WorldWideScience

Sample records for nanoparticle-based enhanced chemiluminescence

  1. The Applications of Gold Nanoparticle-Initialed Chemiluminescence in Biomedical Detection

    Science.gov (United States)

    Liu, Zezhong; Zhao, Furong; Gao, Shandian; Shao, Junjun; Chang, Huiyun

    2016-10-01

    Chemiluminescence technique as a novel detection method has gained much attention in recent years owning to the merits of high sensitivity, wider linear ranges, and low background signal. Similarly, nanotechnology especially for gold nanoparticles has emerged as detection tools due to their unique physical and chemical properties. Recently, it has become increasingly popular to couple gold nanoparticles with chemiluminescence technique in biological agents' detection. In this review, we describe the superiority of both chemiluminescence and gold nanoparticles and conclude the different applications of gold nanoparticle-initialed chemiluminescence in biomedical detection.

  2. Chemiluminescence enzyme immunoassay based on magnetic nanoparticles for detection of hepatocellular carcinoma marker glypican-3

    Directory of Open Access Journals (Sweden)

    Qian-Yun Zhang

    2011-08-01

    Full Text Available Glypican-3 (GPC3 is reported as a great promising tumor marker for hepatocellular carcinoma (HCC diagnosis. Highly sensitive and accurate analysis of serum GPC3 (sGPC3, in combination with or instead of traditional HCC marker alpha-fetoprotein (AFP, is essential for early diagnosis of HCC. Biomaterial-functionalized magnetic particles have been utilized as solid supports with good biological compatibility for sensitive immunoassay. Here, the magnetic nanoparticles (MnPs and magnetic microparticles (MmPs with carboxyl groups were further modified with streptavidin, and applied for the development of chemiluminescence enzyme immunoassay (CLEIA. After comparing between MnPs- and MmPs-based CLEIA, MnPs-based CLEIA was proved to be a better method with less assay time, greater sensitivity, better linearity and longer chemiluminescence platform. MnPs-based CLEIA was applied for detection of sGPC3 in normal liver, hepatocirrhosis, secondary liver cancer and HCC serum samples. The results indicated that sGPC3 was effective in diagnosis of HCC with high performance. Keywords: Magnetic nanoparticle, Magnetic microparticle, Chemiluminescence enzyme immunoassay, Glypican-3, Hepatocellular carcinoma

  3. Enhanced Silver Nanoparticle Chemiluminescence Method for the Determination of Gemifloxacin Mesylate using Sequential Injection Analysis

    International Nuclear Information System (INIS)

    Alarfaj, N.A.; Aly, F.A.; Tamimi, A.A.

    2013-01-01

    A sequential injection analysis (SIA) with chemiluminescence detection has been proposed for the determination of the antibiotic gemifloxacin mesylate (GFX). The developed method is based on the enhancement effect of silver nanoparticles (Ag NPs) on the chemiluminescence (CL) signal of luminol-potassium ferricyanide reaction in alkaline medium. The introduction of gemifloxacin in this system produced a significant decrease in the CL intensity in presence of (Ag NPs). The optimum conditions for CL emission were investigated. Linear relationship between the decrease in CL intensity and concentration was obtained in the range 0.01-1000 ng mL-1, (r = 0.9997) with detection limit of 2.0 pg mL-1 and quantification limit of 0.01 pg mL-1. The relative standard deviation was 1.3 %. The proposed method was employed for the determination of gemifloxacin in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated, and no interference was found from these excipients. The obtained SIA results were statistically compared with those obtained from a reported method and did not show any significant difference at confidence level 95%. (author)

  4. Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application.

    Science.gov (United States)

    Hassanzadeh, Javad; Amjadi, Mohammad; Manzoori, Jamshid L; Sorouraddin, Mohammad Hossein

    2013-04-15

    A novel enhanced chemiluminescence system was developed by applying gold nanorods (Au NRs) as catalysts in rhodamine B-permanganate reaction. Au NRs with three different aspect ratios were synthesized by seed mediated growth method and characterized by UV-Vis spectra and transmission electron microscopy. It was demonstrated that Au NRs have much higher catalytic effect than spherical nanoparticles on rhodamine B-permanganate chemiluminescence reaction. Among various sizes of Au NRs, those with average aspect ratio of 3.0 were found to have the most remarkable catalytic activity. As an analytical application of the new chemiluminescence system, albumin as a model protein was quantified based on its interaction with NRs. Albumin binds to Au NRs active surfaces and inhibits their catalytic action and therefore decreases the intensity of chemiluminescence. This diminution effect is linearly related to the concentration of the human and bovine serum albumin over the ranges of 0.45-90 and 0.75-123 nmol L(-1), respectively with the corresponding limits of detection of 0.18 and 0.30 nmol L(-1). The method was successfully applied to the determination of albumin in human and bovine serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. An ultrasensitive chemiluminescence immunoassay of chloramphenicol based on gold nanoparticles and magnetic beads.

    Science.gov (United States)

    Tao, Xiaoqi; Jiang, Haiyang; Yu, Xuezhi; Zhu, Jinghui; Wang, Xia; Wang, Zhanhui; Niu, Lanlan; Wu, Xiaoping; Shen, Jianzhong

    2013-05-01

    A competitive, direct, chemiluminescent immunoassay based on a magnetic beads (MBs) separation and gold nanoparticles (AuNPs) labelling technique to detect chloramphenicol (CAP) has been developed. Horseradish peroxidase (HRP)-labelled anti-CAP monoclonal antibody conjugated with AuNPs and antigen-immobilized MBs were prepared. After optimization parameters of immunocomplex MBs, the IC50 values of chemiluminescence magnetic nanoparticles immunoassay (CL-MBs-nano-immunoassay) were 0.017 µg L(-1) for extract method I and 0.17 µg L(-1) for extract method II. The immunoassay with two extract methods was applied to detect CAP in milk. Comparison of these two extract methods showed that extract method I was advantageous in better sensitivity, in which the sensitivity was 10 times compared to that of extract method II, while extract method II was superior in simple operation, suitable for high throughout screen. The recoveries were 86.7-98.0% (extract method I) and 80.0-103.0% (extract method II), and the coefficients of variation (CVs) were all recovery with both extract methods and high correlation with traditional ELISA kit in milk system confirmed that the immunomagnetic assay based on AuNPs exhibited promising potential in rapid field screening for trace CAP analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen

    International Nuclear Information System (INIS)

    Pal, Souvik; Bhand, Sunil

    2015-01-01

    An ultrasensitive enzyme-linked immunosorbent assay (ELISA) is reported for the determination of carcinoma embryonic antigen (CEA) in human serum. It was realized using a microplate reader using a 384-well plate. Monoclonal antibody (Ab) against CEA (1° Ab) acting as the capture probe was immobilized on zinc oxide nanoparticles (ZnO-NPs) in the form of self-assembled monolayers (SAMs). CEA captured by 1° Ab was quantified using a sandwich ELISA wherein a polyclonal second antibody against CEA (2° Ab) was used for detection and quantified using an HRP-labeled secondary antibody (3° Ab). The ZnO-NPs-CEA capture probe was deposited on the bottom of the wells in order to enhance capture of CEA. A 3-fold enhancement in the chemiluminescence (CL) signal of luminol is found (compared to a conventional ELISA). CEA can be quantified by this method in concentrations as low as 1 pg · mL −1 . The upper limit of detection is 20 ng · mL −1 . The use of ZnO-NPs also imparts improved thermal stability. When stored at 4 °C in phosphate-buffered saline of pH 7.4, the probe displays stability of up to 30 days. (author)

  7. Luminol Chemiluminescence Catalyzed by Silver Nanoparticles for the Sensitive Determination of Penicillamine

    Directory of Open Access Journals (Sweden)

    Fakhr Eldin O. Suliman

    2018-01-01

    Full Text Available A sequential injection method for the determination of penicillamine (PA was developed based on quenching the chemiluminescence generated by oxidation of luminol by hydrogen peroxide in presence of silver nanoparticles (AgNPs. The chemiluminescence (CL of the reaction was found to greatly enhance in presence of AgNPs due to the increased catalyst surface area. The method was sensitive and found suitable for analysis of penicillamine in pharmaceutical preparations. Linear calibration curve is obtained in the range 0.2-1.0 mg mL-1 with a relative standard deviation less than 2%. A recovery percent of 102.3 ±0.2 was obtained with the tablets matrix indicating reasonable selectivity of the method for PA in tablets. The mechanism of quenching of the CL reaction was investigated by UV-Visible spectroscopy and transmission electron microscopy as well as by theoretical calculations using DFT-B3LYP method. The covalent attachment of PA to the AgNPs triggers aggregation of the particles thereby diminishing the surface significantly. The method was applied for the assay of PA in pharmaceutical preparations.

  8. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao Liang [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Song Chaojun; Sun Yuanjie [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Li Xiaohua; Li Yunyun [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Jin Boquan [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Zhang Zhujun, E-mail: zhangzj@snnu.edu.cn [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Yang Kun, E-mail: yangkunkun@fmmu.edu.cn [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Difunctional amino mesoporous silica nanoparticles (FCMSN) were synthesized. Black-Right-Pointing-Pointer The fluorescence and chemiluminescence properties of the FCMSN were studied. Black-Right-Pointing-Pointer The NaIO{sub 4} oxidation method was used for modification of the FCMSN. Black-Right-Pointing-Pointer Liver cancer 7721 cell was detected. Black-Right-Pointing-Pointer The specificity affected by FCMSN's amino groups was studied. - Abstract: A new kind of ultrabright fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle (FCMSN) is reported. A luminescent dye, Rhodamine 6G or tris(2,2 Prime -bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), is doped inside nanochannels of a silica matrix. The hydrophobic groups in the silica matrix avoid the leakage of dye from open channels. The amines groups on the surface of the FCMSN improve the modification performance of the nanoparticle. Because the nanochannels are isolated by a network skeleton of silica, fluorescence quenching based on the inner filter effect of the fluorescent dyes immobilized in nanochannels is weakened effectively. The Quantum Yield of obtained 90 nm silica particles was about 61%. Compared with the fluorescent core-shell nanoparticle, the chemiluminescence reagents can freely enter the nanoparticles to react with fluorescent dyes to create chemiluminescence. The results show that the FCMSN are both fluorescent labels and chemiluminescent labels. In biological applications, the NaIO{sub 4} oxidation method was proven to be superior to the glutaraldehyde method. The amount of amino could affect the specificity of the FCMSN. The fluorescence microscopy imaging demonstrated that the FCMSN is viable for biological applications.

  9. Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles

    International Nuclear Information System (INIS)

    Amjadi, Mohammad; Hassanzadeh, Javad; Manzoori, Jamshid L.

    2014-01-01

    We describe a new chemiluminescence (CL) system based on the oxidation of rhodamine B (RhoB) with alkaline potassium permanganate in the presence of gold nanoparticles (Au-NPs) and anionic detergent sodium dodecyl sulfate. Free RhoB is weakly chemiluminescent when oxidized with permanganate at alkaline pH values. However, a remarkably strong enhancement of CL is observed in the presence of Au-NPs, probably due to a strong interaction between RhoB and the NPs. The possible mechanism was studied via recording the CL emission. It is also found that the intensity of CL gradually decreases in the presence of cyanide due to its interaction with the Au-NPs. The relation between the decreased CL intensity and cyanide concentration was exploited to develop a method for the determination of cyanide in the 0.01–0.5 μM concentration range, with a detection limit of 2.8 nM. The method was used to determine cyanide in spiked water, urine, and serum. (author)

  10. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride.

    Science.gov (United States)

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-09-01

    This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Dendrimer-based biosensor for chemiluminescent detection of DNA hybridization

    International Nuclear Information System (INIS)

    Liu, P.; Hun, X.; Qing, H.

    2011-01-01

    We report on a highly sensitive chemiluminescent (CL) biosensor for the sequence-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H 2 O 2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L -1 of target DNA. (author)

  12. Permanganate-bromide-silver nanoparticles as a new chemiluminescence system and its application to captopril determination.

    Science.gov (United States)

    Amjadi, Mohammad; Manzoori, Jamshid L; Hassanzadeh, Javad; Sorouraddin, Mohammad H

    2013-10-15

    A novel chemiluminescence (CL) system based on the oxidation of bromide by permanganate in sulfuric acid medium is introduced. The enhancing effect of silver nanoparticles (NPs), synthesized by chemical reduction method, on this reaction was studied. It was demonstrated that spherical silver nanoparticles with average size of 18 nm had a most remarkable catalytic effect on this reaction. CL emission wavelengths and UV-vis spectra were used to characterize the system and propose a possible mechanism. Furthermore, it was found that captopril inhibits the action of NPs and decreases the intensity of CL. Based on this phenomenon, a new CL method was developed for the determination of captopril in the 3.0 × 10(-10) to 1.0 × 10(-7) mol L(-1) concentration range with a detection limit (3s) of 0.12 nmol L(-1). The method was successfully applied to the determination of captopril in pharmaceutical formulations, human urine and serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Sensitive chemiluminescence immunoassay for staphylococcal enterotoxin C1 based on the use of dye-encapsulated mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Tao, Liang; Zhang, Chunmei; Sun, Yuanjie; Jin, Boquan; Yang, Kun; Li, Xiaohua; Zhang, Zhujun; Zhang, Jinpeng; Yan, Kuocheng

    2016-01-01

    A chemiluminescent immunoassay for the staphylococcal enterotoxin C1 (SEC1) based on the use of dye-encapsulated mesoporous silica nanoparticles (m-SiNPs) as a label is described. The dyes are retained in the m-SiNPs via strong hydrophobic interactions. The assay comprises the following steps: (a) Microplates coated with antibody against SEC1 are filled with sample upon which the SEC antigen will be bound to the surface; (b) following a washing step, secondary antibody linked to m-SiNPs (that were covalently labeled with rhodamine 6G and fluorescein) were added to form the sandwich complex; (c) after another washing step, bis(2,4,6-trichlorophenyl) oxalate, H_2O_2 and imidazole are added to generate chemiluminescence whose intensity is proportional to the number of m-SiNPs and thus to the number of antigen (SEC) molecules. It is found that the use of functionalized m-SiNPs strongly amplifies the signal. Enterotoxin SEC1 can be detected by this method in the 0.025 to 2 ng⋅mL"-"1 concentration range, the detection limit is 19 pg⋅mL"-"1 (at 3σ), and the relative standard deviation (for 11 parallel measurements at a 1 ng⋅mL"-"1 level) is 4.6 %. The use of an automated chemiluminescence analyzer further improves detection. (author)

  14. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  15. Sensitive and selective determination of fluvoxamine maleate using a sensitive chemiluminescence system based on the alkaline permanganate-Rhodamine B-gold nanoparticles reaction.

    Science.gov (United States)

    Hassanzadeh, Javad; Amjadi, Mohammad

    2015-06-01

    A high-yield chemiluminescence (CL) system based on the alkaline permanganate-Rhodamine B reaction was developed for the sensitive determination of fluvoxamine maleate (Flu). Rhodamine B is oxidized by alkaline KMnO4 and a weak CL emission is produced. It was demonstrated that gold nanoparticles greatly enhance this CL emission due to their interaction with Rhodamine B molecules. It is also observed that sodium dodecyl sulfate, an anionic surfactant, can strongly increase this enhancement. In addition, it was demonstrated that a notable decrease in the CL intensity is observed in the presence of Flu. This may be related to Flu oxidation with KMnO4 . There is a linear relationship between the decrease in CL intensity and the Flu concentration over a range of 2-300 µg/L. A new simple, rapid and sensitive CL method was developed for the determination of Flu with a detection limit (3s) of 1.35 µg/L. The proposed method was used for the determination of Flu in pharmaceutical and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  16. A novel luminol chemiluminescent method catalyzed by silver/gold alloy nanoparticles for determination of anticancer drug flutamide.

    Science.gov (United States)

    Chaichi, Mohammad Javad; Azizi, Seyed Naser; Heidarpour, Maryam

    2013-12-01

    It was found that silver/gold alloy nanoparticles enhance the chemiluminescence (CL) of the luminol-H2O2 system in alkaline solution. The studies of UV-Vis spectra, CL spectra, effects of concentrations luminol, hydrogen peroxide and silver/gold alloy nanoparticles solutions were carried out to explore the CL enhancement mechanism. Flutamide was found to quench the CL signals of the luminol-H2O2 reaction catalyzed by silver/gold alloy nanoparticles, which made it applicable for the determination of flutamide. Under the optimum conditions, the CL intensity is proportional to the concentration of the flutamide in solution over the range 5.0 × 10(-7) to 1.0 × 10(-4)mol L(-1). Detection limit was obtained 1.2 × 10(-8)mol L(-1)and the relative standard deviation (RSD) γ5%. This work is introduced as a new method for the determination of flutamide in commercial tablets. Box-Behnken experimental design is applied to investigate and validate the CL measurement parameters. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2

    Science.gov (United States)

    Averchenko, E. A.; Kavok, N. S.; Klochkov, V. K.; Malyukin, Yu. V.

    2014-11-01

    We have used luminol-dependent chemiluminescence with Fenton's reagent to study the effect of nanoparticles based on rare-earth elements of different sizes and shapes on free-radical processes in abiotic and biotic cell-free systems, and also in isolated cells in vitro. We have estimated the effects of rare-earth orthovanadate nanoparticles of spherical (GdYVO4:Eu3+, 1-2 nm), spindle-shaped (GdVO4:Eu3+, 25 ×8 nm), and rod-shaped (LaVO4:Eu3+, 57 × (6-8) nm) nanoparticles and spherical CeO2 nanoparticles (sizes 1-2 nm and 8-10 nm). We have shown that in contrast to the abiotic system, in which all types of nanoparticles exhibit antiradical activity, in the presence of biological material, extra-small spherical (1-2 nm) nanoparticles of both types exhibit pro-oxidant activity, and also enhance pro-oxidant induced oxidative stress (for the pro-oxidants hydrogen peroxide and tert-butyl hydroperoxide). The effect of rare-earth orthovanadate spindle and rod shaped nanoparticles in this system was neutral; a moderate antioxidant effect was exhibited by 8-10 nm CeO2 nanoparticles.

  18. Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols

    International Nuclear Information System (INIS)

    Lei Rong; Xu Xiao; Xu Da; Zhu Gang; Li Na; Liu Huwei; Li Kean

    2008-01-01

    Anodic Ru(bpy) 3 2+ electrogenerated chemiluminescence (ECL) can be enhanced by polyphenols in alkaline solution. Spin trapping-electron spin resonance (ESR) experiments verified that reactive oxygen species (ROS) were generated during the electrolysis of Ru(bpy) 3 2+ in alkaline solution, and oxidation of quercetin enhanced Ru(bpy) 3 2+ ECL at anodic potential by producing additional ROS. This ECL enhancement can be used to analyze real sample and evaluate antioxidant activity of polyphenols

  19. The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application.

    Science.gov (United States)

    Li, Guixin; Nan, Hongyan; Zheng, Xingwang

    2009-07-01

    A novel space- and time-resolved photo-induced chemiluminescence (PICL) analytical method was developed based on the photocatalysis of the Co2+-doped TiO2 nanoparticles. The PICL reaction procedure under the photocatalysis of Co2+-doped TiO2 nanoparticles was investigated using cyclic voltammetry and potentiometry. Meanwhile, the effect of the electrical double layer outside the Co2+-doped TiO2 nanoparticles on the PICL was investigated by contrasting with the Co2+-doped TiO2-SiO2 core-shell nanoparticles. Significantly, the CL intensity increased apparently and the time of the CL was prolonged in the presence of procaterol hydrochloride because the mechanism of the enhanced PICL reaction may be modified. The route of the PICL was changed due to the participation of the procaterol hydrochloride enriched at the surface of the Co2+-doped TiO2-SiO2 in the PICL reaction, which prolonged the time of the CL reaction and resulted in the long-term PICL. The analytical characteristics of the proposed in-situ PICL method were investigated using the procaterol hydrochloride as the model analyte. The investigation results showed that this new PICL analytical method offered higher sensitivity to the analysis of the procaterol hydrochloride and the PICL intensity was linear with the concentration of the procaterol hydrochloride in the range from ca. 2.0 x 10(-10) to 1.0 x 10(-8) g mL(-1).

  20. Study on Enhancement Principle and Stabilization for the Luminol-H2O2-HRP Chemiluminescence System.

    Directory of Open Access Journals (Sweden)

    Lihua Yang

    Full Text Available A luminol-H2O2-HRP chemiluminescence system with high relative luminescent intensity (RLU and long stabilization time was investigated. First, the comparative study on the enhancement effect of ten compounds as enhancers to the luminol-H2O2-HRP chemiluminescence system was carried out, and the results showed that 4-(imidazol-1-ylphenol (4-IMP, 4-iodophenol (4-IOP, 4-bromophenol (4-BOP and 4-hydroxy-4'-iodobiphenyl (HIOP had the best performance. Based on the experiment, the four enhancers were dissolved in acetone, acetonitrile, methanol, and dimethylformamide (DMF with various concentrations, the results indicated that 4-IMP, 4-IOP, 4-BOP and HIOP dissolved in DMF with the concentrations of 0.2%, 3.2%, 1.6% and 3.2% could get the highest RLU values. Subsequently, the influences of pH, ionic strength, HRP, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol on the stabilization of the luminol-H2O2-HRP chemiluminescence system were studied, and we found that pH value, ionic strength, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol have little influence on luminescent stabilization, while HRP has a great influence. In different ranges of HRP concentration, different enhancers should be selected. When the concentration is within the range of 0~6 ng/mL, 4-IMP should be selected. When the concentration of HRP ranges from 6 to 25 ng/mL, 4-IOP was the best choice. And when the concentration is within the range of 25~80 ng/mL, HIOP should be selected as the enhancer. Finally, the three well-performing chemiluminescent enhanced solutions (CESs have been further optimized according to the three enhancers (4-IMP, 4-IOP and HIOP in their utilized HRP concentration ranges.

  1. Enhancing and inhibiting effects of aromatic compounds on luminol-dimethylsulfoxide-OH(-) chemiluminescence and determination of intermediates in oxidative hair dyes by HPLC with chemiluminescence detection.

    Science.gov (United States)

    Zhou, Jian; Xu, Hong; Wan, Guo-Hui; Duan, Chun-Feng; Cui, Hua

    2004-10-08

    The effect of 36 aromatic compounds on the luminol-dimethylsulfoxide-OH(-) chemiluminescence (CL) was systematically studied. It was found that dihydroxybenzenes, and ortho- and para-substituted aminophenols and phenylenediamines inhibited the CL and phenols with three or more than three hydroxyls except phloroglucin tended to enhance the CL. The CL inhibition and enhancement was proposed to be dependent on whether superoxide anion radical (O(2)(-)) was competitively consumed by compounds in the CL system. Trihydroxybenzenes were capable of generating superoxide anion radical, leading to the CL enhancement, whereas dihydroxybenzenes were superoxide anion radical scavenger, causing the CL inhibition. Based on the inhibited CL, a novel method for the simultaneous determination of p-phenylenediamine, o-phenylenediamine, p-aminophenol, o-aminophenol, resorcinol and hydroquinone by high-performance liquid chromatography coupled with chemiluminescence detection was developed. The method has been successfully applied to determine intermediates in oxidative hair dyes and wastewater of shampooing after hair dyed.

  2. An ultrasensitive chemiluminescence immunoassay for fumonisin B1 detection in cereals based on gold-coated magnetic nanoparticles.

    Science.gov (United States)

    Jie, Mingsha; Yu, Songcheng; Yu, Fei; Liu, Lie; He, Leiliang; Li, Yanqiang; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B; Wu, Yongjun

    2018-07-01

    In the present study, a novel highly sensitive magnetic enzyme chemiluminescence immunoassay (MECLIA) was developed to detect fumonisin B 1 (FB 1 ) in cereal samples. The gold-coated magnetic nanoparticles (Fe 3 O 4 @Au, GoldMag) were used as solid phase carrier to develop a competitive CLIA for detecting FB 1 , in which FB 1 in samples would compete with FB 1 -ovalbumin coated on the surface of Fe 3 O 4 @Au nanoparticles for binding with FB 1 antibodies. Successively, horseradish peroxidase labeled goat anti-rabbit IgG (HRP-IgG) was conjugated with FB 1 antibodies on the microplate. In substrate solution containing luminol and H 2 O 2 , HRP-IgG catalyzed luminol oxidation by H 2 O 2 , generating a high chemiluminescence signal. The FB 1 immune GoldMag particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and zeta potential analysis, etc. RESULTS: The concentrations and the reaction times of these immunoreagents were optimized to improve the performances of this method. The established method could detect as low as 0.027 ng mL -1 FB 1 from 0.05 ng mL -1 to 25 ng mL -1 , demonstrating little cross-reaction (less than 2.4%) with other structurally related compounds. The average intrassay relative SD (RSD) (n = 6) was 3.4% and the average interassay RSD (n = 6) was 5.4%. This method was successfully applied for the determination of FB 1 in corn and wheat and gave recoveries of between 98-110% and 91-105%, respectively. The results of the present study suggest that the MECLIA approach has potential application for high-throughput fumonisin screening in cereals. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Advances in the use of acidic potassium permanganate as a chemiluminescence reagent: A review

    International Nuclear Information System (INIS)

    Adcock, Jacqui L.; Barnett, Neil W.; Barrow, Colin J.; Francis, Paul S.

    2014-01-01

    Graphical abstract: -- Highlights: •Analytical applications of acidic potassium permanganate chemiluminescence. •Discussion of emitting species and light-producing reaction pathways. •Influence of enhancers such as polyphosphates, formaldehyde and sulfite. •Clinical, forensic, food science, agricultural and environmental applications. -- Abstract: We review the analytical applications of acidic potassium permanganate chemiluminescence published since our previous comprehensive review in mid-2007 to early 2013. This includes a critical evaluation of evidence for the emitting species, the influence of additives such as polyphosphates, formaldehyde, sulfite, thiosulfate, lanthanide complexes and nanoparticles, the development of a generalized reaction mechanism, and the use of this chemistry in pharmaceutical, clinical, forensic, food science, agricultural and environmental applications

  4. Advances in the use of acidic potassium permanganate as a chemiluminescence reagent: A review

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, Jacqui L.; Barnett, Neil W.; Barrow, Colin J.; Francis, Paul S., E-mail: psf@deakin.edu.au

    2014-01-07

    Graphical abstract: -- Highlights: •Analytical applications of acidic potassium permanganate chemiluminescence. •Discussion of emitting species and light-producing reaction pathways. •Influence of enhancers such as polyphosphates, formaldehyde and sulfite. •Clinical, forensic, food science, agricultural and environmental applications. -- Abstract: We review the analytical applications of acidic potassium permanganate chemiluminescence published since our previous comprehensive review in mid-2007 to early 2013. This includes a critical evaluation of evidence for the emitting species, the influence of additives such as polyphosphates, formaldehyde, sulfite, thiosulfate, lanthanide complexes and nanoparticles, the development of a generalized reaction mechanism, and the use of this chemistry in pharmaceutical, clinical, forensic, food science, agricultural and environmental applications.

  5. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay.

    Science.gov (United States)

    Lee, Joon Seok; Joung, Hyou-Arm; Kim, Min-Gon; Park, Chan Beum

    2012-04-24

    We report on chemiluminescence resonance energy transfer (CRET) between graphene nanosheets and chemiluminescent donors. In contrast to fluorescence resonance energy transfer, CRET occurs via nonradiative dipole-dipole transfer of energy from a chemiluminescent donor to a suitable acceptor molecule without an external excitation source. We designed a graphene-based CRET platform for homogeneous immunoassay of C-reactive protein (CRP), a key marker for human inflammation and cardiovascular diseases, using a luminol/hydrogen peroxide chemiluminescence (CL) reaction catalyzed by horseradish peroxidase. According to our results, anti-CRP antibody conjugated to graphene nanosheets enabled the capture of CRP at the concentration above 1.6 ng mL(-1). In the CRET platform, graphene played a key role as an energy acceptor, which was more efficient than graphene oxide, while luminol served as a donor to graphene, triggering the CRET phenomenon between luminol and graphene. The graphene-based CRET platform was successfully applied to the detection of CRP in human serum samples in the range observed during acute inflammatory stress.

  6. Flow-based determination of methionine in pharmaceutical formulations exploiting TGA-capped CdTe quantum dots for enhancing the luminol-KIO{sub 4} chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min, E-mail: mzhou8367@sina.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang, Ailian [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Jiuquan Enviromental Protection Bureau, Jiuquan 735000 (China); Li, Cong; Luo, Xiaowei; Ma, Yongjun [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2017-03-15

    A novel flow-injection chemiluminescence method (FI-CL) was established for the determination of methionine in this paper, based on its strong enhancement on CL intensity of the luminol-KIO{sub 4} system catalyzed by thioglycolic acid-capped CdTe quantum dots in alkaline media. Under the optimized conditions, the relative CL intensity was in proportion to methionine concentration in the range from 1.0×10{sup −8} to 1.0×10{sup −5} g mL{sup −1} with a detection limit of 6.6×10{sup −9} g mL{sup −1} (3σ). The relative standard deviation (RSD) of the CL intensity for 1.0×10{sup −6} g mL{sup −1} standard methionine solution was 0.97% (n=11). The proposed method was successfully applied to determine methionine in commercial pharmaceutical formulations with recoveries between 98.0% and 101.9%. The possible CL mechanism was discussed as well. - Graphical abstract: Methionine in commercial pharmaceutical formulations was determined by flow-injection chemiluminescence and the possible chemiluminescence mechanism was discussed as well.

  7. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    Science.gov (United States)

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application

    International Nuclear Information System (INIS)

    Safavi, A.; Absalan, G.; Bamdad, F.

    2008-01-01

    In this work the catalytic role of unsupported gold nanoparticles on the luminol-hydrazine reaction is investigated. Gold nanoparticles catalyze the reaction of hydrazine and dissolved oxygen to generate hydrogen peroxide and also catalyze the oxidation of luminol by the produced hydrogen peroxide. The result is an intense chemiluminescence (CL) due to the excited 3-aminophthalate anion. In the absence of gold nanoparticles no detectable CL was observed by the reaction of luminol and hydrazine unless an external oxidant is present in the system. The size effect of gold nanoparticles on the CL intensity was investigated. The most intensive CL signals were obtained with 15-nm gold nanoparticles. UV-vis spectra and transmission electron microscopy studies were used to investigate the CL mechanism. The luminol and hydroxide ion concentration, gold nanoparticles size and flow rate were optimized. The proposed method was successfully applied to the determination of hydrazine in boiler feed water samples. Between 0.1 and 30 μM of hydrazine could be determined with a detection limit of 30 nM

  9. Comparative study of ß-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.)

    DEFF Research Database (Denmark)

    Jiménez, Natalia Ivonne Vera; Pietretti, D.; Wiegertjes, G. F.

    2013-01-01

    kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS......-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head...... on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head...

  10. An automatic enzyme immunoassay based on a chemiluminescent lateral flow immunosensor.

    Science.gov (United States)

    Joung, Hyou-Arm; Oh, Young Kyoung; Kim, Min-Gon

    2014-03-15

    Microfluidic integrated enzyme immunosorbent assay (EIA) sensors are efficient systems for point-of-care testing (POCT). However, such systems are not only relatively expensive but also require a complicated manufacturing process. Therefore, additional fluidic control systems are required for the implementation of EIAs in a lateral flow immunosensor (LFI) strip sensor. In this study, we describe a novel LFI for EIA, the use of which does not require additional steps such as mechanical fluidic control, washing, or injecting. The key concept relies on a delayed-release effect of chemiluminescence substrates (luminol enhancer and hydrogen peroxide generator) by an asymmetric polysulfone membrane (ASPM). When the ASPM was placed between the nitrocellulose (NC) membrane and the substrate pad, substrates encapsulated in the substrate pad were released after 5.3 ± 0.3 min. Using this delayed-release effect, we designed and implemented the chemiluminescent LFI-based automatic EIA system, which sequentially performed the immunoreaction, pH change, substrate release, hydrogen peroxide generation, and chemiluminescent reaction with only 1 sample injection. In a model study, implementation of the sensor was validated by measuring the high sensitivity C-reactive protein (hs-CRP) level in human serum. © 2013 Elsevier B.V. All rights reserved.

  11. Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution

    International Nuclear Information System (INIS)

    Bae, Yoonjung; Lee, Doh C; Rhogojina, Elena V; Jurbergs, David C; Korgel, Brian A; Bard, Allen J

    2006-01-01

    Films of octadecyl-capped Si nanoparticles (NPs) (diameter, 3.4 ± 0.7 nm) prepared by drop-coating on indium tin oxide (ITO) showed electrogenerated chemiluminescence (ECL) for both cathodic and anodic potential sweeps in KOH solutions containing peroxydisulfate. The redox potentials of the Si NPs can be estimated as approximately -0.9 and +0.95 V (versus Ag|AgCl) based on the anodic potential for the onset of ECL minus the ECL peak energy. The ECL exhibits a relatively broad spectrum (FWHM = 160 nm) with a peak wavelength of ∼670 nm (1.85 eV), similar to the photoluminescence spectra. In electrochemical studies in KOH solution in the absence of peroxydisulfate, an anodic current peak appears at about -1 V (versus Ag|AgCl) following a scan to negative potentials. A similar peak has been observed during the etching of a bulk single crystal Si electrode in alkaline aqueous solution. Unpassivated surface sites of Si NPs seem to be etched at potentials negative of the anodic oxidation peak

  12. Evaluation of a new serological test for syphilis based on chemiluminescence assay in a tertiary care hospital.

    Science.gov (United States)

    Tiwari, Aseem K; Pandey, Prashant K; Dara, Ravi C; Rawat, Ganesh S; Raina, Vimarsh; Bhargava, Richa

    2015-01-01

    Syphilis is a transfusion transmissible infections and it is mandatory to do serological test for syphilis (STS) on all donor blood samples. STS is usually based on detection of antibodies against the cardiolipin-lecithin antigen or against the Treponema-specific antigen. STS with good sensitivity and specificity helps enhance blood safety and consolidation of STS along with other transfusion transmittable infections such as human immunodeficiency virus, hepatitis-C virus, and hepatitis-B virus helps in reducing the errors and enhances efficiency. This study was designed to evaluate the performance of newly introduced VITROS(®) syphilis Treponema pallidum agglutination (TPA) assay based on enhanced chemiluminescence principle for its analytical performance for use as a STS on donor blood samples at a tertiary care health center in National Capital Region, India. A total of 108 random blood units collected from the donors (both voluntary and replacement donors) and 28 known syphilis sero-reactive samples stored at -20°C, were used to evaluate the performance of VITROS(®) syphilis TPA assay based on enhanced chemiluminescence assay on VITROS(®) ECiQ immunodiagnostics system along with its analytical performance in terms of its sensitivity, precision, cross-reactivity and interference studies. VITROS(®) syphilis TPA showed 100% sensitivity and specificity with precision (20 days study) of endogenous interfering substances like free hemoglobin or fats. Performance of the VITROS(®) syphilis TPA assay meets the requirements for its use as STS in blood bank, thus allowing consolidation with other transfusion transmittable infections screening assay on chemiluminescence platform, which is highly valuable for optimizing workflow and efficiency.

  13. Determination of vitamin C in drugs using of an optimized novel TCPO-Amplex red-gold/silver alloy nanoparticles-H{sub 2}O{sub 2} chemiluminescence method by the Box-Behnken design

    Energy Technology Data Exchange (ETDEWEB)

    Chaichi, M.J., E-mail: jchaichi@yahoo.com [Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Alijanpour, S.O. [Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2013-02-15

    Response surface methodology (RSM), based on a Box-Behnken design (BBD) was used to optimize three of the most important operating variables (concentrations of TCPO, Amplex red and pH effect) at peroxyoxalate-chemiluminescence (PO-CL) system. For the first time Amplex red (AR) was introduced as a new fluorescent emitter for predicting the reaction mechanism of PO-CL by means of the fluorescence property of its oxidation product. In optimum conditions, it was found that Au/Ag alloy nanoparticles (NPs) could enhance the CL intensity and the method sensitivity toward the evaluation of trace amount of vitamin C. Based on the antioxidant property of vitamin C noticeably the CL signal of the bis-(2,4,6-trichlorophenyl)oxalate-AR-NPs-hydrogen peroxide-sodium salicylate system was quenched in a low basic medium. A simple, rapid and sensitive CL method for the determination of vitamin C has been developed. The results showed a linear relationship between vitamin C concentration and PO-CL intensity in the range of 0.082-82.7 {mu}g/mL. Detection limit of 0.012 {mu}g/mL and the relative standard deviation (RSD)<4% was obtained. - Highlights: Black-Right-Pointing-Pointer The Box-Behnken design was used to optimize peroxyoxalate-chemiluminescence system. Black-Right-Pointing-Pointer Amplex red is as new fluorescent emitters for peroxyoxalate chemiluminescence. Black-Right-Pointing-Pointer It is introduce a method for determination of vitamin C. Black-Right-Pointing-Pointer Detection limit of vitamin C was obtained about 0.012 {mu}g/mL.

  14. Comparison of the performance of the borax buffer-based HRP-enhanced reagent and the 'Lumi-Phos 530' chemiluminescence systems in the detection of biotinylated DNA.

    Science.gov (United States)

    Cercek, B; Roby, K; Siaw, M

    1995-01-01

    A comparison of two chemiluminescence methods, the borax buffer-based HRP-enhanced reagent and Lumi-Phos 530, applied to the detection of a biotinylated 30-mer DNA slot blotted onto a nylon membrane, is presented. A streptavidin-HRP and streptavidin-ALP mediated detection system was used. The HRP-enhanced system is up to 15-fold greater with respect to the signal/background ratios than the Lumi-Phos 530 system at 0.5 microgram biotinylated DNA with at least a two-fold improvement in detection sensitivity for 0.5 ng biotinylated DNA.

  15. DNA imaging and quantification using chemi-luminescent probes

    International Nuclear Information System (INIS)

    Dorner, G.; Redjdal, N.; Laniece, P.; Siebert, R.; Tricoire, H.; Valentin, L.

    1999-01-01

    During this interdisciplinary study we have developed an ultra sensitive and reliable imaging system of DNA labelled by chemiluminescence. Based on a liquid nitrogen cooled CCD, the system achieves sensitivities down to 10 fg/mm 2 labelled DNA over a surface area of 25 x 25 cm 2 with a sub-millimeter resolution. Commercially available chemi-luminescent - and enhancer molecules are compared and their reaction conditions optimized for best signal-to-noise ratios. Double labelling was performed to verify quantification with radioactive probes. (authors)

  16. A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by graphene-based chemiluminescence resonance energy transfer.

    Science.gov (United States)

    Lei, Jiuqian; Jing, Tao; Zhou, Tingting; Zhou, Yusun; Wu, Wei; Mei, Surong; Zhou, Yikai

    2014-04-15

    In this study, we report a strategy of chemiluminescence resonance energy transfer (CRET) using graphene as an efficient long-range energy acceptor. Magnetic nanoparticles were also used in CRET for simple magnetic separation and immobilization of horseradish peroxidase (HRP)-labeled anti-HCG antibody. In the design of CRET system, the sandwich-type immunocomplex was formed between human chorionic gonadotropin (HCG, antigen) and two different antibodies bridged the magnetic nanoparticles and graphene (acceptors), which led to the occurrence of CRET from chemiluminescence light source to graphene. After optimizing the experimental conditions, the quenching of chemiluminescence signal depended linearly on the concentration of HCG in the range of 0.1 mIU mL(-1)-10 mIU mL(-1) and the detection limit was 0.06 mIU mL(-1). The proposed method was successfully applied for the determination of HCG levels in saliva and serum samples, and the results were in good agreement with the plate ELISA with colorimetric detection. It could also be developed for detection of other antigen-antibody immune complexes by using the corresponding antigens and respective antibodies. © 2013 Published by Elsevier B.V.

  17. Enhanced chemiluminescence for trazodone trace analysis based on acidic permanganate oxidation in concurrent presence of rhodamine 6G.

    Science.gov (United States)

    Fujimori, Keiichi; Sakata, Yuta; Moriuchi-Kawakami, Takayo; Shibutani, Yasuhiko

    2017-11-01

    A new sensitized chemiluminescence method by acidic permanganate oxidation was developed for the sensitive determination of trazodone. A fluorescent dye as used rhodamine 6G to increase a chemiluminescence intensity. Under optimum conditions, the liner range of the calibration curve was obtained for 1-5000 nmol/L. The limit of detection was calculated from 3σ of a blank was 0.23 nmol/L. The coexistent ions and substances had no interference with the chemiluminescence measurement. The chemiluminescence spectra were measured to elucidate a possible mechanism for the system. The present method was satisfactorily used in the determination of the drugs in pharmaceutical samples and animal serums. Copyright © 2017 John Wiley & Sons, Ltd.

  18. The importance of chain length for the polyphosphate enhancement of acidic potassium permanganate chemiluminescence.

    Science.gov (United States)

    Holland, Brendan J; Adcock, Jacqui L; Nesterenko, Pavel N; Peristyy, Anton; Stevenson, Paul G; Barnett, Neil W; Conlan, Xavier A; Francis, Paul S

    2014-09-09

    Sodium polyphosphate is commonly used to enhance chemiluminescence reactions with acidic potassium permanganate through a dual enhancement mechanism, but commercially available polyphosphates vary greatly in composition. We have examined the influence of polyphosphate composition and concentration on both the dual enhancement mechanism of chemiluminescence intensity and the stability of the reagent under analytically useful conditions. The average chain length (n) provides a convenient characterisation, but materials with similar values can exhibit markedly different distributions of phosphate oligomers. There is a minimum polyphosphate chain length (∼6) required for a large enhancement of the emission intensity, but no further advantage was obtained using polyphosphate materials with much longer average chain lengths. Providing there is a sufficient average chain length, the optimum concentration of polyphosphate is dependent on the analyte and in some cases, may be lower than the quantities previously used in routine detection. However, the concentration of polyphosphate should not be lowered in permanganate reagents that have been partially reduced to form high concentrations of the key manganese(III) co-reactant, as this intermediate needs to be stabilised to prevent formation of insoluble manganese(IV). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Evaluation of a new serological test for syphilis based on chemiluminescence assay in a tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2015-01-01

    Full Text Available Context: Syphilis is a transfusion transmissible infections and it is mandatory to do serological test for syphilis (STS on all donor blood samples. STS is usually based on detection of antibodies against the cardiolipin-lecithin antigen or against the Treponema-specific antigen. STS with good sensitivity and specificity helps enhance blood safety and consolidation of STS along with other transfusion transmittable infections such as human immunodeficiency virus, hepatitis-C virus, and hepatitis-B virus helps in reducing the errors and enhances efficiency. Aims: This study was designed to evaluate the performance of newly introduced VITROS ® syphilis Treponema pallidum agglutination (TPA assay based on enhanced chemiluminescence principle for its analytical performance for use as a STS on donor blood samples at a tertiary care health center in National Capital Region, India. Materials and Methods: A total of 108 random blood units collected from the donors (both voluntary and replacement donors and 28 known syphilis sero-reactive samples stored at −20°C, were used to evaluate the performance of VITROS ® syphilis TPA assay based on enhanced chemiluminescence assay on VITROS ® ECiQ immunodiagnostics system along with its analytical performance in terms of its sensitivity, precision, cross-reactivity and interference studies. Results: VITROS ® syphilis TPA showed 100% sensitivity and specificity with precision (20 days study of <10% co-efficient of variation. There was no cross-reactivity with other viral and auto-immune antibodies. No interference was observed from endogenous interfering substances like free hemoglobin or fats. Conclusions: Performance of the VITROS ® syphilis TPA assay meets the requirements for its use as STS in blood bank, thus allowing consolidation with other transfusion transmittable infections screening assay on chemiluminescence platform, which is highly valuable for optimizing workflow and efficiency.

  20. Rational design for enhancing inflammation-responsive in vivo chemiluminescence via nanophotonic energy relay to near-infrared AIE-active conjugated polymer.

    Science.gov (United States)

    Seo, Young Hun; Singh, Ajay; Cho, Hong-Jun; Kim, Youngsun; Heo, Jeongyun; Lim, Chang-Keun; Park, Soo Young; Jang, Woo-Dong; Kim, Sehoon

    2016-04-01

    H2O2-specific peroxalate chemiluminescence is recognized as a potential signal for sensitive in vivo imaging of inflammation but the effect of underlying peroxalate-emitter energetics on its efficiency has rarely been understood. Here we report a simple nanophotonic way of boosting near-infrared chemiluminescence with no need of complicated structural design and synthesis of an energetically favored emitter. The signal enhancement was attained from the construction of a nanoparticle imaging probe (∼26 nm in size) by dense nanointegration of multiple molecules possessing unique photonic features, i.e., i) a peroxalate as a chemical fuel generating electronic excitation energy in response to inflammatory H2O2, ii) a low-bandgap conjugated polymer as a bright near-infrared emitter showing aggregation-induced emission (AIE), and iii) an energy gap-bridging photonic molecule that relays the chemically generated excitation energy to the emitter for its efficient excitation. From static and kinetic spectroscopic studies, a green-emissive BODIPY dye has proven to be an efficient relay molecule to bridge the energy gap between the AIE polymer and the chemically generated excited intermediate of H2O2-reacted peroxalates. The energy-relayed nanointegration of AIE polymer and peroxalate in water showed a 50-times boosted sensing signal compared to their dissolved mixture in THF. Besides the high H2O2 detectability down to 10(-9) M, the boosted chemiluminescence presented a fairly high tissue penetration depth (>12 mm) in an ex vivo condition, which enabled deep imaging of inflammatory H2O2 in a hair-covered mouse model of peritonitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy)32+ nanoparticles for pharmaceutical drugs detection

    Science.gov (United States)

    Al-Hetlani, Entesar; Amin, Mohamed O.; Madkour, Metwally

    2018-02-01

    This work describes a novel and versatile solid-state chemiluminescence sensor for analyte detection using TiO2-Ru(bpy)32+-Ce(IV). Herein, we report the synthesis, characterization, optimization and application of a new type of hybrid nanoparticles (NPs). Mesoporous TiO2-Ru(bpy)32+ NPs were prepared using a modified sol-gel method by incorporating Ru(bpy)32+ into the initial reaction mixture at various concentrations. The resultant bright orange precipitate was characterized via transmission electron microscopy, N2 sorpometry, inductively coupled plasma-optical emission spectrometer (ICP-OES), Raman and UV-Vis spectroscopy techniques. The concentration of Ru(bpy)32+ complex in the NPs was quantified using ICP-OES, and its chemiluminescence (CL) response was measured and compared with the same concentration in the liquid phase using oxalate as model analyte. The results showed that this type of hybrid material exhibited a higher CL signal compared with the liquid phase due to the enlarged surface area of the hybrid NPs ( 149.6 m2/g). The amount of TiO2-Ru(bpy)32+ NPs and the effect of the analyte flow rate were also investigated to optimize the CL signal. The optimized system was further used to detect oxalate and two pharmaceutical drugs, namely, imipramine and promazine. The linear range for both drugs was 1-100 pm with limits of detection (LOD) of 0.1 and 0.5 pm, respectively. This approach is considered to be simple, low cost and facile and can be applied to a wide range of analytes.

  2. Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy32+ nanoparticles for pharmaceutical drugs detection

    Directory of Open Access Journals (Sweden)

    Al-Hetlani Entesar

    2018-02-01

    Full Text Available This work describes a novel and versatile solid-state chemiluminescence sensor for analyte detection using TiO2-Ru(bpy32+-Ce(IV. Herein, we report the synthesis, characterization, optimization and application of a new type of hybrid nanoparticles (NPs. Mesoporous TiO2-Ru(bpy32+ NPs were prepared using a modified sol-gel method by incorporating Ru(bpy32+ into the initial reaction mixture at various concentrations. The resultant bright orange precipitate was characterized via transmission electron microscopy, N2 sorpometry, inductively coupled plasma-optical emission spectrometer (ICP-OES, Raman and UV-Vis spectroscopy techniques. The concentration of Ru(bpy32+ complex in the NPs was quantified using ICP-OES, and its chemiluminescence (CL response was measured and compared with the same concentration in the liquid phase using oxalate as model analyte. The results showed that this type of hybrid material exhibited a higher CL signal compared with the liquid phase due to the enlarged surface area of the hybrid NPs (~149.6 m2/g. The amount of TiO2-Ru(bpy32+ NPs and the effect of the analyte flow rate were also investigated to optimize the CL signal. The optimized system was further used to detect oxalate and two pharmaceutical drugs, namely, imipramine and promazine. The linear range for both drugs was 1–100 pm with limits of detection (LOD of 0.1 and 0.5 pm, respectively. This approach is considered to be simple, low cost and facile and can be applied to a wide range of analytes.

  3. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  4. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer.

    Science.gov (United States)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2015-03-15

    Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    Science.gov (United States)

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-07

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  6. Enhancement effect of CdTe quantum dots-IgG bioconjugates on chemiluminescence of luminol-H2O2 system

    International Nuclear Information System (INIS)

    Kanwal, Shamsa; Traore, Zoumana; Zhao Chunfang; Su Xingguang

    2010-01-01

    In this paper we developed an entirely new and highly sensitive luminol-H 2 O 2 flow injection chemiluminescence system using the enhancement effect of CdTe quantum dots-IgG bioconjugates. Immunoglobulin G (IgG) as a kind of bio-molecule was conjugated to different sized CdTe semiconductor quantum dots (QDs). Using PL spectra and CL intensity profiles, it was found that chemiluminescence resonance energy transfer (CRET) was possibly occurring between CdTe-IgG bioconjugate and luminol. Under optimum conditions, increase of IgG concentration in CdTe-IgG bioconjugate resulted enhancing effect on CL intensity of luminol-H 2 O 2 system. Moreover quenching effects on CL intensity by addition of different proteases can construct turn off biosensor for these proteases with low detection limits and wide linear range. Furthermore, the effects of various organic and inorganic species on CdTe-IgG bioconjugates enhanced luminol-H 2 O 2 CL system were also studied in this paper.

  7. Chemiluminescence immunoassay based on dual signal amplification strategy of Au/mesoporous silica and multienzyme functionalized mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jiehua, E-mail: linjiehua@qust.edu.cn [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhao Yue; Wei Zhijing; Wang Wei [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2011-11-15

    Highlights: > The increased amount of monoclonal antibody in Au/SiO{sub 2} led to a wider linear range. > Due to the increased HRP tags in HRP-Ab{sub 2}/SiO{sub 2}, signal amplification achieved. > A simple dual amplification immunoassay achieved with flow injection analysis. - Abstract: A chemiluminescent dual signal amplification strategy for the determination of {alpha}-fetoprotein (AFP) was proposed based on a sandwich immunoassay format. Monoclonal antibody of AFP immobilized on the gold nanoparticles doped mesoporous SiO{sub 2} (Au/SiO{sub 2}) were prepared and used as a primary antibody. Horseradish peroxidase (HRP) and HRP-labeled secondary antibody (Ab{sub 2}) co-immobilized into the mesoporous SiO{sub 2} nanoparticles (HRP-Ab{sub 2}/SiO{sub 2}) were used as the labeled immunological probe. Due to the high ratio surface areas and pore volumes of the mesoporous SiO{sub 2}, not only the amount of AFP monoclonal antibody but also the amount of the modified HRP and Ab{sub 2} in HRP-Ab{sub 2}/SiO{sub 2} were largely increased. Thus the chemiluminescent signal was amplified by using the system of luminol and H{sub 2}O{sub 2} under the catalysis of HRP. Under the optimal conditions, two linear ranges for AFP were obtained from 0.01 to 0.5 ng mL{sup -1} and 0.5 to 100 ng mL{sup -1} with a detection limit of 0.005 ng mL{sup -1} (3{sigma}). The fabricated signal amplification strategy showed an excellent promise for sensitive detection of AFP and other tumor markers.

  8. Development of nanobody-based flow injection chemiluminescence immunoassay for sensitive detection of human prealbumin.

    Science.gov (United States)

    Ma, Lei; Sun, Yanyan; Kang, Xuejun; Wan, Yakun

    2014-11-15

    Nanobodies, derived from camelid heavy-chain antibodies, have novel and impactful applications in clinical diagnostics. Our objective is to develop a nanobody-based chemiluminescence immunoassay for sensitive detection of human prealbumin (PA). In this context, a phage display nanobody library is constructed via immunizing dromedary camel with human prealbumin. Three nanobodies have been identified by five successive bio-panning steps. Based on their high expression level and good affinity, two out of three are chosen for further study. Magnetic beads (MBs) were functionalized with PEI by acylamide bond formed between the carboxyl group on the surface of the MB. Then, an anti-PA nanobody (Nb1) can be effectively immobilized onto the surface of the functionalized MB using glutaradehyde as the link. The modified MBs with Nb1 can specifically capture the target PA and reacted with silica nanoparticles with co-immobilized HRP and anti-PA nanobody (Nb2). The concentration of PA was detected by flow injection chemiluminescence. When using MB/PEI as the carrier of anti-PA Nb1, the CL signal significantly increased to 4-fold compared with the signal using MB without PEI modification. The CL signal was further amplified to 5-fold when Si/Nb2 was used as the signal probe. Under optimized conditions, the present immunoassay exhibited a wide quantitative range from 0.05 to 1000 μg L(-1) with a detection limit of 0.01 μg L(-1). The sensitivity of the proposed immunoassay offers great promises in providing a sensitive, specific, time saving, and potential method for detecting PA in clinical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of the luminol signal enhancer on the chemiluminescence intensity and kinetics

    International Nuclear Information System (INIS)

    Liang Yanli; Yu Fei; Yu Songcheng; Wu Yongjun; Zhang Hongquan; Qu Lingbo

    2012-01-01

    The novel p-phenol derivatives, 4-(1-imidazolyl)-phenol, 4-hydroxybiphenyl, 4-hydroxy-4′-iodobiphenyl were employed as highly potent signal enhancers of luminol-hydrogen peroxide (H 2 O 2 )-horseradish peroxidase (HRP) chemiluminescence (CL) system. The CL reaction conditions were optimized, and the enhancement characteristics of these enhancers were compared with each other. The employment of these molecules greatly affected important assay parameters. Practically, the use of a novel enhancer, even a slightly change of the structure (or concentration) of 4-substituted phenol derivative, could affect assay properties quite dramatically. Furthermore, the use of different enhancers in the luminol–H 2 O 2 –HRP system can affect not only the intensity of the CL signal, which is well known, but also its kinetics. The experiment data indicated that the stronger intensity was combined with a more rapid decrease of the CL signal. - Highlights: ► 4-IMP, 4-BIP and HIOP take on different signal enhancement and light kinetics. ► The employment of 4-BIP resulted in a significant improvement of the detection limit. ► The magnitude of the signal enhancement was about 2.5-fold in the same system.

  10. Automated determination of asulam by enhanced chemiluminescence using luminol/peroxidase system.

    Science.gov (United States)

    Sánchez, Francisco García; Díaz, Aurora Navas; Bracho, Visitación; Aguilar, Alfonso; Algarra, Manuel

    2009-01-01

    A flow injection system with chemiluminescence detection for the determination of asulam, enhancer of the system luminol-H(2)O(2)-horseradish peroxidase, is proposed. The method shows a moderate selectivity against other pesticides usually present in formulations of herbicides and in water. The procedure was applied to the determination of asulam in tap water samples and a recovery study was carried out in order to validate the method. The obtained results show acceptable recovery values (between 88.3 and 93.9%). The detection limit for asulam was 0.12 ng/mL. The precision of the method expressed as relative standard deviation was 1.55% (n = 8), at the 19 ng/mL level.

  11. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    .47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation.Keywords: gold nanoparticles, radiotherapy, monoenergetic synchrotron radiation, radiosensitizers, in vitro

  12. Projection model for flame chemiluminescence tomography based on lens imaging

    Science.gov (United States)

    Wan, Minggang; Zhuang, Jihui

    2018-04-01

    For flame chemiluminescence tomography (FCT) based on lens imaging, the projection model is essential because it formulates the mathematical relation between the flame projections captured by cameras and the chemiluminescence field, and, through this relation, the field is reconstructed. This work proposed the blurry-spot (BS) model, which takes more universal assumptions and has higher accuracy than the widely applied line-of-sight model. By combining the geometrical camera model and the thin-lens equation, the BS model takes into account perspective effect of the camera lens; by combining ray-tracing technique and Monte Carlo simulation, it also considers inhomogeneous distribution of captured radiance on the image plane. Performance of these two models in FCT was numerically compared, and results showed that using the BS model could lead to better reconstruction quality in wider application ranges.

  13. Enhanced sensitivity of Cypridina luciferin analog (CLA) chemiluminescence for the detection of O2- with non ionic detergents

    NARCIS (Netherlands)

    Osman, A.M.; Laane, C.; Hilhorst, R.

    2000-01-01

    Superoxide anion-triggered chemiluminescence of Cypridina luciferin analogue (CLA), 2-methyl-6-phenyl-3,7-dohydroimidazo[1,2-]pyrazin-3-one, is enhanced by non-ionic detergents such as Tween 20, Triton X-100 and Tween 80. At the concentration of 0.6øv/v) the largest increase (2.7-fold) of CLA light

  14. Applications of chemiluminescence to bacterial analysis

    Science.gov (United States)

    Searle, N. D.

    1975-01-01

    Luminol chemiluminescence method for detecting bacteria was based on microbial activation of the oxidation of the luminol monoanion by hydrogen peroxide. Elimination of the prior lysing step, previously used in the chemiluminescence technique, was shown to improve considerably the reproducibility and accuracy of the method in addition to simplifying it. An inexpensive, portable photomultiplier detector was used to measure the maximum light intensity produced when the sample is added to the reagent. Studies of cooling tower water show that the luminol chemiluminescence technique can be used to monitor changes in viable cell population both under normal conditions and during chlorine treatment. Good correlation between chemiluminescence and plate counts was also obtained in the analysis of process water used in paper mills. This method showed good potential for monitoring the viable bacteria populations in activated sludge used in waste treatment plants to digest organic matter.

  15. Sensitive determination of 4-nitrophenol based on its enhancement of a peroxyoxalate chemiluminescence system containing graphene oxide quantum dots and fluorescein

    International Nuclear Information System (INIS)

    Chen, Donghua; Peng, Rulin; Zhou, Hong; Liu, Hui

    2016-01-01

    Graphene oxide quantum dots (GOQD) are capable of enhancing the green chemiluminescence (CL) of the system composed of bis (2,4,6-trichlorophenyl) oxalate, hydrogen peroxide and fluorescein (TCPO/H_2O_2/fluorescein). It was found that 4-nitrophenol (4-NP) causes a further enhancement of the system, and this was exploited to develop a CL detection scheme for 4-NP. The optimum reaction concentrations were established, and under these conditions the calibration plot is linear in the 1.0 to 300 pmol L"−"1 concentration range, with a 0.3 pmol L"−"1 detection limit (at 3σ).We assume that CL enhancement is due to energy transfer from GOQD to fluorescein which is promoted by the interaction of 4-NP with the GOQD. The method was applied to the determination of 4-NP in spiked tap water and river water and gave recoveries between 93.4 and 107.9 %, with relative standard deviations of <4.0 %. (author)

  16. Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material

    International Nuclear Information System (INIS)

    Jo, Byeongnam; Banerjee, Debjyoti

    2014-01-01

    This study investigated the effect of nanoparticle dispersion on the specific heat capacity for carbonate salt mixtures doped with graphite nanoparticles. The effect of the solvent material was also examined. Binary carbonate salt mixtures consisting of lithium carbonate and potassium carbonate were used as the base material for the graphite nanomaterial. The different dispersion uniformity of the nanoparticles was created by employing two distinct synthesis protocols for the nanomaterial. Different scanning calorimetry was employed to measure the specific heat capacity in both solid and liquid phases. The results showed that doping the molten salt mixture with the graphite nanoparticles significantly raised the specific heat capacity, even in minute concentrations of graphite nanoparticles. Moreover, greater enhancement in the specific heat capacity was observed from the nanomaterial samples with more homogeneous dispersion of the nanoparticles. A molecular dynamics simulation was also performed for the nanomaterials used in the specific heat capacity measurements to explain the possible mechanisms for the enhanced specific heat capacity, including the compressed layering and the species concentration of liquid solvent molecules

  17. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    Science.gov (United States)

    He, Yi; Peng, Rufang

    2014-11-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

  18. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    International Nuclear Information System (INIS)

    He, Yi; Peng, Rufang

    2014-01-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl 4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (∼25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng. (paper)

  19. DNA imaging and quantification using chemi-luminescent probes; Imagerie et quantification d`ADN par chimiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, G; Redjdal, N; Laniece, P; Siebert, R; Tricoire, H; Valentin, L [Groupe I.P.B., Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    During this interdisciplinary study we have developed an ultra sensitive and reliable imaging system of DNA labelled by chemiluminescence. Based on a liquid nitrogen cooled CCD, the system achieves sensitivities down to 10 fg/mm{sup 2} labelled DNA over a surface area of 25 x 25 cm{sup 2} with a sub-millimeter resolution. Commercially available chemi-luminescent - and enhancer molecules are compared and their reaction conditions optimized for best signal-to-noise ratios. Double labelling was performed to verify quantification with radioactive probes. (authors) 1 fig.

  20. Investigation of RuBPS-Ce(IV) chemiluminescence reaction and its application in determination of two diuretics

    Energy Technology Data Exchange (ETDEWEB)

    Xi Juan [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Ji Xinghu [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zhang Shaohong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Xiang Fan Vocational and Technical College, Xiangfan 441021 (China); Ai Xinping [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); He Zhike [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)]. E-mail: zhkhe@whu.edu.cn

    2005-06-13

    The chemiluminescence mechanism of tris-(4,7-diphenyl-1,10-phenanthrolinedisulfonic acid)ruthenium(II) (RuBPS)-Ce(IV) system and the effects of two diuretics, hydrochlorothiazide and furosemide, on its chemiluminescence intensity were investigated in detail. It was found that each of the two diuretics could enhance the chemiluminescence emission intensity of RuBPS-Ce(IV) system, based on which, they were sensitively detected by chemiluminescence analysis, respectively. Under the optimum experimental conditions, the linear range and detection limit of hydrochlorothiazide were 2.5 x 10{sup -3} to 6.0 x 10{sup -1} {mu}g ml{sup -1} and 1.0 x 10{sup -3} {mu}g ml{sup -1}, respectively; those of furosemide were 1.0 x 10{sup -2} to 4.0 {mu}g ml{sup -1} and 8.8 x 10{sup -3} {mu}g ml{sup -1}, respectively. The proposed method has been applied to analyze the pharmaceuticals with satisfied results.

  1. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Vera-Jimenez, N I; Pietretti, D; Wiegertjes, G F; Nielsen, M E

    2013-05-01

    The respiratory burst is an important feature of the immune system. The increase in cellular oxygen uptake that marks the initiation of the respiratory burst is followed by the production of reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide which plays a role in the clearance of pathogens and tissue regeneration processes. Therefore, the respiratory burst and associated ROS constitute important indicators of fish health status. This paper compares two methods for quantitation of ROS produced during the respiratory burst in common carp: the widely used, single-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head kidney cell fractions and total head kidney cell suspensions and proved to be a fast, reliable, automated multiwell microplate assay to quantitate fish health status modulated by β-glucans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea

    Directory of Open Access Journals (Sweden)

    Bu M

    2015-11-01

    Full Text Available Meng Bu,1,2 Jingling Tang,3 Yinghui Wei,4 Yanhui Sun,1 Xinyu Wang,1 Linhua Wu,2 Hongzhuo Liu1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Department of Pharmacy, the Second Affiliated Hospital, 3School of Pharmacy, Harbin Medical University, Harbin, People’s Republic of China; 4College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China Purpose: Supplementation of exogenous nerve growth factor (NGF into the cochlea of deafened animals rescues spiral ganglion cells from degeneration. However, a safe and potent delivery of therapeutic proteins, such as NGF, to spiral ganglion cells remains one of the greatest challenges. This study presents the development of self-assembled cubic lipid-based crystalline nanoparticles to enhance inner ear bioavailability of bioactive NGF via a round window membrane route.Methods: A novel nanocarrier-entrapped NGF was developed based on phytantriol by a liquid precursor dilution, with Pluronic® F127 and propylene glycol as the surfactant and solubilizer, respectively. Upon dilution of the liquid lipid precursors, monodispersed submicron-sized particles with a slight negative charge formed spontaneously.Results: Biological activity of entrapped NGF was assessed using pheochromocytoma cells with NGF-loaded reservoirs to induce significant neuronal outgrowth, similar to that seen in free NGF-treated controls. Finally, a 3.28-fold increase in inner ear bioavailability was observed after administration of phytantriol lipid-based crystalline nanoparticles as compared to free drug, contributing to an enhanced drug permeability of the round window membrane. Conclusion: Data presented here demonstrate the potential of lipid-based crystalline nanoparticles to improve the outcomes of patients bearing cochlear implants. Keywords: nerve growth factor, lipid-based crystalline nanoparticles, PC12 cells, inner ear drug

  3. MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose.

    Science.gov (United States)

    Yi, Xueling; Dong, Wenfei; Zhang, Xiaodan; Xie, Jianxin; Huang, Yuming

    2016-12-01

    Various analytical applications of metal-organic frameworks (MOFs) have been rapidly developed in the past few years. However, the employment of MOFs as catalysts in chemiluminescence (CL) analysis is rare. Here, for the first time, we found that MIL-53(Fe) MOFs could significantly enhance the CL of luminol in the presence of H 2 O 2 in an alkaline medium. The CL intensity in the luminol-H 2 O 2 -MIL-53(Fe) system was about 20 times higher than that in the luminol-H 2 O 2 system. Moreover, the XRD pattern of MIL-53(Fe) after CL reaction was almost the same as that of the original MIL-53(Fe), confirming the catalytic role of MIL-53(Fe) in the luminol-H 2 O 2 -MIL-53(Fe) system. The possible mechanism behind the enhancing phenomenon was discussed based on the results from the CL spectra, FL probe experiments, and active oxygen species measurements. By coupling with the glucose oxidase-based catalytic oxidation reaction, a sensitive and selective CL method was developed for the detection of glucose. There is a linear relationship between the logarithm of CL intensity and the logarithm of glucose concentration in the range from 0.1 to 10 μM, and a detection limit of 0.05 μM (S/N = 3) is obtained. The proposed method has been applied to the determination of glucose in human serum samples with satisfactory results. Graphical abstract MIL-53(Fe) MOFs are found to greatly enhance the chemiluminescence emission of the luminol-H 2 O 2 system, and this finding resulted in a new chemiluminescence method for biosensing of glucose when coupled with the glucose oxidase.

  4. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium(IV) in sulfuric acid medium

    International Nuclear Information System (INIS)

    Ma Yongjun; Jin Xiaoyong; Zhou Min; Zhang Ziyu; Teng Xiulan; Chen Hui

    2003-01-01

    The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l -1 and cerium sulfate was 1.6 mmol l -1 in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l -1 sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm

  5. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium(IV) in sulfuric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yongjun; Jin Xiaoyong; Zhou Min; Zhang Ziyu; Teng Xiulan; Chen Hui

    2003-08-18

    The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l{sup -1} and cerium sulfate was 1.6 mmol l{sup -1} in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l{sup -1} sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm.

  6. Nanoparticles for cells proliferation enhancement

    International Nuclear Information System (INIS)

    Popa, V.; Braniste, F.; Tiginyanu, I.M.; Lisii, C.; Nacu, V.

    2013-01-01

    The potential of semiconductor nanoparticles as stimulator for avian mesenchyme stem cells proliferation enhancement is demonstrated. The effect is related to nanoparticles polarization due to external ultrasound field resulting in local electrical stimulation. Our preliminary results demonstrates that the number of cells have been increased by 23 % ±2%) in cell cultures under the action of external ultrasound stimulation. Morphological analysis and viability shows no differences between the control group and the group studied. These results suggest the possibility for tissue regeneration enhancement by remote stimulation of implanted semiconductor nanoparticles. (authors)

  7. Strong enhancement of the chemiluminescence of the Cu(II)-H2O2 system on addition of carbon nitride quantum dots, and its application to the detection of H2O2 and glucose.

    Science.gov (United States)

    Hallaj, Tooba; Amjadi, Mohammad; Song, Zhenlun; Bagheri, Robabeh

    2017-12-19

    The authors report that carbon nitride quantum dots (CN QDs) exert a strong enhancing effect on the Cu(II)/H 2 O 2 chemiluminescent system. Chemiluminescence (CL) intensity is enhanced by CN QDs by a factor of ~75, while other carbon nanomaterials have a much weaker effect. The possible mechanism of the effect was evaluated by recording fluorescence and CL spectra and by examining the effect of various radical scavengers. Emitting species was found to be excited-state CN QDs that produce green CL peaking at 515 nm. The new CL system was applied to the sensitive detection of H 2 O 2 and glucose (via glucose oxidase-catalyzed formation of H 2 O 2 ) with detection limits (3σ) of 10 nM for H 2 O 2 and 100 nM for glucose. The probe was employed for glucose determination in human plasma samples with satisfactory results. Graphical abstract The effect of carbon nitride quantum dots (CN QDs) on Cu(II)-H 2 O 2 chemiluminescence reaction was studied and the new CL system was applied for sensitive detection of glucose based on the glucose oxidase (GOx)-catalyzed formation of H 2 O 2 .

  8. New Dendrimer-Based Nanoparticles Enhance Curcumin Solubility.

    Science.gov (United States)

    Falconieri, Maria Cristina; Adamo, Mauro; Monasterolo, Claudio; Bergonzi, Maria Camilla; Coronnello, Marcella; Bilia, Anna Rita

    2017-03-01

    Curcumin, the main curcuminoid of the popular Indian spice turmeric, is a potent chemopreventive agent and useful in many different diseases. A major limitation of applicability of curcumin as a health promoting and medicinal agent is its extremely low bioavailability due to efficient first pass metabolism, poor gastrointestinal absorption, rapid elimination, and poor aqueous solubility. In the present study, nanotechnology was selected as a choice approach to enhance the bioavailability of the curcuminis. A new polyamidoamine dendrimer (G0.5) was synthesized, characterized, and tested for cytotoxicity in human breast cancer cells (MCF-7). No cytotoxicity of G0.5 was found in the range between 10 -3 and 3 × 10 -8  M. Consequently, G0.5 was used to prepare spherical nanoparticles of ca. 150 nm, which were loaded with curcumin [molar ratio G0.5/curcumin 1 : 1 (formulation 1) and 1 : 0.5 (formulation 2)]. Remarkably, the occurrence of a single population of nanoparticles having an excellent polydispersity index (solubility of curcumin was increased ca. 415 and 150 times with respect to the unformulated drug, respectively, for formulation 1 and formulation 2. The release of curcumin from the nanoparticles showed an interesting prolonged and sustained release profile. Georg Thieme Verlag KG Stuttgart · New York.

  9. A novel chemiluminescence method for determination of bisphenol Abased on the carbon dot-enhanced HCO3−–H2O2 system

    International Nuclear Information System (INIS)

    Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba

    2015-01-01

    A simple and sensitive chemiluminescence (CL) method on the basis of carbon dot (C-dot) enhanced HCO 3 − –H 2 O 2 system, is designed for the determination of bisphenol A (BPA). The very weak CL of the HCO 3 − –H 2 O 2 system is enhanced by a factor of ∼100 in the presence of C-dots. Possible mechanisms that lead to the effect were elucidated by recording fluorescence and CL spectra and studying the effect of some radical scavengers. This enhancement is inhibited by BPA in the concentration range from 1.0 to 100 µg L −1 . This is exploited for its trace determination with a detection limit (3 s) of 0.3 µg L −1 . The established method was applied to the determination of BPA in baby bottle and water samples with satisfactory results. - Highlights: • The effect of carbon dots on HCO 3 − –H 2 O 2 chemiluminescence reaction is studied. • Carbon dots greatly enhance the CL signal of this reaction (∼100 fold). • The new CL system was applied to determination of bisphenol A in real samples

  10. Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Li Na; Guo Jizhao; Liu Bo; Yu Yuqi [Department of Chemistry, University of Science and Technology of China (USTC), JinZhai Road No: 96, 230026 Hefei, Anhui (China); Cui Hua, E-mail: hcui@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China (USTC), JinZhai Road No: 96, 230026 Hefei, Anhui (China); Mao Lanqun; Lin Yuqing [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100080 Beijing (China)

    2009-07-10

    Our previous work showed that gold nanoparticles could trigger chemiluminescence (CL) between luminol and AgNO{sub 3}. In the present work, the effect of some biologically important reductive compounds, including monoamine neurotransmitters and their metabolites, reductive amino acids, ascorbic acid, uric acid, and glutathione, on the novel CL reaction were investigated for analytical purpose. It was found that all of them could inhibit the CL from the luminol-AgNO{sub 3}-Au colloid system. Among them, monoamine neurotransmitters and their metabolites exhibited strong inhibition effect. Taking dopamine as a model compound, the CL mechanism was studied by measuring absorption spectra during the CL reaction and the reaction kinetics via stopped-flow technique. The CL inhibition mechanism is proposed to be due to that these tested compounds competed with luminol for AgNO{sub 3} to inhibit the formation of luminol radicals and to accelerate deposition of Ag atoms on surface of gold nanoparticles, leading to a decrease in CL intensity. Based on the inhibited CL, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography with this CL reaction. The new method was successfully applied to determine the compounds in a mouse brain microdialysate. Compared with the reported HPLC-CL methods, the proposed method is simple, fast, and could determine more analytes. Moreover, the limits of linear ranges for NE, E, and DA using the proposed method were one order of magnitude lower than the luminol system without gold nanoparticles.

  11. Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence

    International Nuclear Information System (INIS)

    Li Na; Guo Jizhao; Liu Bo; Yu Yuqi; Cui Hua; Mao Lanqun; Lin Yuqing

    2009-01-01

    Our previous work showed that gold nanoparticles could trigger chemiluminescence (CL) between luminol and AgNO 3 . In the present work, the effect of some biologically important reductive compounds, including monoamine neurotransmitters and their metabolites, reductive amino acids, ascorbic acid, uric acid, and glutathione, on the novel CL reaction were investigated for analytical purpose. It was found that all of them could inhibit the CL from the luminol-AgNO 3 -Au colloid system. Among them, monoamine neurotransmitters and their metabolites exhibited strong inhibition effect. Taking dopamine as a model compound, the CL mechanism was studied by measuring absorption spectra during the CL reaction and the reaction kinetics via stopped-flow technique. The CL inhibition mechanism is proposed to be due to that these tested compounds competed with luminol for AgNO 3 to inhibit the formation of luminol radicals and to accelerate deposition of Ag atoms on surface of gold nanoparticles, leading to a decrease in CL intensity. Based on the inhibited CL, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography with this CL reaction. The new method was successfully applied to determine the compounds in a mouse brain microdialysate. Compared with the reported HPLC-CL methods, the proposed method is simple, fast, and could determine more analytes. Moreover, the limits of linear ranges for NE, E, and DA using the proposed method were one order of magnitude lower than the luminol system without gold nanoparticles.

  12. Dynamic Response and Simulations of Nanoparticle-Enhanced Composites

    National Research Council Canada - National Science Library

    Mantena, P. R; Al-Ostaz, Ahmed; Cheng, Alexander H

    2007-01-01

    ...) molecular dynamics simulations of nanoparticle-enhanced composites and fly- ash based foams that are being considered for the future generation naval structures or retrofitting of existing ones...

  13. Determination of ethamsylate in pharmaceutical preparations based on an auto-oxidation chemiluminescence reaction.

    Science.gov (United States)

    Yang, Fengzhen; Zhang, Chao; Baeyens, Willy R G; Zhang, Xinrong

    2002-10-15

    Strong chemiluminescence emission has been observed by mixing alkaline hydrolytic products of ethamsylate with Tween 80 in acidic rhodamine 6G solution. This phenomenon has been utilized to design a flow-injection chemiluminescence method for the determination of ethamsylate in a pharmaceutical preparation. Under the optimum conditions, the proposed procedure has a linear range between 0.05 and 2.0 microg ml(-1), with a detection limit of 0.02 microg ml(-1) for ethamsylate. The method was applied to the determination of ethamsylate in pharmaceutical preparations. The possible mechanism of this chemiluminescence reaction was proposed. Copyright 2002 Elsevier Science B.V.

  14. Determination of vitamin C in drugs using of an optimized novel TCPO–Amplex red–gold/silver alloy nanoparticles–H2O2 chemiluminescence method by the Box–Behnken design

    International Nuclear Information System (INIS)

    Chaichi, M.J.; Alijanpour, S.O.

    2013-01-01

    Response surface methodology (RSM), based on a Box–Behnken design (BBD) was used to optimize three of the most important operating variables (concentrations of TCPO, Amplex red and pH effect) at peroxyoxalate-chemiluminescence (PO-CL) system. For the first time Amplex red (AR) was introduced as a new fluorescent emitter for predicting the reaction mechanism of PO-CL by means of the fluorescence property of its oxidation product. In optimum conditions, it was found that Au/Ag alloy nanoparticles (NPs) could enhance the CL intensity and the method sensitivity toward the evaluation of trace amount of vitamin C. Based on the antioxidant property of vitamin C noticeably the CL signal of the bis-(2,4,6-trichlorophenyl)oxalate–AR–NPs–hydrogen peroxide–sodium salicylate system was quenched in a low basic medium. A simple, rapid and sensitive CL method for the determination of vitamin C has been developed. The results showed a linear relationship between vitamin C concentration and PO-CL intensity in the range of 0.082–82.7 μg/mL. Detection limit of 0.012 μg/mL and the relative standard deviation (RSD)<4% was obtained. - Highlights: ► The Box-Behnken design was used to optimize peroxyoxalate-chemiluminescence system. ► Amplex red is as new fluorescent emitters for peroxyoxalate chemiluminescence. ► It is introduce a method for determination of vitamin C. ► Detection limit of vitamin C was obtained about 0.012 μg/mL.

  15. Molecularly imprinted polymer based on chemiluminescence imaging for the chiral recognition of dansyl-phenylalanine.

    Science.gov (United States)

    Wang, Li; Zhang, Zhujun; Huang, Lianggao

    2008-03-01

    A new molecularly imprinted polymer (MIP)-chemiluminescence (CL) imaging detection approach towards chiral recognition of dansyl-phenylalanine (Phe) is presented. The polymer microspheres were synthesized using precipitation polymerization with dansyl-L-Phe as template. Polymer microspheres were immobilized in microtiter plates (96 wells) using poly(vinyl alcohol) (PVA) as glue. The analyte was selectively adsorbed on the MIP microspheres. After washing, the bound fraction was quantified based on peroxyoxalate chemiluminescence (PO-CL) analysis. In the presence of dansyl-Phe, bis(2,4,6-trichlorophenyl)oxalate (TCPO) reacted with hydrogen peroxide (H2O2) to emit chemiluminescence. The signal was detected and quantified with a highly sensitive cooled charge-coupled device (CCD). Influencing factors were investigated and optimized in detail. Control experiments using capillary electrophoresis showed that there was no significant difference between the proposed method and the control method at a confidence level of 95%. The method can perform 96 independent measurements simultaneously in 30 min and the limits of detection (LODs) for dansyl-L-Phe and dansyl-D-Phe were 0.025 micromol L(-1) and 0.075 micromol L(-1) (3sigma), respectively. The relative standard deviation (RSD) for 11 parallel measurements of dansyl-L-Phe (0.78 micromol L(-1)) was 8%. The results show that MIP-based CL imaging can become a useful analytical technology for quick chiral recognition.

  16. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    Science.gov (United States)

    Ataide, Filipe Andre Prata

    nanoparticles on interfacial area and mass transfer coefficient. The parameters ranges used were: 250-750 rpm for stirring speed, 0-2 vvm for aeration and 0-0.00120 g g?1 magnetic nanoparticles mass fraction. It was found that 36 nm-sized nanoparticles produced during the course of this dissertation enhanced the volumetric mass transfer coefficient up to 3.3-fold and the interfacial area up to 3.3-fold in relation to gas-liquid dispersions without nanoparticles. These results are concordant with previously published enhancement data (kLa enhancement by 7.1-fold and a enhancement by 4.1-fold) (Olle et al. 2006). The magnetic nanoparticles synthesized in this thesis were stable (constant diameter) over a 1wide pH range (2-9). Statistical regression models showed that both kLa and a have high sensitivity to the nanoparticles loading. Empirical correlation models were derived for kLa and for interfacial area, a, as function of physical properties and nanoparticles loading. These correlations lay out a methodology that can help the scientific community to design and scale-up oxygen transfer systems that are based on nanoparticle suspensions. None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None

  17. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II)

    Science.gov (United States)

    Li, Jinge; Li, Qianqian; Lu, Chao; Zhao, Lixia; Lin, Jin-Ming

    2011-02-01

    Nonionic fluorosurfactant (FSN)-capped gold nanoparticles (GNPs) remain excellently stable at a wider pH range and high ionic strength, which is useful to investigate some CL systems involved in high salt and a strict pH range. In this study, we utilized FSN-capped GNPs of different sizes to distinguish the emitting species from H 2O 2-Co 2+-NaOH and H 2O 2-Co 2+-NaHCO 3 systems. When the pH of FSN-capped gold colloidal solution was adjusted to 10.2 by dropwise addition of 0.05 M NaOH, the CL intensity of H 2O 2-Co 2+-NaHCO 3 system was enhanced 6-fold or 60-fold respectively in the presence of FSN-capped 14 nm or 69 nm GNPs with comparison to H 2O 2-Co 2+-NaOH. The variation of CL spectra and UV-vis spectra, as well as the quenching effect of reactive oxygen species scavengers were studied in detail to understand the CL enhancement mechanisms of FSN-capped GNPs on the two systems. For H 2O 2-Co 2+-NaOH system, the gold(I) complexes intermediate and singlet oxygen dimol species were proposed as the emitting species. The excited states of the carbon dioxide dimers and singlet oxygen dimol species were considered responsible for the light emission of H 2O 2-Co 2+-NaHCO 3 system. To our knowledge, this work is the first time to study the two CL systems simultaneously using nanoparticles.

  18. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    Science.gov (United States)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  19. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Science.gov (United States)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  20. Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.

    2013-06-20

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  1. Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy

    Directory of Open Access Journals (Sweden)

    Wang Q

    2012-08-01

    Full Text Available Qian Wang,1 Liping Xie,1 Zhizhu He,2 Derui Di,2 Jing Liu1,21Department of Biomedical Engineering, School of Medicine, Tsinghua University, 2Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of ChinaBackground: Recently, nanoparticles have been demonstrated to have tremendous merit in terms of improving the treatment specificity and thermal ablation effect on tumors. However, the potential toxicity and long-term side effects caused by the introduced nanoparticles and by expelling them out of the body following surgery remain a significant challenge. Here, we propose for the first time to directly adopt magnesium nanoparticles as the heating enhancer in laser thermal ablation to avoid these problems by making full use of the perfect biodegradable properties of this specific material.Methods: To better understand the new nano “green” hyperthermia modality, we evaluated the effects of magnesium nanoparticles on the temperature transients inside the human body subject to laser interstitial heating. Further, we experimentally investigated the heating enhancement effects of magnesium nanoparticles on a group of biological samples: oil, egg white, egg yolk, in vitro pig tissues, and the in vivo hind leg of rabbit when subjected to laser irradiation.Results: Both the theoretical simulations and experimental measurements demonstrated that the target tissues injected with magnesium nanoparticles reached much higher temperatures than tissues without magnesium nanoparticles. This revealed the enhancing behavior of the new nanohyperthermia method.Conclusion: Given the unique features of magnesium nanoparticles – their complete biological safety and ability to enhance heating – which most other advanced metal nanoparticles do not possess, the use of magnesium nanoparticles in hyperthermia therapy offers an important “green” nanomedicine modality for treating tumors

  2. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    Science.gov (United States)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  3. Rapid Nanoprobe Signal Enhancement by In Situ Gold Nanoparticle Synthesis.

    Science.gov (United States)

    Dias, Jorge T; Svedberg, Gustav; Nystrand, Mats; Andersson-Svahn, Helene; Gantelius, Jesper

    2018-03-07

    The use of nanoprobes such as gold, silver, silica or iron-oxide nanoparticles as detection reagents in bioanalytical assays can enable high sensitivity and convenient colorimetric readout. However, high densities of nanoparticles are typically needed for detection. The available synthesis-based enhancement protocols are either limited to gold and silver nanoparticles or rely on precise enzymatic control and optimization. Here, we present a protocol to enhance the colorimetric readout of gold, silver, silica, and iron oxide nanoprobes. It was observed that the colorimetric signal can be improved by up to a 10000-fold factor. The basis for such signal enhancement strategies is the chemical reduction of Au 3+ to Au 0 . There are several chemical reactions that enable the reduction of Au 3+ to Au 0 . In the protocol, Good's buffers and H2O2 are used and it is possible to favor the deposition of Au 0 onto the surface of existing nanoprobes, in detriment of the formation of new gold nanoparticles. The protocol consists of the incubation of the microarray with a solution consisting of chloroauric acid and H2O2 in 2-(N-morpholino)ethanesulfonic acid pH 6 buffer following the nanoprobe-based detection assay. The enhancement solution can be applied to paper and glass-based sensors. Moreover, it can be used in commercially available immunoassays as demonstrated by the application of the method to a commercial allergen microarray. The signal development requires less than 5 min of incubation with the enhancement solution and the readout can be assessed by naked eye or low-end image acquisition devices such as a table-top scanner or a digital camera.

  4. A Novel Technique for Generating and Observing Chemiluminescence in a Biological Setting

    KAUST Repository

    Bü chel, Gabriel E.; Carney, Brandon; Tang, Jun; Zeglis, Brian M.; Eppinger, Jö rg; Reiner, Thomas

    2017-01-01

    not yet explored for intraoperative imaging: chemiluminescent imaging. This method employs a ruthenium-based chemiluminescent reporter along with a custom-built nebulizing system to produce ex vivo or in vivo images with high signal-to-noise ratios

  5. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    International Nuclear Information System (INIS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-01-01

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field

  6. Thermal conductivity enhancements and viscosity properties of water based Nanofluid containing carbon nanotubes decorated with ag nanoparticles

    Science.gov (United States)

    Gu, Yanni; Xu, Sheng; Wu, Xiaoshan

    2018-06-01

    The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity ( k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.

  7. Thermal conductivity enhancements and viscosity properties of water based Nanofluid containing carbon nanotubes decorated with ag nanoparticles

    Science.gov (United States)

    Gu, Yanni; Xu, Sheng; Wu, Xiaoshan

    2018-01-01

    The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity (k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.

  8. Bio- and chemiluminescence imaging in analytical chemistry

    International Nuclear Information System (INIS)

    Roda, Aldo; Guardigli, Massimo; Pasini, Patrizia; Mirasoli, Mara; Michelini, Elisa; Musiani, Monica

    2005-01-01

    Bio- and chemiluminescence imaging techniques combine the high sensitivity of bio- and chemiluminescence detection with the ability of current light imaging devices to localize and quantify light emission down to the single-photon level. These techniques have been successfully exploited for the development of sensitive analytical methods relying on the evaluation of the spatial distribution of the light emitted from a target sample. In this paper, we report on recent applications of bio- and chemiluminescence imaging for in vitro and in vivo assays, including: quantitative assays performed in various analytical formats, such as microtiter plates, microarrays and miniaturized analytical devices, used in the pharmaceutical, clinical, diagnostic and environmental fields; luminescence imaging microscopy based on enzymatic, immunohistochemical and in situ hybridization reactions for the localization of metabolites, enzymes, antigens and gene sequences in cells and tissues; whole-body luminescence imaging in live animals for evaluating biological and pathological processes and for pharmacological studies

  9. Concentration Dependence of Gold Nanoparticles for Fluorescence Enhancement

    Science.gov (United States)

    Solomon, Joel; Wittmershaus, Bruce

    Noble metal nanoparticles possess a unique property known as surface plasmon resonance in which the conduction electrons oscillate due to incoming light, dramatically increasing their absorption and scattering of light. The oscillating electrons create a varying electric field that can affect nearby molecules. The fluorescence and photostability of fluorophores can be enhanced significantly when they are near plasmonic nanoparticles. This effect is called metal enhanced fluorescence (MEF). MEF from two fluorescence organic dyes, Lucifer Yellow CH and Riboflavin, was measured with different concentrations of 50-nm colloidal gold nanoparticles (Au-NP). The concentration range of Au-NP was varied from 2.5 to 250 pM. To maximize the interaction, the dyes were chosen so their emission spectra had considerable overlap with the absorption spectra of the Au-NP, which is common in MEF studies. If the dye molecules are too close to the surface of Au-NP, fluorescence quenching can occur instead of MEF. To try to observe this difference, silica-coated Au-NP were compared to citrate-based Au-NP; however, fluorescence quenching was observed with both Au-NP. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  10. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    Science.gov (United States)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  11. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  12. A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates.

    Science.gov (United States)

    Lin, Yanna; Dai, Yuxue; Sun, Yuanling; Ding, Chaofan; Sun, Weiyan; Zhu, Xiaodong; Liu, Hao; Luo, Chuannan

    2018-05-15

    In this work, HKUST-1 and QDs-luminol-aptamer conjugates were prepared. The QDs-luminol-aptamer conjugates can be adsorbed by graphene oxide through π-π conjugation. When the adenosine was added, the QDs-luminol-aptamer conjugates were released from magnetic graphene oxide (MGO), the chemiluminescent switch was turned on. It was reported that HKUST-1 can catalyze the chemiluminescence reaction of luminol-H 2 O 2 system in an alkaline medium, and improve the chemiluminescence resonance energy transfer (CRET) between chemiluminescence and QDs indirectly. Thus, the adenosine can be detected sensitively. Based on this phenomenon, the excellent platform for detection of adenosine was established. Under the optimized conditions, the linear detection range for adenosine was 1.0 × 10 -12 -2.2 × 10 -10 mol/L with a detection limit of 2.1 × 10 -13 mol/L. The proposed method was successfully used for adenosine detection in biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    Science.gov (United States)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  14. Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes.

    Science.gov (United States)

    Novo, Pedro; Prazeres, Duarte Miguel França; Chu, Virginia; Conde, João Pedro

    2011-12-07

    Microfluidic technology has the potential to decrease the time of analysis and the quantity of sample and reactants required in immunoassays, together with the potential of achieving high sensitivity, multiplexing, and portability. A lab-on-a-chip system was developed and optimized using optical and fluorescence microscopy. Primary antibodies are adsorbed onto the walls of a PDMS-based microchannel via microspotting. This probe antibody is then recognised using secondary FITC or HRP labelled antibodies responsible for providing fluorescence or chemiluminescent and colorimetric signals, respectively. The system incorporated a micron-sized thin-film hydrogenated amorphous silicon photodiode microfabricated on a glass substrate. The primary antibody spots in the PDMS-based microfluidic were precisely aligned with the photodiodes for the direct detection of the antibody-antigen molecular recognition reactions using chemiluminescence and colorimetry. The immunoassay takes ~30 min from assay to the integrated detection. The conditions for probe antibody microspotting and for the flow-through ELISA analysis in the microfluidic format with integrated detection were defined using antibody solutions with concentrations in the nM-μM range. Sequential colorimetric or chemiluminescence detection of specific antibody-antigen molecular recognition was quantitatively detected using the photodiode. Primary antibody surface densities down to 0.182 pmol cm(-2) were detected. Multiplex detection using different microspotted primary antibodies was demonstrated.

  15. Chemiluminescence emission from irradiated polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Zhong Xiaoguang; Sun Jiazhen; Yoshii, Fumio; Sasaki, Takashi; Makuuchi, Keizo

    2000-01-01

    PTFE is well known for its chemical and high temperature resistance and also for its high-energy radiation sensitivity. The present work deals with the radiation-induced emission of chemiluminescence from PTFE film, which is generally thought as a measure of radiation induced oxidation reaction in irradiated polymer. The observation that the much stronger chemiluminescence emission from PTFE than that from other polymeric system indicate the unusual high degree of radiation induced oxidation in PTFE. On the other hand the temperature and atmosphere effect during radiation on emission of chemiluminescence were also reported. (author)

  16. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    Science.gov (United States)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  17. Label-free genotyping of cytochrome P450 2D6*10 using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection.

    Science.gov (United States)

    Wang, Hong-Qi; Wu, Zhan; Zhang, Yan; Tang, Li-Juan; Yu, Ru-Qin; Jiang, Jian-Hui

    2012-01-13

    Genotyping of cytochrome P450 monooxygenase 2D6*10 (CYP2D6*10) plays an important role in pharmacogenomics, especially in clinical drug therapy of Asian populations. This work reported a novel label-free technique for genotyping of CYP2D6*10 based on ligation-mediated strand displacement amplification (SDA) with DNAzyme-based chemiluminescence detection. Discrimination of single-base mismatch is firstly accomplished using DNA ligase to generate a ligation product. The ligated product then initiates a SDA reaction to produce aptamer sequences against hemin, which can be probed by chemiluminescence detection. The proposed strategy is used for the assay of CYP2D6*10 target and the genomic DNA. The results reveal that the proposed technique displays chemiluminescence responses in linear correlation to the concentrations of DNA target within the range from 1 pM to 1 nM. A detection limit of 0.1 pM and a signal-to-background ratio of 57 are achieved. Besides such high sensitivity, the proposed CYP2D6*10 genotyping strategy also offers superb selectivity, great robustness, low cost and simplified operations due to its label-free, homogeneous, and chemiluminescence-based detection format. These advantages suggest this technique may hold considerable potential for clinical CYP2D6*10 genotyping and association studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Chemiluminescence behavior of the carbon dots and the reduced state carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xie, Jianxin [College of Resources and Environment, Yuxi Normal University, Yuxi, Yunnan 653100 (China); Long, Yijuan; Huang, Xiaoxiao; Zhu, Rui; Wang, Xiliang; Liang, Liping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Huang, Yuming, E-mail: ymhuang@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zheng, Huzhi, E-mail: zhenghz@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2014-02-15

    Potassium permanganate (KMnO{sub 4}) can react with two different carbon nanoparticles, i.e., carbon dots (CDs) and reduced state carbon dots (r-CDs), in a strong acid medium to generate chemiluminescence (CL). Furthermore, the different CL intensities and CL behaviors due to the different surface groups on these two kinds of carbon nanoparticles were confirmed. CL spectra, fluorescence spectra, UV–vis absorption spectra, and electron paramagnanetic resonance spectra were applied to investigate the CL mechanism. The main reaction pathways were proposed as follows: for the CL reaction between CDs and KMnO{sub 4}, the excited states of CDs (CDs{sup ⁎}) and Mn(II) (Mn(II){sup ⁎}) emerged as KMnO{sub 4} could inject holes into CDs, then, the CDs{sup ⁎} and Mn(II){sup ⁎} acted as luminophors to yield CL; in the r-CDs-KMnO{sub 4} system, r-CDs were oxidized by KMnO{sub 4} directly, and CDs{sup ⁎} and Mn(II){sup ⁎} were produced, at the same time, CL occurred. What is more interesting is that the CL intensity of the r-CD system is stronger than that of the CD system, which confirms that functional groups have strong effect on the CL behavior. It inspired us that new carbon nanoparticles with excellent luminous performance can be designed by tuning their surface groups. -- Highlights: • Carbon dots (CDs) and reduced state carbon dots (r-CDs) can react with potassium permanganate (KMnO{sub 4}) in a strong acid to generate chemiluminescence (CL). • With different surface groups, the CL intensity of r-CDs-KMnO{sub 4} system is different from that of CDs-KMnO{sub 4} system. • The CL mechanisms of the two systems were investigated.

  19. High-performance liquid chromatographic assay of parabens in wash-off cosmetic products and foods using chemiluminescence detection

    International Nuclear Information System (INIS)

    Zhang Qunlin; Lian Mei; Liu Lijuan; Cui Hua

    2005-01-01

    A new method for the simultaneous determination of parabens including methylparaben, ethylparaben, propylparaben, and butylparaben by high-performance liquid chromatography (HPLC) coupled with chemiluminescence detection was developed. The procedure was based on the chemiluminescent enhancement by parabens of the cerium(IV)-rhodamine 6G system in the strong sulfuric acid medium. The good separation of parabens was carried out with an isocratic elution using a mixture of methanol and water (60:40, v/v) within 8.5 min. Under the optimized conditions, a linear working range extends three orders of magnitude with the relative standard deviations of intra- and inter-day precision below 4.5%, and the detection limits were 1.9 x 10 -9 , 2.7 x 10 -9 , 3.9 x 10 -9 , and 5.3 x 10 -9 g ml -1 for methylparaben, ethylparaben, propylparaben, and butylparaben, respectively. The chemiluminescence reaction was well compatible with the mobile phase of high-performance liquid chromatography. The proposed method has been successfully applied to the assay of parabens in wash-off cosmetic products and foods with the minimal sample preparation

  20. Photoluminescence enhancement of dye-doped nanoparticles by surface plasmon resonance effects of gold colloidal nanoparticles

    International Nuclear Information System (INIS)

    Chu, Viet Ha; Nghiem, Thi Ha Lien; Tran, Hong Nhung; Fort, Emmanuel

    2011-01-01

    Due to the energy transfer from surface plasmons, the fluorescence of fluorophores near metallic nanostructures can be enhanced. This effect has been intensively studied recently for biosensor applications. This work reports on the luminescence enhancement of 100 nm Cy3 dye-doped polystyrene nanoparticles by energy transfer from surface plasmons of gold colloidal nanoparticles with sizes of 20 and 100 nm. Optimal luminescence enhancement of the fluorophores has been observed in the mixture with 20 nm gold nanoparticles. This can be attributed to the resonance energy transfer from gold nanoparticles to the fluorophore beads. The interaction between the fluorophores and gold particles is attributed to far-field interaction

  1. Ultrasensitive chemiluminescence of tetracyclines in the presence of MCLA

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Wangsheng; Zhu, Chenyao [School of Public Health, Nanchang University, Nanchang 330006 (China); Liu, Hongcheng [Institute of Quality Standard and Testing Technology, Yunnan Academy of Agriculture Science, 650223 Kunming (China); Liu, Jing; Cai, Hongping [School of Public Health, Nanchang University, Nanchang 330006 (China); Cheng, Xianglei, E-mail: chengxlsd@163.com [School of Public Health, Nanchang University, Nanchang 330006 (China); Wei, Lijun, E-mail: weilj7681@163.com [School of Public Health, Nanchang University, Nanchang 330006 (China)

    2017-06-15

    In this article, five tetracyclines (TCs) showed ultrasensitive chemiluminescence (CL) based on the novel CL system of methoxylated Cypridina luciferin analogues (MCLA) and Ce(IV). It was found that the CL intensity of MCLA-Ce(IV) system was enhanced 30 times by adding 10 pmol chlortetracycline. Mechanisms of MCLA-Ce(IV)-TCs were investigated by CL spectra, radical scavengers and UV spectra. The results indicated that singlet oxygen, resulting from the reaction between Ce(IV) and TCs, was involved in the enhancement of CL phenomenon. This CL system coupling with flow injection analysis was developed for the determination of five common TCs. Linear ranged from 100 fmol to 20 pmol (r>0.999) with limit of detection of 20 to 50 fmol (S/N=3). The sensitivity of the present method is comparable to that of UPLC-MS/MS detection for TCs.

  2. A new approach for bisphenol A detection employing fluorosurfactant-capped gold nanoparticle-amplified chemiluminescence from cobalt(II) and peroxymonocarbonate.

    Science.gov (United States)

    Pan, Feng; Liu, Lin; Dong, Shichao; Lu, Chao

    2014-07-15

    In this work, we utilized the nonionic fluorosurfactant-capped gold nanoparticles (GNPs) as a novel chemiluminescence (CL) probe for the determination of trace bisphenol A. Bisphenol A can induce a sharp decrease in CL intensity from the GNP-Co(2+)-peroxymonocarbonate (HCO4(-)) system. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the logarithm of concentration of bisphenol A in the range of 0.05-50 μM (R(2) = 0.9936), and the detection limit at a signal-to-noise ratio of 3 for bisphenol A was 10 nM. The applicability of the proposed method has been validated by determining bisphenol A in real polycarbonate samples with satisfactory results. The recoveries for bisphenol A in spiked samples were found to be between 94.4% and 105.0%. The relative standard deviation (RSD) for 12 repeated measurements of 0.5 μM bisphenol A was 2.2%. The proposed method described herein was simple, selective and obviated the need of extensive sample pretreatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Evaluation of Antibacterial Enrofloxacin in Eggs by Matrix Solid Phase Dispersion-Flow Injection Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Xiaocui Duan

    2014-01-01

    Full Text Available The study based on the chemiluminescence (CL reaction of potassium ferricyanide and luminol in sodium hydroxide medium, enrofloxacin (ENRO could dramatically enhance CL intensities and incorporated with matrix solid-phase dispersion (MSPD technique (Florisil used as dispersant, dichloromethane eluted the target compounds. A simple flow injection chemiluminescence (FL-CL method with MSPD technique for determination of ENRO in eggs was described. Under optimal conditions, the CL intensities were linearly related to ENRO concentration ranging from 4.0×10-8 g.L−1 to 5.0×10-5 g.L−1, with a correlation coefficient of 0.9989 and detection limit of 5.0×10-9 g.L−1. The relative standard deviation was 3.6% at an ENRO concentration of 2.0×10-6 g.L−1. Our testing technique can help ensure food safety, and thus, protect public health.

  4. Simultaneous determination of isoniazid and p-aminosalicylic acid by capillary electrophoresis using chemiluminescence detection.

    Science.gov (United States)

    Zhang, Xinfeng; Xuan, Yuelan; Sun, Aimin; Lv, Yi; Hou, Xiandeng

    2009-01-01

    It was found that isoniazid (ISO) or p-aminosalicylic acid (PAS) could enhance the chemiluminescence (CL) emission from Cu (II)-luminol-hydrogen peroxide system, and the increased chemiluminescence signals were proportional to their concentrations, respectively. Based on this phenomenon, a chemiluminescence method coupled to capillary electrophoresis (CE) was established for simultaneous determination of ISO and PAS. The CE conditions including running buffer and running voltage were investigated in detail. The effects of the pH of H(2)O(2) solution and the concentrations of luminol, H(2)O(2) and Cu (II) on the CL signal were also investigated carefully. Under the optimized conditions, the analysis could be accomplished within 10 min, with the limits of detection of 0.3 microg mL(-1) for ISO and 1.1 microg mL(-1) for PAS, corresponding to 7.2 and 26.4 pg per injection (24 nL), respectively. Finally, the method was validated by determining the two analytes in pharmaceutical preparation and spiked human serum samples. The results of pharmaceutical tablet analysis were in good agreement with the labeled amounts. The recoveries for ISO and PAS in human serum were in the range of 92-104% and 90-113%, respectively. Copyright 2008 John Wiley & Sons, Ltd.

  5. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sklenářová, Hana, E-mail: sklenarova@faf.cuni.cz [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic); Voráčová, Ivona [Institute of Analytical Chemistry of the CAS, v. v. i., Brno (Czech Republic); Chocholouš, Petr; Polášek, Miroslav [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic)

    2017-04-15

    The effect of 0.01–100 µmol L{sup −1} Quantum Dots (QDs) with different emission wavelengths (520–640 nm) and different surface modifications (mercaptopropionic, mercaptoundecanoic, thioglycolic acids and mercaptoethylamine) on permanganate-induced and luminol–hydrogen peroxide chemiluminescence (CL) was studied in detail by a sequential injection technique using a spiral detection flow cell and a flow-batch detection cell operated in flow and stop-flow modes. In permanganate CL system no significant enhancement of the CL signal was observed while for the luminol–hydrogen peroxide CL substantial increase (>100% and >90% with the spiral detection cell in flow and stop-flow modes, respectively) was attained for CdTe QDs. Enhancement exceeding 120% was observed for QDs with emissions at 520, 575 and 603 nm (sizes of 2.8 nm, 3.3 nm and 3.6 nm) using the flow-batch detection cell in the stop-flow mode. Pronounced effect was noted for surface modifications while mercaptoethylamine was the most efficient in CL enhancement compared to mercaptopropionic acid the most commonly applied coating. Significant difference between results obtained in flow and flow-batch conditions based on the entire kinetics of the extremely fast CL reaction was discussed. The increase of the CL signal was always accompanied by reduced lifetime of the CL emission thus application of QDs in flow techniques should be always coupled with the study of the CL lifetime.

  6. Topology optimization of nanoparticles for localized electromagnetic field enhancement

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Vester-Petersen, Joakim; Madsen, Søren Peder

    2017-01-01

    We consider the design of individual and periodic arrangements of metal or semiconductor nanoparticles for localized electromagnetic field enhancement utilizing a topology optimization based numerical framework as the design tool. We aim at maximizing a function of the electromagnetic field...

  7. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent.

    Science.gov (United States)

    Podsiadlo, Paul; Sinani, Vladimir A; Bahng, Joong Hwan; Kam, Nadine Wong Shi; Lee, Jungwoo; Kotov, Nicholas A

    2008-01-15

    6-mercaptopurine and its riboside derivatives are some of the most widely utilized anti-leukemic and anti-inflammatory drugs. Their short biological half-life and severe side effects limit their use. A new delivery method for these drugs based on 4-5 nm gold nanoparticles can potentially resolve these issues. We have found substantial enhancement of the antiproliferative effect against K-562 leukemia cells of Au nanoparticles bearing 6-mercaptopurine-9-beta-d-ribofuranoside compared to the same drug in typically administered free form. The improvement was attributed to enhanced intracellular transport followed by the subsequent release in lysosomes. Enhanced activity and nanoparticle carriers will make possible the reduction of the overall concentration of the drug, renal clearance, and, thus, side effects. The nanoparticles with mercaptopurine also showed excellent stability over 1 year without loss of inhibitory activity.

  8. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.

    Science.gov (United States)

    Pitek, Andrzej S; Jameson, Slater A; Veliz, Frank A; Shukla, Sourabh; Steinmetz, Nicole F

    2016-05-01

    Plant virus-based nanoparticles (VNPs) are a novel class of nanocarriers with unique potential for biomedical applications. VNPs have many advantageous properties such as ease of manufacture and high degree of quality control. Their biocompatibility and biodegradability make them an attractive alternative to synthetic nanoparticles (NPs). Nevertheless, as with synthetic NPs, to be successful in drug delivery or imaging, the carriers need to overcome several biological barriers including innate immune recognition. Plasma opsonization can tag (V)NPs for clearance by the mononuclear phagocyte system (MPS), resulting in shortened circulation half lives and non-specific sequestration in non-targeted organs. PEG coatings have been traditionally used to 'shield' nanocarriers from immune surveillance. However, due to broad use of PEG in cosmetics and other industries, the prevalence of anti-PEG antibodies has been reported, which may limit the utility of PEGylation in nanomedicine. Alternative strategies are needed to tailor the in vivo properties of (plant virus-based) nanocarriers. We demonstrate the use of serum albumin (SA) as a viable alternative. SA conjugation to tobacco mosaic virus (TMV)-based nanocarriers results in a 'camouflage' effect more effective than PEG coatings. SA-'camouflaged' TMV particles exhibit decreased antibody recognition, as well as enhanced pharmacokinetics in a Balb/C mouse model. Therefore, SA-coatings may provide an alternative and improved coating technique to yield (plant virus-based) NPs with improved in vivo properties enhancing drug delivery and molecular imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence

    Science.gov (United States)

    Yang, Shikuan; Cai, Weiping; Zeng, Haibo; Li, Zhigang

    2008-07-01

    Nearly spherical polycrystalline Si nanoparticles with 20 nm diameter were fabricated based on laser ablation of silicon wafer immersed in sodium dodecyl sulfate aqueous solution. Such Si nanoparticles consist of disordered areas and ultrafine grains of 3 nm in mean size and exhibit significant photoluminescence in blue region. Importantly, aging at ambient air leads to continuing enhancement of the emission (more than 130 times higher in 16 weeks) showing stable and strong blue emission. This aging enhancement is attributed to progressive passivation of nonradiative Pb centers corresponding to silicon dangling bonds on the particles' surface. This study could be helpful in pushing Si into optoelectronic field and Si-based full color display, biomedical tagging, and flash memories.

  10. Thermal performance enhancement in nanofluids containing diamond nanoparticles

    International Nuclear Information System (INIS)

    Xie Huaqing; Yu Wei; Li Yang

    2009-01-01

    Nanofluids, nanoparticle suspensions prepared by dispersing nanoscale particles in a base fluid, have been gaining interest lately due to their potential to greatly outperform traditional thermal transport liquids. Diamond has the highest thermal transport capacity in nature and diamond particles are often used as filler in mixtures for upgrading the performance of a matrix. It is reasonable to expect that the addition of diamond nanoparticles (DNPs) would lead to thermal performance enhancement in a base fluid. In this study, homogeneous and stable nanofluids composed of DNPs as the inclusions and a mixture of ethylene glycol (EG) and water as base fluid have been prepared. Acid mixtures of perchloric acid, nitric acid and hydrochloric acid were employed to purify and tailor the DNPs to eliminate impurities and to enhance their dispersibilty. Ultrasound and the alkalinity of solution are beneficial to the deaggregation of the soft DNP aggregations. The thermal conductivity enhancement of the DNP nanofluids increases with DNP loading and the thermal conductivity enhancement is more than 18.0% for a nanofluid at a DNP volume fraction of 0.02. Viscosity measurements show that the DNP nanofluids demonstrate Newtonian behaviour, and the viscosity significantly decreases with temperature. With increasing volume fraction of DNPs, the convective heat transfer coefficient increases first, and then decreases with a further increase in the volume fraction of DNPs. The nanofluid with a volume fraction of 0.005 has optimal overall thermal performance.

  11. Electrical pulse – mediated enhanced delivery of silver nanoparticles into living suspension cells for surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Lin, J; Li, B; Feng, S; Chen, G; Li, Y; Huang, Z; Chen, R; Yu, Y; Huang, H; Lin, S; Li, C; Su, Y; Zeng, H

    2012-01-01

    Electrical pulse-mediated enhanced silver nanoparticles delivery is a much better method for intracellular surface-enhanced Raman spectroscopy (SERS) measurements of suspension cells. Robust and high-quality SERS spectra of living suspension cells were obtained based on an electroporation-SERS method, which can overcomes the shortcoming of non-uniform distribution of silver nanoparticles localized in the cell cytoplasm after electroporation and reduces the amount variance of silver nanoparticles delivered into different cells. The electroporation parameters include three 150 V (375 V/cm) electric pulses of 1, 5, and 5 ms durations respectively. Our results indicate that considerable amount of silver nanoparticles can be rapidly delivered into the human promyelocytic leukemia HL60 cells, and the satisfied SERS spectra were obtained while the viability of the treated cells was highly maintained (91.7%). The electroporation-SERS method offers great potential approach in delivering silver nanoparticles into living suspension cells, which is useful for widely biomedical applications including the real-time intracellular SERS analysis of living cells

  12. 40 CFR 1065.270 - Chemiluminescent detector.

    Science.gov (United States)

    2010-07-01

    ... Chemiluminescent detector. (a) Application. You may use a chemiluminescent detector (CLD) to measure NOX concentration in raw or diluted exhaust for batch or continuous sampling. We generally accept a CLD for NOX...) Component requirements. We recommend that you use a CLD that meets the specifications in Table 1 of § 1065...

  13. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Jourabian, Mahmoud [University of Trieste, Piazzale (Italy); Farhadi, Mousa [Babol Noshirvani University of Technology, Shariati Avenue (Iran, Islamic Republic of)

    2015-09-15

    Convection melting of ice as a Phase change material (PCM) dispersed with Cu nanoparticles, which is encapsulated in a semicircle enclosure is studied numerically. The enthalpy-based Lattice Boltzmann method (LBM) combined with a Double distribution function (DDF) model is used to solve the convection-diffusion equation. The increase in solid concentration of nanoparticles results in the enhancement of thermal conductivity of PCM and the decrease in the latent heat of fusion. By enhancing solid concentration of nanoparticles, the viscosity of nanofluid increases and convective heat transfer dwindles. For all Rayleigh numbers investigated in this study, the insertion of nanoparticles in PCM has no effect on the average Nusselt number.

  14. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study

    International Nuclear Information System (INIS)

    Jourabian, Mahmoud; Farhadi, Mousa

    2015-01-01

    Convection melting of ice as a Phase change material (PCM) dispersed with Cu nanoparticles, which is encapsulated in a semicircle enclosure is studied numerically. The enthalpy-based Lattice Boltzmann method (LBM) combined with a Double distribution function (DDF) model is used to solve the convection-diffusion equation. The increase in solid concentration of nanoparticles results in the enhancement of thermal conductivity of PCM and the decrease in the latent heat of fusion. By enhancing solid concentration of nanoparticles, the viscosity of nanofluid increases and convective heat transfer dwindles. For all Rayleigh numbers investigated in this study, the insertion of nanoparticles in PCM has no effect on the average Nusselt number.

  15. Near-Infrared Intraoperative Chemiluminescence Imaging

    KAUST Repository

    Bü chel, Gabriel E.; Carney, Brandon; Shaffer, Travis M.; Tang, Jun; Austin, Christine; Arora, Manish; Zeglis, Brian M.; Grimm, Jan; Eppinger, Jö rg; Reiner, Thomas

    2016-01-01

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9pmolcm-2 of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the invivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Near-Infrared Intraoperative Chemiluminescence Imaging

    KAUST Repository

    Büchel, Gabriel E.

    2016-08-03

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9pmolcm-2 of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the invivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods.

    Directory of Open Access Journals (Sweden)

    Margaret M Billingsley

    Full Text Available Accurate antigen detection is imperative for clinicians to diagnose disease, assess treatment success, and predict patient prognosis. The most common technique used for the detection of disease-associated biomarkers is the enzyme linked immunosorbent assay (ELISA. In an ELISA, primary antibodies are incubated with biological samples containing the biomarker of interest. Then, detectible secondary antibodies conjugated with horseradish peroxidase (HRP bind the primary antibodies. Upon addition of a color-changing substrate, the samples provide a colorimetric signal that directly correlates to the targeted biomarker concentration. While ELISAs are effective for analyzing samples with high biomarker content, they lack the sensitivity required to analyze samples with low antigen levels. We hypothesized that the sensitivity of ELISAs could be enhanced by replacing freely delivered primary antibodies with antibody-nanoparticle conjugates that provide excess binding sites for detectible secondary antibodies, ultimately leading to increased signal. Here, we investigated the use of nanoshells (NS decorated with antibodies specific to epidermal growth factor receptor (EGFR as a model system (EGFR-NS. We incubated one healthy and two breast cancer cell lines, each expressing different levels of EGFR, with EGFR-NS, untargeted NS, or unconjugated EGFR antibodies, as well as detectable secondary antibodies. We found that EGFR-NS consistently increased signal intensity relative to unconjugated EGFR antibodies, with a substantial 13-fold enhancement from cells expressing high levels of EGFR. Additionally, 40x more unconjugated antibodies were required to detect EGFR compared to those conjugated to NS. Our results demonstrate that antibody-nanoparticle conjugates lower the detection limit of traditional ELISAs and support further investigation of this strategy with other antibodies and nanoparticles. Owing to their enhanced sensitivity, we anticipate that

  18. Nanoparticles as image enhancing agents for ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jun [Biomedical Engineering Department, Ohio State University, 270 Bevis Hall, 1080 Carmack Rd, Columbus, OH 43210 (United States); Levine, Andrea L [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States); Mattoon, John S [Department of Veterinary Clinical Sciences, Ohio State University, 1151 Veterinary Hospital, 601 Vernon Tharp St., Columbus, OH 43210 (United States); Yamaguchi, Mamoru [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States); Lee, Robert J [Division of Pharmaceutics, College of Pharmacy, NCI Comprehensive Cancer Center, and NSF Nanoscale Science and Engineering Center, Ohio State University, 500 West 12th Avenue, Columbus, OH 43210 (United States); Pan Xueliang [Department of Statistics, Ohio State University, 1958 Neil Avenue, Columbus, OH 43210 (United States); Rosol, Thomas J [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States)

    2006-05-07

    Nanoparticles have drawn great attention as targeted imaging and/or therapeutic agents. The small size of the nanoparticles allows them to target cells that are beyond capillary vasculature, such as cancer cells. We investigated the effect of solid nanoparticles for enhancing ultrasonic grey scale images in tissue phantoms and mouse livers in vivo. Silica nanospheres (100 nm) were dispersed in agarose at 1-2.5% mass concentration and imaged by a high-resolution ultrasound imaging system (transducer centre frequency: 30 MHz). Polystyrene particles of different sizes (500-3000 nm) and concentrations (0.13-0.75% mass) were similarly dispersed in agarose and imaged. Mice were injected intravenously with nanoparticle suspensions in saline. B-mode images of the livers were acquired at different time points after particle injection. An automated computer program was used to quantify the grey scale changes. Ultrasonic reflections were observed from nanoparticle suspensions in agarose gels. The image brightness, i.e., mean grey scale level, increased with particle size and concentration. The mean grey scale of mouse livers also increased following particle administration. These results indicated that it is feasible to use solid nanoparticles as contrast enhancing agents for ultrasonic imagin000.

  19. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    Science.gov (United States)

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  20. Effect of the size of silver nanoparticles on SERS signal enhancement

    Science.gov (United States)

    He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.

    2017-08-01

    The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.

  1. Antioxidant properties of biohybrids based on liposomes and sage silver nanoparticles.

    Science.gov (United States)

    Barbinta-Patrascu, Marcela Elisabeta; Bunghez, Ioana-Raluca; Iordache, Stefan Marian; Badea, Nicoleta; Fierascu, Radu-Claudiu; Ion, Rodica Mariana

    2013-03-01

    This paper is aimed to describe a simple and rapid eco-friendly bottom-up approach for the preparation of antioxidant silver bionanostructures using a leaf extract from sage (Salvia officinalis L.). The bioreduction property of sage in the synthesis of silver nanoparticles was investigated by UV-VIS and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. During their preparation, the particle size analysis was performed by using Dynamic Light Scattering technique. Ultrasonic irradiation was used to obtain sage silver nanoparticles. The morphology (size and shape) of the herbal silver nanoparticles was evaluated by Scanning Electron Microscopy that revealed the formation of spherical phytonanoparticles with size less than 80 nm. In order to increase their stability and their biocompatibility, the sage silver nanoparticles were introduced in two types of liposomes: soybean lecithin- and Chla-DPPC-lipid vesicles which were prepared by thin film hydration method. X-Ray Fluorescence analysis confirmed the silver presence in liposomes/sage-AgNPs biohybrids. The stability of liposomes/herbal AgNPs bioconstructs was checked by zeta potential measurements. The most stable biohybrids: Chla-DPPC/sage-AgNPs with zeta potential value of -34.2 mV, were characterized by Atomic Force Microscopy revealing the spherical and quasi-spherical shaped profiles of these nanobiohybrids with size less than 96 nm. The antioxidant activity of the silver bionanostructures was evaluated using chemiluminescence assay. The developed eco-friendly silver phytonanostructures based on lipid membranes, nanosilver and sage extract, manifest strong antioxidant properties (between 86.5% and 98.6%).

  2. Flow injection chemiluminescence determination of lercanidipine based on N-chlorosuccinimide-eosin Y post-chemiluminescence reaction.

    Science.gov (United States)

    Wang, Guowei; Zhao, Fang; Gao, Ying

    2014-12-01

    A novel post-chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N-chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10(-10) to 3.0 × 10(-6)  g/mL with a detection limit of 2.3 × 10(-10) g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10(-8) g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Polyelectrolyte-based electrochemiluminescence enhancement for Ru(bpy){sub 3}{sup 2+} loaded by SiO{sub 2} nanoparticle carrier and its high sensitive immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Zhi-Li; Song, Tian-Mei; Chen, Zhe [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); Guo, Wu-Run [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002 (China); Xie, Hong-Ping, E-mail: hpxie@suda.edu.cn [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); Xie, Lian, E-mail: xielian@suda.edu.cn [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China)

    2015-03-03

    Highlights: • Preparation of strong ECL nanoparticles PAA–Ru@SiO{sub 2}/[PAA⋯Ru&Nafion⋯Ru]. • Ion-pair macromolecule PAA–Ru formed to greatly increase the doping amount. • PAA&Nafion membrane increased the amount of ion-exchanged Ru(bpy){sub 3}{sup 2+}. • PAA&Nafion membrane enhanced the ability of electron transfer. • Realized antibody labeling and established a high-sensitive immunoassay. - Abstract: In this paper the strong electrochemiluminescence (ECL) nanoparticles have been prepared based on the anionic polyelectrolyte sodium polyacrylate (PAA)-ECL enhancement for Ru(bpy){sub 3}{sup 2+}, which were loaded by the carrier of SiO{sub 2} nanoparticle. There were two kinds of Ru(bpy){sub 3}{sup 2+} for the as-prepared nanoparticles, the doped one and the exchanged one. The former was loaded inside the ECL nanoparticles by doping, in a form of ion-pair macromolecules PAA–Ru(bpy){sub 3}{sup 2+}. The corresponding ECL was enhanced about 2 times owing to the doping increase of Ru(bpy){sub 3}{sup 2+}. The latter was loaded on the PAA-doped Nafion membrane by ion exchange. The corresponding ECL was enhanced about 3 times owing to the ion-exchanging increase of Ru(bpy){sub 3}{sup 2+}. At the same time, ECL intensity of the doped-inside Ru(bpy){sub 3}{sup 2+} was further enhanced 13 times because polyelectrolyte PAA in the doped membrane could obviously enhance electron transfer between the doped Ru(bpy){sub 3}{sup 2+} and the working electrode. Furthermore, based on hydrophobic regions of the doped membrane antibody labeling could be easily realized by the as-prepared nanoparticles and then a high sensitive ECL immunoassay for HBsAg was developed. The linear range was between 1.0 and 100 pg mL{sup −1} (R{sup 2} = 0.9912). The detection limit could be as low as 0.11 pg mL{sup −1} (signal-to-noise ratio = 3)

  4. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.

    Science.gov (United States)

    Kim, Young-Kee; Lee, Haryeong

    2016-03-01

    The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemiluminescence determination of ultramicro DNA with a flow-injection method

    International Nuclear Information System (INIS)

    Chen Hui; Zhou Min; Jin Xiaoyong; Song Yumin; Zhang Ziyu; Ma Yongjun

    2002-01-01

    A high sensitive flow-injection chemiluminescence method for determination of calf thymus DNA and herring sperm DNA has been developed. The method is based on the chemiluminescence reaction of Rhodamine B-cerium(IV)-thermally denatured DNAs in sulfuric acid media. The proposed procedure allows quantitation of DNAs in the range 2.6x10 -5 to 0.26 μg ml -1 for calf thymus DNA and 5.0x10 -8 to 5.0x10 -5 μg ml -1 for herring sperm DNA with correlation coefficients 0.9998 and 0.9996 (both n=11), respectively. The detection limits (3σ) are 6.5x10 -6 μg ml -1 for calf thymus DNA and 4.3x10 -8 μg ml -1 for herring sperm DNA. The possible mechanism of chemiluminescence in the system is discussed

  6. Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces.

    Science.gov (United States)

    Tiguntseva, E; Chebykin, A; Ishteev, A; Haroldson, R; Balachandran, B; Ushakova, E; Komissarenko, F; Wang, H; Milichko, V; Tsypkin, A; Zuev, D; Hu, W; Makarov, S; Zakhidov, A

    2017-08-31

    Recently, hybrid halide perovskites have emerged as one of the most promising types of materials for thin-film photovoltaic and light-emitting devices because of their low-cost and potential for high efficiency. Further boosting their performance without detrimentally increasing the complexity of the architecture is critically important for commercialization. Despite a number of plasmonic nanoparticle based designs having been proposed for solar cell improvement, inherent optical losses of the nanoparticles reduce photoluminescence from perovskites. Here we use low-loss high-refractive-index dielectric (silicon) nanoparticles for improving the optical properties of organo-metallic perovskite (MAPbI 3 ) films and metasurfaces to achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally a 50% enhancement of photoluminescence intensity from a perovskite layer with silicon nanoparticles and 200% enhancement for a nanoimprinted metasurface with silicon nanoparticles on top. Strong increase in light absorption is also demonstrated and described by theoretical calculations. Since both silicon nanoparticle fabrication/deposition and metasurface nanoimprinting techniques are low-cost, we believe that the developed all-dielectric approach paves the way to novel scalable and highly effective designs of perovskite based metadevices.

  7. Determination of hyperin in seed of Cuscuta chinensis Lam. by enhanced chemiluminescence of CdTe quantum dots on calcein/K3Fe(CN)6 system.

    Science.gov (United States)

    Kang, Jing; Li, Xuwen; Geng, Jiayang; Han, Lu; Tang, Jieli; Jin, Yongri; Zhang, Yihua

    2012-10-15

    In this paper, 3-mercaptocarboxylic acid (MPA) modified CdTe quantum dots (QDs) were used as sensitizers, to enhance the chemiluminescence (CL) of the calcein/K(3)Fe(CN)(6) system. A new CL system of CdTe/calcein/K(3)Fe(CN)(6) was developed. The effects of reactant concentrations and the particle sizes of CdTe QDs on the CL emission were investigated in detail. The possible enhancement mechanism of the CL was also further investigated based on the photoluminescence (PL) and CL spectra. Polyphenols such as chlorogenic acid, quercetin, hyperin, catechin and kaempferol, were observed to inhibit the CL signal of the CdTe/calcein/K(3)Fe(CN)(6) system and determined by the proposed method. The proposed method was applied to the determination of hyperin in seed of Cuscuta chinensis Lam. and the results obtained were satisfactory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Surface-enhanced Raman effect in hybrid metal–semiconductor nanoparticle assemblies

    International Nuclear Information System (INIS)

    Lughi, Vanni; Bonifacio, Alois; Barbone, Matteo; Marsich, Lucia; Sergo, Valter

    2013-01-01

    Hybrid metal–semiconductor nanoparticles consisting of silver nanoparticle cores (AgNPs) coated with a layer of CdSe quantum dots (QDs) have been studied by Raman spectroscopy. The hybrid nanoparticles were prepared via electrostatic interaction by mixing aqueous suspensions of QDs and AgNPs, where opposite charges on the AgNPs and QDs surfaces were induced by opportunely selected capping agents. Assemblies of such hybrid nanoparticles show an increased intensity of the Raman spectrum of up to 500 times, when compared to that of the sole QDs. This enhancement is attributed to the SERS effect (Surface-enhanced Raman scattering). Such enhancement of the Raman modes suggests several opportunities for further research, both in imaging and sensing applications.

  9. Chemiluminescence determination of ultramicro DNA with a flow-injection method

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Zhou Min; Jin Xiaoyong; Song Yumin; Zhang Ziyu; Ma Yongjun

    2002-02-12

    A high sensitive flow-injection chemiluminescence method for determination of calf thymus DNA and herring sperm DNA has been developed. The method is based on the chemiluminescence reaction of Rhodamine B-cerium(IV)-thermally denatured DNAs in sulfuric acid media. The proposed procedure allows quantitation of DNAs in the range 2.6x10{sup -5} to 0.26 {mu}g ml{sup -1} for calf thymus DNA and 5.0x10{sup -8} to 5.0x10{sup -5} {mu}g ml{sup -1} for herring sperm DNA with correlation coefficients 0.9998 and 0.9996 (both n=11), respectively. The detection limits (3{sigma}) are 6.5x10{sup -6} {mu}g ml{sup -1} for calf thymus DNA and 4.3x10{sup -8} {mu}g ml{sup -1} for herring sperm DNA. The possible mechanism of chemiluminescence in the system is discussed.

  10. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection

    International Nuclear Information System (INIS)

    Su Rongguo; Lin Jinming; Qu Feng; Chen Zhifeng; Gao Yunhua; Yamada, Masaaki

    2004-01-01

    In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis

  11. Multivalent Porous Silicon Nanoparticles Enhance the Immune Activation Potency of Agonistic CD40 Antibody

    Science.gov (United States)

    Gu, Luo; Ruff, Laura E.; Qin, Zhengtao; Corr, Maripat P.; Hedrick, Stephen M.; Sailor, Michael J.

    2012-01-01

    One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as selfmalignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30–40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs. PMID:22689074

  12. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability

    Directory of Open Access Journals (Sweden)

    Neves AR

    2013-01-01

    Full Text Available Ana Rute Neves,1 Marlene Lúcio,1 Susana Martins,2,3 José Luís Costa Lima,1 Salette Reis11REQUIMTE, Chemistry Department, Faculty of Pharmacy, University of Porto, 2Laboratory for Pharmaceutical Technology/Research Centre in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 3Institute of Biomedical Engineering, University of Porto, PortugalIntroduction: Resveratrol is a polyphenol found in grapes and red wines. Interest in this polyphenol has increased due to its pharmacological cardio- and neuroprotective, chemopreventive, and antiaging effects, among others. Nevertheless, its pharmacokinetic properties are less favorable, since the compound has poor bioavailability, low water solubility, and is chemically unstable. To overcome these problems, we developed two novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance resveratrol's oral bioavailability for further use in medicines, supplements, and nutraceuticals.Methods and materials: Solid lipid nanoparticles (SLNs and nanostructured lipid carriers (NLCs loaded with resveratrol were successfully produced by a modified hot homogenization technique. These were completely characterized to evaluate the quality of the developed resveratrol-loaded nanoparticles.Results: Cryo-scanning electron microscopy morphology studies showed spherical and uniform nanoparticles with a smooth surface. An average resveratrol entrapment efficiency of ~70% was obtained for both SLNs and NLCs. Dynamic light scattering measurements gave a Z-average of 150–250 nm, polydispersity index of ~0.2, and a highly negative zeta potential of around −30 mV with no statistically significant differences in the presence of resveratrol. These characteristics remained unchanged for at least 2 months, suggesting good stability. Differential scanning calorimetry studies confirmed the solid state of the SLNs and NLCs at both room and body temperatures. The NLCs had a less ordered crystalline

  13. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    National Research Council Canada - National Science Library

    Soref, Richard A; Khurgin, J. B; Sun, G

    2008-01-01

    We apply the "effective mode volume" theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in the vicinity of isolated metal nanoparticles and their arrays...

  14. Silver nanoparticle based surface enhanced Raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation

    International Nuclear Information System (INIS)

    Huang, H; Shi, H; Chen, W; Yu, Y; Lin, D; Xu, Q; Feng, S; Lin, J; Huang, Z; Li, Y; Chen, R

    2013-01-01

    This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites. (letter)

  15. Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates

    International Nuclear Information System (INIS)

    Sun Mingrui; Qian Chuang; Wu Wengang; Yu Wenxuan; Wang Yifei; Mao Haiyang

    2012-01-01

    This paper reports a novel highly ordered tripetaloid structure array (TPSA) which performs very well as an active surface-enhanced Raman scattering (SERS) substrate. The TPSA is easily fabricated by anisotropic etching of a self-assembly silica-nanoparticle bilayer and a subsequent metal deposition step, with notable uniformity and reproducibility. Electromagnetic simulation indicates that the narrow inter-gaps and edge protrusions in the TPSA act as hot spots. In addition, the peak electromagnetic field intensity in the inter-gaps changes slightly and periodically as the polarization of the incident light varies from 0° to 360°. SERS experiments show that the SERS enhancement factor (EF) of a Au-film-covered TPSA is 12 times higher than that of regular Au-film-over-nanoparticles, and not sensitive to the polarization of the incident light. The spatially averaged EF of the TPSA is as high as 5.7 × 10 6 , and the local EF of its hot spots is much higher. (paper)

  16. Free radical scavenging activity of coenzyme Q measured by a chemiluminescent assay

    International Nuclear Information System (INIS)

    Battino, Maurizio; Ferri, Elida; Girotti, Stefano; Lenaz, Giorgio

    1991-01-01

    Involvement of coenzyme Q (CoQ) in anti-oxydant activities, in addition to its major redox role, has frequently been suggested in recent years. In order to elucidate if CoQ could really be engaged in scavenging free radicals produced endogenously in a biological system, an experimental system was developed in which beef heart mitochondria in the presence of a saturating NADH concentration and of rotenone produce free radicals. The presence of oxygen-reactive forms was easily detected by a luminol-dependent chemiluminescence process. The chemi-luminescence assay showed that short-chain CoQ homologues can act as pro-oxidants, enhancing free radical effects, while exogenous coenzyme Q 10 could scavenge free radicals, especially at very low concentration. In this system, exogenous CoQ 10 was more effective than α-tocopherol at the same concentration in scavenging free radicals. The molecular mechanism that leads to this activity is still unclear, but these results are of biochemical importance because they indicate that CoQ may act as an anti=oxidant in situations mimicking physiopathological conditions. This direct chemiluminescent method is promising for studies of biochemical processes which involve active oxygen species. (author). 24 refs.; 4 figs

  17. Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy

    International Nuclear Information System (INIS)

    Cho, Sungkoo; Jeong, Jonghwi; Kim, Chanhyeong; Yoon, Myonggeun

    2010-01-01

    Radiation dose enhancement by injection of a high atomic number (Z) material into tumor volumes has been studied for various radiation sources and different concentrations of gold nanoparticles. Brachytherapy employs low energy photons of less than ∼0.5 MeV, which indeed is the optimal energy range for radiation dose enhancement by introduction of high-Z material. The present study uses the MCNPX TM code to estimate the dose enhancement by gold nanoparticles for the four common brachytherapy sources ( 137 Cs, 192 Ir, 125 I, and 103 Pd). Additionally, cisplatin (H 6 Cl 2 N 2 Pt), a platinum-based chemotherapeutic drug, was used to evaluate the dose enhancement. The simulated source models were evaluated with reference to the calculated TG-43 parameter values. The dose enhancement in the tumor region due to the gold nanoparticles and cisplatin was evaluated according to the dose enhancement factor (DEF). The maximum values of the average DEFs were found to be 1.03, 1.11, 3.43, and 2.17 for the 137 Cs, 192 Ir, 125 I, and 103 Pd sources, respectively. The dose enhancement values for the low-energy sources were significantly higher than those for the high-energy sources. The dose enhancement due to cisplatin was calculated by using the same approach and was found to be comparable to that of the gold nanoparticles. The maximum value of the average DEF for cisplatin was 1.12 for the 5% concentration level in water and a 192 Ir source. We confirmed that cisplatin could be applied to cancer therapy that combines chemotherapeutic drugs with radiation therapy. The results presented herein will be used to study dose enhancement in tumor regions using various radiation modalities with high atomic number materials.

  18. TU-H-CAMPUS-TeP3-05: Evaluation of the Microscopic Dose Enhancement in the Nanoparticle-Enhanced Auger Therapy

    International Nuclear Information System (INIS)

    Sung, W; Jung, S; Ye, S

    2016-01-01

    Purpose: The aim of this study is to apply Monte Carlo simulations to investigate the nanoparticle dose enhancement for Auger therapy. Methods: Two nanoparticle fabrications were considered: nanoshell and nanosphere. In the first step, a single nanoparticle was irradiated with Auger emitters. The electrons were scored in a phase space at the outer surface of the nanoparticle with Geant4-Penelope. In the second step, the previously recorded phase space was used as a source and placed at the center of a cell-size water phantom. The nanoscale dose was evaluated in water around the nanoparticle with Geant4-DNA. The dose enhancement factor (DEF) is defined as the ratio of doses with and without nanoparticles. The nanoparticles were replaced by corresponding water nanoparticle with the same size and volume source which represents typical situation of Auger emitters without nanoparticle. Various sizes/materials of nanoparticles and isotopes were considered. Results: Nanoshell - Microscopic dose was increased up to 130% at 20 – 100 nm distances from the surface of Au- 125 I nanoshell. However, dose at less than 20 nm distance was reduced due to absorbed low energy electrons in gold nanoshell. The amounts and regions of the dose enhancement were dependent on nanoshell size, materials, and isotopes. Nanosphere - The increased amounts of electrons up to 300% and reduced average energy with nanosphere were observed compared with water nanoparticle. We observed localized dose enhancement (up to a factor 3.6) in the immediate vicinity (< 50 nm) of Au- 125 I nanosphere. The dose enhancement patterns vary according to nanosphere sizes and isotopes. Conclusion: We conclude that Auger therapy with nanoparticles can lead to change of electron energy spectrum and dose enhancements at certain range. The dose enhancement patterns vary according to nanoparticle sizes, materials, and isotopes. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the

  19. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  20. Enhanced hydrogen reaction kinetics of nanostructured Mg-based composites with nanoparticle metal catalysts dispersed on supports

    International Nuclear Information System (INIS)

    Yoo, Yeong; Tuck, Mark; Kondakindi, Rajender; Seo, Chan-Yeol; Dehouche, Zahir; Belkacemi, Khaled

    2007-01-01

    Hydrogen reaction kinetics of nanocrystalline MgH 2 co-catalyzed with Ba 3 (Ca 1+x Nb 2-x )O 9-δ (BCN) proton conductive ceramics and nanoparticle bimetallic catalyst of Ni/Pd dispersed on single wall carbon nanotubes (SWNTs) support has been investigated. The nanoparticle bimetallic catalysts of Ni/Pd supported by SWNTs were synthesized based on a novel polyol method using NiCl 2 .6H 2 O, PdCl 2 , NaOH and ethylene glycol (EG). The nanostructured Mg composites co-catalyzed with BCN and bimetallic supported catalysts exhibited stable hydrogen desorption capacity of 6.3-6.7 wt.% H 2 and the significant enhancement of hydrogen desorption kinetics at 230-300 deg. C in comparison to either non-catalyzed MgH 2 or the nanocomposite of MgH 2 catalyzed with BCN

  1. Long-term chemiluminescence signal is produced in the course of luminol oxidation catalyzed by enhancer-independent peroxidase purified from Jatropha curcas leaves.

    Science.gov (United States)

    Duan, Peipei; Cai, Feng; Luo, Yongting; Chen, Yangxi; Zou, Shujuan

    2015-09-01

    Isoenzyme c of horseradish peroxidase (HRP-C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP-C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP-C, the JcGP1-induced reaction was enhancer independent, which made the enzyme-linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long-term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2 O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long-term stable CL signal combined with enhancer-independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Chemiluminescence ELISA for the detection of oxidative DNA base damage using anti-8-hydroxy-2'-deoxyguanosine antibody. Application to the detection of irradiated foods

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Funayama, Tomoo; Sakashita, Tetsuya; Satoh, Katsuya; Narumi, Issay; Kobayashi, Yashihiko; Gunawardane, Chaminda R.; Alam, Md. Khorshed; Dzomir, A. Zainuri Mohd.; Pitipanaarachchi, Ramya C.; Hamada, Nobuyuki; Wada, Seiichi

    2007-01-01

    Since ionizing radiation is used for sterilizing or lowering the microbial content of foods as a means of reducing food losses and securing food safety, the development of versatile detection methods of irradiated foods is necessary for appropriate management. In an effort to distinguish between irradiated and non-irradiated food, a method based on the detection of oxidative DNA base damage using the chemiluminescence enzyme-linked immunosorbent assay (ELISA) with anti-8-hydroxy-2'-deoxyguanosine antibody was developed. In the course of optimizing the reaction conditions for the ELISA, a 30-mer synthetic oligonucleotide containing 8-hydroxyguanine (8-oxoG) was used. Under the optimized conditions, the correlation between chemiluminescence intensity and 8-oxoG content in oligonucleotides was obtained. It was shown that this chemiluminescence ELISA method could be applied to chicken, beef and pork that were irradiated with over 3 kGy. Twenty milligrams of a loaf of meat was sufficient to distinguish between irradiated and non-irradiated meat by this method. (author)

  3. TH-E-BRD-01: Innovation in (gold) Nanoparticle-Enhanced Therapy

    International Nuclear Information System (INIS)

    Krishnan, S; Chithrani, B; Berbeco, R

    2014-01-01

    Radiation therapy relies on the concept of delivering high dose to tumor volumes whilst simultaneously aiming to minimize irradiation of healthy tissue. Gold and other metallic nanoparticles (GNPs) have the potential to greatly enhance dose depositions in their close proximity. While it was originally thought that this effect would only be significant for kV photon beams, it has been shown that GNPs also enhance dose and increase cell killing and survival fraction for MV photons as well as protons. GNPs have been shown to be preferentially taken up in tumors, depending on the GNP properties either internalized in the tumor cells or clustering in the tumor vasculature. Therefore GNPs offer an intriguing additional option to target the tumor while sparing healthy tissue. While a growing amount of research shows GNP induced enhancement factors in the order of 1.5 and higher, GNPs have not yet entered into clinical routine. In this symposium we will have three presentations discussing the current status of GNP based research, the potential to include GNPs in radiation therapy and the limitations and problems to use GNPs in the clinic. Physical and biological underpinnings of radiosensitization with gold nano particles An evolving body of recent literature alludes to the potential to sensitize tumors to radiation therapy using metallic nanoparticles. In preclinical studies, the techniques that hold promise for eventual clinical deployment are nanoparticle-assisted radiation dose enhancement and hyperthermic radiosensitization. To understand the underlying nanoparticle-radiation interactions, computational techniques offer an explanation for and predict the biophysical consequences at a nano-/meso-scopic scale. Nonetheless, there are persisting gaps in knowledge relating to the molecular mechanism of action of these radiosensitization approaches — some of these issues will be addressed. Since the literature relating to the diverse disciplines involved in these efforts

  4. TH-E-BRD-01: Innovation in (gold) Nanoparticle-Enhanced Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S; Chithrani, B; Berbeco, R [Brigham and Women' s Hospital, Boston, MA (United States)

    2014-06-15

    Radiation therapy relies on the concept of delivering high dose to tumor volumes whilst simultaneously aiming to minimize irradiation of healthy tissue. Gold and other metallic nanoparticles (GNPs) have the potential to greatly enhance dose depositions in their close proximity. While it was originally thought that this effect would only be significant for kV photon beams, it has been shown that GNPs also enhance dose and increase cell killing and survival fraction for MV photons as well as protons. GNPs have been shown to be preferentially taken up in tumors, depending on the GNP properties either internalized in the tumor cells or clustering in the tumor vasculature. Therefore GNPs offer an intriguing additional option to target the tumor while sparing healthy tissue. While a growing amount of research shows GNP induced enhancement factors in the order of 1.5 and higher, GNPs have not yet entered into clinical routine. In this symposium we will have three presentations discussing the current status of GNP based research, the potential to include GNPs in radiation therapy and the limitations and problems to use GNPs in the clinic. Physical and biological underpinnings of radiosensitization with gold nano particles An evolving body of recent literature alludes to the potential to sensitize tumors to radiation therapy using metallic nanoparticles. In preclinical studies, the techniques that hold promise for eventual clinical deployment are nanoparticle-assisted radiation dose enhancement and hyperthermic radiosensitization. To understand the underlying nanoparticle-radiation interactions, computational techniques offer an explanation for and predict the biophysical consequences at a nano-/meso-scopic scale. Nonetheless, there are persisting gaps in knowledge relating to the molecular mechanism of action of these radiosensitization approaches — some of these issues will be addressed. Since the literature relating to the diverse disciplines involved in these efforts

  5. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions

    International Nuclear Information System (INIS)

    Shen Cenchao; Yang Wenjuan; Ji Qiaoli; Zhang Zhizhou; Maki, Hisaji; Dong Anjie

    2009-01-01

    Nanoparticle-assisted PCR (polymerase chain reaction) technology is getting more and more attention recently. It is believed that some of the DNA recombinant technologies will be upgraded by nanotechnology in the near future, among which DNA replication is one of the core manipulation techniques. So whether or not the DNA replication fidelity is compromised in nanoparticle-assisted PCR is a question. In this study, a total of 16 different metallic and non-metallic nanoparticles (NPs) were tested for their effects on DNA replication fidelity in vitro and in vivo. Sixteen types of nanomaterials were distinctly different in enhancing the PCR efficiency, and their relative capacity to retain DNA replication fidelity was largely different from each other based on rpsL gene mutation assay. Generally speaking, metallic nanoparticles induced larger error rates in DNA replication fidelity than non-metallic nanoparticles, and non-metallic nanomaterials such as carbon nanopowder or nanotubes were still safe as PCR enhancers because they did not compromise the DNA replication fidelity in the Taq DNA polymerase-based PCR system.

  6. A rapid and simple chemiluminescence method for screening levels of inosine and hypoxanthine in non-traumatic chest pain patients.

    Science.gov (United States)

    Farthing, Don E; Sica, Domenic; Hindle, Michael; Edinboro, Les; Xi, Lei; Gehr, Todd W B; Gehr, Lynne; Farthing, Christine A; Larus, Terri L; Fakhry, Itaf; Karnes, H Thomas

    2011-01-01

    A rapid and simple chemiluminescence method was developed for detection of inosine and hypoxanthine in human plasma. The method utilized a microplate luminometer with direct injectors to automatically dispense reagents during sample analysis. Enzymatic conversions of inosine to hypoxanthine, followed by hypoxanthine to xanthine to uric acid, generated superoxide anion radicals as a useful metabolic by-product. The free radicals react with Pholasin(®) , a sensitive photoprotein used for chemiluminescence detection, to produce measurable blue-green light. The use of Pholasin(®) and a chemiluminescence signal enhancer, Adjuvant-K™, eliminated the need for plasma clean-up steps prior to analysis. The method used 20 μL of heparinized plasma, with complete analysis of total hypoxanthine levels (inosine is metabolized to hypoxanthine using purine nucleoside phosphorylase) in approximately 3.7 min. The rapid chemiluminescence method demonstrated the capability of differentiating total hypoxanthine levels between healthy individuals, and patients presenting with non-traumatic chest pain and potential acute cardiac ischemia. The results support the potential use of chemiluminescence methodology as a diagnostic tool to rapidly screen for elevated levels of inosine and hypoxanthine in human plasma, potential biomarkers of acute cardiac ischemia. Copyright © 2009 John Wiley & Sons, Ltd.

  7. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants.

    Science.gov (United States)

    Hagerty, Samantha; Daniels, Yasmine; Singletary, Melissa; Pustovyy, Oleg; Globa, Ludmila; MacCrehan, William A; Muramoto, Shin; Stan, Gheorghe; Lau, June W; Morrison, Edward E; Sorokulova, Iryna; Vodyanoy, Vitaly

    2016-12-01

    Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.

  8. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy

    Directory of Open Access Journals (Sweden)

    Paro AD

    2016-09-01

    Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray 

  9. Effect of the dimetilsulfoxido in the response chemiluminescent and the consumption of oxygen of neutrophils activated human

    International Nuclear Information System (INIS)

    Garcia, J.

    2001-01-01

    Dimethylsulfoxide (DMSO), a hydroxyl radical scavenger, exerted a dose dependent inhibition on the luminol and lucigenin-enhanced chemiluminescent responses of human neutrophils activated with soluble and particulate stimulants. DMSO inhibition of the luminol chemiluminescense induced by calcium ionophore A23187 was probably due to OH scavenging, whereas inhibition of the lucigenin chemiluminescence suggested DMSO negatively affects the NADPH-dependent membrane oxidase of neutrophils. In agreement with this, DMSO moderately inhibited O2 consumption in PMN suspensions stimulated with chemotactic peptide and opsonized zymosan-induced luminol chemiluminescense was observed only when added before or in conjunction with stimulants, whereas A23187-induced chemiluminescense was inhibited by DMSO regardless of time of addition. Washing of DMSO-treated PMN resulted in increased luminol enhanced chemiluminescense in response to chemotactic peptide and opsonized zymosan. This is consistent with the idea that DMSO may be interfering with activation of the membrane subunits of the oxidase by translocation and docking of the cytoplasmic, regulatory subunits. These data imply that DMSO inhibits neutrophil chemiluminescense both by OH scavenging and interfering with oxidase activation. Key words:Dimethylsulfoxide, chemiluminescent, luminol, lucigenin,neutrophils [es

  10. Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation

    KAUST Repository

    Hammami, Mohamed Amen; Croissant, Jonas G.; Francis, Lijo; Alsaiari, Shahad K.; Anjum, Dalaver H.; Ghaffour, NorEddine; Khashab, Niveen M.

    2016-01-01

    Engineering and scaling-up new materials for better water desalination are imperative to find alternative fresh water sources to meet future demands. Herein, the fabrication of hydrophobic poly(ether imide) composite nanofiber membranes doped with novel ethylene-pentafluorophenylene-based periodic mesoporous organosilica nanoparticles is reported for enhanced and fouling resistant membrane distillation. Novel organosilica nanoparticles were homogeneously incorporated into electrospun nanofiber membranes depicting a proportional increase of hydrophobicity to the particle contents. Direct contact membrane distillation experiments on the organosilica-doped membrane with only 5% doping showed an increase of flux of 140% compared to commercial membranes. The high porosity of organosilica nanoparticles was further utilized to load the eugenol antimicrobial agent which produced a dramatic enhancement of the antibiofouling properties of the membrane of 70% after 24 h.

  11. Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation

    KAUST Repository

    Hammami, Mohamed Amen

    2016-12-15

    Engineering and scaling-up new materials for better water desalination are imperative to find alternative fresh water sources to meet future demands. Herein, the fabrication of hydrophobic poly(ether imide) composite nanofiber membranes doped with novel ethylene-pentafluorophenylene-based periodic mesoporous organosilica nanoparticles is reported for enhanced and fouling resistant membrane distillation. Novel organosilica nanoparticles were homogeneously incorporated into electrospun nanofiber membranes depicting a proportional increase of hydrophobicity to the particle contents. Direct contact membrane distillation experiments on the organosilica-doped membrane with only 5% doping showed an increase of flux of 140% compared to commercial membranes. The high porosity of organosilica nanoparticles was further utilized to load the eugenol antimicrobial agent which produced a dramatic enhancement of the antibiofouling properties of the membrane of 70% after 24 h.

  12. Study on the effect of nanoparticle bimetallic coreshell Au-Ag for sensitivity enhancement of biosensor based on surface plasmon resonance

    International Nuclear Information System (INIS)

    Widayanti; Abraha, K

    2016-01-01

    Bimetallic Au-Ag core-shell, a type of composite spherical nanoparticle consisting of a spherical Au core covered by Ag shell, have been used as active material for biomolecular analyte detection based on surface plasmon resonance (SPR) spectroscopy. SPR technology evolved into a key technology for characterization of biomolecular interaction. In this paper, we want to show the influence of nanoparticle bimettalic Au-Ag coreshell for optic respon of LSPR biosensor through attenuated total reflection (ATR) spectrum. The method consist of several steps begin from make a model LSPR system with Kretschmann configuration, dielectric function determination of composite bimetallic coreshell nanoparticle using effective medium theory approximation and the last is reflectivity calculation for size variation of core and shell bimetallic nanoparticle. Our result show that, by varying the radius of core and shell thickness, the peak of the reflectivity (ATR spectrum) shifted to the different angle of incident light and the addition of coreshell in SPR biosensor leads to enhancement the sensitivity. (paper)

  13. Kinetics and selectivity of permanganate chemiluminescence: a study of hydroxyl and amino disubstituted benzene positional isomers.

    Science.gov (United States)

    Slezak, Teo; Smith, Zoe M; Adcock, Jacqui L; Hindson, Christopher M; Barnett, Neil W; Nesterenko, Pavel N; Francis, Paul S

    2011-11-30

    Examination of the chemiluminescence reactions of dihydroxybenzenes, aminophenols and phenylenediamines with acidic potassium permanganate has provided a new understanding of the relationships between analyte structure, reaction conditions, kinetics of the light-producing pathway and emission intensity, with broad implications for this widely utilised chemiluminescence detection system. Using a permanganate reagent prepared in a polyphosphate solution and adjusted to pH 2.5, large differences in the rate of reaction with different positional isomers were observed, with the meta-substituted forms reacting far slower and therefore exhibiting much lower chemiluminescence intensities in flow analysis systems. The preliminary partial reduction of permanganate to form significant concentrations of Mn(III) increased the rate of reaction with all analytes tested, resulting in comparable or (in the case of aminophenol and phenylenediamine) even greater emission intensities for the meta-isomers, demonstrating the opportunity to tune the selectivity of the reagent towards certain classes of compound or even specific positional isomers of the same compound. Using more acidic permanganate reagents, in which polyphosphates are not required, the discrepancy between the chemiluminescence intensities was still observed, but was less prominent due to the generally faster rates of reaction. The enhancement of these chemiluminescence reactions by on-line addition of formic acid or formaldehyde can in part also be attributed to the generation of significant pools of the key Mn(III) precursor to the emitting species. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  15. Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation

    Science.gov (United States)

    Li, Yajuan; Cupo, Michela; Guo, Liangran; Scott, Julie; Chen, Yi-Tzai; Yan, Bingfang; Lu, Wei

    2017-12-01

    CuS-based nanostructures loading the chemotherapeutic agent doxorubicin (DOX) exerted excellent cancer photothermal chemotherapy under multi-external stimuli. The DOX loading was generally designed through electrostatic interaction or chemical linkers. However, the interaction between DOX molecules and CuS nanoparticles has not been investigated. In this work, we use PEGylated hollow copper sulfide nanoparticles (HCuSNPs) to directly load DOX through the DOX/Cu2+ chelation process. Distinctively, the synthesized PEG-HCuSNPs-DOX release the DOX/Cu2+ complexes into surrounding environment, which generate significant reactive oxygen species (ROS) in a controlled manner by near-infrared laser. The CuS nanoparticle-mediated photothermal ablation facilitates the ROS-induced cancer cell killing effect. Our current work reveals a DOX/Cu2+-mediated ROS-enhanced cell-killing effect in addition to conventional photothermal chemotherapy through the direct CuS nanoparticle-DOX complexation.

  16. Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument

    Science.gov (United States)

    Poggialini, F.; Campanella, B.; Giannarelli, S.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Safi, A.; Palleschi, V.

    2018-03-01

    When compared to other analytical techniques, LIBS shows relatively low precision and, generally, high Limits of Detection (LODs). Until recently, the attempts in improving the LIBS performances have been based on the use of more stable/powerful lasers, high sensitivity detectors or controlled environmental parameters. This can hinder the competitiveness of LIBS by increasing the instrumental setup cost and the difficulty of operation. Sample treatment has proved to be a viable and simple way to increase the LIBS signal; in particular, the Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) methodology uses a deposition of metal nanoparticles on the sample to greatly increase the emission of the LIBS plasma. In this work, we used a simple, fast, "green" and low-cost method to synthetize silver nanoparticles by using coffee extract as reducing agents for a silver nitrate solution. This allowed us to obtain nanoparticles of about 25 nm in diameter. We then explored the application of such nanoparticles to the NELIBS analysis of metallic samples with a mobile LIBS instrument. By adjusting the laser parameters and optimizing the sample preparation procedure, we obtained a NELIBS signal that is 4 times the LIBS one. This showed the potential of green-synthetized nanoparticle for NELIBS applications and suggests the possibility of an in-situ application of the technique.

  17. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

    Science.gov (United States)

    Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume

    2015-10-01

    Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).

  18. Enhanced fluorescence of a molecular dipole near metal nanoparticle

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N.

    2010-01-01

    We study theoretically radiative and nonradiative decay of a single molecule near small gold nanoparticle. The local field enhancement leads to an increased radiative decay rate while the energy transfer from molecule to optically inactive electronic states in nanoparticle results in a decrease in the fluorescence quantum efficiency for small molecule-nanoparticle distances. We performed a DFT-TDLDA calculation of both the enhancement and the quenching for small nanometersized gold nanoparticles. We found that in close proximity to the surface, the nonradiative decay rate is dominated by generation of electron-hole pairs out of the Fermi sea resulting in a significantly lower quantum efficiency as compared to that obtained from electromagnetic calculations. For large distances, the efficiency is maximal for molecule polarized normal to the surface, whereas for small distances it is maximal for parallel orientation.

  19. Enhanced fluorescence of a molecular dipole near metal nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Pustovit, Vitaliy N., E-mail: pustovit@ccmsi.u [Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv-164 (Ukraine)

    2010-01-15

    We study theoretically radiative and nonradiative decay of a single molecule near small gold nanoparticle. The local field enhancement leads to an increased radiative decay rate while the energy transfer from molecule to optically inactive electronic states in nanoparticle results in a decrease in the fluorescence quantum efficiency for small molecule-nanoparticle distances. We performed a DFT-TDLDA calculation of both the enhancement and the quenching for small nanometersized gold nanoparticles. We found that in close proximity to the surface, the nonradiative decay rate is dominated by generation of electron-hole pairs out of the Fermi sea resulting in a significantly lower quantum efficiency as compared to that obtained from electromagnetic calculations. For large distances, the efficiency is maximal for molecule polarized normal to the surface, whereas for small distances it is maximal for parallel orientation.

  20. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    International Nuclear Information System (INIS)

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  1. T cells enhance gold nanoparticle delivery to tumors in vivo

    Science.gov (United States)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  2. Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure.

    Science.gov (United States)

    Yu, Liang; Zhang, Yatao; Zhang, Bing; Liu, Jindun

    2014-04-11

    A sandwich-like antibacterial reagent (Ag/HNTs/rGO) was constructed through the direct growth of silver nanoparticles on the surface graphene-based HNTs nanosheets. Herein, various nanomaterials were combined by adhesion effect of DOPA after self-polymerization. Ag/HNTs/rGO possess enhanced antibacterial ability against E. coli and S. aureus compared with individual silver nanoparticles, rGO nanosheets or their nanocomposites.

  3. Imaging and high-sensitivity quantification of chemiluminescent labeled DNA-blots

    International Nuclear Information System (INIS)

    Dorner, G.

    1997-01-01

    The present thesis has for objective the development of both, methods of DNA labeling by chemiluminescence (via the catalytic activity of the enzyme alkaline phosphatase - AP) and an appropriate imaging system. Offering a competitive alternative to the detection of classical radio-labels in molecular-biological experiments of the blotting type, this technique should permit the realization of quantitative studies of gene expression at ultra-high sensitivity necessary in particular for differential-screening experiments. To reach our aim. we separated the project into three different parts. In a first step an imager based on a liquid-nitrogen-cooled CCD coupled to a standard optics (50 mm/fl.2) has been installed and characterized. This system offers a sensitive area of up to 625 cm 2 , a spatial resolution of 0.3-1 mm (depending on the field of view) and a sensitivity sufficient to detect 10 fg/mm 2 labeled DNA. In a second part, the chemiluminescent light-generation process in solution has been investigated to optimize the parameters temperature. pH and concentration of the substrate as well as the enzyme. The substrate offering the highest light yield (CDP-Star in addition with the enhancer EMERALD II) allows quantification of AP down to 10 -15 M within a dynamic range of 10 4 in solution. Finally. preparation, immobilization and detection of AP-labeled DNA probes (via a biotin-streptavidin-biotin-AP bridge) on nylon membranes has been optimized. A linear relation between the light intensities and the amount of DNA was observed in a range of 10 fg/mm 2 - 100 pg/mm 2 . Hybridization of the probes to bacterial cloned target-DNA has been addressed after examination of the best hybridization conditions. Our protocol includes the treatment of a proteinase, which resulted in a significantly lower background on the filter. The results of our investigations suggest that the main conditions for a reliable differential-screening experiment are fulfilled when using

  4. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO2 nanoparticles and surface enhanced Raman spectroscopy

    Science.gov (United States)

    Wei, Chao; Xu, Min-Min; Fang, Cong-Wei; Jin, Qi; Yuan, Ya-Xian; Yao, Jian-Lin

    2017-03-01

    Traditional "sandwich" structure immunoassay is mainly based on the self-assembly of "antibody on solid substrate-antigen-antibody with nanotags" architectures, and the sensitivity of this strategy is critically depended on the surface enhanced Raman scattering (SERS) activities and stability of nanotags. Therefore, the rational design and fabrication on the SERS nanotags attracts the common interests to the bio-related detecting and imaging. Herein, silica encapsulated Au with mercaptobenzoic acid (MBA) core-shell nanoparticles (Au-MBA@SiO2) are fabricated instead of the traditional naked Au or Ag nanoparticles for the SERS-based immunoassay on human and mouse IgG antigens. The MBA molecules facilitate the formation of continuous pinhole-free silica shell and are also used as SERS labels. The silica shell is employed to protect MBA labels and to isolate Au core from the ambient solution for blocking the aggregation. This shell also played the similar role to BSA in inhibiting the nonspecific bindings, which allowed the procedures for constructing "sandwich" structures to be simplified. All of these merits of the Au-MBA@SiO2 brought the high performance in the related immunoassay. Benefiting from the introduction of silica shell to encapsulate MBA labels, the detection sensitivity was improved by about 1- 2 orders of magnitude by comparing with the traditional approach based on naked Au-MBA nanoparticles. This kind of label-embedded core-shell nanoparticles could be developed as the versatile nanotags for the bioanalysis and bioimaging.

  5. Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution.

    Science.gov (United States)

    Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali

    2011-01-12

    Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).

  6. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    Science.gov (United States)

    Green, Nathaniel Scott

    scattering. Our aim is to promote heteroaggregation with functionalized silica nanoparticles while minimizing homoaggregation of silica-silica or gold-gold species. Reproducible production of multiple gold nanospheres about a dye-doped silica nanoparticle should lead to dramatic fluorescence brightness enhancements in solution. Gold nanorods can potentially be used to establish radiationless energy transfer between hetero dye-doped silica nanoparticles via gold nanorod plasmon mediated FRET by aggregating two different dye-doped silica nanoparticles preferentially at opposite ends of the nanorod. End-cap binding is accomplished by tuning the strength of gold binding ligands that functionalize the surface of the silica nanoparticles. The gold nanorod can then theoretically serve as a waveguide by employing the longitudinal plasmon as a non-radiative energy transfer agent between the two different fluorophores, giving rise to a new ultrafast signaling paradigm. Heteroaggregation of dye-doped silica nanoparticles and gold nanorods can be potentially employed to as nano waveguides. Construction and aggregation of functionalized silica and gold nano-materials provides an opportunity to advance the field of fluorescence. The synthesis of gold nano-particles allows control over their size and shape, which give rise to useful optical and electronic properties. Silica nanoparticles provide a framework allowing control over a requisite distance for increasing beneficial and deceasing non-radiative dye-metal interactions as well fluorophore protection. Our aim is to take advantage of fine-tuned synthetic control of functionalized nanomaterials to realize the great potential of solution based metal-enhanced fluorescence for future applications.

  7. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles.

    Science.gov (United States)

    Fares, Mohammad M; Salem, Mu'taz Sheikh

    2015-01-01

    Dissolution enhancement of curcumin via prebiotic inulin designed to orally deliver poorly water-soluble curcumin at duodenum low acidity (pH 5.5) was investigated. Different prebiotic inulin-curcumin nanoparticles were synthesized in ethanol-water binary system at different pre-adjusted pH values. Characterization via FTIR, XRD and TGA revealed the formation of curcumin-inulin conjugates, whereas surface morphology via SEM and TEM techniques implied the formation of nanoparticle beads and nanoclusters. Prebiotic inulin-curcumin nanoparticles prepared at pH 7.0 demonstrated a maximum curcumin dissolution enhancement of ≈90% with respect to 30% for curcumin alone at pH 5.5. Power law constant values were in accordance with dissolution enhancement investigations. All samples show Fickian diffusion mechanism. XRD investigations confirm that inulin maintain its crystalline structure in curcumin-inulin conjugate structure, which confirms that it can exert successfully its prebiotic role in the gastrointestinal (GI) tract. Therefore, the use of curcumin-inulin nanoparticles can perform dual-mission in the GI tract at the duodenum environment; release of 90% of curcumin followed by prebiotic activity of inulin, which will probably play a significant role in cancer therapeutics for the coming generations.

  8. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  9. Highly luminescent S,N co-doped carbon quantum dots-sensitized chemiluminescence on luminol-H2 O2 system for the determination of ranitidine.

    Science.gov (United States)

    Chen, Jianqiu; Shu, Juan; Chen, Jiao; Cao, Zhiran; Xiao, An; Yan, Zhengyu

    2017-05-01

    S,N co-doped carbon quantum dots (N,S-CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV-Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S-CQDs can enhance the chemiluminescence intensity of a luminol-H 2 O 2 system. The possible mechanism of the luminol-H 2 O 2 -(N,S-CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol-H 2 O 2 -N,S-CQDs system. So, a novel flow-injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5-50 μg ml -1 and a detection limit of 0.12 μg ml -1 . The method shows promising application prospects. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions

    Czech Academy of Sciences Publication Activity Database

    Sklenářová, H.; Voráčová, Ivona; Chocholouš, P.; Polášek, M.

    2017-01-01

    Roč. 184, APR (2017), s. 235-241 ISSN 0022-2313 Institutional support: RVO:68081715 Keywords : quantum dots * chemiluminescence * sequentialinjectionanalysis Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.686, year: 2016

  11. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays

    International Nuclear Information System (INIS)

    Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T.; Filter, R.; Rockstuhl, C.

    2015-01-01

    Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources

  12. Electrogenerated Chemiluminescence Behavior of Au nanoparticles-hybridized Pb (II) metal-organic framework and its application in selective sensing hexavalent chromium.

    Science.gov (United States)

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Liu, Haiyang; Zhang, Yong; Wu, Dan; Du, Bin; Wei, Qin

    2016-02-23

    In this work, a novel electrochemiluminescence (ECL) sensor based on Au nanoparticles-hybridized Pb (II)-β-cyclodextrin (Pb-β-CD) metal-organic framework for detecting hexavalent chromium (Cr(VI)) was developed. Pb-β-CD shows excellent ECL behavior and unexpected reducing ability towards Au ions. Au nanoparticles could massively form on the surface of Pb-β-CD (Au@Pb-β-CD) without use of any additional reducing agent. In the presence of coreactant K2S2O8, the ECL emission of Pb-β-CD was enhanced by the formation of Au nanoparticles. Cr(VI) can collisionally quench the ECL behavior of Au@Pb-β-CD/S2O8(2-) system and the detection mechanism was investigated. This ECL sensor is found to have a linear response in the range of 0.01-100 μM and a low detection limit of 3.43 nM (S/N = 3) under the optimal conditions. These results suggest that metal-organic framework Au@Pb-β-CD has great potential in extending the application in the ECL field as an efficient luminophore.

  13. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    Science.gov (United States)

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C.

  14. Determination of phenolic compounds using high-performance liquid chromatography with Ce4+-Tween 20 chemiluminescence detection

    International Nuclear Information System (INIS)

    Cui Hua; Zhou Jian; Xu Feng; Lai Chunze; Wan Guohui

    2004-01-01

    A novel method for the simultaneous determination of phenolic compounds such as salicylic acid, resorcinol, phloroglucinol, p-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, and m-nitrophenol by high-performance liquid chromatography (HPLC) coupled with chemiluminescence (CL) detection was developed. The procedure was based on the chemiluminescent enhancement by phenolic compounds of the cerium(IV)-Tween 20 system in a sulfuric acid medium. The separation was carried out with an isocratic elution or with a gradient elution using a mixture of methanol and 1.5% acetic acid. For six phenolic compounds, the detection limits (3σ) were in the range 1.40-5.02 ng/ml and the relative standard deviations (n=11) for the determination of 0.1 μg/ml compounds were in the range 1.9-2.9%. The CL reaction was well compatible with the mobile phase of HPLC, no baseline drift often occurred in HPLC-CL detection was observed with a gradient elution. The method has been successfully applied to the determination of salicylic acid and resorcinol in Dermatitis Clear Tincture and p-hydroxybenzoic acid in apple juices

  15. Fluorescence and chemiluminescence behavior of distyrylbenzene bearing two arms of dipicolylaminomethyl groups: Interactions with zinc ion and ATP

    Science.gov (United States)

    Motoyoshiya, Jiro; Wada, Jun-ya; Itoh, Keiko; Wakabayashi, Kazuaki; Maruyama, Takayuki; Ono, Kazuki; Fukasawa, Kota; Fujimoto, Tetsuya; Akaiwa, Yuji; Nonaka, Eiji

    2018-04-01

    The absorption and fluorescence spectral study of the distyrylbenzene bearing two arms of the dipicolylaminomethyl groups, the effective ligands for Zn2+, was studied in the presence of Zn2+ and ATP. Upon complexation of the distyrylbenzene with zinc ions in acetonitrile, enhancement of the fluorescence intensity was observed due to inhibition of intramolecular PET (photo-induced electron transfer) quenching, but no effect was found in aqueous media because the equilibrium laid to the free form of the ligands. In contrast, the addition of ATP disodium salt was effective to enhance the fluorescence intensity of the combination of the distyrylbenzne and Zn2+ in aqueous media. This assembly was applied to the peroxyoxalate chemiluminescence system and a significant increase in the intensity was observed, which provides a potential detection for ATP by chemiluminescence.

  16. Fe Core–Carbon Shell Nanoparticles as Advanced MRI Contrast Enhancer

    Directory of Open Access Journals (Sweden)

    Rakesh P. Chaudhary

    2017-10-01

    Full Text Available The aim of this study is to fabricate a hybrid composite of iron (Fe core–carbon (C shell nanoparticles with enhanced magnetic properties for contrast enhancement in magnetic resonance imaging (MRI. These new classes of magnetic core–shell nanoparticles are synthesized using a one-step top–down approach through the electric plasma discharge generated in the cavitation field in organic solvents by an ultrasonic horn. Transmission electron microscopy (TEM observations revealed the core–shell nanoparticles with 10–85 nm in diameter with excellent dispersibility in water without any agglomeration. TEM showed the structural confirmation of Fe nanoparticles with body centered cubic (bcc crystal structure. Magnetic multi-functional hybrid composites of Fe core–C shell nanoparticles were then evaluated as negative MRI contrast agents, displaying remarkably high transverse relaxivity (r2 of 70 mM−1·S−1 at 7 T. This simple one-step synthesis procedure is highly versatile and produces desired nanoparticles with high efficacy as MRI contrast agents and potential utility in other biomedical applications.

  17. Highly sensitive determination of diclofenac based on resin beads and a novel polyclonal antibody by using flow injection chemiluminescence competitive immunoassay

    Science.gov (United States)

    Shi, Jing; Xu, Mingxia; Tang, Qinghui; Zhao, Kang; Deng, Anping; Li, Jianguo

    2018-02-01

    A novel flow injection chemiluminescence immunoassay for simple, sensitive and low-cost detection of diclofenac was established based on specific binding of antigen and antibody. Carboxylic resin beads used as solid phase carrier materials provided good biocompatibility and large surface-to-volume ratio for modifying more coating antigen. There was a competitive process between the diclofenac in solution and the immobilized coating antigen to react with the limited binding sites of the polyclonal antibody to form the immunocomplex. The second antibody labelled with horseradish peroxidase was introduced into the immunosensor and trapped by captured polyclonal antibody against diclofenac, which could effectively amplify chemiluminescence signals of luminol-PIP-H2O2. Under optimal conditions, the diclofenac could be detected quantitatively. The chemiluminescence intensity decreased linearly with the logarithm of the diclofenac concentration in the range of 0.1-100 ng mL- 1 with a detection limit of 0.05 ng mL- 1 at a signal-to-noise ratio of 3. The immunosensor exhibited high sensitivity, specificity and acceptable stability. This easy-operated and cost-effective analytical method could be valuable for the diclofenac determination in real water samples.

  18. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water)

    Science.gov (United States)

    Hoseinzadeh, S.; Sahebi, S. A. R.; Ghasemiasl, R.; Majidian, A. R.

    2017-05-01

    In the present study an experimental set-up is used to investigate the effect of a nanofluid as a working fluid to increase thermosyphon efficiency. Nanofluids are a new form of heat transfer media prepared by suspending metallic and nonmetallic nanoparticles in a base fluid. The nanoparticles added to the fluid enhance the thermal characteristics of the base fluid. The nanofluid used in this experiment was a mixture of water and nanoparticles prepared with 0.5%, 1%, 1.5%, or 2% (v) concentration of silicon carbide (SiC) nanoparticles and 1%, 2% and 3% (v) concentration of aluminum oxide (Al2O3) in an ultrasonic homogenizer. The results indicate that the SiC/water and Al2O3/water nanofluids increase the thermosyphon performance. The efficiency of the thermosyphon using the 2% (v) (SiC) nanoparticles nanofluid was 1.11 times that of pure water and the highest efficiency occurs for the 3% (Al2O3) nanoparticle concentration with input power of 300 W. The decrease in the temperature difference between the condenser and evaporator confirms these enhancements.

  19. A local effect model-based interpolation framework for experimental nanoparticle radiosensitisation data

    OpenAIRE

    Brown, Jeremy M. C.; Currell, Fred J.

    2017-01-01

    A local effect model (LEM)-based framework capable of interpolating nanoparticle-enhanced photon-irradiated clonogenic cell survival fraction measurements as a function of nanoparticle concentration was developed and experimentally benchmarked for gold nanoparticle (AuNP)-doped bovine aortic endothelial cells (BAECs) under superficial kilovoltage X-ray irradiation. For three different superficial kilovoltage X-ray spectra, the BAEC survival fraction response was predicted for two different Au...

  20. Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles.

    Science.gov (United States)

    Yoo, SeokJae; Park, Q-Han

    2015-09-25

    We enhance the weak optical signals of small chiral molecules via circular differential Mie scattering (CDMS) of nanoparticles immersed in them. CDMS is the preferential Mie scattering of left- and right-handed circularly polarized light by nanoparticles whose sizes are about the same as the wavelength of light. Solving the Mie scattering theory for chiral media, we find that the CDMS signal of the particle is linearly proportional to the chirality parameter κ of the molecules. This linear amplitude enhancement by CDMS of the particle holds, even for large particles, which have a retardation effect. We also demonstrate that the CDMS of a nanoparticle is sensitive to changes of molecular concentration, and that the nanoparticle can be utilized as a chiroptical biosensor detecting the concentration of analyte. We expect that the enhancement of molecular chiroptical signals by CDMS will pave the way for novel chiroptical spectroscopy using nanostructures.

  1. Spectroscopic enhancement in nanoparticles embedded glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sahar, M. R., E-mail: mrahim057@gmail.com; Ghoshal, S. K., E-mail: mrahim057@gmail.com [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  2. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate

    International Nuclear Information System (INIS)

    Wang Na; Yang Haifeng; Zhu Xuan; Zhang Rui; Wang Yao; Huang Guanfeng; Zhang Zongrang

    2009-01-01

    We report a novel method of synthesizing a kind of silver nanoparticles aided by the inositol hexakisphosphoric micelle as a soft template and stabilizer. By controlling the reaction time, UV-vis and TEM observations of the size growth of the nanoparticles are performed. Careful examinations of surface enhanced Raman scattering (SERS) spectra of 2-mercaptopyridine (2-Mpy) on the as-produced silver nanoparticles exhibit very stable and reproducible Raman signals within about 4 months.

  3. Screening test for rapid food safety evaluation by menadione-catalysed chemiluminescent assay.

    Science.gov (United States)

    Yamashoji, Shiro; Yoshikawa, Naoko; Kirihara, Masayuki; Tsuneyoshi, Toshihiro

    2013-06-15

    The chemiluminescent assay of menadione-catalysed H2O2 production by living mammalian cells was proposed to be useful for rapid food safety evaluation. The tested foods were extracted with water, ethanol and dimethylsulfoxide, and each extract was incubated with NIH3T3, Neuro-2a and HepG2 cells for 4h. Menadione-catalysed H2O2 production by living mammalian cells exposed to each extract was determined by the chemiluminescent assay requiring only 10 min, and the viability of the cells was estimated as percentage based on H2O2 production by intact cells. In this study the cytotoxicity of food was rated in order of inhibitory effect on H2O2 production by intact cells. The well known natural toxins such as Fusarium mycotoxin, tomato toxin tomatine, potato toxin solanine and marine toxins terodotoxin and brevetoxin could be detected by the above chemiluminescent assay. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.

    Science.gov (United States)

    Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng

    2017-09-21

    Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.

  5. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Malasi

    2016-10-01

    Full Text Available Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag, its nanoparticles have amongst the highest radiative quantum efficiencies (η, i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  6. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    Science.gov (United States)

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-04

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.

  7. Quercetin-Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin-Resistant Cancer Cells.

    Science.gov (United States)

    Liu, Zehua; Balasubramanian, Vimalkumar; Bhat, Chinmay; Vahermo, Mikko; Mäkilä, Ermei; Kemell, Marianna; Fontana, Flavia; Janoniene, Agne; Petrikaite, Vilma; Salonen, Jarno; Yli-Kauhaluoma, Jari; Hirvonen, Jouni; Zhang, Hongbo; Santos, Hélder A

    2017-02-01

    One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface plasmon enhancement in gold nanoparticles in the presence of an optical gain medium: an analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, K; Sreekanth, K V; Sidharthan, R; Murukeshan, V M [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Xing Bengang, E-mail: mmurukeshan@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2011-10-26

    The localized surface plasmon (LSP) enhancement in a gold nanoparticle is demonstrated in this paper. The enhancement of LSP is influenced by both size and the dielectric gain medium surrounding the nanoparticles. The nanoparticle is found to induce plasmonic enhancement of varying degrees depending on its size, and it is inferred that a gold nanoparticle of size 60 nm exhibits the maximum LSP for 532 nm excitation. Singularity due to cancellation of SP loss by an infinite gain medium and LSP enhancement are studied using a pump-probe Rayleigh scattering experiment. Gold nanoparticles of average size 60 nm exhibit the lowest threshold power to observe Rayleigh scattering. Furthermore, compared with the bare nanoparticles, a 12.5 fold enhancement of LSP is observed when the nanoparticle of average size 60 nm is kept in the gain medium.

  9. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

    International Nuclear Information System (INIS)

    Truong, B.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

  10. Electro chemiluminescence Biosensor Based on Thioglycolic Acid-Capped Cd Se QDs for Sensing Glucose

    International Nuclear Information System (INIS)

    Jung, E. Y.; Ye, J. H.; Choi, S. H.; Jung, S. H.

    2016-01-01

    In order to detect low level glucose concentration, an electro chemiluminescence (ECL) biosensor based on TGA-capped Cd Se quantum dots (QDs) was fabricated by the immobilization of Cd Se QDs after modifying the surface of a glassy carbon electrode (GCE) with 4-amino thiophenol diazonium salts by the electrochemical method. For the detection of glucose concentration, glucose oxidase (GOD) was immobilized onto the fabricated Cd Se QDs-modified electrode. The fabricated ECL biosensor based on TGA-capped Cd Se QDs was characterized using a scanning electron microscope (SEM), UV-vis spectrophotometry, transmission electron microscopy (TEM), a fluorescence spectrometer (PL), and cyclic voltammetry (CV). The fabricated ECL biosensor based on TGA-capped Cd Se QDs is suitable for the detection of glucose concentrations in real human blood samples.

  11. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    Science.gov (United States)

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles.

  12. Evaluation of enhanced chemiluminescence enzymeimmunoassay(CLEIA) in the determination of thyrotropin(TSH) using amerlite system

    International Nuclear Information System (INIS)

    Lee, Chae H.; Kim, Hwan k.; Kim, Jin Gyu

    1989-01-01

    The determination of thyrotropin(TSH) is useful in diagnosis of thyroid diseases. And the widely-used method for the determination of thyrotropin is radioimmunoassay so far because of its sensitivity. But its radiohazard and relatively short half-life of isotopes necessitates alternative methods. So many novel non-isotopic immunoassays are developed and now replacing RIA in routine laboratory measurements. We evaluated the enhanced chemiluminescence enzymeimmunoassay (Amerlite, Amersham International plc., U.K.) for the determination of serum TSH. We got good precision result with control sera. Within-assay and between-assay precision revealed less than 10%(C.V.) respectively. And comparision with CLEIA to RIA showed good correlation (y=0.648x + 0.170, r=0.978, y=value of CLEIA, x=values of RIA, n=35). We also got good correlation between singletons and duplicates result from 35 patients sera (y=0.967x + 0.0281, r=0.997, y=values of singletons, x=values of duplicates). We concluded that CLEIA is vary reliable and economic method for the determination of human TSH substitutive for RIA because of its precision and unnecessary duplicate measurements. (Author)

  13. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  14. Effect of Photon Beam Energy, Gold Nanoparticle Size and Concentration on the Dose Enhancement in Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Nahideh Gharehaghaji

    2013-02-01

    Full Text Available Introduction: Gold nanoparticles have been used as radiation dose enhancing materials in recent investigations. In the current study, dose enhancement effect of gold nanoparticles on tumor cells was evaluated using Monte Carlo (MC simulation. Methods: We used MCNPX code for MC modeling in the current study. A water phantom and a tumor region with a size of 1×1×1 cm3 loaded with gold nanoparticles were simulated. The macroscopic dose enhancement factor was calculated for gold nanoparticles with sizes of 30, 50, and 100 nm. Also, we simulated different photon beams including mono-energetic beams (50-120 keV, a Cobalt-60 beam, 6 & 18 MV photon beams of a conventional linear accelerator. Results: We found a dose enhancement factor (DEF of from 1.4 to 3.7 for monoenergetic kilovoltage beams, while the DEFs for megavoltage beams were negligible and less than 3% for all GNP sizes and concentrations. The optimum energy for higher DEF was found to be the 90 keV monoenergetic beam. The effect of GNP size was not considerable, but the GNP concentration had a substantial impact on achieved DEF in GNP-based radiation therapy. Conclusion: The results were in close agreement with some previous studies considering the effect of photon energy and GNP concentration on observed DEF. Application of GNP-based radiation therapy using kilovoltage beams is recommended.

  15. Graphene-enhanced Raman imaging of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Naumenko, Denys; Snitka, Valentinas; Snopok, Boris; Arpiainen, Sanna; Lipsanen, Harri

    2012-01-01

    The interaction of anatase titanium dioxide (TiO 2 ) nanoparticles with chemical vapour deposited graphene sheets transferred on glass substrates is investigated by using atomic force microscopy, Raman spectroscopy and imaging. Significant electronic interactions between the nanoparticles of TiO 2 and graphene were found. The changes in the graphene Raman peak positions and intensity ratios indicate that charge transfer between graphene and TiO 2 nanoparticles occurred, increasing the Raman signal of the TiO 2 nanoparticles up to five times. The normalized Raman intensity of TiO 2 nanoparticles per their volume increased with the disorder of the graphene structure. The complementary reason for the observed enhancement is that due to the higher density of states in the defect sites of graphene, a higher electron transfer occurs from the graphene to the anatase TiO 2 nanoparticles. (paper)

  16. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreira dos Santos, Margarida, E-mail: margarida.santos@fct.unl.pt; Queiroz, Margarida Joao; Baptista, Pedro V. [Universidade Nova de Lisboa, CIGMH, Departamento Ciencias da Vida, Faculdade de Ciencias e Tecnologia (Portugal)

    2012-05-15

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 {+-} 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a {beta}-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  17. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  18. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Singh, M. N.; Sinha, A. K.; Rai, V. N.; Srivastava, A. K.; Bhartiya, S.; Mukherjee, C.

    2015-01-01

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating. The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure

  19. Dose of radiation enhancement, using silver nanoparticles in a human tissue equivalent gel dosimeter.

    Science.gov (United States)

    Hassan, Muhammad; Waheed, Muhammad Mohsin; Anjum, Muhammad Naeem

    2016-01-01

    To quantify the radiation dose enhancement in a human tissue-equivalent polymer gel impregnated with silver nanoparticles. The case-control study was conducted at the Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur, Pakistan, in January 2014. Silver nanoparticles used in this study were prepared by wet chemical method. Polymer gel was prepared by known quantity of gelatine, methacrylic acid, ascorbic acid, copper sulphate pentahydrate, hydroquinone and water. Different concentrations of silver nanoparticles were added to the gel during its cooling process. The gel was cooled in six plastic vials of 50ml each. Two vials were used as a control sample while four vials were impregnated with silver nanoparticles. After 22 hours, the vials were irradiated with gamma rays by aCobalt-60 unit. Radiation enhancement was assessed by taking magnetic resonance images of the vials. The images were analysed using Image J software. The dose enhancement factor was 24.17% and 40.49% for 5Gy and 10Gy dose respectively. The dose enhancement factor for the gel impregnated with 0.10mM silver nanoparticles was 32.88% and 51.98% for 5Gy and 10Gy dose respectively. The impregnation of a tissue-equivalent gel with silver nanoparticles resulted in dose enhancement and this effect was magnified up to a certain level with the increase in concentration of silver nanoparticles.

  20. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  1. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  2. Solid-state chemiluminescence assay for ultrasensitive detection of antimony using on-vial immobilization of CdSe quantum dots combined with liquid–liquid–liquid microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2013-07-25

    Graphical abstract: -- Highlights: •Solid-state chemiluminescence based on CdSe QDs was developed. •QDs immobilization in a vial was achieved in a simple and fast way. •Antimony detection was achieved by inhibition of the CdSe QDs/H{sub 2}O{sub 2} CL reaction. •LLLME allowed improving the selectivity and sensitivity of the CL assay. •The capping ligand played a critical role in the selectivity of the CL system. -- Abstract: On-vial immobilized CdSe quantum dots (QDs) are applied for the first time as chemiluminescent probes for the detection of trace metal ions. Among 17 metal ions tested, inhibition of the chemiluminescence when CdSe QDs are oxidized by H{sub 2}O{sub 2} was observed for Sb, Se and Cu. Liquid–liquid–liquid microextraction was implemented in order to improve the selectivity and sensitivity of the chemiluminescent assay. Factors influencing both the CdSe QDs/H{sub 2}O{sub 2} chemiluminescent system and microextraction process were optimized for ultrasensitive detection of Sb(III) and total Sb. In order to investigate the mechanism by which Sb ions inhibit the chemiluminescence of the CdSe QDs/H{sub 2}O{sub 2} system, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV–vis absorption and fluorescence measurements were performed. The selection of the appropriate CdSe QDs capping ligand was found to be a critical issue. Immobilization of QDs caused the chemiluminescence signal to be enhanced by a factor of 100 as compared to experiments carried out with QDs dispersed in the bulk aqueous phase. Under optimized conditions, the detection limit was 6 ng L{sup −1} Sb and the repeatability expressed as relative standard deviation (N = 7) was about 1.3%. An enrichment factor of 95 was achieved within only 3 min of microextraction. Several water samples including drinking, spring, and river waters were analyzed. The proposed method was validated against CRM NWTM-27.2 fortified lake water, and a recovery study was

  3. Plasmon enhanced fluorescence with aggregated shell-isolated nanoparticles.

    Science.gov (United States)

    Osorio-Román, Igor O; Guerrero, Ariel R; Albella, Pablo; Aroca, Ricardo F

    2014-10-21

    Shell-isolated nanoparticles (SHINs) nanostructures provide a versatile substrate where the localized surface plasmon resonances (LSPRs) are well-defined. For SHINEF, the silver (or gold) metal core is protected by the SiO2 coating, which is thicker than the critical distance for minimum quenching by the metal. In the present work, it is shown that an increase in the SHINEF enhancement factor may be achieved by inducing SHIN aggregation with electrolytes in solution. The proof of concept is demonstrated using NaCl as aggregating agent, although other inorganic salts will also aggregate SHIN nanoparticles. As much as a 10-fold enhancement in the SHINEF enhancement factor (EF) may be achieved by tuning the electrolyte concentrations in solution. The SHINEF experiments include the study of the aggregation effect controlling gold SHIN's surface concentration via spraying. Au-SHINs are sprayed onto layer-by-layer (LbL) and Langmuir-Blodgett (LB) films, and samples are fabricated using fluorophores with low and also high quantum yield.

  4. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

    Science.gov (United States)

    Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun

    2012-06-19

    Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

  5. Computer enhancement of ESR spectra of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dobosz, B.; Krzyminiewski, R. [Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Koralewski, M. [Optics Laboratory, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Hałupka-Bryl, M. [Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); The PhD Program in Nanoscience and Nanotechnology, The Nanobiomedical Centre, Umultowska 85, 61-614 Poznan (Poland)

    2016-06-01

    We present ESR measurements of non-interacting magnetic nanoparticle systems. Temperature and orientational dependence of ESR spectra were measured for Fe{sub 3}O{sub 4} nanoparticle coated by dextran or oleic acid, frozen in different magnetic field. Several parameters describing magnetic properties such as g-factor, line width, the anisotropy constant were calculated and discussed. The ESR spectra of investigated nanoparticles were also subjected to Computer Resolution Enhancement Method (CREM). This procedure allows to separate a narrow line on the background of the broad line, which presence in this type of materials was recognized in the recent literature and have been further discussed in the paper. CREM is a valuable tool for monitoring of changes on the surface of magnetic core of nanoparticles. - Highlights: • CREM – a new tool for monitoring of changes on the surface of magnetic core of nanoparticles. • CREM allows to separate a narrow line on the background of the broad line. • Temperature and orientational dependence of ESR spectra of Fe{sub 3}O{sub 4} nanoparticles were measured. • Parameters describing magnetic properties were calculated and discussed.

  6. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles

    Science.gov (United States)

    Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng

    2018-03-01

    Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.

  7. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deepak; Pandey, Krishna Murari [National Institute of Technology Silchar, Assam (India). Dept. of Mechanical Engineering

    2017-03-15

    A novel and facile approach for size-tunable synthesis of ZnO nanoparticle (NPs) is reported. Size-tuning was attained by using PEG (polyethylene glycol) of molecular weights 400 and 4000. ZnO NPs was synthesized using homogeneous chemical precipitation followed by hydrothermal. Here triethylamine (TEA) was used as a hydroxylating agent. As-synthesized ZnO NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) analysis. Synthesized ZnO nanoparticle was used for the preparation of ZnO-water based nanofluid and its application in heat transfer enhancement in light water nuclear reactor. In this work, ZnO-water based nanofluid of different volume concentration (1%, 2% and 3%) and particle size of 10 nm and 20 nm is used for enhancement in heat transfer in annular channel by using two phase approach. The particle size of 10 nm gives better result for enhancing the heat transfer rate in comparison to 20 nm particle size in nuclear reactor.

  8. Cotunneling enhancement of magnetoresistance in double magnetic tunnel junctions with embedded superparamagnetic NiFe nanoparticles

    International Nuclear Information System (INIS)

    Dempsey, K.J.; Arena, D.; Hindmarch, A.T.; Wei, H.X.; Qin, Q.H.; Wen, Z.C.; Wang, W.X.; Vallejo-Fernandez, G.; Han, X.F.; Marrows, C.H.

    2010-01-01

    Temperature and bias voltage-dependent transport characteristics are presented for double magnetic tunnel junctions (DMTJs) with self-assembled NiFe nanoparticles embedded between insulating alumina barriers. The junctions with embedded nanoparticles are compared to junctions with a single barrier of comparable size and growth conditions. The embedded particles are characterized using x-ray absorption spectroscopy, transmission electron microscopy, and magnetometry techniques, showing that they are unoxidized and remain superparamagnetic to liquid helium temperatures. The tunneling magnetoresistance (TMR) for the DMTJs is lower than the control samples, however, for the DMTJs an enhancement in TMR is seen in the Coulomb blockade region. Fitting the transport data in this region supports the theory that cotunneling is the dominant electron transport process within the Coulomb blockade region, sequential tunneling being suppressed. We therefore see an enhanced TMR attributed to the change in the tunneling process due to the interplay of the Coulomb blockade and spin-dependent tunneling through superparamagnetic nanoparticles, and develop a simple model to quantify the effect, based on the fact that our nanoparticles will appear blocked when measured on femtosecond tunneling time scales.

  9. An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles.

    Science.gov (United States)

    Park, Won-Hyeong; Shin, Eun-Jae; Yun, Sungryul; Kim, Sang-Youn

    2018-01-01

    In this paper, we propose a soft vibrotactile actuator made by mixing silicon dioxide nanoparticles and plasticized PVC gel. The effect of the silicon dioxide nanoparticles in the plasticized PVC gel for the haptic performance is investigated in terms of electric, dielectric, and mechanical properties. Furthermore, eight soft vibrotactile actuators are prepared as a function of the content. Experiments are conducted to examine the haptic performance of the prepared eight soft vibrotactile actuators and to find the best weight ratio of the plasticized PVC gel to the nanoparticles. The experiments should show that the plasticized PVC gel with silicon dioxide nanoparticles improves the haptic performance of the plasticized PVC gel-based vibrotactile actuator, and the proposed vibrotactile actuator can create a variety of haptic sensations in a wide frequency range.

  10. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  11. Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement

    Science.gov (United States)

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post

  12. Synergistic effect of PLGA nanoparticles and submicron triglyceride droplets in enhancing the intestinal solubilisation of a lipophilic weak base.

    Science.gov (United States)

    Joyce, Paul; Prestidge, Clive A

    2018-06-15

    A novel hybrid microparticulate system composed of poly(lactic-co-glycolic) acid (PLGA) nanoparticles and submicron medium-chain triglyceride (MCT) droplets was fabricated to overcome the pH-dependent solubility and precipitation challenges associated with a model poorly water-soluble weak base, cinnarizine (CIN). Molecular CIN was confined within both the lipid and polymer phase of PLGA-lipid hybrid (PLH) and PLGA-lipid-mannitol hybrid (PLMH) particles, which offered significant biopharmaceutical advantages in comparison to the unformulated drug, submicron MCT droplets and PLGA nanoparticles. This was highlighted by a substantial reduction in the pH-induced precipitation during in vitro gastrointestinal two-step dissolution studies. A >2.5-fold solubilisation enhancement was observed for the composite particles during simulated intestinal conditions, compared to pure CIN. Furthermore, the drug solubilisation capacity during in vitro intestinal digesting conditions was ~2-2.5 times greater for PLMH particles compared to the precursor emulsion droplets and PLGA nanoparticles. The observations from this study indicate that a synergy exists between the degradation products of PLGA nanoparticles and lipid droplets, whereby the dual-phase release and dissolution mechanism of the hybrid particles aids in prolonging pH-provoked precipitation. Subsequently, the ability for PLGA polymers and oligomers to act as polymeric precipitation inhibitors has been highlighted for the first time. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin

    2015-01-01

    The use of nanoparticles in solar cells has created many controversies. In this paper, different mechanisms of nanoparticles with different materials with diameters varying from 50 to 200 nm, surface coverage at 5, 20, and 60 %, and different locations are analyzed systematically for efficient light trapping in a thin-film c-Si solar cell. Mie theory and the finite difference time domain method are used for analysis to give a design principle with nanoparticles for the solar cell application. Metals exhibit plasmonic resonances and angular scattering, while dielectrics show anti-reflection and scattering in the incident direction. A table is given to summarize the advantages and disadvantages in different conditions. The silicon absorption enhancement with nanoparticles on top is mainly in the shorter wavelengths below 700 nm, and both Al and SiO 2 nanoparticles with diameter around 100 nm show the most significant enhancement. The silicon absorption enhancement with embedded nanoparticles takes place in the longer wavelengths over 700 nm, and Ag and SiO 2 nanoparticles with larger diameter around 200 nm perform better. However, the light absorbed by Ag nanoparticles will be converted to heat and will lead to decrease in cell efficiency; hence, the choice of metallic nanoparticles in applications to solar cells should be carefully considered. The design principle proposed in this work gives a guideline by choosing reasonable parameters for the different requirements in the application of thin-film solar cells

  14. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    Full Text Available Abstract Background Hydroxycamptothecin (HCPT has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol-poly(γ-benzyl-L-glutamate (PEG-PBLG, and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT. Results The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 β of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 μg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p 0.05. Conclusion Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle

  15. A magnetic particles-based chemiluminescence enzyme immunoassay for rapid detection of ovalbumin.

    Science.gov (United States)

    Feng, Xiao-Li; Ren, Hong-Lin; Li, Yan-Song; Hu, Pan; Zhou, Yu; Liu, Zeng-Shan; Yan, Dong-Ming; Hui, Qi; Liu, Dong; Lin, Chao; Liu, Nan-Nan; Liu, Yan-Yan; Lu, Shi-Ying

    2014-08-15

    Egg allergy is an important public health and safety concern, so quantification and administration of food or vaccines containing ovalbumin (OVA) are urgently needed. This study aimed to establish a rapid and sensitive magnetic particles-chemiluminescence enzyme immunoassay (MPs-CLEIA) for the determination of OVA. The proposed method was developed on the basis of a double antibodies sandwich immunoreaction and luminol-H2O2 chemiluminescence system. The MPs served as both the solid phase and separator, the anti-OVA MPs-coated polyclonal antibodies (pAbs) were used as capturing antibody, and the horseradish peroxidase (HRP)-labeled monoclonal antibody (mAb) was taken as detecting antibody. The parameters of the method were evaluated and optimized. The established MPs-CLEIA method had a linear range from 0.31 to 100ng/ml with a detection limit of 0.24ng/ml. The assays showed low reactivities and less than 5% of intraassay and interassay coefficients of variation (CVs), and the average recoveries were between 92 and 97%. Furthermore, the developed method was applied in real samples analysis successfully, and the correlation coefficient with the commercially available OVA kit was 0.9976. Moreover, it was more rapid and sensitive compared with the other methods for testing OVA. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Entrapment of curcumin into monoolein-based liquid crystalline nanoparticle dispersion for enhancement of stability and anticancer activity

    Directory of Open Access Journals (Sweden)

    Baskaran R

    2014-06-01

    Full Text Available Rengarajan Baskaran,1 Thiagarajan Madheswaran,2 Pasupathi Sundaramoorthy,1 Hwan Mook Kim,1 Bong Kyu Yoo1 1College of Pharmacy, Gachon University, Incheon, South Korea; 2College of Pharmacy Yeungnam University, Gyeongsan, South Korea Abstract: Despite the promising anticancer potential of curcumin, its therapeutic application has been limited, owing to its poor solubility, bioavailability, and chemical fragility. Therefore, various formulation approaches have been attempted to address these problems. In this study, we entrapped curcumin into monoolein (MO-based liquid crystalline nanoparticles (LCNs and evaluated the physicochemical properties and anticancer activity of the LCN dispersion. The results revealed that particles in the curcumin-loaded LCN dispersion were discrete and monodispersed, and that the entrapment efficiency was almost 100%. The stability of curcumin in the dispersion was surprisingly enhanced (about 75% of the curcumin survived after 45 days of storage at 40°C, and the in vitro release of curcumin was sustained (10% or less over 15 days. Fluorescence-activated cell sorting (FACS analysis using a human colon cancer cell line (HCT116 exhibited 99.1% fluorescence gating for 5 µM curcumin-loaded LCN dispersion compared to 1.36% for the same concentration of the drug in dimethyl sulfoxide (DMSO, indicating markedly enhanced cellular uptake. Consistent with the enhanced cellular uptake of curcumin-loaded LCNs, anticancer activity and cell cycle studies demonstrated apoptosis induction when the cells were treated with the LCN dispersion; however, there was neither noticeable cell death nor significant changes in the cell cycle for the same concentration of the drug in DMSO. In conclusion, entrapping curcumin into MO-based LCNs may provide, in the future, a strategy for overcoming the hurdles associated with both the stability and cellular uptake issues of the drug in the treatment of various cancers. Keywords: liquid

  17. Enhanced Bioactivity of α-Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity.

    Science.gov (United States)

    Palao-Suay, Raquel; Aguilar, María Rosa; Parra-Ruiz, Francisco J; Maji, Samarendra; Hoogenboom, Richard; Rohner, Nathan A; Thomas, Susan N; Román, Julio San

    2016-12-01

    Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice.

    Science.gov (United States)

    Zhao, Mei; Li, Huifang; Liu, Wei; Guo, Yumei; Chu, Weiru

    2016-05-15

    A novel protein immobilization method based on plasma treatment of paper on the low-cost paper-based immunodevice was established in this work. By using a benchtop plasma cleaner, the paper microzone was treated by oxygen plasma treatment for 4 min and then the antibody can be directly immobilized on the paper surface. Aldehyde group was produced after the plasma treatment, which can be verified from the fourier transform infrared spectroscopy (FT-IR) spectra and x-ray photoelectron spectroscopy (XPS) spectra. By linked to aldehyde group, the antibody can be immobilized on the paper surface without any other pretreatment. A paper-based immunodevice was introduced here through this antibody immobilization method. With sandwich chemiluminescence (CL) immunoassay method, the paper-based immunodevice was successfully performed for carcinoembryonic antigen (CEA) detection in human serum with a linear range of 0.1-80.0 ng/mL. The detection limit was 0.03 ng/mL, which was 30 times lower than the clinical CEA level. Comparing to the other protein immobilization methods on paper-based device, this strategy was faster and simpler and had potential applications in point-of-care testing, public health and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Chemiluminescence of creatinine/H2O2/Co(2+) and its application for selective creatinine detection.

    Science.gov (United States)

    Hanif, Saima; John, Peter; Gao, Wenyue; Saqib, Muhammad; Qi, Liming; Xu, Guobao

    2016-01-15

    Creatinine is an important biomarker in clinical diagnosis and biomonitoring programs as well as urinary metabolomic/metabonomics research. Current methods are either nonselective, time consuming or require heavy and expensive instruments. In this study, chemiluminescence of creatinine with hydrogen peroxide has been reported for the first time, and its chemiluminescence is remarkably enhanced in the presence of cobalt ions. By utilizing these phenomena, we have developed a sensitive and selective chemiluminescence method for creatinine determination by coupling with flow injection analysis. The calibration curve is linear in the range of 1×10(-7)-3×10(-5)mol/L with a limit of detection (S/N=3) of 7.2×10(-8)mol/L, which is adequate for detecting creatinine in the clinically accepted range. The relative standard deviation for seven measurements of 3×10(-5)mol/L creatinine is 1.2%. The chemiluminescence method was then utilized to detect creatinine in human urine samples after simple dilution with water. It takes less than 1min each measurement and the recoveries for spiked urine samples were 100-103%. The interference study demonstrates that some common species in urine, such as amino acids, ascorbic acid and creatine, have negligible effects on creatinine detection. The present method does not use expensive instruments, enzymes and separation technique. This method has the advantages of sensitivity, selectivity, simplicity, rapidity, and low cost. It holds great promise for basic or comprehensive metabolic panel, drug screening, anti-dopping, and urinary metabolomic/metabonomics research. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline.

    Science.gov (United States)

    Lee, Dong-Won; Shirley, Shawna A; Lockey, Richard F; Mohapatra, Shyam S

    2006-08-24

    Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs) can enhance theophylline's capacity to alleviate allergic asthma. A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA) and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL) fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in treating asthma may be enhanced through the use of this novel drug delivery

  1. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

    Directory of Open Access Journals (Sweden)

    Mohapatra Shyam S

    2006-08-01

    Full Text Available Abstract Background Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. Objectives We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs can enhance theophylline's capacity to alleviate allergic asthma. Methods A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Results Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Conclusion Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in

  2. FEATURES OF CHEMILUMINESCENT ACTIVITY OF NEUTROPHILIC GRANULOCYTES IN PATIENTS WITH CHRONIC GASTRITIS, CHRONIC ATROPHIC GASTRITIS AND GASTRIC CANCER

    Directory of Open Access Journals (Sweden)

    O. V. Smirnova

    2017-01-01

    Full Text Available Chronic gastritis is the most common disease of gastro-intestinal tract. Precancerous potential is among most important epidemiological features of chronic gastritis. Immune system plays a distinct role in transformation from precancerous state to malignancy. In this context, the aim of our work was a study of spontaneous and induced chemiluminescence activity of neutrophilic granulocytes in patients with chronic superficial gastritis, chronic atrophic gastritis and gastric cancer. The work presents results of comprehensive laboratory examination of patients with chronic gastritis (CG (a total of 85 persons. 25 patients with chronic atrophic gastritis (CAG, and 50 patients with gastric cancer (GC at the age of 19 to 70 years were enrolled. Control group included 115 healthy donors without gastrointestinal complaints at the age of 19 to 67 years. The study was performed with venous blood samples taken from cubital vein into Vacutainer tubes with sodium heparin (5 U/mL prior to starting any pathogenic treatment. Evaluation of spontaneous and induced chemiluminescence was performed for 90 minutes at a 36-channel “CL 3606” chemiluminescence analyzer (Russia. In our study, patients with gastric cancer showed clear unidirectional changes in chemiluminescent activity of neutrophilic granulocytes (NG. When measuring spontaneous and induced NG chemiluminescence, we diagnosed a decreased phagocytic activity characterized by prolonged time-to-peak and area under the curve for spontaneous and induced CL, thus presuming longer activation time required in cases of reduced phagocytic function. The NG activity in patients with chronic gastritis is not impaired, but, similar changes of time-to-peak and area under were detected. Chemiluminescent activity of NG is increased in the group of CAG patients, and, considering similar changes in activation time and area under the curve, NG also produce greater amount of reactive oxygen species. Thus, for all H

  3. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    International Nuclear Information System (INIS)

    Moreira dos Santos, Margarida; Queiroz, Margarida João; Baptista, Pedro V.

    2012-01-01

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle–antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  4. Chemiluminescence immunoassay for prostate-specific antigen

    International Nuclear Information System (INIS)

    Zhang Xuefeng; Liu Yibing; Jia Juanjuan; Xu Wenge; Li Ziying; Chen Yongli; Han Shiquan

    2008-01-01

    The chemiluminescence immunoassay (CLIA) for serum total prostate-specific antigen (T-PSA) was developed. The reaction of luminol with hydrogen peroxide was introduced into this chemiluminescence system. The detection limit is established as 0.12 μg/L (n=10, mean of zero standard + 2SD) and the analytical recovery of PSA is 83.8%-118.7%. The intra-assay and inter-assay CVs vary from 4.4%-5.0% and 6.2%-11.7%, respectively. The experimental correlation coefficient of dilution is found to be 0.999. Compared with immunoradiometric assay (IRMA) kits, the correlative equation is y=1.07x+0.68, and correlation coefficient r=0.97. The standard range for the method is 1.5-80 μg/L, and it presents good linearity. (authors)

  5. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.

    Science.gov (United States)

    Wang, Mingxin; You, Chaoqun; Gao, Zhiguo; Wu, Hongshuai; Sun, Baiwang; Zhu, Xiaoli; Chen, Renjie

    2018-08-01

    The functionalized nanoparticles have been widely studied and reported as carriers of drug transport recently. Furthermore, many groups have focused more on developing novel and efficient treatment methods, such as photodynamic therapy and photothermal therapy, since both therapies have shown inspiring potential in the application of antitumor. The mentioned treatments exhibited the superiority of cooperative manner and showed the ability to compensate for the adverse effects caused by conventional monotherapy in proposed strategies. In view of the above descriptions, we formulated a thermosensitive drug delivery system, which achieved the enhanced delivery of cisplatin and two photosensitizers (ICG and Ce6) by dual-targeting traction. Drawing on the thin film hydration method, cisplatin and photosensitizers were encapsulated inside nanoparticles. Meanwhile, the targeting peptide cRGD and targeting molecule folate can be modified on the surface of nanoparticles to realize the active identification of tumor cells. The measurements of dynamic light scattering showed that the prepared nanoparticles had an ideal dispersibility and uniform particle size of 102.6 nm. On the basis of the results observed from confocal laser scanning microscope, the modified nanoparticles were more efficient endocytosed by MCF-7 cells as a contrast to SGC-7901 cells. Photothermal conversion-triggered drug release and photo-therapies produced a significant apoptosis rate of 85.9% on MCF-7 cells. The distinguished results made it believed that the formulated delivery system had conducted great efforts and innovations for the realization of concise collaboration and provided a promising strategy for the treatment of breast cancer.

  6. Enhanced electrochemiluminescence based on Ru(bpy)₃²⁺-doped silica nanoparticles and graphene composite for analysis of melamine in milk

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Limin [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); University of the Chinese Academy of Sciences (China); Huang, Jianshe [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); Yang, Lu; Li, Libo [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); University of the Chinese Academy of Sciences (China); You, Tianyan, E-mail: youty@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2014-05-01

    Highlights: • A sensitive ECL sensor was developed by combining Ru(bpy)₃²⁺-doped silica (Ru(bpy)₃²⁺@SiO₂) nanoparticles with graphene. • The proposed sensor exhibited high sensitivity (~10⁻¹³ M) and wide linear range for melamine. • This method was successfully applied to the detection of melamine in milk. Abstract: A sensitive electrochemiluminescence (ECL) sensor for melamine analysis was fabricated based on Ru(bpy)₃²⁺-doped silica (Ru(bpy)₃²⁺@SiO₂) nanoparticles and graphene composite. Spherical Ru(bpy)₃²⁺@SiO₂ nanoparticles with uniform size about 55 nm were prepared by the reverse microemulsion method. Since per Ru(bpy)₃²⁺@SiO₂ nanoparticle encapsulated a great deal of Ru(bpy)₃²⁺, the ECL intensity has been greatly enhanced, which resulted in high sensitivity. Due to its extraordinary electric conductivity, graphene improved the conductivity and accelerated the electron transfer rate. In addition, graphene could work as electronic channel improving the efficient luminophor amount participating in the ECL reaction, which further enhanced the ECL signal. This proposed sensor was used to melamine analysis and the ECL intensity was proportional to logarithmic melamine concentration range from 1 × 10⁻¹³ M to 1 × 10⁻⁸ M with the detect limit as low as 1 × 10⁻¹³ M. In application to detect melamine in milk, satisfactory recoveries could be obtained, which indicated this sensor having potential application in melamine analysis in real samples.

  7. 3D-printed and CNC milled flow-cells for chemiluminescence detection.

    Science.gov (United States)

    Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S

    2014-08-01

    Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Chemiluminescence. Principles and applications in biology and medicine

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A K

    1988-01-01

    Chemiluminescence, the emission of light caused by a chemical reaction, is a phenomenon used for many applications and of wide biological importance. It occurs in bacteria and insects (including glow-worms and fireflies), in many of the animals in the deep sea and even in human cells. The last 25 years have witnessed fast progress in the elucidation of the reactions and mechanisms underlying bioluminescence and light production by synthetic systems. Together with the development of highly sensitive light detectors, this has made available new biomedical methods and has given rise to new concepts concerning the biology and pathology of the cell. The book describes the occurrence, chemistry and measurement of chemiluminescence. It deals with the biological function and evolutionary significance, and looks at the many biomedical applications. The author describes the uses of chemiluminescence to measure enzymes, substrates and metabolites, to detect the changes of calcium concentration in living cells, to determine oxygen radicals or to replace the radioactive labels in immunoassays. Future applications in research and clinical laboratories are also discussed.

  9. A chemiluminescent method for determination of lipid peroxidation

    International Nuclear Information System (INIS)

    Liang Xiaofeng; Hu Tianxi; Fan Xiaobing

    2003-01-01

    We established a chemiluminescent system for determination of lipid peroxidation and screening anti-oxidants. The lipid containing unsaturated fatly acids was injected into a galls tube. Luminol solution and the deionized water were added into it too. The glass tube was put into a preincubation box to incubate it for 0.5 h at 37 degree C. AAPH solution was injected into the tube for immediate measurement in a biochemiluminometer at 38-39 degree C. The pulses /6s(CP6s) were determined with T-2 program. Chemiluminescent dynamic and lipid peroxidation changes were observed continuously. Once the CL intensity of lipid peroxidation got peak, the antioxidant which has different concentration was added immediately in situ. A certain CL intensity (CP6s) was chosen as evaluation index to compare the activity of antioxidants. A luminol chemiluminescent system for determination of lipid peroxidation has been made. It was found that Vit. C, teapolyphenol, and glutathione have effects on scavenging lipid free radicals. The new method is quick, sensitive, and simple for determination of lipid peroxidation and screening antioxidants

  10. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shang Li; Dong Shaojun

    2008-01-01

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10 -7 M, 3.5 x 10 -7 M, 4.1 x 10 -7 M, and 7.7 x 10 -7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields

  11. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shang Li; Dong Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022 (China)], E-mail: dongsj@ciac.jl.cn

    2008-03-05

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10{sup -7} M, 3.5 x 10{sup -7} M, 4.1 x 10{sup -7} M, and 7.7 x 10{sup -7} M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  12. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    KAUST Repository

    Lee, Jung-Yong

    2010-04-29

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  13. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    KAUST Repository

    Lee, Jung-Yong; Peumans, Peter

    2010-01-01

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  14. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids

    Directory of Open Access Journals (Sweden)

    Sahin Huseyin

    2011-01-01

    Full Text Available Abstract We present an analysis of the dispersion characteristics and thermal conductivity performance of copper-based nanofluids. The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB. Nanofluids were prepared using water as the base fluid with copper nanoparticle concentrations of 0.55 and 1.0 vol.%. A dispersing agent, sodium dodecylbenzene sulfonate (SDBS, and subsequent ultrasonication was used to ensure homogenous dispersion of the copper nanopowders in water. Particle size distribution of the copper nanoparticles in the base fluid was determined by dynamic light scattering. We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS. In addition, a dynamic thermal conductivity setup was developed and used to measure the thermal conductivity performance of the nanofluids. The 0.55 vol.% Cu nanofluids exhibited a thermal conductivity enhancement of approximately 22%. In the case of the nanofluids prepared from the powders synthesized in the presence of CTAB, the enhancement was approximately 48% over the base fluid for the 1.0 vol.% Cu nanofluids, which is higher than the enhancement values found in the literature. These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering.

  15. The magnetic introduction of magnetite nanoparticles into live cells for radiosensibility enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Yurenya, Anton Y., E-mail: antonyurenya@gmail.com [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Polikarpov, Mikhail A. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Chukalova, Aynur A. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Moskaleva, Elizaveta Y.; Taldenkov, Alexander N. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Panchenko, Vladislav Y. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2017-04-01

    Earlier we proposed a new radiotherapy enhancement method that entails the administration of {sup 57}Fe iron-oxide nanoparticles into the cells . Within this work we were prompt to investigate the capability of iron oxide nanoparticles with monolayer coating to penetrate into live cells. Magnetite particle samples were synthesized and stabilized with HCl or citric acid. The cells were incubated in the presence of nanoparticles for 1 h, washed and dried. To distinguish inside-cell particles from outside ones a set of experiments with low temperature incubation was carried out. Several cell samples were prepared in the presence of an external magnetic field in order to study the possibility of the nanoparticle uptake enhancement. To evaluate the amount of particles in each cell sample we used a SQUID-magnetometer. The nanoparticle suspension with HCl stabilization turned to be inadequate for intracellular introduction. Approximately 2·10{sup 5} particles with citric acid covering conjugated with each cell after incubation at normal conditions. An application of an external magnetic field increased this amount up to 10{sup 7} particles/cell. Most probably much of these particles penetrated into cells. - Highlights: • Uncoated magnetite nanoparticle suspension is unusable for intracellular introduction. • Magnetite particles stabilized with citric acid penetrate into cells via endocytosis. • An application of a magnetic field enhances cellular uptake of magnetite particles. • The amount of particles in cell samples can be evaluated with a SQUID-magnetometer.

  16. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan.

    Science.gov (United States)

    Gupta, Umesh; Sharma, Saurabh; Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok K; Singh, Yuvraj; Chourasia, Manish K; Kumar, Vipin

    2017-05-01

    Taxanes have established and proven effectivity against different types of cancers; in particular breast cancers. However, the high hemolytic toxicity and hydrophobic nature of paclitaxel and docetaxel have always posed challenges to achieve safe and effective delivery. Use of bio-degradable materials with an added advantage of nanotechnology could possibly improve the condition so as to achieve better and safe delivery. In the present study paclitaxel loaded chitosan nanoparticles were formulated and optimized using simple w/o nanoemulsion technique. The observed average size, pdi, zeta potential, entrapment efficiency and drug loading for the optimized paclitaxel loaded chitosan nanoparticle formulation (PTX-CS-NP-10) was 226.7±0.70nm, 0.345±0.039, 37.4±0.77mV, 79.24±2.95% and 11.57±0.81%; respectively. Nanoparticles were characterized further for size by Transmission Electron Microscopy (TEM). In vitro release studies exhibited sustained release pattern and more than 60% release was observed within 24h. Enhanced in vitro anticancer activity was observed as a result of MTT assay against triple negative MDA-MB-231 breast cancer cell lines. The observed IC 50 values obtained for PTX-CS-NP-10 was 9.36±1.13μM and was almost 1.6 folds (psafe as observed for haemolytic toxicity which was almost 4 folds less (psafe nanoformulation of paclitaxel was developed, characterized and evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  18. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  19. Fluorescence enhancement of modified silver nanoparticles.

    Science.gov (United States)

    Liu, Meicen; Zhang, Zhenglong; Liu, Gaining; Dong, Jun; Sun, Yu; Zheng, Hairong; Li, Guian

    2011-11-01

    Surface enhanced fluorescence (SEF) effect of acridine orange fluorophore in the proximity of silver nanoparticles (NPs) has been investigated experimentally in the aqueous solution system. It was found that the SEF effect could be influenced by the distribution of the NPs and the separation between the fluorophore molecule and metal surface. The fluorescence enhancement was improved significantly when Ag NPs was capped with 4-Aminothiophenol (PATP) that was acted as an isolating layer between the metal surface and fluorophore molecules. The results suggest that a proper distribution of metallic NPs and proper separation between fluorophore molecule and the particle surface are important for obtaining an optimal SEF effect.

  20. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    Science.gov (United States)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  1. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene.

    Science.gov (United States)

    Jiang, Ding; Liu, Qian; Wang, Kun; Qian, Jing; Dong, Xiaoya; Yang, Zhenting; Du, Xiaojiao; Qiu, Baijing

    2014-04-15

    Copper nanoparticles (NPs) decorated nitrogen-doped graphene (Cu-N-G) was prepared by a facile thermal treatment, and further employed as a novel sensing material for fabricating the sensitive non-enzymatic glucose sensor. Compared with pure Cu NPs, the Cu-N-G showed enhanced electrocatalytic activity to glucose oxidation due to the integration of N-G, which exhibited the oxidation peak current of glucose ca. 23-fold higher than that of pure Cu NPs. The presented sensor showed excellent performances for glucose detection including wide linear range of 0.004-4.5 mM, low detection limit (1.3 μM, S/N=3), high sensitivity (48.13 μA mM(-1)), fast response time (doped graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis. © 2013 Published by Elsevier B.V.

  2. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis

    Science.gov (United States)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek

    2012-10-01

    Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.

  3. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  4. 61Ni synchrotron radiation-based Mössbauer spectroscopy of nickel-based nanoparticles with hexagonal structure

    Science.gov (United States)

    Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Yoda, Yoshitaka; Mitsui, Takaya; Hosoi, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Seto, Makoto

    2016-01-01

    We measured the synchrotron-radiation (SR)-based Mössbauer spectra of Ni-based nanoparticles with a hexagonal structure that were synthesised by chemical reduction. To obtain Mössbauer spectra of the nanoparticles without 61Ni enrichment, we developed a measurement system for 61Ni SR-based Mössbauer absorption spectroscopy without X-ray windows between the 61Ni84V16 standard energy alloy and detector. The counting rate of the 61Ni nuclear resonant scattering in the system was enhanced by the detection of internal conversion electrons and the close proximity between the energy standard and the detector. The spectrum measured at 4 K revealed the internal magnetic field of the nanoparticles was 3.4 ± 0.9 T, corresponding to a Ni atomic magnetic moment of 0.3 Bohr magneton. This differs from the value of Ni3C and the theoretically predicted value of hexagonal-close-packed (hcp)-Ni and suggested the nanoparticle possessed intermediate carbon content between hcp-Ni and Ni3C of approximately 10 atomic % of Ni. The improved 61Ni Mössbauer absorption measurement system is also applicable to various Ni materials without 61Ni enrichment, such as Ni hydride nanoparticles. PMID:26883185

  5. Enhancing light reflective properties on ITO glass by plasmonic effect of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Dezhong Zhang

    Full Text Available The preparation of well-defined silver (Ag nanoparticle arrays is reported in this paper. Ag nanoparticles are electrodeposited on Indium tin oxide (ITO coated glass substrates at 30 °C. The size, shape and periodicity of the Ag nanoparticle arrays are well-controlled. We study the effect of particle size and interparticle distance on reflection enhancement. The sample at the deposition potential of −0.2 V for an electrodeposition time of 3600 s exhibits an enhancement of 28% in weighted reflection in contrast with bare ITO glass. This study reports the high reflection of Ag nanoparticle arrays by electrodeposition method might be application to large-scale photovoltaic devices.

  6. Silver-nickel oxide core-shell nanoparticle array electrode with enhanced lithium-storage performance

    International Nuclear Information System (INIS)

    Zhao, Wenjia; Du, Ning; Zhang, Hui; Yang, Deren

    2015-01-01

    We demonstrate the synthesis of Ag-NiO core-shell nanoparticle arrays via a one-step solution-immersion process and subsequent RF-sputtering technique. The Ag nanoparticle arrays on copper substrate are firstly prepared by a displacement reaction at mild temperature of 303K. Then, a NiO layer is deposited onto the surface of the Ag nanoparticles via RF-sputtering technique. When evaluated as an anode for lithium-ion batteries, the Ag-NiO core-shell electrode shows higher capacity and better cycling performance than the planar NiO electrode. The in-situ synthesized Ag nanoparticles can enhance the interfacial strength between the active material and substrate, andimprove the electrical conductivity of the electrode, which may be responsible for the enhanced performance

  7. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    Science.gov (United States)

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.

  8. Flow-injection chemiluminescence assay for ultra-trace determination of DNA using rhodamine B-Ce(IV)-DNA ternary system in sulfuric acid media

    International Nuclear Information System (INIS)

    Ma Yongjun; Zhou Min; Jin Xiaoyong; Zhang Ziyu; Teng Xiulan; Chen Hui

    2004-01-01

    A novel flow-injection chemiluminescence method for the determination of DNA at ultra-trace level has been established. In 0.8 M sulfuric acid media, the chemiluminescence of the rhodamine B-cerium (IV) or Ce(IV) system is enhanced by DNA, activated previously by imidazole-HCl buffer solution (pH 7.0). The enhanced intensity of chemiluminescence is in proportion to log DNA concentration 1.0x10 -8 to 0.1 μg ml -1 for herring sperm DNA and 2.0x10 -6 to 0.2 μg ml -1 for calf thymus DNA with 3σ detection limits of 8.3x10 -9 μg ml -1 for herring sperm DNA and 3.5x10 -7 μg ml -1 for calf thymus DNA, respectively. The relative standard deviation for 1.0x10 -4 μg ml -1 herring sperm DNA was 0.99% and 2.0x10 -3 μg ml -1 for calf thymus DNA was 1.1% (n=11). Using the optimized system, DNA contents in six synthetic samples has been determined with recoveries of 99.5-109.0%. The possible mechanism has also been studied in this paper

  9. Flow-injection chemiluminescence assay for ultra-trace determination of DNA using rhodamine B-Ce(IV)-DNA ternary system in sulfuric acid media

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yongjun; Zhou Min; Jin Xiaoyong; Zhang Ziyu; Teng Xiulan; Chen Hui

    2004-01-09

    A novel flow-injection chemiluminescence method for the determination of DNA at ultra-trace level has been established. In 0.8 M sulfuric acid media, the chemiluminescence of the rhodamine B-cerium (IV) or Ce(IV) system is enhanced by DNA, activated previously by imidazole-HCl buffer solution (pH 7.0). The enhanced intensity of chemiluminescence is in proportion to log DNA concentration 1.0x10{sup -8} to 0.1 {mu}g ml{sup -1} for herring sperm DNA and 2.0x10{sup -6} to 0.2 {mu}g ml{sup -1} for calf thymus DNA with 3{sigma} detection limits of 8.3x10{sup -9} {mu}g ml{sup -1} for herring sperm DNA and 3.5x10{sup -7} {mu}g ml{sup -1} for calf thymus DNA, respectively. The relative standard deviation for 1.0x10{sup -4} {mu}g ml{sup -1} herring sperm DNA was 0.99% and 2.0x10{sup -3} {mu}g ml{sup -1} for calf thymus DNA was 1.1% (n=11). Using the optimized system, DNA contents in six synthetic samples has been determined with recoveries of 99.5-109.0%. The possible mechanism has also been studied in this paper.

  10. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Nayereh, E-mail: nayereh.soltani@gmail.com [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Saion, Elias; Yunus, W. Mahmood Mat; Erfani, Maryam; Navasery, Manizheh; Bahmanrokh, Ghazaleh [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Rezaee, Kadijeh [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2014-01-30

    Coating of ZnS and CdS nanoparticles with organic and inorganic materials can extend their light absorption in the visible region and their stability against photo-corrosion. Such materials could emerge as excellent photocatalysts for the elimination of pollutants from aqueous media using solar energy. In this study, PVP (polyvinyl pyrrolidone)-capped ZnS and CdS nanoparticles, ZnS/CdS and CdS/ZnS core shell nanoparticles were synthesized by microwave irradiation method and characterized using different techniques. The XRD patterns exhibited cubic and hexagonal structures for coated ZnS and CdS nanoparticles, respectively. Morphological evaluation of TEM images showed that the nanoparticles are generally spherical in shape. The UV–visible spectra confirmed a shift in the band gap of coated nanoparticles to longer or shorter wavelengths due to size and potential-well effects. The photocatalytic activity of nanoparticles toward dye degradation under visible light was found to be improved after coating. PVP-capped ZnS and CdS exhibited an enhancement in the initial methylene blue degradation efficiency by a factor of about 1.3. ZnS nanoparticles coated by CdS displayed the initial efficiency 3.2 times higher than bare ZnS. The maximum dye removal was obtained in presence of CdS/ZnS core shells which is 1.4 times more efficient than bare CdS.

  11. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    International Nuclear Information System (INIS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  12. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  13. A Novel Technique for Generating and Observing Chemiluminescence in a Biological Setting

    KAUST Repository

    Büchel, Gabriel E.

    2017-03-10

    Intraoperative imaging techniques have the potential to make surgical interventions safer and more effective; for these reasons, such techniques are quickly moving into the operating room. Here, we present a new approach that utilizes a technique not yet explored for intraoperative imaging: chemiluminescent imaging. This method employs a ruthenium-based chemiluminescent reporter along with a custom-built nebulizing system to produce ex vivo or in vivo images with high signal-to-noise ratios. The ruthenium-based reporter produces light following exposure to an aqueous oxidizing solution and re-reduction within the surrounding tissue. This method has allowed us to detect reporter concentrations as low as 6.9 pmol/cm(2). In this work, we present a visual guide to our proof-of-concept in vivo studies involving subdermal and intravenous injections in mice. The results suggest that this technology is a promising candidate for further preclinical research and might ultimately become a useful tool in the operating room.

  14. Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Ge Chunqiao; Xie Changsheng; Hu Mulin; Gui Yanghai; Bai Zikui; Zeng Dawen

    2007-01-01

    La-doped ZnO nanoparticles were synthesized by sol-gel method starting from zinc acetate dihydrate, lanthanum sesquioxide, alcohol and nitric acid. The crystal structure and morphology of the nanoparticles were characterized by XRD, FESEM, respectively. The thermal decomposition behavior of the the ZnO-based xerogel was detected by TG-DSC. The results show that as-prepared nanoparticles with the hexagonal wurtzite contain the adsorbed water and some organic compounds below 300 o C, which is the key to the calcinations of the ZnO-based xerogel. Pure ZnO and La-doped ZnO thick film sensors were prepared and tested for specific sensitivity to alcohol and benzene with (and without) UV-light excitation. Among all, 10 at.%La-ZnO-based sensors are significantly sensitive to 100 ppm alcohol and 100 ppm benzene. There is an obvious enhancement of the gas-sensing performances with UV-light excitation. That is, the sensitivity to 100 ppm benzene rises twice. The observed sensitivity to alcohol and benzene could be explained with the surface adsorption theory and the conduction-band theory

  15. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo; Coluccio, Maria Laura; Alabastri, Alessandro; Barberio, Marianna; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  16. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  17. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles.

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-14

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10 -12  M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  18. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-01

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10-12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  19. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis

    International Nuclear Information System (INIS)

    Li, Li; Wang, Xiong; Zhang, Yange

    2014-01-01

    Highlights: • LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method. • The samples exhibit superior visible-light-responsive photocatalytic activity. • Synergistic effect will enhance the photodegradation of RhB under visible light. - Abstract: LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method with assistance of glycol at different calcination temperatures. The as-synthesized LnFeO 3 was characterized by X-ray diffraction, transmission electron microscopy, differential scanning calorimeter and thermogravimetric analysis, and UV–vis absorption spectroscopy. The photocatalytic behaviors of LnFeO 3 nanoparticles were evaluated by photodegradation of rhodamine B under visible light irradiation. The results indicate that the visible light-responsive photocatalytic activity of LnFeO 3 nanoparticles was enhanced remarkably by the synergistic effect between the semiconductor photocatalysis and Fenton-like reaction. And a possible catalytic mechanism was also proposed based on the experimental results

  20. Photovoltaic devices having nanoparticle dipoles for enhanced performance and methods for making same

    Science.gov (United States)

    Williams, George M [Portland, OR; Schut, David M [Philomath, OR; Stonas, Andreas [Albany, OR

    2011-08-09

    A photovoltaic device has nanoparticles sandwiched between a conductive substrate and a charge selective transport layer. Each of the nanoparticles has a ligand shell attached to the nanoparticle core. A first type of ligand is electron rich and attached to one hemisphere of the nanoparticle core, while a second type of ligand is electron poor and attached to an opposite hemisphere of the core. Consequently, the ligand shell induces an electric field within the nanoparticle, enhancing the photovoltaic effect. The arrangement of ligands types on different sides of the nanoparticle is obtained by a process involving ligand substitution after adhering the nanoparticles to the conductive substrate.

  1. Mannosylated Chitosan Nanoparticles Based Macrophage-Targeting Gene Delivery System Enhanced Cellular Uptake and Improved Transfection Efficiency.

    Science.gov (United States)

    Peng, Yixing; Yao, Wenjun; Wang, Bo; Zong, Li

    2015-04-01

    Gene transfer mediated by mannosylated chitosan (MCS) is a safe and promising approach for gene and vaccine delivery. MCS nanoparticles based gene delivery system showed high in vivo delivery efficiency and elicited strong immune responses in mice. However, little knowledge about the cell binding, transfection efficiency and intracellular trafficking of MCS nanoparticles had been acquired. In this study, using gastrin-releasing peptide as a model plasmid (pGRP), the binding of MCS/pGRP nanoparticles to macrophages and the intracellular trafficking of MCS/pGRP nanoparticles in macrophages were investigated. MCS-mediated transfection efficiency in macrophages was also evaluated using pGL-3 as a reporter gene. The results showed that the binding and transfection efficiency of MCS nanoparticles in macrophages was higher than that of CS, which was attributed to the interaction between mannose ligands in MCS and mannose receptors on the surface of macrophages. Observation with a confocal laser scanning microscope indicated the cellular uptake of MCS/pGRP nanoparticles were more than that of CS/pGRP nanoparticles in macrophages. MCS/pGRP nanoparticles were taken up by macrophages and most of them were entrapped in endosomal/lysosomal compartments. After the nanoparticles escaping from endosomal/lysosomal compartments, naked pGRP entered the nucleus, and a few MCS might enter the nucleus in terms of nanoparticles. Overall, MCS has the potential to be an excellent macrophage-targeting gene delivery carrier.

  2. Enhanced green and red upconversion emissions in Er3+-doped boro-tellurite glass containing gold nanoparticles

    Science.gov (United States)

    Dousti, M. Reza; Amjad, Raja J.; Mahraz, Zahra Ashur S.

    2015-01-01

    Increasing the cross-section of upconversion emissions from the rare earth ions doped materials is a challenging issue. In this work, we report on the enhancement of the up-converted emissions of Er3+-doped boro-tellurite glasses containing gold nanoparticles which have been prepared by a conventional melt-quench technique. Seven absorption bands and three emission lines are observed using the UV-Vis-IR and photoluminescence spectroscopic techniques, respectively. Red emission is enhanced up to 30 times in a sample having 1 wt% of Au nanoparticles. The presence of the gold nanoparticles with average size of ∼5.74 nm is confirmed by transmission electron microscopy and corresponding surface plasmon band is observed at 630 nm in a singly-doped Au-nanoparticles embedded glass sample. A model to determine the enhancement factor of the emissions is suggested which could not describe the phenomenon for high concentrations of nanoparticles. Enhancement is attributed to the increased local field around the metal, and the results are discussed in details.

  3. Plasmon-assisted photoluminescence enhancement of SiC nanocrystals by proximal silver nanoparticles

    International Nuclear Information System (INIS)

    Zhang, N.; Dai, D.J.; Fan, J.Y.

    2012-01-01

    Highlights: ► We studied metal surface plasmon-enhanced photoluminescence in SiC nanocrystals. ► The integrated emission intensity can be enhanced by 17 times. ► The coupling between SiC emission and Ag plasmon oscillation induces the enhancement. ► The enhancement is tunable with varied spacing thickness of electrolytes. - Abstract: Plasmon-enhanced photoluminescence has wide application potential in many areas, whereas the underlying mechanism is still in debate. We report the photoluminescence enhancement in SiC nanocrystal–Ag nanoparticle coupled system spaced by the poly(styrene sulfonic acid) sodium salt/poly(allylamine hydrochloride) polyelectrolyte bilayers. The integrated luminescence intensity can be improved by up to 17 times. Our analysis indicates that the strong coupling between the SiC nanocrystals and the surface plasmon oscillation of the silver nanoparticles is the major cause of the luminescence enhancement. These findings will help to understand the photoluminescence enhancement mechanism as well as widen the applications of the SiC nanocrystals in photonics and life sciences.

  4. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study.

    Science.gov (United States)

    Peng, Shengfeng; Li, Ziling; Zou, Liqiang; Liu, Wei; Liu, Chengmei; McClements, David Julian

    2018-02-14

    There is great interest in developing colloidal delivery systems to enhance the water solubility and oral bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. In this study, a natural emulsifier was used to form sophorolipid-coated curcumin nanoparticles. The curcumin was loaded into sophorolipid micelles using a pH-driven mechanism based on the decrease in curcumin solubility at lower pH values. The sophorolipid-coated curcumin nanoparticles formed using this mechanism were relatively small (61 nm) and negatively charged (-41 mV). The nanoparticles also had a relatively high encapsulation efficiency (82%) and loading capacity (14%) for curcumin, which was present in an amorphous state. Both in vitro and in vivo studies showed that the curcumin nanoparticles had an appreciably higher bioavailability than that of free curcumin crystals (2.7-3.6-fold), which was mainly attributed to their higher bioaccessibility. These results may facilitate the development of natural colloidal systems that enhance the oral bioavailability and bioactivity of curcumin in food, dietary supplements, and pharmaceutical products.

  5. Plasmonic resonance-enhanced local photothermal energy deposition by aluminum nanoparticles

    International Nuclear Information System (INIS)

    Chong Xinyuan; Jiang Naibo; Zhang Zhili; Roy, Sukesh; Gord, James R.

    2013-01-01

    Local energy deposition of aluminum nanoparticles (Al NPs) by localized surface plasmon resonance-enhanced photothermal effects is demonstrated. Low-power light stimuli are efficiently and locally concentrated to trigger the oxidation reactions of Al NPs because of the large ohmic absorption and high reactivity of the Al. Numerical simulations show that both ultraviolet and visible light are more efficient than infrared light for photothermal energy coupling. The natural oxidation layer of alumina is found to have minimum impact on the energy deposition because of its negligible dielectric losses. The near-field distributions of the electric field indicate that slight aggregation induces much higher local enhancement, especially at the interface region of multiple contacting nanoparticles.

  6. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hongmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Chang, Gang, E-mail: changgang@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Lei, Ming [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); He, Hanping [College of Chemistry and Chemical Engineer, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062 (China); Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2016-10-30

    Highlights: • Pt/DGNs/GC composites were obtained via a clean and facile method without any templates, surfactants, or stabilizers. • Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. • The obtained Pt/DGNs/GC composites with high electrochemical active surface area (ECSA) show superior electrocatalytic activity to glucose. • The sensor based on Pt/DGNs/GC exhibited excellent sensitivity, selectivity and stability for nonenzymatic glucose detection. - Abstract: Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the

  7. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study

    International Nuclear Information System (INIS)

    Cho, S H

    2005-01-01

    A recent mice study demonstrated that gold nanoparticles could be safely administered and used to enhance the tumour dose during radiation therapy. The use of gold nanoparticles seems more promising than earlier methods because of the high atomic number of gold and because nanoparticles can more easily penetrate the tumour vasculature. However, to date, possible dose enhancement due to the use of gold nanoparticles has not been well quantified, especially for common radiation treatment situations. Therefore, the current preliminary study estimated this dose enhancement by Monte Carlo calculations for several phantom test cases representing radiation treatments with the following modalities: 140 kVp x-rays, 4 and 6 MV photon beams, and 192 Ir gamma rays. The current study considered three levels of gold concentration within the tumour, two of which are based on the aforementioned mice study, and assumed either no gold or a single gold concentration level outside the tumour. The dose enhancement over the tumour volume considered for the 140 kVp x-ray case can be at least a factor of 2 at an achievable gold concentration of 7 mg Au/g tumour assuming no gold outside the tumour. The tumour dose enhancement for the cases involving the 4 and 6 MV photon beams based on the same assumption ranged from about 1% to 7%, depending on the amount of gold within the tumour and photon beam qualities. For the 192 Ir cases, the dose enhancement within the tumour region ranged from 5% to 31%, depending on radial distance and gold concentration level within the tumour. For the 7 mg Au/g tumour cases, the loading of gold into surrounding normal tissue at 2 mg Au/g resulted in an increase in the normal tissue dose, up to 30%, negligible, and about 2% for the 140 kVp x-rays, 6 MV photon beam, and 192 Ir gamma rays, respectively, while the magnitude of dose enhancement within the tumour was essentially unchanged. (note)

  8. An enhanced cerium(IV)-rhodamine 6G chemiluminescence system using guest-host interactions in a lab-on-a-chip platform for estimating the total phenolic content in food samples.

    Science.gov (United States)

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2016-04-01

    Two chemiluminescence-microfluidic (CL-MF) systems, e.g., Ce(IV)-rhodamine B (RB) and Ce(IV)-rhodamine 6G (R6G), for the determination of the total phenolic content in teas and some sweeteners were evaluated. The results indicated that the Ce(IV)-R6G system was more sensitive in comparison to the Ce(IV)-RB CL system. Therefore, a simple (CL-MF) method based on the CL of Ce(IV)-R6G was developed, and the sensitivity, selectivity and stability of this system were evaluated. Selected phenolic compounds (PCs), such as quercetin (QRC), catechin (CAT), rutin (RUT), gallic acid (GA), caffeic acid (CA) and syringic acid (SA), produced analytically useful chemiluminescence signals with low detection limits ranging from 0.35 nmol L(-1) for QRC to 11.31 nmol L(-1) for SA. The mixing sequence and the chip design were crucial, as the sensitivity and reproducibility could be substantially affected by these two factors. In addition, the anionic surfactant (i.e., sodium dodecyl sulfate (SDS)) can significantly enhance the CL signal intensity by as much as 300% for the QRC solution. Spectroscopic studies indicated that the enhancement was due to a strong guest-host interaction between the cationic R6G molecules and the anionic amphiphilic environment. Other parameters that could affect the CL intensities of the PCs were carefully optimized. Finally, the method was successfully applied to tea and sweetener samples. Six different tea samples exhibited total phenolic/antioxidant levels from 7.32 to 13.5 g per 100g of sample with respect to GA. Four different sweetener samples were also analyzed and exhibited total phenolic/antioxidant levels from 500.9 to 3422.9 mg kg(-1) with respect to GA. The method was selective, rapid and sensitive when used to estimate the total phenolic/antioxidant level, and the results were in good agreement with those reported for honey and tea samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Andrea M Binnebose

    Full Text Available Filarial diseases represent a significant social and economic burden to over 120 million people worldwide and are caused by endoparasites that require the presence of symbiotic bacteria of the genus Wolbachia for fertility and viability of the host parasite. Targeting Wolbachia for elimination is a therapeutic approach that shows promise in the treatment of onchocerciasis and lymphatic filariasis. Here we demonstrate the use of a biodegradable polyanhydride nanoparticle-based platform for the co-delivery of the antibiotic doxycycline with the antiparasitic drug, ivermectin, to reduce microfilarial burden and rapidly kill adult worms. When doxycycline and ivermectin were co-delivered within polyanhydride nanoparticles, effective killing of adult female Brugia malayi filarial worms was achieved with approximately 4,000-fold reduction in the amount of drug used. Additionally the time to death of the macrofilaria was also significantly reduced (five-fold when the anti-filarial drug cocktail was delivered within polyanhydride nanoparticles. We hypothesize that the mechanism behind this dramatically enhanced killing of the macrofilaria is the ability of the polyanhydride nanoparticles to behave as a Trojan horse and penetrate the cuticle, bypassing excretory pumps of B. malayi, and effectively deliver drug directly to both the worm and Wolbachia at high enough microenvironmental concentrations to cause death. These provocative findings may have significant consequences for the reduction in the amount of drug and the length of treatment required for filarial infections in terms of patient compliance and reduced cost of treatment.

  10. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene

    KAUST Repository

    Liu, Xin

    2012-01-01

    The impact of carbon substrate-Ru nanoparticle interactions on benzene and hydrogen adsorption that is directly related to the performance in catalytic hydrogenation of benzene has been investigated by first-principles based calculations. The stability of Ru 13 nanoparticles is enhanced by the defective graphene substrate due to the hybridization between the dsp states of the Ru 13 particle with the sp 2 dangling bonds at the defect sites. The local curvature formed at the interface will also raise the Ru atomic diffusion barrier, and prohibit the particle sintering. The strong interfacial interaction results in the shift of averaged d-band center of the deposited Ru nanoparticle, from -1.41 eV for a freestanding Ru 13 particle, to -1.17 eV for the Ru/Graphene composites, and to -1.54 eV on mesocellular foam carbon. Accordingly, the adsorption energies of benzene are increased from -2.53 eV for the Ru/mesocellular foam carbon composites, to -2.62 eV on freestanding Ru 13 particles, to -2.74 eV on Ru/graphene composites. A similar change in hydrogen adsorption is also observed, and all these can be correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles graphene composites are expected to exhibit both high stability and superior catalytic performance in hydrogenation of arenes. © 2012 The Royal Society of Chemistry.

  11. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    Science.gov (United States)

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  12. Enhanced photocatalysis, colloidal stability and cytotoxicity of synchrotron X-ray synthesized Au/TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Liu, Chi-Jen; Yang, Tsung-Yeh; Wang, Chang-Hai; Chien, Chia-Chi; Chen, Shin-Tai; Wang, Cheng-Liang; Leng, Wei-Hua; Hwu, Y.; Lin, Hong-Ming; Lee, Yao-Chang; Cheng, Chia-Liang; Je, J.H.; Margaritondo, G.

    2009-01-01

    Au/TiO 2 nanocomposite particles were synthesized by a method based on intense X-ray irradiation without adding any reducing agent or stabilizer. The nanocomposite exhibits promising photocatalytic and biological properties at physiologically relevant concentration ([Au] = 0.028 mM, [TiO 2 ] = 0.5 mM). The structure and photocatalysis were examined by X-ray diffraction, electron microscopy and ultraviolet-visible spectroscopy demonstrating that gold nanoparticles of 2-5 nm size were successfully deposited on TiO 2 nanoparticle surfaces. The nanocomposite exhibited good colloidal stability within a typical cellular environment and was nontoxic to cancer cell according to evaluations under controlled conditions. The Au/TiO 2 nanoparticles were also found to enhance the photocatalytic efficiency of UV radiation and even more that of X-ray radiation. In vitro studies indicated that the cell-killing effect under X-ray irradiation is more pronounced with the addition of Au/TiO 2 nanoparticles than of bare TiO 2 nanoparticles.

  13. Shear viscosity enhancement in water–nanoparticle suspensions

    International Nuclear Information System (INIS)

    Balasubramanian, Ganesh; Sen, Swarnendu; Puri, Ishwar K.

    2012-01-01

    Equilibrium molecular dynamics simulations characterize the increase in the shear viscosity of water around a suspended silicon dioxide nanoparticle. Water layering on the solid surface decreases the fraction of adjacent fluid molecules that are more mobile and hence less viscous, thereby increasing the shear viscosity. The contribution of the nanoparticle surface area to this rheological behavior is identified and an empirical model that accounts for it is provided. The model successfully reproduces the shear viscosity predictions from previous experimental measurements as well as our simulations. -- Highlights: ► Layering of water on the solid surfaces increases the fraction of less mobile molecules adjacent to them. ► A nondimensional parameter predicts of viscosity enhancement due to particle shape, volume fraction. ► Model predictions agree with the results of atomistic simulations and experimental measurements.

  14. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Lee, Rebecca K.Y.

    2009-01-01

    We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree of repro......We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree...

  15. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-01-01

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  16. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP (Brazil)

    2014-03-15

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  17. Enhanced chemiluminescence of the luminol–KMnO4 system by CuO nanosheets and its application for determination of meropenem in water and human serum

    International Nuclear Information System (INIS)

    Khataee, A.R.; Fathinia, M.; Hasanzadeh, A.; Iranifam, M.; Moradkhannejhad, L.

    2014-01-01

    CuO nanosheets were synthesized by an easy and green sonochemical method. It was found that, CuO nanosheets could significantly catalyze the chemiluminescence (CL) reaction of luminol–KMnO 4 in an alkaline condition. Based on this finding, a new CL system (luminol–KMnO 4 –CuO nanosheets) combined with flow injection analysis has been developed for the determination of meropenem for the first time. Moreover, the CL intensity was enhanced when meropenem was presented in the reaction system. Under the optimum conditions, the enhanced CL intensity was proportional to the concentration of meropenem in the ranges of 0.005–6.00 mg L −1 , with a detection limit (3σ) of 0.0036 mg L −1 . The precision of the method was calculated by analyzing samples containing 1.0 mg L −1 meropenem (n=11) and the relative standard deviation (RSD) was 1.7%. Also, a total analysis time per sample was 30 s which confirmed the rapidity of the proposed assay. The practicality of the proposed CL system was evaluated by determining meropenem in spiked environmental water samples and human serum. A discussion on the possible CL reaction mechanism was also presented. - Highlights: • CuO nanosheets (NSs) were successfully prepared by a green sonochemical method. • CuO NSs were found to be an excellent enhancer for luminol−KMnO 4 CL system. • Meropenem was determined using a novel luminol−KMnO 4 −CuO NSs flow injection CL system. • The enhancement mechanism of meropenem on the CL emission was proposed. • Appropriate sensitivity and selectivity were notable features of the proposed method

  18. Electrogenerated chemiluminescence of luminol using low-cost electrodes

    International Nuclear Information System (INIS)

    Salgado, Guillermo; Navarrete, Jose; Bustos, Carlos; Sanchez, Cristian; Ugarte, Ricardo

    2006-01-01

    The purpose of the study was to observe eletrogenerated chemiluminescence (ECL) of luminol using different materials as electrodes such as wires, nails, coins, razor blades, etc. Based on the experimental observations and the mechanisms proposed in the literature, students should be capable of analyzing their results in order to understand the phenomena studied. Students could then elaborate a mechanism of action consistent with the experimental results which could rationalize the formation of intermediates in the reaction and the dependence of ECL on solution pH in addition to other points of interest. (author)

  19. Characteristic of peroxyoxalate-chemiluminescence intensity in the presence of Chlorpheniramine maleate and its analytical application

    International Nuclear Information System (INIS)

    Samadi-Maybodi, Abdolraouf; Akhoondi, Reza

    2011-01-01

    It has been shown that Chlorpheniramine maleate (CPM) increases chemiluminescence intensity of bis-(2,4,6-trichlorophenyl)oxalate (TCPO) with hydrogen peroxide in the presence of biphenylquinoxaline as a fluorophore. In this work, the effect of CPM on the intensity of chemiluminescence (CL) in the system of (TCPO-sodium salicylate-fluorophore-hydrogen peroxide) was investigated. The fall and rise rates constants were also studied. A pooled-intermediate model was used for determining the kinetics parameters of CL with and without CPM. Results indicated that addition of CMP to this system increases the fall rate constant and decreases the rise rate constant. Results also specified that there is a linear relationship between CPA concentration and chemiluminescence intensity in the range 0.66-21.5 μg/ml. Detection limit 0.18 μg/ml and the relative standard deviation (RSD) 2 O 2 - sodium salicylate- fluorescer) in the presence of chlorpheniramine maleate. → Results also introduced a reliable method for determination of chlorpheniramine using peroxyoxalte chemiluminescence system. → A pooled-intermediate model was used for determination the kinetics parameters of chemiluminescence with and without chlorpheniramine maleate. → Results also specified that there is a linear relationship between chlorpheniramine maleate concentration and chemiluminescence intensity.

  20. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  1. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

    Science.gov (United States)

    Shevtsov, Maxim; Nikolaev, Boris; Marchenko, Yaroslav; Yakovleva, Ludmila; Skvortsov, Nikita; Mazur, Anton; Tolstoy, Peter; Ryzhov, Vyacheslav; Multhoff, Gabriele

    2018-01-01

    Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by T 1 (spin-lattice relaxation time) and T 2 (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 μg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in T 2 values ( P chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the

  2. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Scott MacKay

    2015-09-01

    Full Text Available In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations.

  3. Relationship between Length and Surface-Enhanced Raman Spectroscopy Signal Strength in Metal Nanoparticle Chains: Ideal Models versus Nanofabrication

    Directory of Open Access Journals (Sweden)

    Kristen D. Alexander

    2012-01-01

    Full Text Available We have employed capillary force deposition on ion beam patterned substrates to fabricate chains of 60 nm gold nanospheres ranging in length from 1 to 9 nanoparticles. Measurements of the surface-averaged SERS enhancement factor strength for these chains were then compared to the numerical predictions. The SERS enhancement conformed to theoretical predictions in the case of only a few chains, with the vast majority of chains tested not matching such behavior. Although all of the nanoparticle chains appear identical under electron microscope observation, the extreme sensitivity of the SERS enhancement to nanoscale morphology renders current nanofabrication methods insufficient for consistent production of coupled nanoparticle chains. Notwithstanding this fact, the aggregate data also confirmed that nanoparticle dimers offer a large improvement over the monomer enhancement while conclusively showing that, within the limitations imposed by current state-of-the-art nanofabrication techniques, chains comprising more than two nanoparticles provide only a marginal signal boost over the already considerable dimer enhancement.

  4. Flash NanoPrecipitation (FNP) for bioengineering nanoparticles to enhance the bioavailability

    Science.gov (United States)

    Feng, Jie; Zhang, Yingyue; McManus, Simone; Prud'Homme, Robert

    2017-11-01

    Nanoparticles for the delivery of therapeutics have been one of the successful areas in biomedical nanotechnology. Nanoparticles improve bioavailability by 1) the higher surface-to-volume ratios, enhancing dissolution rates, and 2) trapping drug molecules in higher energy, amorphous states for a higher solubility. However, conventional direct precipitation to prepare nanoparticles has the issues of low loading and encapsulation efficiency. Here we demonstrate a kinetically controlled and rapid-precipitation process called Flash NanoPrecipitation (FNP), to offer a multi-phase mixing platform for bioengineering nanoparticles. With the designed geometry in the micro-mixer, we can generate nanoparticles with a narrow size distribution, while maintaining high loading and encapsulation efficiency. By controlling the time scales in FNP, we can tune the nanoparticle size and the robustness of the process. Remarkably, the dissolution rates of the nanoparticles are significantly improved compared with crystalline drug powders. Furthermore, we investigate how to recover the drug-loaded nanoparticles from the aqueous dispersions. Regarding the maintenance of the bioavailability, we discuss the advantages and disadvantages of each drying process. These results suggest that FNP offers a versatile and scalable nano-fabrication platform for biomedical engineering.

  5. Cationic Albumin Nanoparticles for Enhanced Drug Delivery to Treat Breast Cancer: Preparation and In Vitro Assessment

    Directory of Open Access Journals (Sweden)

    Sana Abbasi

    2012-01-01

    Full Text Available Most anticancer drugs are greatly limited by the serious side effects that they cause. Doxorubicin (DOX is an antineoplastic agent, commonly used against breast cancer. However, it may lead to irreversible cardiotoxicity, which could even result in congestive heart failure. In order to avoid these harmful side effects to the patients and to improve the therapeutic efficacy of doxorubicin, we developed DOX-loaded polyethylenimine- (PEI- enhanced human serum albumin (HSA nanoparticles. The formed nanoparticles were ~137 nm in size with a surface zeta potential of ~+15 mV, prepared using 20 μg of PEI added per mg of HSA. Cytotoxicity was not observed with empty PEI-enhanced HSA nanoparticles, formed with low-molecular weight (25 kDa PEI, indicating biocompatibility and safety of the nanoparticle formulation. Under optimized transfection conditions, approximately 80% of cells were transfected with HSA nanoparticles containing tetramethylrhodamine-conjugated bovine serum albumin. Conclusively, PEI-enhanced HSA nanoparticles show potential for developing into an effective carrier for anticancer drugs.

  6. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    International Nuclear Information System (INIS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-01-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1–4 μm, encapsulation efficiency 80–85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  7. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant, E-mail: pmishra@dbeb.iitd.ac.in [Indian Institute of Technology Delhi, Department of Biochemical Engineering and Biotechnology (India)

    2013-03-15

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1-4 {mu}m, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 {+-} 28.6 nm, encapsulation efficiency 92.17 {+-} 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  8. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Science.gov (United States)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  9. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  10. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect

    International Nuclear Information System (INIS)

    Niculae, G; Lacatusu, I; Badea, N; Meghea, A

    2012-01-01

    The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions. (paper)

  11. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect

    Science.gov (United States)

    Niculae, G.; Lacatusu, I.; Badea, N.; Meghea, A.

    2012-08-01

    The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions.

  12. Facile synthesis of ferromagnetic Ni doped CeO{sub 2} nanoparticles with enhanced anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Fazal; Jan, Tariq [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@iiu.edu.pk [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University Islamabad (Pakistan); Ahmad, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Naqvi, M. Sajjad H. [Department of Biochemistry, University of Karachi, Karachi (Pakistan); Malik, Maaza [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-12-01

    Highlights: • The synthesized undoped and Ni doped CeO{sub 2} nanoparticles exhibited RTFM. • Oxygen vacancies and magnetic ions both were believed to be responsible for RTFM. • The prepared nanoparticles exhibited selective cytotoxicity. • Ni doping enhanced the anticancer activity of CeO{sub 2} nanoparticles. • Differential ROS generation was observed to control their cytotoxicity. - Abstract: Ni{sub x}Ce{sub 1−x}O{sub 2} (where x = 0, 0.01, 0.03, 0.05 and 0.07) nanoparticles were synthesized by soft chemical method and were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, UV–vis absorption spectroscopy and vibrating sample magnetometer (VSM). XRD and Raman results indicated the formation of single phase cubic fluorite structure for the synthesized nanoparticles. Ni dopant induced excessive structural changes such as decrease in crystallite size as well as lattice constants and enhancement in oxygen vacancies in CeO{sub 2} crystal structure. These structural variations significantly influenced the optical and magnetic properties of CeO{sub 2} nanoparticles. The synthesized Ni{sub x}Ce{sub 1−x}O{sub 2} nanoparticles exhibited room temperature ferromagnetic behavior. Ni doping induced effects on the cytotoxicity of CeO{sub 2} nanoparticles were examined against HEK-293 healthy cell line and SH-SY5Y neuroblastoma cancer cell line. The prepared Ni{sub x}Ce{sub 1−x}O{sub 2} nanoparticles demonstrated differential cytotoxicity. Furthermore, anticancer activity of CeO{sub 2} nanoparticles observed to be significantly enhanced with Ni doping which was found to be strongly correlated with the level of reactive oxygen species (ROS) production. The prepared ferromagnetic Ni{sub x}Ce{sub 1−x}O{sub 2} nanoparticles with differential cytotoxic nature may be potential for future targeted cancer therapy.

  13. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    International Nuclear Information System (INIS)

    Díaz Téllez, J P; Harirchian-Saei, S; Li, Y; Menon, C

    2013-01-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet–visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved. (paper)

  14. Enhanced magnetodielectric and multiferroic properties of Er-doped bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.; Banerjee, M. [Department of Physics, National Institute of Technology, Durgapur 713209 (India); Basu, S., E-mail: soumen.basu@phy.nitdgp.ac.in [Department of Physics, National Institute of Technology, Durgapur 713209 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pal, M. [CSIR-Central Glass & Ceramic Research Institute, Kolkata 700032 (India)

    2015-07-15

    An enhancement in multiferroic properties has been achieved for chemically prepared BFO nanoparticles by doping with erbium (Er). XRD along with electron microscopy study reveals the phase purity and nanocrystalline nature of BFO. Enhancement of both the magnetic moment and resistivity is observed by virtue of Er doping. The observed enhanced magnetic moment is considered to be associated with smaller crystallite whereas increase of resistivity may be attributed to a decrease of oxygen vacancies. Doping also display an improvement of leakage behaviour and dielectric constant in nanocrystalline BFO, reflected in well-developed P-E loop. In addition, large enhancement in magnetodielectric coefficient is observed because of Er doping. Therefore, the results provide interesting approaches to improve the multiferroic properties of BFO, which has great implication towards its applications. - Highlights: • Synthesis of pure Er-doped BFO nanoparticles by chemical route. • Large increase in magnetic moment and resistivity due to Er doping. • Er doping produce well developed P-E loop and enhance polarization. • Drastic increase in dielectric constant as well as magnetodielectric coefficient observes because of Er doping.

  15. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.

    Science.gov (United States)

    Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter

    2008-09-01

    The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.

  16. Enhanced oil recovery by nanoparticles injection: Modeling and simulation

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; Salama, Amgad

    2013-01-01

    In the present paper, a mathematical model and numerical simulation to describe the nanoparticles-water suspension imbibes into a water-oil two-phase flow in a porous medium is introduced. We extend the model to include the negative capillary pressure and mixed relative permeabilities correlations to fit with the mixed-wet system. Also, buoyancy and capillary forces as well as Brownian diffusion are considered. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles and check for possible enhancement of the oil recovery process using numerical experiments.

  17. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn; Zhang, Lizhi

    2017-01-30

    Highlights: • Bimetallic iron-nickel nanoparticles possessed an enhanced performance on aerobic degradation of 4-CP. • Hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI. • Superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. • The 4-CP degradation pathways were dependent on the generated superoxide radicals in the nZVIN/Air process. - Abstract: In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.

  18. Shape Effects in Nanoparticle-Based Imaging Agents

    Science.gov (United States)

    Culver, Kayla Shani Brook

    At the nanoscale, material properties become highly size and shape dependent. These properties can be manipulated and exploited for a variety of biomedical applications, including sensing, drug delivery, diagnostics, and imaging. In particular, nanoparticles of different materials, sizes and shapes have been developed as high-performance contrast agents for optical, electron, and medical imaging. In this thesis, I focus on gold nanoparticles because they are widely used as contrast agents in multiple types of imaging modalities. Additionally, the surface of gold can be readily functionalized with ligands and the structure of the particles can be manipulated to modulate their performance as imaging agents. The properties of nanoparticles can generate contrast directly. For example, the light scattering properties of gold particles can be visualized in optical microscopy, the high electron density of gold produces contrast in electron microscopy, and the x-ray absorption properties of gold can be detected in medical x-ray and computed tomography imaging. Alternatively, the properties of the nanomaterial can be exploited to modulate the signal produced by other molecules that are bound to the particle surface. The light emission of molecular fluorophores can be quenched or dramatically increased by coupling to the optical field enhancements of gold nanoparticles, and the performance of gadolinium (Gd(III))-based magnetic resonance imaging (MRI) contrast agents can be increased by coupling to the rotational motion of nanoparticles. In this dissertation, I focus specifically on how the structure of star-shaped gold particles (nanostars) can be exploited as single-particle optical probes and to dramatically enhance the relaxivity of Gd(III) bound to the surface. Differential interference contrast (DIC) is a type of wide-field diffraction-limited optical microscopy that is commonly used by biologists to image cells without labels. Here, I demonstrate the DIC can be used

  19. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

    Science.gov (United States)

    Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.

  20. Optimization and development of a high-performance liquid chromatography-based one-site immunometric assay with chemiluminescence detection

    International Nuclear Information System (INIS)

    Oates, Matthew R.; Clarke, William; Zimlich, Alden; Hage, David S.

    2002-01-01

    Various practical and theoretical considerations were examined in the creation and optimization of a high-performance liquid chromatography (HPLC)-based one-site immunometric assay. This method used an HPLC analyte analog column and post-column chemiluminescence detection. The specific analyte chosen as the model for this study was L-thyroxine (also known as T 4 ). In this technique, a sample containing thyroxine was first combined with an excess of anti-T 4 antibody Fab fragments that had earlier been conjugated with chemiluminescent acridinium ester labels. After incubation, the mixture was injected onto a column that contained immobilized T 4 . The amount of thyroxine in the original sample was then determined by measuring the labeled Fab fragments that appeared in the non-retained fraction, or the decrease in excess Fab fragments that were bound to and later eluted from the column. Items considered in creating this assay included the preparation of acridinium ester-labeled Fab fragments, the detection of these fragments with a post-column reactor, and the creation of a suitable immobilized analog column for capturing excess labeled Fab fragments. The final method could measure T 4 in standards at clinically-relevant concentrations and provided a response within 1.5 min of sample injection, following a 20-45 min incubation with the labeled Fab fragments. Possible applications of this method include its use in clinical chemistry and the screening of proteomic or combinatorial libraries

  1. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications

    International Nuclear Information System (INIS)

    Madathil, Pramod Kandoth; Balagi, Nagaraj; Saha, Priyanka; Bharali, Jitalaxmi; Rao, Peddy V.C.; Choudary, Nettem V.; Ramesh, Kanaparthi

    2016-01-01

    Highlights: • Prepared and characterized inorganic ternary molten salt based nanothermic fluids. • MoS_2 and CuO nanoparticles incorporated ternary molten salts have been prepared. • Thermal properties enhanced by the addition of MoS_2 and CuO nanoparticles. • The amount of nanoparticles has been optimized. - Abstract: In the current energy scenario, solar energy is attracting considerable attention as a renewable energy source with ample research and commercial opportunities. The novel and efficient technologies in the solar energy are directed to develop methods for solar energy capture, storage and utilization. High temperature thermal energy storage systems can deal with a wide range of temperatures and therefore they are highly recommended for concentrated solar power (CSP) applications. In the present study, a systematic investigation has been carried out to identify the suitable inorganic nanoparticles and their addition in the molten salt has been optimized. In order to enhance the thermo-physical properties such as thermal conductivity and specific heat capacity of molten salt based HTFs, we report the utilization of MoS_2 and CuO nanoparticles. The enhancement in the above mentioned thermo-physical properties has been demonstrated for optimized compositions and the morphologies of nanoparticle-incorporated molten salts have been studied by scanning electron microscopy (SEM). Nanoparticle addition to molten salts is an efficient method to prepare thermally stable molten salt based heat transfer fluids which can be used in CSP plants. It is also observed that the sedimentation of nanoparticles in molten salt is negligible compared to that in organic heat transfer fluids.

  2. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties

    International Nuclear Information System (INIS)

    Yoksan, Rangrong; Chirachanchai, Suwabun

    2010-01-01

    The fabrication of silver nanoparticles was accomplished by γ-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 ± 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20-25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the γ-ray irradiated chitosan solution was 5.64 μg/mL. The silver nanoparticle-loaded chitosan-starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan-starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.

  3. Protein-Based Nanoparticle Preparation via Nanoprecipitation Method

    Directory of Open Access Journals (Sweden)

    Mohamad Tarhini

    2018-03-01

    Full Text Available Nanoparticles are nowadays largely investigated in the field of drug delivery. Among nanoparticles, protein-based particles are of paramount importance since they are natural, biodegradable, biocompatible, and nontoxic. There are several methods to prepare proteins containing nanoparticles, but only a few studies have been dedicated to the preparation of protein- based nanoparticles. Then, the aim of this work was to report on the preparation of bovine serum albumin (BSA-based nanoparticles using a well-defined nanoprecipitation process. Special attention has been dedicated to a systematic study in order to understand separately the effect of each operating parameter of the method (such as protein concentration, solvent/non-solvent volume ratio, non-solvent injection rate, ionic strength of the buffer solution, pH, and cross-linking on the colloidal properties of the obtained nanoparticles. In addition, the mixing processes (batch or drop-wise were also investigated. Using a well-defined formulation, submicron protein-based nanoparticles have been obtained. All prepared particles have been characterized in terms of size, size distribution, morphology, and electrokinetic properties. In addition, the stability of nanoparticles was investigated using Ultraviolet (UV scan and electrophoresis, and the optimal conditions for preparing BSA nanoparticles by the nanoprecipitation method were concluded.

  4. CHF enhancement in pool boiling of nanofluid : effect of nanoparticle-coating on heating surface

    International Nuclear Information System (INIS)

    Kim, Hyung Dae; Kim, Moo Hwan

    2005-01-01

    Recently researches to enhance CHF using the nanofluid, a new kind of heat transfer fluid in which nano-particles are uniformly and stably dispersed, were attempted. You showed that nanofluid, containing only 0.005 g/l of alumina nanoparticle, make the dramatic increase (∼200%) in CHF in pool boiling at the pressure of 2.89 psia (Tsat=60 .deg. C). They concluded that the abnormal CHF enhancement of nanofluid cannot be explained with any existing models of CHF. Vassallo performed the experimental studies on pool boiling heat transfer in water-SiO 2 nanofluid under atmospheric pressure. They showed a remarkable increase in CHF for nanofluid and also found that the stable film boiling at temperatures close to the melting point of the boiling surface are achievable with the nanofluid. After the experiments, they observed that the formation of the thin silica coating on the wire heater was occurred. This paper focuses on the experimental study of the effect of nanoparticle-coating on CHF enhancement in pool boiling of nanofluid. In this regard, pool boiling CHF values are measured and compared (a) from bare heater immersed in nanofluid and (b) from nanoparticle-coated heater, which is generated by deposition of suspended nanoparticles during pool boiling of nanofluid, immersed in pure water, and (c) from nanoparticle-coated heater immersed in nanofluid. And the microstructure of each heating surface is investigated from photography taken using SEM

  5. Silk Fibroin-Based Nanoparticles for Drug Delivery

    Science.gov (United States)

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  6. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianlong; Xie, Dan, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn [Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084 (China); Zeng, Min; Gao, Xingsen [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Zhao, Yonggang [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  7. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir, E-mail: sedlarik@ft.utb.cz [Tomas Bata University in Zlín, Centre of Polymer Systems, University Institute (Czech Republic)

    2017-02-15

    In the presented work, amphiphilic nanoparticles based on chitosan and carboxy-enriched polylactic acid have been prepared to improve the stability of the pro-drug temozolomide in physiological media by encapsulation. The carrier, with a diameter in the range of 150–180 nm, was able to accommodate up to 800 μg of temozolomide per mg of polymer. The obtained formulation showed good stability in physiological condition and preparation media up to 1 month. Temozolomide loaded inside the carrier exhibited greater stability than the free drug, in particular in simulated physiological solution at pH 7.4 where the hydrolysis in the inactive metabolite was clearly delayed. CS-SPLA nanoparticles demonstrated a pH-dependent TMZ release kinetics with the opportunity to increase or decrease the rate. Mass spectroscopy, UV-Vis analysis, and in vitro cell tests confirmed the improvement in temozolomide stability and effectiveness when loaded into the polymeric carrier, in comparison with the free drug.

  8. Enhanced microwave absorption property of epoxy nanocomposites based on PANI@Fe3O4@CNFs nanoparticles with three-phase heterostructure

    Science.gov (United States)

    Yang, Lingfeng; Cai, Haopeng; Zhang, Bin; Huo, Siqi; Chen, Xi

    2018-02-01

    Novel electromagnetic functionalized carbon nanofibers (CNFs) have been synthesized by coating with Fe3O4 magnetite nanoparticles and conducting polymers polyaniline (PANI) on CNFs through a layer by layer assembly. The Fe3O4@CNFs were first prepared by coating nano-Fe3O4 particles on CNFs via co-precipitation method; Then the PANI was coated on Fe3O4@CNFs using an in situ polymerization process to obtain PANI@Fe3O4@CNFs nanoparticles. The prepared PANI@Fe3O4@CNFs nanoparticles were dispersed in the epoxy matrix to fabricate microwave absorbing nanocomposites. Compared with the Fe3O4@CNFs/epoxy nanocomposites, the PANI@Fe3O4@CNFs/epoxy nanocomposites exhibit better microwave absorbing properties. The composite containing 15 wt% of PANI@Fe3O4@CNFs with the thickness of 2 mm showed a minimum reflection loss (RL) value of -23.7 dB with an effective absorption bandwidth which is about 3.7 GHz (11.9-15.6 GHz) in the frequency range of 1-18 GHz, indicating that it is an attractive candidate for efficient microwave absorber. A potential absorption mechanism was proposed for enhancement of the impedance-matching condition and electromagnetic wave-attenuation characteristic of materials. Specifically, the impedance-matching condition was improved by the combination of conductive polymers and magnetic nanoparticles with CNFs. The electromagnetic wave attenuation characteristic was enhanced by multiple reflections, due to the increased propagation paths.

  9. Fast and sensitive detection of ochratoxin A in red wine by nanoparticle-enhanced SPR.

    Science.gov (United States)

    Karczmarczyk, Aleksandra; Reiner-Rozman, Ciril; Hageneder, Simone; Dubiak-Szepietowska, Monika; Dostálek, Jakub; Feller, Karl-Heinz

    2016-09-21

    Herein, we present a fast and sensitive biosensor for detection of Ochratoxin A (OTA) in a red wine that utilizes gold nanoparticle-enhanced surface plasmon resonance (SPR). By combining an indirect competitive inhibition immunoassay and signal enhancement by secondary antibodies conjugated with gold nanoparticles (AuNPs), highly sensitive detection of low molecular weight compounds (such as OTA) was achieved. The reported biosensor allowed for OTA detection at concentrations as low as 0.75 ng mL(-1) and its limit of detection was improved by more than one order of magnitude to 0.068 ng mL(-1) by applying AuNPs as a signal enhancer. The study investigates the interplay of size of AuNPs and affinity of recognition elements affecting the efficiency of the signal amplification strategy based on AuNP. Furthermore, we observed that the presence of polyphenolic compounds in wine samples strongly interferes with the affinity binding on the surface. To overcome this limitation, a simple pre-treatment of the wine sample with the binding agent poly(vinylpyrrolidone) (PVP) was successfully applied. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Thiolated hydroxyethyl cellulose: design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles.

    Science.gov (United States)

    Rahmat, Deni; Müller, Christiane; Barthelmes, Jan; Shahnaz, Gul; Martien, Ronny; Bernkop-Schnürch, Andreas

    2013-02-01

    Within this study, HEC-cysteamine nanoparticles with free thiol groups in the range of 117-1548 μmol/g were designed and characterized. Nanoparticles were generated via ionic gelation of the cationic polymer with tripolyphosphate (TPP) followed by covalent crosslinking via disulfide bond formation using H2O2 as oxidant. The mean diameter of the particles was in the range of 270-360 nm, and zeta potential was determined to be +4 to +10 mV. Nanoparticles were evaluated in terms of mucoadhesive, permeation enhancing, and biocompatible properties as well as biodegradability. The particles remained attached to porcine intestinal mucosa up to 70% after 3h of incubation. The more nanoparticles were oxidized; however, the less were their mucoadhesive properties. Nanoparticles applied in a concentration of 0.5% (m/v) with the highest content of free thiol groups improved the transport of fluorescein isothiocyanate dextran 4 (FD4) across Caco-2 cell monolayer 3.94-fold in comparison with control (buffer). In addition, the transport of FD4 was even 1.84-fold enhanced in the presence of 0.5% (m/v) nanoparticles with the lowest free thiol group content. The higher the disulfide bond content within nanoparticles was, to a lower degree nanoparticles were hydrolyzed by cellulase. None of these nanoparticles showed pronounced cytotoxicity. Accordingly, HEC-cysteamine could be a promising excipient for nanoparticulate delivery systems for poorly absorbed drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier

    Science.gov (United States)

    Baszczyk, M.; Dorosz, P.; Mik, L.; Kucewicz, W.; Reczynski, W.; Sapor, M.

    2018-05-01

    A readout circuit dedicated for the detection of the chemiluminescence phenomenon using a silicon photomultiplier (SiPM) is presented. During chemiluminescence, light is generated as a result of chemical reaction. Chemiluminescence is used in many applications within medicine, chemistry, biology and biotechnology, and is one of the most important sensing techniques in biomedical science and clinical medicine. The front-end electronics consist of a preamplifier and a fast shaper—this produces pulses, the peaking time which is 3.6 ns for a single photon and the FWHM is 3.8 ns. The system has been optimised to measure chemiluminescence—it is sensitive at the level of single photons, it generates a low number of overlapping pulses and is accurate. Two methods of signal detection are analysed and compared: the counting of events and amplitude detection. The relationship between the chemiluminescence light intensity and the concentration of the chemical compound (luminol) is linear in the range of the tested concentrations and has strong linearity parameters and low prediction intervals.

  12. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties

    International Nuclear Information System (INIS)

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974 ± 68 nm for the pure PLGA scaffolds vs 832 ± 70, 764 ± 80, and 486 ± 64 for the PLGA/gelatin, PLGA/10 wt% MSNPs, and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. - Highlights: • PLGA-based random nanofibers embedded with mesoporous silica nanoparticles were fabricated using electrospinning method • Incorporation of gelatin and MSNPs into PLGA-based scaffolds increased the hydrophilicity of scaffold • Addition of nanoparticles also improved the tensile mechanical properties of scaffolds • Introduction of MSNPs led to improved cell attachment and proliferation

  13. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties

    Energy Technology Data Exchange (ETDEWEB)

    Mehrasa, Mohammad [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Asadollahi, Mohammad Ali, E-mail: ma.asadollahi@ast.ui.ac.ir [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Nasri-Nasrabadi, Bijan [Department of Chemical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ghaedi, Kamran [Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Salehi, Hossein [Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Dolatshahi-Pirouz, Alireza [DTU Nanotech, Center for Nanomedicine and Theranostics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby (Denmark); Arpanaei, Ayyoob, E-mail: arpanaei@yahoo.com [Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974 ± 68 nm for the pure PLGA scaffolds vs 832 ± 70, 764 ± 80, and 486 ± 64 for the PLGA/gelatin, PLGA/10 wt% MSNPs, and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. - Highlights: • PLGA-based random nanofibers embedded with mesoporous silica nanoparticles were fabricated using electrospinning method • Incorporation of gelatin and MSNPs into PLGA-based scaffolds increased the hydrophilicity of scaffold • Addition of nanoparticles also improved the tensile mechanical properties of scaffolds • Introduction of MSNPs led to improved cell attachment and proliferation.

  14. Entrapment of curcumin into monoolein-based liquid crystalline nanoparticle dispersion for enhancement of stability and anticancer activity

    Science.gov (United States)

    Baskaran, Rengarajan; Madheswaran, Thiagarajan; Sundaramoorthy, Pasupathi; Kim, Hwan Mook; Yoo, Bong Kyu

    2014-01-01

    Despite the promising anticancer potential of curcumin, its therapeutic application has been limited, owing to its poor solubility, bioavailability, and chemical fragility. Therefore, various formulation approaches have been attempted to address these problems. In this study, we entrapped curcumin into monoolein (MO)-based liquid crystalline nanoparticles (LCNs) and evaluated the physicochemical properties and anticancer activity of the LCN dispersion. The results revealed that particles in the curcumin-loaded LCN dispersion were discrete and monodispersed, and that the entrapment efficiency was almost 100%. The stability of curcumin in the dispersion was surprisingly enhanced (about 75% of the curcumin survived after 45 days of storage at 40°C), and the in vitro release of curcumin was sustained (10% or less over 15 days). Fluorescence-activated cell sorting (FACS) analysis using a human colon cancer cell line (HCT116) exhibited 99.1% fluorescence gating for 5 μM curcumin-loaded LCN dispersion compared to 1.36% for the same concentration of the drug in dimethyl sulfoxide (DMSO), indicating markedly enhanced cellular uptake. Consistent with the enhanced cellular uptake of curcumin-loaded LCNs, anticancer activity and cell cycle studies demonstrated apoptosis induction when the cells were treated with the LCN dispersion; however, there was neither noticeable cell death nor significant changes in the cell cycle for the same concentration of the drug in DMSO. In conclusion, entrapping curcumin into MO-based LCNs may provide, in the future, a strategy for overcoming the hurdles associated with both the stability and cellular uptake issues of the drug in the treatment of various cancers. PMID:25061290

  15. Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications

    International Nuclear Information System (INIS)

    El-Kemary, Maged; Abdel-Moneam, Yasser; Madkour, Metwally; El-Mehasseb, Ibrahim

    2011-01-01

    Nanostructure titanium dioxide (TiO 2 ) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO 2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO 2 and Ag-TiO 2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO 2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO 2 . The positive effect of silver on the photocatalytic activity of TiO 2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO 2 surface and therefore enhances the photocatalytic activity of the synthesized TiO 2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO 2 and 96% for Ag-TiO 2 . - Research highlights: → Ag-TiO 2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO 2 . → Dye photodegradation follows pseudo-first-order kinetics. → Observed maximum degradation efficiency of SO is about 60% for TiO 2 and 96% for Ag-TiO 2 .

  16. Strong Antibody Responses Induced by Protein Antigens Conjugated onto the Surface of Lecithin-Based Nanoparticles

    Science.gov (United States)

    Sloat, Brian R.; Sandoval, Michael A.; Hau, Andrew M.; He, Yongqun; Cui, Zhengrong

    2009-01-01

    An accumulation of research over the years has demonstrated the utility of nanoparticles as antigen carriers with adjuvant activity. Herein we defined the adjuvanticity of a novel lecithin-based nanoparticle engineered from emulsions. The nanoparticles were spheres of around 200 nm. Model protein antigens, bovine serum albumin (BSA) or Bacillus anthracis protective antigen (PA) protein, were covalently conjugated onto the nanoparticles. Mice immunized with the BSA-conjugated nanoparticles developed strong anti-BSA antibody responses comparable to that induced by BSA adjuvanted with incomplete Freund's adjuvant and 6.5-fold stronger than that induced by BSA adsorbed onto aluminum hydroxide. Immunization of mice with the PA-conjugated nanoparticles elicited a quick, strong, and durable anti-PA antibody response that afforded protection of the mice against a lethal dose of anthrax lethal toxin challenge. The potent adjuvanticity of the nanoparticles was likely due to their ability to move the antigens into local draining lymph nodes, to enhance the uptake of the antigens by antigen-presenting cells (APCs), and to activate APCs. This novel nanoparticle system has the potential to serve as a universal protein-based vaccine carrier capable of inducing strong immune responses. PMID:19729045

  17. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells

    Science.gov (United States)

    Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.

    2013-05-01

    The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

  18. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg

    2007-01-01

    and characterization of water-soluble gold nanoparticles (AuNPs) with core diameter 3-4 nm and their application for the enhancement of long-range interfacial ET of a heme protein. Gold nanoparticles were electrostatically conjugated with cyt c to form nanoparticle-protein hybrid ET systems with well...... and the protein molecule. When the nanoparticle-protein conjugates are assembled on Au(111) surfaces, long-range interfacial ET across a physical distance of over 50 A via the nanoparticle becomes feasible. Moreover, significant enhancement of the interfacial ET rate by more than an order of magnitude compared...... with that of cyt c in the absence of AuNPs is observed. AuNPs appear to serve as excellent ET relays, most likely by facilitating the electronic coupling between the protein redox center and the electrode surface....

  19. Coupling of a single active nanoparticle to a polymer-based photonic structure

    Directory of Open Access Journals (Sweden)

    Dam Thuy Trang Nguyen

    2016-03-01

    Full Text Available The engineered coupling between a guest moiety (molecule, nanoparticle and the host photonic nanostructure may provide a great enhancement of the guest optical response, leading to many attractive applications. In this article, we describe briefly the basic concept and some recent progress considering the coupling of a single nanoparticle into a photonic structure. Different kinds of nanoparticles of great interest including quantum dots and nitrogen-vacancy centers in nanodiamond for single photon source, nonlinear nanoparticles for efficient nonlinear effect and sensors, magnetic nanoparticles for Kerr magneto-optical effect, and plasmonic nanoparticles for ultrafast optical switching and sensors, are briefly reviewed. We focus further on the coupling of plasmonic gold nanoparticles and polymeric photonic structures by optimizing theoretically the photonic structures and developing efficient way to realize desired hybrid structures. The simple and low-cost fabrication technique, the optical enhancement of the fluorescent nanoparticles induced by the photonic structure, as well as the limitations, challenges and appealing prospects are discussed in details.

  20. Laser-saturated fluorescence of nitric oxide and chemiluminescence measurements in premixed ethanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Carla S.T.; Barreta, Luiz G.; Sbampato, Maria E.; dos Santos, Alberto M. [Aerothermodynamic and Hypersonic Division, Institute of Advanced Studies - General Command of Aerospatial Technology, Rodovia dos Tamoios, km 5.5, 12228-001 Sao Jose dos Campos - SP (Brazil)

    2010-11-15

    In this study, nitric oxide laser-saturated fluorescence (LSF) measurements were acquired from premixed ethanol flames at atmospheric pressure in a burner. NO-LSF experimental profiles for fuel-rich premixed ethanol flames ({phi} = 1.34 and {phi} = 1.66) were determined through the excitation/detection scheme of the Q{sub 2}(26.5) rotational line in the A{sup 2}{sigma}{sup +} - X{sup 2}{pi} (0,0) vibronic band and {gamma}(0,1) emission band. A calibration procedure by NO doping into the flame was applied to establish the NO concentration profiles in these flames. Chemiluminescent emission measurements in the (0, 0) vibronic emission bands of the OH{sup *} (A{sup 2}{sigma}{sup +} - X{sup 2}{pi}) and CH{sup *}(A{sup 2}{delta} - X{sup 2}{pi}) radicals were also obtained with high spatial and spectral resolution for fuel-rich premixed ethanol flames to correlate them with NO concentrations. Experimental chemiluminescence profiles and the ratios of the integrated areas under emission spectra (A{sub CH*}/A{sub CH*}(max.) and A{sub CH*}/A{sub OH*}) were determined. The relationships between chemiluminescence and NO concentrations were established along the premixed ethanol flames. There was a strong connection between CH{sup *} radical chemiluminescence and NO formation and the prompt-NO was identified as the governing mechanism for NO production. The results suggest the optimum ratio of the chemiluminescence of two radicals (A{sub CH*}/A{sub OH*}) for NO diagnostic purposes. (author)

  1. Phenylboronic acid immunoaffinity reactor coupled with flow injection chemiluminescence for determination of {alpha}-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yafeng [Jiangsu Provincial Key Lab of Biomaterials and Biodevices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096 (China); Zhuang Yafeng [Department of Chemistry, Changzhou Institute of Technology, Changzhou 213022 (China); Liu Songqin [Jiangsu Provincial Key Lab of Biomaterials and Biodevices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096 (China)], E-mail: liusq@seu.edu.cn; He Lin [Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204 (United States)

    2008-12-23

    A reusable and sensitive immunoassay based on phenylboronic acid immunoaffinity reactor in combination with flow injection chemiluminescence (CL) for determination of glycoprotein was described. The reactor was fabricated by immobilizing 3-aminophenylboronic acid (APBA) on glass microbeads with {gamma}-glycidoxypropyltrimethoxysilane (GPMS) as linkage. The {alpha}-fetoprotein (AFP) could be easily immobilized on the APBA coated beads through sugar-boronic interaction. After an off-line incubation, the mixture of the analyte AFP with horseradish peroxidase-labeled AFP antibody (HRP-anti-AFP) was injected into the reactor. This led the trapping of free HRP-anti-AFP by the surface coated AFP on glass beads. The trapped HRP-anti-AFP was detected by chemiluminescence due to its sensitizing effect on the reaction of luminol and hydrogen peroxide. Under optimal conditions, the chemiluminescent signal was proportional to AFP concentration in the range of 10-100 ng mL{sup -1}. The whole assay process including regeneration of the reactor could be completed within 31 min. The proposed system showed acceptable detection and fabrication reproducibility, and the results obtained with the present method were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. The described method enabled a low-cost, time saving and was potential to detect the serum AFP level in clinical diagnosis.

  2. The fabrication of magnetic particle-based chemiluminescence immunoassay for human epididymis protein-4 detection in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2018-03-01

    Full Text Available The magnetic particles have a significant influence on the immunoassay detection and cancer therapy. Herein, the chemiluminescence immunoassay combined with the magnetic particles (MPCLIA was presented for the clinical determination and analysis of human epididymis protein 4 (HE4 in the human serum. Under the optimized experiment conditions, the secure MPCLIA method can detect HE4 in the broader range of 0–1000 pmol/L, with a lower detection limit of 1.35 pmol/L. The satisfactory recovery rate of the method in the serum ranged from 83.62% to 105.10%, which was well within the requirement of clinical analysis. Moreover, the results showed the good correlation with enzyme-linked immunosorbent assay (ELISA, with the correlation coefficient of 0.9589. This proposed method has been successfully applied to the clinical determination of HE4 in the human serum. Keywords: Chemiluminescence immunoassay, Magnetic particles, Human epididymis protein 4

  3. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    Science.gov (United States)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  4. Periodically arranged colloidal gold nanoparticles for enhanced light harvesting in organic solar cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Fernandes Cauduro, André Luis; Kunstmann-Olsen, Casper

    2016-01-01

    Although organic solar cells show intriguing features such as low-cost, mechanical flexibility and light weight, their efficiency is still low compared to their inorganic counterparts. One way of improving their efficiency is by the use of light-trapping mechanisms from nano- or microstructures......, which makes it possible to improve the light absorption and charge extraction in the device’s active layer. Here, periodically arranged colloidal gold nanoparticles are demonstrated experimentally and theoretically to improve light absorption and thus enhance the efficiency of organic solar cells....... Surface-ordered gold nanoparticle arrangements are integrated at the bottom electrode of organic solar cells. The resulting optical interference and absorption effects are numerically investigated in bulk hetero-junction solar cells based on the Finite-Difference Time-Domain (FDTD) and Transfer Matrix...

  5. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.

    Science.gov (United States)

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-06-19

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  6. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Le Thi Minh Phuc

    2017-06-01

    Full Text Available The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF on the uptake efficiency of polystyrene nanoparticles (PS NPs by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  7. Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles

    OpenAIRE

    SeokJae Yoo; Q-Han Park

    2015-01-01

    We enhance the weak optical signals of small chiral molecules via circular differential Mie scattering (CDMS) of nanoparticles immersed in them. CDMS is the preferential Mie scattering of left- and right-handed circularly polarized light by nanoparticles whose sizes are about the same as the wavelength of light. Solving the Mie scattering theory for chiral media, we find that the CDMS signal of the particle is linearly proportional to the chirality parameter κ of the molecules. This linear am...

  8. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: lijian@cqu.edu.cn; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-05

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe{sub 3}O{sub 4} nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values. - Highlights: • Three different sized Fe{sub 3}O{sub 4} vegetable-oil based nanofluids was successfully prepared. • The trapping depth of the Fe{sub 3}O{sub 4} nanofluids was investigated. • A new model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids.

  9. Design and preparation of bi-functionalized short-chain modified zwitterionic nanoparticles.

    Science.gov (United States)

    Hu, Fenglin; Chen, Kaimin; Xu, Hong; Gu, Hongchen

    2018-05-01

    An ideal nanomaterial for use in the bio-medical field should have a distinctive surface capable of effectively preventing nonspecific protein adsorption and identifying target bio-molecules. Recently, the short-chain zwitterion strategy has been suggested as a simple and novel approach to create outstanding anti-fouling surfaces. In this paper, the carboxyl end group of short-chain zwitterion-coated silica nanoparticles (SiO 2 -ZWS) was found to be difficult to functionalize via a conventional EDC/NHS strategy due to its rapid hydrolysis side-reactions. Hence, a series of bi-functionalized silica nanoparticles (SiO 2 -ZWS/COOH) were designed and prepared by controlling the molar ratio of 3-aminopropyltriethoxysilane (APTES) to short-chain zwitterionic organosiloxane (ZWS) in order to achieve above goal. The synthesized SiO 2 -ZWS/COOH had similar excellent anti-fouling properties compared with SiO 2 -ZWS, even in 50% fetal bovine serum characterized by DLS and turbidimetric titration. Subsequently, SiO 2 -ZWS/COOH 5/1 was chosen as a representative and then demonstrated higher detection signal intensity and more superior signal-to-noise ratios compare with the pure SiO 2 -COOH when they were used as a bio-carrier for chemiluminescence enzyme immunoassay (CLEIA). These unique bi-functionalized silica nanoparticles have many potential applications in the diagnostic and therapeutic fields. Reducing nonspecific protein adsorption and enhancing the immobilized efficiency of specific bio-probes are two of the most important issues for bio-carriers, particularly for a nanoparticle based bio-carrier. Herein, we designed and prepared a bi-functional nanoparticle with anti-fouling property and bio conjugation capacity for further bioassay by improving the short-chain zwitterionic modification strategy we have proposed previously. The heterogeneous surface of this nanoparticle showed effective anti-fouling properties both in model protein solutions and fetal bovine serum

  10. Prospective validation of an automated chemiluminescence-based assay of renin and aldosterone for the work-up of arterial hypertension.

    Science.gov (United States)

    Rossi, Gian Paolo; Ceolotto, Giulio; Rossitto, Giacomo; Seccia, Teresa Maria; Maiolino, Giuseppe; Berton, Chiara; Basso, Daniela; Plebani, Mario

    2016-09-01

    The availability of simple and accurate assays of plasma active renin (DRC) and aldosterone concentration (PAC) can improve the detection of secondary forms of arterial hypertension. Thus, we investigated the performance of an automated chemiluminescent assay for DRC and PAC in referred hypertensive patients. We prospectively recruited 260 consecutive hypertensive patients referred to an ESH Center for Hypertension. After exclusion of six protocol violations, 254 patients were analyzed: 67.3% had primary hypertension, 17.3% an aldosterone producing adenoma (APA), 11.4% idiopathic hyperaldosteronism (IHA), 2.4% renovascular hypertension (RVH), 0.8% familial hyperaldosteronism type 1 (FH-1), 0.4% apparent mineralocorticoid excess (AME), 0.4% a renin-producing tumor, and 3.9% were adrenalectomized APA patients. Bland-Altman plots and Deming regression were used to analyze results. The diagnostic accuracy (area under the curve, AUC of the ROC) of the DRC-based aldosterone-renin ratio (ARRCL) was compared with that of the PRA-based ARR (ARRRIA) using as reference the conclusive diagnosis of APA. At Bland-Altman plot, the DRC and PAC assay showed no bias as compared to the PRA and PAC assay. A tight relation was found between the DRC and the PRA values (concordance correlation coefficient=0.92, pAPA identification the AUC of the ARRCL was higher than that of the ARRRIA [0.974 (95% CI 0.940-0.991) vs. 0.894 (95% CI 0.841-0.933), p=0.02]. This rapid automated chemiluminescent DRC/PAC assay performed better than validated PRA/PAC radioimmunoassays for the identification of APA in referred hypertensive patients.

  11. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  12. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  13. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy.

    Science.gov (United States)

    Jiang, Qin; Luo, Zimiao; Men, Yongzhi; Yang, Peng; Peng, Haibao; Guo, Ranran; Tian, Ye; Pang, Zhiqing; Yang, Wuli

    2017-10-01

    Photothermal therapy (PTT) has represented a promising noninvasive approach for cancer treatment in recent years. However, there still remain challenges in developing non-toxic and biodegradable biomaterials with high photothermal efficiency in vivo. Herein, we explored natural melanin nanoparticles extracted from living cuttlefish as effective photothermal agents and developed red blood cell (RBC) membrane-camouflaged melanin (Melanin@RBC) nanoparticles as a platform for in vivo antitumor PTT. The as-obtained natural melanin nanoparticles demonstrated strong absorption at NIR region, higher photothermal conversion efficiency (∼40%) than synthesized melanin-like polydopamine nanoparticles (∼29%), as well as favorable biocompatibility and biodegradability. It was shown that RBC membrane coating on melanin nanoparticles retained their excellent photothermal property, enhanced their blood retention and effectively improved their accumulation at tumor sites. With the guidance of their inherited photoacoustic imaging capability, optimal accumulation of Melanin@RBC at tumors was achieved around 4 h post intravenous injection. Upon irradiation by an 808-nm laser, the developed Melanin@RBC nanoparticles exhibited significantly higher PTT efficacy than that of bare melanin nanoparticles in A549 tumor-bearing mice. Given that both melanin nanoparticles and RBC membrane are native biomaterials, the developed Melanin@RBC platform could have great potential in clinics for anticancer PTT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Application of multi-step excitation schemes for detection of actinides and lanthanides in solutions by luminescence/chemiluminescence laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Izosimov, I. [Joint Institute for Nuclear Research, Joliot Curie 6, Dubna 141980 (Russian Federation)

    2016-07-01

    The use of laser radiation with tunable wavelength allows the selective excitation of actinide/lanthanide species with subsequent registration of luminescence/chemiluminescence for their detection. This work is devoted to applications of the time-resolved laser-induced luminescence spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for the detection of lanthanides and actinides. Results of the experiments on U, Eu, and Sm detection by TRLIF (Time Resolved Laser Induced Fluorescence) method in blood plasma and urine are presented. Data on luminol chemiluminescence in solutions containing Sm(III), U(IV), and Pu(IV) are analyzed. It is shown that appropriate selectivity of lanthanide/actinide detection can be reached when chemiluminescence is initiated by transitions within 4f- or 5f-electron shell of lanthanide/actinide ions corresponding to the visible spectral range. In this case chemiluminescence of chemiluminogen (luminol) arises when the ion of f element is excited by multi-quantum absorption of visible light. The multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanide/actinide species in solutions. (author)

  15. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Target-triggered signal turn-on detection of prostate specific antigen based on metal-enhanced fluorescence of Ag@SiO2@SiO2-RuBpy composite nanoparticles

    Science.gov (United States)

    Deng, Yun-Liang; Xu, Dang-Dang; Pang, Dai-Wen; Tang, Hong-Wu

    2017-02-01

    A three-layer core-shell nanostructure consisting of a silver core, a silica spacer, and a fluorescent dye RuBpy-doped outer silica layer was fabricated, and the optimal metal-enhanced fluorescence (MEF) distance was explored through adjusting the thickness of the silica spacer. The results show that the optimal distance is ˜10.4 nm with the maximum fluorescence enhancement factor 2.12. Then a new target-triggered MEF ‘turn-on’ strategy based on the optimized composite nanoparticles was successfully constructed for quantitative detection of prostate specific antigen (PSA), by using RuBpy as the energy donor and BHQ-2 as the acceptor. The hybridization of the complementary DNA of PSA-aptamer immobilized on the surface of the MEF nanoparticles with PSA-aptamer modified with BHQ-2, brought BHQ-2 in close proximity to RuBpy-doped silica shell and resulted in the decrease of fluorescence. In the presence of target PSA molecules, the BHQ-PSA aptamer is dissociated from the surface of the nanoparticles with the fluorescence switched on. Therefore, the assay of PSA was achieved by measuring the varying fluorescence intensity. The results show that PSA can be detected in the range of 1-100 ng ml-1 with a detection limit of 0.20 ng ml-1 (6.1 pM), which is 6.7-fold increase of that using hollow RuBpy-doped silica nanoparticles. Moreover, satisfactory results were obtained when PSA was detected in 1% serum.

  17. Laser deposition of resonant silicon nanoparticles on perovskite for photoluminescence enhancement

    Science.gov (United States)

    Tiguntseva, E. Y.; Zalogina, A. S.; Milichko, V. A.; Zuev, D. A.; Omelyanovich, M. M.; Ishteev, A.; Cerdan Pasaran, A.; Haroldson, R.; Makarov, S. V.; Zakhidov, A. A.

    2017-11-01

    Hybrid lead halide perovskite based optoelectronics is a promising area of modern technologies yielding excellent characteristics of light emitting diodes and lasers as well as high efficiencies of photovoltaic devices. However, the efficiency of perovskite based devices hold a potential of further improvement. Here we demonstrate high photoluminescence efficiency of perovskites thin films via deposition of resonant silicon nanoparticles on their surface. The deposited nanoparticles have a number of advances over their plasmonic counterparts, which were applied in previous studies. We show experimentally the increase of photoluminescence of perovskite film with the silicon nanoparticles by 150 % as compared to the film without the nanoparticles. The results are supported by numerical calculations. Our results pave the way to high throughput implementation of low loss resonant nanoparticles in order to create highly effective perovskite based optoelectronic devices.

  18. Synthesis of polymer-stabilized monometallic Cu and bimetallic Cu/Ag nanoparticles and their surface-enhanced Raman scattering properties

    Science.gov (United States)

    Zhang, Danhui; Liu, Xiaoheng

    2013-03-01

    The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.

  19. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    DEFF Research Database (Denmark)

    Iida, Daisuke; Fadil, Ahmed; Chen, Yuntian

    2015-01-01

    We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhance......We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density...

  20. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO_3 nanoparticles

    International Nuclear Information System (INIS)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-01-01

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO_2 nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  1. Exceptionally strong, stiff and hard hybrid material based on an elastomer and isotropically shaped ceramic nanoparticles.

    Science.gov (United States)

    Georgopanos, Prokopios; Schneider, Gerold A; Dreyer, Axel; Handge, Ulrich A; Filiz, Volkan; Feld, Artur; Yilmaz, Ezgi D; Krekeler, Tobias; Ritter, Martin; Weller, Horst; Abetz, Volker

    2017-08-04

    In this work the fabrication of hard, stiff and strong nanocomposites based on polybutadiene and iron oxide nanoparticles is presented. The nanocomposites are fabricated via a general concept for mechanically superior nanocomposites not based on the brick and mortar structure, thus on globular nanoparticles with nanosized organic shells. For the fabrication of the composites oleic acid functionalized iron oxide nanoparticles are decorated via ligand exchange with an α,ω-polybutadiene dicarboxylic acid. The functionalized particles were processed at 145 °C. Since polybutadiene contains double bonds the nanocomposites obtained a crosslinked structure which was enhanced by the presence of oxygen or sulfur. It was found that the crosslinking and filler percolation yields high elastic moduli of approximately 12-20 GPa and hardness of 15-18 GPa, although the polymer volume fraction is up to 40%. We attribute our results to a catalytically enhanced crosslinking reaction of the polymer chains induced by oxygen or sulfur and to the microstructure of the nanocomposite.

  2. Optical fiber chemiluminescence sensor for iron (II) ion based on immobilized luminol

    International Nuclear Information System (INIS)

    Alipao, Arthur A.; Sevilla, Fortunato III.

    1999-01-01

    A chemiluminescence (CL) sensor for iron (II) was developed based on the catalytic action of the analyte on the CL reaction between luminol and oxygen. The reagents were immobilized on a cellulose membrane and set on a reaction cell which was coupled by means of an optical fiber to a spectrofluorometer. The concentration of iron(II) was quantified by measuring the intensity of the light generated from the CL reaction. The response of the sensor system was rapid and highly reproducible. Good sensitivity was displayed by the sensor system over the five orders of magnitude of iron(II) ion concentration. The calibration curve consisted of two portions: (1) a linear range at lower concentrations (7.5 x 10 -7 M to 1.0 x 10 -4 M) exhibiting a positive slope arising from a catalytic action, and (2) a linear range at higher concentrations (5.0 x 10 -2 M to 2.5 x 10 -4 M) wherein the slope is negative due to an inhibitory action of iron(II) on the CL reaction. The sensor system was highly selective for iron(II) ions. (Author)

  3. A signal-on electrogenerated chemiluminescent biosensor for lead ion based on DNAzyme

    International Nuclear Information System (INIS)

    Ma Fen; Sun Bo; Qi Honglan; Zhang Hongge; Gao Qiang; Zhang Chengxiao

    2011-01-01

    A highly reproducible and sensitive signal-on electrogenerated chemiluminescence (ECL) biosensor based on the DNAzyme for the determination of lead ion was developed. The ECL biosensor was fabricated by covalently coupling 5'-amino-DNAzyme-tagged with ruthenium bis (2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid)-ethylenediamine (Ru1-17E') onto the surface of graphite electrode modified with 4-aminobenzoic acid, and then a DNA substrate with a ribonucleotide adenosine hybridized with Ru1-17E' on the electrode. Upon binding of Pb 2+ to the Ru1-17E' to form a complex which catalyzed the cleavage of the DNA substrate, the double-stranded DNA was dissociated and thus led to a high ECL signal. The signal linearly increases with the concentration of Pb 2+ in the range from 5.0 to 80 pM with a detection limit of 1.4 pM and a relative standard derivation of 2.3%. This work demonstrates that using DNAzyme tagged with ruthenium complex as an ECL probe and covalently coupling method for the fabrication of the ECL biosensor with high sensitivity, good stability and significant regeneration ability is promising approach.

  4. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid.

    Science.gov (United States)

    Shah, Syed Niaz Ali; Li, Haifang; Lin, Jin-Ming

    2016-06-01

    A new sensitized chemiluminescence (CL) was developed to broaden the analytical application of KIO4-H2O2 system. The nitrogen doped carbon dots (N-CDs) dramatically boosted the CL intensity of KIO4-H2O2 system which was further enriched by basic medium. In light of EPR analysis, free radical scavenging studies and CL spectra the detail mechanism for the enhancement was conferred in the presence of N-CDs and NaOH. The results suggested that CL of KIO4-H2O2 system in the presence and absence of N-CDs and NaOH proceeds via radical pathway. The enhanced CL was used for the determination of pyrogallol and gallic acid in range of 1.0×10(-4)-1.0×10(-7)M with 4.6×10(-8) and 6.1×10(-8)M limit of detection respectively. The relative standard deviation (RSD) at a concentration of 10(-5) for gallic acid and pyrogallol was 1.4% and 2.3% respectively (n=11). The attained results unveil that the present method is sensitive, faster, simpler and less costly compared to other methods and could be applied to determine polyphenols in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO{sub 2} inverse opals

    Energy Technology Data Exchange (ETDEWEB)

    Ankudze, Bright; Philip, Anish [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Pakkanen, Tuula T., E-mail: Tuula.Pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Matikainen, Antti; Vahimaa, Pasi [Institute of Photonics, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland)

    2016-11-30

    Highlights: • SERS substrates prepared by infiltration of nanoparticles into SiO{sub 2} inverse opal. • The SERS substrate gives an enhancement factor of 10{sup 7} for 4-aminothiophenol. • The sensitivity of the substrate is mainly attributed to gold nanoparticle clusters. - Abstract: SiO{sub 2} inverse opal (IO) films with embedded gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) application are reported. SiO{sub 2} IO films were loaded with AuNPs by a simple infiltration in a single cycle to form Au-SiO{sub 2} IOs. The optical property and the morphology of the Au-SiO{sub 2} IO substrates were characterized; it was observed that they retained the Bragg diffraction of SiO{sub 2} IO and the localized surface plasmon resonance (LSPR) of AuNPs. The SERS property of the Au-SiO{sub 2} IO substrates were studied with methylene blue (MB) and 4-aminothiophenol (4-ATP). The SERS enhancement factors were 10{sup 7} and 10{sup 6} for 4-ATP and MB, respectively. A low detection limit of 10{sup −10} M for 4-ATP was also obtained with the Au-SiO{sub 2} IO substrate. A relative standard deviation of 18.5% for the Raman signals intensity at 1077 cm{sup −1} for 4-ATP shows that the Au-SiO{sub 2} IO substrates have good signal reproducibility. The results of this study indicate that the Au-SiO{sub 2} IO substrates can be used in sensing and SERS applications.

  6. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    Science.gov (United States)

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  7. Chemoelectronic circuits based on metal nanoparticles

    Science.gov (United States)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  8. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate.

    Science.gov (United States)

    Lopez, Renata F V; Seto, Jennifer E; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ∼0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500-1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Silver nanoparticles-incorporated Nb2O5 surface passivation layer for efficiency enhancement in dye-sensitized solar cells.

    Science.gov (United States)

    Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P

    2018-08-15

    Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Plasmon-enhanced second harmonic generation in semiconductor quantum dots close to metal nanoparticles

    Directory of Open Access Journals (Sweden)

    Andrea V. Bragas

    2011-03-01

    Full Text Available We report the enhancement of the optical second harmonic signal in non-centrosymmetric semiconductor CdS quantum dots, when they are placed in close contact with isolated silver nanoparticles. The intensity enhancement is about 1000. We also show that the enhancement increases when the incoming laser frequency $omega$ is tuned toward the spectral position of the silver plasmon at $2omega$, proving that the silver nanoparticle modifies the nonlinear emission.Received: 8 March 2011, Accepted: 30 May 2011; Edited by: L. Viña; Reviewed by: R. Gordon, Department of Electrical and Computer Engineering, University of Victoria, British Columbia, Canada; DOI: 10.4279/PIP.030002Cite as: P. M. Jais, C. von Bilderling, A. V. Bragas, Papers in Physics 3, 030002 (2011

  11. Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qiang; Yau, Siu-Tung [Department of Electrical and Computer Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Nayfeh, Munir H. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2010-06-15

    A composite material formed by dispersing ultrasmall silicon nanoparticles in polyaniline has been used as the electrode material for supercapacitors. Electrochemical characterization of the composite indicates that the nanoparticles give rise to double-layer capacitance while polyaniline produces pseudocapacitance. The composite shows significantly improved capacitance compared to that of polyaniline. The enhanced capacitance results in high power (220 kW kg{sup -1}) and energy-storage (30 Wh kg{sup -1}) capabilities of the composite material. A prototype supercapacitor using the composite as the charge storage material has been constructed. The capacitor showed the enhanced capacitance and good device stability during 1000 charging/discharging cycles. (author)

  12. Lipid Nanocapsule-Based Gels for Enhancement of Transdermal Delivery of Ketorolac Tromethamine

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2011-01-01

    Full Text Available Previous reports show ineffective transdermal delivery of ketorolac by nanostructured lipid carriers (NLCs. The aim of the present work was enhancement of transdermal delivery of ketorolac by another colloidal carriers, lipid nanocapsules (LNCs. LNCs were prepared by emulsification with phase transition method and mixed in a Carbomer 934P gel base with oleic acid or propylene glycol as penetration enhancers. Permeation studies were performed by Franz diffusion cell using excised rat abdominal skin. Aerosil-induced rat paw edema model was used to investigate the in vivo performance. LNCs containing polyethylene glycol hydroxyl stearate, lecithin in Labrafac as the oily phase, and dilution of the primary emulsion with 3.5-fold volume of cold water produced the optimized nanoparticles. The 1% Carbomer gel base containing 10% oleic acid loaded with nanoparticles enhanced and prolonged the anti-inflammatory effects of this drug to more than 12 h in Aerosil-induced rat paw edema model.

  13. Doping of Co into V{sub 2}O{sub 5} nanoparticles enhances photodegradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Praveen Kumar, S.; Muthamizh, S. [Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus, Chennai 600 025 (India); Stephen, A. [Department of Nuclear Physics, University of Madras, Guindy Maraimalai Campus, Chennai 600 025 (India); Narayanan, V., E-mail: vnnara@yahoo.co.in [Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus, Chennai 600 025 (India)

    2014-06-15

    Highlights: • Co-doped V{sub 2}O{sub 5} nanoparticles are synthesized by thermal decomposition method. • The nanoparticles are used as photocatalyst for the first time. • Doped samples exhibited enhanced photodegradation property. • Observed enhanced activity is due to Co and plausible mechanism has been proposed. - Abstract: V{sub 2}O{sub 5} nanoparticles doped with different amounts of (x = 2%, 5% and 10%) Co was successfully synthesized by thermal decomposition method with the purpose of enhancing their photodegradation performance under visible light irradiation. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman, UV–Vis, photoluminescence (PL) spectroscopy, field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). The photodegradation property of the prepared pure V{sub 2}O{sub 5} and Co-V{sub 2}O{sub 5} nanoparticles were investigated by using aqueous solution of methylene blue (MB) under visible light irradiation. The obtained results clearly indicated that the amount of Co has significant effect on the photodegradation of MB. Particularly, 10%Co-V{sub 2}O{sub 5} nanoparticles exhibits enhanced photodegradation property than the pure, 2% and 5%Co-doped samples. A plausible mechanism was put forth for such significant improvements in photodegradation performance of Co-V{sub 2}O{sub 5}.

  14. Potassium permanganate-glutaraldehyde chemiluminescence system catalyzed by gold nanoprisms toward selective determination of fluoride.

    Science.gov (United States)

    Abolhasani, Jafar; Hassanzadeh, Javad; Ghorbani-Kalhor, Ebrahim

    2016-02-01

    Gold and silver nanoparticles (NPs) are shown to exert a positive effect on the chemiluminescence (CL) reaction of permanganate aldehydes. Interestingly, between various shapes examined, Au nanoprisms have the highest beneficial effect. This effect is even more notable in the presence of sodium dodecyl sulfate (SDS) surfactant. UV-vis spectra and transmission electron microscopy were used to characterize the NP shapes and sizes. Furthermore, it was observed that iron(III) ions can slightly increase CL emission of this system. This intensification is very effective in the presence of fluoride ions (F(-)). These observations form the basis of the method for the high sensitive determination of F(-) in the 6-1200 nmol L(-1) concentration range, with a detection limit of 2.1 nmol L(-1). The proposed method has good precision and was satisfactorily used in the selective determination of low concentrations of fluoride ion in real samples. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2

    Science.gov (United States)

    Zhao, Zheng; Xie, Maobin; Li, Yi; Chen, Aizheng; Li, Gang; Zhang, Jing; Hu, Huawen; Wang, Xinyu; Li, Shipu

    2015-01-01

    In order to enhance the bioavailability of poorly water-soluble curcumin, solution-enhanced dispersion by supercritical carbon dioxide (CO2) (SEDS) was employed to prepare curcumin nanoparticles for the first time. A 24 full factorial experiment was designed to determine optimal processing parameters and their influence on the size of the curcumin nanoparticles. Particle size was demonstrated to increase with increased temperature or flow rate of the solution, or with decreased precipitation pressure, under processing conditions with different parameters considered. The single effect of the concentration of the solution on particle size was not significant. Curcumin nanoparticles with a spherical shape and the smallest mean particle size of 325 nm were obtained when the following optimal processing conditions were adopted: P =20 MPa, T =35°C, flow rate of solution =0.5 mL·min−1, concentration of solution =0.5%. Fourier transform infrared (FTIR) spectroscopy measurement revealed that the chemical composition of curcumin basically remained unchanged. Nevertheless, X-ray powder diffraction (XRPD) and thermal analysis indicated that the crystalline state of the original curcumin decreased after the SEDS process. The solubility and dissolution rate of the curcumin nanoparticles were found to be higher than that of the original curcumin powder (approximately 1.4 μg/mL vs 0.2 μg/mL in 180 minutes). This study revealed that supercritical CO2 technologies had a great potential in fabricating nanoparticles and improving the bioavailability of poorly water-soluble drugs. PMID:25995627

  16. Enhanced photocatalysis, colloidal stability and cytotoxicity of synchrotron X-ray synthesized Au/TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chi-Jen; Yang, Tsung-Yeh; Wang, Chang-Hai [Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan (China); Chien, Chia-Chi [Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan (China); Department of Engineering Science and System, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chen, Shin-Tai; Wang, Cheng-Liang; Leng, Wei-Hua [Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan (China); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan (China); Department of Engineering Science and System, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, Taipei 10461, Taiwan (China); Lee, Yao-Chang [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Cheng, Chia-Liang [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Je, J.H. [X-ray Imaging Center, Pohang University of Science and Technology, Pohang (Korea, Republic of); Margaritondo, G. [Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2009-09-15

    Au/TiO{sub 2} nanocomposite particles were synthesized by a method based on intense X-ray irradiation without adding any reducing agent or stabilizer. The nanocomposite exhibits promising photocatalytic and biological properties at physiologically relevant concentration ([Au] = 0.028 mM, [TiO{sub 2}] = 0.5 mM). The structure and photocatalysis were examined by X-ray diffraction, electron microscopy and ultraviolet-visible spectroscopy demonstrating that gold nanoparticles of 2-5 nm size were successfully deposited on TiO{sub 2} nanoparticle surfaces. The nanocomposite exhibited good colloidal stability within a typical cellular environment and was nontoxic to cancer cell according to evaluations under controlled conditions. The Au/TiO{sub 2} nanoparticles were also found to enhance the photocatalytic efficiency of UV radiation and even more that of X-ray radiation. In vitro studies indicated that the cell-killing effect under X-ray irradiation is more pronounced with the addition of Au/TiO{sub 2} nanoparticles than of bare TiO{sub 2} nanoparticles.

  17. Application of direct-injection detector integrated with the multi-pumping flow system to chemiluminescence determination of the total polyphenol index.

    Science.gov (United States)

    Nalewajko-Sieliwoniuk, Edyta; Iwanowicz, Magdalena; Kalinowski, Sławomir; Kojło, Anatol

    2016-03-10

    In this work, we present a novel chemiluminescence (CL) method based on direct-injection detector (DID) integrated with the multi-pumping flow system (MPFS) to chemiluminescence determination of the total polyphenol index. In this flow system, the sample and the reagents are injected directly into the cone-shaped detection cell placed in front of the photomultiplier window. Such construction of the detection chamber allows for fast measurement of the CL signal in stopped-flow conditions immediately after mixing the reagents. The proposed DID-CL-MPFS method is based on the chemiluminescence of nanocolloidal manganese(IV)-hexametaphosphate-ethanol system. The application of ethanol as a sensitizer, eliminated the use of carcinogenic formaldehyde. Under the optimized experimental conditions, the chemiluminescence intensities are proportional to the concentration of gallic acid in the range from 5 to 350 ng mL(-1). The DID-CL-MPFS method offers a number of advantages, including low limit of detection (0.80 ng mL(-1)), high precision (RSD = 3.3%) and high sample throughput (144 samples h(-1)) as well as low consumption of reagents, energy and low waste generation. The proposed method has been successfully applied to determine the total polyphenol index (expressed as gallic acid equivalent) in a variety of plant-derived food samples (wine, tea, coffee, fruit and vegetable juices, herbs, spices). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  19. Enhanced Plasmonic Biosensors of Hybrid Gold Nanoparticle-Graphene Oxide-Based Label-Free Immunoassay

    Science.gov (United States)

    Chiu, Nan-Fu; Chen, Chi-Chu; Yang, Cheng-Du; Kao, Yu-Sheng; Wu, Wei-Ren

    2018-05-01

    In this study, we propose a modified gold nanoparticle-graphene oxide sheet (AuNP-GO) nanocomposite to detect two different interactions between proteins and hybrid nanocomposites for use in biomedical applications. GO sheets have high bioaffinity, which facilitates the attachment of biomolecules to carboxyl groups and has led to its use in the development of sensing mechanisms. When GO sheets are decorated with AuNPs, they introduce localized surface plasmon resonance (LSPR) in the resonance energy transfer of spectral changes. Our results suggest a promising future for AuNP-GO-based label-free immunoassays to detect disease biomarkers and rapidly diagnose infectious diseases. The results showed the detection of antiBSA in 10 ng/ml of hCG non-specific interfering protein with dynamic responses ranging from 1.45 nM to 145 fM, and a LOD of 145 fM. Considering the wide range of potential applications of GO sheets as a host material for a variety of nanoparticles, the approach developed here may be beneficial for the future integration of nanoparticles with GO nanosheets for blood sensing. The excellent anti-interference characteristics allow for the use of the biosensor in clinical analysis and point-of-care testing (POCT) diagnostics of rapid immunoassay products, and it may also be a potential tool for the measurement of biomarkers in human serum.

  20. Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation

    Science.gov (United States)

    Hao, Yao; Altundal, Yucel; Moreau, Michele; Sajo, Erno; Kumar, Rajiv; Ngwa, Wilfred

    2015-09-01

    Nanoparticle-aided radiation therapy is emerging as a promising modality to enhance radiotherapy via the radiosensitizing action of high atomic number (Z) nanoparticles. However, the delivery of sufficiently potent concentrations of such nanoparticles to the tumor remain a challenge. This study investigates the dose enhancement to lung tumors due to high-Z nanoparticles (NPs) administered via inhalation during external beam radiotherapy. Here NPs investigated include: cisplatin nanoparticles (CNPs), carboplatin nanoparticles (CBNPs), and gold nanoparticles (GNPs). Using Monte Carlo-generated megavoltage energy spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumors due to radiation-induced photoelectrons from the NPs administered via inhalation route (IR) in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung via IV. Meanwhile recent experimental studies indicate that 3.5-14.6 times higher concentrations of NPs can reach the lung by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the radiotherapy dose with and without nanoparticles was calculated for a range of NPs concentrations and tumor sizes. The DEF for IR was then compared with that for IV. For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of up to 1.19, 1.26, and 1.51 were obtained for CNPs, CBNPs and GNPs. In comparison values of 1.06, 1.08, and 1.15 were obtained via IV administration. For IR with 14.6 times higher concentrations, even higher DEF values were obtained e.g. 1.81 for CNPs. Results also showed that the DEF increased with increasing field size or decreasing tumor volume, as expected. The results of this work indicate that IR administration of targeted high-Z CNPs/CBNPs/GNPs could enable clinically significant DEF to lung tumors compared to IV

  1. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.

  2. Highly stabilized and photoluminescence enhancement of ZnS:Mn2+ nanoparticles in biotin matrix

    International Nuclear Information System (INIS)

    Keshari, Ashish K.; Pandey, Avinash C.

    2009-01-01

    We synthesized the ZnS:Mn 2+ nanoparticles passivated by biocompatible layer, namely, biotin by chemical precipitation route and studied their temporal evolution for size, structure, optical, and photoluminescence stability. To monitor the structural and optoelectronic properties of the nanoparticles with time, we have characterized the grown product by x-ray diffraction, small angle x-ray scattering, UV visible, and photoluminescence spectroscopic techniques at a regular interval for a period of three months. Results showed that the properties of nanophosphors capped with biotin are remaining the same even after 3 months. Energy dispersive x-ray analysis of 3 month aged sample shows long time compatibility between ZnS:Mn 2+ nanoparticles and the biotin. This is also confirmed by electron microscopy that the growth of the nanoparticles is strongly arrested by the biotin. X-ray photoelectron spectra were also recorded to show the chemical state of the elements. Enhanced ratio of Zn 2p to Mn 2p peaks in the x-ray photoelectron spectra of ZnS:Mn 2+ nanoparticles shows that the Mn 2+ ions are incorporated within ZnS host matrix. We found that biotin capping will enhance the luminescence from ZnS:Mn 2+ nanoparticles as compared to without capped particles. Absence of biotin will gradually degrade the luminescence upon aging while drastic degradation in luminescence intensity was observed after annealing. Properties show that biotin also protected the nanoparticles from any environmental attack

  3. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    Science.gov (United States)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  4. Surface-Plasmon-Enhanced Emissions of Phosphors with Au Nanoparticles Embedded in ITO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ja-Yeon [Korea Photonics Technology Institute (KOPTI), Gwangju (Korea, Republic of); Oh, Seung Jong; Park, Hyun-Sun; Kim, Min-Woo; Cho, Yoo-Hyun; Kwon, Min-Ki [Chosun University, Gwangju (Korea, Republic of)

    2017-03-15

    Au nanoparticles were embedded in a transparent conducting layer of indium tin oxide in order to evaluate the feasibility of applying a surface-plasmon (SP)-enhanced phosphor to light-emitting diodes (LEDs). The efficiency of the phosphor was improved by energy matching between the phosphor and the SP of the Au nanoparticles. After the density of the Au nanoparticles and the thickness of the spacer layer had been optimized, the efficiency of a green phosphor was improved by 64% compared to that of an isolated green phosphor. This work provides a way to fabricate high-efficiency LEDs with high color-rendering indices and wide color gamuts in white LEDs.

  5. Direct current-induced electrogenerated chemiluminescence of hydrated and chelated Tb(III) at aluminum cathodes

    International Nuclear Information System (INIS)

    Hakansson, M.; Jiang, Q.; Spehar, A.-M.; Suomi, J.; Kotiranta, M.; Kulmala, S.

    2005-01-01

    Cathodic DC polarization of oxide-covered aluminum produces electrogenerated chemiluminescence from hydrated and chelated Tb(III) ions in aqueous electrolyte solutions. At the moment of cathodic voltage onset, a strong cathodic flash is observed, which is attributed to a tunnel emission of hot electrons into the aqueous electrolyte solution and the successive chemical reactions with the luminophores. However, within a few milliseconds the insulating oxide film is damaged and finally dissolved due to (i) indiffusion of protons or alkali metal ions into the thin oxide film, (ii) subsequent hydrogen evolution at the aluminum/oxide interface and (iii) alkalization of the electrode surface induced by hydrogen evolution reaction. When the alkalization of the electrode surface has proceeded sufficiently, chemiluminescence is generated with increasing intensity. Aluminum metal, short-lived Al(II), Al(I) or atomic hydrogen and its conjugated base form, hydrated electron, can act as highly reducing species in addition to the less energetic heterogeneously transferred electrons from the aluminum electrode. Tb(III) added as a hydrated ion in the solution probably luminesces in the form of Tb(OH) 3 or Tb(OH) 4 - by direct redox reactions of the central ion whereas multidentate aromatic ligand chelated Tb(III) probably luminesces by ligand sensitized chemiluminescence mechanism in which ligand is first excited by one-electron redox reactions, which is followed by intramolecular energy transfer to the central ion which finally emits light

  6. Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Tot Bui

    2010-09-01

    Full Text Available Gadolinium (Gd, with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA, or other derivatives (at 0.1 mmole/kg recommended dose, distribute broadly into tissues and clear through the kidney. These contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF, particularly in kidney impaired subjects. Thus, Gd contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity and Gd safety.To determine whether a biocompatible lipid nanoparticle with surface bound Gd can improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP containing lipid bound DTPA and Gd. The Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater than 33-fold higher longitudinal (T(1 relaxivity, r(1, constant than the current FDA approved Gd-chelated contrast agents. Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to accumulate in the liver or kidney, and was eliminated completely within 24 hrs.The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug delivery optimization and in vivo drug

  7. Enhanced UV light detection using wavelength-shifting properties of Silicon nanoparticles

    International Nuclear Information System (INIS)

    Magill, S.; Xie, J.; Nayfeh, M.; Fizari, M.; Malloy, J.; Maximenko, Y.; Yu, H.

    2015-01-01

    Detection of UV photons is becoming increasingly necessary with the use of noble gases and liquids in elementary particle experiments. Cerenkov light in crystals and glasses, scintillation light in neutrino, dark matter, and rare decay experiments all require sensitivity to UV photons. New sensor materials are needed that can directly detect UV photons and/or absorb UV photons and re-emit light in the visible range measurable by existing photosensors. It has been shown that silicon nanoparticles are sensitive to UV light in a wavelength range around ∼ 200 nm. UV light is absorbed and re-emitted at wavelengths in the visible range depending on the size of the nanoparticles. Initial tests of the wavelength-shifting properties of silicon nanoparticles are presented here that indicate by placing a film of nanoparticles in front of a standard visible-wavelength detecting photosensor, the response of the sensor is significantly enhanced at wavelengths < 320 nm

  8. A competitive chemiluminescence enzyme immunoassay for rapid and sensitive determination of enrofloxacin

    Science.gov (United States)

    Yu, Fei; Wu, Yongjun; Yu, Songcheng; Zhang, Huili; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B.

    With alkaline phosphatase (ALP)-adamantane (AMPPD) system as the chemiluminescence (CL) detection system, a highly sensitive, specific and simple competitive chemiluminescence enzyme immunoassay (CLEIA) was developed for the measurement of enrofloxacin (ENR). The physicochemical parameters, such as the chemiluminescent assay mediums, the dilution buffer of ENR-McAb, the volume of dilution buffer, the monoclonal antibody concentration, the incubation time, and other relevant variables of the immunoassay have been optimized. Under the optimal conditions, the detection linear range of 350-1000 pg/mL and the detection limit of 0.24 ng/mL were provided by the proposed method. The relative standard deviations were less than 15% for both intra and inter-assay precision. This method has been successfully applied to determine ENR in spiked samples with the recovery of 103%-96%. It showed that CLEIA was a good potential method in the analysis of residues of veterinary drugs after treatment of related diseases.

  9. Fluorescence enhancement and quenching of Eu(TTFA)3 by Ag nanoparticles at different excitations

    International Nuclear Information System (INIS)

    Wang, Qingru; Shi, Qiang; Li, Shuhong; Wang, Wenjun; Zheng, Shiling

    2015-01-01

    The luminescence properties of Eu(TTFA) 3 complex in presence of silver nanoparticles were investigated at three excitation wavelengths of 350 nm, 383 nm and 463 nm, respectively. Luminescence quenching and enhancement were both observed at three different excitation and emission wavelengths. Luminescence at 612 nm, 578 nm, 590 nm and 650 nm were enhanced at excitation wavelength of 350 nm, and quenched at excitation wavelength of 383 nm. The enhancement factor reached to 1.6 and the quench factor was about 0.65. For 463 nm excitation, the luminescence at 612 nm was quenched, and the quench factor reached to 0.85. Luminescence at other three emission wavelengths (578 nm, 590 nm, and 650 nm) was enhanced, with the greatest enhancement factor of ∼5. - Highlights: • The luminescence enhancement and quenching were both obtained by using the Ag nanoparticles. • The luminescence enhancement and quenching highly depends on the excitation and emission wavelengths. • The enhancement factor of luminescence also has a great relationship with the intrinsic quantum yield

  10. FDTD/TDSE study of surface-enhanced infrared absorption by metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-H.; Schatz, G. C.; Gray, S. K.; Chemistry; Northwestern Univ.; National Cheng-Kung Univ.

    2006-01-01

    We study surface-enhanced infrared absorption, including multiphoton processes, due to the excitation of surface plasmons on metal nanoparticles. The time-dependent Schroedinger equation and finite-difference time-domain method are self-consistently coupled to treat the problem.

  11. Preparation of ordered silver angular nanoparticles array in block copolymer film for surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Svanda, J. [University of Chemistry and Technology, Department of Solid State Engineering (Czech Republic); Gromov, M. V. [University of Minnesota Duluth, Department of Chemistry and Biochemistry (United States); Kalachyova, Y. [University of Chemistry and Technology, Department of Solid State Engineering (Czech Republic); Postnikov, P. S. [Tomsk Polytechnic University, Department of Technology of Organic Substances and Polymer Materials (Russian Federation); Svorcik, V.; Lyutakov, O., E-mail: lyutakoo@vscht.cz [University of Chemistry and Technology, Department of Solid State Engineering (Czech Republic)

    2016-10-15

    We report a single-step method of preparation of ordered silver nanoparticles array through template-assisted nanoparticles synthesis in the semidried block copolymer film. Ordered nanoparticles were prepared on different substrates by the proper choice of solvents combination and preparation procedure. In particular, block copolymer and silver nitrate were dissolved in the mix of tetrahydrofuran, toluene, and n-methylpyrolidone. During short spin-coating procedure ordering of block copolymer, evaporation of toluene and preferential silver redistribution into poly(4-vinylpyridine) block occurred. Rapid heating of semidry film initiated silver reduction, removing of residual solvent and creation of ordered silver array. After polymer removing silver nanoparticles array was tested as a suitable candidate for subdiffraction plasmonic application–surface-enhanced Raman scattering. Enhancement factor was calculated and compared with the literature data.

  12. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke, E-mail: dnagao@tohoku.ac.jp; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-09-15

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO{sub 2} nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  13. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles.

    Science.gov (United States)

    Townley, Helen E; Kim, Jeewon; Dobson, Peter J

    2012-08-21

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.

  14. Silicalite nanoparticles that promote transgene expression

    International Nuclear Information System (INIS)

    Pearce, Megan E; Mai, Hoang Q; Salem, Aliasger K; Lee, Namhoon; Larsen, Sarah C

    2008-01-01

    Here, we report on a new zeolite-based silicalite nanoparticle that can enhance the transfection efficiencies generated by poly ethylene imine-plasmid DNA (PEI-pDNA) complexes via a sedimentation mechanism and can enhance the transfection efficiencies of pDNA alone when surface functionalized with amine groups. The silicalite nanoparticles have a mean size of 55 nm. Functionalizing the silicalite nanoparticles with amine groups results in a clear transition in zeta potential from -25.9 ± 2.3 mV (pH 7.4) for unfunctionalized silicalite nanoparticles to 4.9 ± 0.7 mV (pH 7.4) for amine functionalized silicalite nanoparticles. We identify that silicalite nanoparticles used to promote non-viral vector acceleration to the cell surface are found in acidic vesicles or the cytoplasm but not the nucleus. An MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay showed that the silicalite nanoparticles were non-toxic at the concentrations tested for transfection. We show that surface functionalization of silicalite nanoparticles with amine groups results in a significant (230%) increase in transfection efficiency of pDNA when compared to unfunctionalized silicalite nanoparticles. Silicalite nanoparticles enhanced pDNA-PEI induced transfection of human embryonic kidney (HEK-293) cells by over 150%

  15. Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence

    Science.gov (United States)

    Shim, Myungbo; Noh, Kwanyoung; Yoon, Woongsup

    2018-06-01

    In this study, the effects of gaseous methane/oxygen injection velocity ratio on the shear coaxial jet flame structure are analyzed using high-speed imaging along with OH* and CH* chemiluminescence. The images show that, as the velocity ratio is increased, the visual flame length increases and wrinkles of the flame front are developed further downstream. The region near the equivalence ratio 1 condition in the flame could be identified by the maximum OH* position, and this region is located further downstream as the velocity ratio is increased. The dominant CH* chemiluminescence is found in the near-injector region. As the velocity ratio is decreased, the signal intensity is higher at the same downstream distance in each flame. From the results, as the velocity ratio is decreased, there is increased entrainment of the external jet, the mixing of the two jets is enhanced, the region near the stoichiometric mixture condition is located further upstream, and consequently, the flame length decreases.

  16. Surface-Enhanced Infrared Absorption of o-Nitroaniline on Nickel Nanoparticles Synthesized by Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yufang Niu

    2014-01-01

    Full Text Available Nickel nanoparticles were electrochemically deposited on indium-tin oxide (ITO coated glass plate in a modified Watt’s electrolyte. The surface-enhanced infrared absorption (SEIRA effect of the nanoparticles was evaluated by attenuated total reflection spectroscopy (ATR-FTIR using o-nitroaniline as a probe molecule. Electrodeposition parameters such as deposition time, pH value, and the type of surfactants were investigated. The morphology and the microstructure of the deposits were characterized by the field emission scanning electron microscope (FESEM and the atomic force microscope (AFM, respectively. The results indicate that the optimum parameters were potential of 1.3 V, time of 30 s, and pH of 8.92 in the solution of 0.3756 mol/L diethanolamine, 0.1 mol/L nickel sulfate, 0.01 mol/L nickel chloride, and 0.05 mol/L boric acid. The FESEM observation shows that the morphology of nickel nanoparticles with best enhancement effect is spherical and narrowly distributed particles with the average size of 50 nm. SEIRA enhancement factor is about 68.

  17. Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

    Science.gov (United States)

    Wang, Sheng; Zhang, Lei; Dong, Chunhong; Su, Lin; Wang, Hanjie; Chang, Jin

    2015-01-01

    A smart pH-responsive photodynamic therapy system based on upconversion nanoparticle loaded PEG coated polymeric lipid vesicles (RB-UPPLVs) was designed and prepared. These RB-UPPLVs which are promising agents for deep cancer photodynamic therapy applications can achieve enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

  18. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    Science.gov (United States)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  19. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    Directory of Open Access Journals (Sweden)

    Daniel R. Cooper

    2014-10-01

    Full Text Available Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79. However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  20. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    International Nuclear Information System (INIS)

    Lewis, Jason S.

    2012-01-01

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) (1,2). These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) (2). A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) (3). Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles (1). Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  1. The Fate of Inhaled Nanoparticles: Detection and Measurement by Enhanced Dark-field Microscopy.

    Science.gov (United States)

    Mercer, Robert R; Scabilloni, James F; Wang, Liying; Battelli, Lori A; Antonini, James M; Roberts, Jenny R; Qian, Yong; Sisler, Jennifer D; Castranova, Vincent; Porter, Dale W; Hubbs, Ann F

    2018-01-01

    Assessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues. Enhanced dark-field microscopy (EDM) is an adaption of the light microscope that images scattered light. Nanoparticles scatter light with high efficiency while normal tissues do not. EDM has the potential to identify the critical target sites for nanoparticle deposition and injury in the lungs and other organs. This study describes the methods for EDM imaging of nanoparticles and applications. Examples of EDM application include measurement of deposition and clearance patterns. Imaging of a wide variety of nanoparticles demonstrated frequent situations where nanoparticles detected by EDM were not visible by light microscopy. EDM examination of colloidal gold nanospheres (10-100 nm diameter) demonstrated a detection size limit of approximately 15 nm in tissue sections. EDM determined nanoparticle volume density was directly proportional to total lung burden of exposed animals. The results confirm that EDM can determine nanoparticle distribution, clearance, transport to lymph nodes, and accumulation in extrapulmonary organs. Thus, EDM substantially improves the qualitative and quantitative microscopic evaluation of inhaled nanoparticles.

  2. A Lipophilic IR-780 Dye-Encapsulated Zwitterionic Polymer-Lipid Micellar Nanoparticle for Enhanced Photothermal Therapy and NIR-Based Fluorescence Imaging in a Cervical Tumor Mouse Model

    Directory of Open Access Journals (Sweden)

    Santhosh Kalash Rajendrakumar

    2018-04-01

    Full Text Available To prolong blood circulation and avoid the triggering of immune responses, nanoparticles in the bloodstream require conjugation with polyethylene glycol (PEG. However, PEGylation hinders the interaction between the nanoparticles and the tumor cells and therefore limits the applications of PEGylated nanoparticles for therapeutic drug delivery. To overcome this limitation, zwitterionic materials can be used to enhance the systemic blood circulation and tumor-specific delivery of hydrophobic agents such as IR-780 iodide dye for photothermal therapy. Herein, we developed micellar nanoparticles using the amphiphilic homopolymer poly(12-(methacryloyloxydodecyl phosphorylcholine (PCB-lipid synthesized via reversible addition–fragmentation chain transfer (RAFT polymerization. The PCB-lipid can self-assemble into micelles and encapsulate IR-780 dye (PCB-lipid–IR-780. Our results demonstrated that PCB-lipid–IR-780 nanoparticle (NP exhibited low cytotoxicity and remarkable photothermal cytotoxicity to cervical cancer cells (TC-1 upon near-infrared (NIR laser irradiation. The biodistribution of PCB-lipid–IR-780 showed higher accumulation of PCB-lipid–IR-780 than that of free IR-780 in the TC-1 tumor. Furthermore, following NIR laser irradiation of the tumor region, the PCB-lipid–IR-780 accumulated in the tumor facilitated enhanced tumor ablation and subsequent tumor regression in the TC-1 xenograft model. Hence, these zwitterionic polymer-lipid hybrid micellar nanoparticles show great potential for cancer theranostics and might be beneficial for clinical applications.

  3. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    Science.gov (United States)

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Synergetic scattering of SiO2 and Ag nanoparticles for light-trapping enhancement in organic bulk heterojunction

    Science.gov (United States)

    Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman

    2018-02-01

    Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.

  5. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste

    International Nuclear Information System (INIS)

    Sarma, Saurabh Jyoti; Das, Ratul Kumar; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo; 2 Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9 (Canada))" data-affiliation=" (CO2 Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9 (Canada))" >Verma, Mausam; Soccol, Carlos Ricardo

    2014-01-01

    CG (Crude glycerol) is one of the major wastes of biodiesel production process. It can be used as a substrate for lipid production by algae and the produced lipid can be recycled as a feedstock for biodiesel production. In order to avoid substrate inhibition, lipid production media are prepared by diluting the CG with distilled water. However, CG contains only a small amount of Mg (57.41 ± 18 ppm) and its concentration is further decreased to around 0.57 ppm during the dilution process. Apart from having a number of roles in algal physiology, Mg is the central atom of chlorophyll. Therefore, MgSO 4 was evaluated as a Mg source to supplement the CG based media used for lipid production by Chlorella vulgaris. By supplementing the process with 1 g/L of MgSO 4 , nearly 185.29 ± 4.53% improvement in lipid production has been achieved. Further, application of MgSO 4 nanoparticles was found to improve the lipid production by 118.23 ± 5.67%. Interestingly, unlike MgSO 4 , its nanoparticles were found to enhance the lipid production at the expense of only a small amount of glycerol. Thus, application of MgSO 4 nanoparticles could be a potential strategy for enhanced lipid yield. - Highlights: • MgSO 4 supplementation can improve the biomass production by 125.58 ± 7.2%. • 185.29 ± 4.53% increase in lipid production by Chlorella vulgaris. • Enhanced lipid production in spite of negligible glycerol consumption. • MgSO 4 nanoparticle induced enhanced photosynthesis by micro algae

  6. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Detection of gamma irradiated pepper and papain by chemiluminescence

    International Nuclear Information System (INIS)

    Sattar, Abdus; Delincee, H.; Diehl, J.F.

    1987-01-01

    Chemiluminescence (CL) measurements of black pepper and of papain using luminol and lucigenin reactions were studied. Effects of grinding, irradiation (5-20 kGy) and particle size (750-140 μm) on CL of pepper, and of irradiation (10-30 kGy) on CL of papain, were investigated. All the tested treatments affected the luminescence response in both the luminol and lucigenin reactions; however, the pattern of changes in each case, was inconsistent. Optimum pepper size for maximum luminescence was 560 μm, and optimum irradiation doses were > 15 kGy for pepper and > 20 kGy for papain. Chemiluminescence may possibly be used as an indicator or irradiation treatment for pepper and papain at a dose of 10 kGy or higher, but further research is needed to establish the reliability of this method. (author)

  8. Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles

    International Nuclear Information System (INIS)

    Mankidy, Bijith D; Joseph, Babu; Gupta, Vinay K

    2013-01-01

    Converting carbon dioxide (CO 2 ) to hydrocarbons that can be used as fuels is beneficial from both environmental and economic points of view. In this study, nanoparticles are designed to enhance the photoreduction of CO 2 on a titanium dioxide (TiO 2 ) catalyst. An increase in catalytic activity is reported when silver (Ag), platinum (Pt) or bimetallic Ag–Pt and core–shell Ag@silica (SiO 2 ) nanoparticles are used with the TiO 2 semiconductor catalyst. Nanoparticles with different elemental composition or geometrical structure facilitate successive photo-excitation steps—generation, transport, storage and interfacial transfer of electrons and holes. Results show that while the addition of either type of nanoparticles augments product formation rates, bimetallic co-catalysts improve product selectivity. When both bimetallic co-catalysts and Ag@SiO 2 nanoparticles are used in combination, product yields are enhanced more than seven fold in comparison to native TiO 2 and high selectivity for methane (CH 4 ) is observed. When the bimetallic Ag–Pt co-catalysts are tuned, a selectivity of CH 4 of approximately 80%, as compared to 20% with only TiO 2 , can be achieved. (paper)

  9. Core-shell magnetic nanoparticles for on-chip RF inductors

    KAUST Repository

    Koh, Kisik

    2013-01-01

    FeNi3 based core-shell magnetic nanoparticles are demonstrated as the magnetic core material for on-chip, radio frequency (RF) inductors. FeNi3 nanoparticles with 50-150 nm in diameter with 15-20 nm-thick SiO2 coating are chemically synthesized and deposited on a planar inductor as the magnetic core to enhance both inductance (L) and quality factor (Q) of the inductor. Experimentally, the ferromagnetic resonant frequency of the on-chip inductors based on FeNi3 core-shell nanoparticles has been shown to be over several GHz. A post-CMOS process has been developed to integrate the magnetic nanoparticles to a planar inductor and inductance enhancements up to 50% of the original magnitude with slightly enhanced Q-factor up to 1 GHz have been achieved. © 2013 IEEE.

  10. A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide.

    Science.gov (United States)

    Hao, Minjia; Liu, Na; Ma, Zhanfang

    2013-08-07

    In this study, graphene oxide (GO) was found to catalyze the luminol-O2 reaction, which yielded a novel chemiluminescence (CL). Remarkably, the CL emission could be tuned by modulating the pH of the GO dispersion. Transmission electron microscopy, CL spectra, electron spin resonance spectra studies were carried out to investigate the CL mechanism. The results indicate that the CL emission was attributed to the intrinsic catalytic effect of GO acting as the radical generation proliferators and electron transfer accelerators. Based on the GO catalyzed luminol-O2 system, we successfully developed a new CL sensor to detect glucose. Under the optimized conditions, glucose could be assayed in the range of 0.05 mM to 5 mM with a detection limit of 0.044 mM. For the detection of clinical serum samples, it is well consistent with the data determined by commercially available method in hospital, indicating that the new CL method provides a possible application for the detection of glucose in clinical diagnostics.

  11. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin; Liu, Jinyong; Wang, Peng; Werth, Charles; Strathmann, Timothy J.

    2014-01-01

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  12. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  13. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Johnston J

    2015-12-01

    Full Text Available Jencilin Johnston,1 Erik N Taylor,1,2 Richard J Gilbert,2 Thomas J Webster1,3 1Department of Chemical Engineering, 2Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched was assessed for the characterization of a Raman signal (ie, molecular fingerprint that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792 and carbocyanine (DTTC [3,3'-diethylthiatricarbocyanine iodide] and DTDC [3,3'-diethylthiadicarbocyanine iodide], were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye

  14. Nano-particle enhanced impedimetric biosensor for detection of foodborne pathogens

    International Nuclear Information System (INIS)

    Kim, G; Om, A S; Mun, J H

    2007-01-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency

  15. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters.

    Science.gov (United States)

    Oliveira, Camila Areias de; Peres, Daniela D'Almeida; Graziola, Fabiana; Chacra, Nádia Araci Bou; Araújo, Gabriel Lima Barros de; Flórido, Ana Catarina; Mota, Joana; Rosado, Catarina; Velasco, Maria Valéria Robles; Rodrigues, Luís Monteiro; Fernandes, Ana Sofia; Baby, André Rolim

    2016-01-01

    The encapsulation of natural ingredients, such as rutin, can offer improvements in sun protection effectiveness. This strategy can provide enhanced flavonoid content and produces an improved bioactive compound with new physical and functional characteristics. As an alternative to common synthetic-based sunscreens, rutin-entrapped gelatin nanoparticles (GNPs) were designed and associated with ethylhexyl dimethyl PABA (EHDP), ethylhexyl methoxycinnamate (EHMC) and methoxydibenzoylmethane (BMDBM) in sunscreen formulations. The purpose of this study was to develop rutin-loaded gelatin nanoparticles and characterize their physicochemical, thermal, functional and safety properties. Rutin-loaded gelatin nanoparticles increased antioxidant activity by 74% relative to free-rutin (FR) solution. Also, this new ingredient upgraded the Sun Protection Factor (SPF) by 48%, indicating its potential as a raw material for bioactive sunscreens. The safety profile indicated that GNPs and glutaraldehyde (GTA) decreased HaCaT cell viability in a concentration/time-dependent manner. However, both blank nanoparticles (B-NC) and rutin-loaded nanoparticles (R-NC) had good performance on skin compatibility tests. These results functionally characterized rutin-loaded nanoparticles as a safe SPF enhancer in sunscreens, especially in association with UV filters. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Maghemite nanoparticles with enhanced magnetic properties: one-pot preparation and ultrastable dextran shell.

    Science.gov (United States)

    Di Corato, Riccardo; Aloisi, Alessandra; Rella, Simona; Greneche, Jean-Marc; Pugliese, Giammarino; Pellegrino, Teresa; Malitesta, Cosimino; Rinaldi, Rosaria

    2018-05-10

    In the field on nanomedicine, superparamagnetic nanoparticles are one of the most studied nanomaterials for theranostics. In this paper, a one-pot synthesis of magnetic nanoparticles is presented, with elevated control on particles size from 10 to 40 nm. The monitoring of vacuum level is here introduced as a crucial parameter for achieving a fine particle morphology. Magnetic properties of these nanoparticles are highly affected by disorders or mismatches in crystal structure. A prolonged oxidation step is applied to the obtained nanoparticles to transform the magnetic phases into a pure maghemite one, confirmed by a high resolution XPS analysis, by Mössbauer spectrometry and, indirectly, by increased performances in magnetization curves and in relaxation times. Afterward, the attained nanoparticles are transferred in water by a non-derivatized dextran coating. The thermogravimetric analysis confirms that the polysaccharide molecules replace the oleic acid on the surface by stabilizing the particles in aqueous phase and culture media. Preliminary in vitro test reveals as the dextran coated nanoparticles are not passively internalized from the cells. As proof of concept, a secondary layer of chitosan assures a positive charge to the nanoparticle surface, thus enhancing the cellular internalization.

  17. Enhanced Photocatalytic Activity of TiO2 Nanoparticles Supported on Electrically Polarized Hydroxyapatite.

    Science.gov (United States)

    Zhang, Xuefei; Yates, Matthew Z

    2018-05-23

    Fast recombination of photogenerated charge carriers in titanium dioxide (TiO 2 ) remains a challenging issue, limiting the photocatalytic activity. This study demonstrates increased photocatalytic performance of TiO 2 nanoparticles supported on electrically polarized hydroxyapatite (HA) films. Dense and thermally stable yttrium and fluorine co-doped HA films with giant internal polarization were synthesized as photocatalyst supports. TiO 2 nanoparticles deposited on the support were then used to catalyze the photochemical reduction of aqueous silver ions to produce silver nanoparticles. It was found that significantly more silver nanoparticles were produced on polarized HA supports than on depolarized HA supports. In addition, the photodegradation of methyl orange with TiO 2 nanoparticles on polarized HA supports was found to be much faster than with TiO 2 nanoparticles on depolarized HA supports. It is proposed that separation of photogenerated electrons and holes in TiO nanoparticles is promoted by the internal polarization of the HA support, and consequently, the recombination of charge carriers is mitigated. The results imply that materials with large internal polarization can be used in strategies for enhancing quantum efficiency of photocatalysts.

  18. Highly luminescent material based on Alq3:Ag nanoparticles.

    Science.gov (United States)

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices.

  19. Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection

    Science.gov (United States)

    Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang

    2016-05-01

    The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.

  20. Analysis of chemiluminescence measurements by grey-scale ICCD and colour digital cameras

    International Nuclear Information System (INIS)

    Migliorini, F; Maffi, S; De Iuliis, S; Zizak, G

    2014-01-01

    Spectral, grey-scale and colour chemiluminescence measurements of C 2 * and CH* radicals' emission are carried out on the flame front of a methane–air premixed flame at different equivalence ratios. To this purpose, properly spatially resolved optical equipment has been implemented in order to reduce the background emission from other burned gas regions. The grey-scale (ICCD + interference filters) and RGB colour (commercial digital camera) approaches have been compared in order to find a correspondence between the C 2 * and the green component, as well as the CH* and the blue component of the emission intensities. The C 2 */CH* chemiluminescence ratio has been investigated at different equivalence ratios and a good correlation has been obtained, showing the possibility of sensing the equivalence ratio in practical systems. The grey-scale and colour chemiluminescence analysis has then been applied to a meso-scale not premixed swirl combustor fuelled with a methane–air mixture and operating at 0.3 MPa. 2D results are presented and discussed in this work. (paper)

  1. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    International Nuclear Information System (INIS)

    Xie, Zheng; Wang, Weipeng; Liu, Can; Li, Zhengcao; Liu, Xiangxuan; Zhang, Zhengjun

    2014-01-01

    TiO 2 nanorod arrays (TiO 2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO 2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO 2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO 2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. (paper)

  2. l-Tyrosine Contained in Dietary Supplement by Chemiluminescence Reaction of an Iron-Phthalocyanine Complex

    Directory of Open Access Journals (Sweden)

    Takao Ohtomo

    2012-01-01

    Full Text Available The chemiluminescence (CL signal immediately appeared when a hydrogen peroxide solution was injected into an iron-phthalocyanine tetrasulfonic acid (Fe-PTS aqueous solution. Moreover, the CL intensity of Fe-PTS decreased by adding L-tyrosine. Based on these results, the determination of trace amounts of L-tyrosine was developed using the quenching-chemiluminescence. The calibration curve of L-tyrosine was obtained in the concentration range of 2.0×10−7 M to 2.0×10−5 M. Moreover, the relative standard deviation (RSD was 1.63 % (=5 for 2.0×10−6 M L-tyrosine, and its detection limits (3σ were 1.81×10−7 M. The spike and recovery experiments for L-tyrosine were performed using a soft drink. Furthermore, the determination of L-tyrosine was applied to supplements containing various kinds of amino acids. Each satisfactory relative recovery was obtained at 98 to 102%.

  3. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    Abstract. In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage. PMID:25069006

  4. Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy

    Science.gov (United States)

    Jin, Honglin; Qian, Yuan; Dai, Yanfeng; Qiao, Sha; Huang, Chuan; Lu, Lisen; Luo, Qingming; Chen, Jing; Zhang, Zhihong

    2016-01-01

    Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy. PMID:27698936

  5. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Science.gov (United States)

    Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming

    2017-02-01

    Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  6. Essential oil-loaded lipid nanoparticles for wound healing.

    Science.gov (United States)

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.

  7. Boron doping induced thermal conductivity enhancement of water-based 3C-Si(B)C nanofluids.

    Science.gov (United States)

    Li, Bin; Jiang, Peng; Zhai, Famin; Chen, Junhong; Bei, Guo-Ping; Hou, Xinmei; Chou, Kuo-Chih

    2018-06-04

    In this paper, the fabrication and thermal conductivity of water-based nanofluids using boron (B) doped SiC as dispersions are reported. Doping B into β-SiC phase leads to the shrinkage of SiC lattice due to the substitution of Si atoms (radius: 0.134 nm) by smaller B atoms (radius: 0.095 nm). The presence of B in SiC phase also promotes crystallization and grain growth of obtained particles. The tailored crystal structure and morphology of B doped SiC nanoparticles are beneficial for the thermal conductivity improvement of the nanofluids by using them as dispersions. Serving B doped SiC nanoparticles as dispersions for nanofluids, a remarkable improvement of the stability was achieved in SiC-B6 nanofluid at pH 11 by means of the Zeta potential measurement. Dispersing B doped SiC nanoparticles in water based fluids, the thermal conductivity of the as prepared nanofluids containing only 0.3 vol. % SiC-B6 nanoparticles is remarkably raised up to 39.3 % at 30 °C compared to the base fluids and is further enhanced with the increased temperature. The main reasons for the improvement of thermal conductivity of SiC-B6 nanofluids are more stable dispersion and intensive charge ions vibration around the surface of nanoparticles as well as the enhanced thermal conductivity of the SiC-B dispersions. © 2018 IOP Publishing Ltd.

  8. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement.

    Science.gov (United States)

    Beik, Jaber; Jafariyan, Maryam; Montazerabadi, Alireza; Ghadimi-Daresajini, Ali; Tarighi, Parastoo; Mahmoudabadi, Alireza; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2017-12-12

    X-ray computed tomography (CT) requires an optimal compromise between image quality and patient dose. While high image quality is an important requirement in CT, the radiation dose must be kept minimal to protect the patients from ionizing radiation-associated risks. The use of probes based on gold nanoparticles (AuNPs) along with active targeting ligands for specific recognition of cancer cells may be one of the balanced solutions. Herein, we report the effect of folic acid (FA)-modified AuNP as a targeted nanoprobe on the contrast enhancement of CT images as well as its potential for patient dose reduction. For this purpose, nasopharyngeal KB cancer cells overexpressing FA receptors were incubated with AuNPs with and without FA modification and imaged in a CT scanner with the following X-ray tube parameters: peak tube voltage of 130 KVp, and tube current-time products of 60, 90, 120, 160 and 250 mAs. Moreover, in order to estimate the radiation dose to which the patient was exposed during a head CT protocol, the CT dose index (CTDI) value was measured by an X-ray electrometer by changing the tube current-time product. Raising the tube current-time product from 60 to 250 mAs significantly increased the absorbed dose from 18 mGy to 75 mGy. This increase was not associated with a significant enhancement of the image quality of the KB cells. However, an obvious increase in image brightness and CT signal intensity (quantified by Hounsfield units [HU]) were observed in cells exposed to nanoparticles without any increase in the mAs product or radiation dose. Under the same Au concentration, KB cells exposed to FA-modified AuNPs had significantly higher HU and brighter CT images than those of the cells exposed to AuNPs without FA modification. In conclusion, FA-modified AuNP can be considered as a targeted CT nanoprobe with the potential for dose reduction by keeping the required mAs product as low as possible while enhancing image contrast.

  9. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue.

    Science.gov (United States)

    Taha, Eslam; Djouider, Fathi; Banoqitah, Essam

    2018-03-26

    The objective of this work is to study the dosimetric performances of bismuth oxide nanoparticles implanted in tumors in cancer radiotherapy. GEANT4 based Monte Carlo numerical simulations were performed to assess dose enhancement distributions in and around a 1 × 1 × 1 cm 3 tumor implanted with different concentrations of bismuth oxide and irradiated with low energies 125 I, 131 Cs, and 103 Pd radioactive sources. Dose contributions were considered from photoelectrons, Auger electrons, and characteristic X-rays. Our results show the dose enhancement increased with increasing both bismuth oxide concentration in the target and photon energy. A dose enhancement factor up to 18.55 was obtained for a concentration of 70 mg/g of bismuth oxide in the tumor when irradiated with 131 Cs source. This study showed that bismuth oxide nanoparticles are innovative agents that could be potentially applicable to in vivo cancer radiotherapy due to the fact that they induce a highly localized energy deposition within the tumor.

  10. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  11. On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shantrokha AN

    2009-01-01

    Full Text Available Abstract The bacterial action of gentamicin and that of a mixture of gentamicin and 15-nm colloidal-gold particles onEscherichia coliK12 was examined by the agar-well-diffusion method, enumeration of colony-forming units, and turbidimetry. Addition of gentamicin to colloidal gold changed the gold color and extinction spectrum. Within the experimental errors, there were no significant differences in antibacterial activity between pure gentamicin and its mixture with gold nanoparticles (NPs. Atomic absorption spectroscopy showed that upon application of the gentamicin-particle mixture, there were no gold NPs in the zone of bacterial-growth suppression in agar. Yet, free NPs diffused into the agar. These facts are in conflict with the earlier findings indicating an enhancement of the bacterial activity of similar gentamicin–gold nanoparticle mixtures. The possible causes for these discrepancies are discussed, and the suggestion is made that a necessary condition for enhancement of antibacterial activity is the preparation of stable conjugates of NPs coated with the antibiotic molecules.

  12. Determination of fluoxetine in pharmaceutical and biological samples based on the silver nanoparticle enhanced fluorescence of fluoxetine-terbium complex.

    Science.gov (United States)

    Lotfi, Ali; Manzoori, Jamshid L

    2016-11-01

    In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium-fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV-Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium-sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb 3+ concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium-fluoxetine-AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10 -4 mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Enhanced antimicrobial activities of silver-nanoparticle-decorated reduced graphene nanocomposites against oral pathogens

    International Nuclear Information System (INIS)

    Peng, Jian-min; Lin, Jia-cheng; Chen, Zhuo-yu; Wei, Meng-chao; Fu, Yuan-xiang; Lu, Shu-shen; Yu, Dong-sheng; Zhao, Wei

    2017-01-01

    As a means of capitalizing on the synergistic properties between reduced graphene nanosheets (R-GNs) and silver nanoparticles (AgNPs), an efficient and convenient chemical reduction method was used to prepare silver-nanoparticle-decorated reduced graphene nanocomposites (R-GNs/Ag). The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which confirmed the loading of well-dispersed silver nanoparticles on reduced graphene sheets. Their antimicrobial activities against oral pathogens such as Candida albicans, Lactobacillus acidophilus, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were investigated by MIC determination, the counting of colony-forming units (CFU), agar diffusion tests, and growth curve observation. Compared with pure R-GNs and AgNPs, R-GNs/Ag composites exhibited enhanced antimicrobial properties owing to highly dispersed AgNPs on R-GNs. - Highlights: • This study synthesized R-GNs/Ag composites by a chemical reduction method. • AgNPs were successfully dispersed on reduced graphene nanosheets. • R-GNs/Ag composites showed enhanced antimicrobial activities against oral pathogens compared with plain AgNPs or R-GNs.

  14. Enhanced antimicrobial activities of silver-nanoparticle-decorated reduced graphene nanocomposites against oral pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jian-min; Lin, Jia-cheng; Chen, Zhuo-yu; Wei, Meng-chao [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fu, Yuan-xiang; Lu, Shu-shen [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yu, Dong-sheng, E-mail: yudsh@mail.sysu.edu.cn [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Zhao, Wei, E-mail: zhaowei3@mail.sysu.edu.cn [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2017-02-01

    As a means of capitalizing on the synergistic properties between reduced graphene nanosheets (R-GNs) and silver nanoparticles (AgNPs), an efficient and convenient chemical reduction method was used to prepare silver-nanoparticle-decorated reduced graphene nanocomposites (R-GNs/Ag). The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which confirmed the loading of well-dispersed silver nanoparticles on reduced graphene sheets. Their antimicrobial activities against oral pathogens such as Candida albicans, Lactobacillus acidophilus, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were investigated by MIC determination, the counting of colony-forming units (CFU), agar diffusion tests, and growth curve observation. Compared with pure R-GNs and AgNPs, R-GNs/Ag composites exhibited enhanced antimicrobial properties owing to highly dispersed AgNPs on R-GNs. - Highlights: • This study synthesized R-GNs/Ag composites by a chemical reduction method. • AgNPs were successfully dispersed on reduced graphene nanosheets. • R-GNs/Ag composites showed enhanced antimicrobial activities against oral pathogens compared with plain AgNPs or R-GNs.

  15. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both...

  16. Ligand-Modified Human Serum Albumin Nanoparticles for Enhanced Gene Delivery.

    Science.gov (United States)

    Look, Jennifer; Wilhelm, Nadine; von Briesen, Hagen; Noske, Nadja; Günther, Christine; Langer, Klaus; Gorjup, Erwin

    2015-09-08

    The development of nonviral gene delivery systems is a great challenge to enable safe gene therapy. In this study, ligand-modified nanoparticles based on human serum albumin (HSA) were developed and optimized for an efficient gene therapy. Different glutaraldehyde cross-linking degrees were investigated to optimize the HSA nanoparticles for gene delivery. The peptide sequence arginine-glycine-aspartate (RGD) and the HIV-1 transactivator of transduction sequence (Tat) are well-known as promising targeting ligands. Plasmid DNA loaded HSA nanoparticles were covalently modified on their surface with these different ligands. The transfection potential of the obtained plasmid DNA loaded RGD- and Tat-modified nanoparticles was investigated in vitro, and optimal incubation conditions for these preparations were studied. It turned out that Tat-modified HSA nanoparticles with the lowest cross-linking degree of 20% showed the highest transfection potential. Taken together, ligand-functionalized HSA nanoparticles represent promising tools for efficient and safe gene therapy.

  17. CdS nanoparticle sensitized titanium dioxide decorated graphene for enhancing visible light induced photoanode

    International Nuclear Information System (INIS)

    Yousefzadeh, S.; Faraji, M.; Nien, Y.T.; Moshfegh, A.Z.

    2014-01-01

    Highlights: • CdS nanoparticles were deposited on TiO 2 /graphene film by different SILAR cycles. • The visible light absorption increased due to graphene and CdS nanoparticles. • The highest photocurrent density was achieved for nanocomposite with 30 CdS cycles. • A mechanism has been suggested for nanocomposite photoanodes, significantly. - Abstract: CdS/TiO 2 /graphene (CTG) nanocomposite thin films were synthesized by a facile production route. The TiO 2 /graphene (TG) nanocomposite was initially fabricated by sol-gel method in such a way that TiO 2 nanoparticles loaded on graphene oxide (GO) sheet via photocatalytic process. Then, CdS nanoparticles were deposited on the TG thin film by successive ion layer adsorption and reaction process (SILAR) approach. Based on atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the TG thin film possessed a larger surface area as compared with the pure TiO 2 thin film due to presence of graphene sheet. UV/visible spectroscopy exhibited that visible absorption of the CTG samples increased with increasing CdS SILAR deposition cycle (n). Enhanced photocurrent response of the CTG(n) photoanodes measured as compared with the TG and T photoanodes due to good electrical conductivity and large surface area of graphene as well as the visible light-harvesting ability of CdS nanoparticles. Maximum photocurrent density of about 4.5 A/m 2 and electron life time of about 5 s was measured for the CTG(30) photoanodes

  18. CdS nanoparticle sensitized titanium dioxide decorated graphene for enhancing visible light induced photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Yousefzadeh, S.; Faraji, M. [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Nien, Y.T. [Department of Materials Science and Engineering, National Formosa University, Taiwan (China); Moshfegh, A.Z., E-mail: moshfegh@sharif.edu [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • CdS nanoparticles were deposited on TiO{sub 2}/graphene film by different SILAR cycles. • The visible light absorption increased due to graphene and CdS nanoparticles. • The highest photocurrent density was achieved for nanocomposite with 30 CdS cycles. • A mechanism has been suggested for nanocomposite photoanodes, significantly. - Abstract: CdS/TiO{sub 2}/graphene (CTG) nanocomposite thin films were synthesized by a facile production route. The TiO{sub 2}/graphene (TG) nanocomposite was initially fabricated by sol-gel method in such a way that TiO{sub 2} nanoparticles loaded on graphene oxide (GO) sheet via photocatalytic process. Then, CdS nanoparticles were deposited on the TG thin film by successive ion layer adsorption and reaction process (SILAR) approach. Based on atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the TG thin film possessed a larger surface area as compared with the pure TiO{sub 2} thin film due to presence of graphene sheet. UV/visible spectroscopy exhibited that visible absorption of the CTG samples increased with increasing CdS SILAR deposition cycle (n). Enhanced photocurrent response of the CTG(n) photoanodes measured as compared with the TG and T photoanodes due to good electrical conductivity and large surface area of graphene as well as the visible light-harvesting ability of CdS nanoparticles. Maximum photocurrent density of about 4.5 A/m{sup 2} and electron life time of about 5 s was measured for the CTG(30) photoanodes.

  19. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Guehlke, Marina

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial...... for one-and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic...... building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts....

  20. Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle

    Science.gov (United States)

    Dasri, Thananchai; Chingsungnoen, Artit

    2018-06-01

    Surface plasmon in nano-sized particles, such as gold, silver, copper and their composites, has recently attracted a great deal of attention due to its possible uses in many applications, especially in life sciences. It is desirable for application devices with a tenability of surface plasmon wavelength and optical properties enhancement. This article presents enhanced optical light absorption and tunable wavelength in gold-coated magnetite (Fe3O4@Au core-shell) nanoparticles embedded in water using the theoretical method of discrete dipole approximation (DDA). The absorption spectra in the wavelengths from 350 to 900 nm were found to be the spectra obtained from Fe3O4@Au core-shell nanoparticles, and when compared with pure Fe3O4 nanoparticles, the surface plasmon resonance can be enhanced and tuned over the entire visible spectrum (viz. 350-800 nm) of the electromagnetic spectrum by varying the Au shell thickness (2-5 nm). Similarly, the Faraday rotation spectra can also be obtained.

  1. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission

    International Nuclear Information System (INIS)

    De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell'Aglio, M.; De Pascale, O.

    2014-01-01

    In this paper the use of metallic nanoparticles (NPs) for improving Laser Induced Breakdown Spectroscopy (LIBS) is discussed. In the case of conductors an emission signal enhancement up to 1–2 orders of magnitude was obtained depositing NPs on the sample surface by drying a micro-drop of colloidal solution. The basic mechanisms of Nanoparticle Enhanced LIBS (NELIBS) were studied and the main causes of this significantly large enhancement were found to be related to the effect of NPs on the laser ablation process, in terms of a faster and more efficient production of seed electrons with respect to conventional LIBS. The characteristics of NELIBS-produced plasma were investigated by emission spectroscopy and spectrally resolved images. In spite of similar plasma parameters, the NELIBS plasma was found to have larger emission volume and longer persistence than the LIBS one. A method to determine NP concentration and size was also proposed, which involved depositing NPs on non-interacting substrates, and proved the feasibility of LIBS as a fast detection tool for a preliminary characterization of NPs. - Highlights: • Effect of NPs on sample surface enables instantaneous field emission. • More efficient ablation • LIBS emission enhancement up to 1–2 orders of magnitude • Possibility of NP characterization in terms of concentration and size

  2. Flow Injection Photosensitized Chemiluminescence of Luminol with Cu(II-Rose Bengal: Mechanistic Approach and Vitamin A and C Determination

    Directory of Open Access Journals (Sweden)

    Muhammad Asgher

    2014-01-01

    Full Text Available Rose Bengal photosensitized flow injection chemiluminescence method is reported using luminol-Cu(II for the determination of vitamins A and C in pharmaceutical formulations. The reaction is based on the enhancement effect of analyte in the production of anion radicals of Rose Bengal (RB•− which rapidly interact with dissolved oxygen and generate superoxide anions radicals (O2•− and hydrogen peroxide (H2O2. Highly reactive hydroxyl radicals (•OH were produced via dismutation of H2O2 by catalyst (Cu2+. The generated superoxide anions radicals and hydroxyl radicals thus oxidize luminol in alkaline medium to generate strong chemiluminescence. The limit of detection (3s of the blank, n=6 of vitamins A and C and RB was found to be 0.008, 0.005, and 0.05 μg mL−1, respectively. The sample throughput of 70 h−1 for vitamins A and C and 30 h−1 for RB was found. Calibration curve was linear in the range of 0.05–15, 0.01–20, and 0.1–50 μg mL−1 for vitamins A and C and RB, respectively, with relative standard deviations (RSDs; n=3 in the range 1.6–3.6%. The method was successfully applied to pharmaceutical formulations and the results obtained were in good agreement with the labeled values.

  3. Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co2.

    Science.gov (United States)

    Saqib, Muhammad; Qi, Liming; Hui, Pan; Nsabimana, Anaclet; Halawa, Mohamed Ibrahim; Zhang, Wei; Xu, Guobao

    2018-01-15

    N-hydroxyphthalimide (NHPI), a well known reagent in organic synthesis and biochemical applications, has been developed as a stable and efficient chemiluminescence coreactant for the first time. It reacts with luminol much faster than N-hydroxysuccinimide, eliminating the need of a prereaction coil used in N-hydroxysuccinimide system. Without using prereaction coil, the chemiluminescence peak intensities of luminol-NHPI system are about 102 and 26 times greater than that of luminol-N-hydroxysuccinimide system and classical luminol-hydrogen peroxide system, respectively. The luminol-NHPI system achieves the highly sensitive detection of luminol (LOD = 70pM) and NHPI (LOD = 910nM). Based on their excellent quenching efficiencies, superoxide dismutase and uric acid are sensitively detected with LODs of 3ng/mL and 10pM, respectively. Co 2+ is also detected a LOD of 30pM by its remarkable enhancing effect. Noteworthily, our method is at least 4 orders of magnitude more sensitive than previously reported uric acid detection methods, and can detect uric acid in human urine and Co 2+ in tap and lake water real samples with excellent recoveries in the range of 96.35-102.70%. This luminol-NHPI system can be an important candidate for biochemical, clinical and environmental analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nanoparticle mediated micromotor motion

    Science.gov (United States)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  5. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver

    International Nuclear Information System (INIS)

    Ma Zhiya; Dosev, Dosi; Kennedy, Ian M

    2009-01-01

    A facile one-pot microemulsion method has been developed for the synthesis of spherical silver core-silica shell (Ag-SiO 2 ) nanoparticles with europium chelates doped in the shell through a silane agent. The method is significantly more straightforward than other extant methods. Measurements of the luminescent emissions from the Ag-SiO 2 nanoparticles, in comparison with control silica nanoparticles without silver cores, showed that the presence of the silver cores can increase the fluorescence intensity approximately 24-fold and decrease the luminescence lifetime. This enhancement offers a potential increase in overall particle detectability with increased fluorophore photostability.

  7. Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells.

    Science.gov (United States)

    Luo, Qi; Zhang, Chenxi; Deng, Xueshuang; Zhu, Hongbing; Li, Zhiqiang; Wang, Zengbo; Chen, Xiaohong; Huang, Sumei

    2017-10-11

    We report systematic design and formation of plasmonic perovskite solar cells (PSCs) by integrating Au@TiO 2 core-shell nanoparticles (NPs) into porous TiO 2 and/or perovskite semiconductor capping layers. The plasmonic effects in the formed PSCs are examined. The most efficient configuration is obtained by incorporating Au@TiO 2 NPs into both the porous TiO 2 and the perovskite capping layers, which increases the power conversion efficiency (PCE) from 12.59% to 18.24%, demonstrating over 44% enhancement, compared with the reference device without the metal NPs. The PCE enhancement is mainly attributed to short-circuit current improvement. The plasmonic enhancement effects of Au@TiO 2 core-shell nanosphere photovoltaic composites are explored based on the combination of UV-vis absorption spectroscopy, external quantum efficiency (EQE), photocurrent properties, and photoluminescence (PL). The addition of Au@TiO 2 nanospheres increased the rate of exciton generation and the probability of exciton dissociation, enhancing charge separation/transfer, reducing the recombination rate, and facilitating carrier transport in the device. This study contributes to understanding of plasmonic effects in perovskite solar cells and also provides a promising approach for simultaneous photon energy and electron management.

  8. Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen.

    Science.gov (United States)

    Arias, Mauricio A; Loxley, Andrew; Eatmon, Christy; Van Roey, Griet; Fairhurst, David; Mitchnick, Mark; Dash, Philip; Cole, Tom; Wegmann, Frank; Sattentau, Quentin; Shattock, Robin

    2011-02-01

    Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, L. A. [University of Erlangen-Nuremberg Medical Center, Department of Plastic and Hand Surgery (Germany); Hild, N.; Mohn, D.; Stark, W. J. [ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering (Switzerland); Hoppe, A. [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany); Gbureck, U. [University of Wuerzburg, Department for Functional Materials in Medicine and Dentistry (Germany); Horch, R. E.; Kneser, U. [University of Erlangen-Nuremberg Medical Center, Department of Plastic and Hand Surgery (Germany); Boccaccini, A. R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany)

    2013-07-15

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 {mu}g/cm Superscript-Two (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 {mu}g/cm Superscript-Two , Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

  10. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    International Nuclear Information System (INIS)

    Strobel, L. A.; Hild, N.; Mohn, D.; Stark, W. J.; Hoppe, A.; Gbureck, U.; Horch, R. E.; Kneser, U.; Boccaccini, A. R.

    2013-01-01

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30–35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes

  11. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    Science.gov (United States)

    Strobel, L. A.; Hild, N.; Mohn, D.; Stark, W. J.; Hoppe, A.; Gbureck, U.; Horch, R. E.; Kneser, U.; Boccaccini, A. R.

    2013-07-01

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

  12. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  13. Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guanying; Du, Bin; Liu, Lei; Zhang, Weiwei; Liang, Yujie; Shi, Honglong; Wang, Wenzhong, E-mail: wzhwangmuc@163.com

    2017-03-31

    Highlights: • ZnO/CuO nanoparticle/dandelion heterostructures were fabricated for the first time. • ZnO/CuO nanoparticle/dandelion heterostructures show enhanced PEC activity. • ZnO nanoparticle loading contents have significant effect on PEC water splitting. • Interaction, charge transfer and enhanced mechanism of photocatalyst were proposed. • p-n junction drives the photoexcited charges efficient separation. - Abstract: Here we report an easy and large-scale synthesis of three-dimensional (3D) ZnO nanoparticle-loaded CuO dandelion (denoted as n-ZnO/p-CuO nanoparticle/dandelion) heterostructures and their photoelectrochemical (PEC) water splitting under simulated solar light illumination. CuO dandelions were fabricated by a facile and cost-effective chemical strategy, in which the ribbon-like CuO nanoplates were first formed and then assembled into dandelion-like architectures. ZnO nanoparticle-loaded CuO dandelion heterostructures were fabricated by calcining Zn(Ac){sub 2}-loaded CuO dandelions. High resolution transmission electron microscope (HRTEM) studies demonstrate that intimate p-n junction is built between p-CuO and n-ZnO interface. The n-ZnO/p-CuO nanoparticle/dandelion photoelectrodes exhibit significant improvement in PEC water splitting to CuO dandelion photoelectrodes. The correlation between photocurrents and different loading contents of ZnO nanoparticles (NPs) is studied in which the n-ZnO/p-CuO nanoparticle/dandelion heterostructures with loading 4.6 wt% ZnO NPs show higher photocathodic current. The efficient separation of the photogenerated electrons and holes driven by the intimate p-n junction between p-type CuO and n-type ZnO interface is mainly contributed to the enhanced photoanode current. The achieved results in the present study offer a very useful strategy for designing p-n junction photoelectrodes for efficiency and low-cost PEC cells for clean solar hydrogen production.

  14. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy

    DEFF Research Database (Denmark)

    Hak, Sjoerd; Cebulla, Jana; Huuse, Else Marie

    2014-01-01

    In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only...... because angiogenesis plays an important role in various pathologies, but also since endothelial cell surface receptors are directly accessible for relatively large circulating nanoparticles. Typically, nanoparticle targeting towards these receptors is studied by analyzing the contrast distribution...... kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging...

  15. Flow-injection chemiluminescent determination of estrogen benzoate using the tris(1,10-phenanthroline) ruthenium(II)-permanganate system.

    Science.gov (United States)

    Ma, Yan; Cao, Wei; Qiao, Shuang; Liu, Wenwen; Yang, Jinghe

    2011-01-01

    Chemiluminescence (CL) detection for the determination of estrogen benzoate, using the reaction of tris(1,10-phenanthroline)ruthenium(II)-Na(2)SO(3)-permanganate, is described. This method is based on the CL reaction of estrogen benzoate (EB) with acidic potassium permanganate and tris(1,10-phenanthroline)ruthenium(II). The CL intensity is greatly enhanced when Na(2)SO(3) is added. After optimization of the different experimental parameters, a calibration graph for estrogen benzoate is linear in the range 0.05-10 µg/mL. The 3 s limit of detection is 0.024 µg/mL and the relative standard deviation was 1.3% for 1.0 µg/mL estrogen benzoate (n = 11). This proposed method was successfully applied to commercial injection samples and emulsion cosmetics. The mechanism of CL reaction was also studied. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    International Nuclear Information System (INIS)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge; Huang Jinfeng; Chen Yuxin; Lan Shi

    2011-01-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  17. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  18. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    International Nuclear Information System (INIS)

    Vedelago, J.; Valente, M.; Mattea, F.

    2017-10-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  19. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J.; Valente, M. [Instituto de Fisica Enrique Gaviola - CONICET, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Mattea, F., E-mail: jvedelago@famaf.unc.edu.ar [Universidad Nacional de Cordoba, FAMAF, Laboratorio de Investigacion e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2017-10-15

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  20. Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels.

    Science.gov (United States)

    Podbevsek, D; Colombet, D; Ledoux, G; Ayela, F

    2018-05-01

    We have performed hydrodynamic cavitation experiments with an aqueous luminol solution as the working fluid. Light emission, together with the high frequency noise which characterizes cavitation, was emitted by the two-phase flow, whereas no light emission from luminol was recorded in the single phase liquid flow. Light emission occurs downstream transparent microdiaphragms. The maximum level of the recorded signal was around 180 photons per second with flow rates of 380 µl/s, that corresponds to a real order of magnitude of the chemiluminescence of 75,000 photons per second. The yield of emitted photons increases linearly with the pressure drop, which is proportional to the square of the total flow rate. Chemiluminescence of luminol is a direct and a quantitative demonstration of the presence of OH hydroxyl radicals created by hydrodynamic cavitation. The presented method could be a key to optimize channel geometry for processes where radical production is essential. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2011-11-01

    Full Text Available Min-Soo Kim1, Jeong-Soo Kim1, Hee Jun Park1, Won Kyung Cho1,3, Kwang-Ho Cha1,3, Sung-Joo Hwang2,31College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea, 2College of Pharmacy, 3Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of KoreaBackground: The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS process.Methods: First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS, tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats.Results: X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively.Conclusion: The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus

  2. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Zhan Shu

    2017-02-01

    Full Text Available Abstract Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs and silver (Ag into zinc oxide (ZnO nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs and Ag nanoparticles (Ag NPs with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  3. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  4. Determination of thiram in natural waters using flow-injection with cerium(IV)-quinine chemiluminescence system.

    Science.gov (United States)

    Waseem, Amir; Yaqoob, Mohammad; Nabi, Abdul

    2010-01-01

    A simple and rapid flow-injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5-2500 ng/mL and the detection limit (signal-to-noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C(18)) cartridges for solid-phase extraction. The recoveries were in the range 99 +/- 1 to 104 +/- 1%. Copyright (c) 2009 John Wiley & Sons, Ltd.

  5. Comparison of ultraviolet absorbance and NO-chemiluminescence for ozone measurement in wildfire plumes at the Mount Bachelor Observatory

    Science.gov (United States)

    Gao, Honglian; Jaffe, Daniel A.

    2017-10-01

    The goal of this paper is to evaluate the accuracy of the commonly used ozone (O3) instrument (the ultraviolet (UV) photometer) against a Federal Reference Method (Nitric Oxide -chemiluminescence) for ozone measurement in wildfire smoke plumes. We carried out simultaneous ozone measurement with two UV O3 photometers and one nitric oxide-chemiluminescence (NO-CL) ozone detectors during wildfire season (Aug. 1-Sept. 30) in 2015 at the Mount Bachelor Observatory (MBO, 2763 m above mean sea level, Oregon, USA). The UV O3 shows good agreement and excellent correlation to NO-CL O3, with linear regression slopes close to unity and R2 of 0.92 for 1-h average data and R2 of 0.93 for O3 daily maximum 8-h average (MDA8). During this two-month period we identified 35 wildfire events. Ozone enhancements in those wildfire plumes measured by NO-CL O3 and UV O3 monitors also show good agreement and excellent linear correlation, with a slope and R2 of 1.03 and 0.86 for O3 enhancements (ΔO3) and 1.00 and 0.98 for carbon monoxide (CO)-normalized ozone enhancement ratios (ΔO3/ΔCO), respectively. Overall, the UV O3 was found to have a positive bias of 4.7 ± 2.8 ppbv compared to the NO-CL O3. The O3 bias between NO-CL O3 and UV O3 is independent of wildfire plume tracers such as CO, particulate matter (PM1), aerosol scattering, and ultrafine particles. The results demonstrate that the UV O3 absorbance method is reliable, even in highly concentrated wildfire plumes.

  6. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction.

    Science.gov (United States)

    Wang, Xinyi; Zou, Mingjian; Huang, Hongduan; Ren, Yuqian; Li, Limei; Yang, Xiaoda; Li, Na

    2013-03-15

    We developed a highly differentiating, homogeneous gold nanoparticle (AuNP) enhanced fluorescence anisotropic method for single nucleotide polymorphism (SNP) detection at nanomolar level using toehold-mediated strand-displacement reaction. The template strand, containing a toehold domain with an allele-specific site, was immobilized on the surface of AuNPs, and the solution fluorescence anisotropy was markedly enhanced when the fluorescein-labeled blocking DNA was attached to the AuNP via hybridization. Strand-displacement by the target ssDNA strand resulted in detachment of fluorescein-labeled DNA from AuNPs, and thus decreased fluorescence anisotropy. The drastic kinetic difference in strand-displacement from toehold design was used to distinguish between the perfectly matched and the single-base mismatched strands. Free energy changes were calculated to elucidate the dependence of the differentiation ability on the mutation site in the toehold region. A solid negative signal change can be obtained for single-base mismatched strand in the dynamic range of the calibration curve, and a more than 10-fold signal difference can still be observed in a mixed solution containing 100 times the single-base mismatched strand, indicating the good specificity of the method. This proposed method can be performed with a standard spectrofluorimeter in a homogeneous and cost-effective manner, and has the potential to be extended to the application of fluorescence anisotropy method of SNP detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Numerical and Experimental Investigation of Computed Tomography of Chemiluminescence for Hydrogen-Air Premixed Laminar Flames

    Directory of Open Access Journals (Sweden)

    Liang Lv

    2016-01-01

    Full Text Available Computed tomography of chemiluminescence (CTC is a promising technique for combustion diagnostics, providing instantaneous 3D information of flame structures, especially in harsh circumstance. This work focuses on assessing the feasibility of CTC and investigating structures of hydrogen-air premixed laminar flames using CTC. A numerical phantom study was performed to assess the accuracy of the reconstruction algorithm. A well-designed burner was used to generate stable hydrogen-air premixed laminar flames. The OH⁎ chemiluminescence intensity field reconstructed from 37 views using CTC was compared to the OH⁎ chemiluminescence distributions recorded directly by a single ICCD camera from the side view. The flame structures in different flow velocities and equivalence ratios were analyzed using the reconstructions. The results show that the CTC technique can effectively indicate real distributions of the flame chemiluminescence. The height of the flame becomes larger with increasing flow velocities, whereas it decreases with increasing equivalence ratios (no larger than 1. The increasing flow velocities gradually lift the flame reaction zones. A critical cone angle of 4.76 degrees is obtained to avoid blow-off. These results set up a foundation for next studies and the methods can be further developed to reconstruct 3D structures of flames.

  8. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    KAUST Repository

    Corgié , Sté phane C.; Kahawong, Patarawan; Duan, Xiaonan; Bowser, Daniel; Edward, Joseph B.; Walker, Larry P.; Giannelis, Emmanuel P.

    2012-01-01

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs

  9. Surface-enhanced Raman scattering on molecular self-assembly in nanoparticle-hydrogel composite.

    Science.gov (United States)

    Miljanić, Snezana; Frkanec, Leo; Biljan, Tomislav; Meić, Zlatko; Zinić, Mladen

    2006-10-24

    Surface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.

  10. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  11. Enhanced Performance of Dye-Sensitized Solar Cells with Graphene/ZnO Nanoparticles Bilayer Structure

    Directory of Open Access Journals (Sweden)

    Chih-Hung Hsu

    2014-01-01

    Full Text Available This study reports characteristics of dye-sensitized solar cells (DSSCs with graphene/ZnO nanoparticle bilayer structure. The enhancement of the performance of DSSCs achieved using graphene/ZnO nanoparticle films is attributable to the introduction of an electron-extraction layer and absorption of light in the visible range and especially in the range 300–420 nm. DSSC that was fabricated with graphene/ZnO nanoparticle film composite photoanodes exhibited a Voc of 0.5 V, a Jsc of 17.5 mA/cm2, an FF of 0.456, and a calculated η of 3.98%.

  12. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs

    DEFF Research Database (Denmark)

    Potta, Sriharsha Gupta; Minemi, Sriharsha; Nukala, Ravi Kumar

    2010-01-01

    Cyclosporine (CyA) solid lipid nanoparticles were prepared by using a solvent free high pressure homogenization process. CyA was incorporated into SLNs that consisted of stearic acid, trilaurin or tripalmitin lipid solid cores in order to enhance drug solubility. The process was conducted...

  13. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene

    KAUST Repository

    Liu, Xin; Meng, Changgong; Han, Yu

    2012-01-01

    . The stability of Ru 13 nanoparticles is enhanced by the defective graphene substrate due to the hybridization between the dsp states of the Ru 13 particle with the sp 2 dangling bonds at the defect sites. The local curvature formed at the interface will also

  14. Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Baydaa Jaber Nabhan

    2015-06-01

    Full Text Available Phase change materials (PCMs such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.% of (TiO2 nano-particles with about (10nm diameter. It is found that the phase change temperature varies with adding (TiO2 nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity has been found to increase by about (10% at nanoparticles loading (5wt.% and 15oC.

  15. Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziqiang Wang; Edward S. Yeung

    2001-08-06

    In recent years, luminescence imaging has been widely employed in neurochemical analysis. It has a number of advantages for the study of neuronal and other biological cells: (1) a particular molecular species or cellular constituent can be selectively visualized in the presence of a large excess of other species in a heterogeneous environment; (2) low concentration detection limits can be achieved because of the inherent sensitivity associated with fluorescence and chemiluminescence; (3) low excitation intensities can be used so that long-term observation can be realized while the viability of the specimen is preserved; and (4) excellent spatial resolution can be obtained with the light microscope so subcellular compartments can be identified. With good sensitivity, temporal and spatial resolution, the flux of ions and molecules and the distribution and dynamics of intracellular species can be measured in real time with specific luminescence probes, substrates, or with native fluorescence. A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with CCD imaging is down to {micro}M levels of glutamate with reasonable response time. They also found that chemiluminescence associated with the ATP-dependent reaction between luciferase and luciferin can be used to image ATP at levels down to 10 nM in the millisecond time scale. Similar imaging experiments should be feasible in a broad spectrum of biological systems.

  16. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles.

    Science.gov (United States)

    Wang, Guangjie; Jin, Feng; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Li, Mengxia; Yuan, Ruo; Wang, Dong

    2012-03-01

    A new metal-organic nanocomposite with synergistic catalysis function was prepared and developed to construct an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of tumor biomarker CA125. Silver nanoparticles (AgNPs) and nicotinamide adenine dinucleotide hydride (NADH) that can participate and catalyze the ECL reaction of Ru(bpy)(3)(2+) were employed as the metal component and the organic component to synthesize the metal-organic nanocomposite of NADH-AgNPs (NA). The novel ECL immunosensor was assembled via Ru(bpy)(3)(2+)-doped silica nanoparticles (Ru-SiO(2)) modified electrode with the NA as immune labels. First, the chitosan-suspended Ru-SiO(2) nanoparticles were cast on the gold electrode surface to immobilize the ECL probes of Ru(bpy)(3)(2+) and link gold nanoparticles. Then, the primary antibodies were loaded onto the modified electrode via the gold sulfhydryl covalent binding. After immunobinding the analytes of antigen, NA-attached secondary antibodies could be captured as a sandwich type on the electrode. Finally, based on the circularly synergistic catalysis by the silver and NADH for the solid-phase ECL of Ru(bpy)(3)(2+), the proposed immunosensor sensed the concentration of antigen. The synergistic ECL catalysis of metal-organic nanocomposite amplified response signal and pushed the detection limit down to 0.03 U ml(-1), which initiated a new ECL labeling field and has great significance for ECL immunoassays. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films

    International Nuclear Information System (INIS)

    Kharade, Rohini R.; Mali, Sawanta S.; Patil, Satish P.; Patil, Kashinath R.; Gang, Myong G.; Patil, Pramod S.; Kim, Jin H.; Bhosale, Popatrao N.

    2013-01-01

    Highlights: • Electrochromic WO 3 /Ag nanocomposites prepared by hybrid physico-chemical route. • XRD and XPS results confirm formation of Ag 8 W 4 O 16 phase. • WO 3 /Ag thin films showed good optical transmittance change and coloration efficiency. • SPR enhanced coloration and bleaching mechanism is well explained for electrochromism. • Color stimuli are quantified using CIE chromaticity principles. -- Abstract: WO 3 /Ag composite thin films were prepared by microwave assisted sol–gel synthesis (MW-SGS) of WO 3 followed by vacuum evaporation of Ag nanoparticles and their enhanced electrochromic coloration was investigated. The composition and morphology of WO 3 thin films with different thickness of Ag layer obtained by vacuum evaporation were investigated. Distinct plasmon absorption bands of Ag nanoparticle thin films were obtained. The optical band gap energy of WO 3 /Ag films decreased with increasing the Ag layer thickness. The surface of these films has been examined using X-ray photoelectron spectroscopy (XPS) to gain information about the chemical states of species present at surfaces. Experimental results indicated that the conductivity of the films increased after surface modification by Ag layer. To investigate the origin of enhanced electrochromic absorption in optical properties, working electrode consisting of WO 3 /Ag thin film was used and observed the optical properties during electrochemical reaction. It was found that composite electrode shows enhancement in electrochromic properties in terms of optical modulation (ΔOD) and coloration efficiency (η)

  18. Deterministic nanoparticle assemblies: from substrate to solution

    International Nuclear Information System (INIS)

    Barcelo, Steven J; Gibson, Gary A; Yamakawa, Mineo; Li, Zhiyong; Kim, Ansoon; Norris, Kate J

    2014-01-01

    The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process. (paper)

  19. Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf

    Science.gov (United States)

    Pant, Gaurav; Nayak, Nitesh; Gyana Prasuna, R.

    2013-10-01

    The present investigation describes simple and effective method for synthesis of silver nanoparticles via green route. Solanum trilobatum Linn extract were prepared by both conventional and homogenization method. We optimized the production of silver nanoparticles under sunlight, microwave and room temperature. The best results were obtained with sunlight irradiation, exhibiting 15-20 nm silver nanoparticles having cubic and hexagonal shape. Biosynthesized nanoparticles were highly toxic to various bacterial strains tested. In this study we report antibacterial activity against various Gram negative ( Klebsiella pneumoniae, Vibrio cholerae and Salmonella typhi) and Gram positive ( Staphylococcus aureus, Bacillus cereus and Micrococcus luteus) bacterial strains. Screening was also performed for any antifungal properties of the nanoparticles against human pathogenic fungal strains ( Candida albicans and Candida parapsilosis). We also demonstrated that these nanoparticles when mixed with shampoo enhance the anti-dandruff effect against dandruff causing fungal pathogens ( Pityrosporum ovale and Pityrosporum folliculitis). The present study showed a simple, rapid and economical route to synthesize silver nanoparticles and their applications hence has a great potential in biomedical field.

  20. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  1. Heterogeneous nanocomposites composed of silver sulfide and hollow structured Pd nanoparticles with enhanced catalytic activity toward formic acid oxidation

    International Nuclear Information System (INIS)

    Chen, Dong; Cui, Penglei; Liu, Hui; Yang, Jun

    2015-01-01

    Highlights: • Core–shell Ag-Ag/Pd nanoparticles with an Ag core and an Ag/Pd alloy shell are prepared via galvanic replacement reaction. • Heterogeneous Ag2S-hollow Pd nanocomposites are fabricated by converting the Ag component into Ag2S using element sulfur. • The heterogeneous Ag2S-hollow Pd nanocomposites display enhanced activity for formic acid oxidation due to electronic coupling effect. • The methodology may find applications to produce the semiconductor-metal nanocomposites with interesting architectures and tailored functionalities. - Abstract: Nanocomposites consisting semiconductor and noble metal domains are of great interest for their synergistic effect-based enhanced properties in a given application. Herein, we demonstrate a facile approach for the synthesis of heterogeneous nanocomposites consisting of silver sulfide (Ag 2 S) and hollow structured Pd nanoparticles (hPd). It begins with the preparation of core–shell nanoparticles with an Ag core and an alloy Ag/Pd shell in an organic solvent via galvanic replacement reaction (GRR) between Ag seed particles pre-synthesized and Pd 2+ ion precursors. The Ag component is then removed from the core and shell regions of core–shell Ag-Ag/Pd nanoparticles, and converted into Ag 2 S by elemental sulfur (S). The Ag 2 S forms the semiconductor domain in the nanocomposite and shares the solid-state interface with the resultant hollow structured Pd nanoparticle. As demonstrated, the Ag 2 S-hPd nanocomposites exhibit superior catalytic activity and durability for formic acid oxidation, compared to the pure Pd nanoparticles prepared by oleylamine reduction of Pd ion precursors and commercial Pd/C catalyst, due to the electronic coupling between semiconductor and noble metal domains in the nanocomposites. In addition, the structural transformation from core–shell to heterogeneous nanocomposites may provide new opportunities to design and fabricate hybrid nanostructures with interesting

  2. Plasmon-enhanced absorption in a metal nanoparticles and photosynthetic molecules hybrid system

    Science.gov (United States)

    Fan, Zhiyuan; Govorov, Alexander

    2010-03-01

    Photosystem I from cyanobacteria is one of nature's most efficient light harvesting complexes, converting light energy into electronic energy with a quantum yield of 100% and an energy yield about 58%. It is very attractive to the nanotechnology community because of its nanoscale dimensions and excellent optoelectronic properties. This protein has the potential to be utilized in devices such as solar cells, electric switches, photo-detectors, etc. However, there is one limiting factor for potential applications of a single monolayer of these photosynthetic proteins. One monolayer absorbs less than 1% of sunlight's energy, despite their excellent optoelectronic properties. Recently, experiments [1] have been conducted to enhance light absorption with the assistance of metal nanoparticles as artificial antenna for the photosystem I. Here, we present a theoretical description of the strong plasmon-assisted interactions between the metal nanoparticles and the optical dipoles of the reaction centers observed in the experiments. The resonance and off-resonance plasmon effects enhance the electromagnetic fields around the photosystem-I molecules and, in this way, lead to enhanced absorption. [4pt] [1] I. Carmeli, I. Lieberman, L. Kraversky, Zhiyuan Fan, A. O. Govorov, G. Markovich, and S. Richter, submitted.

  3. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  4. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    Science.gov (United States)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  5. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis

    Science.gov (United States)

    Yu, Jianyu; Zhou, Lin; Wang, Yang; Tan, Yingling; Wang, Zhenlin; Zhu, Shining; Zhu, Jia

    2018-03-01

    The mechanisms of plasmonic nanostructures assisted photocatalytic processes are fundamental and of great importance and interest for decades. Therefore, we adopt a unique porous structure of three-dimensional TiO2/Au nanoparticles to experimentally explore the potential mechanisms of rhodamine B (RhB) based photocatalytic degradation. The highly efficient absorbance measured across the entire ultraviolet and infrared regions shows the broadband light harvesting capability and photocatalytic activity, in which the direct bandgap transition, plasmon sensitization as well as the plasmonic photothermal effect can be beneficial for the photocatalytic reaction. The RhB photocatalytic degradation experiments were conducted systematically under solar irradiance with finely chosen optical filters. Apart from the ultraviolet-driven degradation of TiO2, the plasmon assisted photocatalytic rate of our TiO2/Au structure can be enhanced by >30% as compared to the referenced TiO2 structure (equivalent to 2-4 times promotion with respect to the same quantity of the active material TiO2). Detailed wavelength-dependent analyses have revealed that the visible-driven degradation rate can be enhanced by 10 times because of the plasmon sensitization effect; while infrared-driven degradation rate is enhanced by 4 times as well for the plasmonic photothermal effect, respectively. Our experimental results may provide a clear understanding for the wavelength-dependent plasmon enhanced photocatalytic processes.

  6. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Science.gov (United States)

    Markina, Natalia E.; Markin, Alexey V.; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu.

    2016-12-01

    Multifunctional silica gel with embedded silver nanoparticles (SiO2-AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO2-AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO2 bulk. Synthesis of AgNP directly to the SiO2 matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO3 concentration used during the SiO2-AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO2-AgNP with optimal composition was around 105. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  7. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Natalia E.; Markin, Alexey V., E-mail: av-markin@mail.ru; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu. [Saratov State University (Russian Federation)

    2016-12-15

    Multifunctional silica gel with embedded silver nanoparticles (SiO{sub 2}–AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO{sub 2}–AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO{sub 2} bulk. Synthesis of AgNP directly to the SiO{sub 2} matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO{sub 3} concentration used during the SiO{sub 2}–AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO{sub 2}–AgNP with optimal composition was around 10{sup 5}. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  8. NIR-emitting molecular-based nanoparticles as new two-photon absorbing nanotools for single particle tracking

    Science.gov (United States)

    Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.

    2015-07-01

    In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation

  9. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films

    Science.gov (United States)

    Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-05-01

    A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 +/- 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous

  10. Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q., E-mail: liuweiqiang77@hotmail.co [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Sun, H. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yi, X.F. [Anhui Earth-panda Advance Magnetic Material Co., Ltd., Anhui 231500 (China); Liu, X.C.; Zhang, D.T. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yue, M., E-mail: yueming@bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Zhang, J.X. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2010-07-02

    Nd-Fe-B permanent magnets with a small amount of Dysprosium (Dy) nanoparticles doping were prepared by conventional sintered method, and the microstructure and magnetic properties of the magnets were studied. Investigation shows that the coercivity rises gradually, while the remanence decreases simultaneously with increased Dy doping amount. As a result, the magnet with 1.5 wt.% Dy exhibits optimal magnetic properties. Further investigation presumed that Dy is enriched as (Nd, Dy){sub 2}Fe{sub 14}B phase in the surface region of the Nd{sub 2}Fe{sub 14}B matrix grains indicated by the enhancement of the magneto-crystalline anisotropy field of the Nd{sub 2}Fe{sub 14}B phase. As a result, the magnet doped with a small amount of Dy nanoparticles possesses remarkably enhanced coercivity without sacrificing its magnetization noticeably.

  11. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    Ruixiang Li

    2018-01-01

    Full Text Available Taking inspiration from nature, the biomimetic concept has been integrated into drug delivery systems in cancer therapy. Disguised with cell membranes, the nanoparticles can acquire various functions of natural cells. The cell membrane-coating technology has pushed the limits of common nano-systems (fast elimination in circulation to more effectively navigate within the body. Moreover, because of the various functional molecules on the surface, cell membrane-based nanoparticles (CMBNPs are capable of interacting with the complex biological microenvironment of the tumor. Various sources of cell membranes have been explored to camouflage CMBNPs and different tumor-targeting strategies have been developed to enhance the anti-tumor drug delivery therapy. In this review article we highlight the most recent advances in CMBNP-based cancer targeting systems and address the challenges and opportunities in this field.

  12. Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks

    KAUST Repository

    Cao, Anping

    2018-03-09

    Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse applications, including as transistors, solar cells, lithium ion batteries and sensors. Here we demonstrate the functionalization of SiNW surfaces with POFs and explore its effect on the electrical sensing properties of SiNW-based devices. The surface modification by POFs was easily achieved by polycondensation on amine-modified SiNWs. Platinum nanoparticles were formed in these POFs by impregnation with chloroplatinic acid followed by chemical reduction. The final hybrid system showed highly enhanced sensitivity for methanol vapour detection. We envisage that the integration of SiNWs with POF selector layers, loaded with different metal nanoparticles will open up new avenues, not only in chemical and biosensing, but also in separations and catalysis.

  13. Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants.

    Science.gov (United States)

    Tong, Yujia; Wu, Yan; Zhao, Caiyan; Xu, Yong; Lu, Jianqing; Xiang, Sheng; Zong, Fulin; Wu, Xuemin

    2017-08-30

    Pesticide formulation is highly desirable for effective utilization of pesticide and environmental pollution reduction. Studies of pesticide delivery system such as microcapsules are developing prosperously. In this work, we chose polymeric nanoparticles as a pesticide delivery system and metolachlor was used as a hydrophobic pesticide model to study water-based mPEG-PLGA nanoparticle formulation. Preparation, characterization results showed that the resulting nanoparticles enhanced "water solubility" of hydrophobic metolachlor and contained no organic solvent or surfactant, which represent one of the most important sources of pesticide pollution. After the release study, absorption of Cy5-labeled nanoparticles into rice roots suggested a possible transmitting pathway of this metolachlor formulation and increased utilization of metolachlor. Furthermore, the bioassay test demonstrated that this nanoparticle showed higher effect than non-nano forms under relatively low concentrations on Oryza sativa, Digitaria sanguinalis. In addition, a simple cytotoxicity test involving metolachlor and metolachlor-loaded nanoparticles was performed, indicating toxicity reduction of the latter to the preosteoblast cell line. All of these results showed that those polymeric nanoparticles could serve as a pesticide carrier with lower environmental impact, comparable effect, and effective delivery.

  14. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications

    Science.gov (United States)

    Agi, Augustine; Junin, Radzuan; Gbadamosi, Afeez

    2018-06-01

    Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.

  15. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front

    DEFF Research Database (Denmark)

    Uhrenfeldt, C.; Villesen, T. F.; Tetu, A.

    2015-01-01

    Plasmonic resonances in metal nanoparticles are considered candidates for improved thin film Si photovoltaics. In periodic arrays the influence of collective modes can enhance the resonant properties of such arrays. We have investigated the use of periodic arrays of Al nanoparticles placed...... on the front of a thin film Si test solar cell. It is demonstrated that the resonances from the Al nanoparticle array cause a broadband photocurrent enhancement ranging from the ultraviolet to the infrared with respect to a reference cell. From the experimental results as well as from numerical simulations...

  16. In-situ formation of nanoparticles within a silicon-based matrix

    Science.gov (United States)

    Thoma, Steven G [Albuquerque, NM; Wilcoxon, Jess P [Albuquerque, NM; Abrams, Billie L [Albuquerque, NM

    2008-06-10

    A method for encapsulating nanoparticles with an encapsulating matrix that minimizes aggregation and maintains favorable properties of the nanoparticles. The matrix comprises silicon-based network-forming compounds such as ormosils and polysiloxanes. The nanoparticles are synthesized from precursors directly within the silicon-based matrix.

  17. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    Science.gov (United States)

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Synthesis, Characterization, and In Vitro Drug Delivery Capabilities of (Zn, Al-Based Layered Double Hydroxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vinay J. Nagaraj

    2015-01-01

    Full Text Available There is an urgent need for the development of alternative strategies for effective drug delivery to improve the outcome of patients suffering from deadly diseases such as cancer. Nanoparticles, in particular layered double hydroxide (LDH nanoparticles, have great potential as nanocarriers of chemotherapeutic molecules. In this study, we synthesized (Zn, Al-LDH nanoparticles and report their enhanced pH-dependent stability in comparison to the commonly used (Mg, Al-LDH nanoparticles. Fluorescein isothiocyanate (FITC and valproate (VP were intercalated into (Zn, Al-LDH nanoparticles to study cellular uptake, biocompatibility, and drug delivery capabilities using cultured pancreatic adenocarcinoma BxPC3 cells. Fluorescence measurements indicated that FITC-intercalated LDH nanoparticles showed a greater degree of energy-dependent uptake rather than passive uptake by BxPC3 cells, especially at high concentrations of nanoparticles. Tetrazolium-based colorimetric assays indicated that BxPC3 cells treated with VP-intercalated LDH nanoparticles showed a significant reduction in cell viability along with about 30-fold reduction in IC50 compared to the drug alone. In contrast, the non-drug-intercalated LDH nanoparticles did not affect the cell viability indicating very low innate cytotoxicity. Our research indicates that the superior properties of (Zn, Al-LDH nanoparticles make them ideal candidates for further development as in vivo chemotherapy drug delivery agents.

  19. Optical properties of ThO2–based nanoparticles

    International Nuclear Information System (INIS)

    Pereira, F.J.; Castro, M.A.; Vázquez, M.D.; Debán, L.; Aller, A.J.

    2017-01-01

    Thoria nanomaterials show great interest in different fields other than nuclear technology. In this work, optical characteristics of four types of thoria-based nanoparticles were evaluated. The ultraviolet-visible (UV–vis) absorption spectrum of the pure (undoped/uncapped) thoria nanoparticles was characterised by an intense peak at 222 nm, while the doped/capped thoria nanoparticles shown maximum absorption peaks at both 195/200 nm and 233 nm. Contrarily to the particle size, the band gap energy of the thoria nanoparticles decreased with the doping/capping process using arsenic (As (III) )/cysteine (Cyst). The room-temperature photoluminescence excitation spectra were featured by two bands located at 268 nm for both pure and As-doped thoria nanoparticles and at 352 nm for all thoria-based nanoparticles studied, recording the photoluminescence emission at 500 nm. The characteristic wavelengths of the photoluminescence emission spectra were at 325 and 385 nm for the pure and As-doped thoria nanoparticles, while only the band at 385/415 nm was noted for the Cyst-capped thoria nanoparticles, with slightly red shift depending on the excitation wavelength.

  20. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  1. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer

    Science.gov (United States)

    He, Ju; Wang, Shuai; Chen, Jingwen; Wu, Feng; Dai, Jiangnan; Long, Hanling; Zhang, Yi; Zhang, Wei; Feng, Zhe Chuan; Zhang, Jun; Du, Shida; Ye, Lei; Chen, Changqing

    2018-05-01

    In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.

  2. Plasmon-enhanced luminescence of Sm complex using silver nanoparticles in Polyvinyl Alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gagandeep; Verma, R.K.; Rai, D.K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India); Rai, S.B., E-mail: sbrai49@yahoo.co.in [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India)

    2012-07-15

    Silver (Ag) nanoparticles (NPs) were prepared by laser ablation in water with an aim to enhance the luminescence of rare earth coordinated complex in polymer host. A fixed concentration of the complex containing Samarium (Sm), Salicylic acid (Sal) and 1, 10-phenanthroline (Phen) were combined with different concentrations of silver NPs in PolyVinyl Alcohol at room temperature. Absorption spectrum and XRD patterns of the sample show that the Sm(Sal){sub 3}Phen complex is accompanied by Ag NPs. The luminescence from the complex was recorded in the presence and absence of Ag NPs using two different excitation wavelengths viz. 400 and 355 nm. Of these, 400 nm radiation falls in the surface plasmon resonance of Ag NPs. It was found that the Ag NPs led to a significant enhancement in luminescence of the complex. Surprisingly, a high concentration of Ag NPs tends to quench the luminescence. - Highlights: Black-Right-Pointing-Pointer Sm complex with Ag nanoparticles in PVA was prepared at room temperature. Black-Right-Pointing-Pointer UV-vis absorption and XRD confirms the presence of Sm complex and Ag NPs. Black-Right-Pointing-Pointer Enhancement in luminescence of complex was observed with Ag NPs. Black-Right-Pointing-Pointer Coupling between radiative transitions of Sm and SPR of NPs enhances the emission. Black-Right-Pointing-Pointer The higher concentration of Ag NPs quenches the luminescence of the complex.

  3. Pore fabrication in various silica-based nanoparticles by controlled etching

    KAUST Repository

    Zhao, Lan

    2010-07-20

    A novel method based on controlled etching was developed to fabricate nanopores on preformed silica nanoparticles (<100 nm in diameter). The obtained monodisperse nanoporous particles could form highly stable homogeneous colloidal solution. Fluorescent silica nanoparticles and magnetic silica-coated γ-Fe 2O 3 nanoparticles were investigated as examples to illustrate that this strategy could be generally applied to various silica-based functional nanoparticles. The results indicated that this method was effective for generating pores on these nanoparticles without altering their original functionalities. The obtained multifunctional nanoparticles would be useful for many biological and biomedical applications. These porous nanoparticles could also serve as building blocks to fabricate three-dimensionally periodic structures that have the potential to be used as photonic crystals. © 2010 American Chemical Society.

  4. Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies

    Science.gov (United States)

    Philip, Anish; Ankudze, Bright; Pakkanen, Tuula T.

    2018-06-01

    Large-sized gold nanoparticles (AuNPs) were synthesized with a new polyethylenimine - assisted seed - mediated method for surface-enhanced Raman scattering (SERS) studies. The size and polydispersity of gold nanoparticles are controlled in the growth step with the amounts of polyethylenimine (PEI) and seeds. Influence of three silicon oxide supports having different surface morphologies, namely halloysite (Hal) nanotubes, glass plates and inverse opal films of SiO2, on the performance of gold nanoparticles in Raman scattering of a 4-aminothiophenol (4-ATP) analyte was investigated. Electrostatic interaction between positively charged polyethylenimine-capped AuNPs and negatively charged surfaces of silicon oxide supports was utilized in fabrication of the SERS substrates using deposition and infiltration methods. The Au-photonic crystal of the three SERS substrate groups is the most active one as it showed the highest analytical enhancement factor (AEF) and the lowest detection limit of 1x10-8 M for 4-ATP. Coupling of the optical properties of photonic crystals with the plasmonic properties of AuNPs provided Au-photonic crystals with the high SERS activity. The AuNPs clusters formed both in the photonic crystal and on the glass plate are capable of forming more hot spots as compared to sparsely distributed AuNPs on Hal nanotubes and thereby increasing the SERS enhancement.

  5. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance.

    Science.gov (United States)

    Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D

    2017-08-15

    Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

  6. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  7. Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, Neda; Rahimi, Masoud, E-mail: masoudrahimi@yahoo.com

    2017-01-15

    Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe{sub 3}O{sub 4} nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (K{sub L}a) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of K{sub L}a and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002–0.01 (w/v) on K{sub L}a and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of K{sub L}a (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008–0.01 (w/v). - Highlights: • Magnetic nanoparticles used for mixing of two immiscible liquids in a micromixer. • Extraction efficiency of rotating magnetic field (RMF) is compared with static one. • In RMF, the effect of the angular speed on KLa and E enhancement is reported. • In RMF, at a selected magnet distance effect of nanoparticle concentration is reported.

  8. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO{sub 2} based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaohua, E-mail: mksxh@163.com; Zhou, Xin; Xu, Yalong; Sun, Panpan; Huang, Niu; Sun, Yihua

    2015-05-15

    Graphical abstract: - Highlights: • Mixed P25 nanoparticles and large rutile particles were employed to form a top scattering layer. • The top scattering layer exhibits superior light scattering effect. • The bottom nanocrystalline TiO{sub 2} layer can make good use of the back-scattered light. • Bilayer TiO{sub 2} photoanode shows faster interfacial electron transfer and slower charge recombination process. • Bilayer photoanode enhances the DSSC efficiency by a factor of 25%. - Abstract: Herein, we report a bilayer TiO{sub 2} photoanode composed of nanocrystalline TiO{sub 2} (NCT) bottom layer and mixed P25 nanoparticles and large rutile particles (PR) top scattering layer. The present structure performs well in solar light harvesting which is mainly attributed to the fact that the top scattering layer exhibits superior light scattering effect and meanwhile the NCT bottom layer with large dye-loading capacity can make better use of the back-scattered light. Moreover, electrochemical impedance spectroscopy and open circuit voltage decay measurements demonstrate that DSSC based on bilayer photoanode shows faster interfacial electron transfer and slower charge recombination process than that based on NCT monolayer photoanode. These advantages render the DSSCs based on NCT-PR bilayer photoanode exhibiting superior performance under AM1.5G simulated solar irradiation. As an example, by tuning mass ratio between P25 nanoparticles and large rutile particles in the top scattering layer, the DSSC based on NCT-PR bilayer photoanode exhibits an optimum solar energy conversion efficiency of 9.0%, which is about 1.25 times higher than that of monolayer NCT device (7.2%) with the same film thickness.

  9. Commentary on “A Microfluidic Platform to Design Crosslinked Hyaluronic Acid Nanoparticles (cHANPs for Enhanced MRI”

    Directory of Open Access Journals (Sweden)

    Maria Russo PhD

    2017-05-01

    Full Text Available Strategies to enhance the relaxometric properties of gadolinium (Gd-based contrast agents (CAs for magnetic resonance imaging (MRI, without the chemical modification of chelates, have recently had a strong impact on the diagnostic field. We have taken advantage of the interaction between Gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA and the hydrogel structure of hyaluronic acid to design cross-linked hyaluronic acid nanoparticles down to 35 nm for use in MRI applications. The proposed bioformulations enable the control of the relaxometric properties of CAs, thus boosting the relaxation rate of T1. Our results led us to identify this approach as an adjustable scenario to design intravascularly injectable hydrogel nanoparticles entrapping Gd-DTPA. This approach overcomes the general drawbacks of clinically approved CAs having poor relaxivity and toxic effects.

  10. Thermal treatment to enhance saturation magnetization of superparamagnetic Ni nanoparticles while maintaining low coercive force

    Science.gov (United States)

    Ishizaki, Toshitaka; Yatsugi, Kenichi; Akedo, Kunio

    2018-05-01

    Superparamagnetic nanoparticles capped by insulators have the potential to decrease eddy current and hysteresis losses. However, the saturation magnetization ( M s) decreases significantly with decreasing the particle size. In this study, superparamagnetic Ni nanoparticles having the mean size of 11.6 ± 1.8 nm were synthesized from the reduction of Ni(II) acetylacetonate in oleylamine with the addition of trioctylphosphine, indicating the coercive force ( H c) less than 1 Oe. Thermal treatments of the Ni nanoparticles were investigated as a method to enhance the M s. The results indicated that the M s was enhanced by an increase of the Ni mass ratio with increasing thermal treatment temperature. However, the decomposition behavior of the capping layers indicated that their alkyl chains actively decomposed at temperatures above 523 K to form Ni3P via reaction between Ni and P, resulting in particle growth with a significant increase in the H c. Therefore, the optimal temperature was determined to be 473 K, which increased the Ni ratio without formation of Ni3P while maintaining particle sizes with superparamagnetic properties. Further, the M s could be improved by 22% (relative to the as-synthesized Ni nanoparticles) after thermal treatment at 473 K while maintaining the H c to be less than 1 Oe.

  11. Protamine-based nanoparticles as new antigen delivery systems.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide

    DEFF Research Database (Denmark)

    Dolgov, Leonid; Fesenko, Olena; Kavelin, Vladyslav

    2017-01-01

    Triangular gold microprisms and spherical silica nanoparticles with attached gold nano-islands were examined as an active nanostructures for the surface enhanced Raman and infrared spectroscopy. These particles were probed for the detection of pyridostigmine bromide as a safe analog of military c...

  13. Photocatalytic activity enhancement by electron irradiation of fullerene derivative-TiO2 nanoparticles under visible light illumination

    International Nuclear Information System (INIS)

    Cho, Sung Oh; Yoo, Seung Hwa; Lee, Dong Hoon

    2011-01-01

    Photocatalytic decomposition of aqueous organic pollutant have attracted many interest due to its simple, low cost, and clean procedure. By only using the sun light and photocatalyst, especially TiO 2 nanoparticles based systems have been extensively studied and commercialized for real life application. However, TiO 2 has a critical disadvantage, which can only absorb the ultra-violet region of the solar spectrum, due to the large band-gap of 3.2 eV. Extensive studies have been preformed to expand the light absorption of TiO 2 to the visible light region of the solar spectrum, by doping metal or non-metal elements on TiO 2 or attaching small band-gap semiconductors on TiO 2 . In this study, a fullerene derivative 1-(3- carboxypropyl)-1-phenyl[6,6]C 61 (PCBA) was attached on the surface of TiO 2 nanoparticles, and its photocatalytic activity was evaluated by decomposition of methyl orange under visible light. Furthermore, enhancement in the photocatalytic activity of these nanoparticles by electron irradiation is discussed

  14. SnO_2 Nanoparticles Anchored on 2D V_2O_5 Nanosheets with Enhanced Lithium-Storage Performances

    International Nuclear Information System (INIS)

    Yang, Gongzheng; Song, Huawei; Wu, Mingmei; Wang, Chengxin

    2016-01-01

    Developing two dimensional (2D) graphene-based nanomaterials with surface-to-surface architectures has been an important strategy for achieving high-performance lithium ion electrodes. However, almost all of them involve multistep procedures and expensive precursors. This paper reports a novel 2D nanocomposites composed of ultrafine SnO_2 nanoparticles anchored on V_2O_5 nanosheets via a one-pot hydrothermal method, which exhibit high reversible capacities and rate stabilities. The enhanced electrochemical performances compared to pure SnO_2 nanoparticles have been attributed to the effective prevention of self-agglomerations of the pulverized nanograins upon cycling. We speculate that the 2D V_2O_5 nanosheets with layered structures maybe a good substitute for the graphene nanosheets.

  15. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II)

    Science.gov (United States)

    Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu

    2018-01-01

    The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.

  16. Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability

    Directory of Open Access Journals (Sweden)

    Kuznetsov Andrey

    2011-01-01

    Full Text Available Abstract The aim of this article is to propose a novel type of a nanofluid that contains both nanoparticles and motile (oxytactic microorganisms. The benefits of adding motile microorganisms to the suspension include enhanced mass transfer, microscale mixing, and anticipated improved stability of the nanofluid. In order to understand the behavior of such a suspension at the fundamental level, this article investigates its stability when it occupies a shallow horizontal layer. The oscillatory mode of nanofluid bioconvection may be induced by the interaction of three competing agencies: oxytactic microorganisms, heating or cooling from the bottom, and top or bottom-heavy nanoparticle distribution. The model includes equations expressing conservation of total mass, momentum, thermal energy, nanoparticles, microorganisms, and oxygen. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model. An approximate analytical solution of the eigenvalue problem is obtained using the Galerkin method. The obtained solution provides important physical insights into the behavior of this system; it also explains when the oscillatory mode of instability is possible in such system.

  17. Environmental transformations and ecological effects of iron-based nanoparticles.

    Science.gov (United States)

    Lei, Cheng; Sun, Yuqing; Tsang, Daniel C W; Lin, Daohui

    2018-01-01

    The increasing application of iron-based nanoparticles (NPs), especially high concentrations of zero-valent iron nanoparticles (nZVI), has raised concerns regarding their environmental behavior and potential ecological effects. In the environment, iron-based NPs undergo physical, chemical, and/or biological transformations as influenced by environmental factors such as pH, ions, dissolved oxygen, natural organic matter (NOM), and biotas. This review presents recent research advances on environmental transformations of iron-based NPs, and articulates their relationships with the observed toxicities. The type and extent of physical, chemical, and biological transformations, including aggregation, oxidation, and bio-reduction, depend on the properties of NPs and the receiving environment. Toxicities of iron-based NPs to bacteria, algae, fish, and plants are increasingly observed, which are evaluated with a particular focus on the underlying mechanisms. The toxicity of iron-based NPs is a function of their properties, tolerance of test organisms, and environmental conditions. Oxidative stress induced by reactive oxygen species is considered as the primary toxic mechanism of iron-based NPs. Factors influencing the toxicity of iron-based NPs are addressed and environmental transformations play a significant role, for example, surface oxidation or coating by NOM generally lowers the toxicity of nZVI. Research gaps and future directions are suggested with an aim to boost concerted research efforts on environmental transformations and toxicity of iron-based NPs, e.g., toxicity studies of transformed NPs in field, expansion of toxicity endpoints, and roles of laden contaminants and surface coating. This review will enhance our understanding of potential risks of iron-based NPs and proper uses of environmentally benign NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Rheological and filtration characteristics of drilling fluids enhanced by nanoparticles with selected additives: an experimental study

    Directory of Open Access Journals (Sweden)

    Nima Mohamadian

    2018-05-01

    Full Text Available The suspension properties of drilling fluids containing pure and polymer-treated (partially-hydrolyzed polyacrylamide (PHPA or Xanthan gum clay nanoparticles are compared withthose of a conventional water-and-bentonite-based drilling fluid, used as the referencesample. Additionally, the mud weight, plastic viscosity, apparent viscosity, yield point, primary and secondary gelatinization properties, pH, and filtration properties of the various drilling fluids studied are also measured and compared. The performance of each drilling fluid type is evaluated with respect in terms of its ability to reduce mud cake thickness and fluid loss thereby inhibiting differential-pipe-sticking. For that scenario, the mud-cake thickness is varied, and the filtration properties of the drilling fluids are measured as an indicator of potential well-diameter reduction, caused by mud cake, adjacent to permeable formations. The novel results show that nanoparticles do significantly enhance the rheological and filtration characteristics of drilling fluids. A pure-clay-nanoparticle suspension, without any additives, reduced fluid loss to about 42% and reduced mud cake thickness to 30% compared to the reference sample. The xanthan-gum-treated-clay-nanoparticle drilling fluid showed good fluid loss control and reduced fluid loss by 61% compared to the reference sample. The presence of nanofluids also leads to reduced mud-cake thicknesses, directly mitigating the risks of differential pipe sticking.

  19. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    Science.gov (United States)

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  20. Growth graphene on silver-copper nanoparticles by chemical vapor deposition for high-performance surface-enhanced Raman scattering

    Science.gov (United States)

    Zhang, Xiumei; Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Gao, Shoubao; Liu, Hanping; Qiu, Hengwei; Li, Zhen; Liu, Huilan; Li, Zhenhua; Li, Hongsheng

    2015-10-01

    We present a graphene/silver-copper nanoparticle hybrid system (G/SCNPs) to be used as a high-performance surface-enhanced Raman scattering (SERS) substrate. The silver-copper nanoparticles wrapped by a monolayer graphene layer are directly synthesized on SiO2/Si substrate by chemical vapor deposition in a mixture of methane and hydrogen. The G/SCNPs shows excellent SERS enhancement activity and high reproducibility. The minimum detected concentration of R6G is as low as 10-10 M and the calibration curve shows a good linear response from 10-6 to 10-10 M. The date fluctuations from 20 positions of one SERS substrate are less than 8% and from 20 different substrates are less than 10%. The high reproducibility of the enhanced Raman signals could be due to the presence of an ultrathin graphene layer and uniform morphology of silver-copper nanoparticles. The use of G/SCNPs for detection of nucleosides extracted from human urine demonstrates great potential for the practical applications on a variety of detection in medicine and biotechnology field.