WorldWideScience

Sample records for nanoparticle pebble sensors

  1. Pebble-bed pebble motion: Simulation and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2011-11-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to

  2. Pebble-bed pebble motion: Simulation and Applications

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2011-01-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine

  3. Pebble bed pebble motion: Simulation and Application

    Science.gov (United States)

    Cogliati, Joshua J.

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This dissertation presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to

  4. Penn State geoPebble system: Design,Implementation, and Initial Results

    Science.gov (United States)

    Urbina, J. V.; Anandakrishnan, S.; Bilen, S. G.; Fleishman, A.; Burkett, P.

    2014-12-01

    The Penn State geoPebble system is a new network of wirelessly interconnected seismic and GPS sensor nodes with flexible architecture. This network will be used for studies of ice sheets in Antarctica and Greenland, as well as to investigate mountain glaciers. The network will consist of ˜150 geoPebbles that can be deployed in a user-defined spatial geometry. We present our design methodology, which has enabled us to develop these state-of- the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self- contained, wirelessly connected sensor for collecting seismic measurements and position information. Key elements of each node encompasses a three-component seismic recorder, which includes an amplifier, filter, and 24- bit analog-to-digital converter that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available from GPS measurements and a local precision oscillator that is conditioned by the GPS timing pulses. In addition, we record the carrier-phase measurement of the L1 GPS signal in order to determine location at sub-decimeter accuracy (relative to other geoPebbles within a few kilometers radius). Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (including tilt from accelerometers, absolute orientation from magnetometers and temperature). A novel aspect of the geoPebble is a wireless charging system for the internal battery (using inductive coupling techniques). The geoPebbles include all the sensors (geophones, GPS, microphone), communications (WiFi), and power (battery and charging) internally, so the geoPebble system can operate without any cabling connections (though we do provide an external connector so that different geophones can be used). We report initial field-deployment results and

  5. "Smart pebble" design for environmental monitoring applications

    Science.gov (United States)

    Valyrakis, Manousos; Pavlovskis, Edgars

    2014-05-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.

  6. Modeling stationary and moving pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2015-01-01

    Highlights: • The stationary and moving pebbles in a PBR are numerically studied by DEM. • The packing structure of stationary pebbles is simulated by a filling process. • The packing structural properties are obtained and analyzed. • The dynamic behavior of pebbles is predicted and discussed. - Abstract: This paper presents a numerical study of the stationary and moving pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). The packing structure of stationary pebbles is simulated by a filling process that terminates with the settling of the pebbles into a PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of the PBR is opened during the operation of the PBR, the stationary pebbles start to flow downward and are removed at the bottom of the PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment

  7. Modeling stationary and dynamic pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2011-01-01

    This paper presents a numerical study of the stationary and dynamic pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). At first, the packing structure of stationary pebbles is simulated by filling process until the settling of pebbles into PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of PBR is open during the operational maintenance of PBR, the stationary pebbles start to flow downward and are removed at the bottom of PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment. (author)

  8. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  9. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  10. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  11. Contact detection acceleration in pebble flow simulation for pebble bed reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ji, W. [Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer, Polytechnic Institute, 110 8th street, Troy, NY 12180 (United States)

    2013-07-01

    Pebble flow simulation plays an important role in the steady state and transient analysis of thermal-hydraulics and neutronics for Pebble Bed Reactors (PBR). The Discrete Element Method (DEM) and the modified Molecular Dynamics (MD) method are widely used to simulate the pebble motion to obtain the distribution of pebble concentration, velocity, and maximum contact stress. Although DEM and MD present high accuracy in the pebble flow simulation, they are quite computationally expensive due to the large quantity of pebbles to be simulated in a typical PBR and the ubiquitous contacts and collisions between neighboring pebbles that need to be detected frequently in the simulation, which greatly restricted their applicability for large scale PBR designs such as PBMR400. Since the contact detection accounts for more than 60% of the overall CPU time in the pebble flow simulation, the acceleration of the contact detection can greatly enhance the overall efficiency. In the present work, based on the design features of PBRs, two contact detection algorithms, the basic cell search algorithm and the bounding box search algorithm are investigated and applied to pebble contact detection. The influence from the PBR system size, core geometry and the searching cell size on the contact detection efficiency is presented. Our results suggest that for present PBR applications, the bounding box algorithm is less sensitive to the aforementioned effects and has superior performance in pebble contact detection compared with basic cell search algorithm. (authors)

  12. Contact detection acceleration in pebble flow simulation for pebble bed reactor systems

    International Nuclear Information System (INIS)

    Li, Y.; Ji, W.

    2013-01-01

    Pebble flow simulation plays an important role in the steady state and transient analysis of thermal-hydraulics and neutronics for Pebble Bed Reactors (PBR). The Discrete Element Method (DEM) and the modified Molecular Dynamics (MD) method are widely used to simulate the pebble motion to obtain the distribution of pebble concentration, velocity, and maximum contact stress. Although DEM and MD present high accuracy in the pebble flow simulation, they are quite computationally expensive due to the large quantity of pebbles to be simulated in a typical PBR and the ubiquitous contacts and collisions between neighboring pebbles that need to be detected frequently in the simulation, which greatly restricted their applicability for large scale PBR designs such as PBMR400. Since the contact detection accounts for more than 60% of the overall CPU time in the pebble flow simulation, the acceleration of the contact detection can greatly enhance the overall efficiency. In the present work, based on the design features of PBRs, two contact detection algorithms, the basic cell search algorithm and the bounding box search algorithm are investigated and applied to pebble contact detection. The influence from the PBR system size, core geometry and the searching cell size on the contact detection efficiency is presented. Our results suggest that for present PBR applications, the bounding box algorithm is less sensitive to the aforementioned effects and has superior performance in pebble contact detection compared with basic cell search algorithm. (authors)

  13. Effect of friction on pebble flow pattern in pebble bed reactor

    International Nuclear Information System (INIS)

    Li, Yu; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao

    2016-01-01

    Highlights: • A 3D DEM study on particle–wall/particle friction in pebble bed reactor is carried out. • Characteristic values are defined to evaluate features of pebble flow pattern quantitatively. • Particle–wall friction is dominant to determine flow pattern in a specific pebble bed. • Friction effect of hopper part on flow field is more critical than that of cylinder part. • Three cases of 1:1 full scale practical pebble beds are simulated for demonstration. - Abstract: Friction affects pebble flow pattern in pebble-bed high temperature gas-cooled reactor (HTGR) significantly. Through a series of three dimensional DEM (discrete element method) simulations it is shown that reducing friction can be beneficial and create a uniform and consistent flow field required by nuclear engineering. Particle–wall friction poses a decisive impact on flow pattern, and particle–particle friction usually plays a secondary role; relation between particle–wall friction and flow pattern transition is also concluded. Moreover, new criteria are created to describe flow patterns quantitatively according to crucial issues in HTGR like stagnant zone, radial uniformity and flow sequence. Last but not least, it is proved that friction control of hopper part is more important than that of cylinder part in practical pebble beds, so reducing friction between pebbles and hopper surface is the engineering priority.

  14. Characterization of PEBBLEs as a Tool for Real-Time Measurement of Dictyostelium discoideum Endosomal pH

    Directory of Open Access Journals (Sweden)

    Everett Moding

    2009-01-01

    Full Text Available The measurement of intracellular ion concentration change is important for understanding the cellular mechanisms for communication. Recently developed nanosensors, (Photonic Explorers for Biomedical use with Biologically Localized Embedding PEBBLEs, have a number of advantages for measuring ions in cells over established methods using microelectrodes, unbound fluorescent dyes, or NMR. PEBBLE sensors have been shown to work in principle for measuring dynamic ion changes, but few in vivo applications have been demonstrated. We modified the protocol for the fabrication of pH sensing PEBBLEs and developed a protocol for the utilization of these sensors for the monitoring of dynamic pH changes in the endosomes of slime mold Dictyostelium discoideum (D. discoideum. Oregon Green 514-CdSe Quantum Dot PEBBLEs were used to measure real-time pH inside D. discoideum endosomes during cAMP stimulation. Endosomal pH was shown to decrease during cAMP signaling, demonstrating a movement of protons into the endosomes of D. discoideum amoebae.

  15. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongbing, E-mail: liuhb07@mails.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Du, Dong, E-mail: dudong@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Huang, An; Chang, Baohua; Han, Zandong [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); He, Ayada [Shanghai Electric Power Generation Group Shanghai Generator Works, Shanghai 200240 (China)

    2016-08-15

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  16. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Huang, An; Chang, Baohua; Han, Zandong; He, Ayada

    2016-01-01

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  17. Thermo-mechanical screening tests to qualify beryllium pebble beds with non-spherical pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Joerg, E-mail: joerg.reimann@partner.kit.edu [IKET, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fretz, Benjamin [KBHF GmbH, Eggenstein-Leopoldshafen (Germany); Pupeschi, Simone [IAM, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-10-15

    Highlights: • In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. • Spherical pebbles are considered as the candidate material, however, non-spherical particles are of economic interest. • Thermo-mechanical pebble bed data do merely exist for non-spherical beryllium grades. • Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT) were used to measure the stress–strain relations and the thermal conductivity. • A small experimental set-up had to be used and a detailed 3D modelling was of prime importance. • Compared to spherical pebble beds, non-spherical pebble beds are generally softer and mainly the thermal conductivity is lower. - Abstract: In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. Fairly spherical pebbles are considered as a candidate material, however, non-spherical particles are of economic interest because production costs are much lower. Yet, thermo-mechanical pebble bed data do merely exist for these beryllium grades, and the blanket relevant potential of these grades cannot be judged. Screening experiments were performed with three different grades of non-spherical beryllium pebbles, produced by different companies, accompanied by experiments with the reference beryllium pebble beds. Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT), were performed to measure both the stress–strain relation and the thermal conductivity, k, at different stress levels. Because of the limited amounts of the non-spherical materials, the experimental set-ups were small and a detailed 3D modelling was of prime importance in order to prove that the used design was appropriate. Compared to the pebble beds consisting of spherical pebbles, non-spherical pebble beds are generally softer (smaller stress for a given strain), and, mainly as a consequence of this, for a given strain value, the thermal conductivity is lower. This

  18. The Cross-Flow Mixing Analysis of Quasi-Static Pebble Flow in Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Fang Xiang; Liu Zhiyong; Sun Yanfei; Yang Xingtuan; Jiang Shengyao

    2014-01-01

    In the pebble bed reactor, large number of fuel pebbles’ movement law and moving state can affect the reactor’s design, operation and safety directly. Therefore the pebble flow, which is based on the theory of particle streaming, is one of the most important research subjects of the pebble bed reactor engineering. The in-core pebble flow is a very slow particle flow (or called quasi-static particle flow), which is very different from the usual particle motion. How to accurately describe the characteristics of in-core pebble flow is a central issue for this subject. Due to the presence of random flow, the cross-mixing phenomenon will occur inevitably. In the present paper, the mixing phenomenon of pebble flow is generalized on the basis of experiment results. The pebble flow cross-mixing probability serves as the parameter which describes both the regularity and the randomness of pebble flow. The results are provided in the form of diagrammatic presentation. (author)

  19. "Smart pebble" designs for sediment transport monitoring

    Science.gov (United States)

    Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars

    2015-04-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.

  20. Pebble-bed reactor

    International Nuclear Information System (INIS)

    Lohnert, G.; Mueller-Frank, U.; Heil, J.

    1976-01-01

    A pebble-bed nuclear reactor of large power rating comprises a container having a funnel-shaped bottom forming a pebble run-out having a centrally positioned outlet. A bed of downwardly-flowing substantially spherical nuclear fuel pebbles is positioned in the container and forms a reactive nuclear core maintained by feeding unused pebbles to the bed's top surface while used or burned-out pebbles run out and discharge through the outlet. A substantially conical body with its apex pointing upwardly and its periphery spaced from the periphery of the container spreads the bottom of the bed outwardly to provide an annular flow down the funnel-shaped bottom forming the runout, to the discharge outlet. This provides a largely constant downward velocity of the spheres throughout the diameter of the bed throughout a substantial portion of the down travel, so that all spheres reach about the same burned-out condition when they leave the core, after a single pass through the core area

  1. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  2. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor

    International Nuclear Information System (INIS)

    Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • Pebble flow uniformity and stagnation characteristics are very important for HTR-PM. • Arc- and brachistochrone-shaped configuration effects are studied by DEM simulation. • Best bed configurations with uniform flow and no stagnated pebbles are suggested. • Detailed quantified characteristics of bed configuration effects are shown for explanation. - Abstract: Pebble flow uniformity and stagnation characteristics are very important for the design of pebble bed high temperature gas-cooled reactor. Pebble flows inside some specifically designed contraction configurations of pebble bed are studied by discrete element method. The results show the characteristics of stagnation rates, recycling rates, radial distribution of pebble velocity and residence time. It is demonstrated clearly that the bed with a brachistochrone-shaped configuration achieves optimum levels of flow uniformity and recycling rate concentration, and almost no pebbles are stagnated in the bed. Moreover, the optimum choice among the arc-shaped bed configurations is demonstrated too. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity. In addition, a good design of the pebble bed configuration is suggested

  3. Effects of random pebble distribution on the multiplication factor in HTR pebble bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Auwerda, G.J., E-mail: g.j.auwerda@tudelft.n [Department of Physics of Nuclear Reactors at the Delft University of Technology, Mekelweg 15, Delft (Netherlands); Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der [Department of Physics of Nuclear Reactors at the Delft University of Technology, Mekelweg 15, Delft (Netherlands)

    2010-08-15

    In pebble bed reactors the pebbles have a random distribution within the core. The usual approach in modeling the bed is homogenizing the entire bed. To quantify the errors arising in such a model, this article investigates the effect on k{sub eff} of three phenomena in random pebble distributions: non-uniform packing density, neutron streaming in between the pebbles, and variations in Dancoff factor. For a 100 cm high cylinder with reflective top and bottom boundary conditions 25 pebble beds were generated. Of each bed three core models were made: a homogeneous model, a zones model including density fluctuations, and an exact model with all pebbles modeled individually. The same was done for a model of the PROTEUS facility. k{sub eff} calculations were performed with three codes: Monte Carlo, diffusion, and finite element transport. By comparing k{sub eff} of the homogenized and zones model the effect of including density fluctuations in the pebble bed was found to increase k{sub eff} by 71 pcm for the infinite cylinder and 649 pcm for PROTEUS. The large value for PROTEUS is due to the low packing fraction near the top of the pebble bed, causing a significant lower packing fraction for the bulk of the pebble bed in the homogenized model. The effect of neutron streaming was calculated by comparing the zones model with the exact model, and was found to decrease k{sub eff} by 606 pcm for the infinite cylinder, and by 1240 pcm for PROTEUS. This was compared with the effect of using a streaming correction factor on the diffusion coefficient in the zones model, which resulted in {Delta}{sub streaming} values of 340 and 1085 pcm. From this we conclude neutron streaming is an important effect in pebble bed reactors, and is not accurately described by the correction factor on the diffusion coefficient. Changing the Dancoff factor in the outer part of the pebble bed to compensate for the lower probability of neutrons to enter other fuel pebbles caused no significant changes

  4. The effects of temperatures on the pebble flow in a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Sen, R. S.; Cogliati, J. J.; Gougar, H. D.

    2012-01-01

    The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles, especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the

  5. The effects of temperatures on the pebble flow in a pebble bed high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R. S.; Cogliati, J. J.; Gougar, H. D. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2012-07-01

    The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles, especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the

  6. A discrete element method study on the evolution of thermomechanics of a pebble bed experiencing pebble failure

    Energy Technology Data Exchange (ETDEWEB)

    Van Lew, Jon T., E-mail: jtvanlew@fusion.ucla.edu; Ying, Alice; Abdou, Mohamed

    2014-10-15

    The discrete element method (DEM) is used to study the thermal effects of pebble failure in an ensemble of lithium ceramic spheres. Some pebbles crushing in a large system is unavoidable and this study provides correlations between the extent of pebble failure and the reduction in effective thermal conductivity of the bed. In the model, we homogeneously induced failure and applied nuclear heating until dynamic and thermal steady-state. Conduction between pebbles and from pebbles to the boundary is the only mode of heat transfer presently modeled. The effective thermal conductivity was found to decrease rapidly as a function of the percent of failed pebbles in the bed. It was found that the dominant contributor to the reduction was the drop in inter-particle forces as pebbles fail; implying the extent of failure induced may not occur in real pebble beds. The results are meant to assist designers in the fusion energy community who are planning to use packed beds of ceramic pebbles. The evolution away from experimentally measured thermomechanical properties as pebbles fail is necessary for proper operation of fusion reactors.

  7. Measurements of the purge helium pressure drop across pebble beds packed with lithium orthosilicate and glass pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Sena, Ali, E-mail: ali.abou-sena@kit.edu; Arbeiter, Frederik; Boccaccini, Lorenzo V.; Schlindwein, Georg

    2014-10-15

    Highlights: • The objective is to measure the purge helium pressure drop across various HCPB-relevant pebble beds packed with lithium orthosilicate and glass pebbles. • The purge helium pressure drop significantly increases with decreasing the pebbles diameter from one run to another. • At the same superficial velocity, the pressure drop is directly proportional to the helium inlet pressure. • The Ergun's equation can successfully model the purge helium pressure drop for the HCPB-relevant pebble beds. • The measured values of the purge helium pressure drop for the lithium orthosilicate pebble bed will support the design of the purge gas system for the HCPB breeder units. - Abstract: The lithium orthosilicate pebble beds of the Helium Cooled Pebble Bed (HCPB) blanket are purged by helium to transport the produced tritium to the tritium extraction system. The pressure drop of the purge helium has a direct impact on the required pumping power and is a limiting factor for the purge mass flow. Therefore, the objective of this study is to measure the helium pressure drop across various HCPB-relevant pebble beds packed with lithium orthosilicate and glass pebbles. The pebble bed was formed by packing the pebbles into a stainless steel cylinder (ID = 30 mm and L = 120 mm); then it was integrated into a gas loop that has four variable-speed side-channel compressors to regulate the helium mass flow. The static pressure was measured at two locations (100 mm apart) along the pebble bed and at inlet and outlet of the pebble bed. The results demonstrated that: (i) the pressure drop significantly increases with decreasing the pebbles diameter, (ii) for the same superficial velocity, the pressure drop is directly proportional to the inlet pressure, and (iii) predictions of Ergun's equation agree well with the experimental results. The measured pressure drop for the lithium orthosilicate pebble bed will support the design of the purge gas system for the HCPB.

  8. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor

    Science.gov (United States)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  9. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    Haick, Hossam

    2007-01-01

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  10. Operating windows of pebble divertor

    International Nuclear Information System (INIS)

    Matsuhiro, K.; Isobe, M.; Ohtsuka, Y.; Ueda, Y.; Nishikawa, M.

    2001-01-01

    A marked feature of the pebble divertor is an effect by use of functional multi-layer coated pebble, which consists of a surface plasma facing layer, an intermediate tritium permeation barrier layer, and a kernel for heat removal. The dimensions, structure and the irradiation conditions of pebbles are the important issues for the development of the pebble divertor. From the view point of resistance of the induced thermal stress, the pebble is taken as small as possible in size. On the other hand, from the view point of the pumping performance, the suitable irradiation temperature range of the surface layer of pebble was estimated from the experiments and the numerical analysis. The pumping process enhanced by dynamic retention is available to extend the higher allowable irradiation temperature range from 900K to 1100K. As taking the temperature rise limitation due to pumping effect and the fractural strength due to the induced thermal stress limitation, it was found that the diameter of the pebble is possible to be 1-2 mm in about 20 MW/m 2 for the SiC kernel and 2-3 mm in less than 30 MW/m 2 for the graphite kernel. (author)

  11. Pebble Bed Reactor Dust Production Model

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  12. Pebble Bed Reactor Dust Production Model

    International Nuclear Information System (INIS)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-01-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production

  13. Pebble breakage in gravel

    International Nuclear Information System (INIS)

    Tuitz, C.

    2012-01-01

    The spatial clustering of broken pebbles in gravel layers of a Miocene sedimentary succession was investigated. Field observations suggested that the occurrence of broken pebbles could be related with gravel hosted shear deformation bands, which were the result of extensional regional deformation. Several different methods were used in this work to elucidate these observations. These methods include basic field work, measurements of physical pebble and gravel properties and, the application of different numerical modelling schemes. In particular, the finite element method in 2D and the discrete element method in 2D and 3D were used in order to quantify mechanisms of pebble deformation. The main objective of this work was to identify potential mechanisms that control particle breakage in fluvial gravel, which could explain the clustered spatial distribution of broken pebbles. The results of 2D finite element stress analysis indicated that the breakage load of differently located and oriented diametrical loading axes on a pebble varies and, that the weakest loading configuration coincides with the smallest principal axis of the pebble. The 3D discrete element method was applied to study the contact load distribution on pebbles in gravel deposits and the influence of different degrees of particle imbrication and orientation. The results showed that an increase of the number of imbricated particles leads to a significant load transfer from the rim to the centre of the oblate sides of the ellipsoidal particles. The findings of these pebble-scale investigations provided the basis for outcropscale modelling, where simulated gravel layers were subjected to layer-parallel extension. These outcrop-scale models revealed the existence of a particle breakage enhancing mechanism that becomes active during early stages of shear band formation. The interaction of such shear bands with the less deformed host material results in particle stress concentrations and subsequently

  14. A Preliminary Study on Calculation of Inter-Pebble Dancoff Factor in a Pebble Type Core

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Hong Chul; Kim, Soon Young; Noh, Jae Man; Kim, Jong Kyung

    2009-01-01

    The Dancoff factor is an entering probability of the neutron escaped from specific fuel kernel to another one without the interaction with moderators. Currently, Dancoff factors are mainly evaluated from stochastic methods, hence a research on analytical method is considerably insufficient in this field. In order to analytically evaluate Dancoff factor considering double-heterogeneous effect, inter-pebble and intra-pebble Dancoff factors should be calculated, respectively. Intra-pebble Dancoff factor related with the fuel kernels in one pebble was analyzed in past study. For the evaluation of inter-pebble Dancoff factor, fuel region to region Dancoff factor (FRDF) was defined and the method to calculate the FRDF is developed in this study. The result is compared with the calculation result of the MCNP5 code

  15. Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles.

    Science.gov (United States)

    Kim, Hyeohn; Kim, Gwangmook; Kim, Taehoon; Lee, Sangwoo; Kang, Donyoung; Hwang, Min-Soo; Chae, Youngcheol; Kang, Shinill; Lee, Hyungsuk; Park, Hong-Gyu; Shim, Wooyoung

    2018-02-01

    The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high-transparency and high-sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer-sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle-dispersed polymer composite, which has high pressure sensitivity (1.0 kPa -1 ), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle-dispersed capacitor elements into an array readily yields a real-time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor-based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Core homogenization method for pebble bed reactors

    International Nuclear Information System (INIS)

    Kulik, V.; Sanchez, R.

    2005-01-01

    This work presents a core homogenization scheme for treating a stochastic pebble bed loading in pebble bed reactors. The reactor core is decomposed into macro-domains that contain several pebble types characterized by different degrees of burnup. A stochastic description is introduced to account for pebble-to-pebble and pebble-to-helium interactions within a macro-domain as well as for interactions between macro-domains. Performance of the proposed method is tested for the PROTEUS and ASTRA critical reactor facilities. Numerical simulations accomplished with the APOLLO2 transport lattice code show good agreement with the experimental data for the PROTEUS reactor facility and with the TRIPOLI4 Monte Carlo simulations for the ASTRA reactor configuration. The difference between the proposed method and the traditional volume-averaged homogenization technique is negligible while only one type of fuel pebbles present in the system, but it grows rapidly with the level of pebble heterogeneity. (authors)

  17. Sockets and Pebbles

    Science.gov (United States)

    1997-01-01

    This close-up Sojourner rover image of a small rock shows that weathering has etched-out pebbles to produce sockets. In the image, sunlight is coming from the upper left. Sockets (with shadows on top) are visible at the lower left and pebbles (with bright tops and shadowed bases) are seen at the lower center and lower right. Two pebbles (about 0.5 cm across) are visible at the lower center.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  18. Pebble Puzzle Solved

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 In the quest to determine if a pebble was jamming the rock abrasion tool on NASA's Mars Exploration Rover Opportunity, scientists and engineers examined this up-close, approximate true-color image of the tool. The picture was taken by the rover's panoramic camera, using filters centered at 601, 535, and 482 nanometers, at 12:47 local solar time on sol 200 (August 16, 2004). Colored spots have been drawn on this image corresponding to regions where panoramic camera reflectance spectra were acquired (see chart in Figure 1). Those regions are: the grinding wheel heads (yellow); the rock abrasion tool magnets (green); the supposed pebble (red); a sunlit portion of the aluminum rock abrasion tool housing (purple); and a shadowed portion of the rock abrasion tool housing (brown). These spectra demonstrated that the composition of the supposed pebble was clearly different from that of the sunlit and shadowed portions of the rock abrasion tool, while similar to that of the dust-coated rock abrasion tool magnets and grinding heads. This led the team to conclude that the object disabling the rock abrasion tool was indeed a martian pebble.

  19. The Emerging Paradigm of Pebble Accretion

    NARCIS (Netherlands)

    Ormel, C.W.; Pessah, M.; Gressel, O.

    2017-01-01

    Pebble accretion is the mechanism in which small particles ("pebbles") accrete onto big bodies big (planetesimals or planetary embryos) in gas-rich environments. In pebble accretion accretion , accretion occurs by settling and depends only on the mass of the gravitating body gravitating , not its

  20. Molecularly imprinted electrochemical sensor based on nickel nanoparticle-modified electrodes for phenobarbital determination

    International Nuclear Information System (INIS)

    Yu, Hui Cheng; Huang, Xue Yi; Lei, Fu Hou; Tan, Xue Cai; Wei, Yi Chun; Li, Hao

    2014-01-01

    Highlights: • Uniform Ni nanoparticles were synthesized. • A Ni nanoparticle-modified imprinted sensor was developed to detect phenobarbital. • The modified sensor exhibited high sensitivity for phenobarbital. • The electrochemical properties of the modified sensor were investigated. • The prepared sensor was applied to detect phenobarbital in fish samples. - Abstract: Uniform nickel nanoparticles were applied to improve the sensitivity of sensors for phenobarbital (PB) determination. A Ni nanoparticle-modified imprinted electrochemical sensor was developed by thermal polymerization with the use of methacrylic acid as the functional monomer and ethylene glycol maleic rosinate acrylate as the crosslinking agent. The chemical structures and morphologies of the imprinted films were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The success of the fabrication of Ni nanoparticles, as well as the Ni nanoparticle-modified imprinted electrochemical sensor, was confirmed by the analytical results. The electrochemical properties of the modified molecularly imprinted and non-imprinted polymer sensors were investigated by cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. Results showed that the electrochemical properties of the molecularly imprinted sensor were remarkably different from those of the non-imprinted sensor. Linear responses of the imprinted sensor to PB were observed for concentrations ranging from 1.4 × 10 −7 mol L −1 to 1.3 × 10 −4 mol L −1 (r 2 = 0.9976), with a detection limit of 8.2 × 10 −9 mol L −1 (S/N = 3). The imprinted electrochemical sensor was used to determine PB in actual fish samples, in which average recoveries between 95.60% and 104.67% were achieved. The developed Ni nanoparticle-modified electrochemical sensor exhibited high sensitivity, high selectivity, and good recovery

  1. Behavior of beryllium pebbles under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik; Baldwin, D.L.; Gelles, D.S.; Greenwood, L.R.; Kawamura, H.; Oliver, B.M.

    1998-01-01

    Beryllium pebbles are being considered in fusion reactor blanket designs as neutron multiplier. An example is the European `Helium Cooled Pebble Bed Blanket.` Several forms of beryllium pebbles are commercially available but little is known about these forms in response to fast neutron irradiation. Commercially available beryllium pebbles have been irradiated to approximately 1.3 x 10{sup 22} n/cm{sup 2} (E>1 MeV) at 390degC. Pebbles 1-mm in diameter manufactured by Brush Wellman, USA and by Nippon Gaishi Company, Japan, and 3-mm pebbles manufactured by Brush Wellman were included. All were irradiated in the below-core area of the Experimental Breeder Reactor-II in Idaho Falls, USA, in molybdenum alloy capsules containing helium. Post-irradiation results are presented on density change measurements, tritium release by assay, stepped-temperature anneal, and thermal ramp desorption tests, and helium release by assay and stepped-temperature anneal measurements, for Be pebbles from two manufacturing methods, and with two specimen diameters. The experimental results on density change and tritium and helium release are compared with the predictions of the code ANFIBE. (author)

  2. Effect of a Central Graphite Column on a Pebble Flow in a Pebble Bed Core

    International Nuclear Information System (INIS)

    In, W. K.; Lee, W. J.; Chang, J. H.

    2006-01-01

    A pebble bed reactor(PBR) uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. The pebble bed core is configured as cylindrical or annular depending on the reactor power. It is well known that an annular core can increase a cores' thermal power. The annular inner core zone is typically filled with movable graphite balls or a fixed graphite column. The first problem with this conventional annular core is that it is difficult to maintain a boundary between the central graphite ball zone and the outer fuel zone. The second problem is that it is expensive to replace the central fixed graphite column after several tens of years of reactor operation. In order to resolve these problems, a PBR with a central graphite column in a low core is invented. This paper presents the effect of the central graphite column on a pebble flow by using the computational fluid dynamics(CFD) code, CFX-10

  3. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors

    DEFF Research Database (Denmark)

    Sun, Honghao; Almdal, Kristoffer; Andresen, Thomas Lars

    2011-01-01

    Conventional optical nanoparticle pH sensors that are designed for ratiometric measurements in cells have been based on utilizing one sensor fluorophore and one reference fluorophore in each nanoparticle, which results in a relatively narrow dynamic measurement range. This results in substantial...

  4. X-ray tomography investigations on pebble bed structures

    International Nuclear Information System (INIS)

    Reimann, J.; Rolli, R.; Pieritz, R.A.; Ferrero, C.; Di Michiel, M.

    2007-01-01

    Granular materials (pebbles) are used in present ceramic breeder blankets both for the ceramic breeder material and beryllium. The thermal-mechanical behaviour of these pebble beds strongly depends on the arrangement of the pebbles in the bed, their contacts and contact surfaces with other pebbles and with walls. The influence of these quantities is most pronounced for beryllium pebble beds because of the large thermal conductivity ratio of beryllium to helium gas atmosphere. At present, the data base for the pebble bed thermal conductivity (k) and heat transfer coefficient (h) is quite limited for compressed beds and significant discrepancies exist in respect to h. The detailed knowledge of the pebble bed topology is, therefore, essential to better understand the heat transfer mechanisms. In the present work, results from detailed X-ray tomography investigations are reported on pebble topology in i) the pebble bed bulk (which is relevant for k), and ii) the region close to walls with thicknesses of several pebble diameters (relevant for h). At Forschungszentrum Karlsruhe, pebble beds consisting of aluminium spheres with diameters of 2.3 and 5 mm, respectively, (simulating the blanket relevant 1 mm beryllium pebbles), were uniaxially compressed at different pressure levels. High resolution three-dimensional microtomography (MT) experiments were subsequently performed at the European Synchrotron Radiation Facility, Grenoble. Radial and axial void fraction distributions were found to be oscillatory next to the walls and non-oscillatory in the bulk. For non-compressed pebble beds, the bulk void fraction is fairly constant; for compressed beds, a gradient exists along the compression axis. In the bulk, the angular distribution of pebble contacts was found to be fairly constant, indicating that no regular packing structure is induced. In the wall region, the pebble layer touching the wall is composed of zones with hexagonal structures as shown clearly by MT images. This

  5. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    International Nuclear Information System (INIS)

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  6. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review

    International Nuclear Information System (INIS)

    Korotcenkov, Ghenadii; Cho, Beong K.; Brinzari, Vladimir

    2016-01-01

    This review (with 170 refs.) discusses approaches towards surface functionalizaton of metal oxides by gold nanoparticles, and the application of the resulting nanomaterials in resistive gas sensors. The articles is subdivided into sections on (a) methods for modification of metal oxides with gold nanoparticles; (b) the response of gold nanoparticle-modified metal oxide sensors to gaseous species, (c) a discussion of the limitations of such sensors, and (d) a discussion on future tasks and trends along with an outlook. It is shown that, in order to achieve significant improvements in sensor parameters, it is necessary to warrant a good control the size and density of gold nanoparticles on the surface of metal oxide crystallites, the state of gold in the cluster, and the properties of the metal oxide support. Current challenges include an improved reproducibility of sensor preparation, better long-term stabilities, and a better resistance to sintering and poisoning of gold clusters during operation. Additional research focused on better understanding the role of gold clusters and nanoparticles in gas-sensing effects is also required. (author)

  7. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  8. Testing of a "smart-pebble" for measuring particle transport statistics

    Science.gov (United States)

    Kitsikoudis, Vasileios; Avgeris, Loukas; Valyrakis, Manousos

    2017-04-01

    This paper presents preliminary results from novel experiments aiming to assess coarse sediment transport statistics for a range of transport conditions, via the use of an innovative "smart-pebble" device. This device is a waterproof sphere, which has 7 cm diameter and is equipped with a number of sensors that provide information about the velocity, acceleration and positioning of the "smart-pebble" within the flow field. A series of specifically designed experiments are carried out to monitor the entrainment of a "smart-pebble" for fully developed, uniform, turbulent flow conditions over a hydraulically rough bed. Specifically, the bed surface is configured to three sections, each of them consisting of well packed glass beads of slightly increasing size at the downstream direction. The first section has a streamwise length of L1=150 cm and beads size of D1=15 mm, the second section has a length of L2=85 cm and beads size of D2=22 mm, and the third bed section has a length of L3=55 cm and beads size of D3=25.4 mm. Two cameras monitor the area of interest to provide additional information regarding the "smart-pebble" movement. Three-dimensional flow measurements are obtained with the aid of an acoustic Doppler velocimeter along a measurement grid to assess the flow forcing field. A wide range of flow rates near and above the threshold of entrainment is tested, while using four distinct densities for the "smart-pebble", which can affect its transport speed and total momentum. The acquired data are analyzed to derive Lagrangian transport statistics and the implications of such an important experiment for the transport of particles by rolling are discussed. The flow conditions for the initiation of motion, particle accelerations and equilibrium particle velocities (translating into transport rates), statistics of particle impact and its motion, can be extracted from the acquired data, which can be further compared to develop meaningful insights for sediment transport

  9. Evaluating Nanoparticle Sensor Design for Intracellular pH Measurements

    DEFF Research Database (Denmark)

    Benjaminsen, Rikke Vicki; Sun, Honghao; Henriksen, Jonas Rosager

    2011-01-01

    Particle-based nanosensors have over the last decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors is challenging...... and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle...... quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pKa to each sensor, seem to be a solution...

  10. A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles.

    Science.gov (United States)

    Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K

    2015-01-01

    The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application.

  11. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.

    Science.gov (United States)

    Zhang, Zhiyang; Wang, Han; Chen, Zhaopeng; Wang, Xiaoyan; Choo, Jaebum; Chen, Lingxin

    2018-08-30

    Plasmonic colorimetric sensors have emerged as a powerful tool in chemical and biological sensing applications due to the localized surface plasmon resonance (LSPR) extinction in the visible range. Among the plasmonic sensors, the most famous sensing mode is the "aggregation" plasmonic colorimetric sensor which is based on plasmon coupling due to nanoparticle aggregation. Herein, this review focuses on the newly-developing plasmonic colorimetric sensing mode - the etching or the growth of metal nanoparticles induces plasmon changes, namely, "non-aggregation" plasmonic colorimetric sensor. This type of sensors has attracted increasing interest because of their exciting properties of high sensitivity, multi-color changes, and applicability to make a test strip. Of particular interest, the test strip by immobilization of nanoparticles on the substrate can avoid the influence of nanoparticle auto-aggregation and increase the simplicity in storage and use. Although there are many excellent reviews available that describe the advance of plasmonic sensors, limited attention has been paid to the plasmonic colorimetric sensors based on etching or growth of metal nanoparticles. This review highlights recent progress on strategies and application of "non-aggregation" plasmonic colorimetric sensors. We also provide some personal insights into current challenges associated with "non-aggregation" plasmonic colorimetric sensors and propose future research directions. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Senkbeil, Silja; Jensen, Thomas G.

    2012-01-01

    Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in......-field, detection of two important classes of environmental contaminants – heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L−1 and 16 μg L−1 could be obtained for the heavy metal mercury...... and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants....

  13. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    Directory of Open Access Journals (Sweden)

    Ganhua Lu

    2006-01-01

    Full Text Available Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS. The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM for morphology and defects, energy dispersive X-ray (EDX spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS for surface composition. Nonagglomerated rutile tin oxide (SnO2 nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.

  14. HTR-proteus pebble bed experimental program core 4: random packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Lengar, Igor [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Koberl, Oliver [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2014-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  15. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Leland M. Montierth

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  16. Evaluating nanoparticle sensor design for intracellular pH measurements.

    Science.gov (United States)

    Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L

    2011-07-26

    Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.

  17. Mechanics of a crushable pebble assembly using discrete element method

    International Nuclear Information System (INIS)

    Annabattula, R.K.; Gan, Y.; Zhao, S.; Kamlah, M.

    2012-01-01

    The influence of crushing of individual pebbles on the overall strength of a pebble assembly is investigated using discrete element method. An assembly comprising of 5000 spherical pebbles is assigned with random critical failure energies with a Weibull distribution in accordance with the experimental observation. Then, the pebble assembly is subjected to uni-axial compression (ε 33 =1.5%) with periodic boundary conditions. The crushable pebble assembly shows a significant difference in stress–strain response in comparison to a non-crushable pebble assembly. The analysis shows that a ideal plasticity like behaviour (constant stress with increase in strain) is the characteristic of a crushable pebble assembly with sudden damage. The damage accumulation law plays a critical role in determining the critical stress while the critical number of completely failed pebbles at the onset of critical stress is independent of such a damage law. Furthermore, a loosely packed pebble assembly shows a higher crush resistance while the critical stress is insensitive to the packing factor (η) of the assembly.

  18. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor

    Science.gov (United States)

    Shirsat, Mahendra D.; Bangar, Mangesh A.; Deshusses, Marc A.; Myung, Nosang V.; Mulchandani, Ashok

    2009-02-01

    We report a sensitive, selective, and fast responding room temperature chemiresistive sensor for hydrogen sulfide detection and quantification using polyaniline nanowires-gold nanoparticles hybrid network. The sensor was fabricated by facile electrochemical technique. Initially, polyaniline nanowires with a diameter of 250-320 nm bridging the gap between a pair of microfabricated gold electrodes were synthesized using templateless electrochemical polymerization using a two step galvanostatic technique. Polyaniline nanowires were then electrochemically functionalized with gold nanoparticles using cyclic voltammetry technique. These chemiresistive sensors show an excellent limit of detection (0.1 ppb), wide dynamic range (0.1-100 ppb), and very good selectivity and reproducibility.

  19. Nanoparticle-based gas sensors and methods of using the same

    Science.gov (United States)

    Mickelson, William; Zettl, Alex

    2017-10-17

    Gas sensors are provided. The gas sensors include a gas sensing element having metal oxide nanoparticles and a thin-film heating element. Systems that include the gas sensors, as well as methods of using the gas sensors, are also provided. Embodiments of the present disclosure find use in a variety of different applications, including detecting whether an analyte is present in a gaseous sample.

  20. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors

    International Nuclear Information System (INIS)

    Garg, Niti; Mohanty, Ashok; Jin, Rongchao; Lazarus, Nathan; Santhanam, Suresh; Fedder, Gary K; Schultz, Lawrence; Weiss, Lee; Rozzi, Tony R; Snyder, Jay L

    2010-01-01

    The use of gold nanoparticles coated with an organic monolayer of thiol for application in chemiresistive sensors was initiated in the late 1990s; since then, such types of sensors have been widely pursued due to their high sensitivities and reversible responses to volatile organic compounds (VOCs). However, a major issue for chemical sensors based on thiol-capped gold nanoparticles is their poor long-term stability as a result of slow degradation of the monothiol-to-gold bonds. We have devised a strategy to overcome this limitation by synthesizing a more robust system using Au nanoparticles capped by trithiol ligands. Compared to its monothiol counterpart, the new system is significantly more stable and also shows improved sensitivity towards different types of polar or non-polar VOCs. Thus, the trithiol-Au nanosensor shows great promise for use in real world applications.

  1. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Niti; Mohanty, Ashok; Jin, Rongchao [Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Lazarus, Nathan; Santhanam, Suresh; Fedder, Gary K [Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Schultz, Lawrence; Weiss, Lee [Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Rozzi, Tony R; Snyder, Jay L, E-mail: zpx5@cdc.gov, E-mail: fedder@ece.cmu.edu, E-mail: rongchao@andrew.cmu.edu [National Institute for Occupational Safety and Health (NIOSH), Pittsburgh, PA 15236 (United States)

    2010-10-08

    The use of gold nanoparticles coated with an organic monolayer of thiol for application in chemiresistive sensors was initiated in the late 1990s; since then, such types of sensors have been widely pursued due to their high sensitivities and reversible responses to volatile organic compounds (VOCs). However, a major issue for chemical sensors based on thiol-capped gold nanoparticles is their poor long-term stability as a result of slow degradation of the monothiol-to-gold bonds. We have devised a strategy to overcome this limitation by synthesizing a more robust system using Au nanoparticles capped by trithiol ligands. Compared to its monothiol counterpart, the new system is significantly more stable and also shows improved sensitivity towards different types of polar or non-polar VOCs. Thus, the trithiol-Au nanosensor shows great promise for use in real world applications.

  2. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    Science.gov (United States)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  3. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles

    Science.gov (United States)

    Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang

    2018-06-01

    Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.

  4. Mechanics of binary and polydisperse spherical pebble assembly

    International Nuclear Information System (INIS)

    Annabattula, R.K.; Gan, Y.; Kamlah, M.

    2012-01-01

    The micromechanical behavior of an assembly of binary and polydisperse spherical pebbles is studied using discrete element method (DEM) accounting for microscopic interactions between individual pebbles. A in-house DEM code has been used to simulate the assemblies consisting of different pebble diameters and the results of the simulations are compared with that of mono-size pebble assemblies. The effect of relative radii and volume fraction of the pebbles on the macroscopic stress–strain response is discussed. Furthermore, the effect of packing factor and coefficient of friction on the overall stress–strain behavior of the system is studied in detail. The shear (tangential) stiffness between the particles is also another influencing parameter. For a very small shear stiffness the system shows a strong dependence on the packing factor while a pebble material dependent shear stiffness shows a rather moderate dependence on the packing factor. For a similar packing factor, the mono-size assembly shows a stiff behavior during loading compared to binary assembly. However, the simulations do not show a significant difference between the two behaviors in contrast to the observations made in the experiments. The discrepancy can be attributed to (i) probable difference in packing factors for mono-size and binary assemblies in the experiments, (ii) arbitrary friction coefficient in the current model and (iii) the tangential interaction (constant shear stiffness) implemented in the present model which needs further modification as a function of the load history on the pebbles. Evolution of other micromechanical characteristics such as coordination number, contact force distribution and stored elastic energy of individual pebbles as a function of external load and system parameters is presented which can be used to estimate important macroscopic properties such as overall thermal conductivity and crushing resistance of the pebble beds.

  5. Mechanics of binary and polydisperse spherical pebble assembly

    Energy Technology Data Exchange (ETDEWEB)

    Annabattula, R.K., E-mail: ratna.annabattula@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen (Germany); Gan, Y., E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, University of Sydney, 2006 NSW, Sydney (Australia); Kamlah, M., E-mail: marc.kamlah@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen (Germany)

    2012-08-15

    The micromechanical behavior of an assembly of binary and polydisperse spherical pebbles is studied using discrete element method (DEM) accounting for microscopic interactions between individual pebbles. A in-house DEM code has been used to simulate the assemblies consisting of different pebble diameters and the results of the simulations are compared with that of mono-size pebble assemblies. The effect of relative radii and volume fraction of the pebbles on the macroscopic stress-strain response is discussed. Furthermore, the effect of packing factor and coefficient of friction on the overall stress-strain behavior of the system is studied in detail. The shear (tangential) stiffness between the particles is also another influencing parameter. For a very small shear stiffness the system shows a strong dependence on the packing factor while a pebble material dependent shear stiffness shows a rather moderate dependence on the packing factor. For a similar packing factor, the mono-size assembly shows a stiff behavior during loading compared to binary assembly. However, the simulations do not show a significant difference between the two behaviors in contrast to the observations made in the experiments. The discrepancy can be attributed to (i) probable difference in packing factors for mono-size and binary assemblies in the experiments, (ii) arbitrary friction coefficient in the current model and (iii) the tangential interaction (constant shear stiffness) implemented in the present model which needs further modification as a function of the load history on the pebbles. Evolution of other micromechanical characteristics such as coordination number, contact force distribution and stored elastic energy of individual pebbles as a function of external load and system parameters is presented which can be used to estimate important macroscopic properties such as overall thermal conductivity and crushing resistance of the pebble beds.

  6. Mechanical behavior of Be–Ti pebbles at blanket relevant temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, Petr, E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials—Applied Materials Physics (IAM-AWP), P.O. Box 3640, 76021 Karlsruhe (Germany); Rolli, Rolf [Karlsruhe Institute of Technology, Institute for Applied Materials—Materials Biomechanics (IAM-WBM), P.O. Box 3640, 76021 Karlsruhe (Germany); Kim, Jae-Hwan; Nakamichi, Masaru [Breeding Functional Materials Development Group, Department of Blanket Fusion Institute, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Oaza-Obuchi-Aza-Omotedate, Rokkasho-mura, Kamikita-gun, Aoori 039-3212 (Japan)

    2016-11-01

    Highlights: • Mechanical behavior of two kinds of Be–Ti pebbles in the temperature range of 400–800 °C was investigated. • It was experimentally shown that Be-7 at.%Ti pebbles have the enhanced ductile properties compared to Be-7.7 at.%Ti pebbles. • Brittle failure of both kinds of Be–Ti pebbles was observed by testing at 400 °C using the constant loading with 150 N. - Abstract: Mechanical performance of beryllium-based materials is a matter of a great interest from the point of view of their use as neutron multipliers of the tritium breeding blankets. The compression strains which can occur in beryllium pebble beds under blanket working conditions will lead to deformation or even failure of individual pebbles [1,2] (Reimann et al. 2002; Ishitsuka and Kawamura, 1995). Mechanical behavior of Be–Ti pebbles having chemical contents of Be-7.0 at.% Ti and Be-7.7 at.%Ti was investigated in the temperature range of 400–800 °C. Constant loads varying from 10 up to 150 N were applied uniaxially. It was shown that Be–Ti pebbles compared to pure beryllium pebbles possess much lower ductility, although their strength properties exceed corresponding characteristics of pure beryllium. Also, the influence of titanium content on mechanical behavior of Be–Ti pebbles was investigated. Specific features of deformation of pure beryllium and Be–Ti pebbles having different titanium contents at blanket operation temperatures are discussed.

  7. Ceramic breeder pebble bed packing stability under cyclic loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunbo, E-mail: chunbozhang@fusion.ucla.edu [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Ying, Alice; Abdou, Mohamed A. [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Park, Yi-Hyun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The feasibility of obtaining packing stability for pebble beds is studied. • The responses of pebble bed to cyclic loads have been presented and analyzed in details. • Pebble bed packing saturation and its applications are discussed. • A suggestion is made regarding the improvement of pebbles filling technique. - Abstract: Considering the optimization of blanket performance, it is desired that the bed morphology and packing state during reactor operation are stable and predictable. Both experimental and numerical work are performed to explore the stability of pebble beds, in particular under pulsed loading conditions. Uniaxial compaction tests have been performed for both KIT’s Li{sub 4}SiO{sub 4} and NFRI’s Li{sub 2}TiO{sub 3} pebble beds at elevated temperatures (up to 750 °C) under cyclic loads (up to 6 MPa). The obtained data shows the stress-strain loop initially moves towards the larger strain and nearly saturates after a certain number of cyclic loading cycles. The characterized FEM CAP material models for a Li{sub 4}SiO{sub 4} pebble bed with an edge-on configuration are used to simulate the thermomechanical behavior of pebble bed under ITER pulsed operations. Simulation results have shown the cyclic variation of temperature/stress/strain/gap and also the same saturation trend with experiments under cyclic loads. Therefore, it is feasible for pebble bed to maintain its packing stability during operation when disregarding pebbles’ breakage and irradiation.

  8. Surface coating of graphite pebbles for Korean HCCR TBM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Young-Hoon, E-mail: yunh2@dsu.ac.kr [Dongshin University, Naju (Korea, Republic of); Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source.

  9. Surface coating of graphite pebbles for Korean HCCR TBM

    International Nuclear Information System (INIS)

    Lee, Youngmin; Yun, Young-Hoon; Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon

    2014-01-01

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source

  10. Optimization of MOX fuel cycles in pebble bed HTGR

    International Nuclear Information System (INIS)

    Wei Jinfeng; Li Fu; Sun Yuliang

    2013-01-01

    Compared with light water reactor (LWR), the pebble bed high temperature gas-cooled reactor (HTGR) is able to operate in a full mixed oxide (MOX) fuelled core without significant change to core structure design. Based on a reference design of 250 MW pebble bed HTGR, four MOX fuel cycles were designed and evaluated by VSOP program package, including the mixed Pu-U fuel pebbles and mixed loading of separate Pu-pebbles and U-pebbles. Some important physics features were investigated and compared for these four cycles, such as the effective multiplication factor of initial core, the pebble residence time, discharge burnup, and temperature coefficients. Preliminary results show that the overall performance of one case is superior to other equivalent MOX fuel cycles on condition that uranium fuel elements and plutonium fuel elements are separated as the different fuel pebbles and that the uranium fuel elements are irradiated longer in the core than the plutonium fuel elements, and the average discharge burnup of this case is also higher than others. (authors)

  11. Pebble Accretion in Turbulent Protoplanetary Disks

    Science.gov (United States)

    Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.

    2017-09-01

    It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.

  12. Ether gas-sensor based on Au nanoparticles-decorated ZnO microstructures

    Directory of Open Access Journals (Sweden)

    Roberto López

    Full Text Available An ether gas-sensor was fabricated based on gold nanoparticles (Au-NPs decorated zinc oxide microstructures (ZnO-MS. Scanning electron microscope (SEM and high-resolution transmission electron microscope (HRTEM measurements were performed to study morphological and structural properties, respectively, of the ZnO-MS. The gas sensing response was evaluated in a relatively low temperature regime, which ranged between 150 and 250 °C. Compared with a sensor fabricated from pure ZnO-MS, the sensor based on Au-NPs decorated ZnO-MS showed much better ether gas response at the highest working temperature. In fact, pure ZnO-MS based sensor only showed a weak sensitivity of about 25%. The improvement of the ether gas response for sensor fabricated with Au-NPs decorated ZnO-MS was attributed to the catalytic activity of the Au-NPs. Keywords: ZnO microstructures, Au nanoparticles, Ether, Gas sensor

  13. Neutronic modeling of pebble bed reactors in APOLLO2

    International Nuclear Information System (INIS)

    Grimod, M.

    2010-01-01

    In this thesis we develop a new iterative homogenization technique for pebble bed reactors, based on a 'macro-stochastic' transport approximation in the collision probability method. A model has been developed to deal with the stochastic distribution of pebbles with different burnup in the core, considering spectral differences in homogenization and depletion calculations. This is generally not done in the codes presently used for pebble bed analyses, where a pebble with average isotopic composition is considered to perform the cell calculation. Also an iterative core calculation scheme has been set up, where the low-order RZ S N full-core calculation computes the entering currents in the spectrum zones subdividing the core. These currents, together with the core k eff , are then used as surface source in the fine-group heterogeneous calculation of the multi-pebble geometries. The developed method has been verified using reference Monte Carlo simulations of a simplified PBMR- 400 model. The pebbles in this model are individually positioned and have different randomly assigned burnup values. The APOLLO2 developed method matches the reference core k eff within ± 100 pcm, with relative differences on the production shape factors within ± 4%, and maximum discrepancy of 3% at the hotspot. Moreover, the first criticality experiment of the HTR-10 reactor was used to perform a first validation of the developed model. The computed critical number of pebbles to be loaded in the core is very close to the experimental value of 16890, only 77 pebbles less. A method to calculate the equilibrium reactor state was also developed and applied to analyze the simplified PBMR-400 model loaded with different fuel types (UO 2 , Pu, Pu + MA). The potential of the APOLLO2 method to compute different fluxes for the different pebble types of a multi-pebble geometry was used to evaluate the bias committed by the average composition pebble approximation. Thanks to a 'compensation of error

  14. GMR sensors and magnetic nanoparticles for immuno-chromatographic assays

    International Nuclear Information System (INIS)

    Marquina, C.; Teresa, J.M. de; Serrate, D.; Marzo, J.; Cardoso, F.A.; Saurel, D.; Cardoso, S.; Freitas, P.P.

    2012-01-01

    Conventional tests based on immunorecognition and on the use of coloured colloidal particles have still some drawbacks that limit their use: they do not provide a quantitative determination of the analyte, and their sensitivity is limited. Our strategy to overcome these disadvantages consists in the use of superparamagnetic core-shell nanoparticles to tag the analyte. The use of these magnetic labels allows us to quantify the amount of analyte present in our sample with a very high sensitivity, detecting their magnetic response by means of the suitable magnetic sensor. Our method is based on measuring the magnetoresistive response of a spin-valve giant magnetoresistive (GMR) sensor placed in proximity to the magnetic nanoparticles present in the lateral flow strip. Here, a brief description of our prototype and of the measurement procedure will be presented, as well as preliminary assays using our biosensor to detect the hCG pregnancy hormone in a solution. A crucial aspect to take into account in order to increase the sensitivity is the proper functionalisation of the nanoparticle shell, in order to achieve an oriented immobilisation of the antibodies to be used in the immunorecognition process. Several strategies to further increase the sensor sensitivity are suggested.

  15. GMR sensors and magnetic nanoparticles for immuno-chromatographic assays

    Energy Technology Data Exchange (ETDEWEB)

    Marquina, C., E-mail: clara@unizar.es [Instituto de Ciencia de Materiales de Aragon ICMA, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Teresa, J.M. de [Instituto de Ciencia de Materiales de Aragon ICMA, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Serrate, D. [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza (Spain); Marzo, J. [Instituto de Ciencia de Materiales de Aragon ICMA, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cardoso, F.A. [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Saurel, D. [Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza (Spain); Cardoso, S.; Freitas, P.P. [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); and others

    2012-10-15

    Conventional tests based on immunorecognition and on the use of coloured colloidal particles have still some drawbacks that limit their use: they do not provide a quantitative determination of the analyte, and their sensitivity is limited. Our strategy to overcome these disadvantages consists in the use of superparamagnetic core-shell nanoparticles to tag the analyte. The use of these magnetic labels allows us to quantify the amount of analyte present in our sample with a very high sensitivity, detecting their magnetic response by means of the suitable magnetic sensor. Our method is based on measuring the magnetoresistive response of a spin-valve giant magnetoresistive (GMR) sensor placed in proximity to the magnetic nanoparticles present in the lateral flow strip. Here, a brief description of our prototype and of the measurement procedure will be presented, as well as preliminary assays using our biosensor to detect the hCG pregnancy hormone in a solution. A crucial aspect to take into account in order to increase the sensitivity is the proper functionalisation of the nanoparticle shell, in order to achieve an oriented immobilisation of the antibodies to be used in the immunorecognition process. Several strategies to further increase the sensor sensitivity are suggested.

  16. V-groove SnO2 nanowire sensors: fabrication and Pt-nanoparticle decoration

    International Nuclear Information System (INIS)

    Sun, Gun-Joo; Choi, Sun-Woo; Jung, Sung-Hyun; Katoch, Akash; Kim, Sang Sub

    2013-01-01

    Networked SnO 2 nanowire sensors were achieved using the selective growth of SnO 2 nanowires and their tangling ability, particularly on on-chip V-groove structures, in an effort to overcome the disadvantages imposed on the conventional trench-structured SnO 2 nanowire sensors. The sensing performance of the V-groove-structured SnO 2 nanowire sensors was highly dependent on the geometrical dimension of the groove, being superior to those of their conventional trench-structured counterparts. Pt nanoparticles were decorated on the surface of the networked SnO 2 nanowires via γ-ray radiolysis to enhance the sensing performances of the V-groove sensors whose V-groove widths had been optimized. The V-groove-structured Pt-nanoparticle-decorated SnO 2 nanowire sensors exhibited outstanding and reliable sensing capabilities towards toluene and nitrogen dioxide gases, indicating their potential for use as a platform for chemical gas sensors. (paper)

  17. Polymeric gel nanoparticle pH sensors for intracellular measurements

    DEFF Research Database (Denmark)

    Almdal, Kristoffer; Andresen, Thomas Lars; Benjaminsen, Rikke Vicki

    pH range is approximately 4 pH units and thus a nanoparticle sensor with two pH sensitive fluorophores is appropriate. With one pH sensitive fluorophore the output from the sensor follows R=R0+R1/10(pKa-pH), where R is the ratio of fluorescence for the two fluorophores, R0 is the minimum value of R...

  18. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    Energy Technology Data Exchange (ETDEWEB)

    Vennemann, T.W.; Kesler, S.E.; O' Neil, J.R. (Univ. of Michigan, Ann Arbor (United States))

    1992-09-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The [delta][sup 18]O values of quartz pebbles within any one sample typically vary by [approximately] 4[per thousand] or more, but occasionally by as much as 8[per thousand], even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting [delta][sup 18]O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with [delta][sup 18]O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., [delta][sup 18]O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low [delta][sup 18]O values of chert pebbles (9[per thousand] to 11.5[per thousand]) relative to those expected for Archean and Proterozoic marine cherts (commonly [ge] 17[per thousand]) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold.

  19. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    International Nuclear Information System (INIS)

    Vennemann, T.W.; Kesler, S.E.; O'Neil, J.R.

    1992-01-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The δ 18 O values of quartz pebbles within any one sample typically vary by ∼ 4 per-thousand or more, but occasionally by as much as 8 per-thousand, even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting δ 18 O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with δ 18 O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., δ 18 O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low δ 18 O values of chert pebbles (9 per-thousand to 11.5 per-thousand) relative to those expected for Archean and Proterozoic marine cherts (commonly ≥ 17 per-thousand) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold

  20. Fabrication of modified lithium orthosilicate pebbles by addition of titania

    Energy Technology Data Exchange (ETDEWEB)

    Knitter, R., E-mail: regina.knitter@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Kolb, M.H.H.; Kaufmann, U. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Goraieb, A.A. [Goraieb Versuchstechnik (GVT), Karlsruhe, 76227 (Germany)

    2013-11-15

    Highlights: ► Lithium orthosilicate pebbles with additions of titania were fabricated by a modified melt-based process. ► The fabricated pebbles exhibit a very fine-grained microstructure with lithium metatitanate as a secondary phase. ► Due to the addition of titanate, the crush load of the pebbles was significantly increased. ► The closed porosity was found to be slightly increased with increasing titanate content. -- Abstract: Lithium orthosilicate pebbles are one of the ceramic tritium breeder materials destined for the European solid breeder test blanket modules of ITER, the large-scale scientific experiment intended to prove the viability of fusion as an energy source, presently under construction in Cadarache, France. While the current reference material is fabricated by melt-spraying with 2.5 wt.% excess of silica, resulting in a two-phase material of lithium orthosilicate and metasilicate, a modified melt-based process was used to fabricate breeder pebbles with additions of titania in order to obtain pebbles with lithium metatitanate as a secondary phase. The fabricated two-phase pebbles exhibit a fine-grained microstructure and increased crush loads. The optimum titanate content has yet to be evaluated, nonetheless the pebbles may have the potential to combine the advantages of both lithium orthosilicate and metatitanate breeder ceramics.

  1. Monitoring the Environmental Impact of TiO2 Nanoparticles Using a Plant-Based Sensor Network

    Science.gov (United States)

    Lenaghan, Scott C.; Li, Yuanyuan; Zhang, Hao; Burris, Jason N.; Stewart, C. Neal; Parker, Lynne E.; Zhang, Mingjun

    2016-01-01

    The increased manufacturing of nanoparticles for use in cosmetics, foods, and clothing necessitates the need for an effective system to monitor and evaluate the potential environmental impact of these nanoparticles. The goal of this research was to develop a plant-based sensor network for characterizing, monitoring, and understanding the environmental impact of TiO2 nanoparticles. The network consisted of potted Arabidopsis thaliana with a surrounding water supply, which was monitored by cameras attached to a laptop computer running a machine learning algorithm. Using the proposed plant sensor network, we were able to examine the toxicity of TiO2 nanoparticles in two systems: algae and terrestrial plants. Increased terrestrial plant growth was observed upon introduction of the nanoparticles, whereas algal growth decreased significantly. The proposed system can be further automated for high-throughput screening of nanoparticle toxicity in the environment at multiple trophic levels. The proposed plant-based sensor network could be used for more accurate characterization of the environmental impact of nanomaterials. PMID:28458617

  2. The reprocessing of advanced mixed lithium orthosilicate/metatitanate tritium breeder pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Leys, Oliver, E-mail: oliver.leys@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen, 76344 (Germany); Bergfeldt, Thomas; Kolb, Matthias H.H.; Knitter, Regina [Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen, 76344 (Germany); Goraieb, Aniceto A. [Karlsruhe Beryllium Handling Facility, Eggenstein-Leopoldshafen, 76344 (Germany)

    2016-06-15

    Highlights: • The recycling of advanced breeder pebbles without a deterioration of the material properties is possible using a melt-based process. • The only accumulation of impurities upon reprocessing, results from the platinum crucible alloy used for processing. • It is possible to replenish burnt-up lithium by additions of LiOH·H{sub 2}O to the melt during reprocessing. - Abstract: The recycling of tritium breeding materials will be necessary for any future use of nuclear fusion energy due to economical as well as ecological considerations. In the case of the solid breeder blanket concept, the ceramic pebble beds that are intended for the generation of tritium will eventually need to be restored due to depleted lithium levels as well as due to fractured pebbles, which will cause a deterioration of the pebble bed properties. It is proposed that the pebbles, which are fabricated using a melt-based process, are recycled using the same initial process, by replenishing the lithium levels and reforming the pebbles at the same time. To prove this recycling scheme, advanced ceramic pebbles were fabricated and then re-melted multiple times to prove that the reprocessing did not have any negative effect on the pebble properties and secondly, pebbles were produced with a simulated lithium burn-up and subsequently replenished by additions of LiOH to the melt. It was shown that the re-melting and lithium re-enrichment had no effect on the pebble properties, demonstrating that a melt-based process is suitable for recycling used breeder pebbles.

  3. Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2015-01-01

    Full Text Available The use of nanoparticles (NPs in scientific applications has attracted the attention of many researchers in the last few years. The use of NPs can help researchers to tune the physical characteristics of the sensing coating (thickness, roughness, specific area, refractive index, etc. leading to enhanced sensors with response time or sensitivity better than traditional sensing coatings. Additionally, NPs also offer other special properties that depend on their nanometric size, and this is also a source of new sensing applications. This review focuses on the current status of research in the use of NPs within coatings in optical fiber sensing. Most used sensing principles in fiber optics are briefly described and classified into several groups: absorbance-based sensors, interferometric sensors, fluorescence-based sensors, fiber grating sensors, and resonance-based sensors, among others. For each sensor group, specific examples of the utilization of NP-embedded coatings in their sensing structure are reported.

  4. How cores grow by pebble accretion. I. Direct core growth

    Science.gov (United States)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M⊕, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.

  5. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  6. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  7. PBMR Project - Pebble Fuel Advantages

    International Nuclear Information System (INIS)

    Slabber, Johan; Matzie, Regis; Casperson, Sten; Kriel, Willem

    2006-01-01

    An overview is presented of all the important issues that influenced the choice of pebble fuel for the High-temperature Gas-cooled Reactor (HTGR) concept developed by South Africa. Each of these issues is then discussed in detail and compared with other fuel configurations proposed for direct cycle High-temperature Reactor (HTR) applications. The comparisons are provided using objective data generated by analyses done for the design of the Pebble Bed Modular Reactor (PBMR) and data that is available in open literature for the other fuel configurations

  8. Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors.

    Science.gov (United States)

    Wang, Haitao; Xie, Yisha; Liu, Shan; Cong, Shuang; Song, Yukun; Xu, Xianbing; Tan, Mingqian

    2017-08-30

    The presence of nanoparticles in food has drawn much attention in recent years. Fluorescent carbon nanoparticles are a new class of nanostructures; however, the distribution and physicochemical properties of such nanoparticles in food remain unclear. Herein, the presence of fluorescent carbon nanoparticles in baked lamb was confirmed, and their physicochemical properties were investigated. The fluorescent carbon nanoparticles from baked lamb emit strong blue fluorescence under ultraviolet light with a 10% fluorescent quantum yield. The nanoparticles are roughly spherical in appearance with a diameter of around 2.0 nm. Hydroxyl, amino, and carboxyl groups exist on the surface of nanoparticles. In addition, the nanoparticles could serve as a fluorescence sensor for glucose detection through an oxidation-reduction reaction. This work is the first report on fluorescent carbon nanoparticles present in baked lamb, which provides valuable insight into the physicochemical properties of such nanoparticles and their potential application in sensors.

  9. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.

    Science.gov (United States)

    Smolinska-Kempisty, K; Ahmad, O Sheej; Guerreiro, A; Karim, K; Piletska, E; Piletsky, S

    2017-10-15

    Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor

    Science.gov (United States)

    Anand, Kanica; Kaur, Jasmeet; Singh, Ravi Chand; Thangaraj, Rengasamy

    2017-08-01

    Pure and Ag-doped In2O3 nanoparticles are synthesized by the co-precipitation method and are characterized by X-ray diffraction, transmission electron microscopy and photoluminescence spectroscopy. Gas sensing properties of the sensors has been investigated towards methanol, ethanol, acetone and LPG at different operating temperatures. It is found that the sensor response magnitude of the 3% Ag-doped In2O3 nanoparticles sensors is higher to 50 ppm of ethanol at 300 °C, to acetone at 350 °C and to LPG at 400 °C. This is mainly attributed to the large number of oxygen vacancies and defects in doped sensors as corroborated by the photoluminescence studies.

  11. Nanoparticle embedded enzymes for improved lateral flow sensors

    DEFF Research Database (Denmark)

    Özalp, Veli Cengiz; Zeydanlı, Uğur S.; Lunding, Anita

    2013-01-01

    -entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution...

  12. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  13. Plutonium burning in a pebble-bed type high temperature nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bende, E.E

    2000-01-24

    This thesis deals with the pebble-bed High Temperature Reactor that is fuelled with pure reactor-grade plutonium. It is stressed that neither burnable poisons nor fertile materials like 238U and 212Th are present in the calculational models throughout this thesis. Chapter 2 discusses the general properties of the pebble-bed HTR: the passive safety features of this reactor; different fuel scenarios according to which the pebble-bed HTR can be operated; properties of the pebbles and the coated particles (CPs), including a concise overview of the mechanisms that can lead to coated particle failure. Special attention is paid to the effect of Pu as fuel inside these CPs thereby aiming to indicate which mechanisms are of concern when such CPs are considered as fuel in future reactors. In the last part of this chapter constraints are listed that were imposed to the models considered in the framework of this thesis. Chapter 3 presents the results of unit-cell calculations performed with three code systems. The main objective of this chapter is to compare the calculational results of one particular code system, which is a candidate for the generation of cross sections for a full-core calculation, to those of the other two code systems. Also some reactor physics interpretations of the calculational results are presented. The unit-cell calculations embrace the computation of a number of reactor physics parameters for pebbles with a varying plutonium mass per pebble and with different types of coated particles. For one pebble configuration, these parameters have been calculated for various fuel temperatures and over-all (uniform) temperatures. For that particular pebble configuration, also the results of a two burnup calculations were compared. Chapter 4 reports the results of a parameter study in which the number of coated particles per pebble as well as the type and size of the CPs have been varied. The effect of different pebble configurations on several reactor physics

  14. CuO nanoparticle sensor for the electrochemical determination of dopamine

    International Nuclear Information System (INIS)

    Reddy, Sathish; Kumara Swamy, B.E.; Jayadevappa, H.

    2012-01-01

    Highlights: ► The MCPE prepared from flake-shaped CuO nanoparticles exhibits good electrocatalytic activity for DA compared with MCPE prepared from rod-shaped CuO nanoparticles. ► The MCPE prepared from SDS/polyglycine/flake-shaped CuO nanoparticles strong electrocatalytic enhancement of redox peak currents for DA and large peak potential separation between E AA − E DA . ► Analysis of DA shows linearly increase in anodic peak current in presence of excess ascorbic acid. ► Ease of preparation and good analytical response supports its claim for use as a potential dopamine sensor. - Abstract: In the present work, different shaped CuO nanoparticles were synthesized using cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) in a co-precipitation method. The CuO nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared absorption spectroscopy (IR) and UV–visible absorption spectroscopy (UV–vis). The prepared CuO nanoparticles were used for the preparation of modified carbon-paste electrodes (MCPE) for the electrochemical detection of dopamine (DA) at pH 6.0. The MCPE prepared from flake-shaped CuO nanoparticles exhibited an enhanced current response for DA. Electrochemical parameters, such as the surface area of the electrode, the heterogeneous rate constant (k s ) and the lower detection limit (5.5 × 10 −8 M), were calculated and compared with those of the MCPE prepared from rod-shaped CuO nanoparticles. The MCPE prepared from SDS/polyglycine/flake-shaped CuO nanoparticles exhibited a further improved current response for DA and a high selectivity (E AA − E DA = 0.28 V) for the simultaneous investigation of DA and ascorbic acid (AA) at pH 6.0. The modified carbon-paste electrochemical sensors were compared, and the MCPE prepared from SDS/polyglycine/flake-shaped CuO nanoparticles exhibited better performance than the MCPE prepared from CTAB

  15. Failure initiation and propagation of Li4SiO4 pebbles in fusion blankets

    International Nuclear Information System (INIS)

    Zhao Shuo; Gan Yixiang; Kamlah, Marc

    2013-01-01

    Lithium orthosilicate (Li 4 SiO 4 ) pebbles are considered to be a candidate as solid tritium breeder in the helium cooled pebble bed (HCPB) blanket. These ceramic pebbles might be crushed during thermomechanical loading in the blanket. In this work, the failure initiation and propagation of pebbles in pebble beds is investigated using the discrete element method (DEM). Pebbles are simplified as mono-sized elastic spheres. Every pebble has a contact strength in terms of critical strain energy, which is derived from a validated strength model and crush test data for pebbles from a specific batch of Li 4 SiO 4 pebbles. Pebble beds are compressed uniaxially and triaxially in DEM simulations. When the strain energy absorbed by a pebble exceeds its critical energy it fails. The failure initiation is defined as a given small fraction of pebbles crushed. It is found that the load level for failure initiation can be very low. For example, if failure initiation is defined as soon as 0.02% of the pebbles have been crushed, the pressure required for uniaxial loading is about 2.5 MPa. Therefore, it is essential to study the influence of failure propagation on the macroscopic response of pebble beds. Thus a reduction ratio defined as the size ratio of a pebble before and after its failure is introduced. The macroscopic stress–strain relation is investigated with different reduction ratios. A typical stress plateau is found for a small reduction ratio.

  16. Fabrication of Li2TiO3 pebbles by a freeze drying process

    International Nuclear Information System (INIS)

    Lee, Sang-Jin; Park, Yi-Hyun; Yu, Min-Woo

    2013-01-01

    Li 2 TiO 3 pebbles were successfully fabricated by using a freeze drying process. The Li 2 TiO 3 slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li 2 TiO 3 pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined

  17. Design and Implementation of a Wireless Sensor Network of GPS-enabled Seismic Sensors for the Study of Glaciers and Ice Sheets

    Science.gov (United States)

    Bilen, S. G.; Anandakrishnan, S.; Urbina, J. V.

    2012-12-01

    In an effort to provide new and improved geophysical sensing capabilities for the study of ice sheets in Antarctica and Greenland, or to study mountain glaciers, we are developing a network of wirelessly interconnected seismic and GPS sensor nodes (called "geoPebbles"), with the primary objective of making such instruments more capable and cost effective. We describe our design methodology, which has enabled us to develop these state-of-the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self-contained, wirelessly connected sensor for collecting seismic measurements and position information. Each node is built around a three-component seismic recorder, which includes an amplifier, filter, and 24-bit analog-to-digital card that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available through a carrier-phase measurement of the L1 GPS signal at an absolute accuracy of better than a microsecond. Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (up to eight 10-bit channels at low sample rates). We will report on current efforts to test this new instrument and how we are addressing the challenges imposed by the extreme weather conditions on the Antarctic continent. After fully validating its operational conditions, the geoPebble system will be available for NSF-sponsored glaciology research projects. Geophysical experiments in the polar region are logistically difficult. With the geoPebble system, the cost of doing today's experiments (low-resolution, 2D) will be significantly reduced, and the cost and feasibility of doing tomorrow's experiments (integrated seismic, positioning, 3D, etc.) will be reasonable. Sketch of an experiment with geoPebbles scattered on the surface of the ice sheet. The seismic

  18. Analysis of nanoparticles with an optical sensor based on carbon nanotubes

    Science.gov (United States)

    Stäb, J.; Furin, D.; Fechner, P.; Proll, G.; Soriano-Dotor, L. M.; Ruiz-Palomero, C.; Valcárcel, M.; Gauglitz, G.

    2017-05-01

    Nanomaterials play an important role in science and in every day products. This is due to their varied and specific properties, whereby especially engineered nanoparticles (ENPs) have shown various beneficial properties for a wide range of application in consumables (e.g. cosmetics, drinks, food and food packaging). Silver nanoparticles for instance are hidden in meat packaging materials or in deodorants. Reasons for this can be found in the antibacterial effect of silver, which leads to high applicability in consumer products. However, ENPs are under permanent discussion due to their unforeseen hazards and an unknown disposition in living organisms and the environment. So far, there is a lack of methods, which allows for the fast and effective characterization and quantification of such nanoparticles in complex matrices (e.g. creams, fruit juice), since matrix components can impede a specific detection of the analyte. It was the objective of project INSTANT to address this topic and compose a method to detect nanoparticles as a first step. Therefore, the development of a sensor system with an upstream sample preparation for the characterization and quantification of specific nanoparticles in complex matrices using a label free optical sensor array in combination with novel recognition elements was developed. The promising optical technology iRIfS (imaging reflectometric interference sensor) was used for this purpose. As a recognition element, functionalized carbon nanotubes can be effectively used. Owing to their excellent electronical, mechanical and chemical properties, CNTs have already been used for extracting ENPs from complex matrices as sorbent material by filtration. After successful immobilization of CNTs on microscope glass slides e.g. the detection of stabilized silver nanoparticles extracted by a sample preparation unit using the iRIfS technology was performed.

  19. A COMPARISON OF PEBBLE MIXING AND DEPLETION ALGORITHMS USED IN PEBBLE-BED REACTOR EQUILIBRIUM CYCLE SIMULATION

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Reitsma, Frederik; Joubert, Wessel

    2009-01-01

    Recirculating pebble-bed reactors are distinguished from all other reactor types by the downward movement through and reinsertion of fuel into the core during operation. Core simulators must account for this movement and mixing in order to capture the physics of the equilibrium cycle core. VSOP and PEBBED are two codes used to perform such simulations, but they do so using different methods. In this study, a simplified pebble-bed core with a specified flux profile and cross sections is used as the model for conducting analyses of two types of burnup schemes. The differences between the codes are described and related to the differences observed in the nuclide densities in pebbles discharged from the core. Differences in the methods for computing fission product buildup and average number densities lead to significant differences in the computed core power and eigenvalue. These test models provide a key component of an overall equilibrium cycle benchmark involving neutron transport, cross section generation, and fuel circulation.

  20. Nanoparticle assembled microcapsules for application as pH and ammonia sensor

    International Nuclear Information System (INIS)

    Amali, Arlin Jose; Awwad, Nour H.; Rana, Rohit Kumar; Patra, Digambara

    2011-01-01

    Graphical abstract: HPTS encapsulated nanoparticle assembled microcapsule is exploited as dual excitations ratiometic pH sensor. This nanoparticle assembled microcapsule based fluorescence sensor can determine ammonia and offers a robust, simple and fast sensing material. Highlights: ► A novel HPTS encapsulated nanoparticle assembled microcapsule is developed. ► Its dual excitation facilitates a ratiometic pH sensor. ► It is successfully applied for the determination of ammonia. ► It provides a robust, simple and fast sensing material. - Abstract: The encapsulation of molecular probes in a suitable nanostructured matrix can be exploited to alter their optical properties and robustness for fabricating efficient chemical sensors. Despite high sensitivity, simplicity, selectivity and cost effectiveness, the photo-destruction and photo-bleaching are the serious concerns while utilizing molecular probes. Herein we demonstrate that hydroxy pyrene trisulfonate (HPTS), a pH sensitive molecular probe, when encapsulated in a microcapsule structure prepared via the assembly of silica nanoparticles mediated by poly-L-lysine and trisodium citrate, provides a robust sensing material for pH sensing under the physiological conditions. The temporal evolution under continuous irradiation indicates that the fluorophore inside the silica microcapsule is extraordinarily photostable. The fluorescence intensity alternation at dual excitation facilitates for a ratiometic sensing of the pH, however, the fluorescence lifetime is insensitive to hydrogen ion concentration. The sensing scheme is found to be robust, fast and simple for the measurement of pH in the range 5.8–8.0, and can be successfully applied for the determination of ammonia in the concentration range 0–1.2 mM, which is important for aquatic life and the environment.

  1. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket

    Directory of Open Access Journals (Sweden)

    Rosa Lo Frano

    2018-05-01

    Full Text Available An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li4SiO4 is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1–1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena. The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders.

  2. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    International Nuclear Information System (INIS)

    Nia, Pooria Moozarm; Meng, Woi Pei; Alias, Y.

    2015-01-01

    Graphical abstract: - Highlights: • Electrochemical method was used for depositing silver nanoparticles and polypyrrole. • Silver nanoparticles (25 nm) were uniformly decorated on electrodeposited polypyrrole. • (Ag(NH 3 ) 2 OH) precursor showed better electrochemical performance than (AgNO 3 ). • The sensor showed superior performance toward H 2 O 2 . - Abstract: Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H 2 O 2 ) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H 2 O 2 was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1–5 mM with a limit of detection of 0.115 μmol l −1 and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l −1 (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H 2 O 2 sensor.

  3. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  4. Thermal cycling tests on Li4SiO4 and beryllium pebbles

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Norajitra, P.; Weisenburger, A.

    1995-01-01

    The European B.O.T. Demo-relevant solid breeder blanket is based on the use of beds of beryllium and Li 4 SiO 4 pebbles. Particularly dangerous for the pebble integrity are the rapid temperature changes which could occur, for instance, by a sudden blanket power shut-down. A series of thermal cycle tests have been performed for various beds of beryllium and Li 4 SiO 4 pebbles. No breaking was observed in the beryllium pebbles, however the Li 4 SiO 4 pebbles broke by temperature rates of change of about -50 C/sec independently on pebbles size and lithium enrichment. This value is considerably higher than the peak temperature rates of change expected in the blanket. (orig.)

  5. Transient heat conduction in a pebble fuel applying fractional model

    International Nuclear Information System (INIS)

    Gomez A, R.; Espinosa P, G.

    2009-10-01

    In this paper we presents the equation of thermal diffusion of temporary-fractional order in the one-dimensional space in spherical coordinates, with the objective to analyze the heat transference between the fuel and coolant in a fuel element of a Pebble Bed Modular Reactor. The pebble fuel is the heterogeneous system made by microsphere constitutes by U O, pyrolytic carbon and silicon carbide mixed with graphite. To describe the heat transfer phenomena in the pebble fuel we applied a constitutive law fractional (Non-Fourier) in order to analyze the behaviour transient of the temperature distribution in the pebble fuel with anomalous thermal diffusion effects a numerical model is developed. (Author)

  6. CO gas sensing properties of In_4Sn_3O_1_2 and TeO_2 composite nanoparticle sensors

    International Nuclear Information System (INIS)

    Mirzaei, Ali; Park, Sunghoon; Sun, Gun-Joo; Kheel, Hyejoon; Lee, Chongmu

    2016-01-01

    Highlights: • In4Sn3O12–TeO2 composite nanoparticles were synthesized via a facile hydrothermal route. • The response of the In4Sn3O12–TeO2 composite sensor to CO was stronger than the pristine In4Sn3O12 sensor. • The response of the In4Sn3O12–TeO2 composite sensor to CO was faster than the pristine In4Sn3O12 sensor. • The improved sensing performance of the In4Sn3O12–TeO2 nanocomposite sensor is discussed in detail. • The In4Sn3O12-based nanoparticle sensors showed selectivity to CO over NH3, HCHO and H2. - Abstract: A simple hydrothermal route was used to synthesize In_4Sn_3O_1_2 nanoparticles and In_4Sn_3O_1_2–TeO_2 composite nanoparticles, with In(C_2H_3O_2)_3, SnCl_4, and TeCl_4 as the starting materials. The structure and morphology of the synthesized nanoparticles were examined by X-ray diffraction and scanning electron microscopy (SEM), respectively. The gas-sensing properties of the pure and composite nanoparticles toward CO gas were examined at different concentrations (5–100 ppm) of CO gas at different temperatures (100–300 °C). SEM observation revealed that the composite nanoparticles had a uniform shape and size. The sensor based on the In_4Sn_3O_1_2–TeO_2 composite nanoparticles showed stronger response to CO than its pure In_4Sn_3O_1_2 counterpart. The response of the In_4Sn_3O_1_2–TeO_2 composite-nanoparticle sensor to 100 ppm of CO at 200 °C was 10.21, whereas the maximum response of the In_4Sn_3O_1_2 nanoparticle sensor was 2.78 under the same conditions. Furthermore, the response time of the composite sensor was 19.73 s under these conditions, which is less than one-third of that of the In_4Sn_3O_1_2 sensor. The improved sensing performance of the In_4Sn_3O_1_2–TeO_2 nanocomposite sensor is attributed to the enhanced modulation of the potential barrier height at the In_4Sn_3O_1_2–TeO_2 interface, the stronger oxygen adsorption of p-type TeO_2, and the formation of preferential adsorption sites.

  7. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Greenspan, Ehud [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  8. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    International Nuclear Information System (INIS)

    Peterson, Per; Greenspan, Ehud

    2015-01-01

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3 . This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel

  9. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    Science.gov (United States)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  10. Loads on pebble bed fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E.; Maly, V.

    1974-03-15

    A comparison is made of key parameters for multi-recycle pebbles and single-pass once-through (OTTO) pebbles. The parameters analyzed include heat transfer characteristics with burn-up, temperature profiles, power per element as a function of axial position in the core, and burn-up. For the OTTO-scheme, the comparisons addressed the use of the conventional fuel element and the advanced "shell ball" designed to reduce the peak fuel temperature in the center of the fuel element. All studies addressed the uranium-thorium fuel cycle.

  11. Pebble fabrication and tritium release properties of an advanced tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Edao, Yuki [Tritium Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-4 Shirakata, Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kawamura, Yoshinori [Blanket Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Ochiai, Kentaro [BA Project Coordination Group, Department of Fusion Power Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) pebble as an advanced tritium breeders was fabricated using emulsion method. • Grain size of Li{sub 2+x}TiO{sub 3+y} pebbles was controlled to be less than 5 μm. • Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties similar to that of Li{sub 2}TiO{sub 3} pebbles. - Abstract: Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) has been developed as an advanced tritium breeder. With respect to the tritium release characteristics of the blanket, the optimum grain size after sintering was less than 5 μm. Therefore, an emulsion method was developed to fabricate pebbles with this target grain size. The predominant factor affecting grain growth was assumed to be the presence of binder in the gel particles; this remaining binder was hypothesized to react with the excess Li, thereby generating Li{sub 2}CO{sub 3}, which promotes grain growth. To inhibit the generation of Li{sub 2}CO{sub 3}, calcined Li{sub 2+x}TiO{sub 3+y} pebbles were sintered under vacuum and subsequently under a 1% H{sub 2}–He atmosphere. The average grain size of the sintered Li{sub 2+x}TiO{sub 3+y} pebbles was less than 5 μm. Furthermore, the tritium release properties of Li{sub 2+x}TiO{sub 3+y} pebbles were evaluated, and deuterium–tritium (DT) neutron irradiation experiments were performed at the Fusion Neutronics Source facility in the Japan Atomic Energy Agency. To remove the tritium produced by neutron irradiation, 1% H{sub 2}–He purge gas was passed through the Li{sub 2+x}TiO{sub 3+y} pebbles. The Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties, similar to those of Li{sub 2}TiO{sub 3} pebbles. In particular, the released amount of tritiated hydrogen gas for easier tritium handling was greater than the released amount of tritiated water.

  12. Random detailed model for probabilistic neutronic calculation in pebble bed Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Perez Curbelo, J.; Rosales, J.; Garcia, L.; Garcia, C.; Brayner, C.

    2013-01-01

    The pebble bed nuclear reactor is one of the main candidates for the next generation of nuclear power plants. In pebble bed type HTRs, the fuel is contained within graphite pebbles in the form of TRISO particles, which form a randomly packed bed inside a graphite-walled cylindrical cavity. Pebble bed reactors (PBR) offer the opportunity to meet the sustainability requirements, such as nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. In order to simulate PBRs correctly, the double heterogeneity of the system must be considered. It consists on randomly located pebbles into the core and TRISO particles into the fuel pebbles. These features are often neglected due to the difficulty to model with MCPN code. The main reason is that there is a limited number of cells and surfaces to be defined. In this study, a computational tool which allows getting a new geometrical model of fuel pebbles for neutronic calculations with MCNPX code, was developed. The heterogeneity of system is considered, and also the randomly located TRISO particles inside the pebble. Four proposed fuel pebble models were compared regarding their effective multiplication factor and energy liberation profiles. Such models are: Homogeneous Pebble, Five Zone Homogeneous Pebble, Detailed Geometry, and Randomly Detailed Geometry. (Author)

  13. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  14. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  15. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Directory of Open Access Journals (Sweden)

    Roberto Rella

    2009-04-01

    Full Text Available The matrix assisted pulsed laser evaporation (MAPLE technique has been used for the deposition of metal dioxide (TiO2, SnO2 nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit towards ethanol and acetone are presented.

  16. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    Science.gov (United States)

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  17. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com; Meng, Woi Pei, E-mail: pmwoi@um.edu.my; Alias, Y., E-mail: yatimah70@um.edu.my

    2015-12-01

    Graphical abstract: - Highlights: • Electrochemical method was used for depositing silver nanoparticles and polypyrrole. • Silver nanoparticles (25 nm) were uniformly decorated on electrodeposited polypyrrole. • (Ag(NH{sub 3}){sub 2}OH) precursor showed better electrochemical performance than (AgNO{sub 3}). • The sensor showed superior performance toward H{sub 2}O{sub 2}. - Abstract: Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H{sub 2}O{sub 2}) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H{sub 2}O{sub 2} was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1–5 mM with a limit of detection of 0.115 μmol l{sup −1} and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l{sup −1} (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H{sub 2}O{sub 2} sensor.

  18. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  19. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  20. Ce doped NiO nanoparticles as selective NO2 gas sensor

    Science.gov (United States)

    Gawali, Swati R.; Patil, Vithoba L.; Deonikar, Virendrakumar G.; Patil, Santosh S.; Patil, Deepak R.; Patil, Pramod S.; Pant, Jayashree

    2018-03-01

    Metal oxide gas sensors are promising portable gas detection devices because of their advantages such as low cost, easy production and compact size. The performance of such sensors is strongly dependent on material properties such as morphology, structure and doping. In the present study, we report the effect of cerium (Ce) doping on nickel oxide (NiO) nano-structured thin film sensors towards various gases. Bare NiO and Ce doped NiO nanoparticles (Ce:NiO) were synthesized by sol-gel method. To understand the effect of Ce doping in nickel oxide, various molar percentages of Ce with respect to nickel were incorporated. The structure, phase, morphology and band-gap energy of as-synthesized nanoparticles were studied by XRD, SEM, EDAX and UV-vis spectroscopy. Thin film gas sensors of all the samples were prepared and subjected to various gases such as LPG, NH3, CH3COCH3 and NO2. A systematic and comparative study reveals an enhanced gas sensing performance of Ce:NiO sensors towards NO2 gas. The maximum sensitivity for NO2 gas is around 0.719% per ppm at moderate operating temperature of 150 °C for 0.5% Ce:NiO thin film gas sensor. The enhanced gas sensing performance for Ce:NiO is attributed to the distortion of crystal lattice caused by doping of Ce into NiO.

  1. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    Science.gov (United States)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  2. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    Science.gov (United States)

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  3. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.

    Science.gov (United States)

    Soomro, Razium A; Nafady, Ayman; Sirajuddin; Memon, Najma; Sherazi, Tufail H; Kalwar, Nazar H

    2014-12-01

    This report demonstrates a novel, simple and efficient protocol for the synthesis of copper nanoparticles in aqueous solution using L-cysteine as capping or protecting agent. UV-visible (UV-vis) spectroscopy was employed to monitor the LSPR band of L-cysteine functionalized copper nanoparticles (Cyst-Cu NPs) based on optimizing various reaction parameters. Fourier Transform Infrared (FTIR) spectroscopy provided information about the surface interaction between L-cysteine and Cu NPs. Transmission Electron Microscopy (TEM) confirmed the formation of fine spherical, uniformly distributed Cyst-Cu NPs with average size of 34 ± 2.1 nm. X-ray diffractometry (XRD) illustrated the formation of pure metallic phase crystalline Cyst-Cu NPs. As prepared Cyst-Cu NPs were tested as colorimetric sensor for determining mercuric (Hg(2+)) ions in an aqueous system. Cyst-Cu NPs demonstrated very sensitive and selective colorimetric detection of Hg(2+) ions in the range of 0.5 × 10(-6)-3.5 × 10(-6) mol L(-1) based on decrease in LSPR intensity as monitored by a UV-vis spectrophotometer. The developed sensor is simple, economic compared to those based on precious metal nanoparticles and sensitive to detect Hg(2+) ions with detection limit down to 4.3 × 10(-8) mol L(-1). The sensor developed in this work has a high potential for rapid and on-site detection of Hg(2+) ions. The sensor was successfully applied for assessment of Hg(2+) ions in real water samples collected from various locations of the Sindh River. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. SnO2 Nanoparticle-Based Passive Capacitive Sensor for Ethylene Detection

    Directory of Open Access Journals (Sweden)

    Mangilal Agarwal

    2012-01-01

    Full Text Available A passive capacitor-based ethylene sensor using SnO2 nanoparticles is presented for the detection of ethylene gas. The nanoscale particle size (10 nm to 15 nm and film thickness (1300 nm of the sensing dielectric layer in the capacitor model aid in sensing ethylene at room temperature and eliminate the need for microhotplates used in existing bulk SnO2-resistive sensors. The SnO2-sensing layer is deposited using room temperature dip coating process on flexible polyimide substrates with copper as the top and bottom plates of the capacitor. The capacitive sensor fabricated with SnO2 nanoparticles as the dielectric showed a total decrease in capacitance of 5 pF when ethylene gas concentration was increased from 0 to 100 ppm. A 7 pF decrease in capacitance was achieved by introducing a 10 nm layer of platinum (Pt and palladium (Pd alloy deposited on the SnO2 layer. This also improved the response time by 40%, recovery time by 28%, and selectivity of the sensor to ethylene mixed in a CO2 gas environment by 66%.

  5. Arc plasma assisted rotating electrode process for preparation of metal pebbles

    International Nuclear Information System (INIS)

    Mohanty, T.; Tripathi, B.M.; Mahata, T.; Sinha, P.K.

    2014-01-01

    Spherical beryllium pebbles of size ranging from 0.2-2 mm are required as neutron multiplying material in solid Test Blanket Module (TBM) of International Thermonuclear Experimental Reactor (ITER). Rotating electrode process (REP) has been identified as a suitable technique for preparation of beryllium pebbles. In REP, arc plasma generated between non-consumable electrode (cathode) and rotating metal electrode (anode) plays a major role for continuous consumption of metal electrode and preparation of spherical metal pebbles. This paper focuses on description of the process, selection of sub-systems for development of REP experimental set up and optimization of arc parameters, such as, cathode geometry, arc current, arc voltage, arc gap and carrier gas flow rate for preparation of required size spherical metal pebbles. Other parameters which affect the pebbles sizes are rotational speed, metal electrode diameter and physical properties of the metal. As beryllium is toxic in nature its surrogate metals such as stainless steel (SS) and Titanium (Ti) were selected to evaluate the performance of the REP equipment. Several experiments were carried out using SS and Ti electrode and process parameters have been optimized for preparation of pebbles of different sizes. (author)

  6. CFD study on the supercritical carbon dioxide cooled pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dali, E-mail: ydlmitd@outlook.com; Peng, Minjun; Wang, Zhongyi

    2015-01-15

    Highlights: • An innovation concept of supercritical carbon dioxide cooled pebble bed reactor is proposed. • Body-centered cuboid (BCCa) arrangement is adopted for the pebbles. • S-CO{sub 2} would be a good candidate coolant for using in pebble bed reactor. - Abstract: The thermal hydraulic study of using supercritical carbon dioxide (S-CO{sub 2}), a superior fluid state brayton cycle medium, in pebble bed type nuclear reactor is assessed through computational fluid dynamics (CFD) methodology. Preliminary concept design of this S-CO{sub 2} cooled pebble bed reactor (PBR) is implemented by the well-known KTA heat transfer correlation and Ergun pressure drop equation. Eddy viscosity transport turbulence model is adopted and verified by KTA calculated results. Distributions of the temperature, velocity, pressure and Nusselt (Nu) number of the coolant near the surface of the middle spherical fuel element are obtained and analyzed. The conclusion of the assessment is that S-CO{sub 2} would be a good candidate coolant for using in pebble bed reactor due primarily to its good heat transfer characteristic and large mass density, which could lead to achieve lower pressure drop and higher power density.

  7. Localization of the hot spots in a pebble bed reactor

    International Nuclear Information System (INIS)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung

    2016-01-01

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments

  8. A study for fuel reloading strategy in pebble bed core

    International Nuclear Information System (INIS)

    Kim, Hong Chul

    2012-02-01

    A fuel reloading analysis system for pebble bed reactor was developed by using a Monte Carlo code. The kinematic model was modified to improve the accuracy of the pebble velocity profile and to develop the model so that the diffusion coefficient is not changed by the geometry of the core. In addition, the point kernel method was employed to solve an equation derived in this study. Then, the analysis system for the pebble bed reactor was developed to accommodate the double heterogeneity, pebble velocity, and pebble refueling features using the MCNPX Monte Carlo code. The batch-tracking method was employed to simulate the movement of the pebbles and an automation system was written in the C programming language to implement it. The proposed analysis system can be utilized to verify new core analysis codes, deep-burn studies, various sensitivity studies, and other analysis tools available for the application of new fuel reloading strategies. It is noted that the proposed algorithm for the optimum fuel reloading pattern differs from other optimization methods using sensitivity analysis. In this algorithm, the reloading strategy, including the loading of fresh fuel and the reloading positions of the fresh and reloaded fuels, is determined by the interrelations of the criticality, the nuclear material inventories in the extracted fuel, and the power density. The devised algorithm was applied to the PBMR and NHDD-PBR200. The results show that the proposed algorithm can apply to satisfy the nuclear characteristics such as the criticality or power density since the pebble bed core has the characteristics that the fuels are reloaded every day

  9. Localization of the hot spots in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments.

  10. Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core

    International Nuclear Information System (INIS)

    Jiang, S.Y.; Yang, X.T.; Tang, Z.W.; Wang, W.J.; Tu, J.Y.; Liu, Z.Y.; Li, J.

    2012-01-01

    Highlights: ► The experimental installation has been built to investigate the pebble flow. ► The feasibility of two-region pebble bed reactor has been verified. ► The pebble flow is more uniform in a taller vessel than that in a lower vessel. ► Larger base cone angle will decrease the scale of the stagnant zone. - Abstract: The pebble flow is the principal issue for the design of the pebble bed reactor. In order to verify the feasibility of a two-region-designed pebble bed reactor, the experimental installation with a taller vessel has been built, which is proportional to the real pebble bed reactor. With the aid of the experimental installation, the stable establishment and maintenance of the two-region arrangement has been verified, at the same time, the applicability of the DEM program has been also validated. Research results show: (1) The pebble's bouncing on the free surface is an important factor for the mixing of the different colored pebbles. (2) Through the guide plates installed in the top of the pebble packing, the size of the mixing zone can be reduced from 6–7 times to 3–4 times the pebble diameter. (3) The relationship between the width of the central region and the ratio of loading pebbles is approximately linear in the taller vessel. (4) The heighten part of the pebble packing can improve the uniformity of the flowing in the lower. (5) To increase the base cone angle can decrease the scale of the stagnant zone. All of these conclusions are meaningful to the design of the real pebble reactor.

  11. Gas Phase Fabrication of Pd-Ni Nanoparticle Arrays for Hydrogen Sensor Applications

    Directory of Open Access Journals (Sweden)

    Peng Xing

    2015-01-01

    Full Text Available Pd-Ni nanoparticles have been fabricated by gas aggregation process. The formation of Pd-Ni nano-alloys was confirmed by X-ray photoelectron spectroscopy measurements. By depositing Pd-Ni nanoparticles on the interdigital electrodes, quantum conductance-based hydrogen sensors were fabricated. The Ni content in the nanoparticle showed an obvious effect on the hydrogen response behavior corresponding to the conductance change of the nanoparticle film. Three typical response regions with different conductance-hydrogen pressure correlations were observed. It was found that the α-β phase transition region of palladium hydride moves to significant higher hydrogen pressure with the addition of nickel element, which greatly enhance the hydrogen sensing performance of the nanoparticle film.

  12. A Humidity Sensor Based on Silver Nanoparticles Thin Film Prepared by Electrostatic Spray Deposition Process

    Directory of Open Access Journals (Sweden)

    Thutiyaporn Thiwawong

    2013-01-01

    Full Text Available In this work, thin film of silver nanoparticles for humidity sensor application was deposited by electrostatic spray deposition technique. The influence of the deposition times on properties of films was studied. The crystal structures of sample films, their surface morphology, and optical properties have been investigated by X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, and UV-VIS spectrophotometer, respectively. The crystalline structure of silver nanoparticles thin film was found in the orientation of (100 and (200 planes of cubic structure at diffraction angles 2θ  =  38.2° and 44.3°, respectively. Moreover, the silver nanoparticles thin films humidity sensor was fabricated onto the interdigitated electrodes. The sensor exhibited the humidity adsorption and desorption properties. The sensing mechanisms of the device were also elucidated by complex impedance analysis.

  13. Matrix formulation of pebble circulation in the pebbed code

    International Nuclear Information System (INIS)

    Gougar, H.D.; Terry, W.K.; Ougouag, A.M.

    2002-01-01

    The PEBBED technique provides a foundation for equilibrium fuel cycle analysis and optimization in pebble-bed cores in which the fuel elements are continuously flowing and, if desired, recirculating. In addition to the modern analysis techniques used in or being developed for the code, PEBBED incorporates a novel nuclide-mixing algorithm that allows for sophisticated recirculation patterns using a matrix generated from basic core parameters. Derived from a simple partitioning of the pebble flow, the elements of the recirculation matrix are used to compute the spatially averaged density of each nuclide at the entry plane from the nuclide densities of pebbles emerging from the discharge conus. The order of the recirculation matrix is a function of the flexibility and sophistication of the fuel handling mechanism. This formulation for coupling pebble flow and neutronics enables core design and fuel cycle optimization to be performed by the manipulation of a few key core parameters. The formulation is amenable to modern optimization techniques. (author)

  14. On the hyperporous non-linear elasticity model for fusion-relevant pebble beds

    International Nuclear Information System (INIS)

    Di Maio, P.A.; Giammusso, R.; Vella, G.

    2010-01-01

    Packed pebble beds are particular granular systems composed of a large amount of small particles, arranged in irregular lattices and surrounded by a gas filling interstitial spaces. Due to their heterogeneous structure, pebble beds have non-linear and strongly coupled thermal and mechanical behaviours whose constitutive models seem limited, being not suitable for fusion-relevant design-oriented applications. Within the framework of the modelling activities promoted for the lithiated ceramics and beryllium pebble beds foreseen in the Helium-Cooled Pebble Bed breeding blanket concept of DEMO, at the Department of Nuclear Engineering of the University of Palermo (DIN) a thermo-mechanical constitutive model has been set-up assuming that pebble beds can be considered as continuous, homogeneous and isotropic media. The present paper deals with the DIN non-linear elasticity constitutive model, based on the assumption that during the reversible straining of a pebble bed its effective logarithmic bulk modulus depends on the equivalent pressure according to a modified power law and its effective Poisson modulus remains constant. In these hypotheses the functional dependence of the effective tangential and secant bed deformation moduli on either the equivalent pressure or the volumetric strain have been derived in a closed analytical form. A procedure has been, then, defined to assess the model parameters for a given pebble bed from its oedometric test results and it has been applied to both polydisperse lithium orthosilicate and single size beryllium pebble beds.

  15. TEM study of impurity segregations in beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  16. Fabrication of Li_2TiO_3 pebbles by a selective laser sintering process

    International Nuclear Information System (INIS)

    Zhou, Qilai; Gao, Yue; Liu, Kai; Xue, Lihong; Yan, Youwei

    2015-01-01

    Highlights: • Selective laser sintering (SLS) is employed to fabricate ceramic pebbles. • Quantities and diameter of the pebbles could be easily controlled by adjusting the model of pebbles. • All the pebbles could be prepared at a time within several minutes. • The Li_2TiO_3 pebbles sintered at 1100 °C show a notable crush load of 43 N. - Abstract: Lithium titanate, Li_2TiO_3, is an important tritium breeding material for deuterium (D)–tritium (T) fusion reactor. In test blanket module (TBM) design of China, Li_2TiO_3 is considered as one candidate material of tritium breeders. In this study, selective laser sintering (SLS) technology was introduced to fabricate Li_2TiO_3 ceramic pebbles. This fabrication process is computer assisted and has a high level of flexibility. Li_2TiO_3 powder with a particle size of 1–3 μm was used as the raw material, whilst epoxy resin E06 was adopted as a binder. Green Li_2TiO_3 pebbles with certain strengths were successfully prepared via SLS. Density of the green pebbles was subsequently increased by cold isostatic pressing (CIP) process. Li_2TiO_3 pebbles with a diameter of about 2 mm were obtained after high temperature sintering. Density of the pebbles reaches 80% of theoretical density (TD) with a comparable crush load of 43 N. This computer assisted approach provides a new efficient route for the production of Li_2TiO_3 ceramic pebbles.

  17. Preliminary neutronic study on Pu-based OTTO cycle pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Setiadipura, Topan; Zuhair [National Nuclear Energy Agency of Indonesia (BATAN), Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Irwanto, Dwi [Bandung Institute of Technology (ITB), Bandung (Indonesia). Nuclear Physics and Biophysics Research Group

    2017-12-15

    The neutron physics characteristic of Pebble Bed Reactor (PBR) allows a better incineration of plutonium (Pu). An optimized design of simple PBR might give a symbiotic solution of providing a safe energy source, effective fuel utilization shown by a higher burnup value, and incineration of Pu stockpiles. This study perform a preliminary neutronic design study of a 200 MWt Once Through Then Out (OTTO) cycle PBR with Pu-based fuel. The safety criteria of the design were represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. In this preliminary phase, the parametric survey is limited to the heavy metal (HM) loading per pebble and the average axial speed of the fuel. An optimum high burnup of 419.7 MWd/kg-HM was achieved in this study. This optimum design uses a HM loading of 2.5 g/pebble with average axial fuel velocity 0.5 cm/day.

  18. Fabrication of Li{sub 2}TiO{sub 3} pebbles by a freeze drying process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin, E-mail: lee@mokpo.ac.kr [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of); Park, Yi-Hyun [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Yu, Min-Woo [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of)

    2013-11-15

    Li{sub 2}TiO{sub 3} pebbles were successfully fabricated by using a freeze drying process. The Li{sub 2}TiO{sub 3} slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li{sub 2}TiO{sub 3} pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined.

  19. Bacteriophage T4 Nanoparticles as Materials in Sensor Applications: Variables That Influence Their Organization and Assembly on Surfaces

    Directory of Open Access Journals (Sweden)

    Jinny L. Liu

    2009-08-01

    Full Text Available Bacteriophage T4 nanoparticles possess characteristics that make them ideal candidates as materials for sensors, particularly as sensor probes. Their surface can be modified, either through genetic engineering or direct chemical conjugation to display functional moieties such as antibodies or other proteins to recognize a specific target. However, in order for T4 nanoparticles to be utilized as a sensor probe, it is necessary to understand and control the variables that determine their assembly and organization on a surface. The aim of this work is to discuss some of variables that we have identified as influencing the behavior of T4 nanoparticles on surfaces. The effect of pH, ionic strength, substrate characteristics, nanoparticle concentration and charge was addressed qualitatively using atomic force microscopy (AFM.

  20. Conceptual design of a passively safe thorium breeder Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Wols, F.J.; Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der

    2015-01-01

    Highlights: • This work proposes three possible designs for a thorium Pebble Bed Reactor. • A high-conversion PBR (CR > 0.96), passively safe and within practical constraints. • A thorium breeder PBR (220 cm core) in practical regime, but not passively safe. • A passively safe breeder, requiring higher fuel reprocessing and recycling rates. - Abstract: More sustainable nuclear power generation might be achieved by combining the passive safety and high temperature applications of the Pebble Bed Reactor (PBR) design with the resource availability and favourable waste characteristics of the thorium fuel cycle. It has already been known that breeding can be achieved with the thorium fuel cycle inside a Pebble Bed Reactor if reprocessing is performed. This is also demonstrated in this work for a cylindrical core with a central driver zone, with 3 g heavy metal pebbles for enhanced fission, surrounded by a breeder zone containing 30 g thorium pebbles, for enhanced conversion. The main question of the present work is whether it is also possible to combine passive safety and breeding, within a practical operating regime, inside a thorium Pebble Bed Reactor. Therefore, the influence of several fuel design, core design and operational parameters upon the conversion ratio and passive safety is evaluated. A Depressurized Loss of Forced Cooling (DLOFC) is considered the worst safety scenario that can occur within a PBR. So, the response to a DLOFC with and without scram is evaluated for several breeder PBR designs using a coupled DALTON/THERMIX code scheme. With scram it is purely a heat transfer problem (THERMIX) demonstrating the decay heat removal capability of the design. In case control rods cannot be inserted, the temperature feedback of the core should also be able to counterbalance the reactivity insertion by the decaying xenon without fuel temperatures exceeding 1600 °C. Results show that high conversion ratios (CR > 0.96) and passive safety can be combined in

  1. Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

    Directory of Open Access Journals (Sweden)

    Alexander Weddemann

    2010-11-01

    Full Text Available This paper highlights recent advances in synthesis, self-assembly and sensing applications of monodisperse magnetic Co and Co-alloyed nanoparticles. A brief introduction to solution phase synthesis techniques as well as the magnetic properties and aspects of the self-assembly process of nanoparticles will be given with the emphasis placed on selected applications, before recent developments of particles in sensor devices are outlined. Here, the paper focuses on the fabrication of granular magnetoresistive sensors by the employment of particles themselves as sensing layers. The role of interparticle interactions is discussed.

  2. Mechanical performance of irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  3. Development of Chinese HTR-PM pebble bed equivalent conductivity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2016-01-15

    The first two 250-MWt high-temperature reactor pebble bed modules (HTR-PM) have been installing at the Shidaowan plant in Shandong Province, China. The values of the effective thermal conductivity of the pebble bed core are essential parameters for the design. For their determination, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity.

  4. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  5. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  6. Researchers solve big mysteries of pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Afaque; Roelofs, Ferry; Komen, E.M.J. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Baglietto, Emilio [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Nuclear Science and Engineering; Sgro, Titus [CD-adapco, London (United Kingdom). Technical Marketing

    2014-03-15

    The PBR is one type of High Temperature Reactors, which allows high temperature work while preventing the fuel from melting (bringing huge safety margins to the reactor) and high electricity efficiency. The design is also highly scalable; a plant could be designed to be as large or small as needed, and can even be made mobile, allowing it to be used onboard a ship. In a PBR, small particles of nuclear fuel, embedded in a moderating graphite pebble, are dropped into the reactor as needed. At the bottom, the pebbles can be removed simply by opening a small hatch and letting gravity pull them down. To cool the reactor and create electricity, helium gas is pumped through the reactor to pull heat out which is then run through generators. One of the most difficult problems to deal with has been the possible appearance of local temperature hotspots within the pebble bed heating to the point of melting the graphite moderators surrounding the fuel. Obviously, constructing a reactor and experimenting to investigate this possibility is out of the question. Instead, nuclear engineers have been attempting to simulate a PBR with various CFD codes. The thermo-dynamic analysis to simulate realistic conditions in a pebble bed are described and the results are shown. (orig.)

  7. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Guo, Haibing; Shi, Tao [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: hhw@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong, E-mail: inpcnyb@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China)

    2017-05-15

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  8. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    International Nuclear Information System (INIS)

    Zhang, Hao; Guo, Haibing; Shi, Tao; Ye, Minyou; Huang, Hongwen; Li, Zhenghong

    2017-01-01

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  9. Use of self-sensing piezoresistive Si cantilever sensor for determining carbon nanoparticle mass

    Science.gov (United States)

    Wasisto, H. S.; Merzsch, S.; Stranz, A.; Waag, A.; Uhde, E.; Kirsch, I.; Salthammer, T.; Peiner, E.

    2011-06-01

    A silicon cantilever with slender geometry based Micro Electro Mechanical System (MEMS) for nanoparticles mass detection is presented in this work. The cantilever is actuated using a piezoactuator at the bottom end of the cantilever supporting frame. The oscillation of the microcantilever is detected by a self-sensing method utilizing an integrated full Wheatstone bridge as a piezoresistive strain gauge for signal read out. Fabricated piezoresistive cantilevers of 1.5 mm long, 30 μm wide and 25 μm thick have been employed. This self-sensing cantilever is used due to its simplicity, portability, high-sensitivity and low-cost batch microfabrication. In order to investigate air pollution sampling, a nanoparticles collection test of the piezoresistive cantilever sensor is performed in a sealed glass chamber with a stable carbon aerosol inside. The function principle of cantilever sensor is based on detecting the resonance frequency shift that is directly induced by an additional carbon nanoparticles mass deposited on it. The deposition of particles is enhanced by an electrostatic field. The frequency measurement is performed off-line under normal atmospheric conditions, before and after carbon nanoparticles sampling. The calculated equivalent mass-induced resonance frequency shift of the experiment is measured to be 11.78 +/- 0.01 ng and a mass sensitivity of 8.33 Hz/ng is obtained. The proposed sensor exhibits an effective mass of 2.63 μg, a resonance frequency of 43.92 kHz, and a quality factor of 1230.68 +/- 78.67. These results and analysis indicate that the proposed self-sensing piezoresistive silicon cantilever can offer the necessary potential for a mobile nanoparticles monitor.

  10. Optimization of a radially cooled pebble bed reactor - HTR2008-58117

    International Nuclear Information System (INIS)

    Boer, B.; Kloosterman, J. L.; Lathouwers, D.; Van Der Hagen, T. H. J. J.; Van Dam, H.

    2008-01-01

    By altering the coolant flow direction in a pebble bed reactor from axial to radial, the pressure drop can be reduced tremendously. In this case the coolant flows from the outer reflector through the pebble bed and finally to flow paths in the inner reflector. As a consequence, the fuel temperatures are elevated due to the reduced heat transfer of the coolant. However, the power profile and pebble size in a radially cooled pebble bed reactor can be optimized to achieve lower fuel temperatures than current axially cooled designs, while the low pressure drop can be maintained. The radial power profile in the core can be altered by adopting multi-pass fuel management using several radial fuel zones in the core. The optimal power profile yielding a flat temperature profile is derived analytically and is approximated by radial fuel zoning. In this case, the pebbles pass through the outer region of the core first and each consecutive pass is located in a fuel zone closer to the inner reflector. Thereby, the resulting radial distribution of the fissile material in the core is influenced and the temperature profile is close to optimal. The fuel temperature in the pebbles can be further reduced by reducing the standard pebble diameter from 6 cm to a value as low as I cm. An analytical investigation is used to demonstrate the effects on the fuel temperature and pressure drop for both radial and axial cooling. Finally, two-dimensional numerical calculations were performed, using codes for neutronics, thermal-hydraulics and fuel depletion analysis, in order to validate the results for the optimized design that were obtained from the analytical investigations. It was found that for a radially cooled design with an optimized power profile and reduced pebble diameter (below 3.5 cm) both a reduction in the pressure drop (Δp = -2.6 bar), which increases the reactor efficiency with several percent, and a reduction in the maximum fuel temperature (ΔT = -50 deg. C) can be achieved

  11. Optimization of mass-production conditions for tritium breeder pebbles based on slurry droplet wetting method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yi-Hyun, E-mail: yhpark@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Min, Kyung-Mi; Ahn, Mu-Young; Cho, Seungyon; Lee, Young-Min [National Fusion Research Institute, Daejeon (Korea, Republic of); Park, Sang-Jin; Danish, Rehan; Lim, Chul-Hwan; Jo, Yong-Dae [IVT Co., Ltd., Daegu (Korea, Republic of)

    2016-11-01

    Highlights: • An automatic dispensing system was developed to improve uniformity and production rate of breeder pebbles. • The production rate of this system for Li{sub 2}TiO{sub 3} pebble was estimated at 50 kg/year. • The optimization of dispensing and sintering conditions for the mass-production of Li{sub 2}TiO{sub 3} pebble was conducted. • Integrity of Li{sub 2}TiO{sub 3} pebble was able to be ensured during mass-production process, especially during batch process. - Abstract: Lithium metatitanate (Li{sub 2}TiO{sub 3}) is being considered as tritium breeding material for solid-type breeding blanket, which are used in pebble-bed form. The total amount of Li{sub 2}TiO{sub 3} pebbles in Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is approximately 80 kg. Furthermore, DEMO reactor requires a great deal of breeder pebbles. Therefore, the development of mass-production system for breeder pebbles is necessary. The slurry droplet wetting method was adopted in the mass-production process for Li{sub 2}TiO{sub 3} pebbles, which had been developed in Korea. In this method, an automatic slurry dispensing system is one of the key apparatuses because the uniformity of pebbles and production rate are able to be improved. The system was successfully manufactured, which was consisted of a dispensing unit for instillation of Li{sub 2}TiO{sub 3} slurry, a glycerin bath for hardening of droplets, and an automatic maintaining unit for constant distance between syringe needle and glycerin surface. The production rate of this system for Li{sub 2}TiO{sub 3} pebble was estimated at 50 kg/year. In this study, it was investigated that the effect of dispensing and sintering conditions on the mass-production of Li{sub 2}TiO{sub 3} pebbles.

  12. CFD simulation of a coolant flow and a heat transfer in a pebble bed reactor - HTR2008-58334

    International Nuclear Information System (INIS)

    In, W. K.; Lee, W. J.; Hassan, Y. A.

    2008-01-01

    This CFD study is to simulate a coolant(gas) flow and heat transfer in a PBR core during a normal operation. This study used a pebble array with direct area contacts among the pebbles which is one of the pebbles arrangements for a detailed simulation of PBR core CFD studies. A CFD model is developed to more adequately represent the pebbles randomly stacked in the PBR core. The CFD predictions showed a large variation of the temperature on the pebble surface as well as in the pebble core. The temperature drop in the outer graphite layer is smaller than that in the pebble-core region. This is because the thermal conductivity of graphite is higher than the fuel (UO, mixture) conductivity in the pebble core. Higher pebble surface temperature is predicted downstream of the pebble contact due to a reverse flow. Multiple vortices are predicted to occur downstream of the spherical pebbles due to a flow separation. The coolant flow structure and fuel temperature in the PBR core appears to largely depend on the in-core distribution of the pebbles. (authors)

  13. Status of the in-pile test of HCPB pebble-bed assemblies in the HFR Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der; Fokkens, J.H.; Hofmans, H.E.; Jong, M.; Magielsen, A.J.; Pijlgroms, B.J.; Stijkel, M.P. [NRG, Petten (Netherlands); Conrad, R. [JRC, Inst. for Energy, Petten (Netherlands); Malang, S.; Reimann, J. [FZK, Karlsruhe (Germany); Roux, N. [CEA Saclay (France)

    2002-06-01

    In the framework of developing the helium cooled pebble-bed (HCPB) blanket an irradiation test of pebble-bed assemblies is prepared at the HFR Petten. The test objective is to concentrate on the effect of neutron irradiation on the thermal-mechanical behaviour of the HCPB breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. The basic test elements are EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. The pebble beds are separated by EUROFER-97 steel plates. The heat flow is managed such as to have a radial temperature distribution in the ceramic breeder pebble-bed as flat as reasonably possible. The paper reports on the project status, and presents the results of pre-tests, material characteristics, the manufacturing of the pebble-bed assemblies, and the nuclear and thermo-mechanical loading parameters. (orig.)

  14. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR sensor applications

    Directory of Open Access Journals (Sweden)

    Samsuri Nurul Diyanah

    2017-01-01

    Full Text Available Gold nanoparticles (GNPs have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.

  15. Sensor and method for measuring the areal density of magnetic nanoparticles on a micro-array

    NARCIS (Netherlands)

    2003-01-01

    The present invention relates to a method and a device for magnetic detection of binding of biological molecules on a biochip. A magnetoresistive sensor device for measuring an areal density of magnetic nanoparticles on a micro-array, the magnetic nanoparticles (15) being directly or indirectly

  16. Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection.

    Science.gov (United States)

    Pandey, Sadanand; Goswami, Gopal K; Nanda, Karuna K

    2012-11-01

    Biopolymer used for the production of nanoparticles (NPs) has attracted increasing attention. In the presence article we use aqueous solution of polysaccharide Cyamopsis tetragonaloba commonly known as guar gum (GG), from plants. GG acts as reductive preparation of silver nanoparticles which are found to be powder X-ray diffraction technique. Aqueous ammonia sensing study of polymer/silver nanoparticles nanocomposite (GG/AgNPs NC) was performed by optical method based on surface plasmon resonance (SPR). The performances of optical sensor were investigated which provide the excellent result. The response time of 2-3 s and the detection limit of ammonia solution, 1 ppm were found at room temperature. Thus, in future this room temperature optical ammonia sensor can be used for clinical and medical diagnosis for detecting low ammonia level in biological fluids, such as plasma, sweat, saliva, cerebrospinal liquid or biological samples in general for various biomedical applications in human. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Synthesis, Characterization, and Sensor Applications of Spinel ZnCo2O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Juan Pablo Morán-Lázaro

    2016-12-01

    Full Text Available Spinel ZnCo2O4 nanoparticles were synthesized by means of the microwave-assisted colloidal method. A solution containing ethanol, Co-nitrate, Zn-nitrate, and dodecylamine was stirred for 24 h and evaporated by a microwave oven. The resulting solid material was dried at 200 °C and subsequently calcined at 500 °C for 5 h. The samples were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Raman spectroscopy, confirming the formation of spinel ZnCo2O4 nanoparticles with average sizes between 49 and 75 nm. It was found that the average particle size decreased when the dodecylamine concentration increased. Pellets containing ZnCo2O4 nanoparticles were fabricated and tested as sensors in carbon monoxide (CO and propane (C3H8 gases at different concentrations and temperatures. Sensor performance tests revealed an extremely high response to 300 ppm of CO at an operating temperature of 200 °C.

  18. Experimental measurement of effective thermal conductivity of packed lithium-titanate pebble bed

    International Nuclear Information System (INIS)

    Mandal, D.; Sathiyamoorthy, D.; Vinjamur, M.

    2012-01-01

    Lithium titanate is a promising solid breeder material for the fusion reactor blanket. Packed lithium titanate pebble bed is considered for the blanket. The thermal energy; that will be produced in the bed during breeding and the radiated heat from the reactor core absorbed must be removed. So, the experimental thermal property data are important for the blanket design. In past, a significant amount of works were conducted to determine the effective thermal conductivity of packed solid breeder pebble bed, in helium atmosphere, but no flow of gas was considered. With increase in gas flow rate, effective thermal conductivity of pebble bed increases. Particle size and void fraction also affect the thermal properties of the bed significantly. An experimental facility with external heat source was designed and installed. Experiments were carried out with lithium-titanate pebbles of different sizes at variable gas flow rates and at different bed wall temperature. It was observed that effective thermal conductivity of pebble bed is a function of particle Reynolds number and temperature. From the experimental data two correlations have been developed to estimate the effective thermal conductivity of packed lithium-titanate pebble bed for different particle Reynolds number and at different temperatures. The experimental details and results are discussed in this paper.

  19. Automated Design and Optimization of Pebble-bed Reactor Cores

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.

    2010-01-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  20. Modelling of thermal and mechanical behaviour of pebble beds

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Buehler, L.; Hermsmeyer, S.; Wolf, F.

    2001-01-01

    FZK (Forshungzentrum Karlsruhe) is developing a Helium Cooled Pebble Bed (HCPB) Blanket Concept for fusion power reactors based on the use of ceramic breeder materials and beryllium multiplier in the form of pebble beds. The design of such a blanket requires models and computer codes describing the thermal-mechanical behavior of pebble beds to evaluate the temperatures, stresses, deformations and mechanical interactions between pebble beds and the structure with required accuracy and reliability. The objective to describe the beginning of life condition for the HCPB blanket seems near to be reached. Mechanical models that describe the thermo-mechanical behavior of granular materials used in form of pebble beds are implemented in a commercial structure code. These models have been calibrated using the results of a large series of dedicated experiments. The modeling work is practically concluded for ceramic breeder; it will be carried on in the next year for beryllium to obtain the required correlations for creep and the thermal conductivity. The difficulties for application in large components (such as the HCPB blanket) are the limitations of the present commercial codes to manage such a set of constitutive equations under complex load conditions and large mesh number. The further objective is to model the thermal cycles during operation; the present correlations have to be adapted for the release phase. A complete description of the blanket behavior during irradiation is at the present out of our capability; this objective requires an extensive R and D program that at the present is only at the beginning. (Y.Tanaka)

  1. Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants

    Science.gov (United States)

    Bitsch, Bertram; Morbidelli, Alessandro; Johansen, Anders; Lega, Elena; Lambrechts, Michiel; Crida, Aurélien

    2018-04-01

    The growth of a planetary core by pebble accretion stops at the so-called pebble isolation mass, when the core generates a pressure bump that traps drifting pebbles outside its orbit. The value of the pebble isolation mass is crucial in determining the final planet mass. If the isolation mass is very low, gas accretion is protracted and the planet remains at a few Earth masses with a mainly solid composition. For higher values of the pebble isolation mass, the planet might be able to accrete gas from the protoplanetary disc and grow into a gas giant. Previous works have determined a scaling of the pebble isolation mass with cube of the disc aspect ratio. Here, we expand on previous measurements and explore the dependency of the pebble isolation mass on all relevant parameters of the protoplanetary disc. We use 3D hydrodynamical simulations to measure the pebble isolation mass and derive a simple scaling law that captures the dependence on the local disc structure and the turbulent viscosity parameter α. We find that small pebbles, coupled to the gas, with Stokes number τf gap at pebble isolation mass. However, as the planetary mass increases, particles must be decreasingly smaller to penetrate the pressure bump. Turbulent diffusion of particles, however, can lead to an increase of the pebble isolation mass by a factor of two, depending on the strength of the background viscosity and on the pebble size. We finally explore the implications of the new scaling law of the pebble isolation mass on the formation of planetary systems by numerically integrating the growth and migration pathways of planets in evolving protoplanetary discs. Compared to models neglecting the dependence of the pebble isolation mass on the α-viscosity, our models including this effect result in higher core masses for giant planets. These higher core masses are more similar to the core masses of the giant planets in the solar system.

  2. A virtual pebble game to ensemble average graph rigidity.

    Science.gov (United States)

    González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J

    2015-01-01

    The body-bar Pebble Game (PG) algorithm is commonly used to calculate network rigidity properties in proteins and polymeric materials. To account for fluctuating interactions such as hydrogen bonds, an ensemble of constraint topologies are sampled, and average network properties are obtained by averaging PG characterizations. At a simpler level of sophistication, Maxwell constraint counting (MCC) provides a rigorous lower bound for the number of internal degrees of freedom (DOF) within a body-bar network, and it is commonly employed to test if a molecular structure is globally under-constrained or over-constrained. MCC is a mean field approximation (MFA) that ignores spatial fluctuations of distance constraints by replacing the actual molecular structure by an effective medium that has distance constraints globally distributed with perfect uniform density. The Virtual Pebble Game (VPG) algorithm is a MFA that retains spatial inhomogeneity in the density of constraints on all length scales. Network fluctuations due to distance constraints that may be present or absent based on binary random dynamic variables are suppressed by replacing all possible constraint topology realizations with the probabilities that distance constraints are present. The VPG algorithm is isomorphic to the PG algorithm, where integers for counting "pebbles" placed on vertices or edges in the PG map to real numbers representing the probability to find a pebble. In the VPG, edges are assigned pebble capacities, and pebble movements become a continuous flow of probability within the network. Comparisons between the VPG and average PG results over a test set of proteins and disordered lattices demonstrate the VPG quantitatively estimates the ensemble average PG results well. The VPG performs about 20% faster than one PG, and it provides a pragmatic alternative to averaging PG rigidity characteristics over an ensemble of constraint topologies. The utility of the VPG falls in between the most

  3. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    Dai, Weijing; Pupeschi, Simone; Hanaor, Dorian; Gan, Yixiang

    2017-01-01

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  4. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weijing [School of Civil Engineering, The University of Sydney, Sydney (Australia); Pupeschi, Simone [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Hanaor, Dorian [School of Civil Engineering, The University of Sydney, Sydney (Australia); Institute for Materials Science and Technologies, Technical University of Berlin (Germany); Gan, Yixiang, E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, The University of Sydney, Sydney (Australia)

    2017-05-15

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  5. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  6. Numerical and experimental characterization of ceramic pebble beds under cycling mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: pupeschi.simone@hotmail.it [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Knitter, R.; Kamlah, M. [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Gan, Y. [School of Civil Engineering, The University of Sydney, Sydney, NSW, 2006 (Australia)

    2016-11-15

    Highlights: • The effect of cyclic loading on the mechanical response of pebble beds was assessed. • Numerical simulations were performed with KIT-DEM code. • The numerical simulations were compared with the experimental outcomes. • A good qualitative agreement between experimental and simulation results was found. • The pebble size distribution affects the mechanical response of the assemblies. - Abstract: All solid breeder concepts considered to be tested in ITER (International Thermonuclear Experimental Reactor), make use of lithium-based ceramics in the form of pebble-packed beds as tritium breeder. A thorough understanding of the thermal and mechanical properties of the ceramic pebble beds under fusion relevant conditions is essential for the design of the breeder blanket modules of future fusion reactors. In this study, the effect of cyclic loading on the mechanical behaviour of pebble bed assemblies was investigated using a Discrete Element Method (DEM) code. The numerical simulations were compared with the experimental outcomes. The results of numerical simulations show that the pebble size distribution affects noticeably the stress-strain behaviour of the assemblies. A good qualitative agreement between experimental and simulation results was found in terms of difference between residual strains of consecutive cycles. An increase of the oedometric modulus with the compressive load was observed for all investigated compositions in both experimental and DEM simulations. The numerical results show an increase of the oedometric modulus (E) with progressive compaction of the assemblies due to the cycling loading, while no significant influence of the pebbles size distribution was observed.

  7. Highly Sensitive, Transparent, and Durable Pressure Sensors Based on Sea-Urchin Shaped Metal Nanoparticles.

    Science.gov (United States)

    Lee, Donghwa; Lee, Hyungjin; Jeong, Youngjun; Ahn, Yumi; Nam, Geonik; Lee, Youngu

    2016-11-01

    Highly sensitive, transparent, and durable pressure sensors are fabricated using sea-urchin-shaped metal nanoparticles and insulating polyurethane elastomer. The pressure sensors exhibit outstanding sensitivity (2.46 kPa -1 ), superior optical transmittance (84.8% at 550 nm), fast response/relaxation time (30 ms), and excellent operational durability. In addition, the pressure sensors successfully detect minute movements of human muscles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pressurizing Behavior on Ingress of Coolant into Pebble Bed of Blanket of Fusion DEMO Reactor

    International Nuclear Information System (INIS)

    Daigo Tsuru; Mikio Enoeda; Masato Akiba

    2006-01-01

    Solid breeder blankets are being developed as candidate blankets for the Fusion DEMO reactor in Japan. JAEA is performing the development of the water cooled and helium cooled solid breeder blankets. The blanket utilizes ceramic breeder pebbles and multiplier pebbles beds cooled by high pressure water or high pressure helium in the cooling tubes placed in the blanket box structure. In the development of the blanket, it is very important to incorporate the safety technology as well as the performance improvement on tritium production and energy conversion. In the safety design and technology, coolant ingress in the blanket box structure is one of the most important events as the initiators. Especially the thermal hydraulics in the pebble bed in the case of the high pressure coolant ingress is very important to evaluate the pressure propagation and coolant flow behavior. This paper presents the preliminary results of the pressure loss characteristics by the coolant ingress in the pebble bed. Experiments have been performed by using alumina pebble bed (4 litter maximum volume of the pebble bed) and nitrogen gas to simulate the helium coolant ingress into breeder and multiplier pebble beds. Reservoir tank of 10 liter is filled with 1.0 MPa nitrogen. The nitrogen gas is released at the bottom part of the alumina pebble bed whose upper part is open to the atmosphere. The pressure change in the pebble bed is measured to identify the pressure loss. The measured values are compared with the predicted values by Ergun's equation, which is the correlation equation on pressure loss of the flow through porous medium. By the results of the experiments with no constraint on the alumina pebble bed, it was clarified that the measured value agreed in the lower flow rate. However, in the higher flow rate where the pressure loss is high, the measured value is about half of the predicted value. The differences between the measured values and the predicted values will be discussed from

  9. Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. Savu

    2015-01-01

    Full Text Available We report the design and fabrication of microreactors and sensors based on metal nanoparticle-decorated carbon nanotubes. Titanium adhesion layers and gold films were sputtered onto Si/SiO2 substrates for obtaining the electrical contacts. The gold layers were electrochemically thickened until 1 μm and the electrodes were patterned using photolithography and wet chemical etching. Before the dielectrophoretic deposition of the nanotubes, a gap 1 μm wide and 5 μm deep was milled in the middle of the metallic line by focused ion beam, allowing the fabrication of sensors based on suspended nanotubes bridging the electrodes. Subsequently, the sputtering technique was used for decorating the nanotubes with metallic nanoparticles. In order to test the as-obtained sensors, microreactors (100 μL volume were machined from a single Kovar piece, being equipped with electrical connections and 1/4′′ Swagelok-compatible gas inlet and outlets for controlling the atmosphere in the testing chamber. The sensors, electrically connected to the contact pins by wire-bonding, were tested in the 10−5 to 10−2 W working power interval using oxygen as target gas. The small chamber volume allowed the measurement of fast characteristic times (response/recovery, with the sensors showing good sensitivity.

  10. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs)

    Science.gov (United States)

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-04-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modelled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modelled demonstrated a nice fitting of modelling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability and discrimination ability of the array was achieved.

  11. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Marcello Mascini

    2018-04-01

    Full Text Available In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved.

  12. Simulation and characterization of silicon nanopillar-based nanoparticle sensors

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Huang, Kai; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2013-05-01

    Nanopillar-based structures hold promise as highly sensitive resonant mass sensors for a new generation of aerosol nanoparticle (NP) detecting devices because of their very small masses. In this work, the possible use of a silicon nanopillar (SiNPL) array as a nanoparticle sensor is investigated. The sensor structures are created and simulated using a finite element modeling (FEM) tool of COMSOL Multiphysics 4.3 to study the resonant characteristics and the sensitivity of the SiNPL for femtogram NP mass detection. Instead of using 2D plate models or simple single 3D cylindrical pillar models, FEM is performed with SiNPLs in 3D structures based on the real geometry of experimental SiNPL arrays employing a piezoelectric stack for resonant excitation. In order to achieve an optimal structure and investigate the etching effect on the fabricated resonators, SiNPLs with different designs of meshes, sidewall profiles, lengths, and diameters are simulated and analyzed. To validate the FEM results, fabricated SiNPLs with a high aspect ratio of ~60 are employed and characterized in resonant frequency measurements. SiNPLs are mounted onto a piezoactuator inside a scanning electron microscope (SEM) chamber which can excite SiNPLs into lateral vibration. The measured resonant frequencies of the SiNPLs with diameters about 650 nm and heights about 40 μm range from 434.63 kHz to 458.21 kHz, which agree well with those simulated by FEM. Furthermore, the deflection of a SiNPL can be enhanced by increasing the applied piezoactuator voltage. By depositing different NPs (i.e., carbon, TiO2, SiO2, Ag, and Au NPs) on the SiNPLs, the decrease of the resonant frequency is clearly shown confirming their potential to be used as airborne NP mass sensor with femtogram resolution level.

  13. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    International Nuclear Information System (INIS)

    Chambers, John

    2017-01-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  14. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, John, E-mail: jchambers@carnegiescience.edu [Carnegie Institution for Science Department of Terrestrial Magnetism, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)

    2017-11-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  15. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  16. Low-cost mercury (II) ion sensor by biosynthesized gold nanoparticles (AuNPs)

    Science.gov (United States)

    Guerrero, Jet G.; Candano, Gabrielle Jackie; Mendoza, Aileen Nicole; Paderanga, Marciella; Cardino, Krenz John; Locsin, Alessandro; Bibon, Cherilou

    2017-11-01

    Biosynthesis of gold nanoparticles has attracted the curiosity of scientists over the past few decades. Nanoparticles have been proven to exhibit enhanced properties and offer a variety of applications in different fields of study. Utilizing nanoparticles instead of bulky equipment and noxious chemicals has become more convenient; reagents needed for synthesis have been proven to be benign (mostly aqueous solutions) and are cost-effective. In this study, gold nanoparticles were biosynthesized using guyabano (Annonamuricata) peel samples as the source of reducing agents. The optimum concentration ratio of gold chloride to guyabano extract was determined to be 1:7. Characterization studies were accomplished using UV Vis Spectroscopy, Fourier Transform Electron Microscopy (FTIR) and Scanning Electron Microscopy (SEM). Spectroscopic maximum absorbance was found to be at 532 nm thereby confirming the presence of gold nanoparticles. Hydroxyl (O-H stretching), carbonyl (C=O stretching), and amide (N-H stretching) functional groups shown in the FTIR spectra are present on possible reducing agents such as phenols, alkaloids, and saponins found in the plant extract. SEM images revealed spherical shaped nanoparticles with mean diameter of 23.18 nm. It was observed that the bio-synthesized AuNPs were selective to mercury ions through uniform color change from wine red to yellow. A novel smartphone-based mercury (II) ions assay was developed using the gold nanoparticles. A calibration curve correlated the analytical response (Red intensity) to the concentrations of Hg 2+ ions. Around 94% of the variations in the intensity is accounted for by the variations in the concentration of mercury (II) ions suggesting a good linear relationship between the two variables. A relative standard deviation (RSD) of less than 1% was achieved at all individual points. The metal sensor displayed a sensitivity of 0.039 R.I./ppm with an LOD of 93.79 ppm. Thus, the bio-fabricated gold nanoparticles

  17. Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A. [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • Compression tests of highly neutron irradiated beryllium pebbles have been performed. • Irradiation hardening of beryllium pebbles decreases the steady-state strain-rates. • The steady-state strain-rates of irradiated beryllium pebbles exceed their swelling rates. - Abstract: Results: of mechanical compression tests of irradiated and non-irradiated beryllium pebbles with diameters of 1 and 2 mm are presented. The neutron irradiation was performed in the HFR in Petten, The Netherlands at 686–968 K up to 1890–2950 appm helium production. The irradiation at 686 and 753 K cause irradiation hardening due to the gas bubble formation in beryllium. The irradiation-induced hardening leads to decrease of steady-state strain-rates of irradiated beryllium pebbles compared to non-irradiated ones. In contrary, after irradiation at higher temperatures of 861 and 968 K, the steady-state strain-rates of the pebbles increase because annealing of irradiation defects and softening of the material take place. It was shown that the steady-state strain-rates of irradiated beryllium pebbles always exceed their swelling rates.

  18. Year One Summary of X-energy Pebble Fuel Development at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McMurray, Jake W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunt, Rodney D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Trammell, Michael P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Daniel R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blamer, Brandon J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reif, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Howard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.

  19. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices.

    Science.gov (United States)

    Zheng, Z Q; Yao, J D; Wang, B; Yang, G W

    2015-06-16

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  20. Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase.

    Science.gov (United States)

    Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei; Chiang, Chia-Chin

    2018-04-16

    In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future.

  1. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    Science.gov (United States)

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. An Analysis of Fuel Region to Region Dancoff Factor with the Random Mixture Effects of Moderator and Fuel Pebbles

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Hong Chul; Kim, Jong Kyung; Noh, Jae Man

    2009-01-01

    Dancoff factor is an entering probability of the neutron escaped from specific fuel kernel to another one without the interaction with moderators. In order to analytically evaluate Dancoff factor considering double-heterogeneous effect, inter-pebble and intra-pebble Dancoff factors should be calculated, respectively. Intra-pebble Dancoff factor related with the fuel kernels in one pebble was analyzed in the past study. The fuel and moderator pebbles are randomly located in the pebble-type reactor. For the evaluation of inter-pebble Dancoff factor, a repetition of simple pebble structure is commonly assumed to simulate the complex geometry of pebble-type reactor. The evaluation using these structures can be underestimated because of the shadowing effects generated from the repetition of simple pebble structure. Fuel region to region Dancoff factor (FRDF) was defined as an entering probability of the neutron escaped from a specific fuel region to another one without any collision with moderator for a preliminary evaluation of inter-pebble Dancoff factor. To solve the underestimation problem of FRDF from the shadow effect, the specific pebble was assumed and FRDF was evaluated with the approximation method proposed in this study

  3. Computational Investigation of On-Line Interrogation of Pebble Bed Reactor Fuel

    Science.gov (United States)

    Hawari, A. I.; Chen, Jianwei

    2005-10-01

    Pebble bed reactors are characterized by multipass fuel systems in which spherical fuel pebbles are circulated through the core until they reach a proposed burnup limit (80000-100000 MWD/MTU). For such reactors, the fuel is assayed on-line to ensure that the burnup limit is not breached. We considered assaying the fuel using an HPGe detector to perform passive gamma-ray spectrometry of fission products. Since neither fresh nor irradiated fuel is readily available, computer simulations were utilized to identify the radionuclides that can be used as burnup indicators, and to visualize the gamma-ray spectra at various levels of burnup. Specifically, we used the ORIGEN-MONTEBURNS-MCNP code system. This allowed the establishment of the burnup dependent one-group gas reactor cross-sections for the radionuclides of interest. Subsequently, ORIGEN was used to simulate in-core pebble depletion to establish the irradiated pebble isotopics. Finally, the codes MCNP and SYNTH were used to simulate the response of the HPGe gamma-ray spectrometer. The results show that absolute and relative indicators can be used on-line to determine unambiguously the enrichment and burnup on a pebble-by-pebble basis. The activity of Cs-137 or the activity ratio of Co-60/Cs-134 can be combined with the activity ratio of Np-239/I-132 to yield the enrichment and burnup information. To use the relative indicators, a relative efficiency calibration of the gamma-ray spectrometer can be performed using the La-140 gamma lines that are emitted by the irradiated pebble. I-132, Cs-134, Cs-137, La-140, and Np-239 are produced upon the irradiation of the fuel. Co-60 is produced by doping the fuel with a small amount (/spl sim/100 ppm) of Co-59. Using this approach, the uncertainty in burnup determination due to factors such as power history variation, detector efficiency calibration, and counting statistics is expected to remain in the range of /spl plusmn/5% to /spl plusmn/10%.

  4. Analysis of impact of mixing flow on the pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Hao Chen; Li Fu; Guo Jiong

    2014-01-01

    The impact of the mixing flow in the pebble flow on pebble bed high temperature gas cooled reactor (HTR) was analyzed in the paper. New code package MFVSOP which can simulate the mixing flow was developed. The equilibrium core of HTR-PM was selected as reference case, the impact of the mixing flow on the core parameters such as core power peak factor, power distribution was analyzed with different degree of mixing flow, and uncertainty analysis was carried out. Numerical results showed that the mixing flow had little impact on key parameters of pebble bed HTR, and the multiple-pass-operation-mode in pebble bed HTR can reduce the uncertainty arouse from the mixing flow. (authors)

  5. Production of various sizes and some properties of beryllium pebbles by the rotating electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Iwadachi, T.; Sakamoto, N.; Nishida, K. [NGK Insulators Ltd., Nagoya (Japan); Kawamura, H.

    1998-01-01

    The particle size distribution of beryllium pebbles produced by the rotating electrode method was investigated. Particle size depends on some physical properties and process parameters, which can practicaly be controlled by varying electrode angular velocities. The average particle sizes produced were expressed by the hyperbolic function with electrode angular velocity. Particles within the range of 0.3 and 2.0 mm in diameter are readily produced by the rotating electrode method while those of 0.2 mm in diameter are also fabricable. Sphericity and surface roughness were good in each size of pebble. Grain sizes of the pebbles are 17 {mu} m in 0.25 mm diameter pebbles and 260 {mu} m in 1.8 mm diameter pebbles. (author)

  6. Nitrophenol chemi-sensor and active solar photocatalyst based on spinel hetaerolite nanoparticles.

    Science.gov (United States)

    Khan, Sher Bahadar; Rahman, Mohammed M; Akhtar, Kalsoom; Asiri, Abdullah M; Rub, Malik Abdul

    2014-01-01

    In this contribution, a significant catalyst based on spinel ZnMn2O4 composite nanoparticles has been developed for electro-catalysis of nitrophenol and photo-catalysis of brilliant cresyl blue. ZnMn2O4 composite (hetaerolite) nanoparticles were prepared by easy low temperature hydrothermal procedure and structurally characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and UV-visible spectroscopy which illustrate that the prepared material is optical active and composed of well crystalline body-centered tetragonal nanoparticles with average size of ∼ 38 ± 10 nm. Hetaerolite nanoparticles were applied for the advancement of a nitrophenol sensor which exhibited high sensitivity (1.500 µAcm(-2) mM(-1)), stability, repeatability and lower limit of detection (20.0 µM) in short response time (10 sec). Moreover, hetaerolite nanoparticles executed high solar photo-catalytic degradation when applied to brilliant cresyl blue under visible light.

  7. Conceptual study of ferromagnetic pebbles for heat exhaust in fusion reactors with short power decay length

    Directory of Open Access Journals (Sweden)

    N. Gierse

    2015-03-01

    The key results of this study are that very high heat fluxes are accessible in the operation space of ferromagnetic pebbles, that ferromagnetic pebbles are compatible with tokamak operation and current divertor designs, that the heat removal capability of ferromagnetic pebbles increases as λq decreases and, finally, that for fusion relevant values of q∥ pebble diameters below 100 μm are required.

  8. Fabrication of Li{sub 4}SiO{sub 4} pebbles by a sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiangwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wen Zhaoyin [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)], E-mail: zywen@mail.sic.ac.cn; Xu Xiaogang; Liu Yu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2010-04-15

    Li{sub 4}SiO{sub 4} pebbles are considered as candidate ceramic breeder materials in many blanket designs. In this work, Li{sub 4}SiO{sub 4} pebbles with adequate sphericity were fabricated by a water-based sol-gel process using LiOH and SiO{sub 2} (aerosil) as the raw materials, which has not been reported for fabrication of Li{sub 4}SiO{sub 4} pebbles previously. Thermal analysis, phase analysis and morphological observations were carried out systematically. The effects of LiOH/C{sub 6}H{sub 8}O{sub 7} molar ratios and sintering temperature on the microstructure and density of the pebbles were discussed. Experimental results showed that when the LiOH/C{sub 6}H{sub 8}O{sub 7} molar ratio was 3, the microstructure of the Li{sub 4}SiO{sub 4} pebbles was the most favorable. While sintered at 900 deg. C for 4 h, Li{sub 4}SiO{sub 4} pebbles with about 1.2 mm in diameter were obtained and the density of the pebbles achieved about 74%.

  9. Tritium release and retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A.; Klimenkov, M.; Kolb, M.; Vladimirov, P.; Kurinskiy, P.; Schneider, H.-C. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Til, S. van; Magielsen, A.J. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-11-15

    The current helium cooled pebble bed (HCPB) tritium breeding blanket concept for fusion reactors includes a bed of 1 mm diameter beryllium pebbles to act as a neutron multiplier. Beryllium pebbles, fabricated by the rotating electrode method, were neutron irradiated in the HFR in Petten within the HIDOBE-01 experiment. This study presents tritium release and retention properties and data on microstructure evolution of beryllium pebbles irradiated at 630, 740, 873, 948 K up to a damage dose of 18 dpa, corresponding to a helium accumulation of about 3000 appm. The measured cumulative released activity from the beryllium pebbles irradiated at 948 K was found to be significantly lower than the calculated value. After irradiation at 873 and 948 K scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed large pores or bubbles in the bulk and oxide films with a thickness of up to 8 μm at the surface of the beryllium pebbles. The radiation-enhanced diffusion of tritium and the formation of open porosity networks accelerate the tritium release from the beryllium pebbles during the high-flux neutron irradiation.

  10. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Science.gov (United States)

    Kolb, Matthias H. H.; Rolli, Rolf; Knitter, Regina

    2017-06-01

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20-30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  11. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    Science.gov (United States)

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  12. Transmutation of plutonium in pebble bed type high temperature reactors

    International Nuclear Information System (INIS)

    Bende, E.E.

    1997-01-01

    The pebble bed type High Temperature Reactor (HTR) has been studied as a uranium-free burner of reactor grade plutonium. In a parametric study, the plutonium loading per pebble as well as the type and size of the coated particles (CPs) have been varied to determine the plutonium consumption, the final plutonium burnup, the k ∞ and the temperature coefficients as a function of burnup. The plutonium loading per pebble is bounded between 1 and 3 gr Pu per pebble. The upper limit is imposed by the maximal allowable fast fluence for the CPs. A higher plutonium loading requires a longer irradiation time to reach a desired burnup, so that the CPs are exposed to a higher fast fluence. The lower limit is determined by the temperature coefficients, which become less negative with increasing moderator-actinide ratio. A burnup of about 600 MWd/kgHM can be reached. With the HTR's high efficiency of 40%, a plutonium supply of 1520 kg/GW e a is achieved. The discharges of plutonium and minor actinides are then 450 and 110 kg/GW e a, respectively. (author)

  13. Fabrication and characterization of lithium orthosilicate pebbles using LiOH as a new raw material

    International Nuclear Information System (INIS)

    Knitter, R.; Reimann, J.; Risthaus, P.; Boccaccini, L.V.; Piazza, G.

    2004-01-01

    For the European Helium Cooled Pebble Bed (HCPB) blanket slightly overstoichiometric lithium orthosilicate pebbles (Li 4 SiO 4 +SiO 2 ) have been chosen as one optional breeder material. This material is developed in collaboration between Research Centre Karlsruhe (FZK) and the Schott Glas, Mainz. The lithium orthosilicate (OSi) pebbles are fabricated by the melting and spraying method in a semi-industrial scale facility. In the past, the not enriched pebbles were produced from a mixture of Li 4 SiO 4 and SiO 2 powders, but due to the fact that enriched Li 4 SiO 4 is not available on the market, highly enriched carbonate powder was used that finally resulted in nonsatisfying pebble characteristics. Enriched LiOH powder is commercially available, therefore, a new production route was pursued based on the following, simplified reaction: 4 LiOH + SiO 2 → Li 4 SiO 4 + 2 H 2 O. The melting process of LiOH and SiO 2 is less difficult to control than the melting of Li 2 CO 3 in spite of the decomposition of water. The pebbles produced from LiOH and SiO 2 are similar to those produced from Li 4 SiO 4 and SiO 2 . They exhibit a distinctly dendritic structure and show only a small amount of pores and cracks. In addition to the main constituent Li 4 SiO 4 , the high temperature phase Li 6 Si 2 O 7 was detected due to the quenching process and the excess of SiO 2 . This minor constituent, however, decomposes to Li 4 SiO 4 and Li 2 SiO 3 during annealing. In compressive crush load tests of single pebbles a crush load of about 9.5 N was measured for pebbles after drying at 300degC. The chemical analysis revealed a further advantage of the use of LiOH in the melting process. As LiOH is available in high-purity quality, the pebbles contain impurities to a lower degree than pebbles produced from Li 4 SiO 4 or Li 2 CO 3 . In order to obtain characteristic pebble bed data, first Uniaxial Compression Tests (UCTs) were performed at temperatures between ambient and at 850deg

  14. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    Science.gov (United States)

    Nia, Pooria Moozarm; Meng, Woi Pei; Alias, Y.

    2015-12-01

    Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H2O2) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H2O2 was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1-5 mM with a limit of detection of 0.115 μmol l-1 and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l-1 (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H2O2 sensor.

  15. Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles for humidity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Popa, A., E-mail: popa@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Stan, M.; Socaci, C.; Biris, A.R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Katona, G. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania); Tudorache, F. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Petrila, I. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 27 Dimitrie Mangeron Street, 700050 Iasi (Romania); Iacomi, F. [Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania)

    2017-04-30

    Highlights: • Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles were synthesized. • The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM. • The reduction of graphene oxide was evidenced using XRD and FT-IR. • Sensitivity tests for relative humidity (RH) were carried out. • The composite sensor exhibited enhanced sensing response as compared with Fe:SnO{sub 2}. - Abstract: Reduced graphene oxide (rGO) decorated with Fe doped SnO{sub 2} nanoparticles were fabricated via the electrostatic interaction between positively charged modified Fe-doped SnO{sub 2} oxide and negatively charged graphene oxide (GO) in the presence of poly(allylamine) hydrochloride (PAH). The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM microsopy. For composite sample the diffraction patterns coincide well with those of SnO{sub 2}:Fe nanoparticles. The reduction of graphene oxide was evidenced using XRD and FT-IR spectroscopy. The formation of SnO{sub 2}:Fe-PAH-graphene composites was confirmed by FT-IR, Raman and EPR spectroscopy. Sensitivity tests for relative humidity (RH) measurements were carried out at five different concentrations of humid air at room temperature. The prepared composite sensor exhibited a higher sensing response as compared with Fe:SnO{sub 2} nanoparticles.

  16. Numerical characterization of thermo-mechanical performance of breeder pebble beds

    International Nuclear Information System (INIS)

    An, Zhiyong; Ying, Alice; Abdou, Mohamed

    2007-01-01

    A numerical approach using the discrete element method (DEM) has been applied to study the thermo-mechanical properties of ceramic breeder pebble beds. This numerical scheme is able to predict the inelastic behavior observed in a loading and unloading operation. In addition, it demonstrates that the average value of contact force increases linearly with overall pressure, but at a much faster rate, about 3.4 times the overall pressure increase rate. In this paper, the thermal creep properties of two different ceramic breeder pebble materials, Li 4 SiO 4 and Li 2 O, are also examined by the current numerical code. The difference found in the properties of candidate materials is reflected numerically in the overall strain in the pebble bed when the stress magnitude becomes smaller

  17. Numerical characterization of thermo-mechanical performance of breeder pebble beds

    International Nuclear Information System (INIS)

    An, Zhiyong; Ying, Alice; Abdou, Mohamed

    2008-01-01

    A numerical approach using the discrete element method (DEM) has been applied to study the thermo-mechanical properties of ceramic breeder pebble beds. This numerical scheme is able to predict the inelastic behavior observed in a loading and unloading operation. In addition, it demonstrates that the average value of contact force increases linearly with overall pressure, but at a much faster rate, about 3.4 times the overall pressure increase rate. In this paper, the thermal creep properties of two different ceramic breeder pebble materials, Li 4 SiO 4 and Li 2 O, are also examined by the current numerical code. The difference found in the properties of candidate materials is reflected numerically in the overall strain in the pebble bed when the stress magnitude becomes smaller. (author)

  18. Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions

    Science.gov (United States)

    Nasirian, Shahruz; Milani Moghaddam, Hossain

    2015-02-01

    In the present research, polyaniline assisted by TiO2:SnO2 nanoparticles was synthesized and deposited onto an epoxy glass substrate with Cu-interdigited electrodes for gas sensing application. To examine the efficiency of the polyaniline/TiO2:SnO2 nanocomposite (PTS) as a hydrogen (H2) gas sensor, its nature, stability, response, recovery/response time have been studied with a special focus on its ability to work at environmental conditions. H2 gas sensing results demonstrated that a PTS sensor with 20 and 10 wt% of anatase-TiO2 and SnO2 nanoparticles, respectively, has the best response time (75 s) with a recovery time of 117 s at environmental conditions. The highest (lowest) response (recovery time) was 6.18 (46 s) in PTS sensor with 30 and 15 wt% of anatase- (rutile-)TiO2 and SnO2 nanoparticles, respectively, at 0.8 vol.% H2 gas. Further, the H2 gas sensing mechanism of PTS sensor has also been studied.

  19. Numerical Simulation of Particle Flow Motion in a Two-Dimensional Modular Pebble-Bed Reactor with Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Guodong Liu

    2013-01-01

    Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.

  20. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Matthias H.H., E-mail: matthias.kolb@kit.edu; Rolli, Rolf; Knitter, Regina

    2017-06-15

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20–30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  1. Drucker-Prager-Cap creep modelling of pebble beds in fusion blankets

    International Nuclear Information System (INIS)

    Hofer, D.; Kamlah, M.

    2005-01-01

    Modelling of thermal and mechanical behaviour of pebble beds for fusion blankets is an important issue to understand the interaction of solid breeder and beryllium pebble beds with the surrounding structural material. Especially the differing coefficients of thermal expansion of these materials cause high stresses and strains during irradiation induced volumetric heating. To describe this process, the coupled thermomechanical behaviour of both pebble bed materials has to be modelled. Additionally, creep has to be considered contributing to bed deformations and stress relaxation. Motivated by experiments, we use a continuum mechanical approach called Drucker-Prager/Cap theory to model the macroscopic pebble bed behaviour. The model accounts for pressure dependent shear failure, inelastic hardening, and volumetric creep. The elastic part is described by a nonlinear elasticity law. The model has been implemented by user-defined routines in the commercial finite-element code ABAQUS. To check the numerics, the implementation is compared to an analytical solution. Furthermore, the Drucker-Prager/Cap tool is applied to a single ceramic breeder bed subject to creep under volumetric heating

  2. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average

  3. Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP

    Czech Academy of Sciences Publication Activity Database

    Grym, Jan; Procházková, Olga; Yatskiv, Roman; Piksová, K.

    2011-01-01

    Roč. 6, č. 392 (2011), 3921-3925 ISSN 1931-7573 R&D Projects: GA ČR GA102/09/1037; GA AV ČR KJB200670901 Institutional research plan: CEZ:AV0Z20670512 Keywords : nanoparticles * gas sensors * III-V semiconductors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.726, year: 2011

  4. A scaled experimental study of control blade insertion dynamics in Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buster, Grant C., E-mail: grant.buster@gmail.com; Laufer, Michael R.; Peterson, Per F.

    2016-07-15

    Highlights: • A granular dynamics scaling methodology is discussed. • Control blade insertion in a representative pebble-bed core is experimentally studied. • Control blade insertion forces and pebble displacements are experimentally measured. • X-ray tomography techniques are used to observe pebble displacement distributions. - Abstract: Direct control element insertion into a pebble-bed reactor core is proposed as a viable control system in molten-salt-cooled pebble-bed reactors. Unlike helium-cooled pebble-bed reactors, this reactor type uses spherical fuel elements with near-neutral buoyancy in the molten-salt coolant, thus reducing contact forces on the fuel elements. This study uses the X-ray Pebble Bed Recirculation Experiment facility to measure the force required to insert a control element directly into a scaled pebble-bed. The required control element insertion force, and therefore the contact force on fuel elements, is measured to be well below recommended limits. Additionally, X-ray tomography is used to observe how the direct insertion of a control element physically displaces spherical fuel elements. The tomography results further support the viability of direct control element insertion into molten-salt-cooled pebble-bed reactor cores.

  5. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  6. Application of discrete element method to study mechanical behaviors of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    An Zhiyong; Ying, Alice; Abdou, Mohamed

    2007-01-01

    In this paper, the discrete element method (DEM) approach has been applied to study mechanical behaviors of ceramic breeder pebble beds. Directly simulating the contact state of each individual particle by the physically based interaction laws, the DEM numerical program is capable of predicting the mechanical behaviors of non-standard packing structures. The program can also provide the data to trace the evolution of contact characteristics and forces as deformation proceeds, as well as the particle movement when the pebble bed is subjected to external loadings. Our numerical simulations focus on predicting the mechanical behaviors of ceramic breeder pebble beds, which include typical fusion breeder materials in solid breeder blankets. Current numerical results clearly show that the packing density and the bed geometry can have an impact on the mechanical stiffness of the pebble beds. Statistical data show that the contact forces are highly related to the contact status of the pebbles

  7. Comparison of Several Thermal Conductivity Constants for Thermal Hydraulic Calculation of Pebble Bed Reactor

    Science.gov (United States)

    Irwanto, Dwi; Setiadipura, Topan; Pramutadi, Asril

    2017-07-01

    There are two type of High Temperature Gas Reactor (HTGR), prismatic and pebble bed. Pebble Bed type has unique configuration because the fuels are randomly distributed inside the reactor core. In term of safety features, Pebble Bed Reactor (PBR) is one of the most promising reactor type in avoiding severe nuclear accidents. In order to analyze heat transfer and safety of this reactor type, a computer code is now under development. As a first step, calculation method proposed by Stroh [1] is adopted. An approach has been made to treat randomly distributed pebble balls contains fissile material inside the reactor core as a porous medium. Helium gas act as coolant on the reactor system are carrying heat flowing in the area between the pebble balls. Several parameters and constants are taken into account in the new developed code. Progress of the development of the code especially comparison of several thermal conductivity constants for a certain PBR-case are reported in the present study.

  8. MIT pebble bed reactor project

    Energy Technology Data Exchange (ETDEWEB)

    Kadak, Andrew C. [Massachusetts Institute of Technology, Cambridge (United States)

    2007-03-15

    The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

  9. MIT pebble bed reactor project

    International Nuclear Information System (INIS)

    Kadak, Andrew C.

    2007-01-01

    The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis

  10. THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. II. NUMERICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Karl Wahlberg; Johansen, Anders [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden); Syed, Mohtashim Bukhari; Blum, Jürgen [Technische Universität Braunschweig, Institut für Geophysik und extraterrestrische Physik, Mendelssohnstraße 3, D-38106 Braunschweig (Germany)

    2017-01-20

    Some scenarios for planetesimal formation go through a phase of collapse of gravitationally bound clouds of millimeter- to centimeter-size pebbles. Such clouds can form, for example, through the streaming instability in protoplanetary disks. We model the collapse process with a statistical model to obtain the internal structure of planetesimals with solid radii between 10 and 1000 km. During the collapse, pebbles collide, and depending on their relative speeds, collisions have different outcomes. A mixture of particle sizes inside a planetesimal leads to better packing capabilities and higher densities. In this paper we apply results from new laboratory experiments of dust aggregate collisions (presented in a companion paper) to model collision outcomes. We find that the internal structure of a planetesimal is strongly dependent on both its mass and the applied fragmentation model. Low-mass planetesimals have no/few fragmenting pebble collisions in the collapse phase and end up as porous pebble piles. The number of fragmenting collisions increases with increasing cloud mass, resulting in wider particle size distributions and higher density. The collapse is nevertheless “cold” in the sense that collision speeds are damped by the high collision frequency. This ensures that a significant fraction of large pebbles survive the collapse in all but the most massive clouds. Our results are in broad agreement with the observed increase in density of Kuiper Belt objects with increasing size, as exemplified by the recent characterization of the highly porous comet 67P/Churyumov–Gerasimenko.

  11. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    Science.gov (United States)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  12. Pore Scale Thermal Hydraulics Investigations of Molten Salt Cooled Pebble Bed High Temperature Reactor with BCC and FCC Configurations

    Directory of Open Access Journals (Sweden)

    Shixiong Song

    2014-01-01

    CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.

  13. Discussion on Design Transients of Pebble-bed High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Wang Yan; Li Fu; Zheng Yanhua

    2014-01-01

    In order to assure high quality for the components and their supports in the reactor coolant system, etc., some thermal-hydraulic transient conditions will be selected and researched for equipment design evaluation to satisfy the requirements ASME code, which are based on the conservative estimates of the magnitude and frequency of the temperature and pressure transients resulting from various operating conditions in the plant. In the mature design on pressurized water reactor, five conditions are considered. For the developing advanced pebble-bed high temperature gas-cooled reactor(HTGR), its design and operation has much difference with other reactors, so the transients of the pebble-bed high temperature gas-cooled reactor have distinctive characteristics. In this paper, the possible design transients of the pebble-bed HTGR will be discussed, and the frequency of design transients for equipment fatigue analysis and stress analysis due to cyclic stresses is also studied. The results will provide support for the design and construct of the pebble-bed HTGR. (author)

  14. Studies on air ingress for pebble bed reactors

    International Nuclear Information System (INIS)

    Moore, R.L.; Oh, C.H.; Merrill, B.J.; Petti, D.A.

    2002-01-01

    A loss-of-coolant accident (LOCA) has been considered a critical event for helium-cooled pebbled bed reactors. Following helium depressurization, it is anticipated that unless countermeasures are taken air will enter the core through the break and then by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure and graphite pebbles. Thus, without any mitigating features a LOCA will lead to an air ingress event. The INEEL is studying such an event with two well-respected light water reactor transient response codes: RELAP5/ATHENA and MELCOR. To study the degree of graphite oxidation occurring due to an air ingress event, a MELCOR model of a reference pebble bed design was constructed. A modified version of MELCOR developed at INEEL, which includes graphite oxidation capabilities, and molecular diffusion of air into helium was used for these calculations. Results show that the lower reflector graphite consumes all of the oxygen before reaching the core. The results also show a long time delay between the time that the depressurization phase of the accident is over and the time that natural circulation air through the core occurs. (author)

  15. Applications of micro/nanoparticles in microfluidic sensors: a review.

    KAUST Repository

    Jiang, Yusheng

    2014-04-21

    This paper reviews the applications of micro/nanoparticles in microfluidics device fabrication and analytical processing. In general, researchers have focused on two properties of particles--electric behavior and magnetic behavior. The applications of micro/nanoparticles could be summarized on the chip fabrication level and on the processing level. In the fabrication of microfluidic chips (chip fabrication level), particles are good additives in polydimethylsiloxane (PDMS) to prepare conductive or magnetic composites which have wide applications in sensors, valves and actuators. On the other hand, particles could be manipulated according to their electric and magnetic properties under external electric and magnetic fields when they are travelling in microchannels (processing level). Researchers have made a great progress in preparing modified PDMS and investigating the behaviors of particles in microchannels. This article attempts to present a discussion on the basis of particles applications in microfluidics.

  16. Functionalized Carbon Nanotubes with Gold Nanoparticles to Fabricate a Sensor for Hydrogen Peroxide Determination

    Directory of Open Access Journals (Sweden)

    Halimeh Rajabzade

    2012-01-01

    Full Text Available A highly sensitive electrode was prepared based on gold nanoparticles/nanotubes/ionic liquid for measurement of Hydrogen peroxide. Gold nanoparticles of 20–25 nm were synthesized on a nanotube carbon paste electrode by cyclic voltammetry technique while the coverage was controlled by applied potential and time. The gold nanoparticles were modified to form a monolayer on CNT, followed by decoration with ionic liquid for determination of hydrogen peroxide. The experimental conditions, applied potential and pH, for hydrogen peroxide monitoring were optimized, and hydrogen peroxide was determined amperometrically at 0.3 V vs. SCE at pH 7.0. Electrocatalytic effects of gold deposited CNT were observed with respect to unmodified one. The sensitivity obtained was 5 times higher for modified one. The presence of Au particles in the matrix of CNTs provides an environment for the enhanced electrocatalytic activities. The sensor has a high sensitivity, quickly response to H2O2 and good stability. The synergistic influence of MWNT, Au particles and IL contributes to the excellent performance for the sensor. The sensor responds to H2O2 in the linear range from 0.02 µM to 0.3 mM. The detection limit was down to 0.4 µM when the signal to noise ratio is 3.

  17. Prominent ethanol sensing with Cr2O3 nanoparticle-decorated ZnS nanorods sensors

    Science.gov (United States)

    Sun, Gun-Joo; Kheel, Hyejoon; Ko, Tae-Gyung; Lee, Chongmu; Kim, Hyoun Woo

    2016-08-01

    ZnS nanorods and Cr2O3 nanoparticle-decorated ZnS nanorods were synthesized by using facile hydrothermal techniques, and their ethanol sensing properties were examined. X-ray diffraction and scanning electron microscopy revealed good crystallinity and size uniformity for the ZnS nanorods. The Cr2O3 nanoparticle-decorated ZnS nanorod sensor showed a stronger response to ethanol than the pristine ZnS nanorod sensor. The responses of the pristine and the decorated nanorod sensors to 200 ppm of ethanol at 300 °C were 2.9 and 13.8, respectively. Furthermore, under these conditions, the decorated nanorod sensor showed a longer response time (23 s) and a shorter recovery time (20 s) than the pristine one did (19 and 35 s, respectively). Consequently, the total sensing time of the decorated nanorod sensor (42 s) was shorter than that of the pristine one (55 s). The decorated nanorod sensor showed excellent selectivity to ethanol over other volatile organic compound gases including acetone, methanol, benzene, and toluene whereas the pristine one failed to show selectivity to ethanol over acetone. The improved sensing performance of the decorated nanorod sensor is attributed to a modulation of the width of the conduction channel and the height of the potential barrier at the ZnS-Cr2O3 interface accompanying the adsorption and the desorption of ethanol gas, and the greater surface-to-volume ratio of the decorated nanorods which was greater than that of the pristine one due to the existence of the ZnS-Cr2O3 interface.

  18. Sensors based on Ag-loaded hematite (α-Fe2O3 nanoparticles for methyl mercaptan detection at room temperature

    Directory of Open Access Journals (Sweden)

    Daniel Garcia

    2017-06-01

    Full Text Available Sensors based on Ag/α-Fe2O3 nanoparticles have been prepared by the coprecipitation method for sensing methyl mercaptan at room temperature. X-ray diffraction patterns of samples matched perfectly with characteristic peaks of hematite with no peaks assigned to Ag even at the highest concentration. STEM images and EDX analysis revealed the presence of Ag nanoparticles (from 2 to 5 nm which were highly dispersed onto α-Fe2O3 surface with an Ag/Fe ratio from 0.014 to 0.099. The Ag nanoparticles were deposited on the hematite surface. Sensing tests of Ag-loaded hematite nanoparticles showed much higher response signal than the unmodified sensor. Hematite loaded with 3%(Wt Ag showed the highest response with a linear dependence from 20 to 80 ppm. The sensor also depicted a good selectivity and stability during 4 days with short recovery time. The high dispersion of reduced Ag evaluated by XPS analysis played an important chemical role in the sensing mechanism that favored the contact of CH3SH with oxygen.

  19. Letters initiating Clean Water Act 404(c) review of mining at Pebble deposit

    Science.gov (United States)

    Correspondence between EPA and the Pebble Limited Partnership and the State of Alaska initiating review under section 404(c) of the Clean Water Act of potential adverse environmental effects associated with mining the Pebble deposit in southwest Alaska.

  20. An analytical evaluation for spatial-dependent intra-pebble Dancoff factor and escape probability

    International Nuclear Information System (INIS)

    Kim, Songhyun; Kim, Hong-Chul; Kim, Jong Kyung; Kim, Soon Young; Noh, Jae Man

    2009-01-01

    The analytical evaluation of spatial-dependent intra-pebble Dancoff factors and their escape probabilities is pursued by the model developed in this study. Intra-pebble Dancoff factors and their escape probabilities are calculated as a function of fuel kernel radius, number of fuel kernels, and fuel region radius. The method in this study can be easily utilized to analyze the tendency of spatial-dependent intra-pebble Dancoff factor and spatial-dependent fuel region escape probability for the various geometries because it is faster than the MCNP method as well as good accuracy. (author)

  1. Characterisation and radiolysis of modified lithium orthosilicate pebbles with noble metal impurities

    DEFF Research Database (Denmark)

    Tamulevičius, Sigitas; Zariņš, A.; Valtenbergs, O.

    2017-01-01

    Modified lithium orthosilicate (Li4SiO4) pebbles with additions of titanium dioxide (TiO2) are suggested as an alternative tritium breeding ceramic for the European solid breeder test blanket module. The noble metals – platinum (Pt), gold (Au) and rhodium (Rh), can be introduced into the modified...... Li4SiO4 pebbles during the melt-based process, due to the corrosion of Pt-Rh and Pt-Au alloy crucible components. In this study, the surface microstructure, chemical and phase composition of the modified Li4SiO4 pebbles with different contents of the noble metals was analysed. The influence...

  2. Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells

    Directory of Open Access Journals (Sweden)

    Dusica eMaysinger

    2015-12-01

    Full Text Available Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs, carbon-based structures (C-dots, graphene and nanodiamonds and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases, ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim Measure what is measurable, and make measurable what is not so (Galileo Galilei.

  3. Experimental investigation on feasibility of two-region-designed pebble-bed high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yang Xingtuan; Hu Wenping; Jiang Shengyao

    2009-01-01

    Phenomenological experiments were performed on a 2-dimensional scaled model of the two-region designed pebble-bed high-temperature gas-cooled reactor core consisting of the distinct fuel pebble region and graphite pebble region. Issues with respect to the feasibility of the two-region design, including the establishment of the two-region arrangement, the mixing zone between the two regions, and the stagnant zone existence, were investigated. Three equilibrium conditions were proposed to evaluate the stable two-region arrangement formation. The general characteristics of the flow of the pebble bed were analyzed on basis of the observed phenomenon. It was found that a stable two-region arrangement was formed under the experimental conditions: the pebbles' motion was to some extent random but also confined by the neighbors of pebbles so that the mixing zone is constrained to a reasonable size. Guide plates utilized to improve mixing are proved to be effective without noticeable effect on the two-region arrangement features. Stagnant zones were observed under the experimental conditions and they were expected to be avoided by improving the design of the experimental setup. (author)

  4. Gold nanoparticle-based fluorescent sensor for the analysis of dithiocarbamate pesticides in water

    DEFF Research Database (Denmark)

    Senkbeil, Silja; Lafleur, Josiane P.; Jensen, Thomas Glasdam

    2012-01-01

    Pesticides play a key role in the high yields achieved in modern agricultural food production. Besides their positive effect on increasing productivity they are intentionally toxic, often towards non-target organisms and contaminated food products can have a serious impact on human...... and environmental health. This paper demonstrates the potential of a gold nanoparticle-based microfluidic sensor for in field detection of dithiocarbamate pesticides at remote locations. Combining the attractive optical properties of gold nanoparticles with on chip mixing and detection, using a simple digital...

  5. Geochemical fingerprints and pebbles zircon geochronology

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 7. Geochemical fingerprints and pebbles zircon geochronology: Implications for the provenance and tectonic setting of Lower Cretaceous sediments in the Zhucheng Basin (Jiaodong peninsula, North China). Jin-Long Ni Jun-Lai Liu Xiao-Ling Tang ...

  6. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    Science.gov (United States)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.

  7. Test-element assembly and loading parameters for the in-pile test of HCPB ceramic pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der E-mail: vanderlaan@nrg-nl.com; Boccaccini, L.V.; Conrad, R.; Fokkens, J.H.; Jong, M.; Magielsen, A.J.; Pijlgroms, B.J.; Reimann, J.; Stijkel, M.P.; Malang, S

    2002-11-01

    In the framework of developing the helium cooled pebble-bed (HCPB) blanket an irradiation test of pebble-bed assemblies is prepared at the HFR Petten. The test objective is to concentrate on the effect of neutron irradiation on the thermal-mechanical behaviour of the HCPB breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. The paper reports on the project status, and presents the results of pre-tests, material characteristics, the manufacturing of the pebble-bed assemblies, and the nuclear and thermo-mechanical loading parameters.

  8. The importance of the AVR pebble-bed reactor for the future of nuclear power

    International Nuclear Information System (INIS)

    Pohl, P.

    2006-01-01

    The AVR pebble-bed high temperature gas-cooled reactor (HTGR) at Juelich (Germany)) operated from 1967 to 1988 and was certainly the most important HTGR project of the past. The reactor was the mass test bed for all development steps of HTGR pebble fuel. Some early fuel charges failed under high temperature conditions and contaminated the reactor. An accurate pebble measurement (Cs 137) allowed to clean the core from unwanted pebbles after 1981. The coolant activity went down and remained very low for the remaining reactor operation. A melt-wire experiment in 1986 revealed max. coolant temperatures of >1280 deg. C and fuel temperatures of >1350 deg. C, explained by under-estimated bypasses. The fuel still in the core achieved high burn-ups and showed under the extreme temperature conditions excellent fission product retention. Thus, the AVR operation qualified the HTGR fuel, and an average discharge burn-up of 112% fifa revealed an excellent fuel economy of the pebble-bed reactor. Furthermore, the AVR operation offers many meaningful data for code-to-experiment comparisons. (authors)

  9. Numerical modelling for the effective thermal conductivity of lithium meta titanate pebble bed with different packing structures

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Maulik, E-mail: maulikpanchal@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Chaudhuri, Paritosh [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Van Lew, Jon T; Ying, Alice [UCLA, MAE Department, Los Angeles, CA 90095-1597 (United States)

    2016-11-15

    Highlights: • The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of TBM in ITER. • The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. • k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results. • The numerically-determined k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data and Zehner-Schlunder correlation. - Abstract: The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of IN LLCB TBM (Indian Lead Lithium Ceramic Breeder Test Blanket Module). The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. The uniform packing structures of Li{sub 2}TiO{sub 3} pebble bed are modelled by using the simple cubic, body centered cubic and face centered cubic arrangement. The packing structure of the RCP bed of Li{sub 2}TiO{sub 3} pebbles is generated with the discrete element method (DEM) code. k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results from literature. The numerically determined k{sub eff} of the Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data.

  10. Gas Reactor International Cooperative Program. Interim report. Safety and licensing evaluaion of German Pebble Bed Reactor concepts

    International Nuclear Information System (INIS)

    1978-09-01

    The Pebble Bed Gas Cooled Reactor, as developed in the Federal Republic of Germany, was reviewed from a United States Safety and Licensing perspective. The primary concepts considered were the steam cycle electric generating pebble bed (HTR-K) and the process heat pebble bed (PNP), although generic consideration of the direct cycle gas turbine pebble bed (HHT) was included. The study examines potential U.S. licensing issues and offers some suggestions as to required development areas

  11. Surface plasmon resonance sensor based on golden nanoparticles and cold vapour generation technique for the detection of mercury in aqueous samples

    Science.gov (United States)

    Castillo, Jimmy; Chirinos, José; Gutiérrez, Héctor; La Cruz, Marie

    2017-09-01

    In this work, a surface plasmon resonance sensor for determination of Hg based on golden nanoparticles was developed. The sensor follows the change of the signal from solutions in contact with atomic mercury previously generated by the reaction with sodium borohydride. Mie theory predicts that Hg film, as low as 5 nm, induced a significant reduction of the surface plasmon resonance signal of 40 nm golden nanoparticles. This property was used for quantification purposes in the sensor. The device provide limits of detection of 172 ng/L that can compared with the 91 ng/L obtained with atomic fluorescence, a common technique used for Hg quantification in drinking water. This result was relevant, considering that it was not necessary to functionalize the nanoparticles or use nanoparticles deposited in a substrate. Also, thanks that Hg is released from the matrix, the surface plasmon resonance signal was not affected by concomitant elements in the sample.

  12. A prediction model for the effective thermal conductivity of mono-sized pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • One new method to couple the contact area with bed strain is developed. • The constant coefficient to correlate the effect of gas flow is determined. • This model is valid for various cases, and its advantages are showed obviously. - Abstract: A model is presented here to predict the effective thermal conductivity of porous medium packed with mono-sized spherical pebbles, and it is valid when pebbles’ size is far less than the characteristic length of porous medium just like the fusion pebble beds. In this model, the influences of parameters such as properties of pebble and gas materials, bed porosity, pebble size, gas flow, contact area, thermal radiation, contact resistance, etc. are all taken into account, and one method to couple the contact areas with bed strains is also developed and implemented preliminarily. Compared with available theoretical models, CFD numerical simulations and experimental data, this model is verified to be successful to forecast the bed effective thermal conductivity in various cases and its advantages are also showed obviously. Especially, the convection in pebble beds is focused on and a constant coefficient C to correlate the effect of gas flow is determined for the fully developed region of beds by numerical simulation, which is close to some experimental data.

  13. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Hiruta, Mie; Johnson, Gannon [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Rostamian, Maziar, E-mail: mrostamian@asme.org [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Ougouag, Abderrafi M. [Idaho National Laboratory, 2525 N Fremont Avenue, Idaho Falls, ID 83401 (United States); Bertino, Massimo; Franzel, Louis [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States); Tokuhiro, Akira [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States)

    2013-10-15

    Highlights: • Custom-built high temperature, high pressure tribometer is designed. • Two different wear phenomena at high temperatures are observed. • Experimental wear results for graphite are presented. • The graphite wear dust production in a typical Pebble Bed Reactor is predicted. -- Abstract: This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  14. Investigation of effective thermal conductivity for pebble beds by one-way coupled CFD-DEM method for CFETR WCCB

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China); Chen, Youhua [University of Science and Technology of China, Hefei, Anhui 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2016-05-15

    Highlights: • A CFD-DEM coupled numerical model is built based on the prototypical blanket pebble bed. • The numerical model can be applied to simulate heat transfer of a pebble bed and estimate effective thermal conductivity. • The numerical model agrees well with the theoretical SZB model. • Effective thermal conductivity of pebble beds for WCCB is estimated by the current model. - Abstract: The mono-sized beryllium pebble bed and the multi-sized Li{sub 2}TiO{sub 3}/Be{sub 12}Ti mixed pebble bed are the main schemes for the Water-cooled ceramic breeder blanket (WCCB) of China Fusion Engineering Test Reactor (CFETR). And the effective thermal conductivity (k{sub eff}) of the pebble beds is important to characterize the thermal performance of WCCB. In this study, a one-way coupled CFD-DEM method was employed to simulate heat transfer and estimate k{sub eff}. The geometric topology of a prototypical blanket pebble bed was produced by the discrete element method (DEM). Based on the geometric topology, the temperature distribution and the k{sub eff} were obtained by the computational fluid dynamics (CFD) analysis. The current numerical model presented a good performance to calculate k{sub eff} of the beryllium pebble bed, and according to the modeling of the Li{sub 2}TiO{sub 3}/Be{sub 12}Ti mixed pebble bed, k{sub eff} was estimated with values ranged between 2.0 and 4.0 W/(m∙K).

  15. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases

  16. Numerical Simulation of a Coolant Flow and Heat Transfer in a Pebble Bed Reactor

    International Nuclear Information System (INIS)

    In, Wang-Kee; Kim, Min-Hwan; Lee, Won-Jae

    2008-01-01

    Pebble Bed Reactor(PBR) is one of the very high temperature gas cooled reactors(VHTR) which have been reviewed in the Generation IV International Forum as potential sources for future energy needs, particularly for a hydrogen production. The pebble bed modular reactor(PBMR) exhibits inherent safety features due to the low power density and the large amount of graphite present in the core. PBR uses coated fuel particles(TRISO) embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the PBR core during a reactor operation and the coolant flows around randomly distributed spheres. For the reliable operation and the safety of the PBR, it is important to understand the coolant flow structure and the fuel pebble temperature in the PBR core. There have been few experimental and numerical studies to investigate the fluid and heat transfer phenomena in the PBR core. The objective of this paper is to predict the fluid and heat transfer in the PBR core. The computational fluid dynamics (CFD) code, STAR-CCM+(V2.08) is used to perform the CFD analysis using the design data for the PBMR400

  17. Stability and convergence analysis of the quasi-dynamics method for the initial pebble packing

    International Nuclear Information System (INIS)

    Li, Y.; Ji, W.

    2012-01-01

    The simulation for the pebble flow recirculation within Pebble Bed Reactors (PBRs) requires an efficient algorithm to generate an initial overlap-free pebble configuration within the reactor core. In the previous work, a dynamics-based approach, the Quasi-Dynamics Method (QDM), has been proposed to generate densely distributed pebbles in PBRs with cylindrical and annular core geometries. However, the stability and the efficiency of the QDM were not fully addressed. In this work, the algorithm is reformulated with two control parameters and the impact of these parameters on the algorithm performance is investigated. Firstly, the theoretical analysis for a 1-D packing system is conducted and the range of the parameter in which the algorithm is convergent is estimated. Then, this estimation is verified numerically for a 3-D packing system. Finally, the algorithm is applied to modeling the PBR fuel loading configuration and the convergence performance at different packing fractions is presented. Results show that the QDM is efficient in packing pebbles within the realistic range of the packing fraction in PBRs, and it is capable in handling cylindrical geometry with packing fractions up to 63.5%. (authors)

  18. Development of a safeguards system for the THTR pebble bed reactor

    International Nuclear Information System (INIS)

    Engelhardt, H.

    1978-08-01

    This report provides a survey of the technical possibilities of safeguarding the THTR-300 pebble bed reactor in accordance with the NPT. Description of the reactor system, the operational mode, and the operator's material control system are presented in Sections 2, 3 and 4. A suggested safeguards approach which is based on an item counting of pebble elements with containment and surveillance as a supplementary measure is described in the Sections 5 and 6

  19. Application of a model to investigate the effective thermal conductivity of randomly packed fusion pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-05-15

    In our precious study, a prediction model, which calculates the effective thermal conductivity k{sub eff} of mono-sized pebble beds, has been developed and validated. Based on this model, here the effects of these influencing factors such as pebble size, thermal radiation, contact area, filling gas, gas flow, gas pressure, etc. on the k{sub eff} of randomly packed fusion pebble beds are studied and analyzed. The pebble beds investigated include Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3}, Li{sub 2}O, Be and BeO pebble beds. In the current study, many important and meaningful conclusions are derived and some of them are similar to the existing research results. Particularly, some critters that under which conditions the effect of some influencing factors can be neglected or should be considered are also presented.

  20. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, P., E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Rolli, R. [Karlsruhe Institute of Technology, Institute for Applied Materials – Materials and Biomechanics (IAM-WBM), P.O. Box 3640, Karlsruhe 76021 (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2014-10-15

    Highlights: • Tritium release properties and characteristics of microstructure of beryllium pebbles having different sizes of grains were studied. • Fine-grained beryllium pebbles showed the best ability to release tritium compared to pebbles from another charges. • Be pebbles with the grain sizes exceeding 100 μm contain a great number of small pores and inclusions presumably referring to the history of material fabrication. • The sizes of grains are one of a key characteristic of microstructure which influences the parameters of tritium release. - Abstract: Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the design of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by NGK Insulators Ltd., Japan. It is notable that beryllium pebbles from Russian Federation and USA are also available and the possibility of their large-scale fabrication is under study. Presented work is dedicated to a study of characteristics of microstructure and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Materion Corporation, USA.

  1. Fabrication and characterization of 6Li-enriched Li2TiO3 pebbles for a high Li-burnup irradiation test

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2006-10-01

    Lithium titanate (Li 2 TiO 3 ) pebbles are considered to be a candidate material of tritium breeders for fusion reactor from viewpoints of easy tritium release at low temperatures (about 300degC) and chemical stability. In the present study, trial fabrication tests of 6 Li-enriched Li 2 TiO 3 pebbles of 1mm in diameter were carried out by a wet process with a dehydration reaction, and characteristics of the 6 Li-enriched Li 2 TiO 3 pebbles were evaluated for preparation of a high Li-burnup test in a testing reactor. Powder of 96at% 6 Li-enriched Li 2 TiO 3 was prepared by a solid state reaction, and two kinds of 6 Li-enriched Li 2 TiO 3 pebbles, namely un-doped and TiO 2 -doped Li 2 TiO 3 pebbles, were fabricated by the wet process. Based on results of the pebble fabrication tests, two kinds of 6 Li-enriched Li 2 TiO 3 pebbles were successfully fabricated with target values (density: 80-85%T.D., grain size: 2 TiO 3 pebbles was a satisfying value of about 1.05. Contact strength of these pebbles was about 6300MPa, which was almost the same as that of the Li 2 TiO 3 pebbles with natural Li. (author)

  2. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Jamaluddin Ahmed

    2010-06-01

    Full Text Available Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy2 (dppz2+ [bpy=2, 2′ -bipyridine, dppz=dipyrido( 3, 2-a: 2′ 3′-c phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy2 (dppz2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time – dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polysterene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals.

  3. Photoelectrochemical sensors for the rapid detection of DNA damage Induced by some nanoparticles

    International Nuclear Information System (INIS)

    Ahmed, M.J.; Zhang, B.T.; Guo, L.H.

    2010-01-01

    Photoelectrochemical sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy)2 (dppz)2+ [bpy=2, 2' -bipyridine, dppz=dipyrido (3, 2-a: 2' 3'-c) phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy)2 (dppz)2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine) was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time . dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polystyrene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals. (author)

  4. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages.

    Science.gov (United States)

    Trousil, Jiří; Filippov, Sergey K; Hrubý, Martin; Mazel, Tomáš; Syrová, Zdeňka; Cmarko, Dušan; Svidenská, Silvie; Matějková, Jana; Kováčik, Lubomír; Porsch, Bedřich; Konefał, Rafał; Lund, Reidar; Nyström, Bo; Raška, Ivan; Štěpánek, Petr

    2017-01-01

    We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    OpenAIRE

    Setiadipura, T; Irwanto, D; Zuhair, Zuhair

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor ...

  6. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    Science.gov (United States)

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe 3 O 4 @SiO 2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe 3 O 4 @SiO 2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Detection of Carbendazim Residues with a Colorimetric Sensor Based on Gold Nanoparticles

    Science.gov (United States)

    Ma, Y.; Jiang, H.; Shen, C.; Hou, Ch.; Huo, D.; Wu, H.; Yang, M.

    2017-07-01

    Carbendazim is among the most popular benzimidazole bactericides that are widely used to boost food production, and its residue poses a great threat to human health and the environment. In this paper, we presented a colorimetric sensor based on gold nanoparticles (Au-NPs) for the detection of carbendazim residues. The Au-NPs were stabilized by citric acid synthesized by chloroauric acid and sodium citrate with a diameter of about 13 nm. Upon reaction with carbendazim, the sensor gave a clear color change that could be distinguished with the naked eye. Thus we elaborated a new method for rapid determination of this benzimidazole bactericide. After optimization of the detection conditions, the sensor showed a very good linear relationship with the carbendazim concentrations varying from 10 to 600 ppb with a detection limit down to 3.4 ppb (S/N = 3). These preliminary results demonstrate that the presented sensor is promising for fast carbendazim analysis.

  8. Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer

    International Nuclear Information System (INIS)

    Juliasih, N; Buchari; Noviandri, I

    2017-01-01

    The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 – 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room. (paper)

  9. Porous structure analysis of large-scale randomly packed pebble bed in high temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Liu, Zhiyong; Sun, Yanfei; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Key Laboratory of Advanced Reactor Engineering and Safety; Li, Congxin [Ministry of Environmental Protection of the People' s Republic of China, Beijing (China). Nuclear and Radiation Safety Center

    2015-02-15

    A three-dimensional pebble bed corresponding to the randomly packed bed in the heat transfer test facility built for the High Temperature Reactor Pebble bed Modules (HTR-PM) in Shandong Shidaowan is simulated via discrete element method. Based on the simulation, we make a detailed analysis on the packing structure of the pebble bed from several aspects, such as transverse section image, longitudinal section image, radial and axial porosity distributions, two-dimensional porosity distribution and coordination number distribution. The calculation results show that radial distribution of porosity is uniform in the center and oscillates near the wall; axial distribution of porosity oscillates near the bottom and linearly varies along height due to effect of gravity; the average coordination number is about seven and equals to the maximum coordination number frequency. The fully established three-dimensional packing structure analysis of the pebble bed in this work is of fundamental significance to understand the flow and heat transfer characteristics throughout the pebble-bed type structure.

  10. Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Donglai; Hu, Bin; Kang, Mengmeng [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Wang, Minghua [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); He, Linghao [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Zhang, Zhihong, E-mail: mainzhh@163.com [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); Fang, Shaoming, E-mail: mingfang@zzuli.edu.cn [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China)

    2016-12-30

    Highlights: • An electrochemical sensor based on gold nanoparticles modified with rhodamine B hydrazide (AuNPs-RBH) was developed. • The sensor was applied in the highly sensitive and selective detection of Cu{sup 2+} in water. • The electrochemical sensor displays excellent regeneration, stability, and practicability for Cu{sup 2+} detection. • EIS was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. - Abstract: An electrochemical sensor based on gold nanoparticles (Au NPs) modified with rhodamine B hydrazide (RBH) (AuNPs-RBH) was developed and applied in the highly sensitive and selective detection of Cu{sup 2+} in water. RBH molecules were bounded onto the surface of AuNPs via the strong interaction between the amino groups and Au NPs. The chemical structure variations were characterized by X-ray photoelectron spectroscopy and fluoresence spectroscopy. Additionally, electrochemical impedance spectroscopy was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. Results show that the fabricated sensor exhibits good electrochemical performance because of the presence of Au NPs and high affinity with the Cu{sup 2+} resulting from the strong coordination chemistry between Cu{sup 2+} and RBH. The as-developed sensor towards detecting Cu{sup 2+} has a detection limitation of 12.5 fM within the concentration range of 0.1 pM–1 nM by using the electrochemical impedance technique. It also displays excellent selectivity, regeneration, stability, and practicability for Cu{sup 2+} detection. Therefore, the new strategy of the RBH-based electrochemical sensor exhibits great potential application in environment treatment and protection.

  11. Challenges in forming the solar system's giant planet cores via pebble accretion

    International Nuclear Information System (INIS)

    Kretke, K. A.; Levison, H. F.

    2014-01-01

    Though ∼10 M ⊕ mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  12. Experimental study of flow field characteristics on bed configurations in the pebble bed reactor

    International Nuclear Information System (INIS)

    Jia, Xinlong; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jia, Haijun; Jiang, Shengyao

    2017-01-01

    Highlights: • PTV study of flow fields of pebble bed reactor with different configurations are carried out. • Some criteria are proposed to quantify vertical velocity field and flow uniformity. • The effect of different pebble bed configurations is also compared by the proposed criteria. • The displacement thickness is used analogically to analyze flow field characteristics. • The effect of mass flow variation in the stagnated region of the funnel flow is measured. - Abstract: The flow field characteristics are of fundamental importance in the design work of the pebble bed high temperature gas cooled reactor (HTGR). The different effects of bed configurations on the flow characteristics of pebble bed are studied through the PTV (Particle Tracking Velocimetry) experiment. Some criteria, e.g. flow uniformity (σ) and mass flow level (α), are proposed to estimate vertical velocity field and compare the bed configurations. The distribution of the Δθ (angle difference between the individual particle velocity and the velocity vector sum of all particles) is also used to estimate the resultant motion consistency level. Moreover, for each bed configuration, the thickness of displacement is analyzed to measure the effect of the funnel flow zone based on the boundary layer theory. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity and other characteristics; and the sequence of levels of each estimation criterion is obtained for all bed configurations. In addition, a good design of the pebble bed configuration is suggested and these estimation criteria can be also applied and adopted in testing other geometry designs of pebble bed.

  13. A Nanostructured Sensor Based on Gold Nanoparticles and Nafion for Determination of Uric Acid

    Directory of Open Access Journals (Sweden)

    Natalia Stozhko

    2018-03-01

    Full Text Available The paper discusses the mechanism of uric acid (UA electrooxidation occurring on the surface of gold nanoparticles. It has been shown that the electrode process is purely electrochemical, uncomplicated with catalytic stages. The nanoeffects observed as the reduction of overvoltage and increased current of UA oxidation have been described. These nanoeffects are determined by the size of particles and do not depend on the method of particle preparation (citrate and “green” synthesis. The findings of these studies have been used to select a modifier for carbon screen-printed electrode (CSPE. It has been stated that CSPE modified with gold nanoparticles (5 nm and 2.5% Nafion (Nf may serve as non-enzymatic sensor for UA determination. The combination of the properties of nanoparticles and Nafion as a molecular sieve at the selected pH 5 phosphate buffer solution has significantly improved the resolution of the sensor compared to unmodified CSPE. A nanostructured sensor has demonstrated good selectivity in determining UA in the presence of ascorbic acid. The detection limit of UA is 0.25 μM. A linear calibration curve has been obtained over a range of 0.5–600 μM. The 2.5%Nf/Au(5nm/CSPE has been successfully applied to determining UA in blood serum and milk samples. The accuracy and reliability of the obtained results have been confirmed by a good correlation with the enzymatic spectrophotometric analysis (R2 = 0.9938 and the “added−found” technique (recovery close to 100%.

  14. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  15. Interim report on core physics and fuel cycle analysis of the pebble bed reactor power plant concept

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1977-12-01

    Calculations were made to predict the performance of a pebble bed reactor operated in a mode to produce fissile fuel (high conversion or breeding). Both a one pebble design and a design involving large primary feed pebbles and small fertile pebbles were considered. A relatively short residence time of the primary pebbles loaded with 233 U fuel was found to be necessary to achieve a high breeding ratio, but this leads to relatively high fuel costs. A high fissile inventory is associated with a low C/Th ratio and a high thorium loading, causing the doubling time to be long, even though the breeding ratio is high, and the fuel cost of electrical product to be high. Production of 233 U fuel from 235 U feed was studied and performances of the converter and breeder reactor concepts were examined varying the key parameters

  16. Features and validation of discrete element method for simulating pebble flow in reactor core

    International Nuclear Information System (INIS)

    Xu Yong; Li Yanjie

    2005-01-01

    The core of a High-Temperature Gas-cooled Reactor (HTGR) is composed of big number of fuel pebbles, their kinetic behaviors are of great importance in estimating the path and residence time of individual pebble, the evolution of the mixing zone for the assessment of the efficiency of a reactor. Numerical method is highlighted in modern reactor design. In view of granular flow, the Discrete Element Model based on contact mechanics of spheres was briefly described. Two typical examples were presented to show the capability of the DEM method. The former is piling with glass/steel spheres, which provides validated evidences that the simulated angles of repose are in good coincidence with the experimental results. The later is particle discharge in a flat- bottomed silo, which shows the effects of material modulus and demonstrates several features. The two examples show the DEM method enables to predict the behaviors, such as the evolution of pebble profiles, streamlines etc., and provides sufficient information for pebble flow analysis and core design. In order to predict the cyclic pebble flow in a HTGR core precisely and efficiently, both model and code improvement are needed, together with rational specification of physical properties with proper measuring techniques. Strategic and methodological considerations were also discussed. (authors)

  17. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Mie Hiruta; Gannon Johnson; Maziar Rostamian; Gabriel P. Potirniche; Abderrafi M. Ougouag; Massimo Bertino; Louis Franzel; Akira Tokuhiro

    2013-10-01

    This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  18. Nuclear safeguards considerations for pebble bed reactors (PBRs)

    International Nuclear Information System (INIS)

    Moses, David L.

    2012-01-01

    Recent reports by the Department of Energy National Laboratories have discussed safeguards considerations for low enriched uranium (LEU)-fueled pebble bed reactors (PBRs) and the need for bulk accountancy of the plutonium in “used fuel.” These reports fail to account for the degree of plutonium dilution in the graphitized-carbon pebbles that is sufficient to meet the International Atomic Energy Agency (IAEA) “provisional” guidelines for termination of safeguards on “measured discards.” The thrust of this finding is not to terminate safeguards but to limit the need for specific accountancy of plutonium in stored used fuel. While the residual uranium in the used fuel is not sufficiently diluted to meet the IAEA provisional guidelines for termination of safeguards, the estimated quantities of the uranium minor isotopes 232 U and 236 U in the used fuel at the target burnup of ∼90 Gigawatt-days per metric ton (GWD/MT) exceed standard specification limits for reprocessed uranium and will require extensive blending with either natural uranium or uranium enrichment tails to dilute the 236 U content to fall within specification. Hence, the PBR used fuel is less desirable for commercial reprocessing and reuse than that from light water reactors. Also the PBR specific activity of a reprocessed uranium isotopic mixture and its A 2 values for effective dose limits if released in a dispersible form during a transportation accident are more limiting than the equivalent values for light-water-reactor used fuel at 55 GWD/MT without accounting for the presence of the principal carry-over fission product (technetium, 99 Tc) and plutonium contamination. Thus, the potentially recoverable uranium from PBR used fuel carries reactivity penalties and radiological penalties likely greater than those for reprocessed uranium from light water reactors. These factors impact the economics of reprocessing, but a more significant consideration is that reprocessing technologies for

  19. 3D Nondestructive Visualization and Evaluation of TRISO Particles Distribution in HTGR Fuel Pebbles Using Cone-Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Gongyi Yu

    2017-01-01

    Full Text Available A nonuniform distribution of tristructural isotropic (TRISO particles within a high-temperature gas-cooled reactor (HTGR pebble may lead to excessive thermal gradients and nonuniform thermal expansion during operation. If the particles are closely clustered, local hotspots may form, leading to excessive stresses on particle layers and an increased probability of particle failure. Although X-ray digital radiography (DR is currently used to evaluate the TRISO distributions in pebbles, X-ray DR projection images are two-dimensional in nature, which would potentially miss some details for 3D evaluation. This paper proposes a method of 3D visualization and evaluation of the TRISO distribution in HTGR pebbles using cone-beam computed tomography (CBCT: first, a pebble is scanned on our high-resolution CBCT, and 2D cross-sectional images are reconstructed; secondly, all cross-sectional images are restructured to form the 3D model of the pebble; then, volume rendering is applied to segment and display the TRISO particles in 3D for visualization and distribution evaluation. For method validation, several pebbles were scanned and the 3D distributions of the TRISO particles within the pebbles were produced. Experiment results show that the proposed method provides more 3D than DR, which will facilitate pebble fabrication research and production quality control.

  20. Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide.

    Science.gov (United States)

    Alonso-Cristobal, P; Vilela, P; El-Sagheer, A; Lopez-Cabarcos, E; Brown, T; Muskens, O L; Rubio-Retama, J; Kanaras, A G

    2015-06-17

    In this work we demonstrate a DNA biosensor based on fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er nanoparticles and graphene oxide (GO). Monodisperse NaYF4:Yb,Er nanoparticles with a mean diameter of 29.1 ± 2.2 nm were synthesized and coated with a SiO2 shell of 11 nm, which allowed the attachment of single strands of DNA. When these DNA-functionalized NaYF4:Yb,Er@SiO2 nanoparticles were in the proximity of the GO surface, the π-π stacking interaction between the nucleobases of the DNA and the sp(2) carbons of the GO induced a FRET fluorescence quenching due to the overlap of the fluorescence emission of the NaYF4:Yb,Er@SiO2 and the absorption spectrum of GO. By contrast, in the presence of the complementary DNA strands, the hybridization leads to double-stranded DNA that does not interact with the GO surface, and thus the NaYF4:Yb,Er@SiO2 nanoparticles remain unquenched and fluorescent. The high sensitivity and specificity of this sensor introduces a new method for the detection of DNA with a detection limit of 5 pM.

  1. Quasi-direct numerical simulation of a pebble bed configuration. Part I: Flow (velocity) field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNS) of a pebble bed configuration has been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS and covariance of velocity field are extensively reported in this paper. -- Abstract: High temperature reactors (HTR) are being considered for deployment around the world because of their excellent safety features. The fuel is embedded in a graphite moderator and can sustain very high temperatures. However, the appearance of hot spots in the pebble bed cores of HTR's may affect the integrity of the pebbles. A good prediction of the flow and heat transport in such a pebble bed core is a challenge for available turbulence models and such models need to be validated. In the present article, quasi direct numerical simulations (q-DNS) of a pebble bed configuration are reported, which may serve as a reference for the validation of different turbulence modeling approaches. Such approaches can be used in order to perform calculations for a randomly arranged pebble bed. Simulations are performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Detailed flow analyses have shown complex physics flow behavior and make this case challenging for turbulence model validation. Hence, a wide range of qualitative and quantitative data for velocity and temperature field have been extracted for this benchmark. In the present article (part I), results related to the flow field (mean, RMS and covariance of velocity) are documented and discussed in detail. Moreover, the discussion regarding the temperature field will be published in a separate article

  2. The X-Ray Pebble Recirculation Experiment (X-PREX): Facility Description, Preliminary Discrete Element Method Simulation Validation Studies, and Future Test Program

    International Nuclear Information System (INIS)

    Laufer, Michael R.; Bickel, Jeffrey E.; Buster, Grant C.; Krumwiede, David L.; Peterson, Per F.

    2014-01-01

    This paper presents a facility description, preliminary results, and future test program of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Preliminary experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. Finally, this paper discusses additional studies in progress relevant to the design and analysis of pebble bed reactor cores including pebble recirculation in cylindrical core geometries and evaluation of forces on shut down blades inserted directly into a packed pebble bed. (author)

  3. Integration of Nanoparticle-Based Paper Sensors into the Classroom: An Example of Application for Rapid Colorimetric Analysis of Antioxidants

    Science.gov (United States)

    Sharpe, Erica; Andreescu, Silvana

    2015-01-01

    We describe a laboratory experiment that employs the Nanoceria Reducing Antioxidant Capacity (or NanoCerac) Assay to introduce students to portable nanoparticle-based paper sensors for rapid analysis and field detection of polyphenol antioxidants. The experiment gives students a hands-on opportunity to utilize nanoparticle chemistry to develop…

  4. Preparation of β-Li{sub 2}TiO{sub 3} pebbles by a modified indirect wet chemistry method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Long, E-mail: johnyucl@aliyun.com [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); Research Laboratory of Hydrothermal Chemistry, Faculty of Science, The Kochi University, Kochi 780-8520 (Japan); Wang, Fei; Zhang, Ai-Lin; Gao, Dan-Peng; Cao, Shu-Yao [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); Guo, Ying-Yan [College of Resources and Environment, Shaanxi University of Science & Technology, Xi’an 710021 (China); Hui, Huai-Bin [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); Technology Research Institute, Technical Center at Dongfeng Commercial Vehicle Company Limited, Wuhan 430056 (China); Hao, Xin [School of Management, Shaanxi University of Science & Technology, Xi’an 710021 (China); Wang, Dao-Yi [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, The Kochi University, Kochi 780-8520 (Japan)

    2015-12-15

    Graphical abstract: β-Li{sub 2}TiO{sub 3} pebbles with about 1.56 mm in diameter, a better sphericity of 1.02 and relative sintered density of 95.8%T.D. are successfully fabricated when sintered at 1100 °C for 6 h in ambient conditions. - Highlights: • β-Li{sub 2}TiO{sub 3} powders via hydrothermal method are used as raw materials. • A mixture of the acetone and carbon tetrachloride bath is used. • The wet gel pebbles can be fabricated at room temperature. - Abstract: β-Li{sub 2}TiO{sub 3} pebbles were fabricated by a modified indirect wet chemistry method. The first feature lies in that β-Li{sub 2}TiO{sub 3} powders via hydrothermal method were used as raw materials. The second one lies in that a mixture of the acetone and carbon tetrachloride was used for formation and aging of the pebbles at room temperature. The phase identification of the β-Li{sub 2}TiO{sub 3} sintered pebbles was conducted by the X-ray Diffraction analysis. The morphology of the sintered β-Li{sub 2}TiO{sub 3} pebbles was observed by Field Emission Scanning Electron Microscope. The experimental results show that the β-Li{sub 2}TiO{sub 3} pebbles with about 1.56 mm in diameter, a better sphericity of 1.02 and relative sintered density of 95.8%T.D. are successfully fabricated when sintered at 1100 °C for 6 h in ambient conditions. The grains in the pebbles are polyhedral brick-shaped, and homogeneous in size distribution. The morphology evolution and relative density of the β-Li{sub 2}TiO{sub 3} pebbles are governed by the sintering temperature, between 1050 °C and 1150 °C. More homogeneous in grain size, less porosity, and higher densification of the β-Li{sub 2}TiO{sub 3} pebbles can be obtained at 1100 °C.

  5. On-line interrogation of pebble bed reactor fuel using passive gamma-ray spectrometry

    Science.gov (United States)

    Chen, Jianwei

    The Pebble Bed Reactor (PBR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor. In addition to its inherently safe design, a unique feature of this reactor is its multipass fuel cycle in which graphite fuel pebbles (of varying enrichment) are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burnup limit (˜80,000--100,000 MWD/MTU). Unlike the situation with conventional light water reactors (LWRs), depending solely on computational methods to perform in-core fuel management will be highly inaccurate. As a result, an on-line measurement approach becomes the only accurate method to assess whether a particular pebble has reached its end-of-life burnup limit. In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry assay as an approach for on-line interrogation of PBR fuel for the simultaneous determination of burnup and enrichment on a pebble-by-pebble basis. Due to the unavailability of irradiated or fresh pebbles, Monte Carlo simulations were used to study the gamma-ray spectra of the PBR fuel at various levels of burnup. A pebble depletion calculation was performed using the ORIGEN code, which yielded the gamma-ray source term that was introduced into the input of an MCNP simulation. The MCNP simulation assumed the use of a high-purity coaxial germanium detector. Due to the lack of one-group high temperature reactor cross sections for ORIGEN, a heterogeneous MCNP model was developed to describe a typical PBR core. Subsequently, the code MONTEBURNS was used to couple the MCNP model and ORIGEN. This approach allowed the development of the burnup-dependent, one-group spectral-averaged PBR cross sections to be used in the ORIGEN pebble depletion calculation. Based on the above studies, a relative approach for performing the measurements was established. The approach is based on using the relative activities of Np-239/I-132 in combination

  6. Computational prediction of dust production in graphite moderated pebble bed reactors

    Science.gov (United States)

    Rostamian, Maziar

    The scope of the work reported here, which is the computational study of graphite wear behavior, supports the Nuclear Engineering University Programs project "Experimental Study and Computational Simulations of Key Pebble Bed Thermomechanics Issues for Design and Safety" funded by the US Department of Energy. In this work, modeling and simulating the contact mechanics, as anticipated in a PBR configuration, is carried out for the purpose of assessing the amount of dust generated during a full power operation year of a PBR. A methodology that encompasses finite element analysis (FEA) and micromechanics of wear is developed to address the issue of dust production and its quantification. Particularly, the phenomenon of wear and change of its rate with sliding length is the main focus of this dissertation. This work studies the wear properties of graphite by simulating pebble motion and interactions of a specific type of nuclear grade graphite, IG-11. This study consists of two perspectives: macroscale stress analysis and microscale analysis of wear mechanisms. The first is a set of FEA simulations considering pebble-pebble frictional contact. In these simulations, the mass of generated graphite particulates due to frictional contact is calculated by incorporating FEA results into Archard's equation, which is a linear correlation between wear mass and wear length. However, the experimental data by Johnson, University of Idaho, revealed that the wear rate of graphite decreases with sliding length. This is because the surfaces of the graphite pebbles become smoother over time, which results in a gradual decrease in wear rate. In order to address the change in wear rate, a more detailed analysis of wear mechanisms at room temperature is presented. In this microscale study, the wear behavior of graphite at the asperity level is studied by simulating the contact between asperities of facing surfaces. By introducing the effect of asperity removal on wear rate, a nonlinear

  7. Electrical behaviour of ceramic breeder blankets in pebble form after γ-radiation

    Directory of Open Access Journals (Sweden)

    E. Carella

    2015-07-01

    Full Text Available Lithium orthosilicate (Li4SiO4 ceramics in from of pebble bed is the European candidate for ITER testing HCPB (Helium Cooled Pebble Bed breeding modules. The breeder function and the shielding role of this material, represent the areas upon which attention is focused. Electrical measurements are proposed for monitoring the modification created by ionizing radiation and at the same time provide information on lithium movement in this ceramic structure. The electrical tests are performed on pebbles fabricated by Spray-dryer method before and after gamma-irradiation through a 60Co source to a fluence of 4.8 Gy/s till a total dose of 5 ∗ 105 Gy. The introduction of thermal annealing treatments during the electrical impedance spectroscopy (EIS measurements points out the recombination effect of the temperature on the γ-induced defects.

  8. Verification of two-temperature method for heat transfer process within a pebble fuel

    International Nuclear Information System (INIS)

    Yu Dali; Peng Minjun

    2014-01-01

    A typical pebble fuel that used in high temperature reactor (HTR), mainly consists of a graphite matrix with numerous dispersed tristructural-isotropic (TRISO) fuel particles and a surrounding thin non-fueled graphite shell. These high heterogeneities lead to difficulty in explicit thermal calculation of a pebble fuel. We proposed a two-temperature method (TTM) to calculate the temperature distribution within a pebble fuel. The method is not only convenient to perform but also gives more realistic results since particles and graphite matrix are considered separately while the traditional ways are considering the fuel zone as average heat generation source. The method is validated both by Computational Fluid Dynamics (CFD) method and Wiener bounds. Results show that TTM has a stable performance and high accuracy. (author)

  9. Progress on pebble bed experimental activity for the HE-FUS3 mock-ups

    International Nuclear Information System (INIS)

    Dell'Orco, G.; Sansone, L.; Simoncini, M.; Zito, D.

    2002-01-01

    The EU Long Term for DEMO Programme foresees the qualification of the reference design of the helium cooled pebble bed (HCPB) - test blanket module (TBM) to be tested in ITER Reactor. In this frame, FZK and ENEA have launched many experimental activities for the evaluation of the interactions between the Tritium breeder and neutron multiplier pebble beds and the steel containment walls. Main aim of these activities is the measuring the pebble bed effective thermal conductivity, the wall heat transfer coefficient as well as their dependency from the mechanical constraints. The paper presents the progress of the testing activity and results of the tests on two mock-up, called Tazza and Helichetta, carried out on the HE-FUS3 facility at ENEA Brasimone. (orig.)

  10. KüFA safety testing of HTR fuel pebbles irradiated in the High Flux Reactor in Petten

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O., E-mail: oliver.seeger@rwth-aachen.de [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Laurie, M., E-mail: mathias.laurie@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Abjani, A. El; Ejton, J.; Boudaud, D.; Freis, D.; Carbol, P.; Rondinella, V.V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Fütterer, M. [European Commission, Joint Research Centre (JRC), Institute for Energy and Transport (IET), Nuclear Reactor Integrity Assessment and Knowledge Management Unit, PO Box 2, 1755 ZG Petten (Netherlands); Allelein, H.-J. [Lehrstuhl für Reaktorsicherheit und -technik an der RWTH Aachen, Kackertstraße 9, 52072 Aachen (Germany)

    2016-09-15

    The Cold Finger Apparatus (KühlFinger-Apparatur—KüFA) in operation at JRC-ITU is designed to experimentally scrutinize the effects of Depressurization LOss of Forced Circulation (D-LOFC) accident scenarios on irradiated High Temperature Reactor (HTR) fuel pebbles. Up to 1600 °C, the reference maximum temperature for these accidents, high-quality German HTR fuel pebbles have already demonstrated a small fission product release. This paper discusses and compares the releases obtained from KüFA-testing the pebbles HFR-K5/3 and HFR-EU1/3, which were both irradiated in the High Flux Reactor (HFR) in Petten. We present the time-dependent fractional release of the volatile fission product {sup 137}Cs as well as the fission gas {sup 85}Kr for both pebbles. For HFR-EU1/3 the isotopes {sup 134}Cs and {sup 154}Eu as well as the shorter-lived {sup 110m}Ag have also been measured. A detailed description of the experimental setup and its accuracy is given. The data for the recently tested pebbles is discussed in the context of previous results.

  11. In-pile test of Li 2TiO 3 pebble bed with neutron pulse operation

    Science.gov (United States)

    Tsuchiya, K.; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H.

    2002-12-01

    Lithium titanate (Li 2TiO 3) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li 2TiO 3 pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li 2TiO 3 pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li 2TiO 3 pebble beds and effects of various parameters were evaluated. The ( R/ G) ratio of tritium release ( R) and tritium generation ( G) was saturated when the temperature at the outside edge of the Li 2TiO 3 pebble bed became 300 °C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  12. First results of the post-irradiation examination of the Ceramic Breeder materials from the Pebble Bed Assemblies Irradiation for the HCPB Blanket concept

    International Nuclear Information System (INIS)

    Hegeman, J.; Magielsen, A.J.; Peeters, M.; Stijkel, M.P.; Fokkens, J.H.; Laan, J.G. van der

    2006-01-01

    In the framework of developing the European Helium Cooled Pebble-Bed (HCPB) blanket an irradiation test of pebble-bed assemblies is performed in the HFR Petten. The experiment is focused on the thermo-mechanical behavior of the HCPB type breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. To achieve representative conditions a section of the HCPB is simulated by EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. Floating Eurofer-97 steel plates separate the pebble-beds. The structural integrity of the ceramic breeder materials is an issue for the design of the Helium Cooled Pebble Bed concept. Therefore the objective of the post irradiation examination is to study deformation of pebbles and the pebble beds and to investigate the microstructure of the ceramic pebbles from the Pebble Bed Assemblies. This paper concentrates on the Post Irradiation Examination (PIE) of the four ceramic pebble beds that have been irradiated in the Pebble Bed Assembly experiment for the HCPB blanket concept. Two assemblies with Li 4 SiO 4 pebble-beds are operated at different maximum temperatures of approximately 600 o C and 800 o C. Post irradiation computational analysis has shown that both have different creep deformation. Two other assemblies have been loaded with a ceramic breeder bed of two types of Li 2 TiO 3 beds having different sintering temperatures and consequently different creep behavior. The irradiation maximum temperature of the Li 2 TiO 3 was 800 o C. To support the first PIE result, the post irradiation thermal analysis will be discussed because thermal gradients have influence on the pebble-bed thermo-mechanical behavior and as a result it may have impact on the structural integrity of the ceramic breeder materials. (author)

  13. Renewable side reflector structure for a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Martin, Roger.

    1977-01-01

    The description is given of a renewable side reflector structure for a pebble bed high temperature reactor of the kind comprising a cylindrical graphite vessel constituting the neutron reflector, this vessel being filled with graphite pebbles containing the nuclear fuel and enclosed in a concrete protective containment. The internal peripheral area of the vessel is constituted by a line of adjacent graphite rods mounted so that they can rotate about their longitudinal axis and manoeuvrable from outside the concrete containment by means of a shaft passing into it [fr

  14. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  15. Pebble pile-up and planetesimal formation at the snow line

    Science.gov (United States)

    Drazkowska, J.

    2017-09-01

    The planetesimal formation stage represents a major gap in our understanding of planet formation process. Because of this, the late-stage planet accretion models typically make arbitrary assumptions about planetesimals and pebbles distribution, while the state-of-the-art dust evolution models predict no or little planetesimal formation. With this contribution, I present a step toward bridging the gap between the early and late stages of planet formation by models that connect dust coagulation and planetesimal formation. With the aid of evaporation, outward diffusion, and re-condensation of water vapor, pile-up of large pebbles is formed outside of the snow line that facilitates planetesimal formation by streaming instability.

  16. Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu; Gui, Nan; Yang, Xingtuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne 3083, VIC (Australia); Jiang, Shengyao, E-mail: shengyaojiang@sina.com [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Highlights: • Effect of an insert on improving flow uniformity and eliminating stagnant zone is studied. • Three values concerned with the stagnant zone, radial uniformity and flow sequence are used. • Outlet diameter is a critical parameter that determines balancing mechanism of the insert. • Height/location is varied to let the insert work in unbalanced region and avoid adverse effect. - Abstract: A flow-corrective insert is adopted in the pebble-bed high temperature gas-cooled reactor (HTGR) to improve flow performance of the pebble flow for the first time. 3D discrete element method (DEM) modeling is employed to study this slow and dense granular flow. It is verified that locating a properly designed insert in the bed can help transform unsatisfactory flow field to the preferred flow pattern for pebble bed reactors. Three characteristic values on the stagnant zone, radial uniformity and flow sequence of pebble flow are defined to evaluate uniformity of the overall flow field quantitatively. The results demonstrate that the pebble bed equipped with an insert performs better than normal beds from all these three aspects. Moreover, based on numerical experiments, several universal tips for insert design on height, location and outlet diameter are suggested.

  17. Nonenzymatic glucose sensor based on disposable pencil graphite electrode modified by copper nanoparticles

    Directory of Open Access Journals (Sweden)

    Sima Pourbeyram

    2016-10-01

    Full Text Available A nonenzymatic glucose sensor based on a disposable pencil graphite electrode (PGE modified by copper nanoparticles [Cu(NP] was prepared for the first time. The prepared Cu(NP exhibited an absorption peak centered at ∼562 nm using UV-visible spectrophotometry and an almost homogenous spherical shape by scanning electron microscopy. Cyclic voltammetry of Cu(NP-PGE showed an adsorption controlled charge transfer process up to 90.0 mVs−1. The sensor was applied for the determination of glucose using an amperometry technique with a detection limit of [0.44 (±0.01 μM] and concentration sensitivity of [1467.5 (±1.3 μA/mMcm−2]. The preparation of the Cu(NP-PGE sensor was reproducible (relative standard deviation = 2.10%, n = 10, very simple, fast, and inexpensive, and the Cu(NP-PGE is suitable to be used as a disposable glucose sensor.

  18. Formation and accumulation of radiation-induced defects and radiolysis products in modified lithium orthosilicate pebbles with additions of titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zarins, Arturs, E-mail: arturs.zarins@lu.lv [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); University of Latvia, Faculty of Chemistry, Jelgavas Street 1, LV-1004, Riga (Latvia); Valtenbergs, Oskars [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); University of Latvia, Faculty of Chemistry, Jelgavas Street 1, LV-1004, Riga (Latvia); Kizane, Gunta; Supe, Arnis [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); Knitter, Regina; Kolb, Matthias H.H.; Leys, Oliver [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-KWT), 76021, Karlsruhe (Germany); Baumane, Larisa [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga (Latvia); Conka, Davis [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); University of Latvia, Faculty of Chemistry, Jelgavas Street 1, LV-1004, Riga (Latvia)

    2016-03-15

    Lithium orthosilicate (Li{sub 4}SiO{sub 4}) pebbles with 2.5 wt.% excess of silicon dioxide (SiO{sub 2}) are the European Union's designated reference tritium breeding ceramics for the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM). However, the latest irradiation experiments showed that the reference Li{sub 4}SiO{sub 4} pebbles may crack and form fragments under operation conditions as expected in the HCPB TBM. Therefore, it has been suggested to change the chemical composition of the reference Li{sub 4}SiO{sub 4} pebbles and to add titanium dioxide (TiO{sub 2}), to obtain lithium metatitanate (Li{sub 2}TiO{sub 3}) as a second phase. The aim of this research was to investigate the formation and accumulation of radiation-induced defects (RD) and radiolysis products (RP) in the modified Li{sub 4}SiO{sub 4} pebbles with different contents of TiO{sub 2} for the first time, in order to estimate and compare radiation stability. The reference and the modified Li{sub 4}SiO{sub 4} pebbles were irradiated with accelerated electrons (E = 5 MeV) up to 5000 MGy absorbed dose at 300–990 K in a dry argon atmosphere. By using electron spin resonance (ESR) spectroscopy it was determined that in the modified Li{sub 4}SiO{sub 4} pebbles, several paramagnetic RD and RP are formed and accumulated, like, E' centres (SiO{sub 3}{sup 3−}/TiO{sub 3}{sup 3−}), HC{sub 2} centres (SiO{sub 4}{sup 3−}/TiO{sub 3}{sup −}) etc. On the basis of the obtained results, it is concluded that the modified Li{sub 4}SiO{sub 4} pebbles with TiO{sub 2} additions have comparable radiation stability with the reference pebbles. - Highlights: • Formation of RD and RP in modified Li{sub 4}SiO{sub 4} pebbles with additions of TiO{sub 2} is analysed for the first time. • Due to additions of TiO{sub 2}, concentration of paramagnetic RD slightly increased in modified Li{sub 4}SiO{sub 4} pebbles. • Modified Li{sub 4}SiO{sub 4} pebbles have good radiation stability compared to

  19. Postirradiation examination of beryllium pebbles

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1998-01-01

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements

  20. Thermo-mechanical and neutron lifetime modelling and design of Be pebbles in the neutron multiplier for the LIFE engine

    International Nuclear Information System (INIS)

    DeMange, P.; Marian, J.; Caro, M.; Caro, A.

    2009-01-01

    Concept designs for the laser inertial fusion/fission energy (LIFE) engine include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a reliable and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermo-mechanical behaviour under continued neutron exposure. We consider the effects of high fluence and fast fluxes on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 deg. C to enable creep to relax the stresses induced by swelling. Under these circumstances, we estimate the pebble lifetime to be at least 16 months if uncoated, and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.

  1. Experimental performance and results of the critical pebble bed facility KAHTER

    Energy Technology Data Exchange (ETDEWEB)

    Krings, F. J.; Drueke, V.; Kirch, N.; Neef, R. D.

    1974-10-15

    The paper provides a description and results of critical experiments performed in KAHTER fueled with pebbles containing coated particles of HEU/Th oxide with a ratio of uranium-to-thorium of 1.1:5. Core loadings with varying amounts of fuel and solid graphite pebbles were tested with fuel-to-graphite pebble ratios of 3:1, 1:1, and 1:3. Tests included criticality for various fuel loadings with all control rods removed, control rod worths for reflector-mounted control as single rods and in a bank and control worths for a central control rod, reaction rates by flux wire activations (Dy, Mn, In, Au, and U-235) and detector measurements (BF3 and fission chamber), simulated xenon stability testing using the motions of a Cf-252 source and Cd-absorber observed by an externally-located BF3 detector, and the reactivity worth of a Hf burnable absorber. For calculations of the room-temperature zero-power critical experiment, the values for nitrogen and hydrogen contents of the graphite were taken from previous experiments in CESAR.

  2. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland; Köberl, Oliver

    2014-01-01

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the 235 U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  3. CFD investigation of thermal-hydraulic characteristics in a PBR core using different contact treatments between pebbles

    International Nuclear Information System (INIS)

    Ferng, Y.M.; Lin, K.Y.

    2014-01-01

    Highlights: • It is important to study thermal-hydraulic characteristics in a PBR for a HTGR. • A CFD model is proposed to simulate flow and heat transfer in a segment of pebbles. • Area and point contact treatments for adjacent pebbles are adopted in this study. • Predicted dependences of Nu and friction factor agree with the correlations. - Abstract: A high temperature gas cooled reactor (HTGR) with a pebble bed core (PBR) can be considered as one of the possible energy generation sources in the incoming future due to its inherently safe performance, lower power density, and higher conversion efficiency, etc. It is important to study the thermal-hydraulic characteristics in a PBR for optimum design and safe operation of a HTGR. In this paper, a computational fluid dynamics (CFD) methodology is proposed to investigate the thermal-hydraulic behavior in a segment of pebbles representing the central region of a PBR. Two kinds of contact modeling between adjacent pebbles are adopted, namely area and point contact treatments. The former contact treatment is a geometric approximation modeling. Based on the comparisons of thermal-hydraulic characteristics in the pebbles predicted by both contact treatments, no significant difference is revealed except for the near-wall secondary flow pattern. In addition, compared with the calculated results from the well-known correlations, the present predicted dependence of Nu number and friction factor on the particle Reynolds number shows good agreement qualitatively and quantitatively

  4. Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface

    International Nuclear Information System (INIS)

    Xie, Yunfeng; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2014-01-01

    A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb 2+ by exploiting the catalytic effect of Pb 2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb 2+ (30 nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb 2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb 2+ in real samples. (author)

  5. Random geometry capability in RMC code for explicit analysis of polytype particle/pebble and applications to HTR-10 benchmark

    International Nuclear Information System (INIS)

    Liu, Shichang; Li, Zeguang; Wang, Kan; Cheng, Quan; She, Ding

    2018-01-01

    Highlights: •A new random geometry was developed in RMC for mixed and polytype particle/pebble. •This capability was applied to the full core calculations of HTR-10 benchmark. •Reactivity, temperature coefficient and control rod worth of HTR-10 were compared. •This method can explicitly model different packing fraction of different pebbles. •Monte Carlo code with this method can simulate polytype particle/pebble type reactor. -- Abstract: With the increasing demands of high fidelity neutronics analysis and the development of computer technology, Monte Carlo method is becoming more and more attractive in accurate simulation of pebble bed High Temperature gas-cooled Reactor (HTR), owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. For the double-heterogeneous geometry of pebble bed, traditional Monte Carlo codes can treat it by explicit geometry description. However, packing methods such as Random Sequential Addition (RSA) can only produce a sphere packing up to 38% volume packing fraction, while Discrete Element Method (DEM) is troublesome and also time consuming. Moreover, traditional Monte Carlo codes are difficult and inconvenient to simulate the mixed and polytype particles or pebbles. A new random geometry method was developed in Monte Carlo code RMC to simulate the particle transport in polytype particle/pebble in double heterogeneous geometry systems. This method was verified by some test cases, and applied to the full core calculations of HTR-10 benchmark. The reactivity, temperature coefficient and control rod worth of HTR-10 were compared for full core and initial core in helium and air atmosphere respectively, and the results agree well with the benchmark results and experimental results. This work would provide an efficient tool for the innovative design of pebble bed, prism HTRs and molten salt reactors with polytype particles or pebbles using Monte Carlo method.

  6. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  7. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanheng, E-mail: liy19@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Ji, Wei, E-mail: jiw2@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)

    2013-05-15

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  8. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    International Nuclear Information System (INIS)

    Li, Yanheng; Ji, Wei

    2013-01-01

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  9. Burnup performance of OTTO cycle pebble bed reactors with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    Highlights: • A 300 MW t Small Pebble Bed Reactor with Rock-like oxide fuel is proposed. • Using ROX fuel can achieve high discharged burnup of spent fuel. • High geological stability can be expected in direct disposal of the spent ROX fuel. • The Pebble Bed Reactor with ROX fuel can be critical at steady state operation. • All the reactor designs have a negative temperature coefficient. - Abstract: A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO 2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO 2 fuel reactor at the same heavy-metal loading, about 5–15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO 2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor

  10. Column treatment of brewery wastewater using clay fortified with stone-pebbles

    International Nuclear Information System (INIS)

    Oladoja, N.A.; Ademoroti, C.M.A.; Idiaghe, J.A.; Oketola, A.A.

    2006-01-01

    The study aimed at providing a low-cost treatment for brewery wastewater, which was achieved by mixing clay with stone-pebbles to improve the low permeability of water through clay beds. The combination (clay/stone-pebbles) was used in columns for the treatment of brewery wastewater. The crystal chemistry of the clay samples was studied using X-ray diffractometer. Three principal clay minerals (kaolin, illite and smectite) were detected in the samples. Atomic absorption spectrophotometer was used to study the geochemistry of the clay samples. The results of the geochemical studies showed that all the samples were hydrated aluminosilicates. Performance efficiency studies were conducted to determine the best combination ratio of clay to stone-pebbles, which showed that combination ratio 3:1 (clay/stone pebbles, w/w) performed better. The flow-rate studies showed that brewery wastewater had longer residence time in non fortified clay than in fortified clay. The flow-rate of the wastewater in the percolating media varied from one medium to another. Two modes of treatment (batch and continuous) were used. The effluent passed through the continuous treatment mode had better quality characteristics as compared with the effluent passed through the batch treatment mode. The effect of repeated use of the fortified column on the performance efficiency was also studied. The pH, total solids, and the chemical oxygen demand (COD) of the effluent was monitored over time. The results of the COD monitored over time were analysed using breakthrough curves. The different columns were found to have different bed volumes at both the break through and exhaustion points. (author)

  11. Parametric study for high conversion pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E.; Ruetten, H. J.

    1975-06-15

    Tables are presented of fuel cycle costs, conversion ratios and accompanying variations in fuel element designs for a 3,00 MWth high conversion pebble bed reactor with initial high enriched uranium/thorium cycle and subsequent recycling of U-233, Pu-239 and Pu-241.

  12. Facile synthesis of α-Fe{sub 2}O{sub 3} nanoparticles for high-performance CO gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen Duc, E-mail: nguyenduccuong@hueuni.edu.vn [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City (Viet Nam); Khieu, Dinh Quang; Hoa, Tran Thai [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Quang, Duong Tuan [College of Education, Hue University, 34 Le Loi, Hue City (Viet Nam); Viet, Pham Hung [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai, Hanoi (Viet Nam); Lam, Tran Dai [Graduate University of Science and Technology, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Hoa, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet, Hanoi (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet, Hanoi (Viet Nam)

    2015-08-15

    Highlights: • We have demonstrated a facile method to prepare Fe{sub 2}O{sub 3} nanoparticles. • The gas sensing properties of α-Fe{sub 2}O{sub 3} have been invested. • The results show potential application of α-Fe{sub 2}O{sub 3} NPs for CO sensors in environmental monitoring. - Abstract: Iron oxide nanoparticles (NPs) were prepared via a simple hydrothermal method for high performance CO gas sensor. The synthesized α-Fe{sub 2}O{sub 3} NPs were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SEM, TEM results revealed that obtained α-Fe{sub 2}O{sub 3} particles had a peanut-like geometry with hemispherical ends. The response of the α-Fe{sub 2}O{sub 3} NPs based sensor to carbon monoxide (CO) and various concentrations of other gases were measured at different temperatures. It found that the sensor based on the peanut-like α-Fe{sub 2}O{sub 3} NPs exhibited high response, fast response–recovery, and good selectivity to CO at 300 °C. The experimental results clearly demonstrated the potential application of α-Fe{sub 2}O{sub 3} NPs as a good sensing material in the fabrication of CO sensor.

  13. Research and application of packing density for pebble bed in HTR

    International Nuclear Information System (INIS)

    Yu Fujiang; Xie Fei; Sun Ximing

    2015-01-01

    The pebble bed high temperature gas-cooled reactor is one of the major types of reactors developed by Chinese nuclear technology. The statistical analysis for packing density in the pebble bed is an important issue of physical-thermal calculation and safety analysis. Aimed to this problem, a new kind of method was set up to solve this problem. Compared with the traditional lattice-fill method and the experiment, its efficiency and accuracy were verified, while helping to find out the best length of unit in the traditional lattice-fill method. This method was used to analyze the boundary effects observed by experiments. (authors)

  14. DEM-CFD simulation of purge gas flow in a solid breeder pebble bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China); Guo, Haibing [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: inpclane@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-12-15

    Solid tritium breeding blanket applying pebble bed concept is promising for fusion reactors. Tritium bred in the pebble bed is purged out by inert gas. The flow characteristics of the purge gas are important for the tritium transport from the solid breeder materials. In this study, a randomly packed pebble bed was generated by Discrete Element Method (DEM) and verified by radial porosity distribution. The flow parameters of the purge gas in channels were solved by Computational Fluid Dynamics (CFD) method. The results show that the normalized velocity magnitudes have the same damped oscillating patterns with radial porosity distribution. Besides, the bypass flow near the wall cannot be ignored in this model, and it has a slight increase with inlet velocity. Furthermore, higher purging efficiency becomes with higher inlet velocity and especially higher in near wall region.

  15. Nonproliferation and safeguard considerations: Pebble Bed reactor fuel cycle evaluation

    International Nuclear Information System (INIS)

    1978-09-01

    Nuclear fuel cycles were evaluated for the Pebble Bed Gas Cooled Reactor under development in the Federal Republic of Germany. The basic fuel cycle specified for the HTR-K and PNP is well qualified and will meet the requirements of these reactors. Twenty alternate fuel cycles are described, including high-conversion cycles, net-breeding cycles, and proliferation-resistant cycles. High-conversion cycles, which have a high probability of being successfully developed, promise a significant improvement in resource utilization. Proliferation-resistant cycles, also with a high probability of successful development, conpare very favorably with those for other types of reactors. Most of the advanced cycles could be adapted to first-generation pebble bed reactors with no significant modifications

  16. Uraniferous quartz-pebble conglomerates in South Africa

    International Nuclear Information System (INIS)

    von Backstroem, J.W.

    1981-01-01

    The purpose of this paper is to give a short background statement summarizing data on the Dominion Reef Group, the Witwatersrand Supergroup, and the Ventersdorp Contact Reef, with particular reference to the close relationship of gold and uranium with sedimentary features as well as the mineralization, conditions of deposition, and the nature of the quartz-pebble conglomerates

  17. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    Science.gov (United States)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  18. A comparative study on the effective thermal conductivity of a single size beryllium pebble bed

    International Nuclear Information System (INIS)

    Abou-Sena, A.; Ying, A.; Abdou, M.

    2004-01-01

    Solid breeder blankets generally use beryllium-helium pebble beds to ensure sufficient tritium breeding. The data of the effective thermal conductivity, k eff , of beryllium pebble beds is important to the design of fusion blankets. It serves as a database for benchmarking the models of pebble beds. The objective of this paper is to review and compare the available data (obtained by several studies) of the effective thermal conductivity of beryllium pebble beds in order to address the current status of these data. Two comparisons are presented: one for the data of k eff versus bed mean temperature and the second one for the data of k eff versus external applied pressures. The data (k eff versus bed temperature) reported by Enoeda et al., Dalle Donne et al., and UCLA, have a similar particle size and packing fraction. Despite their similarity, the standard deviation values of their data are around 32%. Also, the data of the effective thermal conductivity as a function of mechanical pressure have standard deviation values of ∼50%. From the presented comparisons, significant discrepancies among the available data of k eff of the beryllium pebble beds were observed. These discrepancies may be attributed to the apparent differences among available studies, such as experiment technique, packing fraction, particle characteristics, bed dimensions, and temperature range and gradient across the bed. (author)

  19. Formation and accumulation of radiation-induced defects and radiolysis products in modified lithium orthosilicate pebbles with additions of titanium dioxide

    Science.gov (United States)

    Zarins, Arturs; Valtenbergs, Oskars; Kizane, Gunta; Supe, Arnis; Knitter, Regina; Kolb, Matthias H. H.; Leys, Oliver; Baumane, Larisa; Conka, Davis

    2016-03-01

    Lithium orthosilicate (Li4SiO4) pebbles with 2.5 wt.% excess of silicon dioxide (SiO2) are the European Union's designated reference tritium breeding ceramics for the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM). However, the latest irradiation experiments showed that the reference Li4SiO4 pebbles may crack and form fragments under operation conditions as expected in the HCPB TBM. Therefore, it has been suggested to change the chemical composition of the reference Li4SiO4 pebbles and to add titanium dioxide (TiO2), to obtain lithium metatitanate (Li2TiO3) as a second phase. The aim of this research was to investigate the formation and accumulation of radiation-induced defects (RD) and radiolysis products (RP) in the modified Li4SiO4 pebbles with different contents of TiO2 for the first time, in order to estimate and compare radiation stability. The reference and the modified Li4SiO4 pebbles were irradiated with accelerated electrons (E = 5 MeV) up to 5000 MGy absorbed dose at 300-990 K in a dry argon atmosphere. By using electron spin resonance (ESR) spectroscopy it was determined that in the modified Li4SiO4 pebbles, several paramagnetic RD and RP are formed and accumulated, like, E' centres (SiO33-/TiO33-), HC2 centres (SiO43-/TiO3-) etc. On the basis of the obtained results, it is concluded that the modified Li4SiO4 pebbles with TiO2 additions have comparable radiation stability with the reference pebbles.

  20. Fabrication of Li{sub 2}TiO{sub 3} pebbles using PVA–boric acid reaction for solid breeding materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yi-Hyun, E-mail: yhpark@nfri.re.kr; Cho, Seungyon; Ahn, Mu-Young

    2014-12-15

    Highlights: • Li{sub 2}TiO{sub 3} pebbles were successfully fabricated by the slurry droplet wetting method. • Boron was used as hardening agent of PVA and completely removed during sintering. • Microstructure of fabricated Li{sub 2}TiO{sub 3} pebble was exceptionally homogeneous. • Suitable process conditions for high-quality Li{sub 2}TiO{sub 3} pebble were summarized. - Abstract: Lithium metatitanate (Li{sub 2}TiO{sub 3}) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li{sub 2}TiO{sub 3} pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li{sub 2}TiO{sub 3} green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li{sub 2}TiO{sub 3} green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li{sub 2}TiO{sub 3} pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  1. Pebbles, Cobbles, and Sockets

    Science.gov (United States)

    1997-01-01

    This Rover image of 'Shark' (upper left center), 'Half Dome' (upper right), and a small rock (right foreground) reveal textures and structures not visible in lander camera images. These rocks are interpreted as conglomerates because their surfaces have rounded protrusions up to several centimeters in size. It is suggested that the protrusions are pebbles and granules.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  2. Measurement of thermal expansion for a Li2TiO3 pebble bed

    International Nuclear Information System (INIS)

    Hisashi Tanigawa; Mikio Enoeda; Masato Akiba

    2006-01-01

    In the current design of the blanket with ceramic breeders, pebbles of breeding materials are packed into a container and used as a pebble bed. Thermal and mechanical conditions externally loaded on the bed affect thermal and mechanical properties of the bed. It is necessary to analyze thermo-mechanical properties of the bed under controlled thermal and mechanical conditions. In the present paper, thermal expansion of a Li 2 TiO 3 pebble bed was investigated. Our apparatus consists of a tensile test-apparatus and a measurement chamber. Pebbles of Li 2 TiO 3 with 2 mm diameter were used. They were packed into a container made of alumina. At first, thermal expansion of the apparatus was calibrated because the measured deformation included thermal expansions of the load rods and the container. Instead of the pebble bed, a column made of copper was installed and thermal expansion of the system was measured for the calibration. Taking into account the estimated thermal expansion of the column, thermal expansion of the rods and the container could be analyzed. Based on the correction, thermal expansion of the pebble bed was measured under compression of 0.1 MPa. Temperature of the bed was regulated from room temperature to 973 K. From the measured expansion of the bed, average thermal expansion coefficient was estimated. For the beds with different packing factors ranging from 65.5 to 68.5 %, thermal expansion coefficients were 1.4 ± 0. 10-5 K -1 . In the first measurement of the beds without pre-loading, expansion coefficients were larger for the cooling process than heating. When the beds were successively heated and cooled, the difference decreased. This means that relocation of the pebbles arises in the first heat treatment and progress of compaction is larger in the cooling process than heating. After a few heat treatments, packing states of the beds reach stable and expansion coefficients for both heat and cooling processes are close. In the case of the beds that

  3. Improvement of burnup analysis for pebble bed reactors with an accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2015-01-01

    Given the limitations of natural uranium resources, innovative nuclear power plant concepts that increase the efficiency of nuclear fuel utilization are needed. The Pebble Bed Reactor (PBR) shows some potential to achieve high efficiency in natural uranium utilization. To simplify the PBR concept, PBR with an accumulation fuel loading scheme was introduced and the Fuel Handling System (FHS) removed. In this concept, the pebble balls are added little by little into the reactor core until the pebble balls reach the top of the reactor core, and all pebble balls are discharged from the core at the end of the operation period. A code based on the MVP/MVP-BURN method has been developed to perform an analysis of a PBR with the accumulative fuel loading scheme. The optimum fuel composition was found using the code for high burnup performance. Previous efforts provided several motivations to improve the burnup performance: First, some errors in the input code were corrected. This correction, and an overall simplification of the input code, was implemented for easier analysis of a PBR with the accumulative fuel loading scheme. Second, the optimum fuel design had been obtained in the infinite geometry. To improve the optimum fuel composition, a parametric survey was obtained by varying the amount of Heavy Metal (HM) uranium per pebble and the degree of uranium enrichment. Moreover, an entire analysis of the parametric survey was obtained in the finite geometry. The results show that improvements in the fuel composition can lead to more accurate analysis with the code. (author)

  4. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  5. Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ghodselahi, T., E-mail: t_ghodselahi@yahoo.com [Nano Mabna Iranian Inc., PO Box 1676664116, Tehran (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Hoornam, S. [Nano Mabna Iranian Inc., PO Box 1676664116, Tehran (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Vesaghi, M.A. [Department of Physics, Sharif University of Technology, PO Box 11365-9161, Tehran (Iran, Islamic Republic of); Ranjbar, B.; Azizi, A. [Department of Biophysics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mobasheri, H. [Laboratory of Membrane Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran (Iran, Islamic Republic of); Biomaterials Research Institute (BRC), University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-30

    Highlights: • We synthesized localized surface plasmon resonance sensor of gold nanoparticles by RF-sputtering and RF-PECVD. • LSPR sensor was characterized by TEM, XPS, AFM. • LSPR sensor was utilized to detect interaction between sorbitol and trehalose, with Pesudomonace Cepacia Lipase (PCL). • Unlike to trehalose, sorbitol interacts with the PCL. • Refractive index of PCL was obtained by Mie theory modeling. - Abstract: Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H) thin film was used as intermediate material to immobilize Au NPs on the SiO{sub 2} substrate. The interaction between two types of osmolytes, i.e. sorbitol and trehalose, with Pseudomonas cepacia lipase (PCL) were detected by the prepared LSPR biosensor chip. The detection mechanism is based on LSPR spectroscopy in which the wavelength of absorption peak is sensitive to the refractive index of the environment of the Au NPs. This mechanism eliminates the use of a probe or immobilization of PCL on the Au NPs of LSPR sensor chip. The interaction between PCL and osmolytes can change refractive index of the mixture or solution. We found that unlike to trehalose, sorbitol interacts with the PCL. This interaction increases refractive index of the PCL and sorbitol mixture. Refractive index of PCL in the presence of different concentration of sorbitol was

  6. Density improvement of Li{sub 2}TiO{sub 3} pebbles fabricated by wet process

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K; Kawamura, H [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Fuchinoue, K; Sawada, H; Watarumi, K

    1998-03-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) has attracted the attention of many researchers from a point of tritium recovery at low temperature, chemical stability, etc.. The application of small Li{sub 2}TiO{sub 3} sphere has been proposed in some designs of fusion blanket. On the other hand, the wet process is most advantageous as the fabrication method of Li{sub 2}TiO{sub 3} pebbles from a point of mass production, and of reprocessing necessary for effective use of resources and reduction of radioactive wastes. In the preliminary fabrication test, density of Li{sub 2}TiO{sub 3} pebbles was about 40%T.D.. Therefore, in this study, density improvement tests and preliminary characterization of Li{sub 2}TiO{sub 3} pebbles by wet process were performed, noting the aging condition and sintering condition in the fabrication process of the gel-spheres. This study yielded Li{sub 2}TiO{sub 3} pebbles in target range of 80-85%T.D.. (author)

  7. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors

    Science.gov (United States)

    Choi, Seungbok; Bonyani, Maryam; Sun, Gun-Joo; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu

    2018-02-01

    Pristine WO3 nanorods and Cr2O3-functionalized WO3 nanorods were synthesized by the thermal evaporation of WO3 powder in an oxidizing atmosphere, followed by spin-coating of the nanowires with Cr2O3 nanoparticles and thermal annealing in an oxidizing atmosphere. Scanning electron microscopy was used to examine the morphological features and X-ray diffraction was used to study the crystallinity and phase formation of the synthesized nanorods. Gas sensing tests were performed at different temperatures in the presence of test gases (ethanol, acetone, CO, benzene and toluene). The Cr2O3-functionalized WO3 nanorods sensor showed a stronger response to these gases relative to the pristine WO3 nanorod sensor. In particular, the response of the Cr2O3-functionalized WO3 nanorods sensor to 200 ppm ethanol gas was 5.58, which is approximately 4.4 times higher that of the pristine WO3 nanorods sensor. Furthermore, the Cr2O3-functionalized WO3 nanorods sensor had a shorter response and recovery time. The pristine WO3 nanorods had no selectivity toward ethanol gas, whereas the Cr2O3-functionalized WO3 nanorods sensor showed good selectivity toward ethanol. The gas sensing mechanism of the Cr2O3-functionalized WO3 nanorods sensor toward ethanol is discussed in detail.

  8. Consideration of emergency source terms for pebble-bed high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Tao, Liu; Jun, Zhao; Jiejuan, Tong; Jianzhu, Cao

    2009-01-01

    Being the last barrier in the nuclear power plant defense-in-depth strategy, emergency planning (EP) is an integrated project. One of the key elements in this process is emergency source terms selection. Emergency Source terms for light water reactor (LWR) nuclear power plant (NPP) have been introduced in many technical documents, and advanced NPP emergency planning is attracting attention recently. Commercial practices of advanced NPP are undergoing in the world, pebble-bed high-temperature gas-cooled reactor (HTGR) power plant is under construction in China which is considered as a representative of advanced NPP. The paper tries to find some pieces of suggestion from our investigation. The discussion of advanced NPP EP will be summarized first, and then the characteristics of pebble-bed HTGR relating to EP will be described. Finally, PSA insights on emergency source terms selection and current pebble-bed HTGR emergency source terms suggestions are proposed

  9. Neutronic design of a Liquid Salt-cooled Pebble Bed Reactor (LSPBR)

    International Nuclear Information System (INIS)

    De Zwaan, S. J.; Boer, B.; Lathouwers, D.; Kloosterman, J. L.

    2006-01-01

    A renewed interest has been raised for liquid salt cooled nuclear reactors. The excellent heat transfer properties of liquid salt coolants provide several benefits, like lower fuel temperatures, higher coolant outlet temperatures, increased core power density and better decay heat removal. In order to benefit from the online refueling capability of a pebble bed reactor, the Liquid Salt Pebble Bed Reactor (LSPBR) is proposed. This is a high temperature pebble-bed reactor with a fuel design similar to existing HTRs, but using a liquid salt as a coolant. In this paper, the selection criteria for the liquid salt coolant are described. Based on its neutronic properties, LiF-BeF 2 (FLIBE) was selected for the LSPBR. Two designs of the LSPBR were considered: a cylindrical core and an annular core with a graphite inner reflector. Coupled neutronic-thermal hydraulic calculations were performed to obtain the steady state power distribution and the corresponding fuel temperatures. Finally, calculations were performed to investigate the decay heat removal capability in a protected loss-of-forced cooling accident. The maximum allowable power that can be produced with the LSPBR is hereby determined. (authors)

  10. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    International Nuclear Information System (INIS)

    Xiao, Chengjian; Gao, Xiaoling; Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke; Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming; Wang, Xiaolin; Oya, Yasuhisa; Okuno, Kenji

    2013-01-01

    Tritium release kinetics in lithium orthosilicate (Li 4 SiO 4 ) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li 4 SiO 4 pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10 −7.0 exp (−40.3 × 10 3 /RT) cm 2 s −1

  11. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg(2+) in aqueous solution.

    Science.gov (United States)

    Ruan, Yudi; Wu, Lie; Jiang, Xiue

    2016-05-23

    Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices.

  12. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles

    International Nuclear Information System (INIS)

    Chowdhuri, Arijit; Gupta, Vinay; Sreenivas, K.; Kumar, Rajeev; Mozumdar, Subho; Patanjali, P. K.

    2004-01-01

    CuO nanoparticles on sputtered SnO 2 thin-film surface exhibit a fast response speed (14 s) and recovery time (61 s) for trace level (20 ppm) H 2 S gas detection. The sensitivity of the sensor (S∼2.06x10 3 ) is noted to be high at a low operating temperature of 130 deg. C. CuO nanoparticles on SnO 2 allow effective removal of excess adsorbed oxygen from the uncovered SnO 2 surface due to spillover of hydrogen dissociated from the H 2 S-CuO interaction

  13. Performance Evaluation of a Pebble Bed Solar Crop Dryer ...

    African Journals Online (AJOL)

    Nigerian Journal of Technology ... The solar crop dryer consists of an imbedded pebble bed solar heat storage unit/solar collector ... The crop-drying chamber is made of drying trays of wire gauze while the roof is made of transparent glazing.

  14. Development of Solid-State Electrochemiluminescence (ECL Sensor Based on Ru(bpy32+-Encapsulated Silica Nanoparticles for the Detection of Biogenic Polyamines

    Directory of Open Access Journals (Sweden)

    Anna-Maria Spehar-Délèze

    2015-05-01

    Full Text Available A solid state electrochemiluminescence (ECL sensor based on Ru(bpy32+-encapsulated silica nanoparticles (RuNP covalently immobilised on a screen printed carbon electrode has been developed and characterised. RuNPs were synthesised using water-in-oil microemulsion method, amino groups were introduced on their surface, and they were characterised by transmission electron microscopy. Aminated RuNPs were covalently immobilised on activate screen-printed carbon electrodes to form a solid state ECL biosensor. The biosensor surfaces were characterised using electrochemistry and scanning electron microscopy, which showed that aminated nanoparticles formed dense 3D layers on the electrode surface thus allowing immobilisation of high amount of Ru(bpy32+. The developed sensor was used for ECL detection of biogenic polyamines, namely spermine, spermidine, cadaverine and putrescine. The sensor exhibited high sensitivity and stability.

  15. Synthesis of ZnMn2O4 Nanoparticles by a Microwave-Assisted Colloidal Method and their Evaluation as a Gas Sensor of Propane and Carbon Monoxide

    Directory of Open Access Journals (Sweden)

    Juan Pablo Morán-Lázaro

    2018-02-01

    Full Text Available Spinel-type ZnMn2O4 nanoparticles were synthesized via a simple and inexpensive microwave-assisted colloidal route. Structural studies by X-ray diffraction showed that a spinel crystal phase of ZnMn2O4 was obtained at a calcination temperature of 500 °C, which was confirmed by Raman and UV-vis characterizations. Spinel-type ZnMn2O4 nanoparticles with a size of 41 nm were identified by transmission electron microscopy. Pellet-type sensors were fabricated using ZnMn2O4 nanoparticles as sensing material. Sensing measurements were performed by exposing the sensor to different concentrations of propane or carbon monoxide at temperatures in the range from 100 to 300 °C. Measurements performed at an operating temperature of 300 °C revealed a good response to 500 ppm of propane and 300 ppm of carbon monoxide. Hence, ZnMn2O4 nanoparticles possess a promising potential in the gas sensors field.

  16. Revision of Drucker-Prager cap creep modelling of pebble beds in fusion blankets

    International Nuclear Information System (INIS)

    Hofer, D.; Kamlah, M.; Hermsmeyer, S.

    2004-01-01

    A continuum model commonly used in soil mechanics analysis is compiled by use of a finite element software and has been used to simulate the thermomechanical behaviour of pebble beds. The Drucker-Prager Cap theory accounts for inelastic volume change, cap hardening, nonlinear elasticity and pressure dependent shear failure. The hardening mechanism allows for defining the hydrostatic pressure yield stress as a function of the volumetric inelastic strain. Volumetric creep is considered in order to simulate the pebble bed behaviour at high temperatures. Here, the strain hardening option has been used for the consolidation creep mechanism. The model has been calibrated using the fitting curves of the oedometric test given by Reimann et al. The fitted data has been used to calculate a pebble bed with simplified boundary conditions loaded by non-uniform volumetric heating. This calculation demonstrated that the model is capable of representing creep behaviour under volumetric heating conditions. (author)

  17. Tritium and helium release from beryllium pebbles neutron-irradiated up to 230appm tritium and 3000appm helium

    Directory of Open Access Journals (Sweden)

    Vladimir Chakin

    2016-12-01

    Full Text Available Study of tritium and helium release from beryllium pebbles with diameters of 0.5 and 1mm after high-dose neutron irradiation at temperatures of 686–968K was performed. The release rate always has a single peak, and the peak temperatures at heating rates of 0.017K/s and 0.117K/s lie in the range of 1100–1350K for both tritium and helium release. The total tritium release from 1mm pebbles decreases considerably by increasing the irradiation temperature. The total tritium release from 0.5mm pebbles is less than that from 1mm pebbles and remains constant regardless of the irradiation temperature. At high irradiation temperatures, open channels are formed which contribute to the enhanced tritium release.

  18. Molecular dynamics simulation for PBR pebble tracking simulation via a random walk approach using Monte Carlo simulation.

    Science.gov (United States)

    Lee, Kyoung O; Holmes, Thomas W; Calderon, Adan F; Gardner, Robin P

    2012-05-01

    Using a Monte Carlo (MC) simulation, random walks were used for pebble tracking in a two-dimensional geometry in the presence of a biased gravity field. We investigated the effect of viscosity damping in the presence of random Gaussian fluctuations. The particle tracks were generated by Molecular Dynamics (MD) simulation for a Pebble Bed Reactor. The MD simulations were conducted in the interaction of noncohesive Hertz-Mindlin theory where the random walk MC simulation has a correlation with the MD simulation. This treatment can easily be extended to include the generation of transient gamma-ray spectra from a single pebble that contains a radioactive tracer. Then the inverse analysis thereof could be made to determine the uncertainty of the realistic measurement of transient positions of that pebble by any given radiation detection system designed for that purpose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chengjian; Gao, Xiaoling [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Wang, Xiaolin, E-mail: xlwang@caep.ac.cn [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Oya, Yasuhisa; Okuno, Kenji [Radiochemistry Research Laboratory, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan)

    2013-07-15

    Tritium release kinetics in lithium orthosilicate (Li{sub 4}SiO{sub 4}) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li{sub 4}SiO{sub 4} pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10{sup −7.0} exp (−40.3 × 10{sup 3}/RT) cm{sup 2} s{sup −1}.

  20. Expanding the functionality and applications of nanopore sensors

    Science.gov (United States)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  1. Analyzing Engineered Nanoparticles using Photothermal Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Yamada, Shoko

    . To facilitate occupational safety and health there is a need to develop instruments to monitor and analyze nanoparticles in the industry, research and urban environments. The aim of this Ph.D. project was to develop new sensors that can analyze engineered nanoparticles. Two sensors were studied: (i......) a miniaturized toxicity sensor based on electrochemistry and (ii) a photothermal spectrometer based on tensile-stressed mechanical resonators (string resonators). Miniaturization of toxicity sensor targeting engineered nanoparticles was explored. This concept was based on the results of the biodurability test...

  2. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-10-15

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  3. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    International Nuclear Information System (INIS)

    Tavron, Barak; Shwageraus, Eugene

    2016-01-01

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  4. Effect of heat source shape on the thermal field in the pebble bed core of High Temperature Gas-cooled Reactor (HTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2015-10-15

    In this study, in order to minimize the error brought by non-uniform heat flux, the spherical heaters are employed as heat source; subsequently, thermal field and heat transfer characteristics of the pebbles are investigated. The thermal field of the pebble surface in PBR is measured with heat source in different shapes. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. However, the possible appearance of hot spots in the pebble bed cores of HTGR may affect the integrity of the pebbles, which has drawn the attention of many scientists to investigate the thermal field and to predict the maximum temperature locations in the pebbles using CFD method, Lee et.al has also done some experimental work on measuring the surface temperature of the pebbles as well as visualizing flow patterns of the coolant gas, and it was found that the temperature near the contacting points between pebbles was not higher than the flow stagnation points due to the higher thermal conductivity of the pebble. Certain error of temperature measurement might occur because of not very uniform heat flux in the pebbles since heater in cylindrical shape was utilized as heat source in previous experiment. More uniform heat flux and more complicated thermal profile are found in the result obtained using spherical heaters. The result shows that the temperature in contact point is higher than that in the top point, which is different from the previous results. The complex thermal phenomena observed in the lower-half side-sphere can be explained by the flow pattern near the surface.

  5. BRILLIANT PEBBLES: A METHOD FOR DETECTION OF VERY LARGE INTERSTELLAR GRAINS

    International Nuclear Information System (INIS)

    Socrates, Aristotle; Draine, Bruce T.

    2009-01-01

    A photon of wavelength λ ∼ 1 μm interacting with a dust grain of radius a p ∼ 1 mm (a 'pebble') undergoes scattering in the forward direction, largely within a small characteristic diffraction angle θ s ∼ λ/a p ∼ 100''. Though millimeter-size dust grains contribute negligibly to the interstellar medium's visual extinction, the signal they produce in scattered light may be detectable, especially for variable sources. Observations of light scattered at small angles allow for the direct measurement of the large grain population; variable sources can also yield tomographic information of the interstellar medium's mass distribution. The ability to detect brilliant pebble halos requires a careful understanding of the instrument point-spread function.

  6. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  7. On the Evaluation of Pebble Bead Reactor Critical Experiments Using the Pebbed Code

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Sen, R. Sonat

    2014-01-01

    Critical experiments pose a particular but necessary challenge to validating pebble bed reactor design codes. Fuel and core heterogeneities, impurities in graphite, variable packing of pebbles, and moderately strong neutronic coupling are among the factors that inject uncertainty into the results obtained with lower fidelity core physics models. Some of these are addressed in this study. The PEBBED pebble bed reactor fuel management code under development at the Idaho National Laboratory is designed for rapid design and analysis of pebble bed high temperature reactors (PBRs). Embedded within the code are the THERMIX-KONVEK thermal fluid solver and the COMBINE-7 spectrum generation code for inline cross section homogenization. Because 1D symmetry can be found at each stage of core heterogeneity; spherical at TRISO and pebble levels, and cylindrical at the control rod and core levels, the 1-D transport capability of ANISN is assumed to be sufficient in most cases for generating flux solutions for cross section homogenization. Furthermore, it is fast enough to be executed during the analysis or the equilibrium core. Multi-group diffusion-based design codes such as PEBBED and VSOP are not expected to yield the accuracy and resolution of continuous energy Monte Carlo codes for evaluation of critical experiments. Nonetheless, if the preparation of multigroup cross sections can adequately capture the physics of the mixing of PBR fuel elements and leakage from the core, reasonable results may be obtained. In this paper, results of the application of PEBBED to two critical experiments (HTR Proteus and HTR-10) and associated computational models are presented. The embedded 1-D transport solver is shown to capture the double heterogeneity of the pebble fuel in unit cell calculations. Eigenvalue calculations of a whole core are more challenging, particularly if the boron concentration is uncertain. The sensitivity of major safety parameters to variations in modeling

  8. A novel way for detection of antiparkinsonism drug entacapone via electrodeposition of silver nanoparticles/functionalized multi-walled carbon nanotubes as an amperometric sensor

    Energy Technology Data Exchange (ETDEWEB)

    Baghayeri, Mehdi, E-mail: m.baghayeri@hsu.ac.ir [Department of Chemistry, Faculty of Science, Hakim Sabzevari University, P.O. Box 397, Sabzevar (Iran, Islamic Republic of); Tehrani, Maliheh Barazandeh [Department of Medicinal Chemistry, Faculty of Pharmacy, Pharmaceutical Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Amiri, Amirhassan; Maleki, Behrooz; Farhadi, Samaneh [Department of Chemistry, Faculty of Science, Hakim Sabzevari University, P.O. Box 397, Sabzevar (Iran, Islamic Republic of)

    2016-09-01

    Silver (Ag) nanoparticles were electrochemically deposited on the film of a metformin functionalized multi-walled carbon nanotube modified glassy carbon electrode (Met-MWCNT/GCE), which fabricated an Ag@Met-MWCNT nanocomposite sensor (Ag@Met-MWCNT/GCE) to detect entacapone (ENT). The Ag@Met-MWCNT nanocomposite was characterized by field emission scanning electrochemical microscopy (FESEM), X-ray diffraction (XRD) analysis, FT-IR and electrochemical tests. The modified electrode showed a large electrocatalytic activity for reduction of ENT. This improved activity indicates that Met@MWCNT plays a crucial role in the dispersion and stabilization of Ag nanoparticles on GCE. Under the optimized conditions the linear range for the detection of the ENT was obtained to be 0.05 to 70.0 μM with a low detection limit of 15.3 nM. The proposed sensor can effectively analyse ENT concentration in pharmaceutical formulations and human urine samples, avoiding interference, and is a promising ENT sensor due to good sensitivity, stability and low cost. - Graphical abstract: Schematic graph for fabrication and application of sensor. Display Omitted - Highlights: • Silver nanoparticles were electrochemically deposited on the modified glassy carbon electrode. • The modified electrode showed a large electrocatalytic activity for reduction of entacapone. • The proposed sensor can effectively analyse entacapone concentration in pharmaceutical formulations and human urine samples.

  9. Experimental study on single-phase convection heat transfer characteristics of pebble bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Zhou Ping; Xu Guangzhan

    2012-01-01

    The water-cooled pebble bed reactor core is the porous channels stacked with spherical fuel elements, having evident effect on enhancing heat transfer. Owing to the variability and randomness characteristics of it's interstice, pebble bed channels have a very complex heat transfer situation and have little correlative research. In order to research the heat transfer characters of pebble bed channels with internal heat source, electromagnetic induction heating method was adopted for overall heating the pebble bed which was composed of 8 mm diameter steel balls, and the internal heat transfer characteristics were researched. By comparing and analyzing the experimental data, the rule of power distribution and heat transfer coefficient with heat flux density, inlet temperature and working fluid's Re were got. According to the experimental data fitting, the dimensionless average heat transfer coefficient correlation criteria was got. The fitting results are good agreement with the experimental results within 12% difference. (authors)

  10. In-pile test of Li{sub 2}TiO{sub 3} pebble bed with neutron pulse operation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K. E-mail: tsuchiya@oarai.jaeri.go.jp; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H

    2002-12-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li{sub 2}TiO{sub 3} pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li{sub 2}TiO{sub 3} pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li{sub 2}TiO{sub 3} pebble beds and effects of various parameters were evaluated. The (R/G) ratio of tritium release (R) and tritium generation (G) was saturated when the temperature at the outside edge of the Li{sub 2}TiO{sub 3} pebble bed became 300 deg. C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  11. Measurement of flow field in the pebble bed type high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Lee, Jae Young

    2008-01-01

    In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gascooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method

  12. A study on Monte Carlo analysis of Pebble-type VHTR core for hydrogen production

    International Nuclear Information System (INIS)

    Kim, Hong Chul

    2005-02-01

    In order to pursue exact the core analysis for VHTR core which will be developed in future, a study on Monte Carol method was carried out. In Korea, pebble and prism type core are under investigation for VHTR core analysis. In this study, pebble-type core was investigated because it was known that it should not only maintain the nuclear fuel integrity but also have the advantage in economical efficiency and safety. The pebble-bed cores of HTR-PROTEUS critical facility in Swiss were selected for the benchmark model. After the detailed MCNP modeling of the whole facility, calculations of nuclear characteristics were performed. The two core configurations, Core 4.3 and Core 5 (reference state no. 3), among the 10 configurations of the HTR-PROTEUS cores were chosen to be analyzed in order to treat different fuel loading pattern and modeled. The former is a random packing core and the latter deterministic packing core. Based on the experimental data and the benchmark result of other research groups for the two different cores, some nuclear characteristics were calculated. Firstly, keff was calculated for these cores. The effect for TRIO homogeneity model was investigated. Control rod and shutdown rod worths also were calculated and the sensitivity analysis on cross-section library and reflector thickness was pursued. Lastly, neutron flux profiles were investigated in reflector regions. It is noted that Monte Carlo analysis of pebble-type VHTR core was firstly carried out in Korea. Also, this study should not only provide the basic data for pebble-type VHTR core analysis for hydrogen production but also be utilized as the verified data to validate a computer code for VHTR core analysis which will be developed in future

  13. Methodology of the On-Iine FoIIow Simulation of Pebble-bed High-temperature Reactors

    International Nuclear Information System (INIS)

    Xia Bing; Li Fu; Wei Chunlin; Zheng Yanhua; Chen Fubing; Zhang Jian; Guo Jiong

    2014-01-01

    The on-line fuel management is an essential feature of the pebble-bed high-temperature reactors (PB-HTRs), which is strongly coupled with the normal operation of the reactor. For the purpose of on-line analysis of the continuous shuffling scheme of numerous fuel pebbles, the follow simulation upon the real operation is necessary for the PB-HTRs. In this work, the on-line follow simulation methodology of the PB-HTRs’ operation is described, featured by the parallel treatments of both neutronics analysis and fuel cycling simulation. During the simulation, the operation history of the reactor is divided into a series of burn-up cycles according to the behavior of operation data, in which the steady-state neutron transport equations are solved and the diffusion theory is utilized to determine the physical features of the reactor core. The burn-up equations of heavy metals, fission products and neutron poisons including B-10, decoupled from the pebble flow term, are solved to analyze the burn-up process within a single burn-up cycle. The effect of pebble flow is simulated separately through a discrete fuel shuffling pattern confined by curved pebble flow channels, and the effect of multiple pass of the fuel is represented by logical batches within each spatial region of the core. The on-line thermal-hydraulics feedback is implemented for each bur-up cycle by using the real thermal-hydraulics data of the core operation. The treatment of control rods and absorber balls is carried out by utilizing a coupled neutron transport-diffusion calculation along with discontinuity factors. The physical models mentioned above are established mainly by using a revised version of the V.S.O.P program system. The real operation data of HTR-10 is utilized to verify the methodology presented in this work, which gives good agreement between simulation results and operation data. (author)

  14. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated

  15. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Moormann

    2008-01-01

    Full Text Available Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA. The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1  m, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

  16. 3D DEM simulation and analysis of void fraction distribution in a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • We show a detailed analysis of void fraction (VF) in HTR-10 of China using DEM. • Radial distribution (RD) of VF is uniform in the core and oscillated near the wall. • Axial distribution (AD) is linearly varied along height due to effect of gravity. • Steady RD of VF in the conical base is Gaussian-like, larger than packing bed. • Joint linear and normal distribution of VF is analyzed and explained. - Abstract: The current work analyzes the radial and axial distributions of void fraction of a pebble bed high temperature reactor. A three-dimensional pebble bed corresponding to our test facility of pebble bed type gas-cooled high temperature reactor (HTR-10) in Tsinghua University is simulated via discrete element method, and the radial and axial void fraction profiles are calculated. It validates the oscillating characteristics of radial void fraction near the wall. Detailed calculations show the differences of void fraction profiles between the stationary packing bed and the dynamically discharging bed. Based on the vertically and circumferentially averaged radial distribution and horizontally averaged axial distribution of void fraction, a fully three-dimensional analytical distribution of void fraction throughout the bed is established. The results show the combined effects of gravity and void variation in the pebble bed caused by the pebble discharging. It indicates the linearly increased packing effect caused by gravity in the vertical (axial) direction and the normal distribution of void in the horizontal (radial) direction by pebble drainage. These two effects coexist in the conical base of the bed whereas only the former effect exists in the cylindrical volume of the bed

  17. A safety re-evaluation of the AVR pebble bed reactor operation and its consequences for future HTR concepts

    Energy Technology Data Exchange (ETDEWEB)

    Moormann, R.

    2008-06-15

    The AVR pebble bed reactor (46 MW{sub th}) was operated 1967-88 at coolant outlet temperatures up to 990 C. A principle difference of pebble bed HTRs as AVR to conventional reactors is the continuous movement of fuel element pebbles through the core which complicates thermohydraulic, nuclear and safety estimations. Also because of a lack of other experience AVR operation is still a relevant basis for future pebble bed HTRs and thus requires careful examination. This paper deals mainly with some insufficiently published unresolved safety problems of AVR operation and of pebble bed HTRs but skips the widely known advantageous features of pebble bed HTRs. The AVR primary circuit is heavily contaminated with metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The amount of this contamination is not exactly known, but the evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory, which is some orders of magnitude more than precalculated and far more than in large LWRs. A major fraction of this contamination is bound on graphitic dust and thus partly mobile in depressurization accidents, which has to be considered in safety analyses of future reactors. A re-evaluation of the AVR contamination is performed here in order to quantify consequences for future HTRs (400 MW{sub th}). It leads to the conclusion that the AVR contamination was mainly caused by inadmissible high core temperatures, increasing fission product release rates, and not - as presumed in the past - by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot yet be equipped with instruments. The maximum core temperatures are still unknown but were more than 200 K higher than calculated. Further, azimuthal temperature differences at the active core margin of up to 200 K were

  18. A safety re-evaluation of the AVR pebble bed reactor operation and its consequences for future HTR concepts

    International Nuclear Information System (INIS)

    Moormann, R.

    2008-06-01

    The AVR pebble bed reactor (46 MW th ) was operated 1967-88 at coolant outlet temperatures up to 990 C. A principle difference of pebble bed HTRs as AVR to conventional reactors is the continuous movement of fuel element pebbles through the core which complicates thermohydraulic, nuclear and safety estimations. Also because of a lack of other experience AVR operation is still a relevant basis for future pebble bed HTRs and thus requires careful examination. This paper deals mainly with some insufficiently published unresolved safety problems of AVR operation and of pebble bed HTRs but skips the widely known advantageous features of pebble bed HTRs. The AVR primary circuit is heavily contaminated with metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The amount of this contamination is not exactly known, but the evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory, which is some orders of magnitude more than precalculated and far more than in large LWRs. A major fraction of this contamination is bound on graphitic dust and thus partly mobile in depressurization accidents, which has to be considered in safety analyses of future reactors. A re-evaluation of the AVR contamination is performed here in order to quantify consequences for future HTRs (400 MW th ). It leads to the conclusion that the AVR contamination was mainly caused by inadmissible high core temperatures, increasing fission product release rates, and not - as presumed in the past - by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot yet be equipped with instruments. The maximum core temperatures are still unknown but were more than 200 K higher than calculated. Further, azimuthal temperature differences at the active core margin of up to 200 K were observed

  19. Sana experiments for self-acting removal of the after-heat in reactors with pebble bed fuel and their interpretation

    International Nuclear Information System (INIS)

    Niessen, H.F.; Stoecker, Bernd; Amoignon, Olivier; Zuying, Gao; Jie, Liu

    1997-01-01

    For the confirmation of self-acting afterheat removal under hypothetical accident conditions from pebble bed reactors at the Research Center Juelich a test facility with an electrical heating input up to 30kW was erected and operated. A description of the test facility is given. Within the different tests the pebble diameter, the pebble material, the gas in the pebble bed, the heating-power and the arrangement of the heating were changed. Parts of the data were used within an IAEA Co-ordinated Research Program as benchmark problems for the code validation. All computer codes could simulate the test results with a sufficient good agreement, when the tests were executed with helium. For the tests with nitrogen the natural convection has to be taken into account. (author)

  20. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youhua [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Luo, Guangnan [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-01-15

    Highlights: • A unitary pebble bed was built to analyze the flow characteristics of purge gas based on DEM-CFD method. • Flow characteristics between particles were clearly displayed. • Porosity distribution, velocity field distribution, pressure field distribution, pressure drop and the wall effects on velocity distribution were studied. - Abstract: Helium is used as the purge gas to sweep tritium out when it flows through the lithium ceramic and beryllium pebble beds in solid breeder blanket for fusion reactor. The flow characteristics of the purge gas will dominate the tritium sweep capability and tritium recovery system design. In this paper, a computational model for the unitary pebble bed was conducted using DEM-CFD method to study the purge gas flow characteristics in the bed, which include porosity distribution between pebbles, velocity field distribution, pressure field distribution, pressure drop as well as the wall effects on velocity distribution. Pebble bed porosity and velocity distribution with great fluctuations were found in the near-wall region and detailed flow characteristics between pebbles were displayed clearly. The results show that the numerical simulation model has an error with about 11% for estimating pressure drop when compared with the Ergun equation.

  1. Pebble bed reactors simulation using MCNP: The Chinese HTR-10 reactor

    Directory of Open Access Journals (Sweden)

    SA Hosseini

    2013-09-01

    Full Text Available   Given the role of Gas-Graphite reactors as the fourth generation reactors and their recently renewed importance, in 2002 the IAEA proposed a set of Benchmarking problems. In this work, we propose a model both efficient in time and resources and exact to simulate the HTR-10 reactor using MCNP-4C code. During the present work, all of the pressing factors in PBM reactor design such as the inter-pebble leakage, fuel particle distribution and fuel pebble packing fraction effects have been taken into account to obtain an exact and easy to run model. Finally, the comparison between the results of the present work and other calculations made at INEEL proves the exactness of the proposed model.

  2. Bullet Optical Fiber Humidity Sensor Based on Ag Nanoparticles Dispersed in Leaf Extract of Alstonia Scholaris

    Directory of Open Access Journals (Sweden)

    Anu VIJAYAN

    2008-05-01

    Full Text Available An optical fiber with a clad of Ag nanoparticles dispersed in leaf extract of Alstonia Scholaris is used as an optical humidity sensor. The fabricated sensor showed response to humidity in the range of 40-95%. The specialty of this sensor is that it can be used when stored at room temperature (25 oC up to a maximum of 25 days with 90% retention of original sensitivity. These humidity sensing bio-films showed good operational efficiency for 5 cycles. The plastic optical fiber is versatile and can be used easily for humidity measurement with high sensitivity. The sensor exhibited a short response time of 4-5 sec. and recovery time of 45 sec with repeatability, reproducibility and low hysteresis effect. This Ag dispersed in leaf extract of Alstonia Scholaris showed higher humidity response compared to response shown by the leaf extract alone.

  3. Absorber rod for nuclear reactors in a pebble bed of spherical operating elements

    International Nuclear Information System (INIS)

    Reinstein, D.; Gnutzmann, H.

    1978-01-01

    The claim refers to the constructional configuration of an absorber rod, whose and penetrating into the pebble bed has an opening to reduce the fracture rate, so that the operating elements can escape into a channel within the absorber rod. To suit this to the direction of movement of the elements a part of the end of the rod is flexibly connected to the hollow absorber rod via a joint. In this way the mechanical load of the element particles is reduced and simultaneously one achieves that much lower force is required to insert the absorber rod into the pebble bed. (UA) [de

  4. Strongly Iridescent Hybrid Photonic Sensors Based on Self-Assembled Nanoparticles for Hazardous Solvent Detection

    Directory of Open Access Journals (Sweden)

    Ayaka Sato

    2018-03-01

    Full Text Available Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are embedded into a polydimethylsiloxane (PDMS matrix. These hybrid materials exhibit a strong green iridescence with a reflectance peak at 550 nm that originates from the close-packed arrangement of the nanoparticles. This reflectance peak measured under Wulff-Bragg conditions displays a 20 to 50 nm red shift when the photonic sensors are exposed to five commonly employed and highly hazardous organic solvents. These red-shifts correlate well with PDMS swelling ratios using the various solvents, which suggests that the observable color variations result from an increase in the photonic crystal lattice parameter with a similar mechanism to the color modulation of the chameleon skin. Dynamic reflectance measurements enable the possibility of clearly identifying each of the tested solvents. Furthermore, as small amounts of hazardous solvents such as tetrahydrofuran can be detected even when mixed with water, the nanostructured solvent sensors we introduce here could have a major impact on global safety measures as innovative photonic technology for easily visualizing and identifying the presence of contaminants in water.

  5. CdO necklace like nanobeads decorated with PbS nanoparticles: Room temperature LPG sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, N.B. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); K.A.M.P. & N.K.P. Science College, Pimpalner, Sakri, Dhule, M.S. (India); Baviskar, P.K. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); Ahire, R.R. [S.G. Patil Science, Sakri, Dhule, M.S. (India); Sankapal, B.R., E-mail: brsankapal@gmail.com [Nano Materials and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S. (India)

    2017-04-15

    Simple chemical route has been employed to grow interconnected nanobeads of CdO having necklace like structure through air annealing of cadmium hydroxide nanowires. This nanobeads of n-CdO with high surface area has been decorated with p-PbS nanoparticles resulting in the formation of nano-heterojunction which has been utilized effectively as room temperature liquefied petroleum gas (LPG) sensor. The room temperature gas response towards C{sub 2}H{sub 5}OH, Cl{sub 2}, NH{sub 3}, CO{sub 2} and LPG was investigated, among which LPG exhibits significant response. The maximum gas response of 51.10% is achieved with 94.54% stability upon exposure of 1176 ppm concentration of LPG at room temperature (27 °C). The resulting parameters like gas response, response and recovery time along with stability studies has been studied and results are discussed herein. - Highlights: • Conversion of Cd(OH){sub 2} nanowires to CdO nanonecklace by air annealing at 290 °C. • Decoration of PbS nanoparticles over CdO nanobeads by SILAR method. • Formation of n-CdO/p-PbS nano-heterojunction as room temperature LPG sensor. • Maximum gas response of 51.10% with 94.54% stability.

  6. Recovery and recycling of lithium value from spent lithium titanate (Li{sub 2}TiO{sub 3}) pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, D., E-mail: dmandal10@gmail.com

    2013-09-15

    Graphical abstract: Effects of various process parameters on the recovery of Li-from spent Li{sub 2}TiO{sub 3} pebbles were investigated. From the experimental results it was observed that the leaching rate increases with speed of stirring till 450 rpm and then above 450 rpm; the increase in speed of stirring does not have any significant effect on the leaching rate as shown in the following figure. Effects of other parameters on the Li-recovery from spent Li{sub 2}TiO{sub 3} pebbles are discussed in this paper. Abstract: In the first generation fusion reactors the fusion of deuterium (D) and tritium (T) is considered to produce energy to meet the future energy demand. Deuterium is available in nature whereas, tritium is not. Lithium-6 (Li{sup 6}) isotope has the ability to produce tritium in the n, α nuclear reaction with neutrons. Thus lithium-based ceramics enriched by Li{sup 6} isotope are considered for the tritium generation for its use in future fusion reactors. Lithium titanate is one such Li-based ceramic material being considered for its some attractive properties viz., high thermal and chemical stability, high thermal conductivity, and low tritium solubility. It is reported in the literature, that the burn up of these pebbles in the fusion reactor will be limited to only 15–17 atomic percentage. At the end of life, the pebbles will contain more than 45% unused Li{sup 6} isotope. Due to the high cost of enriched Li{sup 6} and the waste disposal considerations, it is necessary to recover the unused Li from the spent lithium titanate pebbles. Till date, only the feasibilities of different processes are reported, but no process details are available. Experiments were carried out for the recovery of Li from simulated Li{sub 2}TiO{sub 3} pebbles and to reuse of lithium in lithium titanate pebble fabrication. The details of the experiments and results are discussed in this paper.

  7. Status of Research on Pebble Bed HTR Fuel Fabrication Technology in Indonesia

    International Nuclear Information System (INIS)

    Rachmawati, M.; Sarjono; Ridwan; Langenati, R.

    2014-01-01

    Research on pebble bed HTR fuel fabrication is conducted in Indonesia. One of the aims is to build a knowledge base on pebble bed HTR fuel element fabrication technology for fuel procurement. The steps of research strategies are firstly to understand the basic design research of TRISO fuel, properties, and requirements, and secondly to understand the TRISO fuel manufacturing technology, which comprises fabrication and quality control, including its facility. Both steps are adopted from research and experiences of the countries with HTR fuel element fabrication technology. From the knowledge gained in the research, an experimental design of the process and a set of prototype process equipment for fabrication are developed, namely kernels production using external gelation process, TRISO coating of the kernel, and pebble compacting. Experiments using the prototypes have been conducted. Characterization of the kernel product, i.e. diameter, sphericity, density and O/U ratio, shows that the kernel product is still not in compliance with the specification requirements. These are deemed to be caused mainly by the selected vibrating system and the viscosity adjustment. Another major cause is the selected NH3 and air feeding method for both NH3 and air layer in the preparation for spherical droplets of liquid. The FB-CVD TRISO coating of the kernel has been experimented but unsuccessful by using an FB-CVD once‐through continuous coating process. For the pebble compacting, the process is still in the early stage of setting-up compaction equipment. This paper summarizes the current status of research on HTR fuel fabrication technology in Indonesia, the proposed process and its equipment setting-up for improvement of the kernel production. The knowledge and lessons learned gained from the research is useful and can be an assistance in planning for fuel development laboratory facilities procurement, formulating User Requirement Document and Bid Invitation Specification for

  8. Recent progress in the modelling of helium and tritium behaviour in irradiated beryllium pebbles

    International Nuclear Information System (INIS)

    Rabaglino, E.; Ronchi, C.; Cardella, A.

    2003-01-01

    One of the key issues of the European Helium Cooled Pebble Bed blanket is the behaviour under irradiation of beryllium pebbles, which have the function of neutron multiplier. An intense production of helium occurs in-pile, as well as a non negligible generation of tritium. Helium bubbles induce swelling and a high tritium inventory is a safety issue. Extensive studies for a better understanding, characterisation and modelling of the behaviour of helium and tritium in irradiated beryllium pebbles are being carried out, with the final aim to enable a reliable prediction of gas release and swelling in the full range of operating and accidental conditions of a Fusion Power Reactor. The general strategy consists in integrating studies on macroscopic phenomena (gas release) with the characterisation of corresponding microscopic diffusion phenomena (bubble kinetics) and the assessment of some fundamental diffusion parameter for the models (gas atomic diffusion coefficients). The present work gives a summary of the latest achievements in this context. By an inverse analysis of experimental out-of-pile gas release from weakly irradiated pebbles, coupled to the study of the characteristics of bubble population, it has been possible to assess the thermal diffusion coefficients of helium and tritium in and to improve and validate the classical model of gas precipitation into bubbles inside the grain. The improvement of the description of gas atomic diffusion and precipitation is the first step to enable a more reliable prediction of gas release

  9. Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles

    International Nuclear Information System (INIS)

    Mehta, S.K.; Singh, Kulvinder; Umar, Ahmad; Chaudhary, G.R.; Singh, Sukhjinder

    2012-01-01

    Graphical abstract: Systematic representation of the fabricated amperometric hydrazine chemical sensor based on ZnO NPs/Au modified electrode. Highlights: ► Synthesis of well-crystalline ZnO NPs has been achieved in aqueous solution. ► ZnO NPs act as efficient electron mediators for hydrazine sensor. ► Extremely high sensitivity and low-detection limit have been obtained. - Abstract: Using well-crystalline ZnO nanoparticles (NPs), an ultra high sensitive hydrazine amperometric sensor has been fabricated and reported in this paper. The ZnO NPs have been synthesized by very simple aqueous solution process at 90 °C and characterized in detail in terms of their morphological, compositional, structural and optical properties. The detailed investigations reveal that the synthesized products are well-crystalline NPs, possessing wurtzite hexagonal phase and exhibit good optical properties. The fabricated amperometric hydrazine sensor exhibits ultra-high sensitivity of ∼97.133 μA cm −2 μM −1 and very low-detection limit of 147.54 nM. To the best of our knowledge, this is the first report in which an ultra-high sensitivity and low-detection limit have been obtained for the hydrazine chemical sensor based on ZnO nanostructures.

  10. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Science.gov (United States)

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  11. Pebble bed blanket design for deuterium burning tandem mirror reactors

    International Nuclear Information System (INIS)

    Grotz, S.P.; Dhir, V.K.

    1983-01-01

    The UCLA tandem mirror reactor, SATYR, was developed around the capability of tandem mirrors with thermal barriers to burn deuterium at reasonable efficiency levels. The pebble bed concept has been incorporated into our blanket design for the following reasons: 1) Large area-to-volume ratio for purposes of heat removal; 2) Large volume of structure for high thermal capacity thus increasing the safety margin during off-normal incidents; 3) Relatively inexpensive manufacturing costs because of large acceptable tolerances and lack of exotic materials (i.e., lithium). A simplified stress analysis of the blanket module was performed to optimize and simplify the design. The pre-specified stress intensity limitations used were based upon a 30-year predicted lifetime for each module. Along with stress analysis of the vessel a detailed thermal hydraulic analysis of the pebble bed has been completed. Parameters affecting the pebble bed design are fluidization velocity, pressure drop, heat transfer coefficient, thermally induced stress in the spheres and spatial variation of the power density. Although reasonable gross thermal efficiencies of the 2 designs has been achieved (28% for H 2 O and 39% for He) the high net recirculating power fraction for heating and neutral beams results in relatively low net plant efficiencies (21% and 27%). The results show that a blanket can be designed with good thermal efficiency and a relative-ly simple configuration. However, application of this concept to the high Q deuterium-tritium fuel cycle would have difficulties resulting from the need for continuous removal of the tritium. (orig./HP)

  12. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  13. Ethanol Sensing Properties of Au-functionalized NiO Nanoparticles

    International Nuclear Information System (INIS)

    Park, Sunghoon; Kheel, Hyejoon; Sun, Gun-Joo; Hyun, Soong Keun; Park, Sang Eon; Lee, Chongmu

    2016-01-01

    Pristine and Au-functionalized nickel oxide (NiO) nanoparticles were synthesized via a simple solvo thermal route and the ethanol sensing properties of multiple-networked Au-doped and undoped NiO nanoparticle sensors were examined. The pristine and Au-functionalized NiO nanoparticle sensor showed responses of 442 and 273%, respectively, to 1000 ppm of ethanol at 325 .deg. C. The Au-functionalized NiO nanoparticle sensor showed faster response than the pristine NiO counterpart, whereas the recovery time of the former was similar to that of the latter. The optimal operating temperature of the pristine and Au-functionalized NiO nanoparticles was 325 and 350 .deg. C, respectively, by Au-doping. Both the pristine and Au-functionalized NiO nanoparticle sensors showed selectivity for ethanol gas over methanol, acetone, benzene, and toluene gases. The underlying mechanism of the enhanced sensing performance of the Au-functionalized NiO nanoparticles toward ethanol might be due to modulation of the depletion layer formed around Au particles and the Schottky barriers formed at the Au-NiO junction accompanying ethanol adsorption and desorption, the spill-over effect and high catalytic activity of Au nanoparticles and the smaller diameter of the particles in the Au-functionalized NiO sensor.

  14. Ethanol Sensing Properties of Au-functionalized NiO Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghoon; Kheel, Hyejoon; Sun, Gun-Joo; Hyun, Soong Keun; Park, Sang Eon; Lee, Chongmu [Inha University, Incheon (Korea, Republic of)

    2016-05-15

    Pristine and Au-functionalized nickel oxide (NiO) nanoparticles were synthesized via a simple solvo thermal route and the ethanol sensing properties of multiple-networked Au-doped and undoped NiO nanoparticle sensors were examined. The pristine and Au-functionalized NiO nanoparticle sensor showed responses of 442 and 273%, respectively, to 1000 ppm of ethanol at 325 .deg. C. The Au-functionalized NiO nanoparticle sensor showed faster response than the pristine NiO counterpart, whereas the recovery time of the former was similar to that of the latter. The optimal operating temperature of the pristine and Au-functionalized NiO nanoparticles was 325 and 350 .deg. C, respectively, by Au-doping. Both the pristine and Au-functionalized NiO nanoparticle sensors showed selectivity for ethanol gas over methanol, acetone, benzene, and toluene gases. The underlying mechanism of the enhanced sensing performance of the Au-functionalized NiO nanoparticles toward ethanol might be due to modulation of the depletion layer formed around Au particles and the Schottky barriers formed at the Au-NiO junction accompanying ethanol adsorption and desorption, the spill-over effect and high catalytic activity of Au nanoparticles and the smaller diameter of the particles in the Au-functionalized NiO sensor.

  15. Thermal-hydraulic calculation and analysis on helium cooled ceramic breeder pebble bed assembly for in-pile irradiation and in-situ tritium extraction

    International Nuclear Information System (INIS)

    Guo Chunqiu; Xie Jiachun; Liu Xingmin

    2013-01-01

    In-pile irradiation and in-situ tritium extraction experiment is one of associated domestic research projects in ITER special program. According to the technical requirements of in-pile irradiation experiment of helium cooled ceramic breeder (ceramic) pebble bed assembly in a research reactor, the feasibility of the design for the in-pile irradiation and in-situ tritium extraction experiment of ceramic pebble bed assembly was evaluated. By conducting thermal-hydraulic design calculation with different in-pile irradiation channels, locations and structure parameters for ceramic pebble bed assembly, a reasonable design scheme of ceramic pebble bed assembly satisfying the design requirements for in-pile irradiation was obtained. (authors)

  16. Liquefied petroleum gas sensor based on manganese (III) oxide and zinc manganese (III) oxide nanoparticles

    Science.gov (United States)

    Sharma, Shiva; Chauhan, Pratima; Husain, Shahid

    2018-01-01

    In this paper, {{{Mn}}}2{{{O}}}3 and {{{ZnMn}}}2{{{O}}}4 nanoparticles (NPs) are successfully synthesized using chemical co-precipitation method at room temperature and further annealed at 450 °C. The structure, crystallite size, morphology, specific surface area (SSA) and band gap energy have been determined by x-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area analysis, scanning electron microscopy (SEM-EDS) and UV-visible spectrophotometer. The sensor films of the {{{Mn}}}2{{{O}}}3 NPs and {{{ZnMn}}}2{{{O}}}4 NPs have been fabricated onto glass substrate using spin coater system separately. These sensor films are investigated for different concentrations (200-1200 ppm) of liquefied petroleum gas (LPG) at different operating temperatures ranging from 100 °C to 400 °C. A comparative study of gas sensing properties shows that spinel {{{ZnMn}}}2{{{O}}}4 sensor film exhibit excellent response (≈ 80 % ) towards 1000 ppm LPG at 300 °C in comparison to {{{Mn}}}2{{{O}}}3 sensor films. The enhancement in the gas sensing characteristics of {{{ZnMn}}}2{{{O}}}4 sensor film is attributed to the reduced crystallite size, greater SSA, and modification in structure as well as morphology.

  17. Fabrication of Li{sub 4}SiO{sub 4} pebbles by gel-precipitation technology

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Z.; Wu, X.; Gu, Z. [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China)

    2007-07-01

    Full text of publication follows: Lithium orthosilicate (Li{sub 4}SiO{sub 4}) is considered as a promising candidate as breeder material for fusion reactors due to its high lithium content, high stability and favorable tritium release behavior. The shape the breeder materials adopted was determined by many factors, such as the tritium breeding ratio, the ease of diffusion of tritium, the release of thermal stress and irradiation cracking etc. At present pebble configuration has been recognized as the preferred option in most blanket designs for tritium breeders. In the fabrication of spheres of a ceramic material, there are several methods available: the agglomeration of powders, melt-spraying method, sol-gel process and gel-precipitation process. Li{sub 4}SiO{sub 4} pebbles with satisfying quality have been fabricated by melt-spraying method. But expensive experimental equipment and high temperature restrict the extensive application of the method. Gel-precipitation can be operated at room temperature and no special equipment is needed. The technique has been successfully used to produce lithium aluminate ceramic spheres. In this work, fabrication of Li{sub 4}SiO{sub 4} pebbles by gel-precipitation technology was first time investigated systematically. LiOH, citric acid and SiO{sub 2} (aerosil) were used as raw materials. SiO{sub 2} (aerosil) was dispersed in the gel formed by LiOH and citric acid, milky suspension was then obtained and Li{sub 4}SiO{sub 4} pebbles were produced from the milky suspension. The pebbles obtained displayed pure Li{sub 4}SiO{sub 4} phase, exhibited high sphericity, uniform distribution in size, small amount of pores and cracks. Phase transformation with the molar ratio of SiO{sub 2}/LiOH was investigated. The effect of sintering temperature on microstructure was discussed. The water-based gel-precipitation method for fabrication of Li{sub 4}SiO{sub 4} spheres was simple and convenient to realize mass production. (authors)

  18. The Pebble Bed Modular Reactor: An obituary

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve, E-mail: stephen.thomas@gre.ac.u [Public Services International Research Unit (PSIRU), Business School, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom)

    2011-05-15

    The High Temperature Gas-cooled Reactor (HTGR) has exerted a peculiar attraction over nuclear engineers. Despite many unsuccessful attempts over half a century to develop it as a commercial power reactor, there is still a strong belief amongst many nuclear advocates that a highly successful HTGR technology will emerge. The most recent attempt to commercialize an HTGR design, the Pebble Bed Modular Reactor (PBMR), was abandoned in 2010 after 12 years of effort and the expenditure of a large amount of South African public money. This article reviews this latest attempt to commercialize an HTGR design and attempts to identify which issues have led to its failure and what lessons can be learnt from this experience. It concludes that any further attempts to develop HTGRs using Pebble Bed technology should only be undertaken if there is a clear understanding of why earlier attempts have failed and a high level of confidence that earlier problems have been overcome. It argues that the PBMR project has exposed serious weaknesses in accountability mechanisms for the expenditure of South African public money. - Research highlights: {yields} In this study we examine the reasons behind the failure of the South African PBMR programme. {yields} The study reviews the technical issues that have arisen and lessons for future reactor developments. {yields} The study also identifies weaknesses in the accountability mechanisms for public spending.

  19. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    International Nuclear Information System (INIS)

    Wang Aijun; Li Yongfang; Li Zhonghua; Feng Jiuju; Sun Yanli; Chen Jianrong

    2012-01-01

    Monodisperse Fe 3 O 4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe 3 O 4 -silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10 −9 mol·cm −2 , and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s −1 . The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM −1 cm −2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe 3 O 4 -silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ► Synthesis of monodispersed Fe 3 O 4 nanoparticles. ► Fabrication of core/shell Fe 3 O 4 -silica-Au nanoparticles. ► Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  20. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  1. Synthesis of new copper nanoparticle-decorated anchored type ligands: Applications as non-enzymatic electrochemical sensors for hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A., E-mail: Ensafi@cc.iut.ac.ir; Zandi-Atashbar, N.; Ghiaci, M.; Taghizadeh, M.; Rezaei, B.

    2015-02-01

    In this work, copper nanoparticles (CuNPs) decorated on two new anchored type ligands were utilized to prepare two electrochemical sensors. These ligands are made from bonding amine chains to silica support including SiO{sub 2}–pro–NH{sub 2} (compound I) and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2} (compound II). The morphology of synthesized CuNPs was characterized by transmission electron microscopy (TEM). The nano-particles were in the range of 13–37 nm with the average size of 23 nm. These materials were used to modify carbon paste electrode. Different electrochemical techniques, including cyclic voltammetry, electrochemical impedance spectroscopy and hydrodynamic chronoamperometry, were used to study the sensor behavior. These electrochemical sensors were used as a model for non-enzymatic detection of hydrogen peroxide (H{sub 2}O{sub 2}). To evaluate the abilities of the modified electrodes for H{sub 2}O{sub 2} detection, the electrochemical signals were compared in the absence and presence of H{sub 2}O{sub 2}. From them, two modified electrodes showed significant responses vs. H{sub 2}O{sub 2} addition. The amperograms illustrated that the sensors were selective for H{sub 2}O{sub 2} sensing with linear ranges of 5.14–1250 μmol L{sup −1} and 1.14–1120 μmol L{sup −1} with detection limits of 0.85 and 0.27 μmol L{sup −1} H{sub 2}O{sub 2}, sensitivities of 3545 and 11,293 μA mmol{sup −1} L and with response times less than 5 s for I/CPE and II/CPE, respectively. As further verification of the selected sensor, H{sub 2}O{sub 2} contained in milk sample was analyzed and the obtained results were comparable with the ones from classical control titration method. - Highlights: • Copper nanoparticles decorating on two new anchored type ligands were prepared. • Ligands are bonding to silica support as SiO{sub 2}–pro–NH{sub 2} and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2}. • These materials were used as electrochemical sensors for H

  2. Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2014-08-01

    Full Text Available A sensor for the simple and sensitive measurement of hydrogen peroxide has been developed which is based on screen printed electrodes (SPEs modified with Prussian blue nanoparticles (PBNPs deposited using piezoelectric inkjet printing. PBNP-modified SPEs were characterized using physical and electrochemical techniques to optimize the PBNP layer thickness and electroanalytical conditions for optimum measurement of hydrogen peroxide. Sensor optimization resulted in a limit of detection of 2 × 10−7 M, a linear range from 0 to 4.5 mM and a sensitivity of 762 μA∙mM–1∙cm–2 which was achieved using 20 layers of printed PBNPs. Sensors also demonstrated excellent reproducibility (<5% rsd.

  3. Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kun [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Alex, Saji [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Chemistry, Government College for Women, Thiruvananthapuram, Kerala 695014 (India); Siegel, Gene [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2015-01-01

    A novel electrochemical glucose sensor was developed by employing a composite film of plant-like Zinc oxide (ZnO) and chitosan stabilized spherical gold nanoparticles (AuNPs) on which Glucose oxidaze (GOx) was immobilized. The ZnO was deposited on an indium tin oxide (ITO) coated glass and the AuNPs of average diameter of 23 nm were loaded on ZnO as the second layer. The prepared ITO/ZnO/AuNPs/GOx bioelectrode exhibited a low value of Michaelis–Menten constant of 1.70 mM indicating a good bio-matrix for GOx. The studies of electrochemical properties of the electrode using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that, the presence of AuNPs provides significant enhancement of the electron transfer rate during redox reactions. The linear sweep voltammetry (LSV) shows that the ITO/ZnO/AuNPs/GOx based sensor has a high sensitivity of 3.12 μA·mM{sup −1}·cm{sup −2} in the range of 50 mg/dL to 400 mg/dL glucose concentration. The results show promising application of the gold nanoparticle modified plant-like ZnO composite bioelectrode for electrochemical sensing of glucose.

  4. Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine.

    Science.gov (United States)

    Alcantara, David; Lopez, Soledad; García-Martin, María Luisa; Pozo, David

    2016-07-01

    Since pioneering work in the early 60s on the development of enzyme electrodes the field of sensors has evolved to different sophisticated technological platforms. Still, for biomedical applications, there are key requirements to meet in order to get fast, low-cost, real-time data acquisition, multiplexed and automatic biosensors. Nano-based sensors are one of the most promising healthcare applications of nanotechnology, and prone to be one of the first to become a reality. From all nanosensors strategies developed, Magnetic Relaxation Switches (MRSw) assays combine several features which are attractive for nanomedical applications such as safe biocompatibility of magnetic nanoparticles, increased sensitivity/specificity measurements, possibility to detect analytes in opaque samples (unresponsive to light-based interferences) and the use of homogeneous setting assay. This review aims at presenting the ongoing progress of MRSw technology and its most important applications in clinical medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles.

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-14

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10 -12  M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  6. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-01

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10-12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  7. Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2.1 Computer Simulation

    Science.gov (United States)

    Husnayani, I.; Udiyani, P. M.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) is a high temperature gas-cooled reactor which employs graphite as a moderator and helium as a coolant. In a multi-pass PBR, burnup of the fuel pebble must be measured in each cycle by online measurement in order to determine whether the fuel pebble should be reloaded into the core for another cycle or moved out of the core into spent fuel storage. One of the well-known methods for measuring burnup is based on the activity of radionuclide decay inside the fuel pebble. In this work, the activity and gamma emission of Kr-85m were studied in order to investigate the feasibility of Kr-85m as burnup measurement indicator in a PBR. The activity and gamma emission of Kr-85 were estimated using ORIGEN2.1 computer code. The parameters of HTR-10 were taken as a case study in performing ORIGEN2.1 simulation. The results show that the activity revolution of Kr-85m has a good relationship with the burnup of the pebble fuel in each cycle. The Kr-85m activity reduction in each burnup step,in the range of 12% to 4%, is considered sufficient to show the burnup level in each cycle. The gamma emission of Kr-85m is also sufficiently high which is in the order of 1010 photon/second. From these results, it can be concluded that Kr-85m is suitable to be used as burnup measurement indicator in a pebble bed reactor.

  8. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    Science.gov (United States)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin

    2016-10-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.

  9. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    International Nuclear Information System (INIS)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Wasisto, Hutomo Suryo; Peiner, Erwin

    2016-01-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor ( Q ) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10 -6 . This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor. (paper)

  10. Gas reactor international cooperative program interim report. Pebble bed reactor fuel cycle evaluation

    International Nuclear Information System (INIS)

    1978-09-01

    Nuclear fuel cycles were evaluated for the Pebble Bed Gas Cooled Reactor under development in the Federal Republic of Germany. The basic fuel cycle specified for the HTR-K and PNP is well qualified and will meet the requirements of these reactors. Twenty alternate fuel cycles are described, including high-conversion cycles, net-breeding cycles, and proliferation-resistant cycles. High-conversion cycles, which have a high probability of being successfully developed, promise a significant improvement in resource utilization. Proliferation-resistant cycles, also with a high probability of successful development, compare very favorably with those for other types of reactors. Most of the advanced cycles could be adapted to first-generation pebble bed reactors with no significant modifications

  11. Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Moses, David Lewis [ORNL

    2009-11-01

    The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) a rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of

  12. Additives affecting properties of β-Li{sub 2}TiO{sub 3} pebbles in a modified indirect wet chemistry process

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Long, E-mail: johnyucl@aliyun.com [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Research Laboratory of Hydrothermal Chemistry, Faculty of Science, The Kochi University, Kochi 780-8520 (Japan); Liu, Wei; Yang, Long-Tao; Wang, Dao-Yi; Wu, Kang [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Zhang, Zeng-Ping [Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang' an University, Xi' an 710064 (China); Wang, Xiu-Feng [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, The Kochi University, Kochi 780-8520 (Japan)

    2016-11-15

    Lithium metatitanate (β-Li{sub 2}TiO{sub 3}) pebbles were fabricated via the modified indirect wet chemistry method. Effect of varied additives, as polyvinyl alcohol, glycerol, and agar on the properties evolution was investigated. The highest density is obtained by adding 2 wt% (weight percent) polyvinyl alcohol, 3 wt% glycerol, and 3 wt% agar, respectively. β-Li{sub 2}TiO{sub 3} pebbles with relative sintered density of 92.4%T.D. (Theoretical Density), the ratio of the intensity of diffraction peak (002) to that of (−133) of about 2.93, about 1.58 mm in diameter, a better sphericity of 1.02, the particle size of 5–6 μm, and the well-developed surface layered structure are successfully fabricated with 3 wt% glycerol. Glycerol is beneficial to improving the properties by other fabrication method as well. - Highlights: • Polyvinyl alcohol, glycerol, and agar were used to prepare β-Li{sub 2}TiO{sub 3} pebbles. • Properties of the β-Li{sub 2}TiO{sub 3} pebbles were governed by the additives. • Glycerol is beneficial to improving the properties of β-Li{sub 2}TiO{sub 3} pebbles.

  13. An exploration hydrogeochemical study at the giant Pebble porphyry Cu-Au-Mo deposit, Alaska, USA, using high-resolution ICP-MS

    Science.gov (United States)

    Eppinger, Robert G.; Fey, David L.; Giles, Stuart A.; Kelley, Karen D.; Smith, Steven M.

    2012-01-01

    A hydrogeochemical study using high resolution ICP-MS was undertaken at the giant Pebble porphyry Cu-Au-Mo deposit and surrounding mineral occurrences. Surface water and groundwater samples from regional background and the deposit area were collected at 168 sites. Rigorous quality control reveals impressive results at low nanogram per litre (ng/l) levels. Sites with pH values below 5.1 are from ponds in the Pebble West area, where sulphide-bearing rubble crop is thinly covered. Relative to other study area waters, anomalous concentrations of Cu, Cd, K, Ni, Re, the REE, Tl, SO42− and F− are present in water samples from Pebble West. Samples from circum-neutral waters at Pebble East and parts of Pebble West, where cover is much thicker, have anomalous concentrations of Ag, As, In, Mn, Mo, Sb, Th, U, V, and W. Low-level anomalous concentrations for most of these elements were also found in waters surrounding nearby porphyry and skarn mineral occurrences. Many of these elements are present in low ng/l concentration ranges and would not have been detected using traditional quadrupole ICP-MS. Hydrogeochemical exploration paired with high resolution ICP-MS is a powerful new tool in the search for concealed deposits.

  14. Highly sensitive luminescent sensor for cyanide ion detection in aqueous solution based on PEG-coated ZnS nanoparticles.

    Science.gov (United States)

    Mehta, Surinder K; Salaria, Khushboo; Umar, Ahmad

    2013-03-15

    Using polyethylene glycol (PEG) coated ZnS nanoparticles (NPs), a novel and highly sensitive luminescent sensor for cyanide ion detection in aqueous solution has been presented. ZnS NPs have been used to develop efficient luminescence sensor which exhibits high reproducibility and stability with the lowest limit of detection of 1.29×10(-6) mol L(-1). The observed limit of detection of the fabricated sensor is ~6 times lower than maximum value of cyanide permitted by United States Environmental Protection Agency for drinking water (7.69×10(-6) mol L(-1)). The interfering studies show that the developed sensor possesses good selectivity for cyanide ion even in presence of other coexisting ions. Importantly, to the best of our knowledge, this is the first report which demonstrates the utilization of PEG- coated ZnS NPs for efficient luminescence sensor for cyanide ion detection in aqueous solution. This work demonstrates that rapidly synthesized ZnS NPs can be used to fabricate efficient luminescence sensor for cyanide ion detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Phosphate sensing by fluorecent reporter proteins embedded in poly-acrylamide nanoparticles

    DEFF Research Database (Denmark)

    Sun, Honghao; Scharff-Poulsen, Anne Marie; Gu, Hong

    2008-01-01

    Phosphate sensors were developed by embedding fluorescent reporter proteins (FLIPPi) in polyacrylamide nanoparticles; with diameters from 40 to 120 nm. The sensor activity and protein loading efficiency varied according to nanoparticle composition, that is, the total monomer content (% T) and the......, in nanoparticles for, for example, sensing, biological catalysis, and gene delivery.......Phosphate sensors were developed by embedding fluorescent reporter proteins (FLIPPi) in polyacrylamide nanoparticles; with diameters from 40 to 120 nm. The sensor activity and protein loading efficiency varied according to nanoparticle composition, that is, the total monomer content (% T......) and the cross-linker content (% C). Nanoparticles with 28% T and 20% C were considered optimal as a result of relatively high loading efficiency (50.6%) as well as high protein activity (50%). The experimental results prove that the cross-linked polyacrylamide matrix could protect FLIPPi from degradation...

  16. Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Allafchian, Ali R.; Rezaei, B.; Mohammadzadeh, R.

    2013-01-01

    A magnetic nano‐composite of multiwall carbon nanotube, decorated with NiFe 2 O 4 nanoparticles, was synthesized with citrate sol–gel method. The multiwall carbon nanotubes decorated with NiFe 2 O 4 nanoparticles (NiFe 2 O 4 –MWCNTs) were characterized with different methods such as Fourier transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The new nano-composite acts as a suitable electrocatalyst for the oxidation of sotalol at a potential of 500 mV at the surface of the modified electrode. Linear sweep voltammetry exhibited two wide linear dynamic ranges of 0.5–1000 μmol L −1 sotalol with a detection limit of 0.09 μmol L −1 . The modified electrode was used as a novel electrochemical sensor for the determination of sotalol in real samples such as pharmaceutical, patient and safe human urine. - Graphical abstract: Multiwall carbon nanotube, decorated with NiFe 2 O 4 nanoparticles, was prepared using citrate sol–gel method. We characterized the new nanoparticles with different spectroscopic and voltammetric methods. The nano sensor was used as a voltammetric sensor for the determination of trace amounts of sotalol at pH 7.0. Highlights: ► We synthesized and prepared new sensor, multiwall carbon nanotubes decorated with NiFe 2 O 4 . ► Several spectroscopic and voltammetric methods were used to study its characteristics. ► The nanoparticles act as suitable electrocatalyst for the oxidation of sotalol. ► Sotalol could be measured as low as 0.09 μmol L −1 using linear sweep voltammetry.

  17. A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles

    Science.gov (United States)

    Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng

    2018-03-01

    As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.

  18. An integrated approach to sensor FDI and signal reconstruction in HTGRs – Part I: Theoretical framework

    International Nuclear Information System (INIS)

    Uren, Kenneth R.; Schoor, George van; Rand, Carel P. du; Botha, Anrika

    2016-01-01

    Highlights: • An integrated sensor fault detection and isolation method for nuclear power plants. • Utilise techniques such as non-temporal parity space and principal component analysis. • Utilise statistical methods and fuzzy systems for sensor fault isolation. • Allow the detection of multiple sensor faults. • Proposed methodology suitable for online implementation. - Abstract: Sensor fault detection and isolation (FDI) is an important element in modern nuclear power plant (NPP) diagnostic systems. In this respect, sensor FDI of generation II and III water-cooled nuclear energy systems has become an active research topic to continually improve levels of reliability, safety, and operation. However, evolutionary advances in reactor and component technology together with different energy conversion methodologies support the investigation of alternative approaches to sensor FDI. Within this context, the basic aim of this two part series is to propose, implement and evaluate an integrated approach for sensor FDI and signal reconstruction in generation IV nuclear high temperature gas-cooled reactors (HTGRs). In part I of this two part series, the methodology and theoretical background of the integrated sensor FDI and signal reconstruction approach are given. This approach combines techniques such as non-temporal parity space analysis (PSA), principal component analysis (PCA), sensor fusion and fuzzy decision systems to form a more powerful sensor FDI methodology that exploits the strengths of the individual techniques. An illustrative example of the PCA algorithm is given making use of actual data retrieved from a pilot plant called the pebble bed micro model (PBMM). This is a prototype gas turbine power plant based on the first design configuration of the pebble bed modular reactor (PBMR). In part II, the described integrated sensor fault detection approach will be evaluated by means of two case studies. In the first case study the approach will be evaluated

  19. A simulation of a pebble bed reactor core by the MCNP-4C computer code

    Directory of Open Access Journals (Sweden)

    Bakhshayesh Moshkbar Khalil

    2009-01-01

    Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.

  20. Planet population synthesis driven by pebble accretion in cluster environments

    Science.gov (United States)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  1. A 1,2-propylene oxide sensor utilizing cataluminescence on CeO2 nanoparticles.

    Science.gov (United States)

    Liu, Hongmei; Zhang, Yantu; Zhen, Yanzhong; Ma, Yuan; Zuo, Weiwei

    2014-12-01

    A simple and sensitive gas sensor was proposed for the determination of 1,2-propylene oxide (PO) based on its cataluminescence (CTL) by oxidation in the air on the surface of CeO2 nanoparticles. The luminescence characteristics and optimal conditions were investigated in detail. Under optimized conditions, the linear range of the CTL intensity versus the concentration of PO was 10-150 ppm, with a correlation coefficient (r) of 0.9974 and a limit of detection (S/N = 3) of 0.9 ppm. The relative standard deviation for 40 ppm PO was 1.2% (n = 7). There was no or only weak response to common foreign substances including acetone, formaldehyde, ethyl acetate, acetic acid, chloroform, propanol, carbon tetrachloride, ether and methanol. There was no significant change in the catalytic activity of the sensor for 100 h. The proposed method was simple and sensitive, with a potential of detecting PO in the environment and industry. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Development and testing of analytical models for the pebble bed type HTRs

    International Nuclear Information System (INIS)

    Huda, M.Q.; Obara, T.

    2008-01-01

    The pebble bed type gas cooled high temperature reactor (HTR) appears to be a good candidate for the next generation nuclear reactor technology. These reactors have unique characteristics in terms of the randomness in geometry, and require special techniques to analyze their systems. This study includes activities concerning the testing of computational tools and the qualification of models. Indeed, it is essential that the validated analytical tools be available to the research community. From this viewpoint codes like MCNP, ORIGEN and RELAP5, which have been used in nuclear industry for many years, are selected to identify and develop new capabilities needed to support HTR analysis. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP. The coupled MCNP-ORIGEN code is used to estimate the burnup and the refuelling scheme. Results obtained from Monte Carlo analysis are interfaced with RELAP5 to analyze the thermal hydraulics and safety characteristics of the reactor. New models and methodologies are developed for several past and present experimental and prototypical facilities that were based on HTR pebble bed concepts. The calculated results are compared with available experimental data and theoretical evaluations showing very good agreement. The ultimate goal of the validation of the computer codes for pebble bed HTR applications is to acquire and reinforce the capability of these general purpose computer codes for performing HTR core design and optimization studies

  3. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Gur, Leah; Tirosh, Einat [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Segal, Amir [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Markovich, Gil, E-mail: gilmar@post.tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Gerber, Alexander, E-mail: gerber@post.tau.ac.il [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel)

    2017-03-15

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field. - Highlights: • Ni nanoparticle ink capable of forming conductive films on drying. • The Ni nanoparticle films exhibit significant extraordinary Hall effect. • This system could be used for preparing printed magnetic field sensors integrated in 3D printed structures.

  4. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card

    Science.gov (United States)

    Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.

  5. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples.

    Science.gov (United States)

    Madrakian, Tayyebeh; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles (Fe3O4/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe3O4 nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5-100.0 μmol L(-1) with a detection limit of 0.09 μmol L(-1) under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Determination of hydrogen peroxide and glucose using a novel sensor platform based on Co0.4Fe0.6LaO3 nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Zhen; Gu, Shuqing; Ding, Yaping; Zhang, Fenfen; Jin, Jindi

    2013-01-01

    We report on a novel nonenzymatic sensor platform for the determination of hydrogen peroxide and glucose. It is based on a carbon paste electrode that was modified with Co 0.4 Fe 0.6 LaO 3 nanoparticles synthesized by the sol–gel method. The structure and morphology of Co 0.4 Fe 0.6 LaO 3 nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical performance of this sensor was evaluated by cyclic voltammetry and amperometry, and the results demonstrated that it exhibits strong electrocatalytical activity towards the oxidation of H 2 O 2 and glucose in an alkaline medium. The sensor has a limit of detection as low as 2.0 nM of H 2 O 2 and a linear range that extends from 0.01 to 800 μM. The response to glucose is characterized by two analytical ranges of different slope, viz. from 0.05 to 5 μM and from 5 to 500 μM, with a 10 nM limit of detection. The glucose sensor has a fast response and good long term stability. (author)

  7. Progress in the development of Li{sub 2}ZrO{sub 3} and Li{sub 2}TiO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Lulewicz, J D; Roux, N [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-03-01

    Li{sub 2}ZrO{sub 3} and Li{sub 2}TiO{sub 3} pebbles are being developed as ceramic breeder for the European Helium-cooled pebble bed DEMO blanket concept. Status is given of the fabrication work, and of the properties characteristics determination. (author)

  8. pH sensor based on boron nitride nanotubes.

    Science.gov (United States)

    Huang, Q; Bando, Y; Zhao, L; Zhi, C Y; Golberg, D

    2009-10-14

    A submicrometer-sized pH sensor based on biotin-fluorescein-functionalized multiwalled BN nanotubes with anchored Ag nanoparticles is designed. Intrinsic pH-dependent photoluminescence and Raman signals in attached fluorescein molecules enhanced by Ag nanoparticles allow this novel nanohybrid to perform as a practical pH sensor. It is able to work in a submicrometer-sized space. For example, the sensor may determine the environmental pH of sub-units in living cells where a traditional optical fiber sensor fails because of spatial limitations.

  9. pH sensor based on boron nitride nanotubes

    International Nuclear Information System (INIS)

    Huang, Q; Bando, Y; Zhao, L; Zhi, C Y; Golberg, D

    2009-01-01

    A submicrometer-sized pH sensor based on biotin-fluorescein-functionalized multiwalled BN nanotubes with anchored Ag nanoparticles is designed. Intrinsic pH-dependent photoluminescence and Raman signals in attached fluorescein molecules enhanced by Ag nanoparticles allow this novel nanohybrid to perform as a practical pH sensor. It is able to work in a submicrometer-sized space. For example, the sensor may determine the environmental pH of sub-units in living cells where a traditional optical fiber sensor fails because of spatial limitations.

  10. THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Syed, M. Bukhari; Blum, J. [Institut für Geophysik und extraterrestrische Physik, Technische Universität zu Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany); Jansson, K. Wahlberg; Johansen, A. [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden)

    2017-01-10

    Previous work on protoplanetary dust growth shows a halt at centimeter sizes owing to the occurrence of bouncing at velocities of ≳0.1 m s{sup −1} and fragmentation at velocities ≳1 m s{sup −1}. To overcome these barriers, spatial concentration of centimeter-sized dust pebbles and subsequent gravitational collapse have been proposed. However, numerical investigations have shown that dust aggregates may undergo fragmentation during the gravitational collapse phase. This fragmentation in turn changes the size distribution of the solids and thus must be taken into account in order to understand the properties of the planetesimals that form. To explore the fate of dust pebbles undergoing fragmenting collisions, we conducted laboratory experiments on dust-aggregate collisions with a focus on establishing a collision model for this stage of planetesimal formation. In our experiments, we analyzed collisions of dust aggregates with masses between 0.7 and 91 g mass ratios between target and projectile from 1 to 126 at a fixed porosity of 65%, within the velocity range of 1.5–8.7 m s{sup −1}, at low atmospheric pressure of ∼10{sup −3} mbar, and in free-fall conditions. We derived the mass of the largest fragment, the fragment size/mass distribution, and the efficiency of mass transfer as a function of collision velocity and projectile/target aggregate size. Moreover, we give recipes for an easy-to-use fragmentation and mass-transfer model for further use in modeling work. In a companion paper, we use the experimental findings and the derived dust-aggregate collision model to investigate the fate of dust pebbles during gravitational collapse.

  11. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, Francisco Alberto

    2016-01-01

    The Breeder Units contains pebble beds of lithium orthosilicate (Li_4SiO_4) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li_4SiO_4 and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such low intrusion has been confirmed by in

  12. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, Francisco Alberto

    2016-10-14

    The Breeder Units contains pebble beds of lithium orthosilicate (Li{sub 4}SiO{sub 4}) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li{sub 4}SiO{sub 4} and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such

  13. A Preliminary Study of the Effect of Shifts in Packing Fraction on k-effective in Pebble-Bed Reactors

    International Nuclear Information System (INIS)

    Ougouag, Abderrafi Mohammed-El-Ami; Terry, William Knox

    2001-01-01

    A preliminary examination of the effect of pebble packing changes on the reactivity of a pebble-bed reactor (PBR) is performed. As a first step, using the MCNP code, the modeling of a PBR core as a continuous and homogeneous region is compared to the modeling as a collection of discrete pebbles of equal average fuel density. It is shown that the two modeling approaches give the same trends inasmuch as changes in keff are concerned. It is thus shown that for the purpose of identifying trends in keff changes, the use of a homogeneous model is sufficient. A homogeneous model is then used to assess the effect of pebble packing arrangement changes on the reactivity of a PBR core. It is shown that the changes can be large enough to result in prompt criticality. It is shown that for uranium fueled PBRs, thermal feedback could have the potential to offset the increase in activity, whereas for plutonium fueled systems, thermal feedback may not be sufficient for totally offsetting the packing-increase reactivity insertion and could even exacerbate the initial response. It is thus shown that a full study, including reactor kinetics, thermal feedback, and the dynamics of energy deposition and removal is warranted to fully characterize the potential consequences of packing shifts

  14. Fabrication a new modified electrochemical sensor based on Au–Pd bimetallic nanoparticle decorated graphene for citalopram determination

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, Leili [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Rounaghi, Gholam Hossein, E-mail: ghrounaghi@yahoo.com [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Es' haghi, Zarrin [Department of Chemistry, Faculty of Sciences, Payame Noor University, Mashhad (Iran, Islamic Republic of); Chamsaz, Mahmoud; Tarahomi, Somayeh [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2016-12-01

    This paper proposes a simple approach for sensing of citalopram (CTL) using gold–palladium bimetallic nanoparticles (Au–PdNPs) decorated graphene modified gold electrode. Au–PdNPs were deposited at the surface of a graphene modified gold electrode with simple electrodeposition method. The morphology and the electrochemical properties of the modified electrode were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), energy dispersion spectroscopy (EDS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV). The novel sensor exhibited an excellent catalytic activity towards the oxidation of CTL. The oxidation peak current of CTL, was linear in the range of 0.5–50 μM with a detection limit 0.049 μM with respect to concentration of citalopram. The proposed sensor was successfully applied for determination of CTL tablet and human plasma samples with satisfactory results. - Highlights: • A novel sensor based on Au-PdNPs deposited graphene modified gold electrode was fabricated. • The morphology and the electrochemical properties of the sensor were characterized by several methods. • The fabricated sensor was employed for the detection of antidepressant drug CTL with satisfactory results.

  15. Sensor Enclosures: Example Application and Implications for Data Coherence

    Directory of Open Access Journals (Sweden)

    Georgios Maniatis

    2013-12-01

    Full Text Available Sensors deployed in natural environments, such as rivers, beaches and glaciers, experience large forces and damaging environmental conditions. Sensors need to be robust, securely operate for extended time periods and be readily relocated and serviced. The sensors must be housed in materials that mimic natural conditions of size, density, shape and roughness. We have developed an encasement system for sensors required to measure large forces experienced by mobile river sediment grains. Sensors are housed within two discrete cases that are rigidly conjoined. The inner case exactly fits the sensor, radio components and power source. This case can be mounted within outer cases of any larger size and can be precisely moulded to match the shapes of natural sediment. Total grain mass can be controlled by packing the outer case with dense material. Case design uses Solid-WorksTM software, and shape-matching involved 3D laser scanning of natural pebbles. The cases were printed using a HP DesignjetTM 3D printer that generates high precision parts that lock rigidly in place. The casings are watertight and robust. Laboratory testing produces accurate results over a wider range of accelerations than previously reported.

  16. Optimal study of a solar air heating system with pebble bed energy storage

    International Nuclear Information System (INIS)

    Zhao, D.L.; Li, Y.; Dai, Y.J.; Wang, R.Z.

    2011-01-01

    Highlights: → Use two kinds of circulation media in the solar collector. → Air heating and pebble bed heat storage are applied with different operating modes. → Design parameters of the system are optimized by simulation program. → It is found that the system can meet 32.8% of the thermal energy demand in heating season. → Annual solar fraction aims to be 53.04%. -- Abstract: The application of solar air collectors for space heating has attracted extensive attention due to its unique advantages. In this study, a solar air heating system was modeled through TRNSYS for a 3319 m 2 building area. This air heating system, which has the potential to be applied for space heating in the heating season (from November to March) and hot water supply all year around in North China, uses pebble bed and water storage tank as heat storage. Five different working modes were designed based on different working conditions: (1) heat storage mode, (2) heating by solar collector, (3) heating by storage bed, (4) heating at night and (5) heating by an auxiliary source. These modes can be operated through the on/off control of fan and auxiliary heater, and through the operation of air dampers manually. The design, optimization and modification of this system are described in this paper. The solar fraction of the system was used as the optimization parameter. Design parameters of the system were optimized by using the TRNSYS program, which include the solar collector area, installation angle of solar collector, mass flow rate through the system, volume of pebble bed, heat transfer coefficient of the insulation layer of the pebble bed and water storage tank, height and volume of the water storage tank. The TRNSYS model has been verified by data from the literature. Results showed that the designed solar system can meet 32.8% of the thermal energy demand in the heating season and 84.6% of the energy consumption in non-heating season, with a yearly average solar fraction of 53.04%.

  17. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles...... mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer....

  18. Accumulation of radiation defects and products of radiolysis in lithium orthosilicate pebbles with silicon dioxide additions under action of high absorbed doses and high temperature in air and inert atmosphere

    Science.gov (United States)

    Zarins, A.; Supe, A.; Kizane, G.; Knitter, R.; Baumane, L.

    2012-10-01

    One of the technological problems of a fusion reactor is the change in composition and structure of ceramic breeders (Li4SiO4 or Li2TiO3 pebbles) during long-term operation. In this study changes in the composition and microstructure of Li4SiO4 pebbles with 2.5 wt% silicon dioxide additions, fabricated by a melt-spraying process, were investigated after fast electron irradiation (E = 5 MeV, dose rate up to 88 MGy h-1) with high absorbed dose from 1.3 to 10.6 GGy at high temperature (543-573 K) in air and argon atmosphere. Three types of pebbles with different diameters and grain sizes were investigated. Products of radiolysis were studied by means of FTIR and XRD. TSL and ESR spectroscopy were used to detect radiation defects. SEM was used to investigate structure of pebbles. Experiments showed that Li4SiO4 pebbles with a diameter of 500 μm had similar radiation stability as pebbles with diameter <50 μm which were annealed at 1173 K for 128 h in argon and air atmosphere. As well as determined that lithium orthosilicate pebbles with size 500 (1243 K 168 h) and <50 μm (1173 K 128 h) have a higher radiation stability in air and argon atmosphere than pebbles with size <50 μm (1073 K 1 h). Degree of decomposition α10.56 of the lithium orthosilicate pebbles at an absorbed dose of 10.56 GGy in air atmosphere is 1.5% and 0.15% at irradiation in dry argon. It has been suggested that changes of radiation stability of lithium orthosilicate pebbles in air atmosphere comparing with irradiated pebbles in argon atmosphere is effect of chemical reaction of lithium orthosilicate surface with air containing - H2O and CO2 in irradiation process. As well as it has been suggested that silicon dioxide - lithium metasilicate admixtures do not affect formation mechanism of radiation defect and products of radiolysis in lithium orthosilicate pebbles.

  19. Studi Awal Desain Pebble Bed Reactor Berbasis Htr-pm Dengan Skema Resirkulasi Bahan Bakar Once-through-then-out

    OpenAIRE

    Setiadipura, Topan; Pane, Jupiter Sitorus; Zuhair, Zuhair

    2016-01-01

    STUDI AWAL DESAIN PEBBLE BED REACTOR BERBASIS HTR-PM DENGAN RESIRKULASI BAHAN BAKAR ONCE-THROUGH-THEN-OUT. Reaktor nuklir tipe pebble bed reactor (PBR) adalah salah satu reaktor canggih dengan fitur keselamatan pasif yang kuat. Pada desain tipe ini berpotensi untuk dilakukan kogenerasi yang bermanfaat untuk pengolahan berbagai mineral di berbagai pulau di Indonesia. Operasi PBR dapat lebih disederhanakan dengan menerapkan skema pengisian bahan bakar once-through-then-out (OTTO) dimana bahan b...

  20. Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)

    International Nuclear Information System (INIS)

    Forsberg, Charles W.; Moses, David Lewis

    2009-01-01

    The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular high temperature reactor to be ready for commercial deployment in the world because it is a high priority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) a rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coated particle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (∼9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of

  1. Dynamics of a small direct cycle pebble bed HTR

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Heek, A.I. van

    2001-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MW(e) electricity combined with 17 t/h of high temperature steam (220 deg. C, 10 bar) with a pebble bed high temperature reactor directly coupled with a helium compressor and a helium turbine. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package Panthermix (Panther-Thermix/Direkt) and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This paper will present the analysis of safety related transients. The usual incident scenarios Loss of Coolant Incident (LOCI) and Loss of Flow Incident (LOFI) have been analysed. Besides, also a search for the real maximum fuel temperature (inside a fuel pebble anywhere in the core) has been made. It appears that the maximum fuel temperatures are not reached during a LOFI or LOCI with a halted mass flow rate, but for situations with a small mass flow rate, 1-0.5%. As such, a LOFI or LOCI does not represent the worst-case scenario in terms of maximal fuel temperature. (author)

  2. A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Haghshenas, Esmaeel; Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Afkhami, Abbas

    2015-12-01

    An electrochemical magneto Au nanoparticles/carbon paste electrodes (MAuNP/CPE) which is used for the determination of acetaminophen (AC) in real samples was developed. Initially, Au nanoparticles were immobilized at the surface of Fe{sub 3}O{sub 4} (AuNPs@Fe{sub 3}O{sub 4}), which was used as a sorbent for capturing AC molecules. After adding AuNPs@Fe{sub 3}O{sub 4} to the AC solution and stirring for 20 min, the AuNPs@Fe{sub 3}O{sub 4} was gathered on the magneto electrode based on its magnetic field. The AC molecules which became adsorbed at AuNPs@Fe{sub 3}O{sub 4} were analyzed by differential pulse voltammetry (DPV). For characterization and investigation of the performance of AuNPs@Fe{sub 3}O{sub 4} and MAuNPs/CPE, various methods, including scanning electron microscopy, X-ray diffraction, UV–Vis spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and DPV were used. Under the optimized conditions, the anodic peak current was linear to the concentration of AC in the range of 0.1 to 70.0 μmol L{sup −1} with the detection limit of 4.5 × 10{sup −2} μmol L{sup −1}. This method was also successfully used to detect the concentration of AC in pharmaceutical formulations and human serum samples. In addition, the proposed magneto sensor exhibited good reproducibility, long-term stability and fast current response. - Highlights: • Magneto Au nanoparticle/carbon paste electrode was fabricated. • Au nanoparticles were immobilized at the surface of Fe{sub 3}O{sub 4} (AuNPs@Fe{sub 3}O{sub 4}). • It is the first time AuNPs@Fe{sub 3}O{sub 4} and magneto electrode are used for the determination of AC. • The proposed sensor showed a wide linear range, low detection limit, and high sensitivity. • This sensor is also used for the determination of AC in real samples.

  3. Gas bubble network formation in irradiated beryllium pebbles monitored by X-Ray micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bolier, E; Ferrero, C. [Forschungszentrum Karlsruhe, Zimer 203, Gebaeude 451, Abteilung HVT-TL (Germany); Moslang, A. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany); Pieritz, R.A. [CNRS, Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Saint Martin d' Heres (France)

    2007-07-01

    Full text of publication follows: The efficient and safe operation of helium cooled ceramic breeder blankets requires among others an efficient tritium release during operation at blanket relevant temperatures. In the past out-of-pile thermal desorption studies on low temperature neutron irradiated beryllium have shown that tritium and helium release peaks occur together. This phenomenon can be interpreted in terms of growth and coalescence of helium bubbles and tritium that either is trapped inside the helium bubbles in form of T{sub 2} molecules or in their strain field. With increasing temperature the bubble density and size at grain interfaces increase together with the probability of interconnected porosities and channel formation to the outer surface, leading to simultaneous helium and tritium release peaks in TDS. For a reliable prediction of gas release up to end-of-life conditions at blanket relevant temperatures, knowledge of the dynamics of bubble growth and coalescence as well as the 3D distribution of bubble network formation is indispensable. Such data could also be used to experimentally validate any future model predictions of tritium and helium release rates. A high resolution computer aided micro-tomography (CMT) setup has been developed at the European Synchrotron Radiation Facility which allowed reconstructing 3-D images of beryllium pebbles without damaging them. By postprocessing the data a 3D rendering of inner surfaces and of interconnected channel networks can be obtained, thus allowing the identification of open porosities in neutron irradiated and tempered beryllium pebbles. In our case Beryllium pebbles of 2 mm diameter had been neutron irradiated in the 'Beryllium' experiment at 770 K with 1.24 x 10{sup 25} nxm{sup -2} resulting in 480 appm He and 12 appm Tritium. After annealing at 1500 K CMT was performed on the pebbles with 4.9 and 1.4 {mu}m voxel resolution, respectively, followed by morphological and topological post

  4. Hysteresis-free nanoplasmonic pd-au alloy hydrogen sensors

    DEFF Research Database (Denmark)

    Wadell, Carl; Nugroho, Ferry Anggoro Ardy; Lidström, Emil

    2015-01-01

    hydrogen sensors. By increasing the amount of Au in the alloy nanoparticles up to 25 atom %, we are able to suppress the hysteresis between hydrogen absorption and desorption, thereby increasing the sensor accuracy to below 5% throughout the investigated 1 mbar to 1 bar hydrogen pressure range. Furthermore......, we observe an 8-fold absolute sensitivity enhancement at low hydrogen pressures compared to sensors made of pure Pd, and an improved sensor response time to below one second within the 0-40 mbar pressure range, that is, below the flammability limit, by engineering the nanoparticle size....

  5. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    Science.gov (United States)

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  6. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no

  7. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    International Nuclear Information System (INIS)

    Boer, Brian; Ougouag, Abderrafi M.

    2011-01-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no significant

  8. Three-Dimensional Analysis of the Hot-Spot Fuel Temperature in Pebble Bed and Prismatic Modular Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Lee, S. W.; Lim, H. S.; Lee, W. J.

    2006-01-01

    High temperature gas-cooled reactors(HTGR) have been reviewed as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor(PBR) and a prismatic modular reactor(PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both a PBR and a PMR. The objective of this study is to predict the hot-spot fuel temperature distributions in a PBR and a PMR at a steady state. The computational fluid dynamics(CFD) code, CFX-10 is used to perform the three-dimensional analysis. The latest design data was used here based on the reference reactor designs, PBMR400 and GTMHR60

  9. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  10. Studies on crude oil removal from pebbles by the application of biodiesel.

    Science.gov (United States)

    Xia, Wen-xiang; Xia, Yan; Li, Jin-cheng; Zhang, Dan-feng; Zhou, Qing; Wang, Xin-ping

    2015-02-15

    Oil residues along shorelines are hard to remove after an oil spill. The effect of biodiesel to eliminate crude oil from pebbles alone and in combination with petroleum degrading bacteria was investigated in simulated systems. Adding biodiesel made oil detach from pebbles and formed oil-biodiesel mixtures, most of which remained on top of seawater. The total petroleum hydrocarbon (TPH) removal efficiency increased with biodiesel quantities but the magnitude of augment decreased gradually. When used with petroleum degrading bacteria, the addition of biodiesel (BD), nutrients (NUT) and BD+NUT increased the dehydrogenase activity and decreased the biodegradation half lives. When BD and NUT were replenished at the same time, the TPH removal efficiency was 7.4% higher compared to the total improvement of efficiency when BD and NUT was added separately, indicating an additive effect of biodiesel and nutrients on oil biodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. ZnO nanoparticles based fiber optic gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Narasimman, S.; Sivacoumar, R.; Alex, Z. C. [MEMS and Sensor Division, School of Electronics Engineering, VIT University, Vellore 632 014 (India); Balakrishnan, L., E-mail: bslv85@gmail.com; Meher, S. R. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632 014 (India)

    2016-05-23

    In this work, ZnO nanoparticles were synthesized by simple aqueous chemical route method. The synthesized ZnO nanoparticles were characterized by X-ray diffraction and scanning electron microscope. The sensitivity of the nanoparticles was studied for different gases like acetone, ammonia and ethanol in terms of variation in spectral light intensity. The XRD and SEM analysis confirms the formation of hexagonal wurtzite structure with the grain size of 11.2 nm. The small cladding region of the optical fiber was replaced with the synthesized nanoparticles. The light spectrum was recorded for different gas concentrations. The synthesized nanoparticles showed high sensitivity towards ammonia in low ppm level and acetone in high ppm level.

  12. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-01-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L −1 . The lower detection limits were found to be 0.02 μmol L −1 . The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  13. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  14. Failure analysis of pebble bed reactors during earthquake by discrete element method

    International Nuclear Information System (INIS)

    Keppler, Istvan

    2013-01-01

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios

  15. Failure analysis of pebble bed reactors during earthquake by discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Keppler, Istvan, E-mail: keppler.istvan@gek.szie.hu [Department of Mechanics and Engineering Design, Szent István University, Páter K.u.1., Gödöllő H-2103 (Hungary)

    2013-05-15

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios.

  16. Tritium release from Li{sub 4}SiO{sub 4} ceramic pebbles in high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Guangming [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Xiao, Chengjian; Chen, Xiaojun; Gong, Yu; Zhao, Linjie [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Xiaolin [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-12-15

    Highlights: • Behavior of tritium release from Li{sub 4}SiO{sub 4} pebbles in MF up to 7 T was investigated. • The MF effect on tritium release is not significant according to the TPD results. • Tritium release from the BIG sample is much easier than that from the SMALL sample. • The MF effect on tritium diffusion was probably weakened by surface desorption. - Abstract: The behavior of tritium release from Li{sub 4}SiO{sub 4} ceramic pebbles in high magnetic field (MF) was investigated by temperature programmed desorption (TPD). Two batches of Li{sub 4}SiO{sub 4} pebbles produced by wet method were used as the experimental samples, one batch with an average pebble diameter of 0.8 mm (the SMALL samples), and the other 1.2 mm (the BIG samples). A superconducting magnet was applied to generate MF up to 7 T in the sample area during annealing. For both batches of samples, the tritium release curves within and without MF showed very similar characteristics, indicating that the effect of high MF on tritium release behavior is not significant. The tritium release peaks for the BIG samples were observed at much lower temperatures than that for the SMALL samples, even though the grain sizes of the BIG samples are much bigger than that of the SMALL samples. It is considered that surface desorption process dominates the overall tritium release behavior in this work, which probably weakened the MF effect.

  17. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe{sub 3}O{sub 4}-silica-Au magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijun [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Li Yongfang [College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003 (China); Li Zhonghua [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Feng Jiuju, E-mail: jjfengnju@gmail.com [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Sun Yanli [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Chen Jianrong [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China)

    2012-08-01

    Monodisperse Fe{sub 3}O{sub 4} magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe{sub 3}O{sub 4}-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 Multiplication-Sign 10{sup -9} mol{center_dot}cm{sup -2}, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 {+-} 0.6 s{sup -1}. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 {mu}A{center_dot}mM{sup -1} cm{sup -2} and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe{sub 3}O{sub 4}-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: Black-Right-Pointing-Pointer Synthesis of monodispersed Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer Fabrication of core/shell Fe{sub 3}O{sub 4}-silica-Au nanoparticles. Black-Right-Pointing-Pointer Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  18. Integrated design approach of the pebble bed modular using models

    International Nuclear Information System (INIS)

    Venter, P.J.

    2005-01-01

    The Pebble Bed Modular Reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, showing the iterative design process that is used in the development of the reactor at PBMR. (author)

  19. Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor

    Science.gov (United States)

    Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.

  20. Sensitive warfarin sensor based on cobalt oxide nanoparticles electrodeposited at multi-walled carbon nanotubes modified glassy carbon electrode (CoxOyNPs/MWCNTs/GCE)

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Solgi, Mohammad

    2017-01-01

    In this work, cobalt oxide nanoparticles were electrodeposited on multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE) to develop a new sensor for warfarin determination. The modified electrodes were characterized by cyclic voltammetry, scanning electron microscopy (SEM) along with energy dispersive x-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The presence of cobalt oxide nanoparticles on the electrode surface enhanced the warfarin accumulation and its result was the improvement in the electrochemical response. The effect of various parameters such as pH, scan rate, accumulation potential, accumulation time and pulse amplitude on the sensor response were investigated. Under optimal conditions, the differential pulse adsorptive anodic stripping voltammetric (DPASV) response of the modified electrode was linear in the ranges of 8 nM to 50 μM and 50 μM to 800 μM with correlation coefficients greater than 0.998. The limit of detection of the proposed method was 3.3 nM. The proposed sensor was applied to determine warfarin in urine and plasma samples.

  1. The ESKOM pebble bed modular reactor

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1999-01-01

    An audit has been made of the design, construction, safety, economics and marketability of the ESKOM pebble bed modular reactor (PBMR). In this paper that audit is briefly summarized. The principal conclusions of the audit are as follows. The design is sound. It is a logical development of the designs proposed for other, modern, high-temperature gas-cooled reactors. More than 80% of the cost of constructing and commissioning a series of PBMRs would be spent in South Africa. The PBMR is much safer than existing nuclear power reactors and for many practical purposes it may be treated as a conventional chemical plant. The PBMR is economically competitive with thermal power stations. There is a substantial global market for the PBMR. (author)

  2. Accumulation of radiation defects and products of radiolysis in lithium orthosilicate pebbles with silicon dioxide additions under action of high absorbed doses and high temperature in air and inert atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zarins, A.; Supe, A. [Laboratory of Radiation Chemistry of Solids, Institute of Chemical Physics, University of Latvia, Kronvalda Bulvaris 4, LV-1010 Riga (Latvia); Kizane, G., E-mail: gunta.kizane@lu.lv [Laboratory of Radiation Chemistry of Solids, Institute of Chemical Physics, University of Latvia, Kronvalda Bulvaris 4, LV-1010 Riga (Latvia); Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), POB 3640, 76021 Karlsruhe (Germany); Baumane, L. [Laboratory of Radiation Chemistry of Solids, Institute of Chemical Physics, University of Latvia, Kronvalda Bulvaris 4, LV-1010 Riga (Latvia)

    2012-10-15

    One of the technological problems of a fusion reactor is the change in composition and structure of ceramic breeders (Li{sub 4}SiO{sub 4} or Li{sub 2}TiO{sub 3} pebbles) during long-term operation. In this study changes in the composition and microstructure of Li{sub 4}SiO{sub 4} pebbles with 2.5 wt% silicon dioxide additions, fabricated by a melt-spraying process, were investigated after fast electron irradiation (E = 5 MeV, dose rate up to 88 MGy h{sup -1}) with high absorbed dose from 1.3 to 10.6 GGy at high temperature (543-573 K) in air and argon atmosphere. Three types of pebbles with different diameters and grain sizes were investigated. Products of radiolysis were studied by means of FTIR and XRD. TSL and ESR spectroscopy were used to detect radiation defects. SEM was used to investigate structure of pebbles. Experiments showed that Li{sub 4}SiO{sub 4} pebbles with a diameter of 500 {mu}m had similar radiation stability as pebbles with diameter <50 {mu}m which were annealed at 1173 K for 128 h in argon and air atmosphere. As well as determined that lithium orthosilicate pebbles with size 500 (1243 K 168 h) and <50 {mu}m (1173 K 128 h) have a higher radiation stability in air and argon atmosphere than pebbles with size <50 {mu}m (1073 K 1 h). Degree of decomposition {alpha}{sub 10.56} of the lithium orthosilicate pebbles at an absorbed dose of 10.56 GGy in air atmosphere is 1.5% and 0.15% at irradiation in dry argon. It has been suggested that changes of radiation stability of lithium orthosilicate pebbles in air atmosphere comparing with irradiated pebbles in argon atmosphere is effect of chemical reaction of lithium orthosilicate surface with air containing - H{sub 2}O and CO{sub 2} in irradiation process. As well as it has been suggested that silicon dioxide - lithium metasilicate admixtures do not affect formation mechanism of radiation defect and products of radiolysis in lithium orthosilicate pebbles.

  3. Changes in the metallicity of gas giant planets due to pebble accretion

    Science.gov (United States)

    Humphries, R. J.; Nayakshin, S.

    2018-06-01

    We run numerical simulations to study the accretion of gas and dust grains on to gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size, and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap, and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete on to the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar system and exosolar giant planets. To account for observations, however, as many as ˜30-50 per cent of the dust mass should be in the form of large grains.

  4. Stability analysis of the high temperature thermal pebble bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1981-02-01

    A study was made of the stability of the high temperature gas-cooled pebble bed core against xenon-driven oscillation. This generic study indicated that a core as large as 3000 MW(t) could be stable. Several aspects present a challenge to analysis including the void space above the pebble bed, the effects of possible control rod configurations, and the temperature feedback contribution. Special methods of analysis were developed in this effort. Of considerable utility was the scheme of including an azimuthal buckling loss term in the neturon balance equations admitting direct solution of the first azimuthal harmonic for a core having azimuthal symmetry. This technique allows the linear stability analysis to be done solving two-dimensional (RZ) problems instead of three-dimensional problems. A scheme for removing the fundamental source contribution was also implemented to allow direct iteration toward the dominant harmonic solution, treating up to three dimensions with diffusion theory

  5. A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure

    International Nuclear Information System (INIS)

    Jiang, Shouzhen; Li, Zhe; Zhang, Chao; Gao, Saisai; Li, Zhen; Li, Chonghui; Yang, Cheng; Liu, Mei; Qiu, Hengwei; Liu, Yanjun

    2017-01-01

    In this work, we have presented a novel local surface plasmon resonance (LSPR) sensor based on the U-bent plastic optical fibre (U-POF). Firstly, a layer of discontinuous silver (Ag) thin film was deposited on the U-POF and then the Ag film was covered by a layer of cladding synthesized by polyvinyl alcohol (PVA), graphene and silver nanoparticles forming the PVA/G/AgNPs@Ag film. The normalized transmittance spectrum of the LSPR sensor have been collected in a range of the refractive index (RI) from 1.330 to 1.3657 in ethanol solution, and 700.3 nm/RIU sensitivity of the developed LSPR sensor has been demonstrated. By experiments, we demonstrated that the graphene could improve the sensitivity of the LSPR sensor and delay the oxidation process of the AgNPs effectively to keep the stability of the LSPR sensor. The LSPR sensor also exhibited good sensitivity and linearity in the detection of glucose solutions. This work shows that the developed LSPR sensor may have promising applications in biosensing. (paper)

  6. Ultrasensitive and Selective Organic FET-type Nonenzymatic Dopamine Sensor Based on Platinum Nanoparticles-Decorated Reduced Graphene Oxide.

    Science.gov (United States)

    Oh, Jungkyun; Lee, Jun Seop; Jun, Jaemoon; Kim, Sung Gun; Jang, Jyongsik

    2017-11-15

    Dopamine (DA), a catecholamine hormone, is an important neurotransmitter that controls renal and cardiovascular organizations and regulates physiological activities. Abnormal concentrations of DA cause unfavorable neuronal illnesses such as Parkinson's disease, schizophrenia, and attention deficit hyperactivity disorder/attention deficit disorder. However, the DA concentration is exceedingly low in patients and difficult to detect with existing biosensors. In this study, we developed an organic field-effect-transistor-type (OFET) nonenzyme biosensor using platinum nanoparticle-decorated reduced graphene oxide (Pt_rGO) for ultrasensitive and selective DA detection. The Pt_rGOs were fabricated by reducing GO aqueous solution-containing Pt precursors (PtCl 4 ) with a chemical reducing agent. The Pt_rGOs were immobilized on a graphene substrate by π-π interactions and a conducting-polymer source-drain electrode was patterned on the substrate to form the DA sensor. The resulting OFET sensor showed a high sensitivity to remarkably low DA concentrations (100 × 10 -18 M) and selectivity among interfering molecules. Good stability was expected for the OFET sensor because it was fabricated without an enzymatic receptor, and π-π conjugation is a part of the immobilization process. Furthermore, the OFET sensors are flexible and offer the possibility of wide application as wearable and portable sensors.

  7. Examination of the potential for diversion or clandestine dual use of a pebble-bed reactor to produce plutonium

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Terry, W.K.; Gougar, H.D.

    2002-01-01

    This paper explores the susceptibility of Pebble-Bed Reactors (PBRs) to be used overtly or covertly for the production of plutonium for nuclear weapons. The basic assumption made for the consideration of overt production is that a country would purchase a PBR with the ostensible motive of producing electric power; then, after the power plant was built, the country would divert the facility entirely to the production of weapons material. It is assumed that the country would then have to manufacture production pebbles from natural uranium. The basic assumption made for covert production is that the country would obtain and use a PBR for power production, but that it would clandestinely feed plutonium production pebbles through the reactor in such small numbers that the perturbation on power plant operation would be very difficult to detect. This paper shows the potential rate of plutonium production under such constraints. It is demonstrated that the PBR is a very poor choice for either form of proliferation-intent use. (author)

  8. Preparation of acridine orange-doped silica nanoparticles for pH measurement

    International Nuclear Information System (INIS)

    Liu, Jinshui; Zang, Lingjie; Wang, Yiru; Liu, Guoning

    2014-01-01

    Acridine orange was first encapsulated into silica shell via a facile reverse microemusion method to built core–shell fluorescent nanoparticles. The nanoparticles are all in spherical shape and have a narrow size distribution, and its application as a optical pH sensor has been demonstrated. This novel sensor is based on the pH-dependent fluorescence intensities of acridine orange in different pH value. The fluorescence intensity of acridine orange-doped silica nanoparticles was decreased by increasing pH value. Under optimum conditions, the changes of fluorescence intensity were proportional to the pH value in the range of 8.00–10.90. In addition, the sensor can be easily separated by centrifugation and adds no pollution to the environment compared to the free dyes. Furthermore, the effects of ionic strength and co-existing substances were proved to have little influence on the determination of pH. The sensor has been successfully applied to determine the pH of two artificial samples. Hence, the core–shell fluorescent nanoparticles show potential for practical application. -- Highlights: • Acridine orange was encapsulated into silica shell via a facile reverse microemusion method to built core–shell fluorescent nanoparticles. • The fluorescence intensity of acridine orange-doped silica nanoparticles was decreased by increasing pH value. • Its can be used as an optical pH sensor. • The sensor can be easily separated by centrifugation and adds no pollution to the environment compared to the free dyes. • The sensor has been successfully applied to determine the pH of artificial samples

  9. Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/Au nanoparticles composites for chrysoidine analysis

    International Nuclear Information System (INIS)

    Wang, Xiaojiao; Li, Xiangjun; Luo, Chuannan; Sun, Min; Li, Leilei; Duan, Huimin

    2014-01-01

    Highlights: • Synthesis and application of MGO/β-CD@AuNPs as a sensor for chrysoidine analysis. • The synthesized polymer had a laminar structure with high surface. • The propose sensor showed high selectivity and good sensitivity. - Abstract: A imprinted electrochemical sensor based on glassy carbon electrode (GCE) for ultrasensitive detection of chrysoidine was fabricated. A GCE was modified by magnetic graphene oxide/β-cyclodextrin/gold nanoparticles composites (MGO/β-CD@AuNPs). The sensing surface area and electronic transmission rate were increased, which was benefited from the distribution property of MGO/β-CD@AuNPs. The MGO/β-CD@AuNPs composite improved electrochemical response and sensitivity of the sensor. The molecularly imprinted electrochemical sensor was prepared by electropolymerization on modified electrode. Chrysoidine and pyrrole were used as template molecule and functional monomer, respectively. Under the optimization experimental conditions, the electrochemical sensor exhibited excellent analytical performance: the detection of chrysoidine ranged from 5.0 × 10 −8 mol/L to 5.0 × 10 −6 mol/L with the detection limit of 1.7 × 10 −8 mol/L. The sensor was applied to determine chrysoidine in spiked water samples and showed high selectivity, good sensitivity and acceptable reproducibility. The proposed method provides a promising platform for trace amount detection of other food additives

  10. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lago-Cachón, D., E-mail: dlagocachon@gmail.com [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Rivas, M., E-mail: rivas@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Martínez-García, J.C., E-mail: jcmg@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Oliveira-Rodríguez, M., E-mail: oliveiramyriam@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); Blanco-López, M.C., E-mail: cblanco@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); García, J.A., E-mail: joseagd@uniovi.es [Dpto. de Física, Universidad de Oviedo, Escuela de Marina, Campus de Viesques, 33204 Gijón (Spain)

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  11. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J.C.; Oliveira-Rodríguez, M.; Blanco-López, M.C.; García, J.A.

    2017-01-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  12. Thermo-mechanical Modelling of Pebble Beds in Fusion Blankets and its Implementation by a Return-Mapping Algorithm

    International Nuclear Information System (INIS)

    Gan, Yixiang; Kamlah, Marc

    2008-01-01

    In this investigation, a thermo-mechanical model of pebble beds is adopted and developed based on experiments by Dr. Reimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear elastic law, the Drucker-Prager-Cap theory, and a modified creep law. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium pebble beds is taken into account and full thermo-mechanical coupling is considered. Investigation showed that the Drucker-Prager-Cap model implemented in ABAQUS can not fulfill the requirements of both the prediction of large creep strains and the hardening behaviour caused by creep, which are of importance with respect to the application of pebble beds in fusion blankets. Therefore, UMAT (user defined material's mechanical behaviour) and UMATHT (user defined material's thermal behaviour) routines are used to re-implement the present thermo-mechanical model in ABAQUS. An elastic predictor radial return mapping algorithm is used to solve the non-associated plasticity iteratively, and a proper tangent stiffness matrix is obtained for cost-efficiency in the calculation. An explicit creep mechanism is adopted for the prediction of time-dependent behaviour in order to represent large creep strains in high temperature. Finally, the thermo-mechanical interactions are implemented in a UMATHT routine for the coupled analysis. The oedometric compression tests and creep tests of pebble beds at different temperatures are simulated with the help of the present UMAT and UMATHT routines, and the comparison between the simulation and the experiments is made. (authors)

  13. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    Science.gov (United States)

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  14. Polymer-based blood vessel models with micro-temperature sensors in EVE

    Science.gov (United States)

    Mizoshiri, Mizue; Ito, Yasuaki; Hayakawa, Takeshi; Maruyama, Hisataka; Sakurai, Junpei; Ikeda, Seiichi; Arai, Fumihito; Hata, Seiichi

    2017-04-01

    Cu-based micro-temperature sensors were directly fabricated on poly(dimethylsiloxane) (PDMS) blood vessel models in EVE using a combined process of spray coating and femtosecond laser reduction of CuO nanoparticles. CuO nanoparticle solution coated on a PDMS blood vessel model are thermally reduced and sintered by focused femtosecond laser pulses in atmosphere to write the sensors. After removing the non-irradiated CuO nanoparticles, Cu-based microtemperature sensors are formed. The sensors are thermistor-type ones whose temperature dependences of the resistance are used for measuring temperature inside the blood vessel model. This fabrication technique is useful for direct-writing of Cu-based microsensors and actuators on arbitrary nonplanar substrates.

  15. Review of PSI studies on reactor physics and thermal fluid dynamics of pebble bed reactors

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael

    2014-01-01

    Switzerland is member of the Generation IV International Forum (GIF). The related work takes entirely place at PSI in the working groups of Gas-Cooled Fast Reactors and Very High Temperature Reactors. In the past, PSI has performed experimental and theoretical studies on criticality issues of pebble beds at the PROTEUS reactor, as well as a preliminary risk assessment of a prototypal HTR as an input for a comparison of energy supply options. PROTEUS was a critical assembly with an annular driver zone. The central region was filled by arrangements of fuel spheres. The reactivity effect of a water ingress was investigated by simulating the water by polyethylene rods of different diameter inserted into the gaps of a regular package. For sub-criticality measurements in pebble beds, a built-in pulsed neutron source was used. The experimental results were used to validate diffusion and higher order neutron transport models. Concerning thermal hydraulics of gas flows, the vast experience of PSI is focused on hydrogen transport, accumulation, and dispersion in containments of light water reactors. The phenomena are comparable in many aspects to the fluid dynamic issues relevant to HTR. Experiments on hydrogen flows are performed for numerous scenarios in the large-scale containment test facility PANDA. Hydrogen is substituted by helium as a model fluid. An important generic aspect is turbulent mixing in the presence of strong stratification, which is relevant for HTR as well. In a parallel project, generic small-scale mixing experiments with a high density ratio of 1:7 are carried out in a horizontal rectangular channel, where helium and nitrogen flows are brought into contact downstream of the rear edge of a splitter plate. Due to the high density ratio, turbulent mixing is affected by strong non-Boussinesq effects. The measurements taken by Particle Imaging Velocimetry (PIV) and Laser Induced Fluorescence techniques are compared to RANS and LES simulations. Similar large

  16. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    Science.gov (United States)

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  17. Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method

    International Nuclear Information System (INIS)

    Rahman, M.M.; Khan, S.B.; Asiri, A.M.; Jamal, A.; Faisal, M.

    2012-01-01

    We have prepared silver oxide nanoparticles (NPs) by a simple solution method using reducing agents in alkaline medium. The resulting NPs were characterized by UV-vis and FT-IR spectroscopy, X-ray powder diffraction, and field-emission scanning electron microscopy. They were deposited on a glassy carbon electrode to give a sensor with a fast response towards methanol in liquid phase. The sensor also displays good sensitivity and long-term stability, and enhanced electrochemical response. The calibration plot is linear (r 2 = 0.8294) over the 0.12 mM to 0.12 M methanol concentration range. The sensitivity is ∼ 2.65 μAcm -2 mM -1 , and the detection limit is 36.0 μM (at a SNR of 3). We also discuss possible future prospective uses of this metal oxide semiconductor nanomaterial in terms of chemical sensing. (author)

  18. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide

    Science.gov (United States)

    Ha, Nguyen Hai; Thinh, Dao Duc; Huong, Nguyen Thanh; Phuong, Nguyen Huy; Thach, Phan Duy; Hong, Hoang Si

    2018-03-01

    Zinc oxide (ZnO) nanoparticles loaded onto 3D reduced graphene oxide (3D-RGO) for carbon monoxide (CO) sensing were synthesized using hydrothermal method. The highly porous ZnO/3D-RGO configuration was stable without collapsing and was deposited on the micro-heater of the CO gas sensor. The resulting CO gas sensor displayed high sensitivity, fast response/recovery, and good linearity. The sensor achieved a response value of 85.2% for 1000 ppm CO at a working temperature of 200 °C. The response and recovery times of the sensor were 7 and 9 s for 1000 ppm CO at 200 °C. Similarly, the response value, response time, and recovery time of the sensor at room temperature were 27.5%, 14 s, and 15 s, respectively. The sensor demonstrated a distinct response to various CO concentrations in the range of 1-1000 ppm and good selectivity toward CO gas. In addition, the sensor exhibited good repeatability in multi-cycle and long-term stability.

  19. Uranium deposits in Proterozoic quartz-pebble conglomerates

    International Nuclear Information System (INIS)

    1987-09-01

    This report is the result of an effort to gather together the most important information on uranium deposits in Proterozoic quartz-pebble conglomerates in the United States of America, Canada, Finland, Ghana, South Africa and Australia. The paper discusses the uranium potential (and in some cases also the gold potential in South Africa, Western Australia and Ghana) in terms of ores, sedimentation, mineralization, metamorphism, placers, geologic formations, stratigraphy, petrology, exploration, tectonics and distribution. Geologic history and application of geologic models are also discussed. Glacial outwash and water influx is also mentioned. The uranium deposits in a number of States in the USA are covered. The Witwatersrand placers are discussed in several papers. Refs, figs, tabs

  20. Analytical calculation of the fuel temperature reactivity coefficient for pebble bed and prismatic high temperature reactors for plutonium and uranium-thorium fuels

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2007-01-01

    We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in 235 U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides 240 Pu, 238 U and 232 Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for 240 Pu, 238 U and 232 Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 μm and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core

  1. Investigating effects of BCC and FCC arrangements on flow and heat transfer characteristics in pebbles through CFD methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ferng, Yuh Ming, E-mail: ymferng@ess.nthu.edu.tw [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsingchu 30013, Taiwan, ROC (China); Lin, Kun-Yueh [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsingchu 30013, Taiwan, ROC (China)

    2013-05-15

    Highlights: ► An HTGR would be one of the possible energy generation sources. ► We propose a CFD model to study effects of pebble arrangements for a PRB core. ► The entrance effect on the Nu number can be reasonably captured. ► The present predicted Nu versus Re{sub p} shows good agreement with data and correlation. ► Using FCC lattice in a core, simulation results may be non-conservative. -- Abstract: A high temperature gas cooled reactor (HTGR) would be one of the possible energy generation sources due to its advantages of inherently safety performance and higher conversion efficiency, etc. However, safety is the most important issue for its commercialization in energy industry. It is very crucial for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, a computational fluid dynamics (CFD) methodology is proposed to investigate effects of different arrangements on these characteristics for an HTGR with a pebble bed (PB) core. Two kinds of arrangement: body-centered cubic (BCC) and face-centered cubic (FCC) are studies herein. Based on the simulation results, higher heat transfer capability and lower pebble temperature are predicted in the pebbles with the FCC-arrangement. The thermally fully-developed flow condition may be reached, which is shown in the result that the predicted average Nussel (Nu) number decreases from the 1st layer and reaches to an asymptotic value as the gas passes through the 6th layer of pebbles. This entrance effect reveals that the system codes using the correlations developed from the fully-developed flow condition can be appropriately applied in the entire PBR core. In addition, the present predicted dependence of Nu number on the inlet Reynolds (Re) number shows good agreement with that obtained from the well-known KTA. Measured data of Nu number versus Re number are also used to validate the CFD model.

  2. Uranium assessment for the Precambrian pebble conglomerates in southeastern Wyoming

    International Nuclear Information System (INIS)

    Borgman, L.E.; Sever, C.; Quimby, W.F.; Andrew, M.E.; Karlstrom, K.E.; Houston, R.S.

    1981-03-01

    This volume is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates, and is a companion to Volume 1: The Geology and Uranium Potential to Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 2: Drill-Hole Data, Drill-Site Geology, and Geochemical Data from the Study of Precambrian Uraniferous Conglomerates of the Medicine Bow Mountains and the Sierra Madre of Southeastern Wyoming

  3. Geochemical Data for Samples Collected in 2007 Near the Concealed Pebble Porphyry Cu-Au-Mo Deposit, Southwest Alaska

    Science.gov (United States)

    Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.

    2008-01-01

    In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molydenum (Cu-Au-Mo) deposit in southwest Alaska. The Pebble deposit is extremely large and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic and volcaniclastic rocks. The deposit is presently being explored by Northern Dynasty Minerals, Ltd., and Anglo-American LLC. The USGS undertakes unbiased, broad-scale mineral resource assessments of government lands to provide Congress and citizens with information on national mineral endowment. Research on known deposits is also done to refine and better constrain methods and deposit models for the mineral resource assessments. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, it is relatively undisturbed (except for exploration company drill holes), it is a large mineral system, and it is fairly well constrained at depth by the drill hole geology and geochemistry. The goals of the USGS study are (1) to determine whether the concealed deposit can be detected with surface samples, (2) to better understand the processes of metal migration from the deposit to the surface, and (3) to test and develop methods for assessing mineral resources in similar concealed terrains. This report presents analytical results for geochemical samples collected in 2007 from the Pebble deposit and surrounding environs. The analytical data are presented digitally both as an integrated Microsoft 2003 Access? database and as Microsoft 2003 Excel? files. The Pebble deposit is located in southwestern Alaska on state lands about 30 km (18 mi) northwest of the village of Illiamna and 320 km (200 mi) southwest of Anchorage (fig. 1). Elevations in the Pebble area range from 287 m (940 ft) at Frying Pan Lake just south of the deposit to 1146 m (3760 ft) on Kaskanak Mountain about 5 km (5 mi) to the west. The deposit is in an area of

  4. Synthesis of Gold Nanoparticles to Capture Lifelike Proteins: Application on the Multichannel Sensor Array Design

    Directory of Open Access Journals (Sweden)

    Yumin Leng

    2018-01-01

    Full Text Available The chemical elements of proteins are similar to that of DNA (e.g., C, H, O, and N, and DNA shows different knotted architectures. So we imagine that proteins may show a wealth of highly complex structures, especially when proteins interact with each other. The imagination was proved by synthesizing gold nanoparticles (GNPs to capture the lifelike protein structures. The optical responses (i.e., color of as-prepared GNPs are found to be characteristic to a given protein (or heavy metal ion. Based on the “three colors” principle of Thomas Young, we extracted the red, green, and blue (RGB alterations of as-synthesized GNPs to fabricate multichannel sensor arrays for proteins (or heavy metal ions discrimination. The designed multichannel sensor arrays demonstrate possibilities in semiquantitative analysis of multiple analytes (e.g., proteins and heavy metal ions. This work is believed to open new opportunities for GNPs-based label-free sensing.

  5. Development of amperometric L-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Kanchana, P.; Lavanya, N.; Sekar, C.

    2014-01-01

    A novel biosensor based on Fe-doped hydroxyapatite (Fe-HA) nanoparticles and tyrosinase has been developed for the detection of L-tyrosine. Nanostructured Fe-HA was synthesized by a simple microwave irradiation method, and its phase formation, morphology and magnetic property were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Electrochemical performance of the nano Fe-HA/tyrosinase modified glassy carbon electrode (GCE) for detection of L-tyrosine was investigated by cyclic voltammetry (CV) and amperometric methods. The fabricated biosensor exhibited a linear response to L-tyrosine over a wide concentration range of 1.0 × 10 −7 to 1.0 × 10 −5 M with a detection limit of 245 nM at pH 7.0. In addition, the fabricated sensor showed an excellent selectivity, good reproducibility, long-term stability and anti-interference towards the determination of L-tyrosine. - Highlights: • A novel amperometric L-tyrosine biosensor has been fabricated using nanostructured Fe-HA. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • Fe-HA assists microenvironment and direct electron transfer between enzyme and electrode surface. • The nano Fe-HA and electrode fabrication procedure are simple and less expensive

  6. Development of local heat transfer and pressure drop models for pebble bed high temperature gas-cooled reactor cores - HTR2008-58296

    International Nuclear Information System (INIS)

    McLaughlin, B.; Worsley, M.; Stainsby, R.; Grief, A.; Dennier, A.; Macintosh, S.; Van Heerden, E.

    2008-01-01

    This paper describes pressure drop and heat transfer coefficient predictions for a typical coolant flow within the core of a pebble bed reactor (PBR) by examining a representative group of pebbles remote from the reflector region. The three- dimensional steady state flow and heat transfer predictions utilized in this work are obtained from a computational fluid dynamics (CFD) model created in the commercial software ANSYS FLUENT TM . This work utilizes three RANS turbulence models and the Chilton-Colburn analogy for heat transfer. A methodology is included in this paper for creating a quality unstructured mesh with prismatic surface layers on a random arrangement of touching pebbles. The results of the model are validated by comparing them with the correlations of the German KTA rules for a PBR. (authors)

  7. Cold flow study of liquid cooled pebble bed reactor (LC-PBR) through radioisotope techniques

    International Nuclear Information System (INIS)

    Verma, Rupesh; Upadhyay, Rajesh K.; Pant, H.J.

    2017-01-01

    As the world's demand for energy continues to increase burning of coal, oil and natural gases continue to increase which will eventually cause build-up in emission of greenhouse gasses. To overcome this challenge worldwide effort is in progress to develop an economical, more efficient and safer nuclear power. Higher thermal efficiency and enhances safety feature of Generation IV liquid cooled pebble bed reactor (LC-PBR) makes it viable option to replace existing nuclear reactor. However, this reactor is still in research stage and need detailed study before commercialization. In current work, hydrodynamics of LC-PBR is studied by using radioisotope based techniques, radioactive particle tracking and gamma-ray densitometry. Pebble flow profile and distribution are measured for different operating conditions. Optimal operating parameters are identified for operating LC-PBR based on hydrodynamics. (author)

  8. Non-enzymatic amperometric sensor for hydrogen peroxide based on a biocomposite made from chitosan, hemoglobin, and silver nanoparticles

    International Nuclear Information System (INIS)

    Tian, L.; Feng, Y.; Qi, Y.; Wang, B.; Chen, Y.; Fu, X.

    2012-01-01

    We report on a novel non-enzymatic sensor for hydrogen peroxide (HP) that is based on a biocomposite made up from chitosan (CS), hemoglobin (Hb), and silver nanoparticles (AgNPs). The AgNPs were prepared in the presence of CS and glucose in an ultrasonic bath, and CS is found to act as a stabilizing agent. They were then combined with Hb and CS to construct a carbon paste biosensor. The resulting electrode gave a well-defined redox couple for Hb, with a formal potential of about -0.17 V (vs. SCE) at pH 6. 86 and exhibited a remarkable electrocatalytic activity for the reduction of HP. The sensor was used to detect HP by flow injection analysis, and a linear response is obtained in the 0. 08 to 250 μM concentration range. The detection limit is 0.05 μM (at S/N = 3). These characteristics, along with its long-term stability make the sensor highly promising for the amperometric determination of HP. (author)

  9. Preliminary Core Design Analysis of a 200MWth Pebble Bed-type VHTR

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Noh, Jae Man

    2007-01-01

    This paper intends to suggest the preliminary core design analysis of a VHTR for a hydrogen production. The nuclear hydrogen system that utilizes the high temperature heat generated from the VHTR is a promising candidate for a cost effective, safe and clean supply of hydrogen in the age of hydrogen economy. Among two candidate VHTR cores, that is, a prismatic modular reactor (PMR) and a pebble bed-type reactor (PBR), we focus on the design of a 200MWth PBR (hereinafter PBR200) in this paper. Here, the 200MWth power is selected for a demonstration plant. The core configuration of the PBR200 is similar to the PBMR (Pebble Bed Modular Reactor, 400MWth) of South Africa, but the overall dimension of the reactor system is scaled-down. This paper is to suggest two candidate PBR200 cores. One is an annular core with an inner reflector (PBR200-CD1) which was presented at IWRES07, and the other is a cylindrical core without an inner reflector (PBR200-CD2)

  10. A constitutive model for the thermo-mechanical behaviour of fusion-relevant pebble beds and its application to the simulation of HELICA mock-up experimental results

    International Nuclear Information System (INIS)

    Vella, G.; Maio, P.A. Di; Giammusso, R.; Tincani, A.; Orco, G. Dell

    2006-01-01

    Within the framework of the activities promoted by European Fusion Development Agreement on the technology of the Helium Cooled Pebble Bed Test Blanket Module to be irradiated in one of the ITER equatorial ports, attention has been focused on the theoretical modelling of the thermo-mechanical constitutive behaviour of both beryllium and lithiated ceramics pebble beds, that are envisaged to act respectively as neutron multiplier and tritium breeder. The thermo-mechanical behaviour of the pebble beds and their nuclear performances in terms of tritium production depend on the reactor relevant conditions (heat flux and neutron wall load), the pebble sizes and the breeder cell geometries (bed thickness, pebble packing factor, bed overall thermal conductivity). ENEA-Brasimone and the Department of Nuclear Engineering (DIN) of the Palermo University have performed intense research activities intended to investigate fusion-relevant pebble bed thermo-mechanical behaviour by adopting both experimental and theoretical approaches. In particular, ENEA has carried out several experimental campaigns on small scale mock-ups tested in out-of-pile conditions, while DIN has developed a proper constitutive model that has been implemented on commercial FEM code, for the prediction of the thermal and mechanical performances of fusion-relevant pebble beds and for the comparison with the experimental results of the ENEA tests. In that framework, HELICA mock-up has been set-up and tested to investigate the behaviour of pebble bed in reactor-relevant geometries, providing useful data sets to be numerically reproduced by means of the DIN constitutive model, contributing to its assessment. The paper presents the constitutive model developed and the main experimental results of two test campaigns on HELICA mock-up carried out at HE-FUS 3 facility of ENEA Brasimone, the geometry of the mock-up, the adopted thermal and mechanical boundary conditions and the test operating conditions. The most

  11. Torques Induced by Scattered Pebble-flow in Protoplanetary Disks

    Science.gov (United States)

    Benítez-Llambay, Pablo; Pessah, Martin E.

    2018-03-01

    Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.

  12. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  13. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles.

    Science.gov (United States)

    Sun, Xiangying; Liu, Bin; Li, Shuchun; Li, Fang

    2016-05-15

    In this work we designed a self-assembly multilayers, in which photoluminescent graphene oxide was employed as a fluorescence probe. This multilayers film can effectively recognize captopril by resonance energy transfer from graphite oxide to silver nanoparticles. A new interfacial sensing method for captopril with high signal to noise ratio was established, by means of that multilayers was quenched by silver nanoparticles and subsequently recovered by adding captopril. The linear relation between intensity and captopril concentration was good, and the detection limit was found to be 0.1578 μM. Also, this novel detection platform demonstrated intriguing reusable properties, and the sensor could be repeated more than ten times without obviously losing its sensing performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Optimized core design and fuel management of a pebble-bed type nuclear reactor

    NARCIS (Netherlands)

    Boer, B.

    2009-01-01

    The core design of a pebble-bed type Very High Temperature Reactor (VHTR) is optimized, aiming for an increase of the coolant outlet temperature to 1000 C, while retaining its inherent safety features. The VHTR has been selected by the international Generation IV research initiative as one of the

  15. High performance supercapacitor and non-enzymatic hydrogen peroxide sensor based on tellurium nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Manikandan

    2017-04-01

    Full Text Available Tellurium nanoparticles (Te Nps were synthesized by wet chemical method and characterized by XRD, Raman, FESEM, TEM, XPS, UV–Vis and FL. The Nps were coated on graphite foil and Glassy carbon electrode to prepare the electrodes for supercapacitor and biosensor applications. The supercapacitor performance is evaluated in 2 M KOH electrolyte by both Cyclic Voltammetry (CV and galvanostatic charge-discharge method. From charge-discharge method, Te Nps show a specific capacitance of 586 F/g at 2 mA/cm2 and 100 F/g at 30 mA/cm2 as well as an excellent cycle life (100% after 1000 cycles. In addition, the H2O2 sensor performance of Te Nps modified glassy carbon electrode is checked by CV and Chronoamperometry (CA in phosphate buffer solution (PBS. In the linear range of 0.67 to 8.04 μM of hydrogen peroxide (H2O2, Te NPs show a high sensitivity of 0.83 mA mM−1 cm−2 with a correlation coefficient of 0.995. The detection limit is 0.3 μM with a response time less than 5 s. Keywords: Tellurium nanoparticles, Supercapacitor, Biosensor, Hydrogen peroxide

  16. Analytical calculation of the fuel temperature reactivity coefficient for pebble bed and prismatic high temperature reactors for plutonium and uranium-thorium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology - KTH, Roslagstullsbacken 21, S-10691 Stockholm (Sweden)]. E-mail: alby@anl.gov

    2007-01-15

    We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in {sup 235}U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides {sup 240}Pu, {sup 238}U and {sup 232}Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for {sup 240}Pu, {sup 238}U and {sup 232}Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 {mu}m and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core.

  17. Pebble bed reactor with one-zone core

    International Nuclear Information System (INIS)

    Mueller-Frank, U.; Lohnert, G.

    1977-01-01

    The claim deals with measures to differentiate the flow rate and to remove spherical fuel elements in the core of a pebble bed reactor. Hence the vertical rate of the fuel elements in the border region is for example twice as much as in the centre. A central funnel-shaped outlet on the floor of the core container over which a conical body is placed with its peak pointing upwards, or also the forming of several outlets can be used to adjust to a certain exit rate for the fuel elements. The main target of the invention is a radially extensively constant coolant outlet temperature at the outlet of the core which determines the effectiveness of the connected heat exchanger and thus contributes to economy. (UA) [de

  18. Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir-Blodgett technique for gas sensors application.

    Science.gov (United States)

    Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E

    2014-02-04

    Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.

  19. Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Han, Zandong; Zou, Yirong; Pan, Jiluan

    2015-01-01

    Almost 10,000 spherical fuel elements are transported pneumatically one by one in the pipeline outside the core of a pebble bed reactor every day. Any failure in the transportation will lead to the shutdown of the reactor, even safety accidents. In order to ensure a stable and reliable transportation, it's of great importance to analyze the motion and force condition of the fuel element. In this paper, we focus on the dynamic analysis of the pneumatic transportation of the fuel element and derive kinetic equations. Then we introduce the design of the transportation pipeline. On this basis we calculate some important data such as the velocity of the fuel element, the force between the fuel element and the pipeline and the efficiency of the pneumatic transportation. Then we analyze these results and provide some suggestions for the design of the pipeline. The experiment was carried out on an experimental platform. The velocities of the fuel elements were measured. The experimental results were consistent with and validated the theoretical analysis. The research may offer the basis for the design of the transportation pipeline and the optimization of the fuel elements transportation in a pebble bed reactor. - Highlights: • The kinetic equations of the fuel element in pneumatic transportation are derived. • The dynamic characteristics of the fuel element are analyzed. • Some important parameters are calculated based on the kinetic equations. • The experimental results were consistent with the analysis and verified the analysis. • This paper may offer an important guide to the research of a pebble bed reactor

  20. Highly sensitive hydrogen peroxide sensor based on a glassy carbon electrode modified with platinum nanoparticles on carbon nanofiber heterostructures

    International Nuclear Information System (INIS)

    Yang, Yang; Fu, Renzhong; Yuan, Jianjun; Wu, Shiyuan; Zhang, Jialiang; Wang, Haiying

    2015-01-01

    We are presenting a sensor for hydrogen peroxide (H 2 O 2 ) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H 2 O 2 . If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H 2 O 2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H 2 O 2 . (author)

  1. Preliminary Safeguards Assessment for the Pebble-Bed Fluoride High-Temperature Reactor (PB-FHR) Concept

    Energy Technology Data Exchange (ETDEWEB)

    Disser, Jay; Arthur, Edward; Lambert, Janine

    2016-09-01

    This report examines a preliminary design for a pebble bed fluoride salt-cooled high temperature reactor (PB-FHR) concept, assessing it from an international safeguards perspective. Safeguards features are defined, in a preliminary fashion, and suggestions are made for addressing further nuclear materials accountancy needs.

  2. Screen-printed nanoparticles as anti-counterfeiting tags

    Science.gov (United States)

    Campos-Cuerva, Carlos; Zieba, Maciej; Sebastian, Victor; Martínez, Gema; Sese, Javier; Irusta, Silvia; Contamina, Vicente; Arruebo, Manuel; Santamaria, Jesus

    2016-03-01

    Metallic nanoparticles with different physical properties have been screen printed as authentication tags on different types of paper. Gold and silver nanoparticles show unique optical signatures, including sharp emission bandwidths and long lifetimes of the printed label, even under accelerated weathering conditions. Magnetic nanoparticles show distinct physical signals that depend on the size of the nanoparticle itself. They were also screen printed on different substrates and their magnetic signals read out using a magnetic pattern recognition sensor and a vibrating sample magnetometer. The novelty of our work lies in the demonstration that the combination of nanomaterials with optical and magnetic properties on the same printed support is possible, and the resulting combined signals can be used to obtain a user-configurable label, providing a high degree of security in anti-counterfeiting applications using simple commercially-available sensors.

  3. A solid target for SINQ based on a Pb-shot Pebble-bed

    International Nuclear Information System (INIS)

    Atchison, F.; Heidenreich, G.

    1991-01-01

    Preliminary results from scoping calculations examining the possibilities of implementing a Pebble-bed of Pb-shot as a target for SINQ are presented. The primary design objects are set out and estimates of heating and activation given. Cooling circuit parameters are discussed and estimates for operating conditions presented. A short discussion of problems associated with a realisation is included. (author)

  4. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natalia A. Burmistrova

    2015-10-01

    Full Text Available Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2 have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new luminescent optical sensors for H2O2 in terms of the nanomaterial composition and luminescent receptor used in the sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based nanomaterials, respectively. Moreover, the sensors are ordered according to the type of luminescent receptor used within the sensor membranes. Among them are lanthanide complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the optical sensors are confined to those that are capable to monitor the concentration of H2O2 in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not covered. All nanomaterials and sensors are characterized with respect to the analytical reaction towards H2O2, limit of detection (LOD, analytical range, electrolyte, pH and response time/incubation time. Applications to real samples are given. Finally, we assess the suitability of the nanomaterials to be used in membrane-based sensors and discuss future trends and perspectives of these sensors in biomedical research.

  5. Real-time monitoring of the Trojan-horse effect of silver nanoparticles by using a genetically encoded fluorescent cell sensor.

    Science.gov (United States)

    You, Fang; Tang, Wenqin; Yung, Lin-Yue Lanry

    2018-04-26

    Silver nanoparticles (AgNPs) are widely incorporated into commercial products due to their antimicrobial properties. As a consequence, concerns about the adverse effects induced by AgNPs to humans and the environment need to be carefully examined. The existing literature reveals that AgNPs exhibit certain toxic effects, but it remains to be proved whether AgNPs or the ionic silver (Ag+) released from AgNPs are the main toxic species. Here, a genetically encoded fluorescent protein sensor with high affinity to Ag+ was developed. The resulting sensor, MT2a-FRET, was found to be ratiometric, sensitive and selective toward only Ag+ but inert against AgNPs. This makes this sensor a potential useful tool for monitoring the real-time intracellular dissolutions of AgNPs. Our data supported that AgNPs display the "Trojan-horse" mechanism, where AgNPs are internalized by cells and undergo dissolution intracellularly. We further found that cells exhibited a detoxification ability to remove active Ag+ from cells in 48 hours.

  6. Localization of the Hot Spot in the Gap of Pebble Bed of Very High Temperature Gas Cooled Reactor(VHTGR)

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Hong, Sung Je; Lee, Jae Young

    2010-01-01

    Pebble Bed Reactor(PBR) has been investigated intensively due to its benefits in management, but its complicated flow geometry requests reliable analytical methods. Hassan and Lee et al. have been made three dimensional computational methods. Hassan also measured local velocity fields with Particle Tracking Velocimetry(PTV), in small sized packed bed using liquid coolant, and Lee et al. measured flow field in the 2-dimensional wind tunnel with a hot wire system. In the present study, we develop the scaled up wind tunnel of pebble bed to use air as coolant in the same Reynolds number condition, as 21614, of the PBMR-250MWth. In order to measure the local surface temperature, the heating system and temperature measurement system were installed and heat transfer analogy was performed. The local surface temperature data shows that the predicted hot spots by Lee et al. at the top and bottom of the pebble by the velocity field measurement are reasonable, but the heat conduction is prior than contact effect at contact points

  7. Polymer-embedded stannic oxide nanoparticles as humidity sensors

    International Nuclear Information System (INIS)

    Hatamie, Shadie; Dhas, Vivek; Kale, B.B.; Mulla, I.S.; Kale, S.N.

    2009-01-01

    Stannic oxide (SnO 2 ) nanoparticles have been suspended in polyvinyl alcohol (PVA) matrix in different PVA:SnO 2 molar ratios ranging from 1:1 to 1:5 using simple chemical route. This suspension was deposited on ceramic substrate and upon drying was carefully detached from the substrate. SnO 2 -embedded self-standing, transparent and flexible thin films were hence synthesized. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques show the rutile tetragonal structure of SnO 2 with particle size ∼ 5 nm. UV-Visible spectroscopy demonstrates the band gap of 3.9 eV, which does not alter when embedded in polymer. Fourier transform infrared spectroscopy (FTIR) reveals that the properties of SnO 2 do not modify due to incorporation in the PVA matrix. The structures work as excellent humidity sensors at room temperature. For a critical PVA:SnO 2 molar ratio of 1:3, the resistance changes to five times of magnitude in 92% humidity within fraction of second when compared with resistance at 11% humidity. The sample regains its original resistance almost instantaneously after being removed from humid chamber. Nanodimensions of SnO 2 particles and percolation mechanism related to transport through polymer matrix and water molecule as a carrier has been used to understand the mechanism.

  8. Pebble fabrication of super advanced tritium breeders using a solid solution of Li2+xTiO3+y with Li2ZrO3

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hoshino

    2016-12-01

    Full Text Available Lithium titanate with excess lithium (Li2+xTiO3+y is one of the most promising candidates among advanced tritium breeders for demonstration power plant reactors because of its good tritium release characteristics. However, the tritium breeding ratio (TBR of Li2+xTiO3+y is smaller than that of e.g., Li2O or Li8TiO6 because of its lower Li density. Therefore, new Li-containing ceramic composites with both high stability and high Li density have been developed. Thus, this study focused on the development of a solid solution with a new characteristic. The solid-solution pebbles of Li2+xTiO3+y with Li2ZrO3 (Li2+x(Ti,ZrO3+y, designated as LTZO, were fabricated by an emulsion method. The X-ray diffraction patterns of sintered LTZO pebbles are approximately the same as those of Li2+xTiO3+y pebbles, and no peaks attributable to Li2ZrO3 are observed. These results demonstrate that LTZO pebbles are not a two-phase material but rather a solid solution. Furthermore, LTZO pebbles were easily sintered under air. Thus, the LTZO solid solution is a candidate breeder material for super advanced (SA tritium breeders.

  9. One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor

    International Nuclear Information System (INIS)

    Zhou, Juan; Zhao, Yanan; Bao, Jing; Huo, Danqun; Fa, Huanbao; Shen, Xin; Hou, Changjun

    2017-01-01

    The rationally designed sensor architecture is very important to improve the sensitivity and selectivity for H 2 O 2 enzyme-free electrochemical sensor. In this work, a sensitive H 2 O 2 biosensor was fabricated by electrochemical deposition of Au-Pt bimetallic nanoparticles (NPs) on molybdenum disulfide nanoflowers (MoS 2 NFs). Au-Pt NPs was dispersed or stabilized by the effective support matrix of MoS 2 nanosheets, which was effectively enhance the conductivity, catalytic performance and long-term stability. The experimental results show that MoS 2 -Au/Pt nanocomposites exhibit excellent catalytic activity for specific detection of H 2 O 2, and electrochemical measurement results show that the enzyme-free electrochemical sensor has large linear range of 10 μM to 19.07 mM with high sensitivity of 142.68 μA mM −1 cm −2 . This novel sensor produced satisfactory reproducibility and stability, and exhibited superior potential for the practical quantitative analysis of H 2 O 2 in serum samples.

  10. Nanoparticles doped film sensing based on terahertz metamaterials

    Science.gov (United States)

    Liu, Weimin; Fan, Fei; Chang, Shengjiang; Hou, Jiaqing; Chen, Meng; Wang, Xianghui; Bai, Jinjun

    2017-12-01

    A nanoparticles concentration sensor based on doped film and terahertz (THz) metamaterial has been proposed. By coating the nanoparticles doped polyvinyl alcohol (PVA) film on the surface of THz metamaterial, the effects of nanoparticle concentration on the metamaterial resonances are investigated through experiments and numerical simulations. Results show that resonant frequency of the metamaterial linearly decreases with the increment of doping concentration. Furthermore, numerical simulations illustrate that the redshift of resonance results from the changes of refractive index of the doped film. The concentration sensitivity of this sensor is 3.12 GHz/0.1%, and the refractive index sensitivity reaches 53.33 GHz/RIU. This work provides a non-contact, nondestructive and sensitive method for the detection of nanoparticles concentration and brings out a new application on THz film metamaterial sensing.

  11. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Orozco, G. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Verde, Y. [Instituto Tecnologico de Cancun, Av. Kabah Km. 3, C.P. 77500, Cancun, Quintana Roo (Mexico); Jimenez, S. [Unidad Queretaro Centro de Investigacion y de Estudios Avanzados del I.P.N., Juriquilla, Santiago de Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico); Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx

    2009-02-15

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H{sub 2}O{sub 2}) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H{sub 2}O{sub 2} takes place. The proposed H{sub 2}O{sub 2} sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively.

  12. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    International Nuclear Information System (INIS)

    Guzman, C.; Orozco, G.; Verde, Y.; Jimenez, S.; Godinez, Luis A.; Juaristi, E.; Bustos, E.

    2009-01-01

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H 2 O 2 ) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H 2 O 2 takes place. The proposed H 2 O 2 sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively

  13. Design and research on the measurement platform of the effective thermal conductivity for Li{sub 4}SiO{sub 4} and Li{sub 2}TiO{sub 3} pebble bed

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanjie, E-mail: yuanjli@ustc.edu.cn; Yang, Wanli; Jin, Cheng; Zhao, Pinghui; Chen, Hongli

    2015-10-15

    China is carrying out the conceptual design of Chinese Fusion Engineering Testing Reactor (CFETR), and the Helium Cooled Pebble Bed (HCPB) blanket concept is one of the main choices for tritium production. Li{sub 4}SiO{sub 4} and Li{sub 2}TiO{sub 3} are the candidate breeder materials for the HCPB blanket concept. In the HCPB blanket, breeding pebbles with the diameter range of 0.6–1.2 mm are placed between two plates and the bed shall be cooled. Accordingly, effective thermal conductivity of pebble beds needs to be determined for the heat transfer calculation. Measurements of the heat transfer parameters of Li{sub 4}SiO{sub 4} and Li{sub 2}TiO{sub 3} pebble beds are being performed at the University of Science and Technology of China (USTC). Two measurement methods are being used. One is the steady state method with the use of thermocouples to measure the temperature distribution of the pebble bed. Another is transient thermal probe method using the temperature variation of the thermal probe and Monte Carlo inversion method to calculate the heat transfer parameters of the pebble bed. This paper will report on the progress of these measurement platforms.

  14. Morphology and thin layer Investigation of metallic nanoparticles ...

    Indian Academy of Sciences (India)

    65

    This preliminary research involved a new approach in characterization of ... Nanoparticles are currently used in many fields, including medicine, .... sensor surface improvement (e.g. nonpolar organic substances), this method used sensors,.

  15. The activation analysis of gold in small refractory pebbles

    International Nuclear Information System (INIS)

    Bibby, D.M.; Chaix, R.P.

    1975-08-01

    The gold content of a suite of small pebbles, residual to the milling and leach of a gold bearing ore, has been investigated by means of neutron activation analysis (NAA). An NAA technique presenting a sensitivity of 0.02μgm gold, was used as being appropriate to the samples under investigation. An alternative NAA technique developed with the same sample suite showed a sensitivity of the order of 10 -4 to 10 -5 μgm gold. The NAA techniques developed, are appropriate to the determination of gold in small samples of ore not normally amenable to milling and/or dissolution

  16. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    Science.gov (United States)

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  17. Highly Sensitive Ratiometric Fluorescent Sensor for Trinitrotoluene Based on the Inner Filter Effect between Gold Nanoparticles and Fluorescent Nanoparticles.

    Science.gov (United States)

    Lu, Hongzhi; Quan, Shuai; Xu, Shoufang

    2017-11-08

    In this work, we developed a simple and sensitive ratiometric fluorescent assay for sensing trinitrotoluene (TNT) based on the inner filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent nanoparticles (RFNs), which was designed by hybridizing green emissive carbon dots (CDs) and red emissive quantum dots (QDs) into a silica sphere as a fluorophore pair. AuNPs in their dispersion state can be a powerful absorber to quench CDs, while the aggregated AuNPs can quench QDs in the IFE-based fluorescent assays as a result of complementary overlap between the absorption spectrum of AuNPs and emission spectrum of RFNs. As a result of the fact that TNT can induce the aggregation of AuNPs, with the addition of TNT, the fluorescent of QDs can be quenched, while the fluorescent of CDs would be recovered. Then, ratiometric fluorescent detection of TNT is feasible. The present IFE-based ratiometric fluorescent sensor can detect TNT ranging from 0.1 to 270 nM, with a detection limit of 0.029 nM. In addition, the developed method was successfully applied to investigate TNT in water and soil samples with satisfactory recoveries ranging from 95 to 103%, with precision below 4.5%. The simple sensing approach proposed here could improve the sensitivity of colorimetric analysis by changing the ultraviolet analysis to ratiometric fluorescent analysis and promote the development of a dual-mode detection system.

  18. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

    Science.gov (United States)

    Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon

    2015-02-18

    A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

  19. Measurement of the thermal conductivity and heat transfer coefficient of a binary bed of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Donne, M.D.; Piazza, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Goraieb, A.; Sordon, G.

    1998-01-01

    The four ITER partners propose to use binary beryllium pebble bed as neutron multiplier. Recently this solution has been adopted for the ITER blanket as well. In order to study the heat transfer in the blanket the effective thermal conductivity and the wall heat transfer coefficient of the bed have to be known. Therefore at Forschungszentrum Karlsruhe heat transfer experiments have been performed with a binary bed of beryllium pebbles and the results have been correlated expressing thermal conductivity and wall heat transfer coefficients as a function of temperature in the bed and of the difference between the thermal expansion of the bed and of that of the confinement walls. The comparison of the obtained correlations with the data available from the literature show a quite good agreement. (author)

  20. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor.

    Science.gov (United States)

    Guo, Jian-Feng; Huo, Dan-Qun; Yang, Mei; Hou, Chang-Jun; Li, Jun-Jie; Fa, Huan-Bao; Luo, Hui-Bo; Yang, Ping

    2016-12-01

    Herein, we have developed a simple, sensitive and paper-based colorimetric sensor for the selective detection of Chromium (Ⅵ) ions (Cr (VI)). Silanization-titanium dioxide modified filter paper (STCP) was used to trap bovine serum albumin capped gold nanoparticles (BSA-Au NPs), leading to the fabrication of BSA-Au NPs decorated membrane (BSA-Au NPs/STCP). The BSA-Au NPs/STCP operated on the principle that BSA-Au NPs anchored on the STCP were gradually etched by Cr (VI) as the leaching process of gold in the presence of hydrobromic acid (HBr) and hence induced a visible color change. Under optimum conditions, the paper-based colorimetric sensor showed clear color change after reaction with Cr (VI) as well as with favorable selectivity to a variety of possible interfering counterparts. The amount-dependent colorimetric response was linearly correlated with the Cr (VI) concentrations ranging from 0.5µM to 50.0µM with a detection limit down to 280nM. Moreover, the developed cost-effective colorimetric sensor has been successfully applied to real environmental samples which demonstrated the potential for field applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A silica nanoparticle-based sensor for selective fluorescent detection of homocysteine via interaction differences between thiols and particle-surface-bound polymers

    International Nuclear Information System (INIS)

    Yu Changmin; Zeng Fang; Luo Ming; Wu Shuizhu

    2012-01-01

    Biothiols play crucial roles in maintaining biological systems; among them, homocysteine (Hcy) has received increasing attention since elevated levels of Hcy have been implicated as an independent risk factor for cardiovascular disease. Hence, the selective detection of this specific biothiol, which is a disease-associated biomarker, is very important. In this paper, we demonstrate a new mesoporous silica nanoparticle-based sensor for selective detection of homocysteine from biothiols and other common amino acids. In this fluorescent sensing system, an anthracene nitroolefin compound was placed inside the mesopores of mesoporous silica nanoparticles (MSNs) and used as a probe for thiols. The hydrophilic polyethylene glycol (PEG 5000) molecules were covalently bound to the MSN surface and used as a selective barrier for Hcy detection via different interactions between biothiols and the PEG polymer chains. The sensor can discriminate Hcy from the two low-molecular mass biothiols (GSH and Cys) and other common amino acids in totally aqueous media as well as in serum, with a detection limit of 0.1 μM. This strategy may offer an approach for designing other MSN-based sensing systems by using polymers as diffusion regulators in sensing assays for other analytes. (paper)

  3. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.

    Science.gov (United States)

    Tammanoon, Nantikan; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-11-04

    In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1-5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10-20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26,342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal-semiconductor junctions and accessible interfaces of graphene-SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures.

  4. Growing Pebbles and Conceptual Prisms - Understanding the Source of Student Misconceptions about Rock Formation.

    Science.gov (United States)

    Kusnick, Judi

    2002-01-01

    Analyzes narrative essays--stories of rock formation--written by pre-service elementary school teachers. Reports startling misconceptions among preservice teachers on pebbles that grow, human involvement in rock formation, and sedimentary rocks forming as puddles as dry up, even though these students had completed a college level course on Earth…

  5. Fluctuations of the number of adsorbed micro/nanoparticles in sensors for measurement of particle concentration in air and liquid environments

    Directory of Open Access Journals (Sweden)

    Jokić Ivana

    2015-01-01

    Full Text Available A theoretical model of fluctuations of the number of adsorbed micro/nanoparticles in environmental sensors operating in air and liquids is presented, taking into account the effects of the mass transfer processes of the target particles in a sensor reaction chamber. The expressions for the total power of the corresponding adsorption-desorption noise, and for the corresponding signal-to-noise ratio are also derived. The presented analysis shows that the transfer processes can have a significant influence on the sensors limiting performance. The influence on both the fluctuations spectrum and the signal-to-noise ratio is estimated at different values of target particles concentration, functionalization sites surface density, and adsorption and desorption rate constants (the values are chosen from the ranges corresponding to real conditions. The analysis provides the guidelines for optimization of sensor design and operating conditions for the given target substance and sensor functionalization, in order to decrease the influence of the mass transfer, thus improving the ultimate performance (e.g. minimal detectable signal, signal-to-noise ratio of sensors for particle detection. The calculations we performed show that it is possible to increase the signal-to-noise ratio for as much as two orders of magnitude by using the optimization that eliminates the mass transfer influence. [Projekat Ministarstva nauke Republike Srbije, br. TR32008

  6. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Directory of Open Access Journals (Sweden)

    Scott D. Wolter

    2009-05-01

    Full Text Available Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i Quantum cascade lasers (QCL based photoacoustic (PA systems; ii gold nanoparticles as catalytically active materials in field-effect transistor (FET sensors, and iii functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  7. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  8. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier

    International Nuclear Information System (INIS)

    Dehdashtian, Sara; Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Kariminia, Samira

    2016-01-01

    A simple and sensitive sensor based on carbon paste electrode (CPE) modified by chitosan-coated magnetic nanoparticle (CMNP) was developed for the electrochemical determination of morphine (MO). The proposed sensor was characterized with scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrooxidation of MO was studied on modified carbon paste electrode using cyclic voltammetry, chronoamperometry and differential pulse voltammetry as diagnostic techniques. The oxidation peak potential of morphine on the CMNP/CPE appeared at 380 mV which was accompanied with smaller overpotential and increase in oxidation peak current compared to that obtained on the bare carbon paste electrode (CPE). Under optimum conditions the sensor provides two linear DPV responses in the range of 10–2000 nM and 2–720 μM for MO with a detection limit of 3 nM. The proposed sensor was successfully applied for monitoring of MO in serum and urine samples and satisfactory results were obtained. - Highlights: • A sensitive and selective voltammetric sensor for MO by using a carbon paste electrode modified with CMNP was introduced. • CMNP as a new modifier facilitates the charge transfer of MO oxidation process. • The proposed sensor was used successfully for MO determination in biological fluids such as serum and urine samples. • This sensor is fabricated easily and has good stability and high sensitivity.

  9. Grain growth behavior of Li{sub 4}SiO{sub 4} pebbles fabricated by agar method for tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Maoqiao [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Yingchun, E-mail: zycustb@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Yun; Wang, Chaofu; Liu, Wei [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Yu, Yonghong [Department of Physics, Renmin University of China, Beijing, 100872 (China)

    2016-11-15

    Highlights: • Grain sizes of Li{sub 4}SiO{sub 4} were adjusted by different silicon sources. • Grain growth exponent of Li{sub 4}SiO{sub 4} was about 3. • Grain growth activation energy of Li{sub 4}SiO{sub 4} was about 125.54 kJ/mol. • Grain growth of Li{sub 4}SiO{sub 4} pebble was controlled by vapor transport. - Abstract: The Li{sub 4}SiO{sub 4} tritium breeding pebbles will be filled in the blanket and used for 2 years or more at high temperatures, which would increase the grain size and affect tritium release. Hence, grain sizes of the Li{sub 4}SiO{sub 4} pebbles fabricated by agar method were investigated, and two kinds of different silicon sources (crystal and amorphous SiO{sub 2}) with different particle sizes were used. The particle size of SiO{sub 2} could affect grain size and density of the Li{sub 4}SiO{sub 4} pebble. And the isothermal sintering was carried out to study the grain growth kinetics of Li{sub 4}SiO{sub 4}. The grain growth exponent (n) and the activation energy (Q) were calculated by the phenomenological kinetic equation. The calculated n values were 4.10, 3.98, 3.34 and 2.96, and corresponding Q values were 152.15, 147.99, 125.54 and 110.58 kJ/mol, respectively. At the higher sintering temperatures (950 and 1000 °C), the grain growth of Li{sub 4}SiO{sub 4} was controlled by vapor transport.

  10. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1.

    Science.gov (United States)

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-28

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL(-1) with the limit of detection (LOD) of 0.48 pg mL(-1). The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.

  11. Modeling and Application of Pneumatic Conveying for Spherical Fuel Element in Pebble-Bed Modular High-Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Zhou Shuyong; Wang Junsan; Wang Yuding; Cai Ruizhong; Zhang Xuan; Cao Jianting

    2014-01-01

    The fuel handling system is an important system for on-load refueling in pebble-bed modular high-temperature gas-cooled reactor. A dynamic model of pneumatic conveying for spherical fuel element in fuel handling system was established to describe the pneumatically conveying process. The motion characteristics of fuel elements in pipeline and the effect of fuel elements on gas velocity were studied using the model. The results show that the theoretical analyses are consistent with the experimental. The research has been used in developing full scope simulator for pebble-bed modular high-temperature gas-cooled reactor, also provides references for the design and optimization of the fuel handling system. (author)

  12. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    International Nuclear Information System (INIS)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-01-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor. (paper)

  13. The correction of pebble bed reactor nodal cross sections for the effects of leakage and depletion history

    Science.gov (United States)

    Hudson, Nathanael Harrison

    An accurate and computationally fast method to generate nodal cross sections for the Pebble Bed Reactor (PBR) was presented. In this method, named Spectral History Correction (SHC), a set of fine group microscopic cross section libraries, pre-computed at specified depletion and moderation states, was coupled with the nodal nuclide densities and group bucklings to compute the new fine group spectrum for each node. The relevant fine group cross-section library was then recollapsed to the local broad group cross-section structure with this new fine group spectrum. This library set was tracked in terms of fuel isotopic densities. Fine group modulation factors (to correct the homogeneous flux for heterogeneous effects) and fission spectra were also stored with the cross section library. As the PBR simulation converges to a steady state fuel cycle, the initial nodal cross section library becomes inaccurate due to the burnup of the fuel and the neutron leakage into and out of the node. Because of the recirculation of discharged fuel pebbles with fresh fuel pebbles, a node can consist of a collection of pebbles at various burnup stages. To account for the nodal burnup, the microscopic cross sections were combined with nodal averaged atom densities to approximate the fine group macroscopic cross-sections for that node. These constructed, homogeneous macroscopic cross sections within the node were used to calculate a numerical solution for the fine group spectrum with B1 theory. This new fine spectrum was used to collapse the pre-computed microscopic cross section library to the broad group structure employed by the fuel cycle code. This SHC technique was developed and practically implemented as a subroutine within the PBR fuel cycle code PEBBED. The SHC subroutine was called to recalculate the broad group cross sections during the code convergence. The result was a fast method that compared favorably to the benchmark scheme of cross section calculation with the lattice

  14. Miniature nanoparticle sensors for exposure measurement and TEM sampling

    International Nuclear Information System (INIS)

    Fierz, Martin; Meier, Dominik; Steigmeier, Peter; Burtscher, Heinz

    2015-01-01

    Nanoparticles in workplaces may pose a threat to the health of the workers involved. With the general boom in nanotechnology, an increasing number of workers is potentially exposed, and therefore a comprehensive risk management with respect to nanoparticles appears necessary. One (of many) components of such a risk management is the measurement of personal exposure. Traditional nanoparticle detectors are often cumbersome to use, large, heavy and expensive. We have developed small, reliable and easy to use devices that can be used for routine personal exposure measurement in workplaces. (paper)

  15. Tightly Coupled Multiphysics Algorithm for Pebble Bed Reactors

    International Nuclear Information System (INIS)

    Park, HyeongKae; Knoll, Dana; Gaston, Derek; Martineau, Richard

    2010-01-01

    We have developed a tightly coupled multiphysics simulation tool for the pebble-bed reactor (PBR) concept, a type of Very High-Temperature gas-cooled Reactor (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation Environment library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly with a Newton-based approach. Expensive Jacobian matrix formation is alleviated via the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to minimize Krylov iterations. Motivation for the work is provided via analysis and numerical experiments on simpler multiphysics reactor models. We then provide detail of the physical models and numerical methods in PRONGHORN. Finally, PRONGHORN's algorithmic capability is demonstrated on a number of PBR test cases.

  16. Integrated design approach of the pebble BeD modular reactor using models

    International Nuclear Information System (INIS)

    Venter, Pieter J.; Mitchell, Mark N.

    2007-01-01

    The pebble bed modular reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is developing an understanding of the expected behaviour of the reactor through analyses and simulations and managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, and how the models are used in the iterative design process that is used in the development of the reactor at PBMR

  17. Coupling of a single active nanoparticle to a polymer-based photonic structure

    Directory of Open Access Journals (Sweden)

    Dam Thuy Trang Nguyen

    2016-03-01

    Full Text Available The engineered coupling between a guest moiety (molecule, nanoparticle and the host photonic nanostructure may provide a great enhancement of the guest optical response, leading to many attractive applications. In this article, we describe briefly the basic concept and some recent progress considering the coupling of a single nanoparticle into a photonic structure. Different kinds of nanoparticles of great interest including quantum dots and nitrogen-vacancy centers in nanodiamond for single photon source, nonlinear nanoparticles for efficient nonlinear effect and sensors, magnetic nanoparticles for Kerr magneto-optical effect, and plasmonic nanoparticles for ultrafast optical switching and sensors, are briefly reviewed. We focus further on the coupling of plasmonic gold nanoparticles and polymeric photonic structures by optimizing theoretically the photonic structures and developing efficient way to realize desired hybrid structures. The simple and low-cost fabrication technique, the optical enhancement of the fluorescent nanoparticles induced by the photonic structure, as well as the limitations, challenges and appealing prospects are discussed in details.

  18. Development of a sensitive electrochemical DNA sensor by 4-aminothiophenol self-assembled on electrodeposited nanogold electrode coupled with Au nanoparticles labeled reporter ssDNA

    International Nuclear Information System (INIS)

    Li Guangjiu; Liu Lihua; Qi Xiaowei; Guo Yaqing; Sun Wei; Li Xiaolin

    2012-01-01

    Graphical abstract: - Abstract: A novel and sensitive electrochemical DNA biosensor was fabricated by using the 4-aminothiophenol (4-ATP) self-assembled on electrodeposited gold nanoparticles (NG) modified electrode to anchor capture ssDNA sequences and Au nanoparticles (AuNPs) labeled with reporter ssDNA sequences, which were further coupled with electroactive indicator of hexaammineruthenium (III) ([Ru(NH 3 ) 6 ] 3+ ) to amplify the electrochemical signal of hybridization reaction. Different modified electrodes were prepared and characterized by cyclic voltammetry, scanning electron microscope and electrochemical impedance spectroscopy. By using a sandwich model for the capture of target ssDNA sequences, which was based on the shorter probe ssDNA and AuNPs label reporter ssDNA hybridized with longer target ssDNA, the electrochemical behavior of [Ru(NH 3 ) 6 ] 3+ was monitored by differential pulse voltammetry (DPV). The fabricated electrochemical DNA sensor exhibited good distinguish capacity for the complementary ssDNA sequence and two bases mismatched ssDNA. The dynamic detection range of the target ssDNA sequences was from 1.4 × 10 −11 to 2.0 × 10 −9 mol/L with the detection limit as 9.5 × 10 −12 mol/L (3σ). So in this paper a new electrochemical DNA sensor was designed with gold nanoparticles as the immobilization platform and the signal amplifier simultaneously.

  19. Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, R. [Department of Mathematics, Center for Computational Engineering Science, RWTH Aachen University, Schinkel Strasse 2, D-52062 Aachen (Germany)

    2013-07-01

    Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)

  20. Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system

    International Nuclear Information System (INIS)

    Vasques, R.

    2013-01-01

    Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)