)O(sub3)) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear...

  11. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein.

    Tien, Nguyen T; Karaca, Ilker; Tamboli, Irfan Y; Walter, Jochen

    2016-05-13

    The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-β peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Pore fabrication in various silica-based nanoparticles by controlled etching

    Zhao, Lan

    2010-07-20

    A novel method based on controlled etching was developed to fabricate nanopores on preformed silica nanoparticles (<100 nm in diameter). The obtained monodisperse nanoporous particles could form highly stable homogeneous colloidal solution. Fluorescent silica nanoparticles and magnetic silica-coated γ-Fe 2O 3 nanoparticles were investigated as examples to illustrate that this strategy could be generally applied to various silica-based functional nanoparticles. The results indicated that this method was effective for generating pores on these nanoparticles without altering their original functionalities. The obtained multifunctional nanoparticles would be useful for many biological and biomedical applications. These porous nanoparticles could also serve as building blocks to fabricate three-dimensionally periodic structures that have the potential to be used as photonic crystals. © 2010 American Chemical Society.

  13. O3 Nanoparticles

    Wang, Juan

    2016-11-16

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal solar–thermal conversion efficiency. Furthermore, Ti2O3 nanoparticle-based thin film shows potential use in seawater desalination and purification.

  14. Mycobacterium tuberculosis Modulates miR-106b-5p to Control Cathepsin S Expression Resulting in Higher Pathogen Survival and Poor T-Cell Activation

    David Pires

    2017-12-01

    Full Text Available The success of tuberculosis (TB bacillus, Mycobacterium tuberculosis (Mtb, relies on the ability to survive in host cells and escape to immune surveillance and activation. We recently demonstrated that Mtb manipulation of host lysosomal cathepsins in macrophages leads to decreased enzymatic activity and pathogen survival. In addition, while searching for microRNAs (miRNAs involved in posttranscriptional gene regulation during mycobacteria infection of human macrophages, we found that selected miRNAs such as miR-106b-5p were specifically upregulated by pathogenic mycobacteria. Here, we show that miR-106b-5p is actively manipulated by Mtb to ensure its survival in macrophages. Using an in silico prediction approach, we identified miR-106b-5p with a potential binding to the 3′-untranslated region of cathepsin S (CtsS mRNA. We demonstrated by luminescence-based methods that miR-106b-5p indeed targets CTSS mRNA resulting in protein translation silencing. Moreover, miR-106b-5p gain-of-function experiments lead to a decreased CtsS expression favoring Mtb intracellular survival. By contrast, miR-106b-5p loss-of-function in infected cells was concomitant with increased CtsS expression, with significant intracellular killing of Mtb and T-cell activation. Modulation of miR-106b-5p did not impact necrosis, apoptosis or autophagy arguing that miR-106b-5p directly targeted CtsS expression as a way for Mtb to avoid exposure to degradative enzymes in the endocytic pathway. Altogether, our data suggest that manipulation of miR-106b-5p as a potential target for host-directed therapy for Mtb infection.

  15. Association between polymorphism in the human cathepsin L (CTSL 1) promoter with hypertension in the uygur, kazak and han population in china

    Chen, S.; Wang, Z.; Zhou, C.; Wang, D.W.

    2015-01-01

    To systemically investigate the association between the polymorphism (rs3118869) in cathepsin Lenzyme gene with hypertension in three ethnic groups (Han, Kazak and Uygur) in China. Study Design: Case-control study. Place and Duration of Study: Department of Cardiology, The First Affiliated Hospital, Shihezi Medical College, Shihezi University and Department of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, from January 2013 to May 2014. Methodology: This case-control study included 1224 patients (422 Uygur, 425 Kazak and 377 Han individuals) with hypertension and 967 healthy unrelated individuals (339 Uygur, 337 Kazak and 291 Han individuals) as controls. The participants came from three ethnic groups (Han, Kazak and Uygur) which were recruited from Xinjiang Province of China. The polymorphism (rs3118869) of the human cathepsin Lgene was genotyped using the TaqMan 5' nuclease assay. Binary logistic regression was built to determine the association of polymorphism with hypertension. Results: The genotype distribution of polymorphism was not significantly different in three ethnic groups. The rs3118869 polymorphism was significantly associated with Essential Hypertension (EH) in co-dominant model (A/C vs. C/C) in total people (OR = 0.697, 95% CI = 0.520 -0.932, p = 0.015), the same result was obtained in recessive model (C/C + A/C vs. A/A) in total people (OR = 0.689, 95% CI = 0.522 -0.910, p = 0.009). Similar finding of rs3118869 in recessive model (C/C + A/C vs. A/A) was also observed after adjusting the variable to the covariates age (OR = 0.629, 95% CI = 0.464 0853, p = 0.003). Conclusion: The study results indicate the A-allele of rs3118869 is a protective factor in hypertension. (author)

  16. Immunodiagnosis of Fasciola gigantica Infection Using Monoclonal Antibody-Based Sandwich ELISA and Immunochromatographic Assay for Detection of Circulating Cathepsin L1 Protease.

    Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert

    2016-01-01

    Tropical fasciolosis caused by Fasciola gigantica infection is one of the major diseases infecting ruminants in the tropical regions of Africa and Asia including Thailand. Parasitological diagnosis of fasciolosis is often unreliable and possesses low sensitivity. Therefore, the detection of circulating parasite antigens is thought to be a better alternative for diagnosis of fasciolosis, as it reflects the real parasite burden. In this study, we have produced a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1 (rFgCatL1), and developed both sandwich enzyme-linked immunosorbent assay (sandwich ELISA) and immunochromatographic (IC) test for rapid detection of circulating cathepsin L1 protease (CatL1) in the sera from mice experimentally and cattle naturally infected with Fasciola gigantica. MoAb 4E3 and biotinylated rabbit anti-recombinant CatL1 antibody were selected due to their high reactivities and specificities. The lower detection limits of sandwich ELISA and IC test were 3 pg/ml and 0.256 ng/ml, respectively. Sandwich ELISA and IC test could detect F. gigantica infection from day 1 to 35 post infection. In experimental mice, the sensitivity, specificity and accuracy were 95%, 100% and 98.6% (for sandwich ELISA), and 93%, 100% and 98.2% (for IC test), while in natural cattle they were 98.3%, 100% and 99.5% (for sandwich ELISA), and 96.7%, 100% and 99.1% (for IC test). These two assay methods showed high efficiencies and precisions for diagnosis of fasciolosis by F. gigantica.

  17. Immunodiagnosis of Fasciola gigantica Infection Using Monoclonal Antibody-Based Sandwich ELISA and Immunochromatographic Assay for Detection of Circulating Cathepsin L1 Protease

    Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert

    2016-01-01

    Background Tropical fasciolosis caused by Fasciola gigantica infection is one of the major diseases infecting ruminants in the tropical regions of Africa and Asia including Thailand. Parasitological diagnosis of fasciolosis is often unreliable and possesses low sensitivity. Therefore, the detection of circulating parasite antigens is thought to be a better alternative for diagnosis of fasciolosis, as it reflects the real parasite burden. Methods In this study, we have produced a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1 (rFgCatL1), and developed both sandwich enzyme-linked immunosorbent assay (sandwich ELISA) and immunochromatographic (IC) test for rapid detection of circulating cathepsin L1 protease (CatL1) in the sera from mice experimentally and cattle naturally infected with Fasciola gigantica. MoAb 4E3 and biotinylated rabbit anti-recombinant CatL1 antibody were selected due to their high reactivities and specificities. Results The lower detection limits of sandwich ELISA and IC test were 3 pg/ml and 0.256 ng/ml, respectively. Sandwich ELISA and IC test could detect F. gigantica infection from day 1 to 35 post infection. In experimental mice, the sensitivity, specificity and accuracy were 95%, 100% and 98.6% (for sandwich ELISA), and 93%, 100% and 98.2% (for IC test), while in natural cattle they were 98.3%, 100% and 99.5% (for sandwich ELISA), and 96.7%, 100% and 99.1% (for IC test). Conclusions These two assay methods showed high efficiencies and precisions for diagnosis of fasciolosis by F. gigantica. PMID:26731402

  18. Nanoparticles in treatment of thermal injured rats: Is it safe?

    Melo, P S; Ferreira, I R; Marcato, P D; Paula, L B de; Duran, N; Alves, O L; Huber, S C; Almeida, A B A; Torsoni, S; Seabra, A B

    2011-01-01

    The aim of this study was to assess whether thermal trauma induced oxidative stress altered the balance between oxidant and antioxidant systems in the blood of burn wound rats in the absence and presence of silver nanoparticles and S-nitrosoglutathione, GSNO. Free silver nanoparticles, free GSNO and silver nanoparticles + GSNO had no cytotoxic effects. Under anesthesia, the shaved dorsum of the rats was exposed to 90 0 C (burn group) water bath. Studied compounds were administered topically immediately and at 28 days after the burn injury, four times a day. Silver nanoparticles and silver nanoparticles + GSNO were no toxic in vitro and in vivo. There were no significant differences in the levels of urea, creatinine, aminotransferases and hematological parameters, in control-burn groups (free silver nanoparticles) and treated-burn groups (free GSNO or silver nanoparticles + GSNO). There were no differences in lipid peroxidation and in the levels of protein carbonyls and glutathione, used as oxidative stress markers. A little inflammatory cell response, papillary dermis vascularization, fibroblasts differentiated into contractile myofibroblasts and the presence of a large amount of extracellular matrix were evidenced in treated groups following skin injury. These results indicate that silver nanoparticles and GSNO may provide an effective action on wound healing.

  19. Design and in vitro evaluation of self-assembled indometacin prodrug nanoparticles for sustained/controlled release and reduced normal cell toxicity

    Lin, Jinyan; Pan, Zhou; Song, Liang; Zhang, Yanmei; Li, Yang; Hou, Zhenqing; Lin, Changjian

    2017-12-01

    Despite the great efficacy of indomethacin (IND) as an anti-inflammatory agent, its clinical translation has been obstructed by the water insolubility, severe side effects, and exceedingly low bioavailability. Indomethacin prodrug-based nanoparticles (NPs) combining the strengths of both nanotechnology and prodrugs that might overcome this crucial problem are presented. Here, using the carbodiimide-mediated couple reaction, IND was conjugated to clinically approved poly(ethylene glycol) (PEG) polymer via peptide linkage that was cleavaged in the presence of cathepsin B, which was significantly induced after inflammatory. The synthesized IND-PEG-IND conjugate was characterized by UV-vis, FTIR, 1H NMR, XRD, and MALDI-TOF-MS analyses. For its intrinsic amphiphilic property, the IND prodrug self-assembled into NPs in aqueous solution and served two roles-as an anti-inflammatory prodrug and a drug carrier. The constructed IND-PEG-IND NPs had naoscaled particle size of approximately 80 nm, negative surface, spherical shape, good water-dispersity, and high and fixed drug-loading content of 20.1 wt%. In addition, IND-PEG-IND NPs demonstrated sustained and cathepsin B-controlled drug release behavior. More importantly, IND-PEG-IND NPs significantly reduced the acute totoxicity agaist normal osteoblast cells and displayed the more potent anti-inflammatory effect against macrophage cells compared to the free IND. Taken together, the nanoprodrug might exhibit increased potency for nanomedicine-prospective therapeutic use in clinical treatement of implant inflammatory diseases.

  20. De-alloyed platinum nanoparticles

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  1. Radiation protection philosophy alters

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  2. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  3. Nanoparticle mediated micromotor motion

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  4. A nanoparticle in plasma

    Martynenko, Yu. V.; Nagel', M. Yu.; Orlov, M. A.

    2009-01-01

    Charge and energy fluxes onto a nanoparticle under conditions typical of laboratory plasmas are investigated theoretically. Here, by a nanoparticle is meant a grain the size of which is much smaller than both the electron Larmor radius and Debye length and the thermionic emission from which is not limited by the space charge. Under conditions at which thermionic emission plays an important role, the electric potential and temperature T p of a nanoparticle are determined by solving a self-consistent set of equations describing the balance of energy and charge fluxes onto the nanoparticle. It is shown that, when the degree of plasma ionization exceeds a critical level, the potential of the nanoparticle and the energy flux onto it increase with increasing nanoparticle temperature, so that, starting from a certain temperature, the nanoparticle potential becomes positive. The critical degree of ionization starting from which the potential of a nanoparticle is always positive is determined as a function of the plasma density and electron temperature. The nanoparticle temperature T p corresponding to the equilibrium state of a positively charged nanoparticle is found as a function of the electron density for different electron temperatures.

  5. Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure.

    Love, Sara A; Liu, Zhen; Haynes, Christy L

    2012-07-07

    As nanoparticles enjoy increasingly widespread use in commercial applications, the potential for unintentional exposure has become much more likely during any given day. Researchers in the field of nanotoxicity are working to determine the physicochemical nanoparticle properties that lead to toxicity in an effort to establish safe design rules. This work explores the effects of noble metal nanoparticle exposure in murine chromaffin cells, focusing on examining the effects of size and surface functionality (coating) in silver and gold, respectively. Carbon-fibre microelectrode amperometry was utilized to examine the effect of exposure on exocytosis function, at the single cell level, and provided new insights into the compromised functions of cells. Silver nanoparticles of varied size, between 15 and 60 nm diameter, were exposed to cells and found to alter the release kinetics of exocytosis for those cells exposed to the smallest examined size. Effects of gold were examined after modification with two commonly used 'bio-friendly' polymers, either heparin or poly (ethylene glycol), and gold nanoparticles were found to induce altered cellular adhesion or the number of chemical messenger molecules released, respectively. These results support the body of work suggesting that noble metal nanoparticles perturb exocytosis, typically altering the number of molecules and kinetics of release, and supports a direct disruption of the vesicle matrix by the nanoparticle. Overall, it is clear that various nanoparticle physicochemical properties, including size and surface coating, do modulate changes in cellular communication via exocytosis.

  6. Multifunctional nanoparticles: Analytical prospects

    Dios, Alejandro Simon de; Diaz-Garcia, Marta Elena

    2010-01-01

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  7. Nanoparticles and direct immunosuppression

    Ngobili, Terrika A

    2016-01-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  8. Simple Recovery of Intracellular Gold Nanoparticles from Peanut Seedling Roots.

    Raju, D; Mehta, Urmil J; Ahmad, Absar

    2015-02-01

    Fabrication of inorganic nanomaterials via a biological route witnesses the formation either extracellularly, intracellulary or both. Whereas extracellular formation of these nanomaterials is cherished owing to their easy and economical extraction and purification processes; the intracellular formation of nanomaterials, due to the lack of a proper recovery protocol has always been dreaded, as the extraction processes used so far were tedious, costly, time consuming and often resulting in very low recovery. The aim of the present study was to overcome the problems related with the extraction and recovery of intracellularly synthesized inorganic nanoparticles, and to devise a method to increasing the output, the shape, size, composition and dispersal of nanoparticles is not altered. Water proved to be much better system as it provided well dispersed, stable gold nanoparticles and higher recovery. This is the first report, where intracellular nanoparticles have been recovered using a very cost-effective and eco-friendly approach.

  9. Music and Alterity Processes

    Josep Martí

    2014-10-01

    Full Text Available The concept of alterity constitutes an important issue in anthropological research and, therefore, in the study of musical practices, as well. Without it, we could hardly understand other kinds of music situated in different spaces and time from the observer. In order to effectively approach these musical practices, we have to develop strategies to help us reduce as much as possible that which distorts the vision of the other. However, beyond the strictly epistemological and methodological issues, the study of music cannot ignore the ethical question related to the manner in which Western thought has understood and treated the other: through a hierarchical and stereotypical type of thinking based on the condition of otherness. Throughout the article, different alterity procedures are presented and discussed, such as synecdochization, exoticization, undervaluation, overvaluation, misunderstanding and exclusion. Taking these different alterity strategies into account may help us to better understand how the musical other is constructed, used and ultimately instrumentalized.

  10. Nanoparticles for cultural heritage conservation: calcium and barium hydroxide nanoparticles for wall painting consolidation.

    Giorgi, Rodorico; Ambrosi, Moira; Toccafondi, Nicola; Baglioni, Piero

    2010-08-16

    Nanotechnology provides new concepts and materials for the consolidation and protection of wall paintings. In particular, humble calcium and barium hydroxide nanoparticles offer a versatile and highly efficient tool to combat the main degradation processes altering wall paintings. Clear example of the efficacy and potentiality of nanotechnology is represented by the conservation in situ of Maya wall paintings in the archaeological area in Calakmul (Mexico).

  11. Green synthesis of silver nanoparticles aimed at improving theranostics

    Vedelago, José; Gomez, Cesar G.; Valente, Mauro; Mattea, Facundo

    2018-05-01

    Nowadays, the combination of diagnosis and therapy, known as theranostics, is one of the keys for an optimal treatment for cancer diseases. Theranostics can be significantly improved by incorporating metallic nanoparticles that are specifically delivered and accumulated in cancerous tissue. In this context, precise knowledge about dosimetric effects in nanoparticle-infused tissues as well as the detection and processing of emerging radiation are extremely important issues. In the last years the first studies on theranostic nanomaterials in gel dosimetry have been presented but there is still a broad field of study to explore. Most of gel dosimetric materials are extremely sensible to modifications in their composition, the addition of enhancers, metallic or inorganic charges can alter their stability and dosimetric properties; therefore, thorough studies must be made before the incorporation of any type of modifier. In this work, the synthesis of metallic nanoparticles suitable for gel dosimetry for x-ray applications is presented. A green synthesis process of silver nanoparticles coated with porcine skin gelatin by thermal reduction of silver nitrate is presented. Nanoparticles were obtained and purified for their application in gel dosimetry. Also, nanoparticles size distribution, reaction yield and the preliminar application as theranostic agents were tested in Fricke gel dosimetry in the keV range. The obtained nanoparticles were successfully used in theranostic applications acting as fluorescent agents and dose enhancers in X-ray beam irradiation simultaneously.

  12. Trichomonas vaginalis cathepsin D-like aspartic proteinase (Tv-CatD) is positively regulated by glucose and degrades human hemoglobin.

    Mancilla-Olea, Maria Inocente; Ortega-López, Jaime; Figueroa-Angulo, Elisa E; Avila-González, Leticia; Cárdenas-Guerra, Rosa Elena; Miranda-Ozuna, Jesús F T; González-Robles, Arturo; Hernández-García, Mar Saraí; Sánchez-Ayala, Lizbeth; Arroyo, Rossana

    2018-04-01

    Trichomonas vaginalis genome encodes ∼440 proteases, six of which are aspartic proteases (APs). However, only one belongs to a clan AA (EC 3.4.23.5), family A1 (pepsin A), cathepsin D-like protease. This AP is encoded by an 1113-bp gene (tv-catd), which translates into a 370-aa residues zymogen of 40.7-kDa and a theoretical pI of 4.6, generating a ∼35 kDa active enzyme after maturation (Tv-CatD). The goal of this study was to identify and analyze the effect of glucose on the expression of Tv-CatD at the transcript and protein levels, subcellular localization, and proteolytic activity. The qRT-PCR assays showed a ∼2-fold increase in tv-catd mRNA under high-glucose (HG) conditions compared to glucose-restriction (GR) conditions. We amplified, cloned, and expressed the tv-catd gene, and purified the recombinant precursor enzyme (Tv-CatDr) to generate a polyclonal antibody (anti-Tv-CatDr). Western blot (WB) and immunolocalization assays showed that glucose increases the amount of Tv-CatD in different subcellular localizations and in in vitro secretions. Additionally, Tv-CatD proteolytic activity was detected in protease-resistant extracts (PREs) using a synthetic fluorogenic peptide specific for cathepsin D/E APs at different pHs and in the presence of AP inhibitors. In a two-dimensional (2-DE) WB analysis of a PRE from parasites grown under GR and HG conditions, an anti-Tv-CatDr antibody detected a 35-kDa protein spot at pI 5.0 identified as the mature Tv-CatD form by mass spectrometry that showed proteolytic activity in 2-DE zymograms copolymerized with hemoglobin under both glucose conditions. Thus, Tv-CatD could be involved in trichomonal hemolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Design and synthesis of a new peptide derived from Fasciola gigantica cathepsin L1 with potential application in serodiagnosis of fascioliasis.

    Meshgi, Behnam; Jalousian, Fatemeh; Fathi, Saeid; Jahani, Zahra

    2018-06-01

    Fascioliasis is a global parasitic disease that affects domestic animals and causes considerable economic losses in the process of domestic animal breeding in endemic regions. The cause of the disease involves a liver trematode of the genus Fasciola, which secretes materials into a host's body (mainly proteins) in order to protect it from the host's immune system. These materials can be involved in the migration, growth, and nutrition of the parasite. Among the expressive proteins of Fasciola, proteases have been introduced as the appropriate targets for diagnosis, treatment, and vaccination against parasites. Cathepsin L (CL) is a member of cysteine proteases; it is widely expressed in the Fasciola species. The aim of this study was to evaluate two synthetic peptides from F. gigantica CL1 for improving serological diagnosis of the Fasciola infection. Therefore, the potential diagnostic value of the surface epitopes of CL1 was assessed using ELISA. In the current study, bioinformatics tools were applied to select two appropriate epitopes of Fasciola Cathepsin L1 as synthetic antigens. Their diagnostic values were evaluated by two methods of indirect ELISA and dot blot analysis. The findings revealed that the first peptide at a dilution ratio of 1:400 and the second peptide at a dilution ratio of 1:100 had the best results and the best concentration of antigens was introduced at 4 μg/ml. Moreover, 191 sera samples were analyzed by both peptides by using the ELISA method, including fascioliasis sera, other parasitic sera and negative sera. The sensitivity of the peptides 1-ELISA and peptide 2-ELISA for the diagnosis of the various cases was 100%. The specificity of the first peptide was 87.3% and its efficacy was determined to be 93.65%. The specificity and the efficacy of the second peptide were 79% and 89.5%, respectively. The positive predictive values of the first and second peptides were obtained to be 86.27% and 79.27% respectively, and the negative

  14. [How safe are nanoparticles?].

    Lademann, J; Meinke, M; Sterry, W; Patzelt, A

    2009-04-01

    Nanoparticles are experiencing an increasing application in dermatology and cosmetics. In both application areas, the requirements of nanoparticles are in most cases widely different. As a component of sunscreens, the nanoparticles are supposed to remain on the skin surface or in the upper most layers of the stratum corneum to protect the skin against UV-radiation of the sun. Whereas, on the other hand, when particulate substances are used as carrier systems for drugs, they have to cross the skin barrier to reach the target sites within the living tissue. We discuss the perspectives and risks of the topical application of nanoparticles.

  15. Biomarkers of Nanoparticles Impact on Biological Systems

    Mikhailenko, V.; Ieleiko, L.; Glavin, A.; Sorochinska, J.

    Studies of nanoscale mineral fibers have demonstrated that the toxic and carcinogenic effects are related to the surface area and surface activity of inhaled particles. Particle surface characteristics are considered to be key factors in the generation of free radicals and reactive oxygen species and are related to the development of apoptosis or cancer. Existing physico-chemical methods do not always allow estimation of the nanoparticles impact on organismal and cellular levels. The aim of this study was to develop marker system for evaluation the toxic and carcinogenic effects of nanoparticles on cells. The markers are designed with respect to important nanoparticles characteristics for specific and sensitive assessment of their impact on biological system. We have studied DNA damage, the activity of xanthine oxidoreductase influencing the level of free radicals, bioenergetic status, phospholipids profile and formation of 1H-NMR-visible mobile lipid domains in Ehrlich carcinoma cells. The efficiency of the proposed marker system was tested in vivo and in vitro with the use of C60 fullerene nanoparticles and multiwalled carbon nanotubes. Our data suggest that multiwalled carbon nanotubes and fullerene C60 may pose genotoxic effect, change energy metabolism and membrane structure, alter free radical level via xanthine oxidase activation and cause mobile lipid domains formation as determined in vivo and in vitro studies on Ehrlich carcinoma cells.

  16. Alteration in the absorption cell dose arising from the use of gold nanoparticle associated with the radionuclides of clinical application: simulate study; Alteracao na absorcao de dose celular decorrente da utilizacao de nanoparticulas de ouro associadas a radionuclideos de aplicacao clinica: estudo simulado

    Culik, Lucas; Schwarcke, Marcelo, E-mail: mschwarcke@unifra.br [Centro Universitario Franciscano (UNIFRA), Santa Maria, RS (Brazil)

    2015-12-15

    The present work is a proposal to assess, which is the efficiency in the use of radionuclides of clinical application in nuclear medicine service conjugated system with gold nanoparticles.To obtain the results needed for the interpretation of this combination, was using the Monte Carlo simulation code PENELOPE, where was the main structures of a simulated eukaryote cell. To simulate irradiation on cellular structures was used the emission spectrum of main radionuclide clinical use in nuclear medicine service. The material containing gold nanoparticles was modeled according the stoichiometric proportions found in the literature. The results obtained, present for the simulated energies to smaller bodies than 2,0μm, no substantial response to the use of nanoparticles in the reinforcement of locally absorbed dose. Is observed a small decrease in locally dose absorbed due to emission of charged particles, it is believed that causes an increase in the emission secondary range to be placed outside the study body. But this effect is small when comparing to the increase of energy absorbed due to interaction with the bodies containing nanoparticles, so demonstrating an increase in the locally dose absorbed. Being observed that there is an increase in dose absorbed locally due to the use of nanoparticles. For protocols based on the principle of target radionuclide therapy, the imaging of the treaty sit will be affected in their statistical accuracy, since the gamma radiation will be attenuated by the nanoparticles present in the material. Being necessary to know if this increase in the locally absorbed dose has greater importance in the treatment protocol than the image of the absorption of the radioactive material in the target organ. (author)

  17. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  18. Distribution of Cathepsin K in Late Stage of Tooth Germ Development and Its Function in Degrading Enamel Matrix Proteins in Mouse.

    Tao Jiang

    Full Text Available Cathepsin K (CTSK is a member of cysteine proteinase family, and is predominantly expressed in osteoclastsfor degradationof bone matrix proteins. Given the similarity in physical properties of bone and dental mineralized tissues, including enamel, dentin and cementum, CTSK is likely to take part in mineralization process during odontogenesis. On the other hand, patients with pycnodysostosis caused by mutations of the CTSK gene displayedmultipledental abnormalities, such as hypoplasia of the enamel, obliterated pulp chambers, hypercementosis and periodontal disease. Thereforeitis necessary to study the metabolic role of CTSK in tooth matrix proteins. In this study, BALB/c mice at embryonic day 18 (E18, post-natal day 1 (P1, P5, P10 and P20 were used (5 mice at each time pointfor systematic analyses of CTSK expression in the late stage of tooth germ development. We found that CTSK was abundantly expressed in the ameloblasts during secretory and maturation stages (P5 and P10 by immunohistochemistry stainings.During dentinogenesis, the staining was also intense in the mineralization stage (P5 and P10,but not detectable in the early stage of dentin formation (P1 and after tooth eruption (P20.Furthermore, through zymography and digestion test in vitro, CTSK was proved to be capable of hydrolyzing Emdogain and also cleaving Amelogenininto multiple products. Our resultsshed lights on revealing new functions of CTSK and pathogenesis of pycnodysostosis in oral tissues.

  19. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  20. Comparative assessment of ELISAs using recombinant saposin-like protein 2 and recombinant cathepsin L-1 from Fasciola hepatica for the serodiagnosis of human Fasciolosis.

    Bruno Gottstein

    2014-06-01

    Full Text Available Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2 and cathepsin L-1 (recCL1, were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES from adult stage liver flukes was assessed by receiver operator characteristic (ROC analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20, patients with other parasitic infections (n=87 and patients with malignancies (n=121. The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy employing the threshold (cut-off to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.

  1. Cytosol cathepsin-D content and proliferative activity of human breast cancer. The Comitato Italiano per il Controllo di Qualita del Laboratorio in Oncologia.

    Paradiso, A; Mangia, A; Correale, M; Abbate, I; Ferri, G; Piffanelli, A; Catozzi, L; Amadori, D; Riccobon, A; De Lena, M

    1992-01-01

    Mitogenic properties have been demonstrated in vitro for the lysosomal acidic protease cathepsin-D (cath-D). We investigated possible relationships between cath-D cytosol cell content and tumor proliferative activity in a series of 129 operable breast cancer patients. For total cytosol cath-D evaluation, a solid phase two-site immunoradiometric assay was utilized on tumor cell cytosol obtained for hormone receptor assay (DCC method). The percentage of S-phase cells was analyzed by 3H-thymidine autoradiographic assay. Median 3H-thymidine Labeling Index (3H-Tdr-LI) of the series was 2.7%; median cath-D content resulted 57 pmol/mg of protein cytosol and was significantly higher in node-positive with respect to the node-negative subgroup (p < 0.03). When classified in low, intermediate or high tumor cath-D content and slow or fast proliferative activity (cut-off: median values of the series), no significant agreement was found between the two variables. Statistical analysis, however, showed that a significant inverse correlation existed in node positive tumors between cath-D and 3H-Tdr-LI values which was even more evident in N-positive high estrogen receptor-positive (ER+) cases (coefficient of correlation = 0.6828; p = 0.0001). Cytosol cath-D content cannot be generally proposed as a direct marker of proliferative activity for operable breast cancer.

  2. Whole-exome sequencing reveals a recurrent mutation in the cathepsin C gene that causes Papillon–Lefevre syndrome in a Saudi family

    Yaser Mohammad Alkhiary

    2016-09-01

    Full Text Available Papillon–Lefevre syndrome (PALS is a rare, autosomal recessive disorder characterized by periodontitis and hyperkeratosis over the palms and soles. Mutations in the cathepsin C gene (CTSC have been recognized as the cause of PALS since the late 1990s. More than 75 mutations in CTSC have been identified, and phenotypic variability between different mutations has been described. Next generation sequencing is widely used for efficient molecular diagnostics in various clinical practices. Here we investigated a large consanguineous Saudi family with four affected and four unaffected individuals. All of the affected individuals suffered from hyperkeratosis over the palms and soles and had anomalies of both primary and secondary dentition. For molecular diagnostics, we combined whole-exome sequencing and genome-wide homozygosity mapping procedures, and identified a recurrent homozygous missense mutation (c.899G>A; p.Gly300Asp in exon 7 of CTSC. Validation of all eight family members by Sanger sequencing confirmed co-segregation of the pathogenic variant (c.899G>A with the disease phenotype. This is the first report of whole-exome sequencing performed for molecular diagnosis of PALS in Saudi Arabia. Our findings provide further insights into the genotype–phenotype correlation of CTSC pathogenicity in PALS.

  3. Expression of cathepsins B, L, S, and D by gastric epithelial cells implicates them as antigen presenting cells in local immune responses.

    Barrera, C; Ye, G; Espejo, R; Gunasena, S; Almanza, R; Leary, J; Crowe, S; Ernst, P; Reyes, V E

    2001-10-01

    Helicobacter pylori infection is linked to chronic gastritis, peptic ulcer and gastric carcinoma. During H. pylori infection, class II MHC expression by the gastric epithelium increases, as does the number of local CD4(+) T cells, which appear to be important in the associated pathogenesis. These observations suggested that the epithelium might present antigens to T cells. Thus, we sought to determine whether gastric epithelial cells process antigens to establish their function as local antigen presenting cells (APC). We examined a panel of gastric epithelial cell lines for expression of the antigen processing cathepsins B (CB), L (CL), S (CS), and D (CD). The mRNA for these enzymes were detected by RT-PCR and the enzymes in the gastric epithelial cells were identified by various independent methods. We corroborated the expression of CB and CD on gastric epithelial cells from human biopsy samples. The functions of these proteases were confirmed by assessing their ability to digest ovalbumin, a conventional dietary antigen, and proteins from H. pylori. In summary, multiple lines of evidence suggest gastric epithelial cells process antigens for presentation to CD4(+) T cells. To our knowledge, these are the first studies to document the antigen processing capacity of human gastric epithelial cells.

  4. Tamm-Horsfall Glycoprotein Enhances PMN Phagocytosis by Binding to Cell Surface-Expressed Lactoferrin and Cathepsin G That Activates MAP Kinase Pathway

    Chia-Li Yu

    2011-03-01

    Full Text Available The molecular basis of polymorphonuclear neutrophil (PMN phagocytosis-enhancing activity (PEA by human purified urinary Tamm-Horsfall glyco- protein (THP has not been elucidated. In this study, we found human THP bound to lactoferrin (LF and cathepsin G (CG expressed on the surface of PMN, identified by a proteomic study with MALDI-TOF- LC/LC/mass spectrometric analysis. Pre-incubation of 10% SDS-PAGE electrophoresed PMN lysates with monoclonal anti-LF or anti-CG antibody reduced the binding with THP. To elucidate the signaling pathway of THP on PMN activation, we found THP enhanced ERK1/2 phosphorylation, reduced p38 MAP kinase phosphorylation, but had no effect on DNA binding of the five NF-kB family members in PMN. To further clarify whether the carbohydrate-side chains or protein-core structure in THP molecule is responsible for THP-PEA, THP was cleaved by different degrading enzymes with carbohydrate specificity (neuraminidase and β-galactosidase, protein specificity (V8 protease and proteinase K or glycoconjugate specificity (carboxylpeptidase Y and O-sialoglycoprotein endopeptidase. We clearly demonstrated that the intact protein-core structure in THP molecule was more important for THP-PEA than carbohydrate-side chains. Putting these results together, we conclude that THP adheres to surface-expressed LF and CG on PMN and transduces signaling via the MAP kinase pathway to enhance PMN phagocytosis.

  5. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  6. Biosynthesis of silver nanoparticles

    SIMBU

    2013-05-22

    May 22, 2013 ... accomplish a better control over the size and shape distributions of the nanoparticles, product harvesting, and recovery are ... stabilization of various nanoparticles by physical and che- .... colonies on Luria Bertani (LB) medium at 37°C up to 108- ..... Crude latex was obtained by cutting the green stems of J.

  7. Optical properties of nanoparticles

    Bendix, Pól Martin

    2015-01-01

    At the NBI I am involved in projects relating to optical properties of metallic nanoparticles in particular with respect to plasmonic heating with direct applications to photothermal cancer therapy. For this purpose we have developed heating assays that can be used to measure the heating of any...... nanoscopic heat source like an irradiated nanoparticle...

  8. Single Nanoparticle Plasmonic Sensors

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  9. Energy breathing of nanoparticles

    Dynich, Raman A., E-mail: dynich@solo.by [Institute of Social Educational Technologies (Belarus)

    2015-06-15

    The paper considers the energy exchange process of the electromagnetic wave with a spherical metal nanoparticle. Based on the account of the temporal dependencies of electric and magnetic fields, the author presents an analytical dependence of the energy flow passing through the spherical surface. It is shown that the electromagnetic energy, localized in metal nanoparticles, is not a stationary value and periodically varies with time. A consequence of the energy nonstationarity is a nonradiating exit of the electromagnetic energy out of the nanoparticle. During the time equal to the period of wave oscillations, the electromagnetic energy is penetrating twice into the particle and quits it twice. The particle warms up because of the difference in the incoming and outgoing energies. Such “energy breathing” is presented for spherical Ag and Au nanoparticles with radii of 10 and 33 nm, respectively. Calculations were conducted for these nanoparticles embedded into the cell cytoplasm near the frequencies of their surface plasmon resonances.

  10. Magnetic interactions between nanoparticles

    Mørup, Steen; Hansen, Mikkel Fougt; Frandsen, Cathrine

    2010-01-01

    We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state...... of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples...... of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions....

  11. Immunization alters body odor.

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.

  12. Microemulsion Synthesis of Nanoparticles

    Gotić, M.

    2013-11-01

    Full Text Available Nanoparticles and nanomaterials have wide applications in electronics, physics, material design, being also utilized as sensors, catalysts, and more and more in biomedicine. Microemulsions are an exceptionally suitable medium for the synthesis of nanoparticles due to their thermodynamical stability, great solubility of both polar and nonpolar components, as well as their ability to control the size, dispersity and shape of the particles. This review presents microemulsion techniques for the synthesis of inorganic nanoparticles. It takes place in water-in-oil microemulsions by mixing one microemulsion with a cationic precursor, and the other with a precipitating or reducing agent, or by direct addition of reducing agents or gas (O2, NH3 ili CO2 into microemul sion (Fig. 1. Metal nanoparticles are used as catalysts, sensors, ferrofluids etc. They are produced by reducing the metal cation with a suitable reducing agent. In a similar way, one can prepare nanoparticles of alloys from the metal salts, provided that the metals are mutually soluble. The microemulsion technique is also suitable for depositing nanoparticles onto various surfaces. Highly active catalysts made from nanoparticles of Pt, Pd, Rh and other noble metals may be obtained in this way. Metal oxides and hydroxides may be prepared by hydrolysis or precipitation in the water core of microemulsion. Precipitation can be initiated by adding the base or precipitating agent into the microemulsion with water solution of metal ions. Similarly, nanoparticles may be prepared of sulphides, halogenides, cyanides, carbonates, sulphates and other insoluble metal salts. To prevent oxidation of nanoparticles, especially Fe, the particles are coated with inert metals, oxides, various polymers etc. Coating may provide additional functionality; e.g. coating with gold allows subsequent functionalization with organic compounds containing sulphur, due to the strong Au–S bond. Polymer coatings decrease

  13. Aerosolization and Atmospheric Transformation of Engineered Nanoparticles

    Tiwari, Andrea J.

    While research on the environmental impacts of engineered nanoparticles (ENPs) is growing, the potential for them to be chemically transformed in the atmosphere has been largely ignored. The overall objective of this work was to assess the atmospheric transformation of carbonaceous nanoparticles (CNPs). The research focuses on C60 fullerene because it is an important member of the carbonaceous nanoparticle (CNP) family and is used in a wide variety of applications. The first specific objective was to review the potential of atmospheric transformations to alter the environmental impacts of CNPs. We described atmospheric processes that were likely to physically or chemically alter aerosolized CNPs and demonstrated their relevance to CNP behavior and toxicity in the aqueous and terrestrial environment. In order to investigate the transformations of CNP aerosols under controlled conditions, we developed an aerosolization technique that produces nano-scale aerosols without using solvents, which can alter the surface chemistry of the aerosols. We demonstrated the technique with carbonaceous (C60) and metal oxide (TiO2, CeO2) nanoparticle powders. All resulting aerosols exhibited unimodal size distributions and mode particle diameters below 100 nm. We used the new aerosolization technique to investigate the reaction between aerosolized C60 and atmospherically realistic levels of ozone (O3) in terms of reaction products, reaction rate, and oxidative stress potential. We identified C60O, C60O2, and C60O3 as products of the C60-O3 reaction. We demonstrated that the oxidative stress potential of C 60 may be enhanced by exposure to O3. We found the pseudo-first order reaction rate to be 9 x 10-6 to 2 x 10 -5 s-1, which is several orders of magnitude lower than the rate for several PAH species under comparable conditions. This research has demonstrated that a thorough understanding of atmospheric chemistry of ENPs is critical for accurate prediction of their environmental

  14. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  15. About the Sterilization of Chitosan Hydrogel Nanoparticles.

    Galante, Raquel; Rediguieri, Carolina F; Kikuchi, Irene Satiko; Vasquez, Pablo A S; Colaço, Rogério; Serro, Ana Paula; Pinto, Terezinha J A

    2016-01-01

    In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles.

  16. About the Sterilization of Chitosan Hydrogel Nanoparticles.

    Raquel Galante

    Full Text Available In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation, a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP hydrogel nanoparticles (CS-HNP, with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol. Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles.

  17. Electronically cloaked nanoparticles

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  18. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  19. Banana peel extract mediated synthesis of gold nanoparticles.

    Bankar, Ashok; Joshi, Bhagyashree; Kumar, Ameeta Ravi; Zinjarde, Smita

    2010-10-01

    Gold nanoparticles were synthesized by using banana peel extract (BPE) as a simple, non-toxic, eco-friendly 'green material'. The boiled, crushed, acetone precipitated, air-dried peel powder was used to reduce chloroauric acid. A variety of nanoparticles were formed when the reaction conditions were altered with respect to pH, BPE content, chloroauric acid concentration and temperature of incubation. The reaction mixtures displayed vivid colors and UV-vis spectra characteristic of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size of the nanoparticles under standard synthetic conditions was around 300nm. Scanning electron microscopy and energy dispersive spectrometry (EDS) confirmed these results. A coffee ring phenomenon, led to the aggregation of the nanoparticles into microcubes and microwire networks towards the periphery of the air-dried samples. X-ray diffraction studies of the samples revealed spectra that were characteristic for gold. Fourier transform infra red (FTIR) spectroscopy indicated the involvement of carboxyl, amine and hydroxyl groups in the synthetic process. The BPE mediated nanoparticles displayed efficient antimicrobial activity towards most of the tested fungal and bacterial cultures.

  20. Gas Phase Nanoparticle Synthesis

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  1. Resonant halide perovskite nanoparticles

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  2. Assembling RNA Nanoparticles.

    Xiao, Shou-Jun

    2017-01-01

    RNA nanoparticles are designed and self-assembled according to noncanonical interactions of naturally conserved RNA motifs and/or canonical Watson-Crick base-pairing interactions, which have potential applications in gene therapy and nanomedicine. These artificially engineered nanoparticles are mainly synthesized from in vitro transcribed RNAs, purified by denaturing and native polyacrylamide gel electrophoresis (PAGE), and characterized with native PAGE, AFM, and TEM technologies. The protocols of in vitro transcription, denaturing and native PAGE, and RNA nanoparticle self-assembly are described in detail.

  3. Altered metabolism in cancer

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  4. Calpain activation and disturbance of autophagy are induced in cortical neurons in vitro by exposure to HA/β-Ga2O3:Cr3+ nanoparticles.

    Lei, Yu; Wang, Chengkun; Jiang, Quan; Sun, Xiaoyi; Du, Yongzhong; Zhu, Yaofeng; Lu, Yingmei

    2018-01-01

    The toxicity of engineered nanoparticles remains a concern. The knowledge of biohazards associated with particular nanoparticles is crucial to make this cutting-edge technology more beneficial and safe. Here, we evaluated the toxicity of Ga 2 O 3 nanoparticles (NPs), which are frequently used to enhance the performance of metal catalysts in a variety of catalytic reactions. The potential inflammatory signaling associated with the toxicity of HA/β-Ga 2 O 3 :Cr 3+ NPs in primary cortical neurons was examined. We observed a dose-dependent decrease in cell viability and an increase in apoptosis in neurons following various concentrations (0, 1, 5, 25, 50, 100 µg/ml) of HA/β-Ga 2 O 3 :Cr 3+ NPs treatment. Consistently, constitutively active forms of calcineurin (48 kDa) were significantly elevated in cultured primary cortical neurons, which was consistent with calpain activation indicated by the breakdown products of spectrin. Moreover, HA/β-Ga 2 O 3 :Cr 3+ NPs result in the elevation of LC3-II formation, SQSTM/p62, and Cathepsin B, whereas phosphorylation of CaMKII (Thr286) and Synapsin I (Ser603) were downregulated in the same context. Taken together, these results demonstrate for the first time that calpain activation and a disturbance of autophagy signaling are evoked by exposure to HA/β-Ga 2 O 3 :Cr 3+ NPs, which may contribute to neuronal injury in vitro .

  5. Calpain activation and disturbance of autophagy are induced in cortical neurons in vitro by exposure to HA/β-Ga2O3:Cr3+ nanoparticles

    Yu Lei

    2018-02-01

    Full Text Available The toxicity of engineered nanoparticles remains a concern. The knowledge of biohazards associated with particular nanoparticles is crucial to make this cutting-edge technology more beneficial and safe. Here, we evaluated the toxicity of Ga2O3 nanoparticles (NPs, which are frequently used to enhance the performance of metal catalysts in a variety of catalytic reactions. The potential inflammatory signaling associated with the toxicity of HA/β-Ga2O3:Cr3+ NPs in primary cortical neurons was examined. We observed a dose-dependent decrease in cell viability and an increase in apoptosis in neurons following various concentrations (0, 1, 5, 25, 50, 100 µg/ml of HA/β-Ga2O3:Cr3+ NPs treatment. Consistently, constitutively active forms of calcineurin (48 kDa were significantly elevated in cultured primary cortical neurons, which was consistent with calpain activation indicated by the breakdown products of spectrin. Moreover, HA/β-Ga2O3:Cr3+ NPs result in the elevation of LC3-II formation, SQSTM/p62, and Cathepsin B, whereas phosphorylation of CaMKII (Thr286 and Synapsin I (Ser603 were downregulated in the same context. Taken together, these results demonstrate for the first time that calpain activation and a disturbance of autophagy signaling are evoked by exposure to HA/β-Ga2O3:Cr3+ NPs, which may contribute to neuronal injury in vitro.

  6. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  7. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination1[W

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-01-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds. PMID:19759340

  8. Towards Delineating Functions within the Fasciola Secreted Cathepsin L Protease Family by Integrating In Vivo Based Sub-Proteomics and Phylogenetics

    Morphew, Russell M.; Wright, Hazel A.; LaCourse, E. James; Porter, Joanne; Barrett, John; Woods, Debra J.; Brophy, Peter M.

    2011-01-01

    Background Fasciola hepatica, along with Fasciola gigantica, is the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide. Pathology is directly related to the release of parasite proteins that facilitate establishment within the host. The dominant components of these excretory-secretory (ES) products are also the most promising vaccine candidates, the cathepsin L (Cat L) protease family. Methodology/Principal Findings The sub-proteome of Cat L proteases from adult F. hepatica ES products derived from in vitro culture and in vivo from ovine host bile were compared by 2-DE. The individual Cat L proteases were identified by tandem mass spectrometry with the support of an in-house translated liver fluke EST database. The study reveals plasticity within the CL1 clade of Cat L proteases; highlighted by the identification of a novel isoform and CL1 sub-clade, resulting in a new Cat L phylogenetic analysis including representatives from other adult Cat L phylogenetic clades. Additionally, for the first time, mass spectrometry was shown to be sufficiently sensitive to reveal single amino acid polymorphisms in a resolved 2-DE protein spot derived from pooled population samples. Conclusions/Significance We have investigated the sub-proteome at the population level of a vaccine target family using the Cat L proteases from F. hepatica as a case study. We have confirmed that F. hepatica exhibits more plasticity in the expression of the secreted CL1 clade of Cat L proteases at the protein level than previously realised. We recommend that superfamily based vaccine discovery programmes should screen parasite populations from different host populations and, if required, different host species via sub-proteomic assay in order to confirm the relative expression at the protein level prior to the vaccine development phase. PMID:21245911

  9. Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats

    Xialin Zuo

    2018-05-01

    Full Text Available Stroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults. Previously, we had reported that the ipsilateral striatum, thalamus degenerated in succession after permanent distal branch of middle cerebral artery occlusion (dMCAO in Sprague-Dawley (SD rats and cathepsin (Cath B was activated before these relay degeneration. Here, we investigate the role of CathB in the secondary degeneration of ipsilateral substantia nigra (SN after focal cortical infarction. We further examined whether the inhibition of CathB with L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl-L-isoleucyl-L-proline methyl ester (CA-074Me would attenuate secondary degeneration through enhancing the cortico-striatum-nigral connections and contribute to the neuroprotective effects. Our results demonstrated that secondary degeneration in the ipsilateral SN occurred and CathB was upregulated in the ipsilateral SN after focal cortical infarction. The inhibition of CathB with CA-074Me reduced the neuronal loss and gliosis in the ipsilateral SN. Using biotinylated dextran amine (BDA or pseudorabies virus (PRV 152 as anterograde or retrograde tracer to trace striatum-nigral and cortico-nigral projections pathway, CA-074Me can effectively enhance the cortico-striatum-nigral connections and exert neuroprotection against secondary degeneration in the ipsilateral SN after cortical ischemia. Our study suggests that the lysosomal protease CathB mediates the secondary damage in the ipsilateral SN after dMCAO, thus it can be a promising neuroprotective target for the rehabilitation of stroke patients.

  10. Suppression of Human T Cell Proliferation Mediated by the Cathepsin B Inhibitor, z-FA-FMK Is Due to Oxidative Stress.

    Tanuja Rajah

    Full Text Available The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH with a concomitant increase in reactive oxygen species (ROS levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.

  11. Towards delineating functions within the fasciola secreted cathepsin l protease family by integrating in vivo based sub-proteomics and phylogenetics.

    Russell M Morphew

    2011-01-01

    Full Text Available fasciola hepatica, along with Fasciola gigantica, is the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide. Pathology is directly related to the release of parasite proteins that facilitate establishment within the host. The dominant components of these excretory-secretory (ES products are also the most promising vaccine candidates, the cathepsin L (Cat L protease family.the sub-proteome of Cat L proteases from adult F. hepatica ES products derived from in vitro culture and in vivo from ovine host bile were compared by 2-DE. The individual Cat L proteases were identified by tandem mass spectrometry with the support of an in-house translated liver fluke EST database. The study reveals plasticity within the CL1 clade of Cat L proteases; highlighted by the identification of a novel isoform and CL1 sub-clade, resulting in a new Cat L phylogenetic analysis including representatives from other adult Cat L phylogenetic clades. Additionally, for the first time, mass spectrometry was shown to be sufficiently sensitive to reveal single amino acid polymorphisms in a resolved 2-DE protein spot derived from pooled population samples.we have investigated the sub-proteome at the population level of a vaccine target family using the Cat L proteases from F. hepatica as a case study. We have confirmed that F. hepatica exhibits more plasticity in the expression of the secreted CL1 clade of Cat L proteases at the protein level than previously realised. We recommend that superfamily based vaccine discovery programmes should screen parasite populations from different host populations and, if required, different host species via sub-proteomic assay in order to confirm the relative expression at the protein level prior to the vaccine development phase.

  12. Cathepsin D Specifically Cleaves the Chemokines Macrophage Inflammatory Protein-1α, Macrophage Inflammatory Protein-1β, and SLC That Are Expressed in Human Breast Cancer

    Wolf, Marlene; Clark-Lewis, Ian; Buri, Caroline; Langen, Hanno; Lis, Maddalena; Mazzucchelli, Luca

    2003-01-01

    Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1α (CCL3), MIP-1β (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1α and MIP-1β degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu58 to Trp59 bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1β hybrids indicated that processing of MIP-1β might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1α, MIP-1β, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes. PMID:12651610

  13. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings.

    Xuefang Pan

    Full Text Available Vasoactive and mitogenic peptide, endothelin-1 (ET-1 plays an important role in physiology of the ocular tissues by regulating the growth of corneal epithelial cells and maintaining the hemodynamics of intraocular fluids. We have previously established that ET-1 can be degraded in vivo by two lysosomal/secreted serine carboxypeptidases, Cathepsin A (CathA and Serine Carboxypeptidase 1 (Scpep1 and that gene-targeted CathAS190A /Scpep1-/- mice, deficient in CathA and Scpep1 have a prolonged half-life of circulating ET-1 associated with systemic hypertension. In the current work we report that starting from 6 months of age, ~43% of CathAS190A /Scpep1-/- mice developed corneal clouding that eventually caused vision impairment. Histological evaluation of these mice demonstrated a selective fibrotic thickening and vacuolization of the corneas, resembling human hyperproliferative vesicular corneal stromal dystrophy and coexisting with a peculiar thickening of the skin epidermis. Moreover, we found that cultured corneal epithelial cells, skin fibroblasts and vascular smooth muscle cells derived from CathA/Scpep1-deficient mice, demonstrated a significantly higher proliferative response to treatment with exogenous ET-1, as compared with cells from wild type mice. We also detected increased activation level of ERK1/2 and AKT kinases involved in cell proliferation in the ET-1-treated cultured cells from CathA/Scpep1 deficient mice. Together, results from our experimental model suggest that; in normal tissues the tandem of serine carboxypeptidases, Scpep1 and CathA likely constitutes an important part of the physiological mechanism responsible for the balanced elimination of heightened levels of ET-1 that otherwise would accumulate in tissues and consequently contribute to development of the hyper-proliferative corneal dystrophy and abnormal skin thickening.

  14. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  15. Acquisition of T regulatory function in cathepsin L-inhibited T cells by eye-derived CTLA-2alpha during inflammatory conditions.

    Sugita, Sunao; Horie, Shintaro; Nakamura, Orie; Maruyama, Kazuichi; Takase, Hiroshi; Usui, Yoshihiko; Takeuchi, Masaru; Ishidoh, Kazumi; Koike, Masato; Uchiyama, Yasuo; Peters, Christoph; Yamamoto, Yoshimi; Mochizuki, Manabu

    2009-10-15

    Pigment epithelium isolated from the eye possesses immunosuppressive properties such as regulatory T (Treg) cell induction; e.g., cultured retinal pigment epithelium (RPE) converts CD4(+) T cells into Treg cells in vitro. RPE constitutively expresses a novel immunosuppressive factor, CTLA-2alpha, which is a cathepsin L (CathL) inhibitor, and this molecule acts via RPE to induce Treg cells. To clarify CTLA-2alpha's role in the T cell response to RPE in ocular inflammation, we used the experimental autoimmune uveitis (EAU) animal model to examine this new immunosuppressive property of RPE. In EAU models, TGF-beta, but not IFN-gamma inflammatory cytokines, promotes the up-regulation of the expression of CTLA-2alpha in RPE. Similarly, CTLA-2alpha via RPE was able to promote TGF-beta production by the CD4(+) T cells. The RPE-exposed T cells (RPE-induced Treg cells) greatly produced TGF-beta and suppressed bystander effector T cells. There was less expression of CathL by the RPE-exposed T cells, and CathL-inhibited T cells were able to acquire the Treg phenotype. Moreover, CathL-deficient mice spontaneously produced Treg cells, with the increase in T cells potentially providing protection against ocular inflammation. More importantly, CD4(+) T cells from EAU in CathL knockout mice or rCTLA-2alpha from EAU animals were found to contain a high population of forkhead box p3(+) T cells. In both EAU models, there was significant suppression of the ocular inflammation. These results indicate that RPE secretes CTLA-2alpha, thereby enabling the bystander T cells to be converted into Treg cells via TGF-beta promotion.

  16. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  17. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  18. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  19. Heparin modulates the endopeptidase activity of Leishmania mexicana cysteine protease cathepsin L-Like rCPB2.8.

    Wagner A S Judice

    Full Text Available Cysteine protease B is considered crucial for the survival and infectivity of the Leishmania in its human host. Several microorganism pathogens bind to the heparin-like glycosaminoglycans chains of proteoglycans at host-cell surface to promote their attachment and internalization. Here, we have investigated the influence of heparin upon Leishmania mexicana cysteine protease rCPB2.8 activity.THE DATA ANALYSIS REVEALED THAT THE PRESENCE OF HEPARIN AFFECTS ALL STEPS OF THE ENZYME REACTION: (i it decreases 3.5-fold the k 1 and 4.0-fold the k -1, (ii it affects the acyl-enzyme accumulation with pronounced decrease in k 2 (2.7-fold, and also decrease in k 3 (3.5-fold. The large values of ΔG  =  12 kJ/mol for the association and dissociation steps indicate substantial structural strains linked to the formation/dissociation of the ES complex in the presence of heparin, which underscore a conformational change that prevents the diffusion of substrate in the rCPB2.8 active site. Binding to heparin also significantly decreases the α-helix content of the rCPB2.8 and perturbs the intrinsic fluorescence emission of the enzyme. The data strongly suggest that heparin is altering the ionization of catalytic (Cys(25-S(-/(His(163-Im(+ H ion pair of the rCPB2.8. Moreover, the interaction of heparin with the N-terminal pro-region of rCPB2.8 significantly decreased its inhibitory activity against the mature enzyme.Taken together, depending on their concentration, heparin-like glycosaminoglycans can either stimulate or antagonize the activity of cysteine protease B enzymes during parasite infection, suggesting that this glycoconjugate can anchor parasite cysteine protease at host cell surface.

  20. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  1. Functionalized diamond nanoparticles

    Beaujuge, Pierre M.; El Tall, Omar; Raja, Inam U.

    2014-01-01

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  2. Functionalized diamond nanoparticles

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  3. Supercooled smectic nanoparticles

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    Cholesteryl nonanoate (CN), myristate (CM), palmitate (CP) and oleate (CO) alone or in combination were evaluated as matrix lipids for the preparation of supercooled smectic nanoparticles with a high stability against recrystallization during storage. The phase behavior of the cholesterol esters......, laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... at room temperature. Nanoparticles with a pure CN and mixed CM/CN matrix with a high fraction of CN (60% of the whole lipid matrix) could even be stored at 4 degrees C for at least 18 months without any recrystallization. As smectic nanoparticles are studied especially with regard to parenteral...

  4. Repairing Nanoparticle Surface Defects

    Marino, Emanuele; Kodger, Thomas E.; Crisp, R.W.; Timmerman, Dolf; MacArthur, Katherine E.; Heggen, Marc; Schall, Peter

    2017-01-01

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We

  5. Metallic Magnetic Nanoparticles

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  6. Obtenção e avaliação da proteína BYC (Boophilus Yolk pro-Cathepsin) recombinante em uma vacina contra o carrapato Boophilus microplus

    Alexandre Trindade Leal

    2006-01-01

    O carrapato Boophilus microplus é um ectoparasita hematófago que infesta os rebanhos bovinos de regiões tropicais e subtropicais, causando grande prejuízo à pecuária. O principal método de controle deste parasita baseia-se no uso de acaricidas, entretanto, o uso de vacinas tem sido estudado como um método de controle promissor. A Boophilus Yolk pro-Cathepsin (BYC) é uma aspártico proteinase presente no ovo do carrapato e envolvida na embriogênese que foi anteriormente testada como imunógeno v...

  7. Cryochemistry of Metal Nanoparticles

    Sergeev, Gleb B.

    2003-01-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia

  8. Cryochemistry of Metal Nanoparticles

    Sergeev, Gleb B. [Moscow State University, Laboratory of Low Temperature Chemistry, Chemistry Department (Russian Federation)], E-mail: gbs@kinet.chem.msu.ru

    2003-12-15

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  9. Cryochemistry of Metal Nanoparticles

    Sergeev, Gleb B.

    2003-12-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  10. Biomimetic magnetic nanoparticles

    Klem, Michael T.; Young, Mark; Douglas, Trevor

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  11. Nanolubricant: magnetic nanoparticle based

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  12. Protein trapping of nanoparticles

    Ang, Joo C.; Lin, Jack M.; Yaron, Peter N.; White, John W.

    2009-01-01

    Full text: We have observed the formation of protein-nanoparticle complexes at the air-water interfaces from three different methods of presenting the nanoparticles to proteins. The structures formed resemble the 'protein-nanoparticle corona' proposed by Lynch et al. [1-3) in relation to a possible route for nanoparticle entry into living cells. To do this, the methods of x-ray and neutron reflectivity (with isotopic contrast variation between the protein and nanoparticles) have been used to study the structures formed at the air-water interface of l 3 - casein presented to silica nanoparticle dispersions. Whilst the silica dispersions showed no observable reflectivity, strong signals appear in the reflectivity when protein is present. Drop-wise spreading of a small amount of protein at the air-silica sol interface and presentation of the silica sol to an isolated monomolecular protein film (made by the 'flow-trough' method [4]) gave an immediate signal. Mixing the components in solution only produces a slow response but in all cases a similar structure is formed. The different responses are interpreted in structural and stoichiometric ways.

  13. Nanoparticle size and production efficiency are affected by the presence of fatty acids during albumin nanoparticle fabrication.

    Christian C Luebbert

    Full Text Available We have previously identified extensive glycation, bound fatty acids and increased quantities of protein aggregates in commercially available recombinant HSA (rHSA expressed in Oryza sativa (Asian rice (OsrHSA when compared to rHSA from other expression systems. We propose these differences may alter some attributes of nanoparticles fabricated with OsrHSA, as studies have associated greater quantities of aggregates with increased nanoparticle diameters. To determine if this is the case, nanoparticles were fabricated with OsrHSA from various suppliers using ethanol desolvation and subsequent glutaraldehyde cross-linking. All nanoparticles fabricated with OsrHSA showed larger diameters of approximately 20 to 90nm than particles fabricated with either defatted bovine serum albumin (DF-BSA (100.9 ± 2.8nm or human plasma albumin (pHSA (112.0 ± 4.0nm. It was hypothesized that the larger nanoparticle diameters were due to the presence of bound fatty acids and this was confirmed through defatting OsrHSA prior to particle fabrication which yielded particles with diameters similar to those fabricated with pHSA. For additional conformation, DF-BSA was incubated with dodecanoic acid prior to desolvation yielding particles with significantly larger diameters. Further studies showed the increased nanoparticle diameters were due to the bound fatty acids modulating electrostatic interactions between albumin nanoparticles during the desolvation and not changes in protein structure, stability or generation of additional albumin oligomers. Finally the presence of dodecanoic acid was shown to improve doxorubicin loading efficiency onto preformed albumin nanoparticles.

  14. Development of CNC prototype for the characterization of the nanoparticle release during physical manipulation of nanocomposites.

    Gendre, Laura; Marchante, Veronica; Abhyankar, Hrushikesh A; Blackburn, Kim; Temple, Clive; Brighton, James L

    2016-01-01

    This work focuses on the release of nanoparticles from commercially used nanocomposites during machining operations. A reliable and repeatable method was developed to assess the intentionally exposure to nanoparticles, in particular during drilling. This article presents the description and validation of results obtained from a new prototype used for the measurement and monitoring of nanoparticles in a controlled environment. This methodology was compared with the methodologies applied in other studies. Also, some preliminary experiments on drilling nanocomposites are included. Size, shape and chemical composition of the released nanoparticles were investigated in order to understand their hazard potential. No significant differences were found in the amount of nanoparticles released between samples with and without nanoadditives. Also, no chemical alteration was observed between the dust generated and the bulk material. Finally, further developments of the prototype are proposed.

  15. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs.

    Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Servadio, Michela; Melancia, Francesca; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Cortesi, Rita; Nastruzzi, Claudio

    2017-09-01

    This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.

  16. Interaction of magnetic nanoparticles with lysozyme amyloid fibrils

    Gdovinová, Veronika [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Tomašovičová, Natália, E-mail: nhudak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Batko, Ivan; Batková, Marianna; Balejčíková, Lucia [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Garamus, Vasyl M. [Helmholtz-Zentrum Geesthacht: Zentrum fr Material, und Kstenforschung GmbH, Max-Plank-Strae 1, Geesthacht 216502 (Germany); Petrenko, Viktor I. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Physics Department, Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Kopčanský, Peter [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia)

    2017-06-01

    This work is devoted to the structural study of complex solutions of magnetic nanoparticles with lysozyme amyloid fibrils due to possible ordering of such system by applying the external magnetic field. The interaction of magnetic nanoparticles with amyloid fibrils has been followed by atomic force microscopy and small-angle X-ray scattering. It has been observed that magnetic nanoparticles (MNPs) adsorb to lysozyme amyloid fibrils. It was found that MNPs alter amyloids structures, namely the diameter of lysozyme amyloid fibrils is increased whereas the length of fibrils is decreased. In the same time MNPs do not change the helical pitch significantly. - Highlights: • Solution of MNPs with lysozyme amyloid fibrils was characterized by AFM and SAXS. • MNPs adsorb to lysozyme amyloid fibrils. • Diameter and size of lysozyme amyloid fibrils change due to doping with MNPs.

  17. Reducing ZnO nanoparticle cytotoxicity by surface modification.

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N; Martin, Lisandra L; Hughes, Anthony E; Wright, Paul F A; Turney, Terence W

    2014-06-07

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.

  18. Direct hierarchical assembly of nanoparticles

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  19. Technology for microbial synthesis of nanoparticles

    Hunyadi, M.; Gacsi, Z.; Szuecs, Z.; Csik, A.; Prokisch, J.

    2009-01-01

    Complete text of publication follows. Nanotechnology has a high potential to engineer and alter basic properties of materials, and to exploit unusual phenomena observed on the nanometer scale. Consequently, the development of nanomaterials is already involved in a vast range of application fields, however, most of their characteristics are still underexamined, and relevance of studies on their environmental fate, toxic effects and other health risks have just been recognized. Besides, environmental effects and high costs of present production technologies definitely outline a need of both competitive and eco-friendly alternatives. It is well known that microbial production of nanoparticles may offer new perspectives in the field of bionanotechnology since it provides clean, inexpensive and 'green chemistry' techniques, which are especially desired in the future when technology transfer to large-scale production is concerned. In the last years the development of biosynthetic methods was an exponentially growing field, which focused on nanoparticles of noble metals, elemental and composite semiconductors with diameters in the range of 5-100 nm. We initiated the set-up of a new laboratory for studying biosynthesis processes of nanoparticles. The primary goal of this project is to realize the ability of controlling the size of nanoparticles by the conditions of the synthesis, which is motivated by the fact that the optoelectronic and chemical properties are sensitively dependent on this single parameter in addition to their elemental composition. In general, the characterization of nanoparticles, as well as measurements of structural properties require the presence of dedicated analytical infrastructure. The local availability of techniques like TEM, SEM, EDX, XPS, EELS, SIMS/SNMS, AFS, ICP-MS and spectrophotometry provides an advantageous background to consolidate bionanotechnological programs in our institute. As a result of our first test experiments selenium

  20. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)*

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-01-01

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm. Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. PMID:26953343

  1. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV).

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-04-22

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Preparation of microspheres containing methyl methacrylate (MMA) with magnetic nanoparticles; Preparacao de microesferas contendo metacrilato de metila (PMMA) com nanoparticulas magneticas

    Feuser, P.E.; Souza, M.N. de, E-mail: paulofeuser@hotmail.co, E-mail: nele@eq.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Quimica

    2010-07-01

    Magnetic nanoparticles have found many technological applications and has been intensively studied due to its special magnetic properties. In most biomedical applications, microspheres containing magnetic nanoparticles is used as a vehicle for transporting drugs, presenting several advantages when compared to other conventional methods. PMMA is a polymer which has biocompatibility and can be used for the encapsulation of magnetic nanoparticles, showing a great degree of saturation magnetization. PMMA microparticles containing magnetic nanoparticles were prepared by suspension polymerization. Polymers containing magnetic nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetization, thermogravimetric analysis, optical microscopy, chromatography gel permeation, analysis of particle size - malversizer 2000 (Malvern Instruments). The average size of magnetic nanoparticles was approximately 150 {mu}m and depending on the amount of magnetic nanoparticles in the reaction medium Mw of microspheres can be altered. (author)

  3. Lactobacillusassisted synthesis of titanium nanoparticles

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  4. Music alters visual perception.

    Jacob Jolij

    Full Text Available BACKGROUND: Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. METHODS AND FINDINGS: We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. CONCLUSIONS: As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.

  5. Genetic Alterations in Glioma

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  6. Altered Perspectives: Immersive Environments

    Shipman, J. S.; Webley, P. W.

    2016-12-01

    Immersive environments provide an exciting experiential technology to visualize the natural world. Given the increasing accessibility of 360o cameras and virtual reality headsets we are now able to visualize artistic principles and scientific concepts in a fully immersive environment. The technology has become popular for photographers as well as designers, industry, educational groups, and museums. Here we show a sci-art perspective on the use of optics and light in the capture and manipulation of 360o images and video of geologic phenomena and cultural heritage sites in Alaska, England, and France. Additionally, we will generate intentionally altered perspectives to lend a surrealistic quality to the landscapes. Locations include the Catacombs of Paris, the Palace of Versailles, and the Northern Lights over Fairbanks, Alaska. Some 360o view cameras now use small portable dual lens technology extending beyond the 180o fish eye lens previously used, providing better coverage and image quality. Virtual reality headsets range in level of sophistication and cost, with the most affordable versions using smart phones and Google Cardboard viewers. The equipment used in this presentation includes a Ricoh Theta S spherical imaging camera. Here we will demonstrate the use of 360o imaging with attendees being able to be part of the immersive environment and experience our locations as if they were visiting themselves.

  7. Gold Nanoparticle Microwave Synthesis

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  8. Gold Nanoparticle Microwave Synthesis

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  9. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  10. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  11. Cathepsin S Is Involved in Th17 Differentiation Through the Upregulation of IL-6 by Activating PAR-2 after Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis

    Masato Dekita

    2017-07-01

    Full Text Available Positive links have been found between periodontitis and numerous diseases in humans via persistent inflammation throughout the body. However, the main factors responsible for maintaining this pro-inflammatory condition are poorly understood. The spleen, the largest secondary immune organ, is a central hub regulating the immune response/inflammation due to the dendritic cell (DC response to CD4+ T cell subtype differentiation, and lysosomal proteinase cathepsin S (CatS is known to be involved in DC functions. In the present study, we found that CatS-induced IL-6 production by splenic DCs subsequently promotes Th17 differentiation, in response to systemic exposure to lipopolysaccharide derived from Porphyromonas gingivalis (PgLPS. The population of CD11c+ DCs was significantly increased in the splenic marginal zone (MZ locally of wild-type (DBA/2 mice with splenomegaly but not in that of CatS deficient (CatS-/- mice after systemic exposure to PgLPS for 7 consecutive days (5 mg/kg/day, intraperitoneal. Similarly, the population of Th17+CD4+ T cells was also significantly increased in the splenic MZ of wild-type mice but not in that of CatS-/- mice after PgLPS exposure. Furthermore, the increase in the Th17+ CD4+ T cell population paralleled increases in the levels of CatS and IL-6 in CD11c+ cells in the splenic MZ. In isolated primary splenic CD11c+ cells, the mRNA expression and the production of IL-6 was dramatically increased in wild-type mice but not in CatS-/- mice after direct stimulation with PgLPS (1 μg/ml, and this PgLPS-induced increase in the IL-6 expression was completely abolished by pre-treatment with Z-Phe-Leu-COCHO (Z-FL, the specific inhibitor of CatS. The PgLPS activated protease-activated receptor (PAR 2 in the isolated splenic CD11c+ cells was also significantly inhibited by CatS deficiently. In addition, the PgLPS-induced increase in the IL-6 production by splenic CD11c+ cells was completely abolished by pre-treatment with

  12. Optimization of triazine nitriles as rhodesain inhibitors: structure-activity relationships, bioisosteric imidazopyridine nitriles, and X-ray crystal structure analysis with human cathepsin L.

    Ehmke, Veronika; Winkler, Edwin; Banner, David W; Haap, Wolfgang; Schweizer, W Bernd; Rottmann, Matthias; Kaiser, Marcel; Freymond, Céline; Schirmeister, Tanja; Diederich, François

    2013-06-01

    The cysteine protease rhodesain of Trypanosoma brucei parasites causing African sleeping sickness has emerged as a target for the development of new drug candidates. Based on a triazine nitrile moiety as electrophilic headgroup, optimization studies on the substituents for the S1, S2, and S3 pockets of the enzyme were performed using structure-based design and resulted in inhibitors with inhibition constants in the single-digit nanomolar range. Comprehensive structure-activity relationships clarified the binding preferences of the individual pockets of the active site. The S1 pocket tolerates various substituents with a preference for flexible and basic side chains. Variation of the S2 substituent led to high-affinity ligands with inhibition constants down to 2 nM for compounds bearing cyclohexyl substituents. Systematic investigations on the S3 pocket revealed its potential to achieve high activities with aromatic vectors that undergo stacking interactions with the planar peptide backbone forming part of the pocket. X-ray crystal structure analysis with the structurally related enzyme human cathepsin L confirmed the binding mode of the triazine ligand series as proposed by molecular modeling. Sub-micromolar inhibition of the proliferation of cultured parasites was achieved for ligands decorated with the best substituents identified through the optimization cycles. In cell-based assays, the introduction of a basic side chain on the inhibitors resulted in a 35-fold increase in antitrypanosomal activity. Finally, bioisosteric imidazopyridine nitriles were studied in order to prevent off-target effects with unselective nucleophiles by decreasing the inherent electrophilicity of the triazine nitrile headgroup. Using this ligand, the stabilization by intramolecular hydrogen bonding of the thioimidate intermediate, formed upon attack of the catalytic cysteine residue, compensates for the lower reactivity of the headgroup. The imidazopyridine nitrile ligand showed

  13. Influence and interactions of cathepsin D, HLA-DRB1 and APOE on cognitive abilities in an older non-demented population.

    Payton, A; van den Boogerd, E; Davidson, Y; Gibbons, L; Ollier, W; Rabbitt, P; Worthington, J; Horan, M; Pendleton, N

    2006-01-01

    Cathepsin D (CTSD), human leukocyte antigen DRB1 (HLA-DRB1) and apolipoprotein E (APOE) have all been associated with cognitive ability in both demented and non-demented individuals. CTSD is a pleiotrophic protein whose functions include the processing of proteins prior to presentation by HLA. Several studies have also reported that a functional exon 2 polymorphism in the CTSD gene interacts with APOEepsilon4 resulting in an increased risk of developing Alzheimer's disease (AD). We have previously reported that the CTSD exon 2 polymorphism regulates fluid intelligence. In this study, we extend this finding to other cognitive domains and investigate interactions with APOE and HLA-DRB1. Using a cohort of 766 non-demented volunteers, we found that the CTSD exon 2 T allele was associated with a decrease in several cognitive domains that comprise processing speed [random letters (RLs) test, P = 0.012; alphabet-coding task (ACT), P = 0.001], spatial recall (SR) (P = 0.016) and an additional test of fluid intelligence (P = 0.010). We also observed that the HLA-DR1 was associated with enhanced cumulative recall ability (P = 0.006), and conversely HLA-DR5 was associated with diminished delayed verbal recall and SR abilities (P = 0.014 and P = 0.003, respectively). When analysed independently, APOEepsilon4 did not influence any cognitive domains. In contrast, CTSD T/APOEepsilon4-positive volunteers scored lower on tests of fluid intelligence (P = 0.015), processing speed (ACT, P = 0.001; RL, P = 0.013) and immediate recall (P = 0.029). Scores were lower for all these tests than when CTSD and APOE were analysed independently. This supports previous findings in AD that have also reported an epistatic interaction. In addition, we found that CTSD T/HLA-DR2-positive volunteers had reduced processing speed (ACT, P = 0.040; RL, P = 0.014) and had significantly lower cumulative and SR abilities (P = 0.003 and P = 0.001, respectively). Biological interaction between these two

  14. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble γ-glutamyl transpeptidase

    Sajid Mohammed

    2006-05-01

    Full Text Available Background In Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions. Results Thirteen secreted accessory gland proteins, including seven new accessory gland proteins, were identified by 2D-gel electrophoresis combined with mass spectrometry of tryptic fragments. They included protein-folding and stress-response proteins, a hormone, a lipase, a serpin, a cysteine-rich protein and two peptidases, a pro-enzyme form of a cathepsin K-like cysteine peptidase and a γ-glutamyl transpeptidase. Enzymatic studies established that accessory gland secretions contain a cysteine peptidase zymogen that can be activated at low pH. This peptidase may have a role in the processing of female and other male-derived proteins, but is unlikely to be involved in the processing of the sex peptide. γ-Glutamyl transpeptidases are type II integral membrane proteins; however, the identified AG γ-glutamyl transpeptidase (GGT-1 is unusual in that it is predicted to be a soluble secreted protein, a prediction that is supported by biochemical evidence. GGT-1 is possibly involved in maintaining a protective redox environment for sperm. The strong γ-glutamyl transpeptidase activity found in the secretions provides an explanation for the observation that glutamic acid is the most abundant free amino acid in accessory gland secretions of D. melanogaster. Conclusion We have applied biochemical approaches, not used

  15. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase.

    Walker, Michael J; Rylett, Caroline M; Keen, Jeff N; Audsley, Neil; Sajid, Mohammed; Shirras, Alan D; Isaac, R Elwyn

    2006-05-02

    In Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions. Thirteen secreted accessory gland proteins, including seven new accessory gland proteins, were identified by 2D-gel electrophoresis combined with mass spectrometry of tryptic fragments. They included protein-folding and stress-response proteins, a hormone, a lipase, a serpin, a cysteine-rich protein and two peptidases, a pro-enzyme form of a cathepsin K-like cysteine peptidase and a gamma-glutamyl transpeptidase. Enzymatic studies established that accessory gland secretions contain a cysteine peptidase zymogen that can be activated at low pH. This peptidase may have a role in the processing of female and other male-derived proteins, but is unlikely to be involved in the processing of the sex peptide. gamma-Glutamyl transpeptidases are type II integral membrane proteins; however, the identified AG gamma-glutamyl transpeptidase (GGT-1) is unusual in that it is predicted to be a soluble secreted protein, a prediction that is supported by biochemical evidence. GGT-1 is possibly involved in maintaining a protective redox environment for sperm. The strong gamma-glutamyl transpeptidase activity found in the secretions provides an explanation for the observation that glutamic acid is the most abundant free amino acid in accessory gland secretions of D. melanogaster. We have applied biochemical approaches, not used previously, to characterise

  16. Quantitatively Probing the Means of Controlling Nanoparticle Assembly on Surfaces

    Patete, J.m.; Wong, S.; Peng, X.; Serafin, J.M.

    2011-05-17

    As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions. Indeed, we have quantitatively measured the effect of surface coverage for both mica and silicon substrates under preparation techniques associated with (i) evaporation under ambient air, (ii) heat treatment, and (iii) spin-coating preparation conditions. In addition, we have observed a decrease in nanoparticle adhesion to a substrate when the ethylene glycol content of the colloidal dispersion solvent is increased, which had the effect of decreasing interparticle-substrate interactions. Finally, we have shown that substrates prepared by these diverse techniques have potential applicability in surface-enhanced Raman spectroscopy.

  17. Quantitatively Probing the Means of Controlling Nanoparticle Assembly on Surfaces

    Patete, J.M.; Wong, S.; Peng, X.; Serafin, J.M.

    2011-01-01

    As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions. Indeed, we have quantitatively measured the effect of surface coverage for both mica and silicon substrates under preparation techniques associated with (i) evaporation under ambient air, (ii) heat treatment, and (iii) spin-coating preparation conditions. In addition, we have observed a decrease in nanoparticle adhesion to a substrate when the ethylene glycol content of the colloidal dispersion solvent is increased, which had the effect of decreasing interparticle-substrate interactions. Finally, we have shown that substrates prepared by these diverse techniques have potential applicability in surface-enhanced Raman spectroscopy.

  18. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    Anja Henning-Knechtel

    2016-07-01

    Full Text Available DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures.

  19. Toxicity and biodistribution of orally administered casein nanoparticles.

    Gil, Ana Gloria; Irache, Juan Manuel; Peñuelas, Iván; González Navarro, Carlos Javier; López de Cerain, Adela

    2017-08-01

    In the last years, casein nanoparticles have been proposed as carriers for the oral delivery of biologically active compounds. However, till now, no information about their possible specific hazards in vivo was available. The aim of this work was to assess the safety of casein nanoparticles when administered orally to animals through a 90 days dose-repeated toxicity study (OECD guideline 408), that was performed in Wistar rats under GLP conditions. After 90 days, no evidences of significant alterations in animals treated daily with 50, 150 or 500 mg/kg bw of nanoparticles were found. This safety agrees well with the fact that nanoparticles were not absorbed and remained within the gut as observed by radiolabelling in the biodistribution study. After 28 days, there was a generalized hyperchloremia in males and females treated with the highest dose of 500 mg/kg bw, that was coupled with hypernatremia in the females. These effects were related to the presence of mannitol which was used as excipient in the formulation of casein nanoparticles. According to these results, the No Observed Adverse Effect Level (NOAEL) could be established in 150 mg/kg bw/day and the Lowest Observed Effect Level (LOEL) could be established in 500 mg/kg bw/day. Copyright © 2017. Published by Elsevier Ltd.

  20. Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lactic-co-glycolic acid), and Silica Nanoparticles.

    Saborano, Raquel; Wongpinyochit, Thidarat; Totten, John D; Johnston, Blair F; Seib, F Philipp; Duarte, Iola F

    2017-07-01

    Monitoring macrophage metabolism in response to nanoparticle exposure provides new insights into biological outcomes, such as inflammation or toxicity, and supports the design of tailored nanomedicines. This paper describes the metabolic signature of macrophages exposed to nanoparticles ranging in diameter from 100 to 125 nm and made from silk, poly(lactic-co-glycolic acid) or silica. Nanoparticles of this size and type are currently at various stages of preclinical and clinical development for drug delivery applications. 1 H NMR analysis of cell extracts and culture media is used to quantify the changes in the intracellular and extracellular metabolomes of macrophages in response to nanoparticle exposure. Increased glycolytic activity, an altered tricarboxylic acid cycle, and reduced ATP generation are consistent with a proinflammatory phenotype. Furthermore, amino acids possibly arising from autophagy, the creatine kinase/phosphocreatine system, and a few osmolytes and antioxidants emerge as important players in the metabolic reprogramming of macrophages exposed to nanoparticles. This metabolic signature is a common response to all nanoparticles tested; however, the direction and magnitude of some variations are clearly nanoparticle specific, indicating material-induced biological specificity. Overall, metabolic reprogramming of macrophages can be achieved with nanoparticle treatments, modulated through the choice of the material, and monitored using 1 H NMR metabolomics. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs

    Jana Dumkova

    2016-06-01

    Full Text Available The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.

  2. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs.

    Dumkova, Jana; Vrlikova, Lucie; Vecera, Zbynek; Putnova, Barbora; Docekal, Bohumil; Mikuska, Pavel; Fictum, Petr; Hampl, Ales; Buchtova, Marcela

    2016-06-03

    The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environment