WorldWideScience

Sample records for nanometer scale microstructures

  1. Mechanical Properties of Materials with Nanometer Scale Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  2. Nanometer scale thermometry in a living cell

    Science.gov (United States)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2014-01-01

    Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of sub-degree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool for many areas of biological, physical and chemical research; possibilities range from the temperature-induced control of gene expression2–5 and tumor metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the sub-cellular level2–5. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9mK/Hz) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds, NDs), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences. PMID:23903748

  3. Cell biology of the future: Nanometer-scale cellular cartography.

    Science.gov (United States)

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities. Copyright © 2015 Taraska.

  4. Substrate comprising a nanometer-scale projection array

    Science.gov (United States)

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George

    2012-11-27

    A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.

  5. Simple method for formation of nanometer scale holes in membranes

    International Nuclear Information System (INIS)

    Schenkel, T.; Stach, E.A.; Radmilovic, V.; Park, S.-J.; Persaud, A.

    2003-01-01

    When nanometer scale holes (diameters of 50 to a few hundred nm) are imaged in a scanning electron microscope (SEM) at pressures in the 10 -5 to 10 -6 torr range, hydrocarbon deposits built up and result in the closing of holes within minutes of imaging. Additionally, electron beam deposition of material from a gas source allows the closing of holes with films of platinum or TEOS oxide. In an instrument equipped both with a focused ion beam (FIB), and an SEM, holes can be formed and then covered with a thin film to form nanopores with controlled openings, ranging down to only a few nanometers

  6. Metal substrates with nanometer scale surface roughness for flexible electronics

    Science.gov (United States)

    Lee, Jong-Lam; Kim, Kisoo

    2012-09-01

    In this work, we present a novel way in fabricating a metal substrate with nanometer scale in surface roughness (Ra INVAR (Invariable alloy) one (20 cm × 20 cm, Ra = 1.40 nm) were demonstrated. The INVAR film was used as a substrate for fabricating organic light emitting diodes (OLED) and organic photovoltaic (OPV). The optical and electrical characteristics of OLEDs and OPVs using the INVAR were comparable to those using a conventional ITO glass substrate.

  7. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  8. Probing single nanometer-scale pores with polymeric molecular rulers

    Science.gov (United States)

    Henrickson, Sarah E.; DiMarzio, Edmund A.; Wang, Qian; Stanford, Vincent M.; Kasianowicz, John J.

    2010-04-01

    We previously demonstrated that individual molecules of single-stranded DNA can be driven electrophoretically through a single Staphylococcus aureus α-hemolysin ion channel. Polynucleotides thread through the channel as extended chains and the polymer-induced ionic current blockades exhibit stable modes during the interactions. We show here that polynucleotides can be used to probe structural features of the α-hemolysin channel itself. Specifically, both the pore length and channel aperture profile can be estimated. The results are consistent with the channel crystal structure and suggest that polymer-based "molecular rulers" may prove useful in deducing the structures of nanometer-scale pores in general.

  9. Imaging nanometer-scale beamlets arrays of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, R. K.; To, H.; Musumeci, P. [Department of Physics and Astronomy, UCLA, Los Angeles, California, 90095 (United States)

    2012-12-21

    In this paper we study the evolution of nanometer scale transverse density modulation of a high brightness electron beam through a drift and simple focusing channel. With the help of particle tracking simulations we analyze the effects of space charge forces, emittance and energy spread on the feasibility of recovering an initial nm-scale transverse modulation after transport through a magnifying optical system. These studies are relevant for applications such as time-resolved MeV transmission electron microscopy and in the high brightness electron beam community due to the recent developments of nano-structured cathodes and due to the possibility of taking advantage of nm-structures in the beam for coherent radiation generation.

  10. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  11. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.

    2014-04-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  12. Carbon nanotube transistors scaled to a 40-nanometer footprint.

    Science.gov (United States)

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B; Zhu, Yu; Han, Shu-Jen

    2017-06-30

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density-above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Nanometer-scale phase separation in colossal magnetoresistive manganite

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Sahana; Ernst, Stefan; Wirth, Steffen; Steglich, Frank [Max Planck Institute for Chemical Physics of Solids, Noethnizer Strasse 40, 01187, Dresden (Germany); Padmanabhan, B.; Elizabeth, Suja; Bhat, H.L. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2008-07-01

    In strongly correlated electron systems an intrinsic instability of the electronic state and competing long-range interactions may result in the formation of nanometer-sized regions of different phases. We have carried out scanning tunneling microscopy/spectroscopy on single crystals of a colossal magnetoresistive manganite Pr{sub 0.68}Pb{sub 0.32}MnO{sub 3} at different temperatures in order to probe their spatial homogeneity across the metal-insulator transition temperature T{sub M-I}. In this compound, the Curie temperature T{sub C} is lower than T{sub M-I}. Spectroscopic studies revealed inhomogeneous maps of the zero-bias conductance with small patches of metallic clusters on a length scale of 2-3 nm only within a narrow temperature range close to the metal-insulator transition. A detailed analysis of conductance histograms based on these maps gave direct evidence for phase separation into insulating and metallic regions in the paramagnetic metallic state, i.e. for T{sub C} T{sub M-I}.

  14. Dimensional crossover in fluids under nanometer-scale confinement.

    Science.gov (United States)

    Das, Amit; Chakrabarti, J

    2012-05-01

    Several earlier studies have shown signatures of crossover in various static and dynamics properties of a confined fluid when the confining dimension decreases to about a nanometer. The density fluctuations govern the majority of such properties of a fluid. Here, we illustrate the crossover in density fluctuation in a confined fluid, to provide a generic understanding of confinement-induced crossover of fluid properties, using computer simulations. The crossover can be understood as a manifestation of changes in the long-wavelength behavior of fluctuation in density due to geometrical constraints. We further show that the confining potential significantly affects the crossover behavior.

  15. Nanometer-scale metallic grains connected with atomic-scale conductors

    Science.gov (United States)

    Anaya, A.; Korotkov, A. L.; Bowman, M.; Waddell, J.; Davidovic, D.

    2003-03-01

    We describe a technique for connecting a nanometer-scale gold grain to leads by atomic-scale gold point contacts. These devices differ from previous metallic quantum dots in that the conducting channels are relatively well transmitting. We investigate the dependence of the Coulomb blockade on contact resistance. The high-resistance devices display Coulomb blockade and the low-resistance devices display a zero-bias conductance dip, both in quantitative agreement with theory. We find that in the intermediate regime, where the sample resistance is close to h/e2, the I-V curve displays a Coulomb staircase with symmetric contact capacitances.

  16. Mechanical properties of materials with nanometer scale dimensions and microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Nix, William D. [Stanford Univ., CA (United States)

    2015-08-05

    The three-year grant for which this final report is required extends from 2011 to 2015, including a one-year, no-cost extension. But this is just the latest in a long series of grants from the Division of Materials Sciences of DOE and its predecessor offices and agencies. These include contracts or grants from: the Metallurgy Branch of the U.S. Atomic Energy Commission (from the late 1960s to the mid-1970s), the Materials Science Program of the U.S. Energy Research and Development Administration (from the mid- to late- 1970s), and the Division of Materials Science of the Office of Basic Energy Sciences of the U.S. Department of Energy (from the early 1980s to the present time). Taken all together, these offices have provided nearly continuous support for our research for nearly 50 years. As we have said on many occasions, this research support has been the best we have ever had, by far. As we look back on the nearly five decades of support from the Division of Materials Sciences and the predecessor offices, we find that the continuity of support that we have enjoyed has allowed us to be most productive and terms of papers published, doctoral students graduated and influence on the field of materials science. This report will, of course, cover the three-year period of the present grant, in summary form, but will also make reference to the output that resulted from support of previous grants from the Division of Materials Sciences and its predecessor offices.

  17. Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale.

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-12-28

    We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency (∼1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.

  18. Local mechanical spectroscopy with nanometer-scale lateral resolution

    Science.gov (United States)

    Oulevey, F.; Gremaud, G.; Sémoroz, A.; Kulik, A. J.; Burnham, N. A.; Dupas, E.; Gourdon, D.

    1998-05-01

    A new technique has been developed to probe the viscoelastic and anelastic properties of submicron phases of inhomogeneous materials. The measurement gives information related to the internal friction and to the variations of the dynamic modulus of nanometer-sized volumes. It is then the nanoscale equivalent to mechanical spectroscopy, a well-known macroscopic technique for materials studies, also sometimes called dynamic mechanical (thermal) analysis. The technique is based on a scanning force microscope, using the principle of scanning local-acceleration microscopy (SLAM), and allows the sample temperature to be changed. It is called variable-temperature SLAM, abbreviated T-SLAM. According to a recent proposition to systematize names of scanning probe microscope based methods, this technique should be included in the family of "mechanothermal analysis with scanning microscopy." It is suited for studying defect dynamics in nanomaterials and composites by locating the dissipative mechanisms in submicron phases. The primary and secondary relaxations, as well as the viscoplasticity, were observed in bulk PVC. The wide range of phenomena demonstrate the versatility of the technique. A still unexplained increase of the stiffness with increasing temperature was observed just below the glass transition. All of these observations, although their interpretation in terms of physical events is still tentative, are in agreement with global studies. This technique also permits one to image the variations of the local elasticity or of the local damping at a fixed temperature. This enables the study of, for instance, the homogeneity of phase transitions in multiphased materials, or of the interface morphologies and properties. As an illustration, the homogeneity of the glass transition temperature of PVC in a 50/50 wt % PVC/PB polymer blend has been demonstrated. Due to the small size of the probed volume, T-SLAM gives information on the mechanical properties of the near

  19. SQUID magnetometry from nanometer to centimeter length scales

    International Nuclear Information System (INIS)

    Hatridge, Michael J.

    2010-01-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  20. SQUID magnetometry from nanometer to centimeter length scales

    Energy Technology Data Exchange (ETDEWEB)

    Hatridge, Michael J. [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  1. Some applications of nanometer scale structures for current and future X-ray space research

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Abdali, S; Frederiksen, P K

    1994-01-01

    Nanometer scale structures such as multilayers, gratings and natural crystals are playing an increasing role in spectroscopic applications for X-ray astrophysics. A few examples are briefly described as an introduction to current and planned applications pursued at the Danish Space Research Insti...

  2. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Khan, Sajid; Göbel, Ole

    2010-01-01

    This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The

  3. Micromechanics of pseudo-single-asperity friction: Effects of nanometer-scale roughness

    Science.gov (United States)

    Li, Qunyang

    Nanometer-scale roughness on a solid surface has significant effects on friction, since inter-surface forces operate predominantly within a nanometer-scale gap distance in frictional contact. This thesis presents two novel atomic force microscope friction experiments, each using a gold surface sliding against a flat mica surface as the representative friction system. A diamagnetic lateral force calibrator (D-LFC) was invented to enable the accurate quantitative force measurements. In one of the experiment, a disk-shaped single nano-asperity of gold was used to measure the molecular level frictional behavior. The adhesive friction stress was measured to be 264 MPa and the molecular friction factor 0.0108 for a direct gold-mica contact in 30% humid air. The capillary force from the condensed water meniscuses was found to play an important role in magnifying the contact pressure to plastically deform the nano-asperities leading to the dramatic evolution of frictional responses. In the second experiment, the frictional response of a micrometer-scale asperity with nanometer-scale roughness exhibited a pseudo-single-asperity frictional behavior. However, the apparent friction stress, 40.5 MPa, fell well below the Hurtado-Kim model prediction for a smooth-single-asperity friction, exhibiting an apparent size-scale dependence of the friction stress. An interfacial roughness (IR) layer model was then developed to investigate the effects of roughness on pseudo-single-asperity friction. The model calculation shows that the nanometer-scale surface roughness is the major mechanism that explains the apparent size-scale dependence of the friction observed in the experiments. Furthermore, the analysis shows that the apparent friction stress as well as the apparent pressure-dependent fiction factor relies on the surface roughness. Both experimental and theoretical results suggest that the evolution status of surface roughness is one of the important internal variables for the

  4. Nanometer-scale patterning of high-Tc superconductors for Josephson junction-based digital circuits

    International Nuclear Information System (INIS)

    Wendt, J.R.; Plut, T.A.; Corless, R.F.; Martens, J.S.; Berkowitz, S.; Char, K.; Johansson, M.; Hou, S.Y.; Phillips, J.M.

    1994-01-01

    A straightforward method for nanometer-scale patterning of high-T c superconductor thin films is discussed. The technique combines direct-write electron beam lithography with well-controlled aqueous etches and is applied to the fabrication of Josephson junction nanobridges in high-quality, epitaxial thin-film YBa 2 Cu 3 O 7 . We present the results of our studies of the dimensions, yield, uniformity, and mechanism of the junctions along with the performance of a representative digital circuit based on these junctions. Direct current junction parameter statistics measured at 77 K show critical currents of 27.5 μA±13% for a sample set of 220 junctions. The Josephson behavior of the nanobridge is believed to arise from the aggregation of oxygen vacancies in the nanometer-scale bridge

  5. Nanometer-Scale Pores: Potential Applications for Analyte Detection and DNA Characterization

    Directory of Open Access Journals (Sweden)

    John J. Kasianowicz

    2002-01-01

    Full Text Available Several classes of transmembrane protein ion channels function in vivo as sensitive and selective detection elements for analytes. Recent studies on single channels reconstituted into planar lipid bilayer membranes suggest that nanometer-scale pores can be used to detect, quantitate and characterize a wide range of analytes that includes small ions and single stranded DNA. We briefly review here these studies and identify leaps in technology that, if realized, might lead to innovations for the early detection of cancer.

  6. Thermo-plasmonics : controlling and probing temperature on the nanometer scale

    OpenAIRE

    Donner, Jon Sean

    2014-01-01

    In the last decades, optics has become central in many applications in modern society. Nano-optics, which studies the behavior of light at the nanoscale, holds promise to do the same. However, when using traditional optical elements such as mirrors and lenses to control light propagation, there is a fundamental limit on the localization of the field which could a priori impinge on the ability to use optics at the nanometer scale. One way to improve the confinement of electromagnetic waves is...

  7. Microstructured continua and scaling for wave motion

    Directory of Open Access Journals (Sweden)

    Jüri Engelbrecht

    2013-01-01

    Full Text Available This paper deals with wave motion in microstructured solids. A short introduction explains how the basic mathematical models for description of microstructure(s of solids are derived. Based on the Mindlin-type micromorphic theory, the governing equations for wave motion in such solids are presented in one-dimensional setting. The focus of the paper is in explaining the importance of internal scales in microstructured solids. It is shown that the proper scaling permits to construct the mathematical models which involve hierarchies of wave operators. Depending on the scale parameter (the ratio of an internal scale over the wave length, the various operators govern the wave propagation. The main case analysed here consists of the second-order operators but the first-order operators which are characteristic to evolution equations, are also briefly explained.

  8. A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells

    Directory of Open Access Journals (Sweden)

    Marlière Christian

    2016-01-01

    Full Text Available In this paper is presented an innovative method to map in-vivo and at nanometer scale the electrical charge distribution on membranes of alive cells. It relies on a new atomic force microscopy (AFM mode based on an electro-mechanical coupling effect. Furthermore, an additional electrical signal detected by both the deflection of the AFM cantilever and simultaneous direct current measurements was detected at low scanning rates. It was attributed to the detection of the current stemming from ionic channels. It opens a new way to directly investigate in situ biological electrical surface processes involved in bacterial adhesion, biofilm formation, microbial fuel cells, etc.

  9. Nanometer-scale displacement sensor based on phase-sensitive diffraction grating.

    Science.gov (United States)

    Zhao, Shuangshuang; Hou, Changlun; Bai, Jian; Yang, Guoguang; Tian, Feng

    2011-04-01

    In this paper, a nanometer-scale displacement sensor based on a phase-sensitive diffraction grating with interferometeric detection is described and experimentally demonstrated. The proposed displacement sensor consists of a coherent light source, a microstepping motor controller, an integrated grating, a mirror, and a differential circuit. Experimental results show that the displacement sensor has a sensitivity of about 6 mV/nm and a resolution of less than 1 nm. This displacement measurement is an attractive technology with high sensitivity, broad dynamic range, good reliability, and immunity to electromagnetic interference. © 2011 Optical Society of America

  10. Fabrication, characterization, and applications of nanometer-scale features within organomercaptan self- assembled monolayers

    Science.gov (United States)

    Schoer, Jonathan Kevin

    1997-10-01

    Nanometer-scale features in organomercaptan self- assembled monolayers (SAMs) on Au(111) substrates were prepared by three methods: electrochemical enhancement of adventitious defects, electrochemical enhancement of template-molecule-induced pores, and scanning tunneling microscopy (STM)-induced patterning. The resulting features were characterized by electrochemistry, scanning electron microscopy (STM), and electrochemical STM (ECSTM). Finally, we applied STM-induced patterning methods to lithographic fabrication of features with critical dimensions resists and barrier layers to electron and mass transfer. Further, the nanometer-scale features act as nanometer- size electrodes. Measurements of the physical dimensions of nanometer- scale features by STM can be combined with microelectrode theory to calculate a value for the limiting current. Comparison of this value with that obtained directly from conventional electrochemistry provides qualitative agreement. From in-depth studies of the mechanistic aspects of STM- induced patterning of organomercaptan SAMs we determined that this process is controlled by a complex combination of parameters defined by both the instrument and the chemical and physical properties of materials in the vicinity of the tip. In particular, the patterning is dependent on the magnitude and polarity of the gap bias, the Coulomb dose, and the composition of the gap. From this information we propose a detailed multi-step model for STM-induced removal of n-alkanethiol SAMs from Au surfaces. The model is partially based on our observation that high tip bias ([>]~[+]2.30 V) results in removal of SAMs by Faradaic electrochemical processes in which the n-octadecyl mercaptan monolayer is: (1) disrupted by the tip, (2) electrochemically desorbed, and (3) removed by the scanning action of the tip. Further, we determined that at biases above a second threshold (~[+]4.0 V) the patterning becomes irreproducible because the patterning mechanism changes to

  11. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  12. Transmission electron microscopical study of teenage crown dentin on the nanometer scale

    International Nuclear Information System (INIS)

    Panfilov, Peter; Kabanova, Anna; Guo, Jinming; Zhang, Zaoli

    2017-01-01

    Statement of significance: This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30 ° ) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. - Highlights: • Dentin has layered morphology. • Mineral component of dentin is in amorphous state. • Collagen fibers form cellular structure in dentin. • Cracks in dentin behave by elastic-plastic manner.

  13. Nanometals - Status and perspective

    International Nuclear Information System (INIS)

    Faester, S.; Hansen, N.; Huang, X.; Juul Jensen, D.; Ralph, B.

    2012-01-01

    Nanometals and nanotechnology have over the years been covered in papers, books and conferences - also in many Risoe International Symposia, where the 30th in 2009 dealt solely with nanostructured metals. Since then, rapid progress has been made in synthesis, characterization and modeling, and it is timely to discuss status and perspective also with a view on applications in an international forum such as the Risoe Symposium. Both keynote and contributed papers address important current problems illustrating global research and development in this field. Examples are the development of new synthesis techniques followed by characterization and modeling of microstructures both in 2D and 3D now starting to bridge the micrometer scales. The vital area of mechanical behavior is addressed by the development of new testing techniques and a broad effort to characterize and model mechanical properties of metals strengthened by dislocations and twins. This research has now led to new understanding of both strengthening mechanisms and strengh structure relationships based on experiments in combination with analytical and numerical modeling. The holistic approach to research on nanometals demonstrated by these proceedings can guide both scientists and technologists in their future work also with the aim of introducing into society this new group of advanced materials. Such an effort is important, as science and technology today is significantly affected by politics of governments and international institutions, and therefore a new initiative in the pressent is to include a discussion of research and development in the area of nanometals i USA, China and Japan. (Author)

  14. Nanometer-scale sharpening and surface roughening of ZnO nanorods by argon ion bombardment

    Science.gov (United States)

    Chatterjee, Shyamal; Behera, Akshaya K.; Banerjee, Amarabha; Tribedi, Lokesh C.; Som, Tapobrata; Ayyub, Pushan

    2012-07-01

    We report the effects of exposing a hydrothermally grown, single crystalline ZnO nanorod array to a beam of 50 keV argon ions at room temperature. High resolution electron microscopy reveals that the ion bombardment results in a nanometer-scale roughening of the nanorod sidewalls, which were almost atomically flat in the pristine sample. Ion bombardment further causes the flat, ≈100 nm diameter nanorod tips to get sharpened to ultrafine points less than 10 nm across. While tip sharpening is attributed to preferential sputtering, the formation of crystalline surface protuberances can be ascribed to surface instability due to curvature dependent sputtering and surface diffusion under argon-ion bombardment. Both the nanoscale roughening as well as the tip sharpening are expected to favorably impact a wide variety of applications, such as those involving catalysis, gas sensing, solar cells, field emission and gas discharge.

  15. Nanometer-scale sharpening and surface roughening of ZnO nanorods by argon ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Shyamal, E-mail: shyamal@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Behera, Akshaya K. [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Banerjee, Amarabha; Tribedi, Lokesh C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Som, Tapobrata [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2012-07-01

    We report the effects of exposing a hydrothermally grown, single crystalline ZnO nanorod array to a beam of 50 keV argon ions at room temperature. High resolution electron microscopy reveals that the ion bombardment results in a nanometer-scale roughening of the nanorod sidewalls, which were almost atomically flat in the pristine sample. Ion bombardment further causes the flat, Almost-Equal-To 100 nm diameter nanorod tips to get sharpened to ultrafine points less than 10 nm across. While tip sharpening is attributed to preferential sputtering, the formation of crystalline surface protuberances can be ascribed to surface instability due to curvature dependent sputtering and surface diffusion under argon-ion bombardment. Both the nanoscale roughening as well as the tip sharpening are expected to favorably impact a wide variety of applications, such as those involving catalysis, gas sensing, solar cells, field emission and gas discharge.

  16. 3D-SEM Metrology for Coordinate Measurements at the Nanometer Scale

    DEFF Research Database (Denmark)

    Carli, Lorenzo

    The present work deals with a study concerning 3D-SEM metrology as a tool for coordinate measurements at the nanometer scale. The relevance of 3D-SEM, based on stereophotogrammetry technique, has been highlighted with respect to the other measuring instruments nowadays available and the main issues...... to be addressed concerning uncertainty evaluation have been discussed. Most recent developments in the field of micro and nano-metrology, in terms of measuring machines and techniques, are described pointing out advantages and limitations. The importance of multi-sensor and multi-orientation strategy....... In the last part of the work, the development and application of two novel multiplestep heights artefacts, intended for 3D-SEM calibration, is addressed. Experimental results of the different step-height values, measured from 3D-SEM reconstructions, are compared with the calibrated ones obtained from...

  17. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Korzeniewski, Carol [Texas Tech Univ., Lubbock, TX (United States). Department of Chemistry & Biochemistry

    2014-01-20

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  18. Nanometer-scale lithography of ultrathin films with atomic force microscope

    CERN Document Server

    Kim, J C; Shin, Y W; Park, S W

    1998-01-01

    Ultrathin resist films have been prepared by both Langmuir-Blodgett (LB) and self-assembly (SA) techniques. Nanometer-scale patterning of these thin films has been performed by using the atomic force microscope (AFM) as the exposing tool. The poly (methylphenylmethacrylate) (PMPMA) LB films were prepared and fabricated by AFM lithography. When the exposure was carried out at the bias voltage of -25V, the protruding lines appeared in the exposed regions. The preoptimized LB films at various conditions exhibited 120 nm line resolution. An organosilane monolayer composed of octadecyldimethylsilyl groups was prepared on a Si substrate. It was then patterned through the localized degradation of the monolayer due to anodic reaction induced by an AFM tip. When the bias voltage was -30 V, the protruding lines appeared in the exposed regions.

  19. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  20. Quantum transport and dielectric response of nanometer scale transistors using empirical pseudopotentials

    Science.gov (United States)

    Fang, Jingtian

    As transistors, the most basic component of central processing units (CPU) in all electronic products, are scaling down to the nanometer scale, quantum mechanical effects must be studied to investigate their performance. A formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials is presented in this dissertation. We develop the transport equations and show the expressions to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor (FET) with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ˜66 mV/decade and a drain-induced barrier-lowering of ~2.5 mV/V. This formalism is also applied to assess the ballistic performance of FETs with armchair-edge graphene nanoribbon (aGNRs) and silicon nanowire (SiNWs) channels and with gate lengths ranging from 5 nm to 15 nm. The device characteristics of the transistors with a 5 nm gate length are compared. Source-to-drain tunneling effects are investigated for SiNWFETs and GNRFETs by comparing the I-V characteristics of each respective transistor with different channel lengths. While a uniform dielectric constant is assumed in solving Poisson equation for the devices simulated above, the knowledge of the atomistic (i.e., local) dielectric permittivity that considers the atomistic electron distribution and quantum-confinement effect is necessary to treat the electrostatic properties accurately. The local permittivity can also provide information about the dielectric property at the interfaces. We use the random-phase approximation, first-order perturbation theory, and empirical pseudopotentials to calculate the static polarizability, susceptibility, and dielectric response function in graphene and GNRs. While the

  1. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    Science.gov (United States)

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale.

  2. Long Dwell-Time Passage of DNA through Nanometer-Scale Pores : Kinetics and Sequence Dependence of Motion

    NARCIS (Netherlands)

    Jetha, N.N.; Feehan, C.; Wiggin, M.; Tabard-Cossa, V.; Marziali, A.

    2011-01-01

    A detailed understanding of the kinetics of DNA motion though nanometer-scale pores is important for the successful development of many of the proposed next-generation rapid DNA sequencing and analysis methods. Many of these approaches require DNA motion through nanopores to be slowed by several

  3. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.1; monometallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.C.; Sayers, D.A.

    1993-01-01

    The structural information found using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to nanometer scale metallic clusters. (author)

  4. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.2; bimetallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.; Sayers, D.

    1993-01-01

    The structural information obtained using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to the study of nanometer scale bimetallic clusters. (author)

  5. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry.

    Science.gov (United States)

    Villarrubia, J S; Tondare, V N; Vladár, A E

    2016-01-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples-mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  6. Nanometer scale titanium surface texturing are detected by signaling pathways involving transient FAK and Src activations.

    Directory of Open Access Journals (Sweden)

    Willian F Zambuzzi

    Full Text Available It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations.Four engineered titanium surfaces were used for the study: machined (M, dual acid-etched (DAA, resorbable media microblasted and acid-etched (MBAA, and acid-etch microblasted (AAMB. Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites.The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption.It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces.

  7. Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale

    Science.gov (United States)

    Das, Kalipada; Dasgupta, P.; Poddar, A.; Das, I.

    2016-01-01

    The Physics of materials with large magnetoresistance (MR), defined as the percentage change of electrical resistance with the application of external magnetic field, has been an active field of research for quite some times. In addition to the fundamental interest, large MR has widespread application that includes the field of magnetic field sensor technology. New materials with large MR is interesting. However it is more appealing to vast scientific community if a method describe to achieve many fold enhancement of MR of already known materials. Our study on several manganite samples [La1−xCaxMnO3 (x = 0.52, 0.54, 0.55)] illustrates the method of significant enhancement of MR with the reduction of the particle size in nanometer scale. Our experimentally observed results are explained by considering model consisted of a charge ordered antiferromagnetic core and a shell having short range ferromagnetic correlation between the uncompensated surface spins in nanoscale regime. The ferromagnetic fractions obtained theoretically in the nanoparticles has been shown to be in the good agreement with the experimental results. The method of several orders of magnitude improvement of the magnetoresistive property will have enormous potential for magnetic field sensor technology. PMID:26837285

  8. Fine and nanometer scaled particle behavior characterization and control for sustainable energy and environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hidehiro Kamiya; Mayumi Tsukada; Wuled Lenggoro; Wladyslaw W. Szymanski [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    2008-07-01

    Characterization and control of fine and nanometer scaled particles are essential technological fundamentals for understanding and development of various approaches concerned with sustainable energy and environmental technology, for example, PM10/PM2.5 and nanoparticle emission, clean and high efficiency power generation systems from biomass and solid waste combustion. The standard measuring methods for PM10/PM2.5 and nanoparticle emission behavior from stationary sources, such as coal-fired power plants and waste incinerators, have been discussed in ISO and numerous countries. However, it is difficult to evaluate the actual emission amount and particle size distribution, such as condensable suspended particulate matter, condensable SPM, which is nucleated and grow during cooling and diluting process from flue to atmosphere. High temperature gas cleaning using rigid ceramic filters is an important technology to develop high efficiency power generation system. In this paper, based on the review of background and recent research works of each subject, mass concentration measurement method of PM10/PM2.5 and size distribution of condensable SPM from stationary sources are introduced. Subsequently, research results with focus on ash adhesion behavior characterization and control for the development of dust collection and gas cleaning technology at high temperature conditions in high efficiency power generation systems by coal, biomass and solid waste combustion are presented. 12 refs., 7 figs., 3 tabs.

  9. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  10. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  11. New Computing Devices and the Drive toward Nanometer-scale Manufacturing

    Science.gov (United States)

    Theis, Thomas

    2013-03-01

    In recent decades, we have become used to the idea of exponentially compounding improvements in manufacturing precision. These improvements are driven in large part by the economic imperative to continuously shrink the devices of information technology, particularly the Complementary Metal Oxide Semiconductor (CMOS) field-effect transistor. However, CMOS technology is clearly approaching some important physical limits. Since roughly 2003, the inability to reduce supply voltages according to constant-field scaling rules, combined with economic constraints on areal power density and total power, has forced designers to limit clock frequencies even as devices have continued to shrink. New channel materials, new device structures, and novel circuits cannot fundamentally alter this new status quo. The device physics must change in a more fundamental way if we are to realize fast digital logic with very low power dissipation. The continued vitality of the information technology revolution and the continued push of manufacturing precision toward nanometer dimensions, will depend on it. Fortunately, there is no shortage of new digital switch concepts based on physical principles which avoid the fundamental voltage-scaling limit of the field-effect transistor. The Nanoelectronics Research Initiative (NRI) is a consortium of leading semiconductor companies established in 2005 to guide and fund fundamental research at U.S. universities with the goal of finding the ``next switch'' to replace the CMOS transistor for storing and manipulating digital information. The National Institute of Standards and Technology (NIST) and the National Science Foundation (NSF) have partnered with NRI to fund this research. To date, NRI has funded the exploration of many novel device concepts, and has guided research comparing the capabilities of these devices. Although no single device has yet emerged as a clear winner with the potential to eclipse the field-effect transistor, results are

  12. Wetting at the nanometer scale: effects of long-range forces and substrate heterogeneities

    International Nuclear Information System (INIS)

    Checco, Antonio

    2003-01-01

    Wetting phenomena on the nano-scale remain poorly understood in spite of their growing theoretical and practical interest. In this context, the present work aimed at studying partial wetting of nanometer-sized alkane droplets on 'model' surfaces build by self-assembly of organic monolayers. For this purpose a novel technique, based on 'noncontact' Atomic Force Microscopy (AFM), has been developed to image, with minimal artefacts, drops of adjustable size directly condensed on so- lid surfaces. We have thus shown that contact angle of alkanes, wetting a weakly heterogeneous, silanized substrate, noticeably decreases from its macroscopic value for droplets sizes in the submicron range. The line tension, arising in this case from purely dispersive long-range interactions between the liquid and the substrate, is theoretically too weak to be responsible for the observed effect. Therefore we have supposed that contact angle is affected by mesoscopic chemical heterogeneities of the substrate whenever the droplets size becomes sufficiently small. This scenario has been supported by numerical simulations based on a simplified model of the spatial distribution of surface defects. Similar experiments, performed on different substrates (monolayers made of alkane-thiols self-assembled on gold and of alkyl chains covalently bound onto a silicon surface), have also shown that wetting on small scales is strongly affected by minimal physical and chemical surface heterogeneities. Finally, to provide further examples of the potential of the above mentioned AFM technique, we have studied the wettability of nano-structured surfaces and the local wetting properties of hair. (author) [fr

  13. Threading DNA Through a Nanometer-Scale Pore: Biophysical and Biotechnological Applications

    Science.gov (United States)

    Kasianowicz, John; Henrickson, Sarah; Misakian, Martin; Wang, Qian; Weetall, Howard; Roberston, Baldwin

    2001-03-01

    With the goal of developing technologies for biomedical applications (e.g. antiviral treatments, targeted genetic therapies, analyte sensing, and ultra-rapid DNA sequencing), we are studying the mechanism by which DNA is transported through a nanometer-scale pore. Individual molecules of single-stranded DNA (ssDNA) can be detected and characterized as they are driven electrophoretically through a single Staphylococcus aureus alpha-hemolysin (alpha-HL) ion channel. We recently demonstrated that the ability of ssDNA to partition into the pore depends on the side to which the polymer is added and on the magnitude of the applied potential. These results are consistent with the alpha-HL channel’s crystal structure and are providing insight into the physics of DNA transport through a nanopore. We are also researching methods for using ion channels as components of analyte sensors. Using the alpha-HL channel and ssDNA as a model system, we demonstrated an analyte sensing technology based on a single nanopore and pore-permeant polymers. Instead of affixing an analyte binding site to the channel, it is covalently attached to a polymer that is initially free in solution. The binding of analyte to the polymer alters the ability of the polymer to thread into or through the pore. This system can simultaneously quantitate multiple analytes in real-time. Finally, we demonstrate that the signal produced by the transport of individual ssDNA molecules through the alpha-HL channel depends on which end of the channel the polymer enters.

  14. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco).

    Science.gov (United States)

    Cosmidis, J; Benzerara, K; Gheerbrant, E; Estève, I; Bouya, B; Amaghzaz, M

    2013-03-01

    Micrometer-sized spherical and rod-shaped forms have been reported in many phosphorites and often interpreted as microbes fossilized by apatite, based on their morphologic resemblance with modern bacteria inferred by scanning electron microscopy (SEM) observations. This interpretation supports models involving bacteria in the formation of phosphorites. Here, we studied a phosphatic coprolite of Paleocene age originating from the Ouled Abdoun phosphate basin (Morocco) down to the nanometer-scale using focused ion beam milling, transmission electron microscopy (TEM), and scanning transmission x-ray microscopy (STXM) coupled with x-ray absorption near-edge structure spectroscopy (XANES). The coprolite, exclusively composed of francolite (a carbonate-fluroapatite), is formed by the accumulation of spherical objects, delimited by a thin envelope, and whose apparent diameters are between 0.5 and 3 μm. The envelope of the spheres is composed of a continuous crown dense to electrons, which measures 20-40 nm in thickness. It is surrounded by two thinner layers that are more porous and transparent to electrons and enriched in organic carbon. The observed spherical objects are very similar with bacteria encrusting in hydroxyapatite as observed in laboratory experiments. We suggest that they are Gram-negative bacteria fossilized by francolite, the precipitation of which started within the periplasm of the cells. We discuss the role of bacteria in the fossilization mechanism and propose that they could have played an active role in the formation of francolite. This study shows that ancient phosphorites can contain fossil biological subcellular structures as fine as a bacterial periplasm. Moreover, we demonstrate that while morphological information provided by SEM analyses is valuable, the use of additional nanoscale analyses is a powerful approach to help inferring the biogenicity of biomorphs found in phosphorites. A more systematic use of this approach could considerably

  15. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    Science.gov (United States)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  16. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    International Nuclear Information System (INIS)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-01-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  17. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    Science.gov (United States)

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  18. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Kyle L. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Pop, Eric [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  19. Long-term irradiation effects on reactor-pressure vessel steels. Investigations on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Arne

    2017-06-01

    The exposure of reactor pressure vessel (RPV) steels to neutron irradiation gives rise to irradiation-enhanced diffusion, a rearrangement of solute atoms and, consequently, a degradation of the mechanical properties. The increasing age of existing nuclear power plants raises new questions specific to long-term operation. Two of them are addressed in this thesis: flux effects and the late-blooming effect. Can low-flux irradiations up to a given fluence be reproduced by more rapid high-flux irradiations up to the same fluence? Can the irradiation response of RPV steels be extrapolated to higher fluences or are there unexpected ''late-blooming'' effects. Small-angle neutron scattering (SANS), atom-probe tomography (APT) and Vickers-hardness testing were applied. A novel Monte-Carlo based fitting algorithm for SANS data was implemented in order to derive statistically reliable characteristics of irradiation-induced solute-atom clusters. APT was applied in selected cases to gain additional information on the composition and the shape of clusters. Vickers hardness testing was performed on the SANS samples to link the nanometer-scale changes to irradiation hardening. The investigations on flux effects show that clusters forming upon high-flux irradiation are smaller and tend to have a higher number density compared to low-flux irradiations at a given neutron fluence. The measured flux dependence of the cluster-size distribution is consistent with the framework of deterministic growth (but not with coarsening) in combination with radiation-enhanced diffusion. Since the two effects on cluster-size and volume fraction partly cancel each other out, no significant effect on the hardening is observed. The investigations of a possible late-blooming effect indicate that the very existence (yes or no) of such an effect depends on the irradiation conditions. Irradiations at lower fluxes and a lower temperature (255 C) give rise to a significant increase of the

  20. Structural behavior and microstructural hard metal sintered at 1350 deg C from the powder of nanometer WC with 10 wt% Co

    Energy Technology Data Exchange (ETDEWEB)

    Batista, A.C.; Perpetuo, G.J.; Leocadio, R.R.V., E-mail: adrianocorrea77@gmail.com [Rede Tematica de Engenharia de Materiais (REDEMAT), Ouro Preto, Minas Gerais (Brazil); Oliveira, H.C.P. de [Instituto Superior Tecnico (IST), Lisboa (Portugal). Departamento de Materiais

    2014-07-01

    The hard metal (WC-10%Co), processed via powder metallurgy, using powder of nanometer WC, were characterized from the point of view to the microstructural and structural techniques, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) for mapping and punctual. To analyze the behavior of hard metal after the sintering process performed in resistive furnace at 1350°C for 1 hour under vacuum of 10-2 mbar, the analysis identified the formation of WC grains, the pore distribution and behavior and evolution of the phases WC and Co, generating phases η (Co{sub 3}W{sub 3}C and Co{sub 6}W{sub 6}C). (author)

  1. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale

    International Nuclear Information System (INIS)

    Bolzon, B.

    2007-11-01

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  2. On the principles of microstructure scale development for titanium alloys

    International Nuclear Information System (INIS)

    Kolachev, B.A.; Mal'kov, A.V.; Gus'kova, L.N.

    1982-01-01

    Analysis of an existing standard scale of microstructures for two-phase (α+#betta#)-titanium alloy semiproducts is given. The basic principles of development of control microstructure scales for titanium alloys are presented on the base of investigations and generalization of literature data on connection of microstructure of titanium intermediate products from (α+#betta#)-alloys with their mechanical properties and service life characteristics. A possibilities of changing mechanical and operating properties at the expense of obtaining qualitatively and quantitatively regulated microstructure in the alloy are disclosed on the example of the (α+#betta#)-titanium alloy

  3. Self-assembled metallic nanoparticle template — a new approach of surface nanostructuring at nanometer scale

    Directory of Open Access Journals (Sweden)

    A. Taleb

    2017-09-01

    Full Text Available In the present work, the formation of silver and copper nanostructures on highly oriented pyrolytic graphite (HOPG modified with self-assembled gold nanoparticles (Au NPs is demonstrated. Surface patterning with nanometer resolution was achieved. Different methods such as field emission scanning electron microscopy (FEGSEM, energy dispersive spectrometry (EDS and X-ray photoelectron spectroscopy (XPS were used to illustrate a selective deposition of silver and copper on Au NPs. The mechanism of silver and copper ions reduction on Au NP with n-dodecanethiol coating is discussed.

  4. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  5. Machining oxide thin films with an atomic force microscope: pattern and object formation on the nanometer scale.

    Science.gov (United States)

    Kim, Y; Lieber, C M

    1992-07-17

    An atomic force microscope (AFM) has been used to machine complex patterns and to form free structural objects in thin layers of MoO(3) grown on the surface of MoS(2). The AFM tip can pattern lines with structure without perturbation by controlling the applied load. Distinct MoO(3) structures can also be defined by AFM machining, and furthermore these objects can be manipulated on the MoS(2) substrate surface with the AFM tip. These results suggest application to nanometer-scale diffraction gratings, high-resolution lithography masks, and possibly the assembly of nanostructures with novel properties.

  6. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    Science.gov (United States)

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

  7. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  8. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition.

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Li, Tao; Yin, Yaling; Xia, Yong; Yin, Jianping

    2017-08-10

    Surface plasmon polaritons, due to their tight spatial confinement and high local intensity, hold great promises in nanofabrication which is beyond the diffraction limit of conventional lithography. Here, we demonstrate theoretically the 2D surface optical lattices based on the surface plasmon polariton interference field, and the potential application to nanometer-scale molecular deposition. We present the different topologies of lattices generated by simple configurations on the substrate. By explicit theoretical derivations, we explain their formation and characteristics including field distribution, periodicity and phase dependence. We conclude that the topologies can not only possess a high stability, but also be dynamically manipulated via changing the polarization of the excitation laser. Nanometer-scale molecular deposition is simulated with these 2D lattices and discussed for improving the deposition resolution. The periodic lattice point with a width resolution of 33.2 nm can be obtained when the fullerene molecular beam is well-collimated. Our study can offer a superior alternative method to fabricate the spatially complicated 2D nanostructures, with the deposition array pitch serving as a reference standard for accurate and traceable metrology of the SI length standard.

  9. Nanometer Characterization/Manipulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Characterizes the nanometer scale of biological, chemical, physical, electronic, and mechanical properties of surfaces and thin films using scanning probe...

  10. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  11. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    Science.gov (United States)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.; Vila-Comamala, Joan; Lai, Barry; Maser, Jorg M.; Roehrig, Christian; Wojcik, Michael J.; Vogt, Franz Stefan

    2017-04-04

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respective zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.

  12. Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices.

    Science.gov (United States)

    Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György

    2015-03-14

    The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.

  13. Direct sub-nanometer scale electron microscopy analysis of anion incorporation to self-ordered anodic alumina layers

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rovira, L.; Lopez-Haro, M.; Hungria, A.B.; El Amrani, K. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M. [Titania, Ensayos y Proyectos Industriales, S.L. Parque Tecnobahia, Edificio RETSE, Nave 4, 11500 El Puerto de Santa Maria (Cadiz) (Spain); Calvino, J.J. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Botana, F.J., E-mail: javier.botana@uca.e [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-11-15

    Research highlights: {yields} Morphological and chemical characterization at atomic scale of porous alumina layers anodised in ordered regimes. {yields} Characterization based on the use of FEG-SEM, STEM-HAADF, STEM-EELS and STEM-X-EDS. {yields} Nanoscale distribution of P-, C- and S-bearing species in the pore wall. - Abstract: Ordered porous alumina layers prepared by two-step anodising in phosphoric, oxalic and sulphuric acids have been characterized at sub-nanometer scale using electron microscopy techniques. FEG-SEM and STEM-HAADF images allowed estimating the pore size, cell wall and pore wall thicknesses of the layers. Nanoanalytical characterization has been performed by STEM-EELS and STEM-X-EDS. Detailed features of the spatial distribution of anions in the pore wall of the films have been obtained. Maximum concentration of P-species occurs, approximately, at the middle of the pore wall; adjacent to the pore for C-species, whereas the distribution of S-species appears to be uniform.

  14. Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells.

    Science.gov (United States)

    Gratia, Paul; Grancini, Giulia; Audinot, Jean-Nicolas; Jeanbourquin, Xavier; Mosconi, Edoardo; Zimmermann, Iwan; Dowsett, David; Lee, Yonghui; Grätzel, Michael; De Angelis, Filippo; Sivula, Kevin; Wirtz, Tom; Nazeeruddin, Mohammad Khaja

    2016-12-14

    Compositional engineering of a mixed cation/mixed halide perovskite in the form of (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 is one of the most effective strategies to obtain record-efficiency perovskite solar cells. However, the perovskite self-organization upon crystallization and the final elemental distribution, which are paramount for device optimization, are still poorly understood. Here we map the nanoscale charge carrier and elemental distribution of mixed perovskite films yielding 20% efficient devices. Combining a novel in-house-developed high-resolution helium ion microscope coupled with a secondary ion mass spectrometer (HIM-SIMS) with Kelvin probe force microscopy (KPFM), we demonstrate that part of the mixed perovskite film intrinsically segregates into iodide-rich perovskite nanodomains on a length scale of up to a few hundred nanometers. Thus, the homogeneity of the film is disrupted, leading to a variation in the optical properties at the micrometer scale. Our results provide unprecedented understanding of the nanoscale perovskite composition.

  15. [Spectral analysis in nanometer material science].

    Science.gov (United States)

    Chen, Wei; Sun, Shi-gang

    2002-06-01

    Spectral analysis is an important means in studies of nanometer scale systems, and is essential for deep understanding the structure and properties of nanometer materials. This paper reviews the recent progresses made in studies of nanometer materials using spectral analysis methods such as UV-Visible spectroscopy, FTIR spectroscopy, Raman spectroscopy, Mössbauer spectroscopy, positron annihilation and photoacoustic spectroscopy. The principle, characteristics and applications of most frequently employed spectral methods are introduced briefly and illustrated with typical examples. Future perspectives of spectral analysis in nanometer field are discussed. New directions of establishing spectral analysis methods at nanometer scale resolution and developing new spectroscopy technology in nanometer material studies are also emphasized.

  16. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation.

    Science.gov (United States)

    Branson, Oscar; Bonnin, Elisa A; Perea, Daniel E; Spero, Howard J; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D; Fehrenbacher, Jennifer S; Gagnon, Alexander C

    2016-11-15

    Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory-based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with Ångström-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na and Mg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca 2+ , previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic templates.

  17. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Science.gov (United States)

    Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-01-01

    Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory-based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with Ångström-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na and Mg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca2+, previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic templates. PMID:27794119

  18. A 100 nanometer scale resistive heater-thermometer on a silicon cantilever.

    Science.gov (United States)

    Dai, Z; King, W P; Park, K

    2009-03-04

    This paper reports a method for fabricating a 100 nm scale heater-thermometer into a silicon microcantilever based on contact photolithography and a controlled annealing process. The heater is formed during a photolithography process that can achieve a minimum feature size of about 1 microm, while careful control of doping and annealing parameters allows the heater size to be further decreased, to a width of 100 nm. The heater is fabricated onto the free end of a silicon cantilever suitable for scanning probe microscopy, and can be integrated into cantilevers with or without sharp tips. The fabricated heater has a maximum temperature of over 700 degrees C, and a heating time of 56 micros to reach 500 degrees C.

  19. Nanometers to centimeters: novel optical nano-antennas, with an eye to scaled production

    Science.gov (United States)

    James, Timothy D.; Cadusch, Jasper J.; Earl, Stuart K.; Panchenko, Evgeniy; Mulvaney, Paul; Davis, Timothy J.; Roberts, Ann

    2016-03-01

    Optical nano-antennas have been the focus of intense research recently due to their ability to manipulate electromagnetic radiation on a subwavelength scale, and there is major interest in such devices for a wide variety of applications in photonics, sensing, and imaging. Significant effort has been put into developing highly compact, novel, next-generation light sources, which have great potential in realizing efficient sub-wavelength single photon sources and enhanced biological and chemical sensors. We have developed a number of innovative optical antenna designs including elements of chiral metasurfaces for enabling circularly polarized emission from quantum sources, new designs derived from Radio Frequency (RF) elements for quantum source enhancement and directionality, and nanostructures for investigating plasmonic dark-modes that have the ability to significantly reduce the Q-factor of nano-antennas. A challenge, however, remains the development of a scalable nanofabrication technology. The capacity to mass-produce nano-antennas will have a considerable impact on the commercial viability of these devices, and greatly improve research throughput. Here we present recent progress in the development of scalable fabrication strategies for producing of nano-antennas and antenna arrays, along with slot based plasmonic optical devices.

  20. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  1. Microstructural evolution at multiple scales during plastic deformation

    DEFF Research Database (Denmark)

    Winther, Grethe

    During plastic deformation metals develop microstructures which may be analysed on several scales, e.g. bulk textures, the scale of individual grains, intragranular phenomena in the form of orientation spreads as well as dislocation patterning by formation of dislocation boundaries in metals of m......, which is backed up by experimental data [McCabe et al. 2004; Wei et al., 2011; Hong, Huang, & Winther, 2013]. The current state of understanding as well as the major challenges are discusse....

  2. Scanning tunneling microscopy studies of corrosion passivation and nanometer-scale lithography with self-assembled monolayers

    Science.gov (United States)

    Zamborini, Francis Patrick

    The research in this dissertation examines the possible applications of organomercaptan self-assembled monolayers (SAMs) for corrosion passivation and nanometer-scale lithography. We examined linear-chain n-alkanethiol and aromatic SAMs in these studies and used scanning tunneling microscopy (STM) as the main tool for surface characterization. The corrosion passivation properties of n-alkanethiol SAMs were studied on Au in aqueous CN- and Br - solutions and on underpotentially deposited Cu on Au (Au/Cu-UPD) in aqueous HClO4. All SAMs suppress corrosion and shift the potential for corrosion to more positive potentials compared to that on the unmodified metals. We found that corrosion of n-alkanethiol SAM-modified Au begins at defects in the monolayer and the surface morphology depends on the functional end group of the SAM. Corrosion on the unpassivated metal surface begins at high energy sites such as step edges and pits. The chain length and functional end group of SAMs were varied to determine which factors were most important for the best protection against corrosion. We found that corrosion passivation improves with increasing chain length and more hydrophilic functional end groups like OH and COOH protect better than hydrophobic end groups like CH3. The passivation properties of linear-chain SAMs was compared with aromatic SAMs and we found that if they are equally thick and contain the same functional end group, the aromatic SAMs are superior. One goal of this research was to improve the barrier properties of SAMs. We found that depositing a single layer of Cu onto Au before adsorbing the SAM improved its barrier properties dramatically compared to when the SAM was adsorbed directly to the Au. In summary, the corrosion-related studies in this dissertation discuss the corrosion mechanism of SAM-modified metal surfaces, the important factors that determine the passivation properties of SAMs, and a strategy for dramatically improving the barrier properties of

  3. Friction characteristics of Cd-rich carbonate films on calcite surfaces: implications for compositional differentiation at the nanometer scale

    Directory of Open Access Journals (Sweden)

    Cubillas Pablo

    2009-06-01

    Full Text Available Abstract Lateral Force Microscopy (LFM studies were carried out on cleaved calcite sections in contact with solutions supersaturated with respect to otavite (CdCO3 or calcite-otavite solid solutions (SS as a means to examine the potential for future application of LFM as a nanometer-scale mineral surface composition mapping technique. Layer-by-layer growth of surface films took place either by step advancement or by a surface nucleation and step advancement mechanisms. Friction vs. applied load data acquired on the films and the calcite substrate were successfully fitted to the Johnson Kendall Roberts (JKR model for single asperity contacts. Following this model, friction differences between film and substrate at low loads were dictated by differences in adhesion, whereas at higher load they reflect differences in contact shear strength. In most experiments at fixed load, the film showed higher friction than the calcite surface, but the friction-load dependence for the different surfaces revealed that at low loads (0–40 nN, a calcian otavite film has lower friction than calcite; a result that is contrary to earlier LFM reports of the same system. Multilayer films of calcian-otavite displayed increasing friction with film thickness, consistent with the expectation that the film surface composition will become increasingly Cd-rich with increasing thickness. Both load- and thickness-dependence trends support the hypothesis that the contact shear strength correlates with the hydration enthalpy of the surface ions, thereby imparting friction sensitivity in the LFM to mineral-water interface composition.

  4. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    International Nuclear Information System (INIS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-01-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  5. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  6. Histological and histomorphometric evaluation of implant with nanometer scale and oxidized surface. in vitro and in vivo study.

    Science.gov (United States)

    Corvino, V; Iezzi, G; Trubiani, O; Traini, T; Piattelli, M

    2012-01-01

    The biological fixation of an implant to bone is influenced by numerous factors, including surface chemistry and surface topography. Various methods have been developed to create rough implant surfaces in order to improve the clinical performance of implants and to guarantee a stable mechanical bone-implant interface. Anodic oxidation is a dental implant surface modification technique that results in oxide layer growth up to a thickness of 1–10 micron. The purpose of this study was to evaluate the performance of the surface through the osteoblasts cells growth and the influence of oxidixed surface on BIC percent, in the human posterior maxilla after 2 months of unloaded healing. In vitro commercially available primary human osteoblasts (NHOst) from both femur and tibia of different donor systems (Lonza Walkersville Inc, Walkersville, MD, USA) were grown in Osteoblast Growth Media (OBM) (Lonza). Osteogenic differentiation was induced for a period of 4 weeks by the OGM medium (OBM basal medium supplemented with 200nM of hydrocortisone-21-hemisuccinate and 7.5 mM of glycerophosphate). The viability of NHOst cells seeded test A and B was measured by the quantitative colorimetric MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2Htetrazoliumbromide test) (Promega, Milan, Italy). One custom-made 2 x 10-mm site evaluation implant (SEI) with nanometer scale and oxidized surface (test) ( Evo Plan 1 Health s.r.l. - Amaro, UD, Italy), and one SEI with hydroxyapatite sandblasted surface (control) (Osseogrip Plan 1 Health s.r.l. – Amaro, UD, Italy), were placed in the posterior maxilla of 15 patients. Patients received one of each type of SEI placed on controlateral side. The proliferation rate studied by the MTT assay showed that during the incubation time, starting at 24 h, an increased proliferation rate was evident in Test B respect to Test A. After 2 months of unloaded healing BIC percent was significantly higher in oxidized implants. BIC percent mean values for the

  7. Prediction of Microstructure Evolution in DMLM processed Inconel 718 with Part Scale Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop part-scale process-microstructure simulation tool to predict the microstructure evolution of Inconel 718 processed by powder...

  8. Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

    Directory of Open Access Journals (Sweden)

    Arnaud Caron

    2015-08-01

    Full Text Available We combine non-contact atomic force microscopy (AFM imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111 and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111 are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix.

  9. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei

    2011-06-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while some others contain nanometer-scale crystallites sandwiched in between amorphous layers. We also find that there is significant oxygen enrichment at the grain boundaries. Such results explain the relatively low transport critical current density (Jc) of polycrystalline samples with respect to that of bicrystal films.

  10. Study on microstructures of advanced metallic materials by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Ohnuma, Masato; Suzuki, Jun-ichi

    2006-01-01

    The microstructure of metal-nonmetal nano-granular soft magnetic films, precipitation hardened stainless steel and Al-Mg-Si alloys, have been studied by small-angle X-ray/neutron scattering (SAXS/SANS). Quantitative evaluation of average scale of their microstructures in nanometer scale has been accomplished by SAXS and SANS. Using this information, the contribution of the microstructures in nanometer scale has been accomplished by SAXS and SANS. Using this information, the contribution of the microstructures to the magnetic and mechanical properties are discussed in this paper. (author)

  11. Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography.

    Science.gov (United States)

    Herbig, M; Choi, P; Raabe, D

    2015-06-01

    In many cases, the three-dimensional reconstructions from atom probe tomography (APT) are not sufficiently accurate to resolve crystallographic features such as lattice planes, shear bands, stacking faults, dislocations or grain boundaries. Hence, correlative crystallographic characterization is required in addition to APT at the exact same location of the specimen. Also, for the site-specific preparation of APT tips containing regions of interest (e.g. grain boundaries) correlative electron microscopy is often inevitable. Here we present a versatile experimental setup that enables performing correlative focused ion beam milling, transmission electron microscopy (TEM), and APT under optimized characterization conditions. The setup was designed for high throughput, robustness and practicability. We demonstrate that atom probe tips can be characterized by TEM in the same way as a standard TEM sample. In particular, the use of scanning nanobeam diffraction provides valuable complementary crystallographic information when being performed on atom probe tips. This technique enables the measurement of orientation and phase maps as known from electron backscattering diffraction with a spatial resolution down to one nanometer. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

    Science.gov (United States)

    Haas, Beth L.; Matson, Jyl S.; DiRita, Victor J.; Biteen, Julie S.

    2015-01-01

    Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane. PMID:25123183

  13. Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography.

    Science.gov (United States)

    Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine

    2016-12-01

    The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.

  14. Bridging the Gap between the Nanometer-Scale Bottom-Up and Micrometer-Scale Top-Down Approaches for Site-Defined InP/InAs Nanowires.

    Science.gov (United States)

    Zhang, Guoqiang; Rainville, Christophe; Salmon, Adrian; Takiguchi, Masato; Tateno, Kouta; Gotoh, Hideki

    2015-11-24

    This work presents a method that bridges the gap between the nanometer-scale bottom-up and micrometer-scale top-down approaches for site-defined nanostructures, which has long been a significant challenge for applications that require low-cost and high-throughput manufacturing processes. We realized the bridging by controlling the seed indium nanoparticle position through a self-assembly process. Site-defined InP nanowires were then grown from the indium-nanoparticle array in the vapor-liquid-solid mode through a "seed and grow" process. The nanometer-scale indium particles do not always occupy the same locations within the micrometer-scale open window of an InP exposed substrate due to the scale difference. We developed a technique for aligning the nanometer-scale indium particles on the same side of the micrometer-scale window by structuring the surface of a misoriented InP (111)B substrate. Finally, we demonstrated that the developed method can be used to grow a uniform InP/InAs axial-heterostructure nanowire array. The ability to form a heterostructure nanowire array with this method makes it possible to tune the emission wavelength over a wide range by employing the quantum confinement effect and thus expand the application of this technology to optoelectronic devices. Successfully pairing a controllable bottom-up growth technique with a top-down substrate preparation technique greatly improves the potential for the mass-production and widespread adoption of this technology.

  15. Micrometer and nanometer scale photopatterning of proteins on glass surfaces by photo-degradation of films formed from oligo(ethylene glycol) terminated silanes.

    Science.gov (United States)

    Tizazu, Getachew; el Zubir, Osama; Patole, Samson; McLaren, Anna; Vasilev, Cvetelin; Mothersole, David J; Adawi, Ali; Hunter, C Neil; Lidzey, David G; Lopez, Gabriel P; Leggett, Graham J

    2012-12-01

    Exposure of films formed by the adsorption of oligo(ethylene glycol) (OEG) functionalized trichlorosilanes on glass to UV light from a frequency-doubled argon ion laser (244 nm) causes photodegradation of the OEG chain. Although the rate of degradation is substantially slower than for monolayers of OEG terminated thiolates on gold, it is nevertheless possible to form micrometer-scale patterns by elective adsorption of streptavidin to exposed regions. A low density of aldehyde functional groups is produced, and this enables derivatization with nitrilotriacetic acid via an amine linker. Complexation with nickel enables the site-specific immobilization of histidine-tagged yellow and green fluorescent proteins. Nanometer-scale patterns may be fabricated using a Lloyd's mirror interferometer, with a sample and mirror set at right angles to each other. At low exposures, partial degradation of the OEG chains does not remove the protein-resistance of the surface, even though friction force microscopy reveals the formation of patterns. At an exposure of ca. 18 J cm(-2), the modified regions became adhesive to proteins in a narrow region ca. 30 nm (λ/8) wide. As the exposure is increased further the lines quickly broaden to ca. 90 nm. Adjustment of the angle between the sample and mirror enables the fabrication of lines of His-tagged green fluorescent protein at a period of 340 nm that could be resolved using a confocal microscope.

  16. Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface

    Science.gov (United States)

    Bonneville, Steeve; Morgan, Daniel J.; Schmalenberger, Achim; Bray, Andrew; Brown, Andrew; Banwart, Steven A.; Benning, Liane G.

    2011-11-01

    In soils, mycorrhiza (microscopic fungal hypha) living in symbiosis with plant roots are the biological interface by which plants obtain, from rocks and organic matter, the nutrients necessary for their growth and maintenance. Despite their central role in soils, the mechanism and kinetics of mineral alteration by mycorrhiza are poorly constrained quantitatively. Here, we report in situ quantification of weathering rates from a mineral substrate, (0 0 1) basal plane of biotite, by a surface-bound hypha of Paxillus involutus, grown in association with the root system of a Scots pine, Pinus sylvestris. Four thin-sections were extracted by focused ion beam (FIB) milling along a single hypha grown over the biotite surface. Depth-profile of Si, O, K, Mg, Fe and Al concentrations were performed at the hypha-biotite interface by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX). Large removals of K (50-65%), Mg (55-75%), Fe (80-85%) and Al (75-85%) were observed in the topmost 40 nm of biotite underneath the hypha while Si and O are preserved throughout the depth-profile. A quantitative model of alteration at the hypha-scale was developed based on solid-state diffusion fluxes of elements into the hypha and the break-down/mineralogical re-arrangement of biotite. A strong acidification was also observed with hypha bound to the biotite surface reaching pH mycorrhiza accelerate the biotite alteration kinetics between pH 3.5 and 5.8 to ˜0.04 μmol biotite m -2 h -1. Our current work reaffirms that fungal mineral alteration is a process that combines our previously documented bio-mechanical forcing with the μm-scale acidification mediated by surface-bound hypha and a subsequent chemical element removal due to the fungal action. As such, our study presents a first kinetic framework for mycorrhizal alteration at the hypha-scale under close-to-natural experimental conditions.

  17. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    Hollander, R.W.; Bom, V.R.; Van Eijk, C.W.E.; Faber, J.S.; Hoevers, H.; Kruit, P.

    1994-01-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  18. Mechanical behavior of concrete and related porous materials under partial saturation: The effective stress and the viscous softening due to movement of nanometer-scale pore fluid

    Science.gov (United States)

    Vlahinic, Ivan

    becomes necessary to describe the fluid flow in a double porosity medium, i.e. a medium containing both macro- and nano-scale porosity. We show that the proposed model can quantitatively capture the key observations that have thus far evaded a simple mechanical description. The materials more closely examined in this work enjoy a wide variety of practical uses. Wood and concrete are used as a basis for infrastructure the world over; porous glass with engineered nanometer-sized openings is used for its sorptive and filtering abilities; KevlarRTM and similar synthetic polymers are used for their high strength-to-weight ratio in creating body armor, ropes, and even sails.

  19. Effects of Dissolved Organic Matter Properties on Formation and Composition of Mineral-Organic Co-Precipitates at the Nanometer Scale

    Science.gov (United States)

    Possinger, A. R.; Zachman, M.; Lehmann, J.

    2016-12-01

    An important, yet largely overlooked case of soil organic carbon (SOC) stabilization through mineral-organic associations is the co-precipitation of dissolved organic matter (DOM) into mineral precipitates as they form. The contribution of co-precipitated DOM to the mineral-stabilized SOC pool is expected to be greatest in soil environments with frequent mineral dissolution and precipitation processes. Compared to surface adsorption, properties of mineral-organic co-precipitates are expected to differ at both the particle scale (e.g., total carbon (C) content and composition) and the molecular scale (e.g., impurities in mineral structure), with potential implications for stability and C turnover; additionally, these properties vary across C sources, amounts, and forms. Consequently, high-resolution visualization and characterization combined with bulk chemical measurements is needed to provide a more complete understanding of co-precipitate formation processes and properties, especially as a function of C co-precipitant characteristics. In this study, we evaluate the effect of model C compound and DOM chemical properties (e.g., iron-binding affinity) on the formation, structure, and chemical properties of ferrihydrite (Fh) (Fe3+3O2 •0.5H2O) co-precipitates. Salicylic acid (SA), sucrose and water-extractable DOM from coniferous or deciduous-dominated organic soils were either adsorbed to pre-formed Fh or co-precipitated with Fh. At a C/Fe ratio 10, the amount of co-precipitated C differed among all organic compounds, and for DOM, was more than 2X greater for co-precipitation than adsorption, suggesting a greater capacity for C retention. To probe the molecular-scale C spatial distribution of Fh-SA particles, we obtained Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) maps at a nanometer-scale spatial pixel resolution. Additionally, we will present chemical characteristics of organic-Fh co-precipitates and adsorption

  20. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

    KAUST Repository

    Rivnay, Jonathan

    2012-10-10

    A study was conducted to demonstrate quantitative determination of organic semiconductor microstructure from the molecular to device scale. The quantitative determination of organic semiconductor microstructure from the molecular to device scale was key to obtaining precise description of the molecular structure and microstructure of the materials of interest. This information combined with electrical characterization and modeling allowed for the establishment of general design rules to guide future rational design of materials and devices. Investigations revealed that a number and variety of defects were the largest contributors to the existence of disorder within a lattice, as organic semiconductor crystals were dominated by weak van der Waals bonding. Crystallite size, texture, and variations in structure due to spatial confinement and interfaces were also found to be relevant for transport of free charge carriers and bound excitonic species over distances that were important for device operation.

  1. Near-infrared spectroscopy and microstructure of the scales of Sabethes ( Sabethes albiprivus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Betina Westphal-Ferreira

    Full Text Available ABSTRACT Near-infrared spectroscopy and microstructure of the scales of Sabethes (Sabethes albiprivus (Diptera: Culicidae. Sabethes (Sabethes albiprivus Theobald individuals vary considerably in size and color of the reflections of the scales on their thorax, abdomen, antepronotal lobes and occiput. The goal of this study was to investigate and to characterize the differences in the color of the scales among preserved specimens and to analyze the differences in the microstructures of the scales that cover their bodies using near-infrared spectroscopy, and to evaluate whether the latter is efficient in distinguishing the populations. A total of 201 adult females were analyzed for the characterization of color patterns. In addition, absorbance spectra and scanning electron microscope images were obtained from them. As a result of color analysis, two variations were identified, one represented by specimens with yellow or green scales and the other with blue or purple scales. The same two variations were corroborated using NIRS. Analysis of the microstructure of the scales lining the mesonotum, occiput and antepronotal lobes resulted in the same variations. The three methodologies, near-infrared spectroscopy, scanning electron microscopy and coloration of the reflections of the scales revealed two variations within Sa. albiprivus.

  2. Microstructure Charaterization of a Hardened and Tempered Tool Steel: from Macro to Nano Scale

    DEFF Research Database (Denmark)

    Højerslev, Christian; Somers, Marcel A. J.; Carstensen, Jesper V.

    2002-01-01

    The microstructure of a conventionally heat treated PM AISI M3:2 tool steel, was characterised by a combination of light optical and electron microscopy, covering the range from micro to nano scale. Dilatometry and X-ray diffractometry were used for an overall macro characterisation of the phases...

  3. FOREWORD: Heterogenous nucleation and microstructure formation—a scale- and system-bridging approach Heterogenous nucleation and microstructure formation—a scale- and system-bridging approach

    Science.gov (United States)

    Emmerich, H.

    2009-11-01

    Scope and aim of this volume. Nucleation and initial microstructure formation play an important role in almost all aspects of materials science [1-5]. The relevance of the prediction and control of nucleation and the subsequent microstructure formation is fully accepted across many areas of modern surface and materials science and technology. One reason is that a large range of material properties, from mechanical ones such as ductility and hardness to electrical and magnetic ones such as electric conductivity and magnetic hardness, depend largely on the specific crystalline structure that forms in nucleation and the subsequent initial microstructure growth. A very demonstrative example for the latter is the so called bamboo structure of an integrated circuit, for which resistance against electromigration [6] , a parallel alignment of grain boundaries vertical to the direction of electricity, is most favorable. Despite the large relevance of predicting and controlling nucleation and the subsequent microstructure formation, and despite significant progress in the experimental analysis of the later stages of crystal growth in line with new theoretical computer simulation concepts [7], details about the initial stages of solidification are still far from being satisfactorily understood. This is in particular true when the nucleation event occurs as heterogenous nucleation. The Priority Program SPP 1296 'Heterogenous Nucleation and Microstructure Formation—a Scale- and System-Bridging Approach' [8] sponsored by the German Research Foundation, DFG, intends to contribute to this open issue via a six year research program that enables approximately twenty research groups in Germany to work interdisciplinarily together following this goal. Moreover, it enables the participants to embed themselves in the international community which focuses on this issue via internationally open joint workshops, conferences and summer schools. An outline of such activities can be found

  4. Coarsening kinetics of fine-scale microstructures in deformed materials

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels

    2016-01-01

    and driving force. We propose a unified coarsening model, which is based on recovery kinetics and allows the apparent activation energy to change during coarsening. The model is successfully applied to the three coarsening processes in different materials of different structural morphology and scale, showing...... that the apparent activation energy increases during coarsening, which is verified by direct calculation. The increase in the apparent activation energy dominates the coarsening kinetics and leads to a significant decrease in the coarsening rate as coarsening proceeds. This suggests that a conventional grain growth...... driving force and, it appears, a low activation energy for structural coarsening. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  5. Analysis of the microstructure of Xenodontinae snake scales associated with different habitat occupation strategies

    Directory of Open Access Journals (Sweden)

    O. Rocha-Barbosa

    Full Text Available The morphology of many organisms seems to be related to the environment they live in. Nonetheless, many snakes are so similar in their morphological patterns that it becomes quite difficult to distinguish any adaptive divergence that may exist. Many authors suggest that the microornamentations on the scales of reptiles have important functional value. Here, we examined variations on the micromorphology of the exposed oberhautchen surface of dorsal, lateral, and ventral scales from the mid-body region of Xenodontinae snakes: Sibynomorphus mikani (terricolous, Imantodes cenchoa (arboreal, Helicops modestus (aquatic and Atractus pantostictus (fossorial. They were metallized and analyzed through scanning electron microscopy. All species displayed similar microstructures, such as small pits and spinules, which are often directed to the scale caudal region. On the other hand, there were some singular differences in scale shape and in the microstructural pattern of each species. S. mikani and I. cenchoa have larger spinules arranged in a row which overlap the following layers on the scale surface. Species with large serrate borders are expected to have more frictional resistance from the caudal-cranial direction. This can favor life in environments which require more friction, facilitating locomotion. In H. modestus, the spinules are smaller and farther away from the posterior rows, which should help reduce water resistance during swimming. The shallower small pits found in this species can retain impermeable substances, as in aquatic Colubridae snakes. The spinules adhering to the caudal scales of A. pantostictus seem to form a more regular surface, which probably aid their fossorial locomotion, reducing scale-ground friction. Our data appear to support the importance of functional microstructure, contributing to the idea of snake species adaptation to their preferential microhabitats.

  6. Nominally brittle cracks in inhomogeneous solids: From microstructural disorder to continuum-level scale

    Directory of Open Access Journals (Sweden)

    Jonathan eBarés

    2014-11-01

    Full Text Available We analyze the intermittent dynamics of cracks in heterogeneous brittle materials and the roughness of the resulting fracture surfaces by investigating theoretically and numerically crack propagation in an elastic solid of spatially-distributed toughness. The crack motion split up into discrete jumps, avalanches, displaying scale-free statistical features characterized by universal exponents. Conversely, the ranges of scales are non-universal and the mean avalanche size and duration depend on the loading microstructure and specimen parameters according to scaling laws which are uncovered. The crack surfaces are found to be logarithmically rough. Their selection by the fracture parameters is formulated in term of scaling laws on the structure functions measured on one-dimensional roughness profiles taken parallel and perpendicular to the direction of crack growth.

  7. Nanometer CMOS ICs from basics to ASICs

    CERN Document Server

    J M Veendrick, Harry

    2017-01-01

    This textbook provides a comprehensive, fully-updated introduction to the essentials of nanometer CMOS integrated circuits. It includes aspects of scaling to even beyond 12nm CMOS technologies and designs. It clearly describes the fundamental CMOS operating principles and presents substantial insight into the various aspects of design implementation and application. Coverage includes all associated disciplines of nanometer CMOS ICs, including physics, lithography, technology, design, memories, VLSI, power consumption, variability, reliability and signal integrity, testing, yield, failure analysis, packaging, scaling trends and road blocks. The text is based upon in-house Philips, NXP Semiconductors, Applied Materials, ASML, IMEC, ST-Ericsson, TSMC, etc., courseware, which, to date, has been completed by more than 4500 engineers working in a large variety of related disciplines: architecture, design, test, fabrication process, packaging, failure analysis and software.

  8. Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale.

    Science.gov (United States)

    Roose, Dimitri; Leroux, Frederic; De Vocht, Nathalie; Guglielmetti, Caroline; Pintelon, Isabel; Adriaensen, Dirk; Ponsaerts, Peter; Van der Linden, Annemie; Bals, Sara

    2014-01-01

    In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9 months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1 week and in the olfactory bulb at 9 months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9 months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Leveraging a temperature-tunable, scale-like microstructure to produce multimodal, supersensitive sensors

    KAUST Repository

    Tai, Yanlong

    2017-05-31

    The microstructure of a flexible film plays an important role in its sensing capability. Here, we fabricate a temperature-dependent wrinkled single-walled carbon nanotube (SWCNT)/polydimethyl-siloxane (PDMS) film (WSPF) and a wrinkle-dependent scale-like SWCNT/PDMS film (SSPF) successfully, and address the formation and evolution mechanisms of each film. The low elastic modulus and high coefficient of thermal expansion of the PDMS layer combined with the excellent piezoresistive behavior of the SWCNT film motivated us to investigate how the scale-like microstructure of the SSPF could be used to design multimodal-sensing devices with outstanding capabilities. The results show that SSPFs present supersensitive performance in mechanical loading (an effective sensitivity of up to 740.7 kPa-1) and in temperature (a tunable thermal index of up to 29.9 × 103 K). These exceptional properties were demonstrated in practical applications in a programmable flexile pressure sensor, thermal/light monitor or switch, etc., and were further explained through the macroscopic and microscopic piezoresistive behaviors of scale-like SWCNT coatings.

  10. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    Science.gov (United States)

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  11. Microstructural characterization of transformable Fe-Mn alloys at different length scales

    International Nuclear Information System (INIS)

    Liang, X.; Wang, X.; Zurob, H.S.

    2009-01-01

    The as-annealed and deformed Microstructure of transformable Fe-Mn alloys were, comprehensively, characterized over a wide range of length scales. Differential interference contrast optical metallography, combined with a tinting etching method, was employed to examine the grain morphology. A new specimen preparation method, involving electro-polishing and electro-etching, was developed for scanning electron microscopy and electron back-scattered diffraction analysis. This method leads to a very good imaging contrast and thus bridges the length scale gap between optical metallography and transmission electron microscopy. Moreover, it enables simultaneous scanning electron microscopy and electron backscatter diffraction analysis which allows correlations among morphology, crystal orientation and phase analysis in the length scale of microns. Transmission electron microscopy investigations were also made to evaluate the thermal and mechanical transformation products as well as defect structures.

  12. Grey-scale conversion X-ray mapping by EDS of multielement and multiphase layered microstructures

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John; Horsewell, Andy

    2007-01-01

    been obtained for several long-term isothermal heat treatments in which significant interdiffusion has taken place. The resulting composition profiles have greatly improved counting statistics compared to traditional point-by-point scans for the same scanning electron microscope time and may......procedure for grey-scale conversion of energy dispersive spectroscopy X-ray maps has been developed, which is particularly useful for the plotting of line composition profiles across modified layered engineering surfaces. The method involves (a) the collection of grey-scale elemental maps, (b......, the procedure has been applied to a layered microstructure that results from a plasma-sprayed metallic MCrAlY coating onto a nickel-superalloy turbine blade. As a further demonstration of the accuracy and amount of compositional data that can be obtained with this procedure, measured compositional profiles have...

  13. Unique microstructure and excellent mechanical properties of ADI

    Directory of Open Access Journals (Sweden)

    Jincheng Liu

    2006-11-01

    Full Text Available Amongst the cast iron family, ADI has a unique microstructure and an excellent, optimised combination of mechanical properties. The main microstructure of ADI is ausferrite, which is a mixture ofextremely fine acicular ferrite and stable, high carbon austenite. There are two types of austenite in ADI:(1 the coarser and more equiaxed blocks of austenite between non-parallel acicular structures, which exist mainly in the last solidified area, and (2 the thin films of ustenite between the individual ferriteplatelets in the acicular structure. It is this unique microstructure, which gives ADI its excellent static and dynamic properties, and good low temperature impact toughness. The effect of microstructure on the mechanical properties is explained in more detail by examining the microstructure at the atomic scale. Considering the nanometer grain sizes, the unique microstructure, the excellent mechanical properties,good castability, (which enables near net shape components to be produced economically and in large volumes, and the fact that it can be 100% recycled, it is not overemphasized to call ADI a high-tech,nanometer and “green” material. ADI still has the potential to be further improved and its production and the number of applications for ADI will continue to grow, driven by the resultant cost savings over alternative materials.

  14. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.

    Science.gov (United States)

    Heng, Sabrina; McDevitt, Christopher A; Kostecki, Roman; Morey, Jacqueline R; Eijkelkamp, Bart A; Ebendorff-Heidepriem, Heike; Monro, Tanya M; Abell, Andrew D

    2016-05-25

    Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.

  15. Effects of Process Variables and Size Scale on Solidification Microstructure in Laser-Based Solid Freeform Fabrication of Ti-6Al-4V

    National Research Council Canada - National Science Library

    Klingbeil, N. W; Bontha, S; Brown, C. J; Gaddam, D. R; Kobryn, P. A; Fraser, H. L; Sears, J. W

    2004-01-01

    This paper summarizes a combination of analytical and numerical modeling approaches which have been used to investigate the effects of process variables and size scale on solidification microstructure...

  16. Developing strong concurrent multiphysics multiscale coupling to understand the impact of microstructural mechanisms on the structural scale

    Energy Technology Data Exchange (ETDEWEB)

    Foulk, James W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alleman, Coleman N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mota, Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bergel, Guy Leshem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Popova, Evdokia [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Montes de Oca Zapiain, David [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Kalidindi, Suryanarayana Raju [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Ernst, Corey [Elemental Technologies, Provo, UT (United States)

    2017-09-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of

  17. [Nanometer silver dressing alleviates pain after circumcision].

    Science.gov (United States)

    Chen, Cheng; Zhang, Qian; Xi, Zhi-jun; Li, Ning-chen; Jin, Jie; Zhang, Kai

    2011-03-01

    Postoperative pain is a common problem in male circumcision. We investigated the effect of nanometer silver dressing (Shenzhen AGT Pharm. Co. Ltd.) in relieving pain following male circumcision. Sixty patients undergoing circumcision in the outpatient department were randomized into an experimental and a control group, the incision covered with nanometer silver dressing in the former and with vaseline dressing in the latter. None of the patients received any analgesics or other pain-killing therapies after surgery. The postoperative pain intensity was accessed using the modified numeric pain intensity assessment scale at 1, 2, 3, 5 and 7 days after the operation, and statistical analyses were performed using SPSS 12.0 software. The patients averaged (31.13 +/- 13.94) years in age, and had no significant differences in age and body mass index (BMI) between the two groups. At 1, 2, 3 and 5 days, postoperative pain intensity was significantly lower in the experimental than in the control group (P > 0.05). Multiple regression analysis revealed that postoperative pain score was not correlated with patients' age, BMI and types of disease, but with the types of dressing. Nanometer silver dressing can significantly alleviate postoperative pain of circumcision, and is particularly applicable to such moist parts as the perineum, genitals, and urethra.

  18. Comparators in nanometer CMOS technology

    CERN Document Server

    Goll, Bernhard

    2015-01-01

    This book covers the complete spectrum of the fundamentals of clocked, regenerative comparators, their state-of-the-art, advanced CMOS technologies, innovative comparators inclusive circuit aspects, their characterization and properties. Starting from the basics of comparators and the transistor characteristics in nanometer CMOS, seven high-performance comparators developed by the authors in 120nm and 65nm CMOS are described extensively. Methods and measurement circuits for the characterization of advanced comparators are introduced. A synthesis of the largely differing aspects of demands on modern comparators and the properties of devices being available in nanometer CMOS, which are posed by the so-called nanometer hell of physics, is accomplished. The book summarizes the state of the art in integrated comparators. Advanced measurement circuits for characterization will be introduced as well as the method of characterization by bit-error analysis usually being used for characterization of optical receivers. ...

  19. Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

    Science.gov (United States)

    Radulescu, Aurel; Szekely, Noemi Kinga; Appavou, Marie-Sousai; Pipich, Vitaliy; Kohnke, Thomas; Ossovyi, Vladimir; Staringer, Simon; Schneider, Gerald J.; Amann, Matthias; Zhang-Haagen, Bo; Brandl, Georg; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter

    2016-01-01

    The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10-4 and 0.5 Å-1 by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved. PMID:28060296

  20. Nanometer scale correlation of optical and structural properties of individual InGaN/GaN nanorods by scanning transmission electron microscope cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Marcus; Schmidt, Gordon; Veit, Peter; Petzold, Silke; Bertram, Frank; Christen, Juergen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Albert, Steven; Bengoechea-Encabo, Ana Maria; Sanchez-Garcia, Miguel Angel; Calleja, Enrique [ISOM e Departamento de Ingenieria Electronica, Universidad Politecnica de Madrid (Spain)

    2013-07-01

    A potential benefit of nanorods as light emitters, aside from their very high crystal quality, relies on better light extraction efficiency as compared to thin films, because of the high surface to volume ratio. In this study we present a direct nano-scale correlation of the optical properties with the actual crystalline structure of ordered InGaN/GaN nanorods using low temperature cathodoluminescence spectroscopy in a scanning transmission electron microscope (STEM-CL). Direct comparison of the high-angle annular dark field image with the simultaneously recorded panchromatic CL mapping at 15 K reveals a weak luminescence from the bottom GaN layer. We observe the highest CL intensity in the middle of the InGaN region. The spectral position of the InGaN emission shifts continuously red from the GaN/InGaN interface (λ=409 nm) to the NR top (λ=446 nm) due to lattice pulling effects and InGaN partial decomposition. Additionally, optical active basal stacking faults in the GaN layer emitting at 366 nm can be found.

  1. Stochastic modelling in design of mechanical properties of nanometals

    International Nuclear Information System (INIS)

    Tengen, T.B.; Wejrzanowski, T.; Iwankiewicz, R.; Kurzydlowski, K.J.

    2010-01-01

    Polycrystalline nanometals are being fabricated through different processing routes and conditions. The consequence is that nanometals having the same mean grain size may have different grain size dispersion and, hence, may have different material properties. This has often led to conflicting reports from both theoretical and experimental findings about the evolutions of the mechanical properties of nanomaterials. The present paper employs stochastic model to study the impact of microstructure evolution during grain growth on the mechanical properties of polycrystalline nanometals. The stochastic model for grain growth and the stochastic model for changes in mechanical properties of nanomaterials are proposed. The model for the mechanical properties developed is tested on aluminium samples.Many salient features of the mechanical properties of the aluminium samples are revealed. The results show that the different mechanisms of grain growth impart different nature of response to the material mechanical properties. The conventional, homologous and anomalous temperature dependences of the yield stress have also been revealed to be due to different nature of interactions of the microstructures during evolution.

  2. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    International Nuclear Information System (INIS)

    Lombardi, A.; D'Elia, F.; Ravindran, C.; MacKay, R.

    2014-01-01

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy casting retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions

  3. Sub-pixel correlation length neutron imaging: Spatially resolved scattering information of microstructures on a macroscopic scale

    Science.gov (United States)

    Harti, Ralph P.; Strobl, Markus; Betz, Benedikt; Jefimovs, Konstantins; Kagias, Matias; Grünzweig, Christian

    2017-01-01

    Neutron imaging and scattering give data of significantly different nature and traditional methods leave a gap of accessible structure sizes at around 10 micrometers. Only in recent years overlap in the probed size ranges could be achieved by independent application of high resolution scattering and imaging methods, however without providing full structural information when microstructures vary on a macroscopic scale. In this study we show how quantitative neutron dark-field imaging with a novel experimental approach provides both sub-pixel resolution with respect to microscopic correlation lengths and imaging of macroscopic variations of the microstructure. Thus it provides combined information on multiple length scales. A dispersion of micrometer sized polystyrene colloids was chosen as a model system to study gravity induced crystallisation of microspheres on a macro scale, including the identification of ordered as well as unordered phases. Our results pave the way to study heterogeneous systems locally in a previously impossible manner. PMID:28303923

  4. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...

  5. Fine scale microstructure in cast and aged duplex stainless steels investigated by small angle neutron scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Lin, J.S.; Spooner, S.

    1986-02-01

    Small angle neutron scattering (SANS) allows clustering phenomena to be studied in systems for which the constituent atoms do not differ greatly in atomic number. This investigation used SANS to characterize the fine scale microstructure in two cast and aged duplex stainless steels; aging times extended up to eight years. The steels differed in ferrite content by about a factor of two. The scattering at lowest q was dominated by magnetic scattering effects associated with the ferrite phase. In the range 0.025 less than or equal to q less than or equal to 0.2A -1 , additional scattering due to a precipitating phase rich in Ni and Si was observed. This scattering was rather intense and revealed a volume fraction of precipitate, in the ferrite, estimated to be 12 to 18% after long time aging. After about 70,000 hours at 400 0 C, there were about 10 18 precipitate particles per cm 3 some 50A in mean diameter, and they were distributed in a nonrandom manner, i.e., spatially, short-range-ordered. This investigation suggests that after aging some 70,000 hours at 400 0 C, the precipitate in the ferrite phase is undergoing Ostwald ripening. The present data are insufficient to indicate at what time this ripening process began

  6. Numerical atomic scale simulations of the microstructural evolution of ferritic alloys under irradiation

    International Nuclear Information System (INIS)

    Vincent, E.

    2006-12-01

    In this work, we have developed a model of point defect (vacancies and interstitials) diffusion whose aim is to simulate by kinetic Monte Carlo (KMC) the formation of solute rich clusters observed experimentally in irradiated FeCuNiMnSi model alloys and in pressure vessel steels. Electronic structure calculations have been used to characterize the interactions between point defects and the different solute atoms. Each of these solute atoms establishes an attractive bond with the vacancy. As for Mn, which is the element which has the weakest bond with the vacancy, it establishes more favourable bonds with interstitials. Binding energies, migration energies as well as other atomic scale properties, determined by ab initio calculations, have led to a parameter set for the KMC code. Firstly, these parameters have been optimised on thermal ageing experiments realised on the FeCu binary alloy and on complex alloys, described in the literature. The vacancy diffusion thermal annealing simulations show that when a vacancy is available, all the solutes migrate and form clusters, in agreement with the observed experimental tendencies. Secondly, to simulate the microstructural evolution under irradiation, we have introduced interstitials in the KMC code. Their presence leads to a more efficient transport of Mn. The first simulations of electron and neutron irradiations show that the model results are globally qualitatively coherent with the experimentally observed tendencies. (author)

  7. Shales and geological waste repositories: from microstructure description to macro-scale properties

    Science.gov (United States)

    Tournassat, C.; Steefel, C. I.; Gaboreau, S.

    2017-12-01

    The mineralogical and chemical properties of clays have been the subject of longstanding study for the long-term disposal of nuclear wastes in geological repositories. The low permeability of clay materials, including shales, provides at least part of the safety functions for radionuclide contaminants confinement. From a geochemical and mineralogical point of view, the high adsorption capacity of clay minerals adds to the effect of low hydraulic conductivities by greatly increasing the retardation of radionuclides and other contaminants, making clays ideal where isolation from the biosphere is desired. While their low permeability and high adsorption capacity are widely acknowledged, it is clear nonetheless that there is a need for an improved understanding of how the chemical and mineralogical properties of shales impact their macroscopic properties. It is at the pore-scale that the chemical properties of clay minerals become important since their electrostatic properties can play a large role. The negative electrostatic potential field at the clay mineral surfaces results in the presence of porosity domains where electroneutrality is not achieved: cations are attracted by the surfaces while anions are repulsed from them, resulting in the presence of a diffuse ion swarm - or diffuse layer. Numerical methods for modeling macroscopic properties of clay media with the consideration of the presence of a diffuse ion swarm have met a growing interest in diverse communities in the past years. In this presentation we will highlight the complex interplays of mineralogical, chemical and microstructural characteristics of clay materials that are ultimately responsible for a remarkable array of macro-scale properties such as specific adsorption, high swelling pressure, semi-permeable membrane properties, and non-Fickian diffusional behavior.

  8. A novel thermodynamic framework for multi-scale data assimilation: First applications from micro CT-scans to meso-scale microstructure (Invited)

    Science.gov (United States)

    Regenauer-Lieb, K.; Karrech, A.; Schrank, C.; Fusseis, F.; Rosenbaum, G.; Weinberg, R. F.

    2009-12-01

    Predicting the way the Earth works at multiple spatial and temporal scales is a current challenge in computational physics. So far there has been no development of a clear roadmap for the practical implementation of a framework linking the range of scales in the Earth. We propose a thermodynamic approach that allows us to come up with a multi-scale prediction of basic (thermodynamic) length and time scales for dissipative processes. In this presentation we focus on the practical aspects and not the theory. We show how the approach may be coupled to data assimilation at multiple scales. The theoretical approach builds on an application of limit theorems in continuum mechanics to finite-time thermodynamics. Finite-time thermodynamics formalizes the concept of finite time availability for a particular resource (e.g. temperature, chemical species). This leads to concepts such as thermodynamic length (e.g. thermal, chemical diffusion length) for dissipative processes. Using this metric we can classify and nest processes on vastly different time scales. We do this by solving at a given time scale upper and lower bounds of entropy production. These two bounds give thermodynamic equilibrium properties (e.g. elastic properties), or upper bounds for dissipative properties (e.g. viscosity), respectively. These properties are benchmarked through assimilation of observational data and used to inform the large-scale explicit far-from-equilibrium calculations. We constrain the large scale Earth model through assimilation of data at smaller scales. We present significant progress in supplying tensor-valued transport properties from X-Ray synchrotron analyses. Using these observations we propose a way forward that allows a basic assessment of meso-scale modes of micro-structural deformation on the explicit formulation of the entropy production of the grain-scale microstructure. A first draft basic workflow from the grain-scale to the geodynamic scale will be presented. This

  9. Nanometer-scale separation of d(10) Zn(2+)-layers and twin-shift competition in Ba8ZnNb6O24-based 8-layered hexagonal perovskites.

    Science.gov (United States)

    Lu, Fengqi; Wang, Xiaoming; Pan, Zhengwei; Pan, Fengjuan; Chai, Shiqiang; Liang, Chaolun; Wang, Quanchao; Wang, Jing; Fang, Liang; Kuang, Xiaojun; Jing, Xiping

    2015-08-07

    The 8-layered shifted hexagonal perovskite compound Ba8ZnNb6O24 was isolated via controlling the ZnO volatilization, which features long-range B-cation ordering with nanometer-scale separation by ∼1.9 nm of octahedral d(10) cationic (Zn(2+)) layers within the purely corner-sharing octahedral d(0) cationic (Nb(5+)) host. The long-range ordering of the B-site vacancy and out-of-center distortion of the highly-charged d(0) Nb(5+) that is assisted by the second-order Jahn-Teller effect contribute to this unusual B-cation ordering in Ba8ZnNb6O24. A small amount (∼15%) of d(10) Sb(5+) substitution for Nb(5+) in Ba8ZnNb6-xSbxO24 dramatically transformed the shifted structure to a twinned structure, in contrast with the Ba8ZnNb6-xTaxO24 case requiring 50% d(0) Ta(5+) substitution for Nb(5+) for such a shift-to-twin transformation. Multiple factors including B-cationic sizes, electrostatic repulsion forces, long-range ordering of B-site vacancies, and bonding preferences arising from a covalent contribution to the B-O bonding that includes out-of-center octahedral distortion and the B-O-B bonding angle could subtly contribute to the twin-shift phase competition of B-site deficient 8-layered hexagonal perovskites Ba8B7O24. The ceramics of new shifted Ba8ZnNb6O24 and twinned Ba8ZnNb5.1Sb0.9O24 compounds exhibited good microwave dielectric properties (εr ∼ 35, Qf ∼ 36 200-43 400 GHz and τf ∼ 38-44 ppm/°C).

  10. Local pressure components and interfacial tensions of a liquid film in the vicinity of a solid surface with a nanometer-scale slit pore obtained by the perturbative method.

    Science.gov (United States)

    Fujiwara, K; Shibahara, M

    2015-03-07

    A classical molecular dynamics simulation was conducted for a liquid-solid interfacial system with a nanometer-scale slit pore in order to reveal local thermodynamic states: local pressure components and interfacial tensions of a liquid film in the vicinity of the slit. The simulation also examined the transition mechanism between the two states of the liquid film: (a) liquid film on the slit and (b) liquid film in the slit, based on the local thermodynamic quantities from a molecular point of view. An instantaneous expression of the local pressure components and interfacial tensions, which is based on a volume perturbation, was presented to investigate time-dependent phenomena in molecular dynamics simulations. The interactions between the particles were described by the 12-6 Lennard-Jones potential, and effects of the fluid-solid interaction intensity on the local pressure components and interfacial tensions of the fluid in the vicinity of the slit were examined in detail by the presented perturbative method. The results revealed that the local pressure components tangential to the solid surface in the vicinity of the 1st fluid layer from the solid surface are different in a two dimensional plane, and the difference became pronounced in the vicinity of the corner of the slit, for cases where the fluid-solid interaction intensities are relatively strong. The results for the local interfacial tensions of the fluid inside the slit suggested that the local interfacial tensions in the vicinity of the 2nd and 3rd layers of the solid atoms from the entrance of the slit act as a trigger for the transition between the two states under the influence of a varying fluid-solid interaction.

  11. Small angle neutron scattering from nanometer grain sized materials

    Science.gov (United States)

    Epperson, J. E.; Siegel, R. W.

    1991-11-01

    Small angle neutron scattering has been utilized, along with a number of complementary characterization methods suitable to the nanometer size scale, to investigate the structures of cluster-assembled nanophase materials. Results of these investigations are described and problems and opportunities in using small angle scattering for elucidating nanostructures are discussed.

  12. Developing Ultra-small Scale Mechanical Testing Methods and Microstructural Investigation Procedures for Irradiated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hosemann, Peter; Kaoumi, Djamel

    2018-04-02

    -beam irradiations have been utilized for decades to foster the understanding of materials’ behavior under radiation, and significant efforts at comparing ion-beam irradiations to neutron irradiations are ongoing [1]. While extensive microstructural and chemical characterizations of neutron-irradiated and ion-irradiated materials are essential to the understanding of the underlying physics of materials’ degradation in nuclear environments, the ultimate test is the mechanical performance of a material under the anticipated condition, since it is the final criterion for a material to be accepted for use in a specific nuclear component. Again, standard, large-scale, bulk evaluations are key for the licensing of materials in a specific component, but additional, more basic scientific testing can accelerate the process by targeting specific areas of interest. Small-scale mechanical testing has been applied on nuclear materials for decades [2]. Traditionally the driving forces to use non-standard-size samples are the limited space in reactors, the availability of new alloys, and a reduction in radioactive-materials volume. Shear punch testing [3,5], sub-sized micro tensile testing [4], sub-sized compact tension and charpy testing [6,7], micro bulge testing [8], and micro hardness testing [3] have been used. Small-scale mechanical testing also allows the targeting of specific regions of interest, be they single grains to evaluate a specific deformation mechanism [9], grain boundaries, heat-affected zones in welds, or any other specific critical area of interest. With further reducing of the sample size, it also holds the promise to obtain quantitative data from ion-beam irradiations and to compare such data to the microstructural changes observed. Over the last few decades, a number of small-scale mechanical characterization techniques have been developed and utilized for irradiated materials. In addition to the above-mentioned sample test techniques at the mm and sub mm length scale

  13. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  14. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry

    Directory of Open Access Journals (Sweden)

    Yang Dong

    2016-08-01

    Full Text Available Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.

  15. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry.

    Science.gov (United States)

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-08-10

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.

  16. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated a basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.

  17. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale; Etude des vibrations et de la stabilisation a l'echelle sous-nanometrique des doublets finaux d'un collisionneur lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, B

    2007-11-15

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  18. Pharmacological Properties of Nanometals (Silver, Copper, Iron)

    OpenAIRE

    Chekman, I.S.

    2015-01-01

    The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper). It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  19. Calibration of Eringen's small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model

    International Nuclear Information System (INIS)

    Wang, C M; Zhang, Z; Challamel, N; Duan, W H

    2013-01-01

    In this paper, we calibrate Eringen's small length scale coefficient e 0 for an initially stressed vibrating nonlocal Euler beam via a microstructured beam modelled by some repetitive cells comprising finite rigid segments and elastic rotational springs. By adopting the pseudo-differential operator and Padé's approximation, an analytical solution for the vibration frequency in terms of initial stress may be developed for the microstructured beam model. When comparing this analytical solution with the established exact vibration solution from the nonlocal beam theory, one finds that the calibrated Eringen's small length scale coefficient e 0 is given by e 0 = √(1/6)-(1/12)(σ 0 /σ-breve m ) where σ 0 is the initial stress and σ-breve m is the mth mode buckling stress of the corresponding local Euler beam. It is shown that e 0 varies with respect to the initial axial stress, from 1/√(12)∼0.289 at the buckling compressive stress to 1/√6∼0.408 when the axial stress is zero and it monotonically increases with increasing initial tensile stress. The small length scale coefficient e 0 , however, does not depend on the vibration/buckling mode considered. (paper)

  20. The extended distributed microstructure model for gradient-driven transport: A two-scale model for bypassing effective parameters

    Science.gov (United States)

    Carr, E. J.; Perré, P.; Turner, I. W.

    2016-12-01

    Numerous problems involving gradient-driven transport processes-e.g., Fourier's and Darcy's law-in heterogeneous materials concern a physical domain that is much larger than the scale at which the coefficients vary spatially. To overcome the prohibitive computational cost associated with such problems, the well-established Distributed Microstructure Model (DMM) provides a two-scale description of the transport process that produces a computationally cheap approximation to the fine-scale solution. This is achieved via the introduction of sparsely distributed micro-cells that together resolve small patches of the fine-scale structure: a macroscopic equation with an effective coefficient describes the global transport and a microscopic equation governs the local transport within each micro-cell. In this paper, we propose a new formulation, the Extended Distributed Microstructure Model (EDMM), where the macroscopic flux is instead defined as the average of the microscopic fluxes within the micro-cells. This avoids the need for any effective parameters and more accurately accounts for a non-equilibrium field in the micro-cells. Another important contribution of the work is the presentation of a new and improved numerical scheme for performing the two-scale computations using control volume, Krylov subspace and parallel computing techniques. Numerical tests are carried out on two challenging test problems: heat conduction in a composite medium and unsaturated water flow in heterogeneous soils. The results indicate that while DMM is more efficient, EDMM is more accurate and is able to capture additional fine-scale features in the solution.

  1. Magnetization of exsolution intergrowths of hematite and ilmenite: Mineral chemistry, phase relations, and magnetic properties of hemo-ilmenite ores with micron- to nanometer-scale lamellae from Allard Lake, Quebec

    DEFF Research Database (Denmark)

    McEnroe, S.A.; Robinson, P.; Langenhorst, F.

    2007-01-01

    . To understand the magnetism and evolution of the exsolution lamellae, the microstructures and nanostructures were studied using scanning electron microscopy and transmission electron microscopy (TEM), phase chemistry, and relations between mineral chemistry and the hematite-ilmenite phase diagram. Cycles...

  2. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  3. Optoelectronic circuits in nanometer CMOS technology

    CERN Document Server

    Atef, Mohamed

    2016-01-01

    This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical...

  4. Pharmacological Properties of Nanometals (Silver, Copper, Iron

    Directory of Open Access Journals (Sweden)

    Chekman, I.S.

    2015-01-01

    Full Text Available The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper. It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  5. Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics

    International Nuclear Information System (INIS)

    Lin, Z.J.; Zhuo, M.J.; He, L.F.; Zhou, Y.C.; Li, M.S.; Wang, J.Y.

    2006-01-01

    The microstructures of bulk Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 ceramics have been investigated using transmission electron microscopy and scanning transmission electron microscopy. These two carbides were determined to have a point group 6/mmm and a space group P6 3 /mmc using selected-area electron diffraction and convergent beam electron diffraction. The atomic-scale microstructures of Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 were investigated through high-resolution imaging and Z-contrast imaging. Furthermore, intergrowth between Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 was identified. Stacking faults in Zr 3 Al 3 C 5 were found to result from the insertion of an additional Zr-C layer. Cubic ZrC was occasionally identified to be incorporated in elongated Zr 3 Al 3 C 5 grains. In addition, Al may induce a twinned ZrC structure and lead to the formation of ternary zirconium aluminum carbides

  6. Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy

    Science.gov (United States)

    Zhang, Jianfei; Ma, Xuewei; Ren, Huiping; Chen, Lin; Jin, Zili; Li, Zhenliang; Shen, Jun

    2016-01-01

    In this article, the Ni-46.1Al-7.8Mo (at.%) alloy was directionally solidified at different growth rates ranging from 15 μm/s to 1000 μm/s under a constant temperature gradient (334 K/cm). The dependence of microstructural length scales on the growth rate was investigated. The results show that, with the growth rate increasing, the primary dendritic arm spacings (PDAS) and secondary dendritic arm spacings (SDAS) decreased. There exists a large distribution range in PDAS under directional solidification conditions at a constant temperature gradient. The average PDAS and SDAS as a function of growth rate can be given as λ1 = 848.8967 V-0.4509 and λ2 = 64.2196 V-0.4140, respectively. In addition, a comparison of our results with the current theoretical models and previous experimental results has also been made.

  7. Multi-scale Characterisation of the 3D Microstructure of a Thermally-Shocked Bulk Metallic Glass Matrix Composite

    Science.gov (United States)

    Zhang, Wei; Bodey, Andrew J.; Sui, Tan; Kockelmann, Winfried; Rau, Christoph; Korsunsky, Alexander M.; Mi, Jiawei

    2016-01-01

    Bulk metallic glass matrix composites (BMGMCs) are a new class of metal alloys which have significantly increased ductility and impact toughness, resulting from the ductile crystalline phases distributed uniformly within the amorphous matrix. However, the 3D structures and their morphologies of such composite at nano and micrometre scale have never been reported before. We have used high density electric currents to thermally shock a Zr-Ti based BMGMC to different temperatures, and used X-ray microtomography, FIB-SEM nanotomography and neutron diffraction to reveal the morphologies, compositions, volume fractions and thermal stabilities of the nano and microstructures. Understanding of these is essential for optimizing the design of BMGMCs and developing viable manufacturing methods.

  8. Effect of Coiling Temperature on Microstructure, Properties and Resistance to Fish-Scaling of Hot Rolled Enamel Steel.

    Science.gov (United States)

    Zhao, Yang; Huang, Xueqi; Yu, Bo; Yuan, Xiaoyun; Liu, Xianghua

    2017-08-31

    The microstructure, mechanical properties, and hydrogen permeation behavior of hot rolled enamel steel were investigated. Three coiling temperatures were adopted to gain different sizes of ferrite grain and TiC precipitates. The results show that a large number of interphase precipitates of nano-sized TiC can be obtained at coiling temperatures of 650 and 700 °C, while a few precipitates are found in experimental steel when coiling temperature is 600 °C. The yield strength and ultimate tensile strength decrease with increasing coiling temperature, while elongation increases. The experimental steel has the best resistance to fish-scaling at coiling temperature of 700 °C, due to the large quantities of nano-sized interphase precipitates of TiC.

  9. Wafer-scale laser lithography. I. Pyrolytic deposition of metal microstructures

    International Nuclear Information System (INIS)

    Herman, I.P.; Hyde, R.A.; McWilliams, B.M.; Weisberg, A.H.; Wood, L.L.

    1982-01-01

    Mechanisms for laser-driven pyrolytic deposition of micron-scale metal structures on crystalline silicon have been studied. Models have been developed to predict temporal and spatial propeties of laser-induced pyrolytic deposition processes. An argon ion laser-based apparatus has been used to deposit metal by pyrolytic decomposition of metal alkyl and carbonyl compounds, in order to evaluate the models. These results of these studies are discussed, along with their implications for the high-speed creation of micron-scale metal structures in ultra-large scale integrated circuit systems. 4 figures

  10. Microstructural and Morphological Factors Affecting Uncertainty in Small Scale Mechanical Properties

    Science.gov (United States)

    Maughan, Michael R.

    If materials are to be developed from the ground up, the process will be dependent upon accurate and well-defined models of material behavior. These models can be closed-form solutions developed from first principles, simulations, or empirically derived equations, among others. Material behavior at the mesoscale is in general well understood, having had several centuries of study. However, behavior at the micro or nanoscale still requires characterization. Understanding the collective influence of the microstructure on the bulk material, for example with models like the Hall-Petch relation, has advanced our ability to manipulate the material to our advantage. We now have the ability to study not only the structure of the material, but also the material behavior and properties at the nanoscale. Understanding this behavior is critical to developing a framework for interpreting and utilizing these properties in materials design. This research aims to improve the fundamental understanding of the mechanical performance of materials and the subsequent variation in measured properties. The literature reports widely varying material properties such as hardness, elastic modulus, and yield point when measured at the nanoscale. Proposed variation mechanisms in these properties include surface preparation, error in measurement, heterogeneous dislocation density and distribution, crystal orientation, surface oxide film fracture, and others. Among other things, this work shows that these sources of variation can be determined and quantified, and that this information can be utilized as a characterization and/or predictive tool. The main goals of this work are to 1) continue basic research on sources of variation in the nanoscale properties of materials, specifically hardness and modulus in crystalline and glassy solids, 2) study the abrupt transition from elastic to plastic material behavior known as pop-in and resolve the problem of pseudo-elastic behavior prior to plasticity

  11. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern

  12. Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure.

    Science.gov (United States)

    Lo Conte, Roberto; Xiao, Zhuyun; Chen, Cai; Stan, Camelia V; Gorchon, Jon; El-Ghazaly, Amal; Nowakowski, Mark E; Sohn, Hyunmin; Pattabi, Akshay; Scholl, Andreas; Tamura, Nobumichi; Sepulveda, Abdon; Carman, Gregory P; Candler, Robert N; Bokor, Jeffrey

    2018-03-14

    Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.69 -[PbTiO 3 ] 0.31 (PMN-PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.

  13. Persistent Homology fingerprinting of microstructural controls on larger-scale fluid flow in porous media

    Science.gov (United States)

    Moon, C.; Mitchell, S. A.; Callor, N.; Dewers, T. A.; Heath, J. E.; Yoon, H.; Conner, G. R.

    2017-12-01

    Traditional subsurface continuum multiphysics models include useful yet limiting geometrical assumptions: penny- or disc-shaped cracks, spherical or elliptical pores, bundles of capillary tubes, cubic law fracture permeability, etc. Each physics (flow, transport, mechanics) uses constitutive models with an increasing number of fit parameters that pertain to the microporous structure of the rock, but bear no inter-physics relationships or self-consistency. Recent advances in digital rock physics and pore-scale modeling link complex physics to detailed pore-level geometries, but measures for upscaling are somewhat unsatisfactory and come at a high computational cost. Continuum mechanics rely on a separation between small scale pore fluctuations and larger scale heterogeneity (and perhaps anisotropy), but this can break down (particularly for shales). Algebraic topology offers powerful mathematical tools for describing a local-to-global structure of shapes. Persistent homology, in particular, analyzes the dynamics of topological features and summarizes into numeric values. It offers a roadmap to both "fingerprint" topologies of pore structure and multiscale connectedness as well as links pore structure to physical behavior, thus potentially providing a means to relate the dependence of constitutive behaviors of pore structures in a self-consistent way. We present a persistence homology (PH) analysis framework of 3D image sets including a focused ion beam-scanning electron microscopy data set of the Selma Chalk. We extract structural characteristics of sampling volumes via persistence homology and fit a statistical model using the summarized values to estimate porosity, permeability, and connectivity—Lattice Boltzmann methods for single phase flow modeling are used to obtain the relationships. These PH methods allow for prediction of geophysical properties based on the geometry and connectivity in a computationally efficient way. Sandia National Laboratories is a

  14. Design and analysis of drum lathe for manufacturing large-scale optical microstructured surface and load characteristics of aerostatic spindle

    Science.gov (United States)

    Wu, Dongxu; Qiao, Zheng; Wang, Bo; Wang, Huiming; Li, Guo

    2014-08-01

    In this paper, a four-axis ultra-precision lathe for machining large-scale drum mould with microstructured surface is presented. Firstly, because of the large dimension and weight of drum workpiece, as well as high requirement of machining accuracy, the design guidelines and component parts of this drum lathe is introduced in detail, including control system, moving and driving components, position feedback system and so on. Additionally, the weight of drum workpiece would result in the structural deformation of this lathe, therefore, this paper analyses the effect of structural deformation on machining accuracy by means of ANSYS. The position change is approximately 16.9nm in the X-direction(sensitive direction) which could be negligible. Finally, in order to study the impact of bearing parameters on the load characteristics of aerostatic journal bearing, one of the famous computational fluid dynamics(CFD) software, FLUENT, is adopted, and a series of simulations are carried out. The result shows that the aerostatic spindle has superior performance of carrying capacity and stiffness, it is possible for this lathe to bear the weight of drum workpiece up to 1000kg since there are two aerostatic spindles in the headstock and tailstock.

  15. Transistor Aging Prediction in Nanometer Digital Circuits

    OpenAIRE

    Kyung Ki Kim

    2013-01-01

    In nanometer technology, accurate aging prediction of MOSFET digital circuits is one of the most critical issues for more reliable adaptive system design. This paper proposes a new on-chip aging prediction circuit to monitor BTI and HCI aging effects on digital circuits. The proposed circuit deploys a flip-flop based delay detector for monitoring a guardband violation of sequential logics. The outputs of the proposed circuit can be used as a control signal in reliable self-adaptive systems. A...

  16. Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes

    Science.gov (United States)

    Lu, Xuekun; Taiwo, Oluwadamilola O.; Bertei, Antonio; Li, Tao; Li, Kang; Brett, Dan J. L.; Shearing, Paul R.

    2017-11-01

    Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2-3 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.

  17. Micromagnetism and the microstructure of ferromagnetic solids

    CERN Document Server

    Kronmüller, Helmut

    2003-01-01

    Here is a fundamental introduction to microstructure magnetic property relations where microstructures on atomic, nano- and micrometer scales are considered. The authors demonstrate that outstanding magnetic properties require an optimization of microstructural properties where the microstructures in crystalline materials are point defects and dislocations as well as grain and phase boundaries. In amorphous alloys the type of microstructures on atomic scales are defined and used to describe intrinsic and extrinsic properties.

  18. Fundamental science of nanometer-size clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wilcoxon, J.P.; Newcomer, P.P.; Samara, G.A.; Venturini, E.L.; Williamson, R.L.

    1995-10-01

    This research has produced a variety of monodisperse, nanometer-size clusters (nanoclusters for short), characterized their size and crystal structure and developed a scientific understanding of the size dependence of their physical properties. Of specific interest were the influence of quantum electronic confinement on the optical properties, magnetic properties, and dielectric properties. These properties were chosen both for their potential practical impact on various applications identified in the National Critical Technologies list (e.g., catalysis, information storage, sensors, environmental remediation, ...) as well as for their importance to the fundamental science of clusters. An Executive Summary provides a description of the major highlights.

  19. Microstructural Investigations of Al{sub 2}O{sub 3} Scale Formed on FeCrAl Steel during High Temperature Oxidation in SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Homa, M.; Zurek, Z. [Cracow University of Technology, Cracow (Poland); Morgiel, B.; Zieba, P.; Wojewoda, J. [Polish Academy of Sciences Reymonta, Cracow (Poland)

    2008-06-15

    The results of microstructure observations of the Al{sub 2}O{sub 3} scale formed on a Fe-Cr-Al steel during high temperature oxidation in the SO{sub 2} atmosphere are presented. Morphology of the scale has been studied by SEM and TEM techniques. Phase and chemical compositions have been studied by EDX and XRD techniques. The alumina oxide is a primary component of the scale. TEM observations showed that the scale was multilayer. The entire surface of the scale is covered with 'whiskers, which look like very thin platelets and have random orientation. The cross section of a sample shows, that the 'whiskers' are approximately 2 {mu}m high, however the compact scale layer on which they reside is 0.2 {mu}m thick. The scale layer was composed mainly of small equiaxial grains and a residual amount of small columnar grains. EDX analysis of the scale surface showed that the any sulfides were found in the formed outer and thin inner scale layer. A phase analysis of the scale formed revealed that it is composed mainly of the {theta}-Al{sub 2}O{sub 3} phase and a residual amount of {alpha}-Al{sub 2}O{sub 3}.

  20. Microstructural Investigations of Al2O3 Scale Formed on FeCrAl Steel during High Temperature Oxidation in SO2

    International Nuclear Information System (INIS)

    Homa, M.; Zurek, Z.; Morgiel, B.; Zieba, P.; Wojewoda, J.

    2008-01-01

    The results of microstructure observations of the Al 2 O 3 scale formed on a Fe-Cr-Al steel during high temperature oxidation in the SO 2 atmosphere are presented. Morphology of the scale has been studied by SEM and TEM techniques. Phase and chemical compositions have been studied by EDX and XRD techniques. The alumina oxide is a primary component of the scale. TEM observations showed that the scale was multilayer. The entire surface of the scale is covered with 'whiskers, which look like very thin platelets and have random orientation. The cross section of a sample shows, that the 'whiskers' are approximately 2 μm high, however the compact scale layer on which they reside is 0.2 μm thick. The scale layer was composed mainly of small equiaxial grains and a residual amount of small columnar grains. EDX analysis of the scale surface showed that the any sulfides were found in the formed outer and thin inner scale layer. A phase analysis of the scale formed revealed that it is composed mainly of the θ-Al 2 O 3 phase and a residual amount of α-Al 2 O 3

  1. Full-scale magnetic, microstructural, and physical properties of bilayered CoSiB/FeSiB ribbons

    Czech Academy of Sciences Publication Activity Database

    Životský, O.; Titov, A.; Jirásková, Yvonna; Buršík, Jiří; Kalbáčová, J.; Janičkovič, D.; Švec, P.

    2013-01-01

    Roč. 581, DEC (2013), s. 685-692 ISSN 0925-8388 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Keywords : Bilayered ribbons * Soft magnetic materials * Microstructure * Surface and bulk magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.726, year: 2013

  2. Macro- and microstructural diversity of sea urchin teeth revealed by large-scale mircro-computed tomography survey

    Science.gov (United States)

    Ziegler, Alexander; Stock, Stuart R.; Menze, Björn H.; Smith, Andrew B.

    2012-10-01

    Sea urchins (Echinodermata: Echinoidea) generally possess an intricate jaw apparatus that incorporates five teeth. Although echinoid teeth consist of calcite, their complex internal design results in biomechanical properties far superior to those of inorganic forms of the constituent material. While the individual elements (or microstructure) of echinoid teeth provide general insight into processes of biomineralization, the cross-sectional shape (or macrostructure) of echinoid teeth is useful for phylogenetic and biomechanical inferences. However, studies of sea urchin tooth macro- and microstructure have traditionally been limited to a few readily available species, effectively disregarding a potentially high degree of structural diversity that could be informative in a number of ways. Having scanned numerous sea urchin species using micro-computed tomography µCT) and synchrotron µCT, we report a large variation in macro- and microstructure of sea urchin teeth. In addition, we describe aberrant tooth shapes and apply 3D visualization protocols that permit accelerated visual access to the complex microstructure of sea urchin teeth. Our broad survey identifies key taxa for further in-depth study and integrates previously assembled data on fossil species into a more comprehensive systematic analysis of sea urchin teeth. In order to circumvent the imprecise, word-based description of tooth shape, we introduce shape analysis algorithms that will permit the numerical and therefore more objective description of tooth macrostructure. Finally, we discuss how synchrotron µCT datasets permit virtual models of tooth microstructure to be generated as well as the simulation of tooth mechanics based on finite element modeling.

  3. Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography.

    Science.gov (United States)

    Mayo, S C; Chen, F; Evans, R

    2010-08-01

    The structure of wood on a range of length-scales is critical to the performance and properties of this industrially important natural material. Much analysis of wood on the micron-scale upwards is carried out in two dimensions using optical microscopy. In recent years, however, three-dimensional (3D) analysis using X-ray microtomography has proved to be of increasing interest, providing volumetric data without the risk of damage from physical sectioning. In the present work we explore the potential of laboratory-based phase-contrast X-ray microtomography for analysis of wood microstructure on the micron scale. 3D datasets with quality enhanced by the use of phase-contrast, have been obtained for a number of different wood specimens. Segmentation of the datasets followed by different types of quantitative analysis is also successfully demonstrated, confirming the value of this technique for high-resolution analysis of 3D wood microstructure. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  4. From nanometer aggregates to micrometer crystals

    DEFF Research Database (Denmark)

    Schultz, Logan Nicholas; Dideriksen, Knud; Lakshtanov, Leonid

    2014-01-01

    and crystal shapes. Grain coarsening of calcite, CaCO3, is relevant for biomineralization and commercial products and is an important process in diagenesis of sediments to rock during geological time. We investigated coarsening of pure, synthetic calcite powder of sub-micrometer diameter crystals and aged......Grain size increases when crystals respond to dynamic equilibrium in a saturated solution. The pathway to coarsening is generally thought to be driven by Ostwald ripening, that is, simultaneous dissolution and reprecipitation, but models to describe Ostwald ripening neglect solid-solid interactions...... demonstrated steady growth of nanometer crystallites. The results can be described by theory where grains coarsen preferentially by aggregation at early times and high temperatures and by Ostwald ripening at later stages. Crystal form and dimension are influenced by the transition from one growth mechanism...

  5. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    Directory of Open Access Journals (Sweden)

    Dan Kang

    2014-01-01

    Full Text Available In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  6. A model based approach to reference-free straightness measurement at the Nanometer Comparator

    Science.gov (United States)

    Weichert, C.; Stavridis, M.; Walzel, M.; Elster, C.; Wiegmann, A.; Schulz, M.; Köning, R.; Flügge, J.; Tutsch, R.

    2009-06-01

    The Nanometer Comparator is the PTB reference length measuring machine for high precision calibrations of line scales and encoder systems. Up to now the Nanometer Comparator allows to measure the position of line structures in one dimension only. For high precision characterisations of masks, scales and incremental encoders, the measurement of the straightness of graduations is a requirement from emerging lithography techniques. Therefore the Nanometer Comparator will be equipped with an additional short range measurement system in the Y-direction, realized as a single path plane mirror interferometer and supposed to achieve sub-nm uncertainties. To compensate the topography of the Y-mirror, the Traceable Multi Sensor (TMS) method will be implemented to achieve a reference-free straightness measurement. Virtual experiments are used to estimate the lower accuracy limit and to determine the sensitive parameters. The virtual experiments contain the influence of the positioning devices, interferometer errors as well as non-perfect adjustment and fabrication of the machine geometry. The whole dynamic measurement process of the Nanometer Comparator including its influence on the TMS analysis, e.g. non-equally spaced measurement points, is simulated. We will present the results of these virtual experiments as well as the most relevant error sources for straightness measurement, incorporating the low uncertainties of the existing and planned measurement systems.

  7. Mass Spectrometry of Atmospheric Aerosol: 1 nanometer to 1 micron

    Science.gov (United States)

    Worsnop, D. R.; Ehn, M.; Junninen, H.; Kulmala, M. T.

    2010-12-01

    The role of aerosol particles remains the largest uncertainty in quantitatively assessing past, current and future climate change. The principal reason for that uncertainty arises from the need to characterize and model composition and size dependent aerosol processes, ranging from nanometer to micron scales. Aerosol mass spectrometry results have shown that about half the sub-micron aerosol composition is composed of highly oxygenated organics that are not well understood in terms of photochemical reaction mechanisms (Jimenez et al, 2009). This work has included application of high resolution time-of-flight mass spectrometry (ToFMS) in order to determine elemental and functional group composition of complex organic components. Recently, we have applied similar ToFMS to determine the composition of ambient ions, molecules and clusters, potentially involved in formation and growth of nano-particles (Junninen et al, 2010). Observed organic anions (molecular weight range 200-500 Th) have similar chemical composition as the least volatile secondary organics observed in fine particles; while organic cations are dominated by amines and pyridines. During nucleation events, anions are dominated by sulphuric acid cluster ions (Ehn et al, 2010). In both nanometer and micrometer size ranges, the goal to elucidate the roles of inorganic and organic species, particularly how particle evolution and physical properties depend on mixed compositions. Recent results will be discussed, including ambient and experimental chamber observations. Ehn et al, Atmos. Chem. Phys. Discuss., 10, 14897-14946, 2010 Jimenez et al, Science, 326, 1525-1529, 2009 Junninen et al, Atmos. Meas. Tech., 3, 1039-1053, 2010

  8. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    This paper reported on dispersion effect and dispersing techniques of nanometer WS2 particles in the green lubricant concocted by us. And it also researched on auto-reconditioning performance of nanometer WS2 particles to the abrasive surfaces of steel ball from four-ball tribology test and piston ring from engine ...

  9. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    The results showed that the combinative method of ultrasonic dispersion, mechanical agitation and surface modification could improve the dispersion uniformity and stability of nanometer WS2 particles in the green lubricant effectively. And the optimal ratio of the mass between surface modifier and nanometer WS2 particles ...

  10. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun; Wang, Changlei; Gorman, Brian; Yan, Yanfa; Al-Jassim, Mowafak

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  11. Nanometer-scale lithography on microscopically clean graphene

    DEFF Research Database (Denmark)

    van Dorp, W. F.; Zhang, X.; Feringa, B. L.

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal...... lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared...... to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous...

  12. Nanometer-scale anatomy of entire Stardust tracks

    Science.gov (United States)

    Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo

    2011-07-01

    We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot" and "bulbous" tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.

  13. Construction of an optical tweezer for nanometer scale rheology

    Indian Academy of Sciences (India)

    Abstract. The optical tweezer is a versatile set-up that can be employed in a wide variety of studies investigating the microscopic properties of materials. In particular, this set-up has in recent times been gainfully employed in probing rheological properties of materials that exhibit viscoelasticity. These measurements can ...

  14. Nanometer-scale lithography on microscopically clean graphene

    International Nuclear Information System (INIS)

    Van Dorp, W F; De Hosson, J Th M; Zhang, X; Feringa, B L; Wagner, J B; Hansen, T W

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous material in order to obtain large areas of microscopically clean graphene flakes. After cleaning, W(CO) 6 was used as the precursor to study the early growth phase of FEBID deposits. It was observed that preferential adsorption of the precursor molecules on step edges and adsorbates plays a key role in the deposition on cleaned few-layer graphene.

  15. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  16. NANOMETER PRECISION IN LARGE SURFACE PROFILOMETRY

    International Nuclear Information System (INIS)

    TAKACS, P.Z.

    1999-01-01

    The Long Trace Profiler (LTP) is in use at many synchrotron radiation (SR) laboratories throughout the world and by a number of manufacturers who specialize in fabricating grazing incidence mirrors for SR and x-ray telescope applications. Recent improvements in the design and operation of the LTP system have reduced the statistical error in slope profile measurement to the 1 standard deviation level of 0.3 microradian for 0.5 meter long mirrors. This corresponds to a height error on the order of 10-20 nanometers. This level of performance allows one to measure with confidence the absolute shape of large cylindrical aspheres and spheres that have kilometer radii of curvature in the axial direction. The LTP is versatile enough to make measurements of a mirror in the face up, sideways, and face down configurations. We will illustrate the versatility of the current version of the instrument, the LTP II, and present results from two new versions of the instrument: the in situ LTP (ISLTP) and the Vertical Scan LTP (VSLTP). Both of them are based on the penta prism LTP (ppLTP) principle that utilizes a stationary optical head and moving penta prism. The ISLTP is designed to measure the distortion of high heat load mirrors during actual operation in SR beam lines. The VSLTP is designed to measure the complete 3-dimensional shape of x-ray telescope cylinder mirrors and mandrels in a vertical configuration. Scans are done both in the axial direction and in the azimuthal direction

  17. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo

    2017-07-31

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2-7, metal-semiconductor contacts8-10, and metal-insulator barriers11-13 have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions are also necessary. Although external one-dimensional (1D) carbon nanotubes14 can be used to locally gate 2D materials, this adds a non-trivial third dimension, complicating device integration and flexibility. Here, we report the direct synthesis of sub-nanometer 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Molecular dynamics (MD) simulations have identified other combinations of 2D materials that could form 1D channels. Density function theory (DFT) calculation predicts these 1D channels display type II band alignment needed for carrier confinement and charge separation to access the ultimate length scales necessary for future electronic applications.

  18. Ag diffusion and interface segregation in nanocrystalline γ-FeNi alloy with a two-scale microstructure

    International Nuclear Information System (INIS)

    Divinski, S.V.; Hisker, F.; Kang, Y.-S.; Lee, J.-S.; Herzig, Chr.

    2004-01-01

    Solute diffusion of Ag in nanocrystalline γ-Fe - 40wt%Ni alloy was studied by means of the radiotracer technique in an extended temperature interval (489-1200 K). The powder metallurgical method was applied to produce nanomaterial which consisted of micrometer-large clusters (agglomerates) of nanometer sized grains. Two types of internal interfaces contributed as short-circuit paths for diffusion: the nanocrystalline grain boundaries (GB) and the inter-agglomerate interfaces (subscript a). Combining the recent results on Ag GB diffusion in coarse-grained γ-Fe - 40wt%Ni alloy and the present diffusion data in the nanocrystalline alloy the Ag segregation was determined as function of temperature. Ag segregates strongly at GBs in the γ-Fe - 40wt%Ni alloy with a segregation enthalpy of H s =-47 kJ/mol. Knowing the segregation factor, the experimental data on Ag diffusion along both nanocrystalline and inter-agglomerate interfaces in the nanomaterial were systematically analyzed in dependence on the different kinetic regimes. The sensitive radiotracer experiments and the subsequent diffusion profile analysis resulted in a consistent set of diffusion data in the whole investigated temperature range with Arrhenius behavior for both the Ag nano-GB diffusion (D 0 gb =4.7x10 -4 m 2 /s, H gb =173 kJ/mol) as well as for the much faster inter-agglomerate interface diffusion (D 0 a =8.1x10 -5 m 2 /s, H a =91 kJ/mol)

  19. Computational and Experimental Studies of Microstructure-Scale Porosity in Metallic Fuels for Improved Gas Swelling Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Mllett, Paul [Univ. of Arkansas, Fayetteville, AR (United States); McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States); Deo, Chaitanya [Georgia Inst. of Technology, Atlanta, GA (United States); Mariani, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-01-29

    This proposal will investigate the stability of bimodal pore size distributions in metallic uranium and uranium-zirconium alloys during sintering and re-sintering annealing treatments. The project will utilize both computational and experimental approaches. The computational approach includes both Molecular Dynamics simulations to determine the self-diffusion coefficients in pure U and U-Zr alloys in single crystals, grain boundaries, and free surfaces, as well as calculations of grain boundary and free surface interfacial energies. Phase-field simulations using MOOSE will be conducted to study pore and grain structure evolution in microstructures with bimodal pore size distributions. Experiments will also be performed to validate the simulations, and measure the time-dependent densification of bimodal porous compacts.

  20. Inhomogeneous microstructural growth by irradiation

    DEFF Research Database (Denmark)

    Krishan, K.; Singh, Bachu Narain; Leffers, Torben

    1985-01-01

    In the present paper we discuss the development of heterogeneous microstructure for uniform irradiation conditions. It is shown that microstructural inhomogeneities on a scale of 0.1 μm can develop purely from kinematic considerations because of the basic structure of the rate equations used...

  1. New approaches to image processing based failure analysis of nano-scale ULSI devices

    CERN Document Server

    Zalevsky, Zeev; Gur, Eran

    2013-01-01

    New Approaches to Image Processing Based Failure Analysis of Nano-Scale ULSI Devices introduces the reader to transmission and scanning microscope image processing for metal and non-metallic microstructures. Engineers and scientists face the pressing problem in ULSI development and quality assurance: microscopy methods can't keep pace with the continuous shrinking of feature size in microelectronics. Nanometer scale sizes are below the resolution of light, and imaging these features is nearly impossible even with electron microscopes, due to image noise. This book presents novel ""smart"

  2. Nanometer sized structures grown by pulsed laser deposition

    KAUST Repository

    ElZein, Basma

    2015-10-01

    Nanometer sized materials can be produced by exposing a target to a laser source to remove material from the target and deposit the removed material onto a surface of a substrate to grow a thin film in a vacuum chamber

  3. Thermo-Oxidative Induced Damage in Polymer Composites: Microstructure Image-Based Multi-Scale Modeling and Experimental Validation

    Science.gov (United States)

    Hussein, Rafid M.; Chandrashekhara, K.

    2017-11-01

    A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.

  4. Comparative Analysis of Shift Registers in Different Nanometer Technologies

    Directory of Open Access Journals (Sweden)

    Rajesh MEHRA

    2017-06-01

    Full Text Available In this paper, power and speed efficient registers have been designed using different nanometer technologies. Serial in Serial out (SISO and Serial in Parallel out (SIPO shift registers are designed using 180 nm and 90 nm technologies. Both the design are analyzed and compared based on power, delay and power-delay-product (PDP. Present portable real time system demands high performance in terms of speed along with low power consumption. The concept of technology scale down has been used to optimize power and delay in booth designs. The schematic of SISO and SIPO has been developed using Cadence Virtuoso software and analysis has been performed using Analog Design Environment. It has been observed from simulation analysis that 90 nm based SISO design shows an improvement of 68.61 % in power and 54.92 % in delay as compared to 180 nm technology. Likewise SIPO design has shown an improvement of 67.75 % in power and 53.32 % in delay as compared to 180 nm technology.

  5. Correlations between Growth Kinetics and Microstructure for Scales Formed by High-Temperature Oxidation of Pure Nickel. II. Growth Kinetics

    OpenAIRE

    Peraldi, Raphaëlle; Monceau, Daniel; Pieraggi, Bernard

    2002-01-01

    The oxidation kinetics of high-purity nickel were studied between 500 and 1200°C, in pure oxygen at atmospheric pressure, for aûerage oxide-scale thicknesses of 1, 5, 10, and 30 μm. In the oûerall temperature range studied, a decrease in the parabolic rate constant kp with increasing scale thickness was observed. Depending on temperature and oxide-scale thickness, growth kinetics can be interpreted as a mixture of parabolic- and cubic-growth kinetics. Possible correlations between growth kine...

  6. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  7. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    Science.gov (United States)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (process to reliably define elevated nanometer-separated mushroom-shaped dimers directly from 3D resist patterns based on the gap-narrowing effect during the metallic film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  8. Microstructural Characterization of Next Generation Nuclear Graphites

    Energy Technology Data Exchange (ETDEWEB)

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  9. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    Directory of Open Access Journals (Sweden)

    Yuxin Wang

    2017-08-01

    Full Text Available In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM. The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at% Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  10. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    Science.gov (United States)

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; Zastrau, Ulf; Wünsche, Martin; Hilbert, Vinzenz; Glaser, Leif; Viefhaus, Jens; Frumker, Eugene; Corkum, Paul; Förster, Eckhart; Paulus, Gerhard G.

    2016-01-01

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengths corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window. PMID:26860894

  11. Simulation of FIB-SEM images for analysis of porous microstructures.

    Science.gov (United States)

    Prill, Torben; Schladitz, Katja

    2013-01-01

    Focused ion beam nanotomography-scanning electron microscopy tomography yields high-quality three-dimensional images of materials microstructures at the nanometer scale combining serial sectioning using a focused ion beam with SEM. However, FIB-SEM tomography of highly porous media leads to shine-through artifacts preventing automatic segmentation of the solid component. We simulate the SEM process in order to generate synthetic FIB-SEM image data for developing and validating segmentation methods. Monte-Carlo techniques yield accurate results, but are too slow for the simulation of FIB-SEM tomography requiring hundreds of SEM images for one dataset alone. Nevertheless, a quasi-analytic description of the specimen and various acceleration techniques, including a track compression algorithm and an acceleration for the simulation of secondary electrons, cut down the computing time by orders of magnitude, allowing for the first time to simulate FIB-SEM tomography. © Wiley Periodicals, Inc.

  12. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    Science.gov (United States)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  13. Nanometer measurement with a dual Fabry-Perot interferometer

    International Nuclear Information System (INIS)

    Chen Benyong; Li Dacheng; Guo Songling; Zhu Ruogu; Wu Zhaotong

    2001-01-01

    On the basis of analyzing sinusoidal phase-modulating Fabry-Perot interferometry, a method, believed to be novel, is proposed for achieving nanometer measurement accuracy by measuring the time interval between equal amplitudes of the two elementary frequency signals of the transmitted intensities of a dual Fabry-Perot interferometer. A nanometer measurement system based on the method was designed and tested. The experimental results show that the displacement resolution of the system is 0.32 nm at a 1-kHz modulating signal

  14. Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion

    DEFF Research Database (Denmark)

    Sivebæk, I. M.; Persson, B. N. J.

    2016-01-01

    We present molecular dynamics (MD) friction and adhesion calculations for nanometer-thick confined hydrocarbon films with molecular lengths 20, 100 and 1400 carbon atoms. We study the dependency of the frictional shear stress on the confining pressure and sliding speed. We present results...

  15. Mismatch of dielectric constants at the interface of nanometer metal ...

    Indian Academy of Sciences (India)

    Abstract. The comparison of the inversion electron density between a nanometer metal-oxide- semiconductor (MOS) device with high-K gate dielectric and a SiO2 MOS device with the same equivalent oxide thickness has been discussed. A fully self-consistent solution of the coupled. Schrödinger–Poisson equations ...

  16. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    Administrator

    ash were used in this work. 2.2 Dispersion experiment. A combinative method of ultrasonic dispersion, mechani- cal agitation and surface modification was adopted to disperse nanometer WS2 particles in green lubricant in this study. And to realize this method, we designed a dispersing equipment and figure 2 gives the ...

  17. Properties of antibacterial polypropylene/nanometal composite fibers

    Science.gov (United States)

    Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted...

  18. Role of spall in microstructure evolution during laser-shock-driven rapid undercooling and resolidification

    International Nuclear Information System (INIS)

    Colvin, Jeffrey D.; Jankowski, Alan F.; Kumar, Mukul; MoberlyChan, Warren J.; Reed, Bryan W.; Paisley, Dennis L.; Tierney, Thomas E.

    2009-01-01

    We previously reported [Colvin et al., J. Appl. Phys. 101, 084906 (2007)] on the microstructure morphology of pure Bi metal subjected to rapid laser-shock-driven melting and subsequent resolidification upon release of pressure, where the estimated effective undercooling rates were of the order of 10 9 -10 10 K/s. More recently, we repeated these experiments, but with a Bi/Zn alloy (Zn atomic fraction of 2%-4%) instead of elemental Bi and with a change in target design to suppress spall in the Bi/Zn samples. We observed a similar microstructure morphology in the two sets of experiments, with initially columnar grains recrystallizing to larger equiaxed grains. The Bi samples, however, exhibited micron-scale dendrites on the spall surfaces, whereas there were no dendritic structures anywhere in the nonspalled Bi/Zn, even down to the nanometer scale as observed by transmission electron microscopy. We present the simulations and the interferometry data that show that the samples in the two sets of experiments followed nearly identical hydrodynamic and thermodynamic paths apart from the presence of (probably partially liquid) spall in pure Bi. Simulations also show that the spall occurs right at the moving phase front and, hence, the spall itself cuts off the principal direction for latent heat dissipation across the phase boundary. We suggest that it is the liquid spall itself that creates the conditions for dendrite formation

  19. Microstructural-Scale Model for Surfaces Spreading of Intergranular Corrosion in Sensitized Stainless Steels and Aluminum-Magnesium (AA5XXX) Alloys

    Science.gov (United States)

    Jain, Swati

    Components from AA5XXX (Al-Mg alloys with more than 3 wt% Mg) alloys are X attractive due to availability of low cost, high strength to weight ratio and good weldability. Therefore, these alloys have potential applications in Naval ships. However, these alloys become susceptible to IGC (intergranular corrosion) due to beta-phase precipitation due to improper heat treatment or inadvertent thermal exposure. Stainless steels may also become susceptible due to carbide precipitation and chromium depletion on grain boundaries. IGC susceptibility depends on the interplay between the metallurgical conditions, electrochemical conditions, and chemical conditions. Specific combinations cause IGC while others do not. The objective of this study is to investigate the conditions which bring about surface spreading of IGC in these alloy classes. To accomplish this goal, a microstructure scale model was developed with experimental inputs to understand the 2-D IGC spreading in stainless steels and AA5XXX alloys. The conditions strongly affecting IGC spreading were elucidated. Upon natural and artificial aging, the stainless steels become susceptible to intergranular corrosion because of chromium depletion in the grain boundaries. After aging Al-Mg (AA5XXX) alloys show susceptibility due to the precipitation of the beta-phase (Al3Mg7) in the grain boundaries. Chromium depleted grain boundaries in stainless steels are anodically more active as compared to the interior of the grains. (3-phase rich grain boundaries have lower OCP (open circuit potential) and pitting potentials as compared to the Al-Mg solid solutions. A new approach to modeling the IGC surface spreading in polycrystalline materials that is presented. This model is the first to couple several factors into one granular scale model that illustrates the way in which they interact and IGC occurs. It sheds new information on conditions which cause IGC spreading in two alloy classes and describes a new theory for the critical

  20. Analysis of nano-meter structure in Ti implanted polymers

    International Nuclear Information System (INIS)

    Zhou Gu; Wu Yuguang; Zhang Tonghe; Zhao Xinrong

    2001-01-01

    Polyethylene terephthalate (PET) is modified with Ti ion implantation to a dose of 1x10 17 to 2 x 10 17 cm -2 by using a metal vapor vacuum arc(MEVVA)source. Nano-meter structures in the implanted sample are observed by means of transmission electron microscope (TEM). The influence of ion dose on the structure is indicated. The results show that dense nano-meter phases are dispersed uniformly in the implanted layer. TEM cross section indicates that there is a three-layer structure in the implanted PET. It is found that a metallurgical surface is formed. Therefore the hardness, wear resistance and conductive properties of PET are improved after metal ion implantation. The mechanism of electrical conduction will be discussed

  1. Probing Phase Transformations and Microstructural Evolutions at the Small Scales: Synchrotron X-ray Microdiffraction for Advanced Applications in [Phase 3 Memory,] 3D IC (Integrated Circuits) and Solar PV (Photovoltaic) Devices

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, I. [Singapore Univ. of Technology and Design (SUTD) (Singapore); Tippabhotla, S. K. [Singapore Univ. of Technology and Design (SUTD) (Singapore); Tamura, N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Budiman, A. S. [Singapore Univ. of Technology and Design (SUTD) (Singapore)

    2016-10-21

    Synchrotron x-ray microdiffraction (μXRD) allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, μXRD is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the μXRD technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of μXRD in microelectronics will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. Here, the approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated.

  2. Dynamics of a nanometer-sized uranyl cluster in solution

    International Nuclear Information System (INIS)

    Johnson, Rene L.; Ohlin, C. Andre; Pellegrini, Kristi; Burns, Peter C.; Casey, William H.

    2013-01-01

    A class of uranyl peroxide clusters was discovered before as nanometer-sized ions that form spontaneously in aqueous solutions. The uranyl(VI) cluster investigated here is approximately 2 nm in diameter, contains 24 uranyl moieties, and 12 pyrophosphate units. NMR spectroscopy shows that the ion has two distinct forms that interconvert in milliseconds to seconds depending on the temperature and the size of the counterions. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong

    2015-01-01

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO 4 . For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases

  4. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO{sub 4}. For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases.

  5. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Azmer, Mohamad Izzat [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa [Center for Advanced Materials (CAM), Qatar University, P. O. Box 2713, Doha (Qatar); Sulaiman, Khaulah, E-mail: khaulah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Touati, Farid [Department of Electrical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha (Qatar); Bawazeer, Tahani M. [Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah (Saudi Arabia); Alsoufi, Mohammad S. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah (Saudi Arabia)

    2017-03-31

    Highlights: • VOPcPhO:P3HT micro-structures with nano-porous surface morphology have been formed. • Multidimensional structures have been formed by electro-spraying technique. • The electro-sprayed films are very promising for the humidity sensors. - Abstract: In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  6. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  7. Linking properties to microstructure through multiresolution mechanics

    Science.gov (United States)

    McVeigh, Cahal James

    The macroscale mechanical and physical properties of materials are inherently linked to the underlying microstructure. Traditional continuum mechanics theories have focused on approximating the heterogeneous microstructure as a continuum, which is conducive to a partial differential equation mathematical description. Although this makes large scale simulation of material much more efficient than modeling the detailed microstructure, the relationship between microstructure and macroscale properties becomes unclear. In order to perform computational materials design, material models must clearly relate the key underlying microstructural parameters (cause) to macroscale properties (effect). In this thesis, microstructure evolution and instability events are related to macroscale mechanical properties through a new multiresolution continuum analysis approach. The multiresolution nature of this theory allows prediction of the evolving magnitude and scale of deformation as a direct function of the changing microstructure. This is achieved via a two-pronged approach: (a) Constitutive models which track evolving microstructure are developed and calibrated to direct numerical simulations (DNS) of the microstructure. (b) The conventional homogenized continuum equations of motion are extended via a virtual power approach to include extra coupled microscale stresses and stress couples which are active at each characteristic length scale within the microstructure. The multiresolution approach is applied to model the fracture toughness of a cemented carbide, failure of a steel alloy under quasi-static loading conditions and the initiation and velocity of adiabatic shear bands under high speed dynamic loading. In each case the multiresolution analysis predicts the important scale effects which control the macroscale material response. The strain fields predicted in the multiresolution continuum analyses compare well to those observed in direct numerical simulations of the

  8. Spinel Li2CoTi3O8 nanometer obtained for application as pigment

    International Nuclear Information System (INIS)

    Costa de Camara, M. S.; Alves Pimentel, L.; Longo, E.; Nobrega Azevedo, L. da; Araujo Melo, D. M. de

    2016-01-01

    Pigments are used in ceramics, cosmetics, inks, and other applications widely materials. To this must be single and easily reproducible. Moreover, the pigments obtained in the nanoscale are more stable, reproducible and highlight color in small amounts compared with those obtained in micrometer scale. The mixed oxides with spinel structures AB 2 O 4 have important applications, including: pigments, refractories, catalytic and electronic ceramics. In this context, the aim of this work was the preparation of powder Li 2 CoTi 3 O 8 spinel phase with nanometer particle size of the polymeric precursor method (Pechini) and characterization by means of thermal analysis (TG/DTA) X-ray diffraction (XRD), refined by the Rietveld method, BET, transmission electron microscopy (TEM), Raman and colorimetric coordinates. The pigment was obtained by heat treatment of 400 degree centigrade to 1000 degree centigrade after pyrolysis at 300 degree centigrade/1 h for removing the organic material. Li 2 CoTi 3 O 8 desired spinel phase was obtained from 500 degree centigrade, and presenting stability nanometer to about 1.300 degree centigrade. Spinel green phase introduced at temperatures in the range of 400 degree centigrade and 500 degree centigrade, and 600 degree centigrade at temperatures between blue and 1000 degree centigrade. (Author)

  9. VLSI electronics microstructure science

    CERN Document Server

    1981-01-01

    VLSI Electronics: Microstructure Science, Volume 3 evaluates trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the impact of VLSI on computer architectures; VLSI design and design aid requirements; and design, fabrication, and performance of CCD imagers. The approaches, potential, and progress of ultra-high-speed GaAs VLSI; computer modeling of MOSFETs; and numerical physics of micron-length and submicron-length semiconductor devices are also elaborated. This text likewise covers the optical linewi

  10. VLSI electronics microstructure science

    CERN Document Server

    1982-01-01

    VLSI Electronics: Microstructure Science, Volume 4 reviews trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the silicon-on-insulator for VLSI and VHSIC, X-ray lithography, and transient response of electron transport in GaAs using the Monte Carlo method. The technology and manufacturing of high-density magnetic-bubble memories, metallic superlattices, challenge of education for VLSI, and impact of VLSI on medical signal processing are also elaborated. This text likewise covers the impact of VLSI t

  11. [Clinical study of nanometer calcium phosphate ceramic artificial bone].

    Science.gov (United States)

    Sun, Yong; Xiao, Jian-De; Xiong, Jian-Yi; Liu, Jian-Quan

    2009-11-01

    To study the clinical effects and security of nanometer ceramics artificial bone transplantation to treat the bone defect. From March 2005 to November 2007, 32 patients (artificial bone group) with extremity bone defects applied nanometer ceramics artificial bone transplantations, included 19 males and 13 females, aged from 17 to 63 years old (averaged 31.4 years). The other 36 patients (internal fixation group) with extremity bone defects were treated by the internal fixation in the same period, included 21 males and 15 females, aged from 16 to 65 years old (averaged 32.6 years). Ca, P, B-ALP, IgG, IgA, IgM, CIC, C3, SL-2R and CD4+/CD8+ in the peripheral venous blood were measured in the 1st and 2th week and 1st, 3rd, 6th month after operation. All patients were followed up and the limb function was evaluated according to Enneking standard. The wounds of all patients smoothly healed after operation. Every immunological indicators had no significant difference between two groups. Serum calcium and phosphorus content did not significantly increased. Serum B-ALP of all patients were increased after operation, fell to normal levels in the internal fixation group, but remained at a relatively high level in the artificial bone group. All patients were followed-up for from 9 to 24 months (averaged 15 months). All patients get the excellent physical function. The artificial bone has no immunogenicity, no rejection,does not affect the blood calcium and phosphorus content, and has higher osteogenic activity. It is affirmed that nanometer ceramics artificial bone is used to treat the smaller bone defect on clinical.

  12. Nanometer-precision linear sorting with synchronized optofluidic dual barriers.

    Science.gov (United States)

    Shi, Yuzhi; Xiong, Sha; Chin, Lip Ket; Zhang, Jingbo; Ser, Wee; Wu, Jiuhui; Chen, Tianning; Yang, Zhenchuan; Hao, Yilong; Liedberg, Bo; Yap, Peng Huat; Tsai, Din Ping; Qiu, Cheng-Wei; Liu, Ai Qun

    2018-01-01

    The past two decades have witnessed the revolutionary development of optical trapping of nanoparticles, most of which deal with trapping stiffness larger than 10 -8 N/m. In this conventional regime, however, it remains a formidable challenge to sort out sub-50-nm nanoparticles with single-nanometer precision, isolating us from a rich flatland with advanced applications of micromanipulation. With an insightfully established roadmap of damping, the synchronization between optical force and flow drag force can be coordinated to attempt the loosely overdamped realm (stiffness, 10 -10 to 10 -8 N/m), which has been challenging. This paper intuitively demonstrates the remarkable functionality to sort out single gold nanoparticles with radii ranging from 30 to 50 nm, as well as 100- and 150-nm polystyrene nanoparticles, with single nanometer precision. The quasi-Bessel optical profile and the loosely overdamped potential wells in the microchannel enable those aforementioned nanoparticles to be separated, positioned, and microscopically oscillated. This work reveals an unprecedentedly meaningful damping scenario that enriches our fundamental understanding of particle kinetics in intriguing optical systems, and offers new opportunities for tumor targeting, intracellular imaging, and sorting small particles such as viruses and DNA.

  13. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    International Nuclear Information System (INIS)

    Do, Van-Nam

    2014-01-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes. (review)

  14. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    Science.gov (United States)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  15. Nanometer and molecular materials: the greatness of the very tiny; Materiales manometricos y moleculares: la grandeza de lo infimo

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Marina [Centro de Investigacion en Energia (CIE) de la UNAM, Temixco, Morelos (Mexico)

    2010-07-01

    Some of the materials have been present in our lives for many years, and now appear with unique or improved properties by the fact that they can be manufactured in the nanometer scale; that is, a million times smaller than a millimeter and with geometries that include the nanodots, the nanotubes, the nanowires, to mention a few of them. The most popular is the titanium dioxide (Titania), known by many as the white pigment in paints, sunscreens, cosmetics and others for their null toxicity, low cost and high stability. Strictly speaking, these features are really applicable to the micrometric material (which is a thousand times larger than the nanometer) and it is still to be proven toxicity and stability of the nanometer materials; but it is a fact that the nanometer titania is very popular in a multitude of applications that have to do with catalysis, sensors, and energy conversion and storing. We will also deal with conductive polymers, which are molecular conjugated materials. [Spanish] Algunos de los materiales han estado presentes en nuestras vidas por muchos anos y ahora aparecen con propiedades unicas o mejoradas por el hecho de que se pueden fabricar en la escala de los nanometros; esto es, un millon de veces mas pequenos que un milimetro y con geometrias que comprenden los nanopuntos, los nanotubos, los nanoalambres, por mencionar algunas. El mas popular es el dioxido de titanio (titania), conocido por muchos como el pigmento blanco de las pinturas, filtros solares, cosmeticos y demas, por su nula toxicidad, bajo costo y gran estabilidad. Estrictamente hablando, estas caracteristicas son realmente aplicables al material micrometrico (que es mil veces mas grande que el nanometrico) y todavia esta por probarse la toxicidad y estabilidad de los nanomateriales; pero es un hecho que la titania nanometrica es muy popular en un sinfin de aplicaciones que tienen que ver con catalisis, sensores, y conversion y almacenamiento de energia. Hablaremos tambien de

  16. Mixed Surfactant Template Method for Preparation of Nanometer Selenium

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Li

    2009-01-01

    Full Text Available Selenium nanoparticles have been synthesized in an aqueous solution by using sodium dodecyl sulfate and polyvinyl alcohol as a soft template. The factors on synthesis, such as reaction time, concentration of reactants and ultrasonic irradiation were studied. The uniform stable selenium nanospheres were obstained in the conditions of 1.0 (mass fraction sodium dodecyl sulfate, 1.0 (mass fraction polyvinyl alcohol, n(Vc:n(H2SeO3=7:1 and 7 minutes after the initiation of the reaction at room temperature. The average particle size of selenium is about 30 nm. The product was characterized by UV and TEM. Finally the applications of the red element nanometer selenium in anti-older cosmetics are presented.

  17. Microscopic structure of nanometer-sized silica particles

    International Nuclear Information System (INIS)

    Uchino, T.; Aboshi, A.; Kohara, S.; Ohishi, Y.; Sakashita, M.; Aoki, K.

    2004-01-01

    We have studied the structure of nanometer-sized silica particles called fumed silica, which is a synthetic amorphous silicon dioxide produced by burning silicon tetrachloride in an oxygen-hydrogen flame, using infrared and Raman spectroscopies and a high-energy x-ray diffraction method. It has been demonstrated that the structure of fumed silica is not identical to that of the normal bulk silica glass in terms especially of the distribution of the size of silica rings. Three- and four-membered rings are more frequent in fumed silica than in the bulk silica glass. It has also been shown that the network structure of fumed silica is more flexible than that of the bulk one, probably explaining the reason why fumed silica can accommodate a large number of three- and four-membered rings in the structure

  18. Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio

    CERN Document Server

    Morgado, Alonso; Rosa, José M

    2012-01-01

    This book presents innovative solutions for the implementation of Sigma-Delta Modulation (SDM) based Analog-to-Digital Conversion (ADC), required for the next generation of wireless hand-held terminals. These devices will be based on the so-called multistandard transceiver chipsets, integrated in nanometer CMOS technologies. One of the most challenging and critical parts in such transceivers is the analog-digital interface, because of the assorted signal bandwidths and dynamic ranges that can be required to handle the A/D conversion for several operation modes.   This book describes new adaptive and reconfigurable SDM ADC topologies, circuit strategies and synthesis methods, specially suited for multi-standard wireless telecom systems and future Software-defined-radios (SDRs) integrated in nanoscale CMOS. It is a practical book, going from basic concepts to the frontiers of SDM architectures and circuit implementations, which are explained in a didactical and systematic way. It gives a comprehensive overview...

  19. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  20. Minute co-variations of Sr/Ca ratios and microstructures in the aragonitic shell of Cerastoderma edule (Bivalvia) - Are geochemical variations at the ultra-scale masking potential environmental signals?

    Science.gov (United States)

    Füllenbach, Christoph S.; Schöne, Bernd R.; Shirai, Kotaro; Takahata, Naoto; Ishida, Akizumi; Sano, Yuji

    2017-05-01

    controlling their formation exert a strong control over the incorporation of strontium into shells of C. edule. Analytical techniques with lower sampling resolution, e.g., LA-ICP-MS, cannot resolve such fine-scale Sr variations. As a result, the signal-to-noise ratio decreases and the data generated by such techniques may therefore not seem to provide useful paleotemperature data. Future studies should therefore employ a combined analysis of Sr/Cashell and shell microstructures, and interpret Sr/Ca values of shell portions with different microstructures separately.

  1. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: the influence of membrane microstructure

    KAUST Repository

    Calo, Victor M.

    2015-07-17

    The selection of an appropriate membrane for a particular application is a complex and expensive process. Computational modeling can significantly aid membrane researchers and manufacturers in this process. The membrane morphology is highly influential on its efficiency within several applications, but is often overlooked in simulation. Two such applications which are very important in the provision of clean water are forward osmosis and filtration using functionalized micro/ultra/nano-filtration membranes. Herein, we investigate the effect of the membrane morphology in these two applications. First we present results of the separation process using resolved finger- and sponge-like support layers. Second, we represent the functionalization of a typical microfiltration membrane using absorptive pore walls, and illustrate the effect of different microstructures on the reactive process. Such numerical modeling will aid manufacturers in optimizing operating conditions and designing efficient membranes.

  2. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  3. Microstructural investigation of phases and pinning properties in MBa2Cu3O7-x (M = Y and/or Gd) coated conductors produced by scale-up facilitie

    Science.gov (United States)

    Jin, Hye-Jin; Moon, Han-Kyoul; Yoon, Seokhyun; Jo, William; Kim, Kunsu; Kim, Miyoung; Ko, Rock-Kil; Jo, Young-Sik; Ha, Dong-Woo

    2016-03-01

    To expedite the commercialization of coated conductors, a robust stacking architecture of the wires must be developed and the performance of the critical currents improved. More importantly, the manufacturability, or large-scale delivery, and the capability of sustaining production at a high rate must be considered. The products of three companies, American Superconductor, Superpower Inc., and SuNAM Co., Ltd, were selected because these companies have announced commercial-grade production lines and delivered a significant amounts of wires to the open market that meet the standards demanded by power devices. X-ray diffraction patterns were used to verify the structural properties and the phase formation in the wires, and transmission electron microscopy with energy dispersive spectroscopy was used to investigate the microstructure and composition of the conductors. In addition, Raman scattering spectroscopy was used for the analysis of the phase formation and for the elucidation of secondary phases in the superconducting layers. The field dependence of the critical current was also studied to compare the transport characteristics under relatively low and medium magnetic field at 77 K and 60 K. Pinning forces were obtained from the field dependence of transport properties and pinning characteristics were investigated. The theoretical and experimental analyses were combined together using the Dew-Hughes formula to extract the scaling exponents and estimate the irreversibility lines of the fields. The results showed that the three conductors possess pinning mechanisms that originate from core pinning with a surface pinning geometry. It is remarkable that the wires discussed in this paper exhibit very similar pinning characteristics even though they have different characteristics in terms of chemical composition, microstructure, stacking architectures, and distribution of parasitic phases.

  4. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  5. Research on long-range grating interferometry with nanometer resolution

    International Nuclear Information System (INIS)

    Chu, Xingchun; Zhao, Shanghong; Lü, Haibao

    2008-01-01

    Grating interferometry that features long range and nanometer resolution is presented. The optical system was established based on a single long metrology grating. The large fringe multiplication was achieved by properly selecting two high-order diffraction beams to form a fringe pattern. The fringe pattern collected by a linear array was first tailored to a few multiples of fringes in order to suppress the effect of the energy leakage on phase-extracting precision when the fast Fourier transform (FFT) algorithm was used to calculate its phase. Thus, the phase-extracting precision of a tailored fringe pattern by FFT was greatly improved. Based on this, a novel subdividing method, which exploited the time-shift property of FFT, was developed to subdivide the fringe with large multiple and high accuracy. Numerical results show that the system resolution reaches 1 nm. The experimental results obtained against a capacitive sensor in the sub-mm range show that the measurement precision of the system is less than 10 nm. (technical design note)

  6. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  7. Spatial beam shaping using a micro-structured optical fiber and all-fiber laser amplification system for large-scale laser facilities seeding

    International Nuclear Information System (INIS)

    Calvet, Pierre

    2014-01-01

    Spatial beam shaping is an important topic for the lasers applications. For various industrial areas (marking, drilling, laser-matter interaction, high-power laser seeding...) the optical beam has to be flattened. Currently, the state of the art of the beam shaping: 'free-space' solutions or highly multimode fibers, are not fully suitable. The first ones are very sensitive to any perturbations and the maintenance is challenging, the second ones cannot deliver a coherent beam. For this reason, we present in this manuscript a micro-structured optical single-mode fiber delivering a spatially flattened beam. This 'Top-Hat' fiber can shape any beam in a spatially coherent beam what is a progress with respect to the highly multimode fibers used in the state of the art. The optical fibers are easy to use and very robust, what is a strong benefit with respect to the 'free-space' solutions. Thanks to this fiber, we could realize an all-fiber multi-stage laser chain to amplify a 10 ns pulse to 100 μJ. Moreover the temporal, spectral and spatial properties were preserved. We adapted this 'Top-Hat' fiber to this multi-stage laser chain, we proved the capability and the interest of this fiber for the spatial beam shaping of the laser beams in highly performing and robust laser systems. (author) [fr

  8. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  9. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol-gel method

    KAUST Repository

    Zhang, Yuan

    2013-12-24

    Here, we report the atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb 1.5O7 (BMN) nanoparticles with mean size of 70 nm, which were synthesized by sol-gel method. The crystallinity, phase formation, morphology, and surface microstructure of the BMN nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), respectively. The phase evolution of the BMN nanoparticles investigated by XRD patterns showed that uniform cubic pyrochlore BMN nanoparticles were obtained after calcination at temperature of 800 C, and their structural information was revealed by Raman spectrum. TEM images demonstrated that the BMN nanoparticles had a spherical morphology with an average particle size of 70 nm, and their crystalline nature was revealed by HRTEM images. In addition, HRTEM images also demonstrate a terrace-ledge-kink (TLK) surface structure at the edges of rough BMN nanoparticles, where the terrace was on the (100) plane, and the ledge on the (001) plane. The formation of such a TLK surface structure can be well explained by a theory of periodic bond chains. Due to the surface structural reconstruction in the BMN nanoparticles, the formation of a tetragonal structure in a rough BMN nanoparticle was also revealed by HRTEM image. The BMN nanoparticles exhibited dielectric constants of 50 at 100 kHz and 30 at 1 MHz, and the dielectric loss of 0.19 at 1 MHz. © 2013 Springer Science+Business Media Dordrecht.

  10. MICROSTRUCTURE AND MICROMECHANICS OF SHALE ROCKS: CASE STUDY OF MARCELLUS SHALE

    Directory of Open Access Journals (Sweden)

    Hui Du

    2017-08-01

    Indentation tests were conducted at both micro and nanometer level on Marcellus shale samples to get the mechanical properties of bulk and individual phase of the multiphase materials. The mechanical properties map were created based on the nano indentation results and the properties of each individual phase can be correlated with bulk response in the multiphase composite; the effect of each component on the microstructure and bulk mechanical properties can be better understood.

  11. A planar conducting microstructure to guide and confine magnetic beads to a sensing zone

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2011-08-01

    A novel planar conducting microstructure is proposed to transport and confine magnetic micro/nano beads to a sensing zone. Manipulation and concentration of magnetic beads are achieved by employing square-shaped conducting micro-loops, with a few hundred nano-meters in thickness, arranged in a unique fashion. These microstructures are designed to produce high magnetic field gradients which are directly proportional to the force applied to manipulate the magnetic beads. Furthermore, the size of the microstructures allows greater maneuverability and control of magnetic beads than what could be achieved by permanent magnets. The aim of the microstructures is to guide magnetic beads from a large area and confine them to a smaller area where for example quantification would take place. Experiments were performed with different concentrations of 2 μm diameter magnetic beads. Experimental results showed that magnetic beads could be successfully guided and confined to the sensing zone. © 2011 Elsevier B.V. All rights reserved.

  12. Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.

    Science.gov (United States)

    Smialek, J. L.

    1981-01-01

    The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.

  13. Microstructure analysis using SAXS/USAXS techniques

    International Nuclear Information System (INIS)

    Okuda, Hiroshi; Ochiai, Shojiro

    2010-01-01

    Introduction to small-angle X-ray scattering (SAXS) and ultra small-angle X-ray scattering (USAXS) is presented. SAXS is useful for microstructure analysis of age-hardenable alloys containing precipitates with several to several tens of nanometers in size. On the other hand, USAXS is appropriate to examine much larger microstructural heterogeneities, such as inclusions, voids, and large precipitates whose size is typically around one micrometer. Combining these two scattering methods, and sometimes also with diffractions, it is possible to assess the hierarchical structure of the samples in-situ and nondestructively, ranging from phase identification, quantitative analysis of precipitation structures upto their mesoscopic aggregates, large voids and inclusions. From technical viewpoint, USAXS requires some specific instrumentation for its optics. However, once a reasonable measurement was made, the analysis for the intensity is the same as that for conventional SAXS. In the present article, short introduction of conventional SAXS is presented, and then, the analysis is applied for a couple of USAXS data obtained for well-defined oxide particles whose average diameters are expected to be about 0.3 micrometers. (author)

  14. Microstructural analysis of Iberian expanded clay aggregates.

    Science.gov (United States)

    Bogas, J Alexandre; Mauricio, António; Pereira, M F C

    2012-10-01

    This article presents a detailed study of the microstructure of Iberian expanded clay lightweight aggregates (LWA). Other than more commonly used mercury porosimetry (MP) and water absorption methods, the experimental study involves optical microscopy, scanning electron microscopy (SEM), and microtomography (μ-CT). Pore connectivity and how it is deployed are shown to some degree, and the pore size spectrum is estimated. LWA are in general characterized by a dense outer shell up to 200 μm thick, encasing an inner cellular structure of 10-100 times bigger pore size. Aggregate pore sizes may span from some hundreds of nanometers up to over 1 mm, though the range of 1-25 μm is more typical. A noteworthy fraction of these pores is closed, and they are mainly up to 1 μm. It is also shown that macropore spatial arrangement is affected by the manufacturing process. A step forward is given to understanding how the outer shell and the inner pore network influence the mechanical and physical LWA properties, particularly the density and water absorption. The joint consideration of μ-CT and SEM seems to be the most appropriate methodology to study LWA microstructure. MP analysis is likely to distort LWA pore spectrum assessment.

  15. [Electronic and structural properties of individual nanometer-size supported metallic clusters

    International Nuclear Information System (INIS)

    Reifenberger, R.

    1993-01-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained

  16. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, R.

    1993-09-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained.

  17. Wideband waveguide loading impedance matching on the basis of photonic crystals with nanometer metal layers

    OpenAIRE

    Usanov, Dmitry A.; Skripal, A. V.; Abramov, A. V.; Bogolubov, A. S.; Skvortsov, V. S.; Merdanov, M. K.

    2009-01-01

    Theoretically shown and experimentally proven is the possibility of creating wideband matched loading on the basis of photonic crystals, composed of alternating nanometer metal and isolator layers with different electro-physical parameters.

  18. Full path compensation laser feedback interferometry for remote sensing with recovered nanometer resolutions

    Science.gov (United States)

    Xu, Ling; Tan, Yidong; Zhang, Shulian

    2018-03-01

    The accuracy of the existing laser feedback interferometry for measuring the remote target is limited to several microns due to environmental disturbances. A novel approach is presented in this paper based on the double-beam frequency-shift feedback of the laser, which can completely eliminate the dead path errors and measure the displacement or vibration with accuracy at nanometer scale even at a far measurement distance. The two beams emitted from one Nd:YVO4 crystal are incident on the measurement target and its adjacent reference surface, respectively. The reference surface could be taken from the nearby stationary object, without the need to put a reference mirror. The feedback paths and shift frequencies of the two beams are the same, so the air disturbances and the thermal effects in the way could be fully compensated. Under common room conditions, the displacement of a steel block at a distance of 10 m is measured, which proved that the system's stability is ±12 nm in 100 s and ±50 nm in 1000 s, the short-term resolution is better than 3 nm, and the linearity within the 300 mm range is 5 × 10-6 and within the 100 μm range is 1 × 10-4.

  19. Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.

  20. Hot embossing of microstructures on addition curing polydimethylsiloxane films

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Hassouneh, Suzan Sager

    2013-01-01

    are commercially available for embossing microstructures and submicron structures on elastomers like silicones in large scale production of films. The predominantly used technologies to make microscale components for microfluidic devices and microstructures on PDMS elastomer is (a) reaction injection molding, (b...

  1. Characterization and influence of deformation microstructure heterogeneity on recrystallization

    DEFF Research Database (Denmark)

    Godfrey, A.; Mishin, Oleg V.; Yu, Tianbo

    2015-01-01

    The microstructure resulting from plastic deformation of metals typically contains heterogeneity on several length scales. This is also true for samples deformed to large strains, where an important form of heterogeneity is in the variation in microstructural refinement by high angle boundaries. ...

  2. Three-dimensional multiscale analysis of degradation of nano- and micro-structure in direct methanol fuel cell electrodes after methanol starvation

    Science.gov (United States)

    Netzeband, Christian; Arlt, Tobias; Wippermann, Klaus; Lehnert, Werner; Manke, Ingo

    2016-09-01

    This study investigates the ageing effects on the microstructure of the anode catalyst layer of direct methanol fuel cells (DMFC) after complete methanol starvation. To this end the samples of two methanol-depleted membrane electrode assemblies (MEA) have been compared with a pristine reference sample. A three-dimensional characterization of the anode catalyst layer (ACL) structure on a nanometer scale has been conducted by focused ion beam (FIB)/scanning electron microscope (SEM) tomography. The FIB/SEM tomography allows for a detailed analysis of statistic parameters of micro-structured materials, such as porosity, tortuosity and pore size distributions. Furthermore, the SEM images displayed a high material contrast between the heavy catalyst metals (Pt/Ru) and the relatively light carbon support, which made it possible to map the catalyst distribution in the acquired FIB/SEM tomographies. Additional synchrotron X-ray tomographies have been conducted in order to obtain an overview of the structural changes of all the components of a section of the MEAs after methanol depletion.

  3. Influence of Milling Time on Structural and Microstructural Parameters of Ni50Ti50 Prepared by Mechanical Alloying Using Rietveld Analysis

    Directory of Open Access Journals (Sweden)

    E. Sakher

    2018-01-01

    Full Text Available Nanostructured Ni50Ti50 powders were prepared by mechanical alloying from elemental Ni and Ti micrometer-sized powders, using a planetary ball mill type Fritsch Pulverisette 7. In this study, the effect of milling time on the evolution of structural and microstructural parameters is investigated. Through Rietveld refinements of X-ray diffraction patterns, phase composition and structural/microstructural parameters such as lattice parameters, average crystallite size L, microstrain ε21/2, and stacking faults probability (SFP in the frame of MAUD software have been obtained. For prolonged milling time, a mixture of amorphous phase, NiTi-martensite (B19′, and NiTi-austenite (B2 phases, in addition to FCC-Ni(Ti and HCP-Ti(Ni solid solutions, is formed. The crystallite size decreases to the nanometer scale while the internal strain increases. It is observed that, for longer milling time, plastic deformations introduce a large amount of stacking faults in HCP-Ti(Ni rather than in FCC-Ni(Ti, which are mainly responsible for the observed large amount of the amorphous phase.

  4. A New Example of Non-Crystalline Microstructure in Metallurgy

    Science.gov (United States)

    Donnadieu, P.; Redjaïmia, A.

    1995-01-01

    We report on a non-crystalline microstructure encountered in particles that are formed during the annealing of some steels. The electron diffraction patterns taken on small areas are those of a crystalline phase but the diffraction patterns taken on larger area exhibit non-crystalline symmetry. These anomalous diffraction patterns are interpreted as the result of coherent diffraction between nanometer size domains. Observation show that a crystalline phase identified as a χ-phase structure is involved in this domain microstructure. Some of the electron diffraction pattern features suggest that an icosahedral phase might also be present. However investigations are under progress in order to check this point. Nous avons observé des particules de microstructures apériodiques dans des aciers recuits. Les diagrammes de diffraction électroniques pris sur des petits domaines dans une particule sont ceux d'une phase cristalline alors que les diagrammes de diffraction pris sur l'ensemble de la particule ne sont plus périodiques. Nous interprétons cet effet par de la diffraction coherente dans une microstructure de domaines cristallins séparés par des parois constitués d'une seconde phase. Les positions des pics de diffraction suggèrent qu'une phase quasicristalline icosaédrique est présente. Des études sont en cours pour examiner ce point.

  5. Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading.

    Science.gov (United States)

    Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter

    2016-06-22

    Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.

  6. Microstructured polymer optical fibres

    CERN Document Server

    Large, Maryanne; Barton, Geoff; van Eijkelenborg, Martijn A

    2008-01-01

    Microstructured Polymer Optical Fibres describes the optical properties of microstructured fibres, how they are made and modelled, and outlines some potential applications. These applications include areas where polymer fibres are already used, such as high-data rate transmission for Fibre-to-the Home or within cars, as well as completely new areas such as the photonic bandgap transmission of ""difficult"" wavelengths. Emphasising a conceptual understanding of the underlying physics, Microstructured Polymer Optical Fibres is clearly written, and includes numerous illustrations. It provides an

  7. Environmental Transport of Plutonium: Biogeochemical Processes at Femtomolar Concentrations and Nanometer Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-05

    The major challenge in predicting the mobility and transport of plutonium (Pu) is determining the dominant geochemical processes that control its behavior in the subsurface. The reaction chemistry of Pu (i.e., aqueous speciation, solubility, sorptivity, redox chemistry, and affinity for colloidal particles, both abiotic and microbially mediated) is particularly complicated. It is generally thought that due to its low solubility and high sorptivity, Pu migration in the environment occurs only when facilitated by transport on particulate matter (i.e., colloidal particles). Despite the recognized importance of colloid-facilitated transport of Pu, very little is known about the geochemical and biochemical mechanisms controlling Pu-colloid formation and association, particularly at femtomolar Pu concentrations observed at DOE sites.

  8. Nanodomains and nanometer-scale disorder in multiferroic bismuth ferrite single crystals

    Czech Academy of Sciences Publication Activity Database

    Jia, C.L.; Jin, L.; Wang, D.; Mi, S.B.; Alexe, M.; Hesse, D.; Reichlová, Helena; Martí, Xavier; Bellaiche, L.; Urban, K.W.

    2015-01-01

    Roč. 82, Jan (2015), s. 356-368 ISSN 1359-6454 Institutional support: RVO:68378271 Keywords : bismuth ferrite * crystal growth * high-resolution electron microscopy * atomic structure * first- principles calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015

  9. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    NARCIS (Netherlands)

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong

  10. Fabrication of Self-Cleaning, Reusable Titania Templates for Nanometer and Micrometer Scale Protein Patterning.

    Science.gov (United States)

    Moxey, Mark; Johnson, Alexander; El-Zubir, Osama; Cartron, Michael; Dinachali, Saman Safari; Hunter, C Neil; Saifullah, Mohammad S M; Chong, Karen S L; Leggett, Graham J

    2015-06-23

    The photocatalytic self-cleaning characteristics of titania facilitate the fabrication of reuseable templates for protein nanopatterning. Titania nanostructures were fabricated over square centimeter areas by interferometric lithography (IL) and nanoimprint lithography (NIL). With the use of a Lloyd's mirror two-beam interferometer, self-assembled monolayers of alkylphosphonates adsorbed on the native oxide of a Ti film were patterned by photocatalytic nanolithography. In regions exposed to a maximum in the interferogram, the monolayer was removed by photocatalytic oxidation. In regions exposed to an intensity minimum, the monolayer remained intact. After exposure, the sample was etched in piranha solution to yield Ti nanostructures with widths as small as 30 nm. NIL was performed by using a silicon stamp to imprint a spin-cast film of titanium dioxide resin; after calcination and reactive ion etching, TiO2 nanopillars were formed. For both fabrication techniques, subsequent adsorption of an oligo(ethylene glycol) functionalized trichlorosilane yielded an entirely passive, protein-resistant surface. Near-UV exposure caused removal of this protein-resistant film from the titania regions by photocatalytic degradation, leaving the passivating silane film intact on the silicon dioxide regions. Proteins labeled with fluorescent dyes were adsorbed to the titanium dioxide regions, yielding nanopatterns with bright fluorescence. Subsequent near-UV irradiation of the samples removed the protein from the titanium dioxide nanostructures by photocatalytic degradation facilitating the adsorption of a different protein. The process was repeated multiple times. These simple methods appear to yield durable, reuseable samples that may be of value to laboratories that require nanostructured biological interfaces but do not have access to the infrastructure required for nanofabrication.

  11. Atomistic study of a nanometer-scale pump based on the thermal ratchet concept

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, J. H.; Zambrano, Harvey

    In this study, a novel concept of nanoscale pump fabricated using Carbon Nanotubes (CNTs) is presented. The development of nanofluidic systems provides unprecedented possibilities for the control of biology and chemistry at the molecular level with potential applications in low energy cost devices...... of great interest in nanofluidics. Thermophoresisis the phenomenon observed when a mixture of two or more types of motile objects experience a force induced by a thermal gradient and the different types of objects respond to it differently, inducing a motion and segregation of the objects. Using molecular...

  12. Surface and grain boundary interdiffusion in nanometer-scale LSMO/BFO bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Virendra [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Gaur, Anurag, E-mail: anuragdph@gmail.com [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Choudhary, R.J.; Gupta, Mukul [UGC-DAE Consortium for Scientific Research, Indore 452 001 (India)

    2016-05-01

    Epitaxial 150 nm thick LSMO/BFO bilayer is deposited on STO (100) substrate by pulsed laser deposition, to study magnetoelectric effect. Unexpected low value of room temperature magnetization in bilayer indicates towards the possibility of interdiffusion. Further, sharp fall in the value of T{sub C} (53 K) also added our anxiety towards possible interdiffusion in BFO/LSMO system. Low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena, and the temperature-dependent interdiffusivity is obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. It has been found that the diffusivity at different temperatures follows Arrhenius-type behavior. X-ray reflection (XRR) pattern obtained for the bilayer could not be fitted in the Parratt’s formalism, which confirms the interdiffusion in it. Depth profiles of {sup 209}Bi, {sup 56}Fe ions measured by secondary ion mass spectroscope (SIMS) further substantiate the diffusion of these ions from upper BFO layer into lower LSMO layer. - Highlights: • The LSMO/BFO bilayer is deposited by PLD method. • Structural, magnetic and interfacial properties of deposited films were studied. • In this article, we have raised the problem of interdiffusion in this bilayer, which can hinder its application in devices. Therefore, we feel that our article presents important finding in the area of ceramics research.

  13. Thermoelectric voltage at a nanometer-scale heated tip point contact

    Science.gov (United States)

    Fletcher, Patrick C.; Lee, Byeonghee; King, William P.

    2012-01-01

    We report thermoelectric voltage measurements between the platinum-coated tip of a heated atomic force microscope (AFM) cantilever and a gold-coated substrate. The cantilevers have an integrated heater-thermometer element made from doped single crystal silicon, and a platinum tip. The voltage can be measured at the tip, independent from the cantilever heating. We used the thermocouple junction between the platinum tip and the gold substrate to measure thermoelectric voltage during heating. Experiments used either sample-side or tip-side heating, over the temperature range 25-275 °C. The tip-substrate contact is ˜4 nm in diameter and its average measured Seebeck coefficient is 3.4 μV K-1. The thermoelectric voltage is used to determine tip-substrate interface temperature when the substrate is either glass or quartz. When the non-dimensional cantilever heater temperature is 1, the tip-substrate interface temperature is 0.593 on glass and 0.125 on quartz. Thermal contact resistance between the tip and the substrate heavily influences the tip-substrate interface temperature. Measurements agree well with modeling when the tip-substrate interface contact resistance is 108 K W-1.

  14. A direct evidence of morphological degradation on a nanometer scale in polymer solar cells.

    Science.gov (United States)

    Schaffer, Christoph J; Palumbiny, Claudia M; Niedermeier, Martin A; Jendrzejewski, Christian; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2013-12-10

    In situ measurement of a polymer solar cell using micro grazing incidence small angle X-ray scattering (μGISAXS) and current-voltage tracking is demonstrated. While measuring electric characteristics under illumination, morphological changes are probed by μGISAXS. The X-ray beam (green) impinges on the photo active layer with a shallow angle and scatters on a 2d detector. Degradation is explained by the ongoing nanomorphological changes observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanometer-scale discernment of field emission from tungsten surface with single carbon monoxide molecule

    Science.gov (United States)

    Matsunaga, Soichiro; Suwa, Yuji; Katagiri, Souichi

    2017-12-01

    Unusual quantized beam fluctuations were found in the emission current from a cold-field emitter (CFE) operating in an extremely high vacuum of 10-10 Pa. To clarify the microscopic mechanism behind these fluctuations, we developed a new calculation method to evaluate the field emission from a heterogeneous surface under a strong electric field of 4 × 109 V/m by using the local potential distribution obtained by a first-principles calculation, instead of by using the work function. As a result of the first-principles calculations of a single molecule adsorbed on a tungsten surface, we found that dissociative adsorption of a carbon monoxide (CO) molecule enhances the emission current by changing the potential barrier in the area surrounding the C and O adatoms when these two atoms are placed at their most stable positions. It is also found that the migration of the O atom from the most stable position reduces the emission current. These types of enhancement and reduction of the emission current quantitatively explain the observed quantized fluctuations of the CFE emission current.

  16. Optical methods for characterization of surface structures on a nanometer scale

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2007-01-01

    When studying a sample with subwavelength features using conventional microscopy, the diffraction limit sets a lower bound to the resolution achievable. In this work the possiblity of circumventing the diffraction limit by employing a scanning near-field optical microscope (SNOM) to perform...... the characterization is investigated. Experimental SNOM images of the optical field distribution above a deep grating are analyzed with the purpose of identifying the grating topography, and transfer functions describing the coupling of the free-space field to the guided mode of the SNOM fiber are determined...

  17. Temperature-induced strain release via rugae on the nanometer and micrometer scale in graphene monolayer

    Czech Academy of Sciences Publication Activity Database

    Verhagen, Timotheus; Valeš, Václav; Frank, Otakar; Kalbáč, Martin; Vejpravová, Jana

    2017-01-01

    Roč. 119, Aug (2017), s. 483-491 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : graphene * wrinkle * low temperature Raman mapping * strain * doping * thermal expansion Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Physical chemistry (UFCH-W) Impact factor: 6.337, year: 2016

  18. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  19. In situ probing the interior of single bacterial cells at nanometer scale

    Science.gov (United States)

    Liu, Boyin; Hemayet Uddin, Md; Ng, Tuck Wah; Paterson, David L.; Velkov, Tony; Li, Jian; Fu, Jing

    2014-10-01

    We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB-AFM platform will help in gaining deeper insights of bacteria-drug interactions to develop potential strategies for combating multi-drug resistance.

  20. Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria

    2004-05-01

    Spectroscopic ellipsometry is used to study the optical properties of nanostructured semiconductor oxide thin films. Various examples of models for the dielectric function, based on Lorentzian oscillators combined with the Drude model, are given based on the band structure of the analyzed oxide. With this approach, the optical properties of thin films are determined independent of the dielectric functions of the corresponding bulk materials, and correlation between the optical properties and nanostructure of thin films is investigated. In particular, in order to discuss the dependence of optical constants on grain size, CeO{sub 2} nanostructured films are considered and parameterized by two-Lorentzian oscillators or two-Tauc-Lorentz model depending on the nanostructure and oxygen deficiency. The correlation among anisotropy, crystalline fraction and optical properties parameterized by a four-Lorentz oscillator model is discussed for nanocrystalline V{sub 2}O{sub 5} thin films. Indium tin oxide thin films are discussed as an example of the presence of graded optical properties related to interfacial reactivity activated by processing conditions. Finally, the example of ZnO shows the potential of ellipsometry in discerning crystal and epitaxial film polarity through the analysis of spectra and the detection of surface reactivity of the two polar faces, i.e. Zn-polarity and O-polarity.

  1. Note: fast and reliable fracture strain extraction technique applied to silicon at nanometer scale.

    Science.gov (United States)

    Passi, Vikram; Bhaskar, Umesh; Pardoen, Thomas; Sodervall, Ulf; Nilsson, Bengt; Petersson, Goran; Hagberg, Mats; Raskin, Jean-Pierre

    2011-11-01

    Simple fabrication process and extraction procedure to determine the fracture strain of monocrystalline silicon are demonstrated. Nanowires/nanoribbons in silicon are fabricated and subjected to uniaxial tensile stress along the complete length of the beams. Large strains up to 5% are measured for nanowires presenting a cross section of 50 nm × 50 nm and a length of 2.5 μm. An increase in fracture strain for silicon nanowires (NWs) with the downscaling of their volume is observed, highlighting the reduction of the defects probability as volume is decreased. © 2011 American Institute of Physics

  2. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    International Nuclear Information System (INIS)

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-01-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids. (topical review)

  3. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    Directory of Open Access Journals (Sweden)

    Hidehiro Kamiya and Motoyuki Iijima

    2010-01-01

    Full Text Available Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM. Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  4. Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography

    Science.gov (United States)

    Bonef, Bastien; Cramer, Richard; Speck, James S.

    2017-06-01

    Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.

  5. Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light

    Science.gov (United States)

    Menoni, Carmen S [Fort Collins, CO; Rocca, Jorge J [Fort Collins, CO; Vaschenko, Georgiy [San Diego, CA; Bloom, Scott [Encinitas, CA; Anderson, Erik H [El Cerrito, CA; Chao, Weilun [El Cerrito, CA; Hemberg, Oscar [Stockholm, SE

    2011-04-26

    Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.

  6. Thermoelectric voltage at a nanometer-scale heated tip point contact

    International Nuclear Information System (INIS)

    Fletcher, Patrick C; Lee, Byeonghee; King, William P

    2012-01-01

    We report thermoelectric voltage measurements between the platinum-coated tip of a heated atomic force microscope (AFM) cantilever and a gold-coated substrate. The cantilevers have an integrated heater–thermometer element made from doped single crystal silicon, and a platinum tip. The voltage can be measured at the tip, independent from the cantilever heating. We used the thermocouple junction between the platinum tip and the gold substrate to measure thermoelectric voltage during heating. Experiments used either sample-side or tip-side heating, over the temperature range 25–275 °C. The tip–substrate contact is ∼4 nm in diameter and its average measured Seebeck coefficient is 3.4 μV K −1 . The thermoelectric voltage is used to determine tip–substrate interface temperature when the substrate is either glass or quartz. When the non-dimensional cantilever heater temperature is 1, the tip–substrate interface temperature is 0.593 on glass and 0.125 on quartz. Thermal contact resistance between the tip and the substrate heavily influences the tip–substrate interface temperature. Measurements agree well with modeling when the tip–substrate interface contact resistance is 10 8 K W −1 . (paper)

  7. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Bertassoni, Luiz E; Orgel, Joseph P.R.; Antipova, Olga; Swain, Michael V [IIT; (Sydney)

    2012-07-25

    The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate.

  8. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    Science.gov (United States)

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  9. Tribological characteristics of self-assembled nanometer film ...

    Indian Academy of Sciences (India)

    the integrated circuit has affected information technology. (Anonymous 1977; Roukes 2001). However, due to the large surface area to volume to volume ratio in MEMS/NEMS devices as the size scale shrinks, currently many poten- tial applications for MEMS/NEMS are not really practical. Many studies have revealed the ...

  10. [Adsorption behavior of immobilized nanometer barium-strontium titanate for cadmium ion in water].

    Science.gov (United States)

    Zhang, Dong; Zhang, Wen-Jie; Guan, Xin; Gao, Hong; He, Hong-Bo

    2009-03-01

    Nanometer barium-strontium titanate immobilized on silica gel G was successfully prepared by the citrate acid sol-gel method and characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectrophotometer (FTIR). By means of the determination of flame atomic absorption spectrometry (FAAS), the adsorption behavior of immobilized nanometer-barium strontium titanate for cadmium ion was investigated. The results showed that the nanometer barium-strontium titanate was immobilized on the silica gel G firmly, gaining a new sort of adsorbent. And the cadmium ion studied could be quantitatively retained in the pH value range of 4-7. The adsorption behavior followed a Freundlich adsorption isotherm and a pseudo-second-order kinetic model. The thermodynamic constants of the adsorption process, such as enthalpy changes (deltaH), Gibbs free energy changes (deltaG) and entropy changes (deltaS), were evaluated. These showed that the adsorption of cadmium ion by immobilized nanometer barium-strontium titanate was endothermic and spontaneous physical process. The cadmium ion adsorbed could be completely eluted using 1 mol x L(-1) HNO3. A new method for the determination of trace cadmium ion in water based on this immobilized nanometer barium-strontium titanate preconcentration and FAAS determination was proposed. The method has been applied to the determination of trace cadmium ion in tap water and river water with satisfactory results.

  11. Fundamental Enabling Issues in Nanotechnology: Stress at the Atomic Scale

    Energy Technology Data Exchange (ETDEWEB)

    Floro, Jerrold Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Virginia, Charlottesville, VA (United States). Dept. of Materials Science and Engineering; Foiles, Stephen Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hearne, Sean Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoyt, Jeffrey John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McMaster Univ., Hamilton, ON (Canada); Seel, Steven Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emcore Corporation, Albuquerque, NM (United States); Webb, Edmund Blackburn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Morales, Alfredo Martin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2007-10-01

    To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also support the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g., continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in

  12. Continuous media with microstructure

    CERN Document Server

    2010-01-01

    This book discusses the extension of classical continuum models. To the first class addressed belong various thermodynamic models of multicomponent systems, and to the second class belong primarily microstructures created by phase transformations.

  13. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  14. Size analysis of nanometer titanium carbide in steel by using small-angle neutron scattering

    International Nuclear Information System (INIS)

    Yasuhara, Hisao; Sato, Kaoru; Toji, Yuki; Ohnuma, Masato; Suzuki, Jun-ichi; Tomota, Yo

    2010-01-01

    Utilization of nanometer size precipitates in steel is a promising technology for the developing high tensile strength steels, and it is important to analyze the size of the precipitates. Electron microscopy is a powerful method in directly determining the precipitates size, but the area observed is limited and statistical procedure is tedious. Therefore, size analysis of precipitates in steel was conducted by using small-angle neutron scattering method (SANS). Sample (0.045%C-1.8%Mn-0.2%Ti-0.004%N) with different heat treatment was used for the experiments. Size of nanometer size TiC calculated by SANS profiles agreed with that obtained by direct observation of precipitates by transmission electron microscope (TEM). We have succeeded in macroscopic and non-destructive determination of the size of nanometer-sized TiC. (author)

  15. Flip-flop design in nanometer CMOS from high speed to low energy

    CERN Document Server

    Alioto, Massimo; Palumbo, Gaetano

    2015-01-01

    This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design tradeoffs are explored in a wide range of applications and the related energy-performance targets. A wide range of existing and recently proposed Flip-Flop topologies are discussed. Theoretical foundations are provided to set the stage for the derivation of design guidelines, and emphasis is given on practical aspects and consequences of the presented results. Analytical models and derivations are introduced when needed to gai...

  16. Diffraction analysis of the microstructure of materials

    CERN Document Server

    Scardi, Paolo

    2004-01-01

    Diffraction Analysis of the Microstructure of Materials provides an overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.

  17. Experiments of Nanometer Spot Size Monitor at FETB Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry has been developed and installed in the final focus test beam (FFTB) line at SLAC. The beam experiments started in September 1993, the first fringe pattern from the monitor was observed in the beginning of April 1994, then the small vertical spot around 70 nm was observed in May 1994. The spot size monitor has been routinely used for tuning the beam optics in FFTB. Basic principle of this monitor has been well proved, and its high performance as a precise beam monitor in nanometer range has been demonstrated.

  18. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li{sub 2}BeF{sub 4}(FLiBe) salt

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Guiqiu, E-mail: guiqiuzheng@gmail.com [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); He, Lingfeng [Idaho National Laboratory, Idaho Fall, ID (United States); Carpenter, David [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Sridharan, Kumar [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI (United States)

    2016-12-15

    The microstructural developments in the near-surface regions of AISI 316 stainless steel during exposure to molten Li{sub 2}BeF{sub 4} (FLiBe) salt have been investigated with the goal of using this material for the construction of the fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). Tests were conducted in molten FLiBe salt (melting point: 459 °C) at 700 °C in graphite crucibles and 316 stainless steel crucibles for exposure duration of up to 3000 h. Corrosion-induced microstructural changes in the near-surface regions of the samples were characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS capabilities. Intergranular corrosion attack in the near-surface regions was observed with associated Cr depletion along the grain boundaries. High-angle grain boundaries (15–180°) were particularly prone to intergranular attack and Cr depletion. The depth of attack extended to the depths of 22 μm after 3000-h exposure for the samples tested in graphite crucible, while similar exposure in 316 stainless steel crucible led to the attack depths of only about 11 μm. Testing in graphite crucibles led to the formation of nanometer-scale Mo{sub 2}C, Cr{sub 7}C{sub 3} and Al{sub 4}C{sub 3} particle phases in the near-surface regions of the material. The copious depletion of Cr in the near-surface regions induced a γ-martensite to α-ferrite phase (FeNi{sub x}) transformation. Based on the microstructural analysis, a thermal diffusion controlled corrosion model was developed and experimentally validated for predicting long-term corrosion attack depth.

  19. Microstructural imaging of human neocortex in vivo.

    Science.gov (United States)

    Edwards, Luke J; Kirilina, Evgeniya; Mohammadi, Siawoosh; Weiskopf, Nikolaus

    2018-03-24

    The neocortex of the human brain is the seat of higher brain function. Modern imaging techniques, chief among them magnetic resonance imaging (MRI), allow non-invasive imaging of this important structure. Knowledge of the microstructure of the neocortex has classically come from post-mortem histological studies of human tissue, and extrapolations from invasive animal studies. From these studies, we know that the scale of important neocortical structure spans six orders of magnitude, ranging from the size of axonal diameters (microns), to the size of cortical areas responsible for integrating sensory information (centimetres). MRI presents an opportunity to move beyond classical methods, because MRI is non-invasive and MRI contrast is sensitive to neocortical microstructure over all these length scales. MRI thus allows inferences to be made about neocortical microstructure in vivo, i.e. MRI-based in vivo histology. We review recent literature that has applied and developed MRI-based in vivo histology to probe the microstructure of the human neocortex, focusing specifically on myelin, iron, and neuronal fibre mapping. We find that applications such as cortical parcellation (using R 1 maps as proxies for myelin content) and investigation of cortical iron deposition with age (using R 2 * maps) are already contributing to the frontiers of knowledge in neuroscience. Neuronal fibre mapping in the cortex remains challenging in vivo, but recent improvements in diffusion MRI hold promise for exciting applications in the near future. The literature also suggests that utilising multiple complementary quantitative MRI maps could increase the specificity of inferences about neocortical microstructure relative to contemporary techniques, but that further investment in modelling is required to appropriately combine the maps. In vivo histology of human neocortical microstructure is undergoing rapid development. Future developments will improve its specificity, sensitivity, and

  20. Microstructural evolution under high temperature irradiation: fundamental aspects

    International Nuclear Information System (INIS)

    Martin, G.; Valentin, P.

    1984-01-01

    In view of the impossibility to propose theoretically established scaling laws for extrapolating microstructural evolutions to unknown irradiation conditions, a full modelization of microstructural evolution at the atomistic level cannot be avoided. We briefly review the main models available for describing: defect balance under irradiation, the nucleation of clusters of various types, the development of each of the components of the microstructure, synergistic effects among the latter. Attention is called on the problems which remain to be solved at each step. In particular, the swelling incubation phenomenon is just being studied from the fundamental viewpoint. A table of available relevant observations thereof is given. The existence of dose-rate thresholds accross which microstructural evolution undergoes a qualitative change is stressed. Such thresholds call for a detailed modelization of microstructural evolution in order to propose safe extrapolation techniques [fr

  1. Quantification of microstructural features in α/β titanium alloys

    International Nuclear Information System (INIS)

    Tiley, J.; Searles, T.; Lee, E.; Kar, S.; Banerjee, R.; Russ, J.C.; Fraser, H.L.

    2004-01-01

    Mechanical properties of α/β Ti alloys are closely related to their microstructure. The complexity of the microstructural features involved makes it rather difficult to develop models for predicting properties of these alloys. Developing predictive rules-based models for α/β Ti alloys requires a huge database consisting of quantified microstructural data. This in turn requires the development of rigorous stereological procedures capable of quantifying the various microstructural features of interest imaged using optical and scanning electron microscopy (SEM) micrographs. In the present paper, rigorous stereological procedures have been developed for quantifying four important microstructural features in these alloys: thickness of Widmanstaetten α laths, colony scale factor, prior β grain size, and volume fraction of Widmanstaetten α laths

  2. Fracture mechanics and microstructures

    International Nuclear Information System (INIS)

    Gee, M.G.; Morrell, R.

    1986-01-01

    The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness

  3. Microstructure-mediated Optical Effects in Southern African Snakes

    Directory of Open Access Journals (Sweden)

    Singh Ishan

    2017-01-01

    Full Text Available The scales of the African Viper Bitis arietans were tested for optical effects. Spectral intensity was recorded at incident angles over the visible spectrum for dark, pale, and ventral scale regions. The lowest spectral intensity recordings were associated with scales which have the greatest level of micro-structuring. Our results indicate that scale appearance in B. arietans is a product of microstructure-mediated optical effects. The optical effect may play a role in improving the ecological performance of the snake in its natural environment.

  4. Microstructure-mediated Optical Effects in Southern African Snakes

    Science.gov (United States)

    Singh, Ishan; Alexander, Graham

    2017-03-01

    The scales of the African Viper Bitis arietans were tested for optical effects. Spectral intensity was recorded at incident angles over the visible spectrum for dark, pale, and ventral scale regions. The lowest spectral intensity recordings were associated with scales which have the greatest level of micro-structuring. Our results indicate that scale appearance in B. arietans is a product of microstructure-mediated optical effects. The optical effect may play a role in improving the ecological performance of the snake in its natural environment.

  5. Effects of 810-nanometer diode laser as an adjunct to mechanical ...

    African Journals Online (AJOL)

    Effects of 810-nanometer diode laser as an adjunct to mechanical periodontal treatment on clinical periodontal parameters and gingival crevicular fluid ... Plaque index, gingival index (GI), bleeding on probing (BoP), probing depth (PD), clinical attachment level and gingival recession were assessed at baseline and 8 weeks ...

  6. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  7. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    Science.gov (United States)

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  8. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  9. Nanometer range closed-loop control of a stepper micro-motor for data storage

    NARCIS (Netherlands)

    Patrascu, M.; Stramigioli, Stefano; de Boer, Meint J.; Krijnen, Gijsbertus J.M.

    2007-01-01

    We present a nanometer range, closed-loop control study for MEMS stepper actuators. Although generically applicable to other types of stepper motors, the control design presented here was particularly intended for one dimensional shuffle actuators fabricated by surface micromachining technology. The

  10. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  11. Sub wavelength Microstructures Fabrication by Self-Organization Processes in Photopolymerizable Nano composite

    International Nuclear Information System (INIS)

    Denisyuk, I.Yu.; Sobeshuk, N.O.; Burunkova, J.A.; Vorzobova, N.D.

    2012-01-01

    This paper describes our research results on nanometers sizes sub wavelength nano structure fabrication by UV curing of special nano composite material with self-organization and light self-focusing effects. For this purpose, special UV curable nano composite material with a set of effects was developing: light self-focusing in the photo polymer with positive refractive index change, self-organization based on photo-induced nanoparticles transportation, and oxygen-based polymerization threshold. Both holographic and projection lithography writing methods application for microstructure making shows geometrical optical laws perturbation as result of nano composite self-organization effects with formation of nanometers-sized high-aspect-ratio structures. Obtained results will be useful for diffraction limit overcoming in projection lithography as well as for deep lithography technique.

  12. Control of microstructure during hot working of zirconium alloys

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Banerjee, S.

    2005-01-01

    Hot working is considered to be the most important step involved in the fabrication of zirconium alloys for nuclear reactor applications for two reasons: i) the scale of the microstructure and texture of the final product is decided at this stage and ii) the hot deformed microstructure provides a suitable starting microstructure for the subsequent fabrication steps. The resultant microstructure in turn controls the properties of the final product. In order to obtain final product with a suitable microstructure and with specified mechanical properties on a repeatable basis the control of microstructure during hot working is of paramount importance. This is usually done by studying the constitutive behaviour of the material under hot working conditions and by constructing processing maps. In the latter method, strain rate sensitivity is mapped as a function of temperature and strain rate to delineate domains within the bounds of which a specific deformation mechanism dominates. Detail microstructural analysis is then carried out on the samples deformed within the domains. Using this methodology, processing maps have been constructed for various zirconium alloys. These maps have been found to be very useful for optimizing the hot workability and control of microstructure of zirconium alloys. (author)

  13. Microstructure of irradiated materials

    International Nuclear Information System (INIS)

    Robertson, I.M.

    1995-01-01

    The focus of the symposium was on the changes produced in the microstructure of metals, ceramics, and semiconductors by irradiation with energetic particles. the symposium brought together those working in the different material systems, which revealed that there are a remarkable number of similarities in the irradiation-produced microstructures in the different classes of materials. Experimental, computational and theoretical contributions were intermixed in all of the sessions. This provided an opportunity for these groups, which should interact, to do so. Separate abstracts were prepared for 58 papers in this book

  14. Hierarchical microstructures in CZT

    International Nuclear Information System (INIS)

    Sundaram, S.K.; Henager, C.H.; Edwards, D.J.; Schemer-Kohrn, A.L.; Bliss, M.; Riley, B.R.; Toloczko, M.B.; Lynn, K.G.

    2011-01-01

    Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.

  15. The Synergistic Effect of Leukocyte Platelet-Rich Fibrin and Micrometer/Nanometer Surface Texturing on Bone Healing around Immediately Placed Implants: An Experimental Study in Dogs

    Science.gov (United States)

    Neiva, Rodrigo F.; Gil, Luiz Fernando; Tovar, Nick; Janal, Malvin N.; Marao, Heloisa Fonseca; Pinto, Nelson; Coelho, Paulo G.

    2016-01-01

    Aims. This study evaluated the effects of L-PRF presence and implant surface texture on bone healing around immediately placed implants. Methods. The first mandibular molars of 8 beagle dogs were bilaterally extracted, and implants (Blossom™, Intra-Lock International, Boca Raton, FL) were placed in the mesial or distal extraction sockets in an interpolated fashion per animal. Two implant surfaces were distributed per sockets: (1) dual acid-etched (DAE, micrometer scale textured) and (2) micrometer/nanometer scale textured (Ossean™ surface). L-PRF (Intraspin system, Intra-Lock International) was placed in a split-mouth design to fill the macrogap between implant and socket walls on one side of the mandible. The contralateral side received implants without L-PRF. A mixed-model ANOVA (at α = 0.05) evaluated the effect of implant surface, presence of L-PRF, and socket position (mesial or distal), individually or in combination on bone area fraction occupancy (BAFO). Results. BAFO values were significantly higher for the Ossean relative to the DAE surface on the larger mesial socket. The presence of L-PRF resulted in higher BAFO. The Ossean surface and L-PRF presence resulted in significantly higher BAFO. Conclusion. L-PRF and the micro-/nanometer scale textured surface resulted in increased bone formation around immediately placed implants. PMID:28042577

  16. Wafer scale imprint uniformity evaluated by LSPR spectroscopy: a high volume characterization method for nanometer scale structures

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel Nilsson; Vig, Asger Laurberg

    2012-01-01

    numerical simulations of imprinted structures characterized by atomic force microscopy. There is a fair agreement between the two methods and the simulations enable the translation of optical spectra to critical dimensions of the physical structures, a concept known from scatterometry. The results...... demonstrate the potential of LSPR spectroscopy as an alternative characterization method to scanning electron microscopy, atomic force microscopy and scatterometry....

  17. Recrystallization microstructure modelling from superimposed ...

    Indian Academy of Sciences (India)

    The recovered cold rolled microstructure obtained from orientation image microstructure of Al–4%Mg–0.5%Mn alloy (AA5182 alloy) was superimposed on the grid of cellular automata based microstructure model. The Taylor factors of deformed/cold rolled orientations were considered as the driving force for recrystallization.

  18. Nanometer-long Ge-imogolite nanotubes cause sustained lung inflammation and fibrosis in rats.

    Science.gov (United States)

    van den Brule, Sybille; Beckers, Emilie; Chaurand, Perrine; Liu, Wei; Ibouraadaten, Saloua; Palmai-Pallag, Mihaly; Uwambayinema, Francine; Yakoub, Yousof; Avellan, Astrid; Levard, Clément; Haufroid, Vincent; Marbaix, Etienne; Thill, Antoine; Lison, Dominique; Rose, Jérôme

    2014-12-14

    Ge-imogolites are short aluminogermanate tubular nanomaterials with attractive prospected industrial applications. In view of their nano-scale dimensions and high aspect ratio, they should be examined for their potential to cause respiratory toxicity. Here, we evaluated the respiratory biopersistence and lung toxicity of 2 samples of nanometer-long Ge-imogolites. Rats were intra-tracheally instilled with single wall (SW, 70 nm length) or double wall (DW, 62 nm length) Ge-imogolites (0.02-2 mg/rat), as well as with crocidolite and the hard metal particles WC-Co, as positive controls. The biopersistence of Ge-imogolites and their localization in the lung were assessed by ICP-MS, X-ray fluorescence, absorption spectroscopy and computed micro-tomography. Acute inflammation and genotoxicity (micronuclei in isolated type II pneumocytes) was assessed 3 d post-exposure; chronic inflammation and fibrosis after 2 m. Cytotoxic and inflammatory responses were shown in bronchoalveolar lavage 3 d after instillation with Ge-imogolites. Sixty days after exposure, a persistent dose-dependent inflammation was still observed. Total lung collagen, reflected by hydroxyproline lung content, was increased after SW and DW Ge-imogolites. Histology revealed lung fibre reorganization and accumulation in granulomas with epithelioid cells and foamy macrophages and thickening of the alveolar walls. Overall, the inflammatory and fibrotic responses induced by SW and DW Ge-imogolites were more severe (on a mass dose basis) than those induced by crocidolite. A persistent fraction of Ge-imogolites (15% of initial dose) was mostly detected as intact structures in rat lungs 2 m after instillation and was localized in fibrotic alveolar areas. In vivo induction of micronuclei was significantly increased 3 d after SW and DW Ge-imogolite instillation at non-inflammatory doses, indicating the contribution of primary genotoxicity. We showed that nm-long Ge-imogolites persist in the lung and promote

  19. The leak microstructure

    Indian Academy of Sciences (India)

    The capabilities of a new microstructure, anode point based, for the detection of gas ionizing radiations are presented. For every single detected ionizing radiation it gives a pair of 'induced' charges (anodic and cathodic) of the same amount (pulses of the same amplitudes), of opposite sign, with the same collection time and ...

  20. Solidification microstructure development

    Indian Academy of Sciences (India)

    Unknown

    Abstract. In the present article, evolution of microstructure during solidi- fication, as a function of various parameters, is discussed. Macrosegregation is described as being due to insufficient diffusivity of solute in the solid. Pattern formation is discussed in the light of instabilities at the solidification growth front. An overview of ...

  1. Dynamic Microstructure Design Consortium

    Science.gov (United States)

    2011-03-23

    multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the...can alter the residual stress distribution 13. The present work ex- plores how short-range microplastic deformation during cyclic loading promotes

  2. Quantifying brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Novikov, Dmitry S.; Jespersen, Sune N.; Kiselev, Valerij G.

    2016-01-01

    We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along the three ma...... on the future research directions which can open exciting possibilities for developing markers of pathology and development based on methods of studying mesoscopic transport in disordered systems....

  3. Microstructural evolution in inhomogeneous elastic media

    International Nuclear Information System (INIS)

    Jou, H.J.; Leo, P.H.; Lowengrub, J.S.

    1997-01-01

    We simulate the diffusional evolution of microstructures produced by solid state diffusional transformations in elastically stressed binary alloys in two dimensions. The microstructure consists of arbitrarily shaped precipitates embedded coherently in an infinite matrix. The precipitate and matrix are taken to be elastically isotropic, although they may have different elastic constants (elastically inhomogeneous). Both far-field applied strains and mismatch strains between the phases are considered. The diffusion and elastic fields are calculated using the boundary integral method, together with a small scale preconditioner to remove ill-conditioning. The precipitate-matrix interfaces are tracked using a nonstiff time updating method. The numerical method is spectrally accurate and efficient. Simulations of a single precipitate indicate that precipitate shapes depend strongly on the mass flux into the system as well as on the elastic fields. Growing shapes (positive mass flux) are dendritic while equilibrium shapes (zero mass flux) are squarish. Simulations of multiparticle systems show complicated interactions between precipitate morphology and the overall development of microstructure (i.e., precipitate alignment, translation, merging, and coarsening). In both single and multiple particle simulations, the details of the microstructural evolution depend strongly o the elastic inhomogeneity, misfit strain, and applied fields. 57 refs., 24 figs

  4. Tracing temperature in a nanometer size region in a picosecond time period.

    Science.gov (United States)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  5. A differential Michelson interferometer with orthogonal single frequency laser for nanometer displacement measurement

    International Nuclear Information System (INIS)

    Yan, Liping; Chen, Benyong; Wang, Bin

    2017-01-01

    A novel differential Michelson laser interferometer is proposed to eliminate the influence of environmental fluctuations for nanometer displacement measurement. This differential interferometer consists of two homodyne interferometers in which two orthogonal single frequency beams share common reference arm and partial measurement arm. By modulating the displacement of the common reference arm with a piezoelectric transducer, the common-mode displacement drift resulting from the environmental disturbances can be well suppressed and the measured displacement as differential-mode displacement signal is achieved. In addition, a phase difference compensation method is proposed for accurately determining the phase difference between interference signals by correcting the time interval according to the average speed in one cycle of interference signal. The nanometer displacement measurement experiments were performed to demonstrate the effectiveness and feasibility of the proposed interferometer and show that precision displacement measurement with standard deviation less than 1 nm has been achieved. (paper)

  6. Promoting Junior High Students’ Situational Interests With Multiple Teaching Strategies in Informal Nanometer-Related Curricula

    OpenAIRE

    Jui-Chou Cheng; Jeng-Fung Hung; Tai-Chu Huang

    2013-01-01

    Student interest plays a vital role in science learning. In particular, junior high students in Taiwan showed higher interest in informal than formal science learning. Thus, this study investigated the relationship of junior high students’ situational interest and multiple teaching strategies in informal nanometer-related curricula and the source of situational interest. Two questionnaires were administered to 110 students and semi–structured interviews of selected students were conducted. Th...

  7. Small-angle neutron scattering study of magnetic microstructures in Co-Cr films

    International Nuclear Information System (INIS)

    Suzuki, J.; Morii, Y.; Maeda, Y.

    1998-01-01

    We report a small-angle neutron scattering (SANS) study of the influence of compositional separation (CS) on the magnetic microstructure of sputtered Co-22 at% Cr thin films deposited at substrate temperatures (T S ) of 40-400 C. Using vibrating sample magnetometry and nuclear magnetic resonance, we observed that CS producing a Co-enriched component develops as T S increases and becomes most prominent at around 250 C with a maximum saturation magnetization. At T S over 400 C compositional homogenization occurs. The SANS spectra show that all the films exhibit much larger scattering cross-sections than that of a compositionally homogeneous Co-22 at% Cr bulk alloy sample. This indicates that CS promotes both magnetic and chemical microstructures in the thin films. The SANS spectra are observed to change systematically with the variation in T S . An analysis of these spectra suggests that CS produces in-grain columnar magnetic microstructures with small sizes of several nanometers at T S of 40-200 C, and these microstructures become particulate at T S of 300 and 400 C, where compositional homogenization occurs. It is shown that T S is a critical factor in the formation of the magnetic microstructures. (orig.)

  8. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    Science.gov (United States)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  9. Nanometer-sized emissions from municipal waste incinerators: A qualitative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David R., E-mail: david.r.johnson@ghd.com

    2016-12-15

    Municipal waste incinerators (MWI) are beneficial alternatives to landfills for waste management. A recent constituent of concern in emissions from these facilities is incidental nanometer-sized particles (INP{sub MWI}), i.e., particles smaller than 1 micrometer in size that may deposit in the deepest parts of the lungs, cross into the bloodstream, and affect different regions of the body. With limited data, the public may fear INP{sub MWI} due to uncertainty, which may affect public acceptance, regulatory permitting, and the increased lowering of air quality standards. Despite limited data, a qualitative risk assessment paradigm can be applied to determine the relative risk due to INP{sub MWI} emissions. This review compiles existing data on nanometer-sized particle generation by MWIs, emissions control technologies used at MWIs, emission releases into the atmosphere, human population exposure, and adverse health effects of nanometer-sized particles to generate a qualitative risk assessment and identify data gaps. The qualitative risk assessment conservatively concludes that INP{sub MWI} pose a low to moderate risk to individuals, primarily due to the lack of relevant toxicological data on INP{sub MWI} mixtures in ambient particulate matter.

  10. Obtaining of iron particles of nanometer size in a natural zeolite

    International Nuclear Information System (INIS)

    Xingu C, E. G.

    2013-01-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  11. Identification of microstructures

    International Nuclear Information System (INIS)

    Padilha, A.F.; Ambrozio Filho, F.

    1984-01-01

    The identification of phases in a material can require the utilization of several techniques. The most used technique and discussed are: optical microscope, scanning electron microscope, transmission electron microscope, X-ray diffraction and 'in-situ' chemical analysis of the phases. The microstructures were classified, in according to the size and phase volumetric fraction, in four types. For each type the most appropriate techniques for identifying the phases are discussed. (E.G.) [pt

  12. The leak microstructure

    Indian Academy of Sciences (India)

    The complete lack of insulating materials in the active volume of this microstructure avoids problems of charging-up and makes stable and repeatable its behavior. It is possible to observe primary avalanches with a size of more than 2.5 × 107 electrons (4 pC), which give current pulses with a peak of more than 0.26 mA on ...

  13. Role of Microstructure in High Temperature Oxidation.

    Science.gov (United States)

    1980-05-01

    the predominent oxide is CuO . The scale thickening and microstructural evolution of CuO formed under these conditions are similar to the oxidation...the growing oxide scale. Thus, pores become surrounded by NiO. The NiO matrix as a p-type semiconductor carries a gradient of nickel ion concentration...of CuO was observed. This CuO layer could just be 148 resolved at a magnification of 1000x. For the most part, the Cu20 consisted of columnar grains

  14. Microstructure and Temperature Stability of APFO-3:PCBM Organic Photovoltaic Blends

    OpenAIRE

    Bergqvist, Jonas

    2010-01-01

    In this thesis, the microstructure of organic photovoltaic APFO-3:PC61BM bulk-heterojunction blends was examined. Earlier studies have focused on the microstructure after spin coating. This thesis aims to give a better insight into microstructural degradation as the films are annealed above the glass transition temperature, Tg, and the mixture approaches thermodynamic equilibrium. Electro- and photoluminescence studies indicate that the polymer and PC61BM are intermixed on a scale shorter tha...

  15. Mechanisms of microstructural changes of fuel under irradiation

    International Nuclear Information System (INIS)

    Garcia, P.; Carlot, G.; Dorado, B.; Maillard, S.; Sabathier, C.; Martin, G.; Oh, J.Y.; Welland, M.J.

    2015-01-01

    Nuclear fuels are subjected to high levels of radiation damage mainly due to the slowing of fission fragments, which results in substantial modifications of the initial fuel microstructure. Microstructure changes alter practically all engineering fuel properties such as atomic transport or thermomechanical properties so understanding these changes is essential to predicting the performance of fuel elements. Also, with increasing burn-up, the fuel drifts away from its initial composition as the fission process produces new chemical elements. Because nuclear fuels operate at high temperature and usually under high-temperature gradients, damage annealing, foreign atom or defect clustering and migration occur on multiple time and length scales, which make long-term predictions difficult. The end result is a fuel microstructure which may show extensive differences on the scale of a single fuel pellet. The main challenge we are faced with is, therefore, to identify the phenomena occurring on the atom scale that are liable to have macroscopic effects that will determine the microstructure changes and ultimately the life-span of a fuel element. One step towards meeting this challenge is to develop and apply experimental or modelling methods capable of connecting events that occur over very short length and timescales to changes in the fuel microstructure over engineering length and timescales. In the first part of this chapter, we provide an overview of some of the more important microstructure modifications observed in nuclear fuels. The emphasis is placed on oxide fuels because of the extensive amount of data available in relation to these materials under neutron or ion irradiation. When possible and relevant, the specifics of other types of fuels such as metallic or carbide fuels are alluded to. Throughout this chapter but more specifically in the latter part, we attempt to give examples of how modelling and experimentation at various scales can provide us with

  16. Characterization of the hierarchical microstructure of a Ni-Al-Ti model alloy; Charakterisierung der hierarchischen Mikrostruktur einer Ni-Al-Ti Modell-Legierung

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Florian

    2014-02-28

    Phase separation of γ{sup '} precipitates determines the microstructure and mechanical properties of nickel-based superalloys. Upon ageing, γ spheres form inside ordered (L1{sub 2}) γ{sup '} precipitates, undergo a morphological change to plates and finally split the γ{sup '} precipitates. To clarify the identity of the insufficiently characterized γ particles and to elucidate their influence on the evolution of the microstructure and the mechanical properties, differently heat treated samples of a Ni-Al-Ti modell alloy were investigated from the micrometer to the atomic scale. The single crystalline cast material was broadly characterized by means of light and scanning electron microscopy, the laue method (back-reflection), differential scanning calorimetry as well as electron probe microanalysis. Dendritic segregations were found, whereas the dendrite cores show an enrichment in nickel and aluminum and in turn the interdendritic regions show an enrichment in titanium. An adequate combination of temperature and time was determined on the basis of quantitative analyses after different homogenization treatments. The evolution of the hierarchical microstructure was investigated on the nanometer scale by means of transmission electron microscopy and on the atomic scale with atom probe tomography. The combined analyses reveal that Ni-rich clusters form within the γ{sup '} precipitates during the early stages of phase separation. These Ni-rich clusters coalesce and thereby form γ spheres which undergo a morphological change to plates accompanied by a chemical evolution. In the beginning the γ spheres are located well within the metastable γ + γ{sup '} two-phase region and later, after the morphological change, achieve the equilibrium composition of the γ phase. Furthermore the involved energies were considered in order to elucidate the driving forces for the phase separation of γ{sup '} precipitates. A correlation between the

  17. Microstructural description of shear-thickening suspensions

    Directory of Open Access Journals (Sweden)

    Singh Abhinendra

    2017-01-01

    Full Text Available Dynamic particle-scale numerical simulations are used to study the variation of microstructure with shear stress during shear thickening in dense non-Brownian suspensions. The microscale information is used to characterize the differences between the shear thickened (frictional and non-thickened (lubricated, frictionless states. Here, we focus on the force and contact networks and study the evolution of associated anisotropies with increase in shear stress. The force and contact networks are both more isotropic in the shear-thickened state than in non-thickened state. We also find that both force and structural anisotropies are rate independent for both low and high stress, while they are rate (or stress dependent for the intermediate stress range where the shear thickening occurs. This behavior is similar to the evolution of viscosity with increasing stress, showing a clear correlation between the microstructure and the macroscopic rheology.

  18. Photosensitizing effects of nanometer TiO2 on chlorothalonil photodegradation in aqueous solution and on the surface of pepper.

    Science.gov (United States)

    Tan, Yong Qiang; Xiong, Hai Xia; Shi, Tao Zhong; Hua, Ri Mao; Wu, Xiang Wei; Cao, Hai Qun; Li, Xue De; Tang, Jun

    2013-05-29

    The present study examined the effects of anatase nanometer TiO2 on photochemical degradation of chlorothalonil in aqueous solution and on the plant surface. Results showed that nanometer TiO2 exhibited a strong photosensitizing effect on the degradation of chlorothalonil both in aqueous solution and on the surface of green pepper. The photosensitization rate was the highest in the sunlight compared to illumination under high-pressure mercury and UV lamps. Use of distinct hydroxyl radical scavengers indicated that nanometer TiO2 acted by producing hydroxyl radicals with strong oxidizing capacity. Notably, nanometer TiO2 facilitated complete photodegradation of chlorothalonil with no detectable accumulation of the intermediate chlorothalonil-4-hydroxy. Nanometer TiO2 was also active on the surface of green pepper under natural sunlight both inside and outside of plastic greenhouse. These results together suggest that nanometer TiO2 can be used as a photosensitizer to accelerate degradation of the pesticides under greenhouse conditions.

  19. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    and photonic crystal microcavity. In chapter 4 a general theory based on a Green's tensor formalism is put forward for spontaneous emission in active dielectric microstructures, and an example is given whre the method is applied to a fiber amplifier. The Green's tensor in chapter 4 is constructed a a summation...... over a biorthogonal set of electromagnetic modes. An alternative method based on a Lippmann-Schwinger type integral equation is presented in chapter 5 for the construction of the Green's tensor and calculation of emission of radiation by sources. The integral equation approach is applied to calculate...

  20. Microstructure evolution during irradiation

    International Nuclear Information System (INIS)

    Robertson, I.M.; Was, G.S.; Hobbs, L.W.; Diaz de la Rubia, T.

    1997-01-01

    The symposium focused on the microstructural changes produced in semiconductors, metals, ceramics and polymers by irradiation with energetic particles. The symposium provided an opportunity to bring together those working in different materials systems and revealed that there are a remarkable number of similarities in the changes produced by irradiation in the different classes of materials. Experimental, computational and theoretical contributions were intermixed throughout the sessions, which provided an opportunity for these groups to interact. Separate abstracts were prepared for most papers in this volume

  1. Nano-scale ZnO coating for reduction of biofilm formation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program will develop a ceramic coating with surface features, ranging from nanometer to micrometer size-scale, that will be optimized to prevent the...

  2. Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer.

    Science.gov (United States)

    Isbaner, Sebastian; Karedla, Narain; Kaminska, Izabela; Ruhlandt, Daja; Raab, Mario; Bohlen, Johann; Chizhik, Alexey; Gregor, Ingo; Tinnefeld, Philip; Enderlein, Jörg; Tsukanov, Roman

    2018-03-27

    Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.

  3. Processes proceeding in high-energy systems comprising nanodimensional aluminum and other nanometals

    Science.gov (United States)

    Komarov, V. F.; Komarova, M. V.; Vorozhtsov, A. B.; Lerner, M. I.; Domashenko, V. V.

    2013-09-01

    Results of experimental investigations of nanodimensional titanium (Ti), aluminum (Al), nickel (Ni), iron (Fe), zinc (Zn), and copper (Cu) powder interaction in high-energy condensed systems (HECSs) comprising a tetrazole polymer solution in nitroethers are presented. The main structural changes in such HECSs during their production and implementation are demonstrated. It is demonstrated that structural transformations are due to electrochemical reactions in the composites. The probability of forming intermetallic compounds in the high-energy systems comprising nanoaluminum and others nanometals is discussed together with the influence of intermetallides on the combustion and detonation.

  4. Electron transport in nanometer GaAs structure under radiation exposure

    CERN Document Server

    Demarina, N V

    2002-01-01

    One investigates into effect of neutron and proton irradiation on electron transport in nanometer GaAs structures. Mathematical model takes account of radiation defects via introduction of additional mechanisms od scattering of carriers at point defects and disordered regions. To investigate experimentally into volt-ampere and volt-farad characteristics one used a structure based on a field-effect transistor with the Schottky gate and a built-in channel. Calculation results of electron mobility, drift rate of electrons, time of energy relaxation and electron pulse are compared with the experimental data

  5. Fluorescent gel particles in the nanometer range for detection of metabolites in living cells

    DEFF Research Database (Denmark)

    Almdal, K.; Sun, H.; Poulsen, A.K.

    2006-01-01

    In this present work a research program that aims at the development of sensor particles based on ratiometric detection of fluorescence from two dyes was embarked on. Such particles can in principle be used to achieve spatially and time resolved measurements of metabolite concentrations in living...... micelles in oil microemulsions. Typical sizes of the particles are tens of nanometers. Characterization methods for such particles based on size exclusion chromatography, photon correlation spectroscopy, scanning electron microscopy, and atomic force microscopy have been developed. The stability...

  6. The nature of the Fe-graphene interface at the nanometer level

    Energy Technology Data Exchange (ETDEWEB)

    Cattelan, Mattia, E-mail: mattia.cattelan.1@studenti.unipd.it; Artiglia, Luca; Favaro, Marco; Agnoli, Stefano, E-mail: mattia.cattelan.1@studenti.unipd.it; Granozzi, Gaetano [Department of Chemical Sciences, University of Padova, via Marzolo 1, 35135, Padova (Italy); Peng, Guowen; Roling, Luke T.; Mavrikakis, Manos [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Cavaliere, Emanuele; Gavioli, Luca [Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica, via dei Musei 41, I-25121 Brescia (Italy); Barinov, Alexey [Sincrotrone Trieste S.C.p.A., Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy); Píš, Igor [Sincrotrone Trieste S.C.p.A., Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy); Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy); Nappini, Silvia; Magnano, Elena; Bondino, Federica [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy)

    2016-07-27

    The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This work reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, and scanning tunnelling microscopy. Quasi-freestanding graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.

  7. Extreme Wetting-Resistant Multiscale Nano-/Microstructured Surfaces for Viscoelastic Liquid Repellence

    OpenAIRE

    Chunglok, Aoythip; Muensit, Nantakan; Daengngam, Chalongrat

    2016-01-01

    We demonstrate exceptional wetting-resistant surfaces capable of repelling low surface tension, non-Newtonian, and highly viscoelastic liquids. Theoretical analysis and experimental result confirm that a higher level of multiscale roughness topography composed of at least three structural length scales, ranging from nanometer to supermicron sizes, is crucial for the reduction of liquid-solid adhesion hysteresis. With Cassie-Baxter nonwetting state satisfied at all roughness length scales, the...

  8. About the leak microstructures

    Science.gov (United States)

    Lombardi, M.; Guoxiang, H. Huo-J.; Lombardi, F. S.

    2001-04-01

    The capabilities of a new microstructure, anode point based, for the detection of gas ionizing radiations are presented. For every single detected ionizing radiation it gives a pair of "induced" charges (anodic and cathodic) of the same amount (pulses of the same amplitudes), of opposite sign, with the same collection time and essentially in time coincidence, that are proportional to the primary ionization collected. Each pulse of a pair gives the same energy and timing information, thus one can be used for these information and the other for the position. The complete lack of insulating materials in the active volume of this microstructure avoids problems of charging-up and makes its behaviour stable and repeatable. Primary avalanches with a size of more than 2.5×10 7 electrons (4 pC) giving current pulses with a peak of more than 0.26 mA on 100 Ω and about 30 ns duration are possible with 5.9 keV X-rays of 55Fe working in proportional region and in isobutane gas. Single electrons emitted by a heated filament ( EcPoison Superfish and Mafia programs, are presented.

  9. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  10. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  11. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    Science.gov (United States)

    Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  12. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.

    Science.gov (United States)

    Kim, Kyeongtae; Jeong, Wonho; Lee, Woochul; Reddy, Pramod

    2012-05-22

    Understanding energy dissipation at the nanoscale requires the ability to probe temperature fields with nanometer resolution. Here, we describe an ultra-high vacuum (UHV)-based scanning thermal microscope (SThM) technique that is capable of quantitatively mapping temperature fields with ∼15 mK temperature resolution and ∼10 nm spatial resolution. In this technique, a custom fabricated atomic force microscope (AFM) cantilever, with a nanoscale Au-Cr thermocouple integrated into the tip of the probe, is used to measure temperature fields of surfaces. Operation in an UHV environment eliminates parasitic heat transport between the tip and the sample enabling quantitative measurement of temperature fields on metal and dielectric surfaces with nanoscale resolution. We demonstrate the capabilities of this technique by directly imaging thermal fields in the vicinity of a 200 nm wide, self-heated, Pt line. Our measurements are in excellent agreement with computational results-unambiguously demonstrating the quantitative capabilities of the technique. UHV-SThM techniques will play an important role in the study of energy dissipation in nanometer-sized electronic and photonic devices and the study of phonon and electron transport at the nanoscale.

  13. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  14. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  15. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  16. Biomimicry of optical microstructures of Papilio palinurus

    Science.gov (United States)

    Crne, Matija; Sharma, Vivek; Blair, John; Park, Jung Ok; Summers, Christopher J.; Srinivasarao, Mohan

    2011-01-01

    The brilliant coloration of animals in nature is sometimes based on their structure rather than on pigments. The green colour on the wings of a butterfly Papilio palinurus originates from the hierarchical microstructure of individual wing scales that are tiled on the wing. The hierarchical structure gives rise to two coloured reflections of visible light, blue and yellow which when additively mixed, produce the perception of green colour on the wing scales. We used breath figure templated assembly as the starting point for the structure and, combining it with atomic layer deposition for the multilayers necessary for the production of interference colors, we have faithfully mimicked the structure and the optical effects found on the wing scale of the butterfly Papilio palinurus.

  17. Sub-nanometer surface chemistry and orbital hybridization in lanthanum-doped ceria nano-catalysts revealed by 3D electron microscopy.

    Science.gov (United States)

    Collins, Sean M; Fernandez-Garcia, Susana; Calvino, José J; Midgley, Paul A

    2017-07-14

    Surface chemical composition, electronic structure, and bonding characteristics determine catalytic activity but are not resolved for individual catalyst particles by conventional spectroscopy. In particular, the nano-scale three-dimensional distribution of aliovalent lanthanide dopants in ceria catalysts and their effect on the surface electronic structure remains unclear. Here, we reveal the surface segregation of dopant cations and oxygen vacancies and observe bonding changes in lanthanum-doped ceria catalyst particle aggregates with sub-nanometer precision using a new model-based spectroscopic tomography approach. These findings refine our understanding of the spatially varying electronic structure and bonding in ceria-based nanoparticle aggregates with aliovalent cation concentrations and identify new strategies for advancing high efficiency doped ceria nano-catalysts.

  18. Stress dependence of microstructures in experimentally deformed calcite

    NARCIS (Netherlands)

    Platt, John P.; de Bresser, J.H.P.

    2017-01-01

    Optical measurements of microstructural features in experimentally deformed Carrara marble help define their dependence on stress. These features include dynamically recrystallized grain size (Dr), subgrain size (Sg), minimum bulge size (Lρ), and the maximum scale length for surface-energy driven

  19. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  20. Modelling microstructural evolution under irradiation

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Microstructural evolution of materials under irradiation is characterised by some unique features that are not typically present in other application environments. While much understanding has been achieved by experimental studies, the ability to model this microstructural evolution for complex materials states and environmental conditions not only enhances understanding, it also enables prediction of materials behaviour under conditions that are difficult to duplicate experimentally. Furthermore, reliable models enable designing materials for improved engineering performance for their respective applications. Thus, development and application of mesoscale microstructural model are important for advancing nuclear materials technologies. In this chapter, the application of the Potts model to nuclear materials will be reviewed and demonstrated, as an example of microstructural evolution processes. (author)

  1. Computer vision in microstructural analysis

    Science.gov (United States)

    Srinivasan, Malur N.; Massarweh, W.; Hough, C. L.

    1992-01-01

    The following is a laboratory experiment designed to be performed by advanced-high school and beginning-college students. It is hoped that this experiment will create an interest in and further understanding of materials science. The objective of this experiment is to demonstrate that the microstructure of engineered materials is affected by the processing conditions in manufacture, and that it is possible to characterize the microstructure using image analysis with a computer. The principle of computer vision will first be introduced followed by the description of the system developed at Texas A&M University. This in turn will be followed by the description of the experiment to obtain differences in microstructure and the characterization of the microstructure using computer vision.

  2. Digital image processing of nanometer-size metal particles on amorphous substrates

    Science.gov (United States)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  3. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    Science.gov (United States)

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  4. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R. [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Halder, Avik [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Yin, Chunrong [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Singh, Akansha [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Barcaro, Giovanni [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Sementa, Luca [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Bartling, Stephan [Institut für Physik, Universität Rostock, Rostock Germany; Meiwes-Broer, Karl-Heinz [Institut für Physik, Universität Rostock, Rostock Germany; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, Lemont IL USA; Sen, Prasenjit [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Nigam, Sandeep [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Fukui, Nobuyuki [East Tokyo Laboratory, Genesis Research Institute, Inc., Ichikawa Chiba 272-0001 Japan; Yasumatsu, Hisato [Cluster Research Laboratory, Toyota Technological Institute: in, East Tokyo Laboratory, Genesis Research Institute, Inc. Ichikawa, Chiba 272-0001 Japan; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Nanoscience and Technology Division, Argonne National Laboratory, Lemont IL USA; Institute for Molecular Engineering, University of Chicago, Chicago IL USA; Fortunelli, Alessandro [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Materials and Process Simulation Center, California Institute of Technology, Pasadena CA USA

    2017-12-29

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

  5. Crystallographic, FTIR and optical property studies on Co doped ZnS nanometer-sized crystals

    Science.gov (United States)

    Mote, V. D.; Huse, V. R.; Dole, B. N.

    2013-02-01

    Cobalt doped ZnS Semiconductor nanometer-sized crystals were synthesized by coprecipitation method at room temperature. The effect of Co doping on the structural and optical properties was investigated. XRD investigation shows Cobalt doped ZnS samples have cubic structure. The value of lattice constant of Co doped ZnS sample is greater than the pure ZnS sample. The average crystallite size was calculated by Scherrer's formula. It is found that the average crystallite size of the samples is ranging from 2-4 nm. Optical characterization of pure ZnS as well as Cobalt doped ZnS samples was carried out by UV-Vis spectroscopy. It is evident that the optical band of pure ZnS sample is smaller than that of the Co doped ZnS sample. The chemical species of the grown crystals were identified by Fourier transform infrared spectroscopy (FTIR).

  6. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  7. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap.

    Science.gov (United States)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-02-19

    Gaps with single-nanometer dimensions (foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene-SiO2-Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au-graphene-Cu hybrid configuration as an SERS substrate.

  8. Mesoporous TiO2 Micro-Nanometer Composite Structure: Synthesis, Optoelectric Properties, and Photocatalytic Selectivity

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-01-01

    Full Text Available Mesoporous anatase TiO2 micro-nanometer composite structure was synthesized by solvothermal method at 180°C, followed by calcination at 400°C for 2 h. The as-prepared TiO2 was characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and Fourier transform infrared spectrum (FT-IR. The specific surface area and pore size distribution were obtained from N2 adsorption-desorption isotherm, and the optoelectric property of the mesoporous TiO2 was studied by UV-Vis absorption spectrum and surface photovoltage spectra (SPS. The photocatalytic activity was evaluated by photodegradation of sole rhodamine B (RhB and sole phenol aqueous solutions under simulated sunlight irradiation and compared with that of Degussa P-25 (P25 under the same conditions. The photodegradation preference of this mesoporous TiO2 was also investigated for an RhB-phenol mixed solution. The results show that the TiO2 composite structure consists of microspheres (∼0.5–2 μm in diameter and irregular aggregates (several hundred nanometers with rough surfaces and the average primary particle size is 10.2 nm. The photodegradation activities of this mesoporous TiO2 on both RhB and phenol solutions are higher than those of P25. Moreover, this as-prepared TiO2 exhibits photodegradation preference on RhB in the RhB-phenol mixture solution.

  9. Effect of over-aging on the microstructural evolution in an Al-Cu-Mg-Ag alloy during ECAP at 300 Degree-Sign C

    Energy Technology Data Exchange (ETDEWEB)

    Gazizov, Marat, E-mail: gazizov@bsu.edu.ru [Laboratory of Mechanical Properties of Nanostructured Materials and Superalloys, Belgorod State University, Pobeda 85, Belgorod 308015 (Russian Federation); Kaibyshev, Rustam, E-mail: rustam_kaibyshev@bsu.edu.ru [Laboratory of Mechanical Properties of Nanostructured Materials and Superalloys, Belgorod State University, Pobeda 85, Belgorod 308015 (Russian Federation)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer The microstructural evolution of an Al-Cu-Mg-Ag alloy during ECAP at 300 Degree-Sign C. Black-Right-Pointing-Pointer Effect of different particles on dynamic recrystallization mechanisms. Black-Right-Pointing-Pointer Deformation-induced precipitation in the quenched and over-aged Al-Cu-Mg-Ag alloys. - Abstract: This report explores over-aging as it relates to microstructural evolution during equal channel angular pressing (ECAP) at 300 Degree-Sign C using a novel Al-Cu-Mg-Ag alloy doped with zirconium and scandium. Material characterization was conducted using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray analysis in which microstructural evolution in a quenched alloy (QA) material was compared to that in an over-aged alloy (OA) material. It was shown that over-aging facilitates grain refinement where, at {epsilon} {approx} 12, a fraction of the high angle boundaries (HABs) and average misorientation angles are {approx}0.72 and 30 Degree-Sign , respectively. In contrast, a partially recrystallized structure evolves in the QA sample even after {epsilon} {approx} 12. Intense plastic straining affects precipitation. In the QA, ECAP leads to the precipitation in {Omega}-phase with a plate-like shape, initially. Further strain leads to a shearing offset associated with a localized dislocation glide followed by dissolution of {Omega}-phase and precipitation of the {theta}-phase (Al{sub 2}Cu) and S-phase (Al{sub 2}CuMg), both of which share an equaxed shape. In the OA, the dissolution of the Sc enriched {theta}-phase consisting of relatively coarse particles is followed by precipitation of nanometer-sized scale dispersoids of a Sc depleted {theta}-phase on deformation-induced boundaries. In addition, Ag and Mg-rich particles being {beta} Prime (MgAg) and U(AlMgAg) phases precipitate during ECAP, in both states of the Al-Cu-Mg-Ag alloy explored herein.

  10. Continua with microstructure

    CERN Document Server

    Capriz, Gianfranco

    1989-01-01

    This book proposes a new general setting for theories of bodies with microstructure when they are described within the scheme of the con­ tinuum: besides the usual fields of classical thermomechanics (dis­ placement, stress, temperature, etc.) some new fields enter the picture (order parameters, microstress, etc.). The book can be used in a semester course for students who have already followed lectures on the classical theory of continua and is intended as an introduction to special topics: materials with voids, liquid crystals, meromorphic con­ tinua. In fact, the content is essentially that of a series of lectures given in 1986 at the Scuola Estiva di Fisica Matematica in Ravello (Italy). I would like to thank the Scientific Committee of the Gruppo di Fisica Matematica of the Italian National Council of Research (CNR) for the invitation to teach in the School. I also thank the Committee for Mathematics of CNR and the National Science Foundation: they have supported my research over many years and given ...

  11. Computational methods for coupling microstructural and micromechanical materials response simulations

    Energy Technology Data Exchange (ETDEWEB)

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  12. Sub-50 nm Scale to Micrometer Scale Soft Lithographic Patterning of Functional Materials

    NARCIS (Netherlands)

    George, A.

    2011-01-01

    This PhD thesis addresses two major issues: 1) Fabricating nanometer-scale patterns of functional materials, 2) Extending the applicability of soft lithographic processes to a wide range of functional materials on conventional silicon substrates and flexible plastic substrates. This thesis describes

  13. Dry friction of microstructured polymer surfaces inspired by snake skin

    Directory of Open Access Journals (Sweden)

    Martina J. Baum

    2014-07-01

    Full Text Available The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae. Frictional properties of snake-inspired microstructured polymer surface (SIMPS made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i smooth ones, (ii rough ones, and (iii ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1 molecular interaction depending on real contact area and (2 the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

  14. Dry friction of microstructured polymer surfaces inspired by snake skin.

    Science.gov (United States)

    Baum, Martina J; Heepe, Lars; Fadeeva, Elena; Gorb, Stanislav N

    2014-01-01

    The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

  15. Brain microstructure of subclinical apathy phenomenology in healthy individuals.

    Science.gov (United States)

    Spalletta, Gianfranco; Fagioli, Sabrina; Caltagirone, Carlo; Piras, Fabrizio

    2013-12-01

    Although apathy has been extensively studied in relation to neuropsychiatric disorders, it is still unclear whether, in healthy people, it should be considered as a physiological phenomenon or whether it is a risk factor for progression to clinical disturbances. Here, we investigated subclinical apathy phenomenology and its brain microstructural correlates in healthy individuals. We submitted 72 participants to a comprehensive clinical assessment, a high-resolution structural MRI and a diffusion tensor imaging scan protocol. Data of individual microstructural (mean diffusivity and fractional anisotropy) variations were processed across genders in relation to the Apathy Rating Scale score. In females, subclinical apathy phenomenology was associated with microstructural variation of the bilateral thalami, the anterior thalamic radiation, the forceps major, and the corona radiate. These are white matter areas mostly connecting the thalami to the frontal and occipital cortices, regions that are known to be implicated in the expression of apathy in clinical samples. No significant relationship with brain microstructure was found in males who showed a positive correlation between subclinical apathy and somatic phenomenology of depression. In conclusion, our results show that in healthy individuals subclinical apathy phenomenology is associated with different mechanisms across genders, and raise the issue about whether brain microstructural changes associated with subclinical apathy in healthy females could be a precocious marker useful in the prediction of progression to more severe apathetic conditions. Copyright © 2012 Wiley Periodicals, Inc.

  16. Chemical Vapor Deposition of ?-Boron Layers on Silicon for Controlled Nanometer-Deep p+n Junction Formation

    NARCIS (Netherlands)

    Sarubbi, F.; Scholtes, T.L.M.; Nanver, L.K.

    2009-01-01

    Nanometer-thick amorphous boron (?-B) layers were formed on (100) Si during exposure to diborane (B2H6) in a chemical vapor deposition (CVD) system, either at atmospheric or reduced pressures, at temperatures down to 500°C. The dependence of the growth mechanism on processing parameters was

  17. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap

    International Nuclear Information System (INIS)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-01-01

    Gaps with single-nanometer dimensions (<10 nm) between metallic nanostructures enable giant local field enhancements for surface enhanced Raman scattering (SERS). Monolayer graphene is an ideal candidate to obtain a sub-nanometer gap between plasmonic nanostructures. In this work, we demonstrate a simple method to achieve a sub-nanometer gap by dewetting a gold film supported on monolayer graphene grown on copper foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene–SiO 2 –Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au–graphene–Cu hybrid configuration as an SERS substrate. (paper)

  18. Nanometer-scale local probing of X-ray absorption spectra of Co/Pt multilayer film

    Science.gov (United States)

    Quach, Duy-Truong; Pham, Duc-Thang; Handoko, Djati; Shim, Je-Ho; Eon Kim, Dong; Lee, Kyung-Min; Jeong, Jong-Ryul; Kim, Namdong; Shin, Hyun-Joon; Kim, Dong-Hyun

    2018-03-01

    We report our local X-ray absorption spectra (XAS) measurement mapping for a Co/Pt multilayer using scanning transmission microscopy with 25-nm spatial resolution and 0.1-eV spectral resolution. We have systematically analyzed the two-dimensional XAS intensity variation over the corresponding magnetic domain patterns, revealing a XAS profile across the magnetic domain wall as well as the simultaneous high-throughput measurement of local XAS spectra.

  19. Preparation, Study and Modification of Nanometer-Scale Flat TiO2 Surfaces by Electrochemistry and AFM Techniques

    DEFF Research Database (Denmark)

    Dihn Thi, M. T.; Cleemann, Lars Nilausen; Welinder, Anne Christina

    In order to study local properties of surfaces, it is necessary to control their preparation mode to get reproducible and well characterized samples. The first part of this work concerns the preparation of TiO2 films on Ti substrates that fulfil these criteria. The TiO2 formed by anodisation of t...

  20. Atomic layer deposition of TiN films : growth and electrical behavior down to sub-nanometer scale

    NARCIS (Netherlands)

    Van Hao, B.

    2013-01-01

    During the last several decades, titanium nitride (TiN) has gained much interest because of its low resistivity, chemical inertness and compatibility with complementary metal-oxide-semiconductor (CMOS) technology. Thin films of TiN are commonly used as diffusion barrier and gate material for CMOS

  1. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale.

    Science.gov (United States)

    Wertz, Esther; Isaacoff, Benjamin P; Flynn, Jessica D; Biteen, Julie S

    2015-04-08

    The greatly enhanced fields near metal nanoparticles have demonstrated remarkable optical properties and are promising for applications from solar energy to biosensing. However, direct experimental study of these light-matter interactions at the nanoscale has remained difficult due to the limitations of optical microscopy. Here, we use single-molecule fluorescence imaging to probe how a plasmonic nanoantenna modifies the fluorescence emission from a dipole emitter. We show that the apparent fluorophore emission position is strongly shifted upon coupling to an antenna and that the emission of dyes located up to 90 nm away is affected by this coupling. To predict this long-ranged effect, we present a framework based on a distance-dependent partial coupling of the dye emission to the antenna. Our direct interpretation of these light-matter interactions will enable more predictably optimized, designed, and controlled plasmonic devices and will permit reliable plasmon-enhanced single-molecule nanoscopy.

  2. Cross-Linked Poly-4-vinylpyridines as Useful Supports in Metal Catalysis: Micro- and Nanometer Scale Morphology.

    Czech Academy of Sciences Publication Activity Database

    D'Archivio, A.A.; Tauro, L.; Galantini, L.; Panatta, A.; Tettamanti, E.; Giammatteo, M.; Jeřábek, Karel; Corain, B.

    2007-01-01

    Roč. 268, 1-2 (2007) , s. 176-184 ISSN 1381-1169 R&D Projects: GA AV ČR(CZ) KSK4050111 Grant - others:MURS(IT) 2001038991 Institutional research plan: CEZ:AV0Z40720504 Keywords : cross-linked functional polymers * poly-4-vinylpyridines * supported Pt(0) nanoclusters Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.707, year: 2007

  3. Nanometer-scale sizing accuracy of particle suspensions on an unmodified cell phone using elastic light scattering.

    Directory of Open Access Journals (Sweden)

    Zachary J Smith

    Full Text Available We report on the construction of a Fourier plane imaging system attached to a cell phone. By illuminating particle suspensions with a collimated beam from an inexpensive diode laser, angularly resolved scattering patterns are imaged by the phone's camera. Analyzing these patterns with Mie theory results in predictions of size distributions of the particles in suspension. Despite using consumer grade electronics, we extracted size distributions of sphere suspensions with better than 20 nm accuracy in determining the mean size. We also show results from milk, yeast, and blood cells. Performing these measurements on a portable device presents opportunities for field-testing of food quality, process monitoring, and medical diagnosis.

  4. [Nanometer scale exciton spectroscopy and photochemistry: Dynamic imaging of DNA structure-activity relations and radiation signatures

    International Nuclear Information System (INIS)

    1992-01-01

    Our aim is to investigate, on the molecular level at a spatially resolved mode of operation, structure-activity relations of DNA and their sensitivity to ionizing radiation. This entails in-vitro (and later in-vivo) ultra-resolved microscopy, spectroscopy and chemical sensing, with non-destructive probing

  5. Nanometer-scale structure of alkali-soluble bio-macromolecules of maize plant residues explains their recalcitrance in soil.

    Science.gov (United States)

    Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J

    2009-07-01

    The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.

  6. Mechanical properties at the nanometer scale of GDC and YSZ used as electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M., E-mail: mmorales@ub.edu [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Universidad de Barcelona, C/Marti i Franques, 1 08028 Barcelona (Spain)] [Instituto de Ciencia de los Materiales de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); Roa, J.J.; Capdevila, X.G.; Segarra, M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Universidad de Barcelona, C/Marti i Franques, 1 08028 Barcelona (Spain); Pinol, S. [Instituto de Ciencia de los Materiales de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Barcelona (Spain)

    2010-04-15

    The Young's modulus (E), hardness (H) and fracture toughness (K{sub IC}) of various compositions of gadolinia doped-ceria (GDC, Gd{sub x}Ce{sub 1-x}O{sub 2-x/2}, 0.1 {<=} x {<=} 0.2) and yttria-stabilized zirconia (YSZ, Y{sub 0.08}Zr{sub 0.92}O{sub 1.96}) electrolytes were investigated by nanoindentation. All samples were produced by the sol-gel method, formed by uniaxial pressure and sintered at 1400 deg. C. In order to determine the mechanical properties, a Berkovich diamond tip was employed at applied loads of 5, 10, 30, 100 and 500 mN. The results were interpreted by the Oliver-Pharr method and values of K{sub IC} were determined using the method of Palmqvist cracks. The residual imprints were observed by field emission scanning electron microscopy. The results obtained showed that the H, E and K{sub IC} of GDC decreased with increasing gadolinia concentration, due to the oxygen vacancies generated by the dopant addition. As a result, the mechanical properties of GDC were significantly lower than those of YSZ electrolyte.

  7. Generation of disk-like domains with nanometer scale thickness in merocyanine dye LB film induced by hydrothermal treatment.

    Science.gov (United States)

    Miura, Yasuhiro F; Sano, Motoaki; Sugimoto, Tsuneyoshi

    2013-10-17

    We have characterized the binary LB films of merocyanine dye (MS) and arachidic acid (C20) before and after hydrothermal treatment (HTT), which is defined as a heat treatment under relative humidity of 100%, focusing on the morphology studied by bright field (BF) microscopy and fluorescence (FL) microscopy. BF microscopy observation has revealed that the as-deposited MS-C20 binary LB film is found to emit intense red fluorescence over the whole film area by 540-nm excitation. Since the surface image is almost featureless, it is considered that the crystallite sizes of J-aggregate are less than 10 μm. Interestingly, after HTT, round-shaped domains are observed in the LB systems, and the sizes are reaching 100 μm in diameter. Crystallites of J-aggregate, which are bluish in color and emit intense red fluorescence, tend to be in the round domains. We have observed two different types of domains, i.e., blue-rimmed domains and white-rimmed domains, which are postulated to be confined in the inner layers and located at the outermost layer, respectively. The thickness of the domains is equal to or less than that of the double layer of the MS-C20 mixed LB film, which is ca. 5.52 nm. The molecular order of MS in the J-aggregate is improved by the HTT process leading to the significant sharpening of the band shape together with the further red shift of the band (from 590 to 594 nm up to 597 to 599 nm). The reorganized J-band is considered to be 'apparently' isotropic owing to the random growth of the J-aggregate in the film plane. We consider that the lubrication effect by the presence of water molecules predominates in the HTT process.

  8. Junction Quality of SnO2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling.

    Science.gov (United States)

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; Gorman, Brian P; Ye, Jichun; Jiang, Chun-Sheng; Yan, Yanfa; Al-Jassim, Mowafak M

    2017-11-08

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on the cross section of SnO 2 -based PS solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having an identical device structure: (1) cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; (2) cells with an intrinsic SnO 2 thin layer on the top of FTO as an effective ESL; and (3) cells with the SnO 2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO ESL ESL cells may result from the reduction in voltage loss at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding an SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. These nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO 2 -based ESL material quality and the ESL/PS interface.

  9. Laser-induced microstructural development and phase evolution in magnesium alloy

    International Nuclear Information System (INIS)

    Guan, Y.C.; Zhou, W.; Li, Z.L.; Zheng, H.Y.

    2014-01-01

    Highlights: • Secondary phase evolution caused by laser processing was firstly reported. • Microstructure development was controlled by heat flow thermodynamics and kinetics. • Solid-state transformation resulted in submicron and nano-scale precipitates. • Cluster-shaped particles in overlapped region were due to precipitation coarsening. • Properties of materials can be tailored selectively by laser processing. -- Abstract: Secondary phase plays an important role in determining microstructures and properties of magnesium alloys. This paper focuses on laser-induced microstructure development and secondary phase evolution in AZ91D Mg alloy studied by SEM, TEM and EDS analyses. Compared to bulk shape and lamellar structure of the secondary phase in as-received cast material, rapid-solidified microstructures with various morphologies including nano-precipitates were observed in laser melt zone. Formation mechanisms of microstructural evolution and effect of phase development on surface properties were further discussed

  10. Dependence of developing magnetic hysteresis characteristics on stages of evolving microstructure in polycrystalline yttrium iron garnet

    International Nuclear Information System (INIS)

    Rodziah, N.; Hashim, M.; Idza, I.R.; Ismayadi, I.; Hapishah, A.N.; Khamirul, M.A.

    2012-01-01

    The microstructure evolution in several polycrystalline yttrium iron garnet samples as a result of a sintering scheme was studied in detail, in parallel with the changes in their magnetic properties. Samples with nanometer sized starting powder were synthesized by employing the High-Energy Ball Milling technique and then sintering toroidal compacts of the milled powder. Nine sintered samples were obtained, each corresponding to a particular sintering from 600 °C to 1400 °C. The samples were characterized for their evolution in crystalline phases, microstructure and magnetic hysteresis-loops parameters. The results showed an increasing tendency of the saturation magnetization and saturation induction with grain size, which is attributed to crystallinity increase and to reduction of demagnetizing fields in the grains. The variation in coercivity could be related to anisotropy field changes within the samples due to grain size changes. In particular, the starting appearance of room temperature ferromagnetic order suggested by the sigmoid-shaped B-H loops seems to be dependent on a sufficient number of large enough magnetic domain-containing grains having been formed in the microstructure. Viewed simultaneously, the hysteresis loops appear to belong to three groups with different magnetism-type dominance, respectively dependent on phase purity and three different groups of grain size distributions.

  11. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  12. Role of Soil Microstructure in Microbially-mediated Drying Resistance

    Science.gov (United States)

    Cruz, B. C.; Shor, L. M.; Gage, D. J.

    2015-12-01

    The retention of soil moisture between rainfall or irrigation events is imperative to the productivity of terrestrial ecosystems. Amplified weather conditions are expected to result in widespread reduction in soil moisture. Extracellular polysaccharides (EPS) produced by soil bacteria have the ability to influence soil moisture by (i) retaining water directly within the hydrogel matrix, and (ii) promoting an aggregated soil structure. We have developed microfluidic devices that emulate realistic soil microstructures and enable direct observation of EPS production and drying resistance. The objective of this study was to compare moisture retention in emulated soil micromodels containing different soil microstructures. "Aggregated" devices contain a greater number of small (100 μm) pores, while "non-aggregated" devices contained more intermediate-sized (30-100 μm) pores. Particle-size distributions, similar to a sandy loam, were identical in both cases. Dilute suspensions of either of two strains of Sinorhizobium meliloti were introduced into replicate micromodels: one strain produced EPS ("EPS+") and the other did not produce EPS ("EPS-"). Loaded micromodels were equilibrated at saturated conditions, then dried at 83% RH for several days. Direct observation showed micro-scale patterns of air infiltration. The rate and extent of moisture loss was determined as a function of bacterial strain and microstructure aggregation state. Results showed devices loaded with EPS+ bacteria retained moisture longer than devices loaded with EPS- bacteria. Moisture retention by EPS+ bacteria was enhanced in aggregated versus non-aggregated microstructures. This work illustrates how moisture retention in soil is the result of microbial processes acting within pore-scale soil microstructures. Validated microfluidics-based approaches may help quantitatively link pore-scale phenomena to ecosystem function.

  13. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Hennion, A.

    1999-03-01

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  14. Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers

    Science.gov (United States)

    Xie, Shu-Hong; Liu, Yun-Ya; Li, Jiang-Yu

    2012-08-01

    Multiferroic materials with two or more types of ferroic orders have attracted a great deal of attention in the last decade for their magnetoelectric coupling, and new ideas and concepts have been explored recently to develop multiferroic materials at nano-scale. Motivated by theoretical analysis, we synthesized single-phase BiFeO3 (BFO) nanofibers, Pb(Zr0.52Ti0.48)O3-CoFe2O4 (PZT-CFO) and Pb(Zr0.52Ti0.48)O3-NiFe2O4 (PZT-NFO) composite nanofibers, and CoFe2O4-Pb(Zr0.52Ti0.48)O3 (CFO-PZT) core-shell nanofibers using sol-gel based electrospinning. These nanofibers typically have diameters in the range of a few hundred nanometers and grain size in the range of 10s nanometers, and exhibits both ferroelectric and ferromagnetic properties. Piezoresponse force microscopy (PFM) based techniques have also been developed to examine the magnetoelectric coupling of the nanofibers, which is estimated to be two orders of magnitude higher than that of thin films, consistent with our theoretical analysis. These nanofibers are promising for a variety of multiferroic applications.

  15. Microstructure of rapidly solidified materials

    Science.gov (United States)

    Jones, H.

    1984-07-01

    The basic features of rapidly solidified microstructures are described and differences arising from alternative processing strategies are discussed. The possibility of achieving substantial undercooling prior to solidification in processes such as quench atomization and chill block melt spinning can give rise to striking microstructural transitions even when external heat extraction is nominally Newtonian. The increased opportunity in laser and electron beam surface melting for epitaxial growth on the parent solid at an accelerating rate, however, does not exclude the formation of nonequilibrium phases since the required undercooling can be locally attained at the solidification front which is itself advancing at a sufficiently high velocity. The effects of fluid flow indicated particularly in melt spinning and surface melting are additional to the transformational and heat flow considerations that form the present basis for interpretation of such microstructural effects.

  16. Neutral Color Semitransparent Microstructured Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2014-01-28

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium. © 2013 American Chemical Society.

  17. Grain Wall Boundaries in Centimeter-scale Continuous Monolayer WS2 Film Grown By Chemical Vapor Deposition.

    Science.gov (United States)

    Jia, Zhiyan; Hu, Wentao; Xiang, Jianyong; Wen, Fusheng; Nie, Anmin; Mu, Congpu; Zhao, Zhisheng; Xu, Bo; Tian, Yongjun; Liu, Zhongyuan

    2018-04-05

    Centimeter-scale continuous monolayer WS2 film with large tensile strain has been successfully grown on oxidized silicon substrate by chemical vapor deposition (CVD), in which monolayer grains can be more than 200 um in size. Monolayer WS2 grains are observed to merge together via not only traditional grain boundaries (GBs) but also non-traditional ones, which are named as grain walls (GWs) due to their nanometer-scale widths. The GWs are revealed to consist of two or three layers. Though not a monolayer, the GWs exhibit significantly enhanced fluorescence (FL) and photoluminescence (PL). This enhancement may be attributed to abundant structural defects such as stacking faults and partial dislocations in the GWs, which are clearly observable in atomically resolved HRTEM and STEM images. Moreover, GW-based phototransistor is found to deliver higher photocurrent than that based on monolayer film. These features of GWs provide a clue to microstructure engineering of monolayer WS2 for specific applications in (opto)electronics. © 2018 IOP Publishing Ltd.

  18. Nucleation mechanisms of refined alpha microstructure in beta titanium alloys

    Science.gov (United States)

    Zheng, Yufeng

    Due to a great combination of physical and mechanical properties, beta titanium alloys have become promising candidates in the field of chemical industry, aerospace and biomedical materials. The microstructure of beta titanium alloys is the governing factor that determines their properties and performances, especially the size scale, distribution and volume fraction of precipitate phase in parent phase matrix. Therefore in order to enhance the performance of beta titanium alloys, it is critical to obtain a thorough understanding of microstructural evolution in beta titanium alloys upon various thermal and/or mechanical processes. The present work is focusing on the study of nucleation mechanisms of refined alpha microstructure and super-refined alpha microstructure in beta titanium alloys in order to study the influence of instabilities within parent phase matrix on precipitates nucleation, including compositional instabilities and/or structural instabilities. The current study is primarily conducted in Ti-5Al-5Mo-5V-3Cr (wt%, Ti-5553), a commercial material for aerospace application. Refined and super-refined precipitates microstructure in Ti-5553 are obtained under specific accurate temperature controlled heat treatments. The characteristics of either microstructure are investigated in details using various characterization techniques, such as SEM, TEM, STEM, HRSTEM and 3D atom probe to describe the features of microstructure in the aspect of morphology, distribution, structure and composition. Nucleation mechanisms of refined and super-refined precipitates are proposed in order to fully explain the features of different precipitates microstructure in Ti-5553. The necessary thermodynamic conditions and detailed process of phase transformations are introduced. In order to verify the reliability of proposed nucleation mechanisms, thermodynamic calculation and phase field modeling simulation are accomplished using the database of simple binary Ti-Mo system

  19. Fundamental Scaling Laws in Nanophotonics

    Science.gov (United States)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-11-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  20. Effective nanometer airgap of NEMS devices using negative capacitance of ferroelectric materials.

    Science.gov (United States)

    Masuduzzaman, Muhammad; Alam, Muhammad Ashraful

    2014-06-11

    Nanoelectromechnical system (NEMS) is seen as one of the most promising candidates for next generation extreme low power electronics that can operate as a versatile switch/memory/sensor/display element. One of the main challenges toward this goal lies in the fabrication difficulties of ultrascaled NEMS required for high density integrated circuits. It is generally understood that fabricating and operating a NEMS with an airgap below a few nanometer will be extremely challenging due to surface roughness, nonideal forces, tunneling, etc. Here, we show that by cascading a NEMS with a ferroelectric capacitor, operating in the negative capacitance regime, the effective airgap can be reduced by almost an order of magnitude, without the need to reduce the airgap physically. This would not only reduce the pull-in voltage to sub-1 V regime, but also would offer a set of characteristics which are difficult/impossible to achieve otherwise. For example, one can reduce/increase the classical travel range, flip the traditional stable-unstable regime of the electrode, get a negative pull-out voltage, and thus, center the hysteresis around zero volt. Moreover, one can also operate the combination as an effective ferroelectric memory with much reduced switching voltages. These characteristics promise dramatic saving in power for NEMS-based switching, memory, and other related applications.

  1. Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Odeta; Ilton, Eugene S.; Bowden, Mark E.; Kovarik, Libor; Zhang, Xin; Kukkadapu, Ravi K.; Engelhard, Mark H.; Thompson, Christopher J.; Schaef, Herbert T.; McGrail, Bernard Peter; Rosso, Kevin M.; Loring, John S.

    2018-04-01

    Olivines are divalent orthosilicates with important geologic, biological, and industrial significance and are typically comprised of mixtures of Mg2+ and Fe2+ ranging from forsterite (Mg2SiO4) to fayalite (Fe2SiO4). Investigating the role of Fe(II) in olivine reactivity requires the ability to synthesize olivines that are nanometer-sized, have different percentages of Mg2+ and Fe2+, and have good bulk and surface purity. This article demonstrates a new method for synthesizing nanosized fayalite and Mg-Fe mixture olivines. First, carbonaceous precursors are generated from sucrose, PVA, colloidal silica, Mg2+, and Fe3+. Second, these precursors are calcined in air to burn carbon and create mixtures of Fe(III)-oxides, forsterite, and SiO2. Finally, calcination in reducing CO-CO2 gas buffer leads to Fe(II)-rich olivines. XRD, Mössbauer, and IR analyses verify good bulk purity and composition. XPS indicates that surface iron is in its reduced Fe(II) form, and surface Si is consistent with olivine. SEM shows particle sizes predominately between 50 and 450 nm, and BET surface areas are 2.8-4.2 m2/g. STEM HAADF analysis demonstrates even distributions of Mg and Fe among the available M1 and M2 sites of the olivine crystals. These nanosized Fe(II)-rich olivines are suitable for laboratory studies with in situ probes that require mineral samples with high reactivity at short timescales.

  2. Moiré method for nanometer instability investigation of scanning hard x-ray microscopes.

    Science.gov (United States)

    Vogt, Ulrich; Köhler, Daniel; Dickmann, Jannis; Rahomäki, Jussi; Parfeniukas, Karolis; Kubsky, Stefan; Alves, Filipe; Langlois, Florent; Engblom, Christer; Stankevič, Tomaš

    2017-05-29

    We present a Moiré method that can be used to investigate positional instabilities in a scanning hard x-ray microscope with nanometer precision. The development of diffraction-limited storage rings offering highly-brilliant synchrotron radiation and improvements of nanofocusing x-ray optics paves the way towards 3D nanotomography with 10 nm resolution or below. However, this trend demands improved designs of x-ray microscope instruments which should offer few-nm beam stabilities with respect to the sample. Our technique can measure the position of optics and sample stage relative to each other in the two directions perpendicular to the beam propagation in a scanning x-ray microscope using simple optical components and visible light. The usefulness of the method was proven by measuring short and long term instabilities of a zone-plate-optics-based prototype microscope. We think it can become an important tool for the characterization of scanning x-ray microscopes, especially prior to experiments with an actual x-ray beam.

  3. Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium

    Science.gov (United States)

    Kirner, Sabrina V.; Wirth, Thomas; Sturm, Heinz; Krüger, Jörg; Bonse, Jörn

    2017-09-01

    The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ˜150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ˜200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath.

  4. Preparation and properties of nanometer silk fibroin peptide/polyvinyl alcohol blend films for cell growth.

    Science.gov (United States)

    Luo, Qin; Chen, Zhongmin; Hao, Xuefei; Zhu, Qiangsong; Zhou, Yucheng

    2013-10-01

    Nanometer silk fibroin peptide (Nano-SFP) was prepared from silkworm cocoons through the process of dissolution, dialysis and enzymolysis. For comparison, silk fibroin was decomposed with α-chymotrypsin, trypsin and neutrase, respectively. From the SEM and particle size analysis results, the Nano-SFP prepared by neutrase was found to be the most desirable at about 50-200 nm. Nano-SFP/polyvinyl alcohol films (Nano-SFP/PVA) were prepared by blending Nano-SFP and PVA in water with different weight ratios of 10/90, 20/80, 30/70, and 40/60. The films were characterized by IR, SEM, TG, DSC and tensile strength test for investigating their structure, surface morphology, thermostability, and mechanical property. The results showed that Nano-SFP inserted in the PVA films with small linear particles, and Nano-SFP/PVA films exhibited smooth surface, good thermostability and tensile strength. The growth of Chinese hamster ovary (CHO) cells on films with and without Nano-SFP was investigated with MTT colorimetric assay to assess the films' ability to promote cell growth. It was observed that the Nano-SFP improved cell adhesion on the film surface, and the ability of promoting cell growth increased with the increasing content of Nano-SFP in the blend films. Nano-SFP/PVA film with the ratio of 30/70 was concluded to have the best properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    molding of surface microstructures. The fundamental problem of surface microstructure replication has been studied. The research is based on specific microstructures as found in lab-on-a-chip products and on rough surfaces generated from EDM (electro discharge machining) mold cavities. Emphasis is put...

  6. Microstructure and mechanical properties of the superalloy ATI Allvac 718Plus

    International Nuclear Information System (INIS)

    Zickler, Gerald A.; Schnitzer, Ronald; Radis, Rene; Hochfellner, Rainer; Schweins, Ralf; Stockinger, Martin; Leitner, Harald

    2009-01-01

    ATI Allvac 718Plus is a novel nickel-based superalloy, which was designed for heavy-duty applications in aerospace turbines. In the present study the high-resolution investigation techniques, atom probe tomography, electron microscopy and in situ high-temperature small-angle neutron scattering were used for a comprehensive microstructural characterization. The alloy contains nanometer-sized spherical γ' phase precipitates (Ni 3 (Al,Ti)) and plate-shaped δ phase precipitates (Ni 3 Nb) of micrometer size. The precipitation kinetics of the γ' phase can be described by a classical model for coarsening. The precipitation strongly influences the mechanical properties and is of high scientific and technological interest.

  7. Microstructuring of triazene containing copolyester films

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, C.; Kunz, T.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The growing field of microtechnology has an increasing demand for affordable functional materials. Several strategies exist for improving the ablation behaviour of standard polymers. One is the copolymerization of a standard commercial polymer with a specialty polymer, in our case of a polyester and triazene group containing polyester. For comparison of the copolymers with different fractions of triazene groups we have determined the threshold fluences and the effective absorption coefficients. With respect to these ablation parameters, only small differences were found within the set of copolymers investigated. Only with AFM and SEM it was possible to detect that a minimum content of triazene groups is necessary for defined microstructure with sharp edges, whereby a resolution in the sub {mu}m scale has been achieved. (author) 4 figs., 1 tab., 5 refs.

  8. Nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...

  9. Microstructural processes in irradiated materials

    Science.gov (United States)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  10. Strength and Microstructure of Ceramics

    Science.gov (United States)

    1990-11-01

    Oxide as a Function of Temperature and Grain initial flaw in this domain (attributable to the T-curve stabi- Size," J. Am. Cerom . Soc.. 4 (7] 323-27...increasingly Propagate Inherent Flaws," Proc. Br. Cerom . Sac., 20, 275-97 (1972). larger than their microstructural counterparts and thereby 1R. E

  11. Microstructured Reactors for Electroorganic Synthesis

    Czech Academy of Sciences Publication Activity Database

    Bouzek, K.; Jiřičný, Vladimír; Kodým, R.; Křišťál, Jiří; Bystroň, T.

    2010-01-01

    Roč. 55, č. 7 (2010), s. 8172-8181 ISSN 0013-4686. [Annual Meeting of ISE /60./. Beijing, 16.08.2009-21.08.2009] Institutional research plan: CEZ:AV0Z40720504 Keywords : microstructured reactor * bipolar * electroorganic synthesis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.642, year: 2010

  12. Microstructure modeling in weld metal

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.

    1995-01-01

    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model's comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds

  13. PREFACE: Processing, Microstructure and Performance of Materials

    Science.gov (United States)

    Chiu, Yu Lung; Chen, John J. J.; Hodgson, Michael A.; Thambyah, Ashvin

    2009-07-01

    A workshop on Processing, Microstructure and Performance of Materials was held at the University of Auckland, School of Engineering, on 8-9 April 2009. Organised by the Department of Chemical and Materials Engineering, University of Auckland, this meeting consisted of international participants and aimed at addressing the state-of-the-art research activities in processing, microstructure characterization and performance integrity investigation of materials. This two-day conference brought together scientists and engineers from New Zealand, Australia, Hong Kong, France, and the United Kingdom. Undoubtedly, this diverse group of participants brought a very international flair to the proceedings which also featured original research papers on areas such as Materials processing; Microstructure characterisation and microanalysis; Mechanical response at different length scales, Biomaterials and Material Structural integrity. There were a total of 10 invited speakers, 16 paper presentations, and 14 poster presentations. Consequently, the presentations were carefully considered by the scientific committee and participants were invited to submit full papers for this volume. All the invited paper submissions for this volume have been peer reviewed by experts in the various fields represented in this conference, this in accordance to the expected standards of the journal's Peer review policy for IOP Conference Series: Materials Science and Engineering. The works in this publication consists of new and original research as well as several expert reviews of current state-of-the art technologies and scientific developments. Knowing some of the real constraints on hard-copy publishing of high quality, high resolution images, the editors are grateful to IOP Publishing for this opportunity to have the papers from this conference published on the online open-access platform. Listed in this volume are papers on a range of topics on materials research, including Ferguson's high strain

  14. Nanometal particle reagents for sensitive, MEMS based fiber-optic, multi-analyte, immuno-biosensing

    Science.gov (United States)

    Hong, Bin

    Integration of nanotechnology to medical diagnostics has brought a new era to public health practice. An excellent example is the utilization of unique optoelectronic properties of nanoparticles to develop highly sensitive biosensing devices for point-of-care (POC) disease diagnosis/prognosis. Fluorophore mediated, immuno-biosensors are important disease detection tools. The property of intra-molecular fluorescence quenching of most fluorophores, however, limits the sensitivity of this type of sensors. A plasmon-rich nanometal particle (NMP) can transfer the lone pair electrons of a fluorophore, which normally participate in the fluorescence self-quenching, to its surface plasmon field, resulting in artificial fluorescence enhancement. The enhancement was found to depend on the metal type, the particle size, the distance between a particle and a fluorophore, and the quantum yield of a fluorophore. Some biocompatible solvents were also found to increase the fluorescence emission efficiency via effective dipole coupling between the fluorophore and the solvent molecule. The application of solvents in inmuno-sensing could additionally improve the fluorescence light retrieval by the conformational change of the protein complexes in solvent. The mixture of the NMP and the solvent, which we defined as nanometal particle reagent (NMPR), provided even higher enhancements. Cardiovascular diseases (CVDs) kill 1 person in every 6 seconds. Among the CVDs, acute myocardial infarction (AMI; commonly known as heart attack) is the most dangerous and time-sensitive killer. A rapid and accurate AMI diagnosis is crucial for saving many lives. For this purpose, a fluorophore mediated, immuno-reaction based, multi-cardiac-marker sensing device was developed, to quantify four myocardium-specific proteins simultaneously, accurately, rapidly, and user-friendly. The four cardiac markers of our choice were myoglobin (MG), C-reactive protein (CRP), cardiac troponin I (cTnI), and B

  15. Microstructured metal molds fabricated via investment casting

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2010-01-01

    This paper describes an investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast from curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. The aluminum microstructures had an aspect ratio of 1:1 and sizes ranging from 25 to 50 µm. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square and triangular holes. We demonstrate molding of large, curved surfaces having surface microstructures using the aluminum mold.

  16. Effects of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    OpenAIRE

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2014-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here, we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the in...

  17. Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material

    Directory of Open Access Journals (Sweden)

    Gongfa Li

    2015-04-01

    Full Text Available With the development of metallurgical industry and the improvement of continuous casting technology, the processing properties of casting technology equipment are being paid more attention. Ladle is one of the most representatives of the furnace equipment; higher requirements of ladle are put forward in response to the call for national energy-saving and emission reduction. According to the requirements of actual operator and working condition, a lining structure of a new type of ladle with nanometer adiabatic material is put forward. Based on heat transfer theory and finite element technology, the three-dimensional finite element model of a new type of ladle is established. Temperature field and stress field of the new type of ladle with the nanometer adiabatic material in lining structure after baking are analyzed. The results indicate that the distributions of temperature and thermal stress level of working layer, permanent layer, and nanometer heat insulating layer are similar, and they are in the permissible stress and temperature range of each material for the new type of ladle. Especially heat preservation effect of nanometer adiabatic material is excellent. Furthermore, the maximum temperature of shell for the new type of ladle drops to 114°C than the traditional ladle, and the maximum stress of shell for the new type of ladle is lower than the traditional ladle, that is, 114 MPa. It can provide reliable theory for energy-saving and emission reduction of metallurgy industry, which also points out the right direction for the future development of the iron and steel industry.

  18. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    Science.gov (United States)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

    2018-02-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

  19. Passive micromechanical tags. An investigation into writing information at nanometer resolution on micrometer size objects

    International Nuclear Information System (INIS)

    Schmieder, R.W.; Bastasz, R.J.

    1995-01-01

    The authors have completed a 3-year study of the technology related to the development of micron-sized passive micromechanical tags. The project was motivated by the discovery in 1990 by the present authors that low energy, high charge state ions (e.g., Xe +44 ) can produce nanometer-size damage sites on solid surfaces, and the realization that a pattern of these sites represents information. It was envisioned that extremely small, chemically inert, mechanical tags carrying a large label could be fabricated for a variety of applications, including tracking of controlled substances, document verification, process control, research, and engineering. Potential applications exist in the data storage, chemical, food, security, and other industries. The goals of this project were fully accomplished, and they are fully documented here. The work was both experimental and developmental. Most of the experimental effort was a search for appropriate tag materials. Several good materials were found, and the upper limits of information density were determined (ca. 10 12 bit/cm 2 ). Most of the developmental work involved inventing systems and strategies for using these tags, and compiling available technologies for implementing them. The technology provided herein is application-specific: first, the application must be specified, then the tag can be developed for it. The project was not intended to develop a single tag for a single application or for all possible applications. Rather, it was meant to provide the enabling technology for fabricating tags for a range of applications. The results of this project provide sufficient information to proceed directly with such development

  20. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition.

    Science.gov (United States)

    Weber, M J; Verheijen, M A; Bol, A A; Kessels, W M M

    2015-03-06

    Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems.

  1. Quality of Irrigated Water with Nanometer Pottery Tray Treatment and Its Effects on Seed Soaking

    Directory of Open Access Journals (Sweden)

    Huang Jun-rong

    2016-03-01

    Full Text Available To study the impacts of nanometer pottery trays (NPTs on different rice varieties, three rice varieties, Zhongzheyou 1, Jinzao 47 and Xiushui 09, were treated with four NPTs (NPT-A, NPT-B, NPT-C and NPT-D with different energies, respectively. The results showed that when the same rice variety was treated with different NPTs or different rice varieties were treated with the same NPT, the impacts on seed germination rate, seedling growth, plant height, panicle length and weight, the number of filled grains, seed-setting rate and 1000-grain weight varied between different rice variety-NPT interaction groups. In general, high energy NPT-C and NPT-D treatments obviously enhanced the functions of most examined rice characters. For example, NPT-C and NPT-D treatments improved the germination rate of all the three rice varieties, and promoted the root growth of seedlings, and increased seedling fresh weight, single panicle weight, filled grain number per panicle, seed-setting rate and 1000-grain weight. On the contrary, low energy NPT-A treatment restrained the seed germination rate in Jinzao 47 and Zhongzheyou 1, and decreased the seedling fresh weight in Zhongzheyou 1. NPT-B treatment restrained the seedling growth in Jinzao 47 but increased the panicle length of Zhongzheyou 1. NPT-A and NPT-C treatments obviously decreased the 1000-grain weight in Xiushui 09. Therefore, when treating crop seeds or plants using nanomaterials or nanotechnologies, different types of crops/varieties should select the nanomaterials or nanotechnologies with suitable energies to reduce the negative effects.

  2. Passive micromechanical tags. An investigation into writing information at nanometer resolution on micrometer size objects

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.; Bastasz, R.J.

    1995-01-01

    The authors have completed a 3-year study of the technology related to the development of micron-sized passive micromechanical tags. The project was motivated by the discovery in 1990 by the present authors that low energy, high charge state ions (e.g., Xe{sup +44}) can produce nanometer-size damage sites on solid surfaces, and the realization that a pattern of these sites represents information. It was envisioned that extremely small, chemically inert, mechanical tags carrying a large label could be fabricated for a variety of applications, including tracking of controlled substances, document verification, process control, research, and engineering. Potential applications exist in the data storage, chemical, food, security, and other industries. The goals of this project were fully accomplished, and they are fully documented here. The work was both experimental and developmental. Most of the experimental effort was a search for appropriate tag materials. Several good materials were found, and the upper limits of information density were determined (ca. 10{sup 12} bit/cm{sup 2}). Most of the developmental work involved inventing systems and strategies for using these tags, and compiling available technologies for implementing them. The technology provided herein is application-specific: first, the application must be specified, then the tag can be developed for it. The project was not intended to develop a single tag for a single application or for all possible applications. Rather, it was meant to provide the enabling technology for fabricating tags for a range of applications. The results of this project provide sufficient information to proceed directly with such development.

  3. Modeling of microstructure property relationships in titanium-aluminum-vanadium

    Science.gov (United States)

    Tiley, Jaimie Scott

    Fuzzy logic neural network models were developed to predict the room temperature tensile behavior of Ti-6Al-4V. This involved the development of a database relating microstructure to properties. This necessitated establishing heat treatment processes to develop microstructural features, mechanical testing of samples, creating rigorous stereology procedures, developing numerical models to predict mechanical behavior, and determining trends and inter-relationships relating microstructural features to mechanical properties. Microstructural features were developed using a Gleeble(TM) 1500 Thermal-mechanical simulator. Samples were obtained from mill annealed plate material and both alpha + beta forged and beta forged materials. A total of 72 samples were beta solutionized and heat treated using different heating and cooling conditions. Rigorous stereology procedures were developed to characterize the important microstructural features. The features included Widmanstatten alpha lath thickness, volume fraction of total alpha, volume fraction of Widmanstatten alpha, grain boundary alpha thickness, mean edge length, colony scale factor, and prior beta grain size factor. Chemical composition was also determined using standard chemical analysis and microscopy techniques. The samples were tested for yield strength, ultimate tensile strength, and elongation at room temperature. Results from the tests and the characterization were used to develop fuzzy logic neural network models to predict the mechanical behaviors and develop relationships between the microstructural features (using CubiCalc RTC(TM)). Results were compared to standard multi-variable regression models. The fuzzy logic neural network models were able to predict the yield, and ultimate tensile strength, within acceptable error ranges with a limited number of input data samples. The models also predicted the elongation values but with larger errors. Of particular importance, the models identified the importance of

  4. Combined microstructure x-ray optics

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1989-02-01

    Multilayers are man-made microstructures which vary in depth and are now of sufficient quality to be used as x-ray, soft x-ray and extreme ultraviolet optics. Gratings are man-made in plane microstructures which have been used as optic elements for most of this century. Joining of these two optical microstructures to form combined microstructure optical microstructures to form combined microstructure optical elements has the potential for greatly enhancing both the throughput and the resolution attainable in these spectral ranges. The characteristics of these new optic elements will be presented and compared to experiment with emphasis on the unique properties of these combined microstructures. These results reported are general in nature and not limited to the soft x-ray or extreme ultraviolet spectral domains and also apply to neutrons. 19 refs., 7 figs., 4 tabs

  5. Orientation correlations in metal structures from the micrometer to nanometer range

    DEFF Research Database (Denmark)

    Juul Jensen, D.; Bowen, Jacob R.; Mishin, Oleg

    2005-01-01

    Distributions of boundary misorientations in aluminium are measured as a function of deformation for strains up to 10. These experimental distributions are compared to misorientation distributions generated from a random mix of orientations present in the microstructure. It is found that for all...... strains investigated, the experimental distributions contain a significant higher fraction of low angle boundaries than that expected from the theoretically calculated distributions assuming a random mixing of orientations. This means that there are clear correlations between neighbouring orientations...... annealing a sample deformed to epsilon=10 leads to significant structural coarsening, but a large fraction of low angle boundaries are maintained in the experimental misorientation distribution, which is not seen in the theoretically calculated distribution....

  6. Hot-embossing of microstructures on addition-curing polydimethylsiloxane films

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Hassouneh, Suzan Sager

    2013-01-01

    and microstructures on PDMS elastomer are 1) reaction injection molding 2) UV lithography and 3) photolithography, which all are time-consuming and not suitable for large scale productions. A hot-embossing process to impart micro-scale corrugations on an addition curing vinyl terminated PDMS (polydimethyl siloxane...

  7. From peptides and proteins to micro-structure mechanics and rheological properties of fibril systems

    NARCIS (Netherlands)

    Linden, van der E.

    2012-01-01

    This article provides a summary of an example of how relationships between molecular scale properties and macroscopic properties are formulated, in this case with a focus on fibril microstructures and according system elasticity. Entropy plays a dominant role on all length scales. The elasticity is

  8. Microstructure and magnetic microstructure of La + Co doped strontium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Pang Zhiyong, E-mail: pang@sdu.edu.c [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shanda South Road 27, Jinan, Shandong 250100 (China); Zhang Xijian [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shanda South Road 27, Jinan, Shandong 250100 (China); Ding Boming; Bao Daxin [Central Research Institute, HENGDIAN DMEGC MAGNETICS Co., LTD, Dongyang, Zhejiang 322118 (China); Han Baoshan [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2010-03-04

    After being cut, carefully ground, meticulously polished and properly eroded, the microstructure and magnetic microstructure of La{sub 0.3}Sr{sub 0.7}Fe{sub 11.8}Co{sub 0.2}O{sub 19} hexaferrites were investigated by using magnetic force microscopy. The shapes of a large amount of the La{sub 0.3}Sr{sub 0.7}Fe{sub 11.8}Co{sub 0.2}O{sub 19} grains were determined to be mostly irregular flat columns. The shape anisotropy of the hexaferrite grains can be explained by an abnormal grain growth process occurs for La + Co-containing hexaferrite powders. The magnetizations mainly align parallel or anti-parallel to the direction of oriented magnetic field. The magnetic domain sizes are in the same order of magnitude with the grain sizes. No complex domain structures like corrugation and spike were observed. Micromagnetic simulations were also performed to help analyzing the magnetic microstructure.

  9. Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ′ Microstructures

    Directory of Open Access Journals (Sweden)

    Aruna Prakash

    2017-01-01

    Full Text Available Single-crystal Ni-base superalloys, consisting of a two-phase γ/ γ ′ microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ ′ phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ/ γ ′ microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ ′ particles with planar γ/ γ ′ interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples—the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions.

  10. High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels

    International Nuclear Information System (INIS)

    Yan, Dingshun; Tasan, Cemal Cem; Raabe, Dierk

    2015-01-01

    Microstructures of multi-phase alloys undergo morphological and crystallographic changes upon deformation, corresponding to the associated microstructural strain fields. The multiple length and time scales involved therein create immense complexity, especially when microstructural damage mechanisms are also activated. An understanding of the relationship between microstructure and damage initiation can often not be achieved by post-mortem microstructural characterization alone. Here, we present a novel multi-probe analysis approach. It couples various scanning electron microscopy methods to microscopic-digital image correlation (μ-DIC), to overcome various challenges associated with concurrent mapping of the deforming microstructure along with the associated microstrain fields. For this purpose a contrast- and resolution-optimized μ-DIC patterning method and a selective pattern/microstructure imaging strategy were developed. They jointly enable imaging of (i) microstructure-independent pattern maps and (ii) pattern-independent microstructure maps. We apply this approach here to the study of damage nucleation in ferrite/martensite dual-phase (DP) steel. The analyses provide four specific design guidelines for developing damage-resistant DP steels

  11. Thin film diamond microstructure applications

    Science.gov (United States)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  12. Microstructural characterization of EXCEL alloy

    International Nuclear Information System (INIS)

    Oroza Z E, Celiz; Saumell M, Lani; Versaci, R A; Bozzano, P B

    2012-01-01

    The microstructure of Excel alloy was studied by optical and scanning electron microscopy. X-ray diffraction was used to analyze the present phases. Characteristic peaks of α-Zr (HCP), β-Zr (BCC) and δhydride (FCC) were identified. The high relatives intensities of certain peaks suggest that samples are textured. Basal poles were dominant in radial-longitudinal planes and prismatic poles have the highest concentration in radial-tangential planes (author)

  13. Microstructure fibers for gas detection

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Mrázek, Jan; Hayer, Miloš; Peterka, Pavel; Kaňka, Jiří; Honzátko, Pavel; Berková, Daniela

    2006-01-01

    Roč. 26, 2/3 (2006), s. 317-321 ISSN 0928-4931. [MADICA 2004. Tunis, 29.11.2004-01.12.2004] R&D Projects: GA ČR(CZ) GA102/02/0779 Institutional research plan: CEZ:AV0Z2067918 Keywords : photonic crystals * crystal microstructure * optical fibres * fibre optic sensors * gas Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.325, year: 2006

  14. Microstructural processes in irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    This is an editorial article (preface) for the publication of symposium papers in the Journal of Nuclear materials: These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15–19, 2015.

  15. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  16. The microstructure of corroded amalgams.

    Science.gov (United States)

    Moberg, L E; Odén, A

    1985-07-01

    One conventional amalgam and two amalgams with a high copper content were stored in 0.9% NaCl solution buffered with phosphate to pH 6. In one experimental series the amalgams were placed in contact with a gold alloy. Every 7 weeks the solutions were changed and analyzed with regard to elements released from the amalgams. The microstructure of the specimens was studied in a scanning electron microscope before immersion and after 7 and 35 weeks in the solution. All the amalgams corroded along the grain boundaries in the gamma 1 phase. Corrosion was greatest in the gamma 2 phase of ANA 68, in the eta phase of ANA 2000 and in the reaction zone (eta + gamma 1) surrounding the Ag-Cu-eutectic particles of Dispersalloy. The microstructure of the corroded amalgams showed similarities to amalgams corroded in vivo. The change in microstructure observed in cross-sections of the corroded specimens was related to the amounts of corrosion products released into the saline solution.

  17. Microstructural aspects of zirconia thermal barrier coatings

    Science.gov (United States)

    Mitchell, T. E.; Suhr, D. S.; Keller, R. J.; Lanteri, V.; Heuer, A. H.

    1985-01-01

    Various combination of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 C and cyclic thermal exposure to 1000 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO2-Y2O3 compositions, of which the optimum was found to be ZrO2-8.9 wt percent Y2O3. Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes. Zones depleted of Al formed at the bond coat/ceramic coat interface due to oxidation and at the bond coat/substrate interface due to interdiffusion, leading eventually to breakdown of the bond coat. The 8.9 percent Y2O3 coating performed best because the as-sprayed metastable tetragonal phase converted slowly into the low-Y2O3 tetragonal plus high-Y2O3 cubic-phase mixture, so that the deleterious monoclinic phase was inhibited from forming. Failure appeared to start with the formation of circumferential cracks in the zirconia, probably due to compressive stresses during cooling, followed by the formation of radial cracks due to tensile stresses during heating. Cracks appeared to initiate at the Al2O3 scale/bond coat interface and propagate through the zirconia coating. Comparisons were made with the behavior of bulk ZrO2-Y2O3 and the relationship between the microstructure of the tetragonal phase and the phase diagram. A separate investigation was also made of the ZrO2-Al2O3 interface.

  18. XRD investigation of microstructure strengthening mechanism of shot peening on laser hardened 17-4PH

    International Nuclear Information System (INIS)

    Wang Zhou; Luan Weizhi; Huang Junjie; Jiang Chuanhai

    2011-01-01

    Highlights: → We analyzed the microstructure of shot peened component. → We estimated the domain size, the microstrain and dislocation density of specimen via XRD profile method. → The domain size increased and microstrain as well as dislocation density decreased with depth increasing. → The surface domain size decreased to nano-scale after shot peening treatment. → The surface dislocation density increased about one order magnitude after shot peening treatment. - Abstract: The influence of shot peening on microstructure of laser hardened 17-4PH was investigated by using X-ray diffraction profiles. The domain size, microstrain and dislocation in different depths were calculated via Voigt method and dislocation density calculation method according to Williamson's work. Two typical materials in laser hardened 17-4PH (matrix material and laser hardened material) and three families of crystalline planes ({1 1 0}, {2 0 0}, {2 1 1}) were chosen as research objects. Microstructural results from XRD investigation quantified the shot peening influence on microstrain, domain size and dislocation density in microstructure changed layer in these three plane diffraction directions. Results showed that shot peening was an efficient cold working method to alter microstructure in near surface region and microstructure strengthening mechanism of shot peening played an important role on improving the surface mechanical properties. In microstructure changed layer, the domain size increased and microstrain as well as dislocation density decreased with depth increasing, which led to the mechanical properties decrease with depth increasing. With increasing peening intensity from 0.2 mmA + 0.1 mmA to 0.5 mmA + 0.1 mmA, the depth of microstructure changed layer increased but the surface microstructure did not change, no matter in matrix material or laser hardened material. As laser hardened material had a stronger resistance against shot peening influence on microstructure, the

  19. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  20. Combinatorial Strategies for Synthesis and Characterization of Alloy Microstructures over Large Compositional Ranges.

    Science.gov (United States)

    Li, Yanglin; Jensen, Katharine E; Liu, Yanhui; Liu, Jingbei; Gong, Pan; Scanley, B Ellen; Broadbridge, Christine C; Schroers, Jan

    2016-10-10

    The exploration of new alloys with desirable properties has been a long-standing challenge in materials science because of the complex relationship between composition and microstructure. In this Research Article, we demonstrate a combinatorial strategy for the exploration of composition dependence of microstructure. This strategy is comprised of alloy library synthesis followed by high-throughput microstructure characterization. As an example, we synthesized a ternary Au-Cu-Si composition library containing over 1000 individual alloys using combinatorial sputtering. We subsequently melted and resolidified the entire library at controlled cooling rates. We used scanning optical microscopy and X-ray diffraction mapping to explore trends in phase formation and microstructural length scale with composition across the library. The integration of combinatorial synthesis with parallelizable analysis methods provides a efficient method for examining vast compositional ranges. The availability of microstructures from this vast composition space not only facilitates design of new alloys by controlling effects of composition on phase selection, phase sequence, length scale, and overall morphology, but also will be instrumental in understanding the complex process of microstructure formation in alloys.

  1. Development of micro-structured heat exchangers; Developpement d'echangeurs de chaleur microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Bouzon, C.

    2004-10-01

    This study has been carried out to defend the Technological Diploma of Research, in the aim to develop micro-structured heat exchangers. Realized within the Research Group on the Heat exchangers and Energy (GREThE) of the Atomic Energy Commission (CEA) of Grenoble. The rise of micro-technologies and the optimization of heat exchangers have led to emergence from few years of new structures of fluid paths with scales lower than the millimeter, thus making it possible to produce heat exchangers ultra-compacts. The micro-structured exchangers are heat exchangers whose hydraulic diameters are lower than the millimeter but with external dimensions of several centimeters. The study is based on two patents filed by the CEA and the characterization of these two geometries. A first concept of cross flow type finds applications with Gas/Liquid heat exchanger. A second type, a countercurrent, is more adapted to Liquid/Liquid applications. An approach with simplified analytical models and by numerical simulation was employed for each concept. An experimental study on the Gas/Liquid concept was also carried out. (author)

  2. Spinel Li{sub 2}CoTi{sub 3}O{sub 8} nanometer obtained for application as pigment; Espinela Li{sub 2}CoTi{sub 3}O{sub 8} nanometrica obtenida para aplicacion como pigmento

    Energy Technology Data Exchange (ETDEWEB)

    Costa de Camara, M. S.; Alves Pimentel, L.; Longo, E.; Nobrega Azevedo, L. da; Araujo Melo, D. M. de

    2016-05-01

    Pigments are used in ceramics, cosmetics, inks, and other applications widely materials. To this must be single and easily reproducible. Moreover, the pigments obtained in the nanoscale are more stable, reproducible and highlight color in small amounts compared with those obtained in micrometer scale. The mixed oxides with spinel structures AB{sub 2}O{sub 4} have important applications, including: pigments, refractories, catalytic and electronic ceramics. In this context, the aim of this work was the preparation of powder Li{sub 2}CoTi{sub 3}O{sub 8} spinel phase with nanometer particle size of the polymeric precursor method (Pechini) and characterization by means of thermal analysis (TG/DTA) X-ray diffraction (XRD), refined by the Rietveld method, BET, transmission electron microscopy (TEM), Raman and colorimetric coordinates. The pigment was obtained by heat treatment of 400 degree centigrade to 1000 degree centigrade after pyrolysis at 300 degree centigrade/1 h for removing the organic material. Li{sub 2}CoTi{sub 3}O{sub 8} desired spinel phase was obtained from 500 degree centigrade, and presenting stability nanometer to about 1.300 degree centigrade. Spinel green phase introduced at temperatures in the range of 400 degree centigrade and 500 degree centigrade, and 600 degree centigrade at temperatures between blue and 1000 degree centigrade. (Author)

  3. Archaeologic analogues: Microstructural changes by natural ageing in carbon steels

    International Nuclear Information System (INIS)

    Munoz, Esther Bravo; Fernandez, Jorge Chamon; Arasanz, Javier Guzman; Peces, Raquel Arevalo; Criado, Antonio Javier; Dietz, Christian; Martinez, Juan Antonio; Criado Portal, Antonio Jose

    2006-01-01

    When discussing the container material for highly active radionuclear waste, carbon steel is one of the materials most frequently proposed by the international scientific community. Evidently, security with respect to the container behaviour into deep geological deposits is fundamental. Among other parameters, knowledge about material mechanical properties is essential when designing the container. Time ageing of carbon steel, apart from possible alterations of the chemical composition (e.g. corrosion) involves important microstructural changes, at the scale of centuries and millenniums. The latter may cause variations of the mechanical properties of carbon steel storage containers, with the corresponding risk of possible leakage. In order to properly estimate such risk and to adjust the corresponding mathematical models to reality, the microstructural changes observed in this study on archaeologic samples are evaluated, comparing ancient and modern steels of similar chemical composition and fabrication processes

  4. Archaeologic analogues: Microstructural changes by natural ageing in carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Esther Bravo [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Fernandez, Jorge Chamon [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Arasanz, Javier Guzman [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Peces, Raquel Arevalo [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Criado, Antonio Javier [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Dietz, Christian [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Martinez, Juan Antonio [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Criado Portal, Antonio Jose [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)]. E-mail: antoniocriado@quim.ucm.es

    2006-02-15

    When discussing the container material for highly active radionuclear waste, carbon steel is one of the materials most frequently proposed by the international scientific community. Evidently, security with respect to the container behaviour into deep geological deposits is fundamental. Among other parameters, knowledge about material mechanical properties is essential when designing the container. Time ageing of carbon steel, apart from possible alterations of the chemical composition (e.g. corrosion) involves important microstructural changes, at the scale of centuries and millenniums. The latter may cause variations of the mechanical properties of carbon steel storage containers, with the corresponding risk of possible leakage. In order to properly estimate such risk and to adjust the corresponding mathematical models to reality, the microstructural changes observed in this study on archaeologic samples are evaluated, comparing ancient and modern steels of similar chemical composition and fabrication processes.

  5. Microstructure Development and Its Influence on the Properties of Styrene-Ethylene-Butylene-Styrene/Polystyrene Blends

    Directory of Open Access Journals (Sweden)

    Ritima Banerjee

    2018-04-01

    Full Text Available The present work is a novel attempt to understand the microstructure of styrene-ethylene-butylene-styrene (SEBS/polystyrene (PS blends not only through morphological studies, but also thermal, mechanical and rheological characterizations. SEBS/PS blends containing 10, 30 and 50 wt % PS were processed in a micro-compounder and characterized. Scanning electron microscopy (SEM studies, with selective staining of the PS phase, revealed the presence of PS as nanometer-sized domains, as well as phase-separated micrometer-sized aggregates. Blends with 30 and 50 wt % PS exhibited a fibrillar microstructure, obeying Hirsch’s model of short fiber composites. A remarkable increase in glass transition temperature indicated a strong interaction of the fibrils with SEBS. All blends showed two modes of relaxation corresponding to the two phases. A single mode of relaxation of the PS phase has been attributed to combined effects of the partial miscibility of the added PS, along with the interaction of the fibrils with SEBS. The long relaxation time of the elastomeric phase indicated the tendency of these materials to undergo time-dependent shrinkage in secondary processing operations. An increase in PS content resulted in the lowering of the shear viscosity and energy requirement for mixing, indicating the ease of processing.

  6. Relationships between acoustic emissions and microstructures

    International Nuclear Information System (INIS)

    Rao, G.V.; Gopal, R.

    1979-01-01

    Results of a systematic study of 'microstructure-deformation-acoustic emission' relationships on two widely used pressure retaining component materials, namely A533-B nuclear pressure vessel steel and a 7075 aluminum alloy, are presented. The study consists of conducting acoustic monitored tensile tests on a variety of quenched and aged microstructures in the two alloy systems and extensive microstructural characterization of test specimens by light optic and electron microscopy techniques. The results suggest a consistent relationship between acoustic emissions and microdeformation mechanisms. The role of specific microstructural constituents in generating acoustic emissions in the two alloys is discussed. (author)

  7. SUN: A fully automated interferometric test bench aimed at measuring photolithographic grade lenses with a sub nanometer accuracy

    Science.gov (United States)

    Bourgois, R.; Hamy, A. L.; Pourcelot, P.

    2017-10-01

    SUN is a test bench developed by Safran Reosc to measure spherical or aspherical surface errors of litho-grade lenses with sub-nanometer accuracy. SUN provides full aperture high resolution interferometric measurements. Measurements are performed at the center of curvature using high precision transmission sphere (TS), and Computer Generated Holograms (CGH) for aspheres, in order to light the surface at normal incidence. SUN can measure lenses with diameter up to 350mm and a radius of curvature varying from 60 to 3000 mm.

  8. Luminescent Oxygen Gas Sensors Based on Nanometer-Thick Hybrid Films of Iridium Complexes and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Hisako Sato

    2014-01-01

    Full Text Available The use of Ir(III complexes in photo-responsive molecular devices for oxygen gas sensing is reviewed. Attention is focused on the immobilization of Ir(III complexes in organic or inorganic host materials such as polymers, silica and clays in order to enhance robustness and reliability. Our recent works on constructing nanometer-thick films comprised of cyclometalated cationic Ir(III complexes and clay minerals are described. The achievement of multi-emitting properties in response to oxygen pressure is demonstrated.

  9. JBK-75 microstructure specification recommendation

    International Nuclear Information System (INIS)

    Brewer, A.W.

    1977-01-01

    Since the ASTM-E-45 standard for microcleanliness is not applicable to superalloys like JBK-75 stainless steel (Modified A-286), Rocky Flats should adopt the Ladish microcleanliness standard (APML Cleanliness Classification of High Temperature Alloys Chart, 1971), as a guide for setting material acceptance specifications for JBK-75. Inclusion ratings of S-2, N-2, C-2, and M-2 should be acceptable. The microstructure should have a grain size of 5 or finer, but not smaller than 9, and microsegregation (banding) should be kept to a minimum

  10. Control of Cast Iron Microstructure

    Science.gov (United States)

    Graham, J.; Lillybeck, N.; Franco, N.; Stefanescu, D. M.

    1985-01-01

    The use of microgravity for industrial research in the processing of cast iron was investigated. Solidification experiments were conducted using the KC-135 and F-104 aircraft, and an experiment plan was developed for follow-on experiments using the Shuttle. Three areas of interest are identified: (1) measurement of thermophysical properties in the melt; (2) understanding of the relative roles of homogeneous nucleation, grain multiplication, and innocultants in forming the microstructure; and (3) exploring the possibility of obtaining an aligned graphite structure in hypereutectic Fe, Ni, and Co.

  11. Deformation-induced microstructural evolution at grain scale

    DEFF Research Database (Denmark)

    Winther, Grethe

    the active slip systems, which isconfirmed by experimental data [McCabe et al. 2004; Wei et al., 2011; Hong, Huang, & Winther,2013]. The elastic interactions between these dislocations are the driving force for the patterning[McCabe et al. 2004; Wei et al., 2011; Winther, Huang & Hong 2015]. The current...

  12. [Study on preparation of lanthanum-doped TiO2 nanometer thin film materials and its photocatalytic activity].

    Science.gov (United States)

    Zheng, Huai-li; Tang, Ming-fang; Gong, Ying-kun; Deng, Xiao-jun; Wu, Bang-hua

    2003-04-01

    In this paper, lanthanum-doped TiO2 nanometer film materials coated on glass were prepared in Ti(OBu)4 precursor solutions by sol-gel processing. Transmittance and photocatalytic activity were respectively investigated and tested for these nanometer thin films prepared with different amount of lanthanum (La), different amount of polyethylene glycol (PEG), and different coating layer times. Some reactive mechanisms were also discussed. For one layer La-addition had little effect on the film transmissivity; but the photocatalytic activity was significantly improved due to La-addition. With increasing PEG, the transmittance of the film decreased for one layer film; but its photocatalytic activity did not rise. Increasing layer number did not affect the transmissivity of multilayer film. After coating two times, increasing layer number did not significantly improve the photocatalytic activity. The highest photocatalytic activity and best transmissivity were obtained for two layer TiO2 film when the dosage of lanthanum was 0.5 g and the dosage of polyethylene was 0.2 g in the precursor solutions. These materials will probably be used in the protection of environment, waste water treatment, and air purification.

  13. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    International Nuclear Information System (INIS)

    Han, H.-S.; Chen, D.-R.; Pui, David Y.H.; Anderson, Bruce E.

    2000-01-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po 210 ), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below

  14. Preparation, and Luminescence Properties of SiO2@Sm(MABA-Siphen Core-Shell Structure Nanometer Composite

    Directory of Open Access Journals (Sweden)

    Feng Li-Na

    2018-01-01

    Full Text Available A novel ternary samarium complex was prepared using HOOCC6H4N(CONH(CH23Si- (OCH2CH332 (MABA-Si as first ligand, and phen as second ligand. The corresponding SiO2@Sm(MABA-Siphen core-shell structure nanometer composite was synthesized as well, and the silica spheres was the core, and the ternary samarium complex was the shell layer. The ternary samarium complex has been characterized by element analysis, molar conductivity and IR spectra. The results show that the chemical formula of the complex is Sm(MABA-Si(phen2(ClO43·2H2O. The fluorescent spectra illustrat that the luminescence properties of the samarium complex are superior. The core-shell structure of SiO2@Sm(MABA-Siphen nanometer composite is characterized by SEM, TEM and IR spectra. The SiO2@Sm(MABA-Siphen core-shell structure composites exhibit stronger emission intensity than the ternary samarium complex. The fluorescence lifetime of the complex and core-shell structure composite is measured as well.

  15. Development of a sub-nanometer positioning device: combining a new linear motor with linear motion ball guide ways

    International Nuclear Information System (INIS)

    Otsuka, J; Tanaka, T; Masuda, I

    2010-01-01

    A new type of linear motor described in this note has some advantages compared with conventional motors. The attractive magnetic force between the stator (permanent magnets) and mover (armature) is diminished almost to zero. The efficiency is better because the magnetic flux leakage is very small, the size of motor is smaller and detent (force ripple) is smaller than for conventional motors. Therefore, we think that this motor is greatly suitable for ultra-precision positioning as an actuator. An ultra-precision positioning device using this motor and linear motion ball guide ways is newly developed by making the device very rigid and using a suitable control method. Moreover, the positioning performance is evaluated by a positioning resolution, and deviation and dispersion errors. As a result of repeated step response tests, the positioning resolution is 0.3 nm, with the deviation error and dispersion error (3σ) being sub-nanometer. Consequently, the positioning device achieves sub-nanometer positioning. (technical design note)

  16. Performances of the leak microstructures

    CERN Document Server

    Lombardi, M; Lombardi, F S

    2002-01-01

    The capabilities of a new microstructure, anode point based, for the detection of gas ionizing radiations are stressed. For every single detected ionizing radiation it gives a pair of 'induced' charges (anodic and cathodic) of the same amount (pulses of the same amplitudes), of opposite sign, with the same collection time and essentially in time coincidence, that are proportional to the primary ionization collected. The complete lack of insulating materials in the active volume of this microstructure avoids problems of charging-up and makes stable and repeatable its behaviour. Primary avalanches with a size of more than 2.5x10 sup 7 electrons (4 pC) giving current pulses with a peak of more than 0.26 mA on 100 OMEGA and about 30 ns duration are possible with 5.9 keV X-rays of sup 5 sup 5 Fe working in proportional region and in isobutane gas. Single electrons emitted by a heated filament (E sub c <1 eV) were detected in 760 Torr of isobutane; with an estimated gas gain of 1.2x10 sup 6 a counting rate up to...

  17. Microstructural studies on Alloy 693

    Energy Technology Data Exchange (ETDEWEB)

    Halder, R.; Dutta, R.S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sengupta, P., E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Samajdar, I. [Dept. of Metall. Engg. and Mater. Sci., Indian Institute of Technology Bombay, Mumbai 400 072 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-10-15

    Superalloy 693, is a newly identified ‘high-temperature corrosion resistant alloy’. Present study focuses on microstructure and mechanical properties of the alloy prepared by double ‘vacuum melting’ route. In general, the alloy contains ordered Ni{sub 3}Al precipitates distributed within austenitic matrix. M{sub 6}C primary carbide, M{sub 23}C{sub 6} type secondary carbide and NbC particles are also found to be present. Heat treatment of the alloy at 1373 K for 30 min followed by water quenching (WQ) brings about a microstructure that is free from secondary carbides and Ni{sub 3}Al type precipitates but contains primary carbides. Tensile property of Alloy 693 materials was measured with as received and solution annealed (1323 K, 60 min, WQ) and (1373 K, 30 min, WQ) conditions. Yield strength, ultimate tensile strength (UTS) and hardness of the alloy are found to drop with annealing. It is noted that in annealed condition, considerable cold working of the alloy can be performed.

  18. Improved microstructures for better fuel performance

    International Nuclear Information System (INIS)

    Kutty, T.R.G.

    2009-01-01

    The microstructure of fuel pellet is very important since it is deeply related to the irradiation behaviour. It acts as the link between nuclear engineering and materials science of nuclear fuel for understanding thermal transport, swelling, fission-gas release, mechanical behavior. The microstructure of the fuel is intimately related to the behavior of the fission gases. The basic factors that have greatest influence on microstructure are crystal structure, defects concentration and phase stability. The improvement in plasticity and fission gas release can be attained by modifying the microstructures during fabrication. The role of microstructure and crystal defects in determining the engineering properties are always acknowledged. Conventional nuclear ceramic fabrication process consists of a number of stages including calcination, milling, incorporating additives, pressing, drying and densification. Since each of these steps affects the microstructure of fuel pellets they must all be understood. Moreover, the defect structures in the crystal lattice are very important for in-pile behaviour in classical UO 2 and MOX fuels. Defect structures, such as defect clusters or grain boundaries, play a crucial role in the stability of the matrices and the underlying mechanisms to defect stability are at least partly related to the nature of the 5f electrons. It is possible to obtain a wide range of microstructures by incorporating innovation in the fabrication procedure. This paper deals with the development fuels for improved performance by modifying the microstructures. (author)

  19. Microstructure Analysis of Heated Portland Cement Paste

    NARCIS (Netherlands)

    Zhang, Q.; Ye, G.

    2011-01-01

    When a concrete structure is exposed to high temperature, the mechanical damage and chemical transformation take place simultaneously, which will change the microstructure of material. On the other hand, the mechanical properties and transport properties depend on the development of microstructure

  20. Inventory of alloy composition, microstructures and mechanical ...

    African Journals Online (AJOL)

    Inventory of alloy composition, microstructures and mechanical properties of automobile engine parts. ... Journal of Applied Science, Engineering and Technology ... This research work investigated the chemical compositions, microstructures and mechanical properties of the ferrous and non-ferrous auto engine parts such ...

  1. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural respon...

  2. Modeling the Microstructural Evolution During Constrained Sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini

    2015-01-01

    A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as ...

  3. Investigations on the microstructure and mechanical properties

    Indian Academy of Sciences (India)

    This paper addresses the weldability, microstructure and mechanical properties of the multi-pass welding of super-duplex stainless steel (SDSS). Pulsed current gas tungsten arc welding (PCGTAW) was carried out employing ER2553 and ERNiCrMo-4 fillers. Microstructure examination showed the presence of austenite in ...

  4. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.

    2006-01-01

    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers.......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  5. Discriminating Yogurt Microstructure Using Diffuse Reflectance Images

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Møller, Flemming; Abildgaard, Otto Højager Attermann

    2015-01-01

    The protein microstructure of many dairy products is of great importance for the consumers’ experience when eating the product. However, studies concerning discrimination between protein microstructures are limited. This paper presents preliminary results for discriminating different yogurt...... microstructures using hyperspectral (500-900nm) diffuse reflectance images (DRIs) – a technique potentially well suited for inline process control. Comparisons are made to quantified measures of the yogurt microstructure observed through confocal scanning laser microscopy (CSLM). The output signal from both...... modalities is evaluated on a 24 factorial design covering four common production parameters, which significantly change the chemistry and the microstructure of the yogurt. It is found that the DRIs can be as discriminative as the CSLM images in certain cases, however the performance is highly governed...

  6. Microstructures and mechanical properties of aging materials

    International Nuclear Information System (INIS)

    Liaw, P.K.; Viswanathan, R.; Murty, K.L.; Simonen, E.P.; Frear, D.

    1993-01-01

    This book contains a collection of papers presented at the symposium on ''Microstructures and Mechanical Properties of Aging Materials,'' that was held in Chicago, IL. November 2-5, 1992 in conjunction with the Fall Meeting of The Minerals, Metals and Materials Society (TMS). The subjects of interest in the symposium included: (1) mechanisms of microstructural degradation, (2) effects of microstructural degradation on mechanical behavior, (3) development of life prediction methodology for in-service structural and electronic components, (4) experimental techniques to monitor degradation of microstructures and mechanical properties, and (5) effects of environment on microstructural degradation and mechanical properties. Individual papers have been processed separately for inclusion in the appropriate data bases

  7. Development of a methodology for microstructural description

    Directory of Open Access Journals (Sweden)

    Vanderley de Vasconcelos

    1999-07-01

    Full Text Available A systematic methodology for microstructural description can help the task of obtaining the processing x microstructure x properties x performance relationships. There are, however, some difficulties in performing this task, which are related mainly to the following three factors: the complexity of the interactions between microstructural features; difficulties in evaluating geometric parameters of microstructural features; and difficulties in relating these geometric parameters to process variables. To solve some of these problems, it is proposed a methodology that embodies the following features: takes into account the different possible types of approaches for the microstructural description problem; includes concepts and tools of Total Quality Management; is supported on techniques of system analysis; and makes use of computer modeling and simulation and statistical design of experiments tools. The methodology was applied on evaluating some topological parameters during sintering process and its results were compared with available experimental data.

  8. Contact problem for a composite material with nacre inspired microstructure

    Science.gov (United States)

    Berinskii, Igor; Ryvkin, Michael; Aboudi, Jacob

    2017-12-01

    Bi-material composites with nacre inspired brick and mortar microstructures, characterized by stiff elements of one phase with high aspect ratio separated by thin layers of the second one, are considered. Such microstructure is proved to provide an efficient solution for the problem of a crack arrest. However, contrary to the case of a homogeneous material, an external pressure, applied to a part of the composite boundary, can cause significant tensile stresses which increase the danger of crack nucleation. Investigation of the influence of microstructure parameters on the magnitude of tensile stresses is performed by means of the classical Flamant-like problem of an orthotropic half-plane subjected to a normal external distributed loading. Adequate analysis of this problem represents a serious computational task due to the geometry of the considered layout and the high contrast between the composite constituents. This difficulty is presently circumvented by deriving a micro-to-macro analysis in the framework of which an analytical solution of the auxiliary elasticity problem, followed by the discrete Fourier transform and the higher-order theory are employed. As a result, full scale continuum modeling of both composite constituents without employing any simplifying assumptions is presented. In the framework of the present proposed modeling, the influence of stiff elements aspect ratio on the overall stress distribution is demonstrated.

  9. Influence of the chemically synthesis conditions on the microstructure and magnetic properties of the Co-Fe-B nanoparticles

    Science.gov (United States)

    Ababei, G.; Gaburici, M.; Budeanu, L.-C.; Grigoras, M.; Porcescu, M.; Lupu, N.; Chiriac, H.

    2018-04-01

    Co-Fe-B particles present a high potential for applications in microwave domain (electromagnetic shielding, toroidal transformer, etc.) due to their special soft magnetic properties like high saturation magnetization, low coercivity, large anisotropy and high magnetic permeability. However, their microwave applications are limited to about few gigahertzes due to the eddy current losses if the size of the particles is larger than few hundred of nanometers. Chemical synthesis method gives the possibility to obtain nanoparticles with diameters from few nanometers to tens of nanometers by varying the parameters of the chemical synthesis. One way to avoids the agglomeration of the particles in the utilization of the polyvinyl-pyrrolidone (PVP) which is acting as dispersant and dimensions controlling agent for nanoparticles. The aim of this paper is to study the influence of the synthesis conditions on the magnetic properties and microstructure of Co-Fe-B nanoparticles prepared by chemical reduction method in order to obtains nanoparticles with magnetic properties suitable for high frequency applications in the 0.1 ÷ 12 GHz frequency range. Co-Fe-B nanoparticles were prepared by chemical reduction of CoCl2·6H2O and FeSO4·7H2O salts in aqueous solution of sodium borohydride (NaBH4) in presence of the polyvinyl-pirrolydone (PVP). The experimental results indicate that the amount of PVP, Fe/Co ratio and the temperature of the chemical synthesis are important parameters which have to be controlled in order to obtain nanoparticles with desired dimensions, nanostructure and soft magnetic properties with suitable properties for high frequency applications.

  10. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis.

    Science.gov (United States)

    Meng, Xianguang; Liu, Lequan; Ouyang, Shuxin; Xu, Hua; Wang, Defa; Zhao, Naiqin; Ye, Jinhua

    2016-08-01

    Nanometal materials play very important roles in solar-to-chemical energy conversion due to their unique catalytic and optical characteristics. They have found wide applications from semiconductor photocatalysis to rapidly growing surface plasmon-mediated heterogeneous catalysis. The recent research achievements of nanometals are reviewed here, with regard to applications in semiconductor photocatalysis, plasmonic photocatalysis, and plasmonic photo-thermocatalysis. As the first important topic discussed here, the latest progress in the design of nanometal cocatalysts and their applications in semiconductor photocatalysis are introduced. Then, plasmonic photocatalysis and plasmonic photo-thermocatalysis are discussed. A better understanding of electron-driven and temperature-driven catalytic behaviors over plasmonic nanometals is helpful to bridge the present gap between the communities of photocatalysis and conventional catalysis controlled by temperature. The objective here is to provide instructive information on how to take the advantages of the unique functions of nanometals in different types of catalytic processes to improve the efficiency of solar-energy utilization for more practical artificial photosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Experimental Diagenesis and 3D Printing of Evolving Carbonate Microstructures

    Science.gov (United States)

    Vanorio, T.

    2014-12-01

    Understanding how rock microstructures and, in turn, the spatial distribution of the properties of the rock skeleton (porosity, permeability, and elastic properties) evolve because of time-variant, thermo-chemo-mechanical processes is fundamental to decipher changes in the earth's crust due to rock-fluid interactions using remote geophysical monitoring methods. Laboratory experiments undoubtedly play a vital role in understanding the underlying basic rules that are needed to inform both simulations and modeling. Nevertheless, capturing coupled chemo-mechanical processes experimentally is a very challenging problem because as pore space deforms chemo-mechanically, the fluid reacts and flows through a deforming pore space. The result is that as much as we strive to achieve controlled conditions in laboratory experiments, it is extremely difficult to control for all of the possible responses of the highly heterogeneous pore network. To overcome such a limitation, we often resort to the fabrication of rock samples in the laboratory. Nevertheless, analogs are not rocks. This level of complexity requires an approach that advances beyond the limitations of each method, be it experimental or computational. I present an approach that takes advantage of the favorable aspects of experimental diagenesis, multi-scale imaging techniques (from pore scale to 3D rock volumes) and 3D printed models of varying carbonate microstructures. This approach allows us to study the evolution of natural pore network geometries from diagenesis experiments, use the basic rules of the evolving microstructures to drive the digital change of the pore network of the printed models in a well-controlled fashion as much possible in the analog experiments, and then iteratively measure the properties of the printed models at the scale of the laboratory. This integration can help make sense of the trackless evolution of properties in apparently scattered datasets such as those characterizing carbonate

  12. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    Science.gov (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  13. Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100 (Preprint)

    Science.gov (United States)

    2009-03-01

    transition fatigue regimes; however, microplasticity (i.e., heterogeneous plasticity at the scale of microstructure) is relevant to understanding fatigue...and Socie [57] considered the affect of microplastic 14 Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base...considers the local stress state as affected by intergranular interactions and microplasticity . For the calculations given below, the volumes over which

  14. Microstructures and strucural defects in high-temperature superconductors

    CERN Document Server

    Cai, Zhi Xiong

    1998-01-01

    This book provides an extensive introduction to the microstructures and structural defects in high-temperature superconductors. It illustrates the application of modern experimental techniques as well as theoretical modeling tools in the study of these complex materials.The readers are given an overview of the structure-sensitive properties, such as transport properties, and the effort to develop large-scale (high-current, high-field) applications for these materials. The effects of defects on the superconducting properties of these materials are described when feasible to put the study of mic

  15. Analysis and computation of microstructure in finite plasticity

    CERN Document Server

    Hackl, Klaus

    2015-01-01

    This book addresses the need for a fundamental understanding of the physical origin, the mathematical behavior, and the numerical treatment of models which include microstructure. Leading scientists present their efforts involving mathematical analysis, numerical analysis, computational mechanics, material modelling and experiment. The mathematical analyses are based on methods from the calculus of variations, while in the numerical implementation global optimization algorithms play a central role. The modeling covers all length scales, from the atomic structure up to macroscopic samples. The development of the models ware guided by experiments on single and polycrystals, and results will be checked against experimental data.

  16. Microstructure evaluation and mechanical behavior of high-niobium containing titanium aluminides

    Science.gov (United States)

    Bean, Glenn Estep, Jr.

    Ti-Al-Nb-based alloys with gamma(TiAl)+sigma(Nb2Al) microstructure have shown promise for potential high temperature applications due to their high specific strength. Recent research has been aimed towards increasing strength and operating temperatures through microstructural refinement and control. Alloys with 10 - 30% sigma-phase have been investigated, exploring relationships between chemistry, microstructure development, and flow behavior. Alloys with composition Ti-45Al-xNb-5Cr-1Mo (where x = 15, 20, 25 at%) have been produced, characterized, and tested at high temperature under compression. Processing, microstructure and mechanical property relationships are thoroughly investigated to reveal a significant connection between phase stability, morphology and their resultant effects on mechanical properties. Phase transformation temperatures and stability ranges were predicted using the ThermoCalc software program and a titanium aluminide database, investigated through thermal analysis, and alloys were heat treated to develop an ultrafine gamma+sigma microstructure. It has been demonstrated that microstructural development in these alloys is sensitive to composition and processing parameters, and heating and cooling rates are vital to the modification of gamma+sigma microstructure in these alloys. Towards the goal of designing a high-Nb titanium aluminide with ultrafine, disconnected gamma+sigma morphology, it has been established that microstructural control can be accomplished in alloys containing 15-25at% Nb through targeted chemistry and processing controls. The strength and flow softening characteristics show strain rate sensitivity that is also affected by temperature. From the standpoint of microstructure development and mechanical behavior at elevated temperature, the most favorable results are obtained with the 20 at% Nb alloy, which produces a combination of high strength and fine disconnected gamma+sigma microstructure. Microstructural analysis reveals

  17. Phase-field modelling of microstructural evolution and properties

    Science.gov (United States)

    Zhu, Jingzhi

    As one of the most powerful techniques in computational materials science, the diffuse-interface phase-field model has been widely employed for simulating various meso-scale microstructural evolution processes. The main purpose of this thesis is to develop a quantitative phase-field model for predicting microstructures and properties in real alloy systems which can be linked to existing thermodynamic/kinetic databases and parameters obtained from experimental measurements or first-principle calculations. To achieve this goal; many factors involved in complicated real systems are investigated, many of which are often simplified or ignored in existing models, e.g. the dependence of diffusional atomic mobility and elastic constants on composition. Efficient numerical techniques must be developed to solve those partial differential equations that are involved in modelling microstructural evolutions and properties. In this thesis, different spectral methods were proposed for the time-dependent phase-field kinetic equations and diffusion equations. For solving the elastic equilibrium equation with the consideration of elastic inhomogeneity, a conjugate gradient method was utilized. The numerical approaches developed were generally found to be more accurate and efficient than conventional approach such as finite difference method. A composition-dependent Cahn-Hilliard equation was solved by using a semi-implicit Fourier-spectral method. It was shown that the morphological evolutions in bulk-diffusion-controlled coarsening and interface-diffusion-controlled developed similar patterns and scaling behaviors. For bulk-diffusion-controlled coarsening, a cubic growth law was obeyed in the scaling regime, whereas a fourth power growth law was observed for interface-diffusion-controlled coarsening. The characteristics of a microstructure under the influence of elastic energy depend on elastic properties such as elastic anisotropy, lattice mismatch, elastic inhomogeneity and

  18. Direct fabrication of rigid microstructures on a metallic roller using a dry film resist

    International Nuclear Information System (INIS)

    Jiang, Liang-Ting; Huang, Tzu-Chien; Chang, Chih-Yuan; Ciou, Jian-Ren; Yang, Sen-Yeu; Huang, Po-Hsun

    2008-01-01

    This paper presents a novel method to fabricate a metallic roller mold with microstructures on its surface using a dry film resist (DFR). The DFR is laminated uniformly onto the curvy surface of a copper roller. After that, the micro-scale photoresist on the surface of the roller can be patterned by non-planar lithography using a flexible film photomask, followed by ferric chloride wet etching to obtain the desired microstructures. This method overcomes the uniformity issue of photoresist coating on rollers, and solves the molds sliding problem during the embossing process because the microstructures are fabricated directly on the roller surface. Furthermore, the rigid metallic roller mold has excellent strength durability and temperature endurance, which can be used in roller hot embossing with a high embossing pressure. The fabricated microstructure roller mold is used as a mold in the hybrid extrusion roller embossing process and successfully fabricates uniform micro-scale prominent line arrays on PC films. This result proves that the roller fabricated by this method can be successfully used in roller embossing for microstructure mass production. The excellent flatness of dry film resist laminating is the key in this fabrication process. The flexible film photomask can be easily designed using CAD software; this roller fabrication method enhances the design flexibility and reduces the cost and time

  19. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.

    Science.gov (United States)

    Yuan, Zhe; Govind Rajan, Ananth; Misra, Rahul Prasanna; Drahushuk, Lee W; Agrawal, Kumar Varoon; Strano, Michael S; Blankschtein, Daniel

    2017-08-22

    Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO 2 and CH 4 , through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO 2 and CH 4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO 2 /CH 4 mixture, the graphene nanopores exhibit a trade-off between the CO 2 permeance and the CO 2 /CH 4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO 2 /CH 4 separation factors higher than 10 2 have CO 2 permeances per pore lower than 10 -22 mol s -1 Pa -1 , and pores with separation factors of ∼10 have CO 2 permeances per pore between 10 -22 and 10 -21 mol s -1 Pa -1 . Finally, we show that a pore density of 10 14 m -2 is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric

  20. Microstructure Modeling of Third Generation Disk Alloys

    Science.gov (United States)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.

  1. Microstructure characterisation of processed fruits and vegetables by complementary imaging techniques

    NARCIS (Netherlands)

    Voda, A.; Nijsse, J.; Dalen, van G.; As, van H.; Duynhoven, van J.P.M.

    2011-01-01

    The assessment of the microstructural impact of processing on fruits and vegetables is a prerequisite for understanding the relation between processing and textural quality. By combining complementary imaging techniques, one can obtain a multi scale and real-time structural view on the impact of

  2. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    OpenAIRE

    Shunsuke Asahina; Mitsuo Suga; Hideyuki Takahashi; Hu Young Jeong; Carolina Galeano; Ferdi Schüth; Osamu Terasaki

    2014-01-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently ...

  3. Evolution of phase microstructure during irradiation

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1985-11-01

    The phase microstructure of alloys is frequently severely altered during irradiation. Sluggish precipitation reactions including precipitation coarsening are accelerated by irradiation-enhanced diffusion. Radiation-induced segregation redistributes existing precipitate phases within the microstructure, induces precipitation of nonequilibrium phases and affects the composition of phases in multicomponent alloys. The displacement process causes disordering of ordered alloys and frequently amorphization, especially in intermetallic compounds, at low temperature. Although a good qualitative understanding of the basic process involved, i.e., displacement mixing, radiation-enhanced diffusion and radiation-induced segregation exists, methods for detailed quantitative modeling of the evolution of the microstructure of alloys remain to be developed

  4. Realized Variance and Market Microstructure Noise

    DEFF Research Database (Denmark)

    Hansen, Peter R.; Lunde, Asger

    2006-01-01

    -based estimator dominates the RV for the estimation of integrated variance (IV). An empirical analysis of the Dow Jones Industrial Average stocks reveals that market microstructure noise its time-dependent and correlated with increments in the efficient price. This has important implications for volatility......We study market microstructure noise in high-frequency data and analyze its implications for the realized variance (RV) under a general specification for the noise. We show that kernel-based estimators can unearth important characteristics of market microstructure noise and that a simple kernel...

  5. Morphology and microstructure of composite materials

    Science.gov (United States)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  6. Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays

    Science.gov (United States)

    Skjølstrup, Enok J. H.; Søndergaard, Thomas; Pedersen, Thomas G.

    2018-03-01

    Plasmons in ultranarrow metal gaps are highly sensitive to the electron density profile at the metal surfaces. Using a quantum mechanical approach and assuming local response, we study the effects of electron spill-out on gap plasmons and reflectance from ultrasharp metal grooves. We demonstrate that the mode index of ultranarrow gap plasmons converges to the bulk refractive index in the limit of vanishing gap and, thereby, rectify the unphysical divergence found in classical models. Surprisingly, spill-out also significantly increases the plasmonic absorption for few-nanometer gaps and lowers the reflectance from arrays of ultrasharp metal grooves. These findings are explained in terms of enhanced gap plasmon absorption taking place inside the gap 1-2 Å from the walls and delocalization near the groove bottom. Reflectance calculations taking spill-out into account are shown to be in much better agreement with measurements compared with classical models.

  7. Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors.

    Science.gov (United States)

    Di, Chong-an; Yu, Gui; Liu, Yunqi; Guo, Yunlong; Wu, Weiping; Wei, Dacheng; Zhu, Daoben

    2008-05-07

    We report high performance organic field-effect transistors (OFETs) with the modified Cu bottom-contact electrodes. Efficient modification of the Cu electrodes with nanometer-size copper tetracyanoquinodimethane (Cu-TCNQ) increases the electrode/organic layer contact area and reduces contact resistance. We investigated the effect of the Cu-TCNQ morphology on the device performance. The pentacene-based OFETs with the modified Cu bottom-contact electrodes exhibited high device performance. The field-effect mobility up to 0.31 cm(2)/V s was achieved. To the best of our knowledge, this is the highest device performance for the OFETs with the bottom Cu electrodes ever reported. Consequently, our results provide an effective approach to fabricate high performance and low-cost OFETs.

  8. Differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites.

    Science.gov (United States)

    Zoellner, Andreas; Tan, Si; Saraf, Shailendhar; Alfauwaz, Abdul; DeBra, Dan; Buchman, Sasha; Lipa, John A

    2017-10-16

    We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensors. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam's power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87nm/Hz at 1 Hz and 0.39nm/Hz at 10 Hz. We describe the application of the module to the inertial sensor of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.

  9. Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays

    DEFF Research Database (Denmark)

    Skjølstrup, Enok Johannes Haahr; Søndergaard, Thomas; Pedersen, Thomas Garm

    2018-01-01

    Plasmons in ultranarrow metal gaps are highly sensitive to the electron density profile at the metal surfaces. Using a quantum mechanical approach and assuming local response, we study the effects of electron spill-out on gap plasmons and reflectance from ultrasharp metal grooves.We demonstrate...... that the mode index of ultranarrow gap plasmons converges to the bulk refractive index in the limit of vanishing gap and, thereby, rectify the unphysical divergence found in classical models. Surprisingly, spill-out also significantly increases the plasmonic absorption for few-nanometer gaps and lowers...... the reflectance from arrays of ultrasharp metal grooves. These findings are explained in terms of enhanced gap plasmon absorption taking place inside the gap 1–2 °A from the walls and delocalization near the groove bottom. Reflectance calculations taking spill-out into account are shown to be in much better...

  10. Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution.

    Science.gov (United States)

    Martínez-Criado, Gema; Segura-Ruiz, Jaime; Chu, Manh-Hung; Tucoulou, Remi; López, Iñaki; Nogales, Emilio; Mendez, Bianchi; Piqueras, Javier

    2014-10-08

    Crossed nanowire structures are the basis for high-density integration of a variety of nanodevices. Owing to the critical role of nanowires intersections in creating hybrid architectures, it has become a challenge to investigate the local structure in crossing points in metal oxide nanowires. Thus, if intentionally grown crossed nanowires are well-patterned, an ideal model to study the junction is formed. By combining electron and synchrotron beam nanoprobes, we show here experimental evidence of the role of impurities in the coupling formation, structural modifications, and atomic site configuration based on crossed Ga2O3/SnO2 nanowires. Our experiment opens new avenues for further local structure studies with both nanometer resolution and elemental sensitivity.

  11. Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

    Science.gov (United States)

    Rao, Shasha; Song, Yunmei; Peddie, Frank; Evans, Allan M

    2011-01-01

    Poorly water-soluble drugs, such as phenylephrine, offer challenging problems for buccal drug delivery. In order to overcome these problems, particle size reduction (to the nanometer range) and cyclodextrin complexation were investigated for permeability enhancement. The apparent solubility in water and the buccal permeation of the original phenylephrine coarse powder, a phenylephrine–cyclodextrin complex and phenylephrine nanosuspensions were characterized. The particle size and particle surface properties of phenylephrine nanosuspensions were used to optimize the size reduction process. The optimized phenylephrine nanosuspension was then freeze dried and incorporated into a multi-layered buccal patch, consisting of a small tablet adhered to a mucoadhesive film, yielding a phenylephrine buccal product with good dosage accuracy and improved mucosal permeability. The design of the buccal patch allows for drug incorporation without the need to change the mucoadhesive component, and is potentially suited to a range of poorly water-soluble compounds. PMID:21753876

  12. SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution

    Science.gov (United States)

    Voorkamp, R.; Verschuuren, M. A.; van Brakel, R.

    2016-10-01

    Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 - 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and

  13. Nanoscale transient porosity controls large-scale metamorphic fluid flow

    Science.gov (United States)

    Plümper, Oliver; Botan, Alexandru; Los, Catharina; Malthe-Sørenssen, Anders; Jamtveit, Bjørn

    2016-04-01

    The reaction of fluids with rocks is fundamental for Earth's dynamics as they facilitate heat/mass transfer and induce volume changes, weaknesses and instabilities in rock masses that localize deformation enabling tectonic responses to plate motion. During these fluid-rock interactions it is the ability of a rock to transmit fluid, its permeability, that controls the rates of metamorphic reactions. However, although some geological environments (e.g., sediments) are open to fluids, the majority of solid rocks (e.g., granites, elcogites, peridotites, etc.) are nearly impermeable. Surprisingly though, even in rocks that are nominally impermeable widespread fluid-rock interactions are observed leading to the question: How can fluids migrate through vast amounts of nominally impermeable rocks? Here we investigate one of the most wide-spread fluid-mediated metamorphic processes in the Earth's crust, the albitization of feldspatic rocks. We show that fluid flow and element mobilization during albitization is controlled by an interaction between grain boundary diffusion and reaction front migration through an interface-coupled dissolution-precipitation process. Using a combination of focused ion beam scanning electron microscopy (FIB-SEM)-assisted nanotomography combined with transmission electron microscopy (TEM) reveals that the porosity is dictated by pore channels with a pore diameter ranging between 10 to 100 nm. Three-dimensional visualization of the feldspar pore network reveals that the pore channels must have been connected during the replacement reaction. Analysis of the pore aspect ratios suggests that a Rayleigh-Taylor-type instability associated to surface energy minimization caused the disconnection of the pore channels. Fluid transport in nanometer-sized objects with at least one characteristic dimension below 100 nm enables the occurrence of physical phenomena that are impossible at bigger length scales. Thus, on the basis of our microstructural

  14. Self-induced nanofluidic transport enables crustal-scale metamorphism

    Science.gov (United States)

    Plümper, Oliver; Botan, Alexandru; Los, Catharina; Liu, Yang; Malthe-Sørenssen, Anders; Jamtveit, Bjørn

    2017-04-01

    The reaction of fluids with rocks is fundamental for Earth's dynamics as they facilitate heat/mass transfer and induce volume changes, weaknesses and instabilities in rock masses that localize deformation enabling tectonic responses to plate motion. During these fluid-rock interactions it is the ability of a rock to transmit fluid, its permeability, that controls the rates of metamorphic reactions. However, although some geological environments (e.g., sediments) are open to fluids, the majority of solid rocks (e.g., granites, elcogites, peridotites, etc.) are nearly impermeable. Surprisingly though, even in rocks that are nominally impermeable widespread fluid-rock interactions are observed leading to the question: How can fluids migrate through vast amounts of nominally impermeable rocks? Here we investigate one of the most wide-spread fluid-mediated metamorphic processes in the Earth's crust, the albitization of feldspatic rocks. We show that fluid flow and element mobilization during albitization is controlled by an interaction between grain boundary diffusion and reaction front migration through an interface-coupled dissolution-precipitation process. Using a combination of focused ion beam scanning electron microscopy (FIB-SEM)-assisted nanotomography combined with transmission electron microscopy (TEM) we show that the porosity is dictated by pore channels with a pore diameter ranging between 10 to 100 nm. Three-dimensional visualization of the feldspar pore network reveals that the pore channels must have been connected during the replacement reaction. Analysis of the pore aspect ratios suggests that a Rayleigh-Taylor-type instability associated to surface energy minimization caused the disconnection of the pore channels. Fluid transport in nanometer-sized objects with at least one characteristic dimension below 100 nm enables the occurrence of physical phenomena that are impossible at bigger length scales. Thus, on the basis of our microstructural

  15. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels; Microstructure et fragilisation des aciers de cuve des reacteurs nucleaires VVER 440

    Energy Technology Data Exchange (ETDEWEB)

    Hennion, A

    1999-03-15

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  16. Microstructure and properties of low manganese and niobium containing HIC pipeline steel

    International Nuclear Information System (INIS)

    Nayak, S.S.; Misra, R.D.K.; Hartmann, J.; Siciliano, F.; Gray, J.M.

    2008-01-01

    The paper describes the concept of using low manganese content in pipeline steels for hydrogen-induced cracking (HIC) applications. The microstructure of thermomechanically processed pipeline steel primarily consisted of polygonal ferrite and low fraction of pearlite. The cleanliness of the steel was evident as was the absence of centerline segregation. The microstructure contained high dislocation density, sub-boundaries and dislocation substructures. Fine-scale precipitation of niobium carbides occurred on parallel array of dislocations and on random dislocations that followed [0 0 1] NbC //[0 0 1] α-Fe relationship with the ferrite matrix

  17. Chemo-physical evolution and microstructure features of lime treated soils

    Directory of Open Access Journals (Sweden)

    Russo Giacomo

    2016-01-01

    Full Text Available In the paper some results on the effects of chemo-physical evolution of clay-lime-water suspensions on the microstructure of a lime treated kaolin have been presented. A multi-scale investigation on the sedimentation behaviour of clay suspensions under different pore water chemistry has been developed highlighting the chemo-physical mechanisms controlling particle arrangement and the soil fabric formation. The results evidenced the key role of ionic exchange in the short term on the microstructure features of the lime treated soil.

  18. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.

    2006-01-01

    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  19. Surface Microstructure Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2005-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection......In recent years polymer components with surface microstructures have been in rising demand for applications such as lab-on-a-chip and optical components. Injection moulding has proven to be a feasible and efficient way to manufacture such components. In injection moulding the mould surface...... moulding of surface microstructures. Emphasis is put on the ability to replicate surface microstructures under normal injection moulding conditions, notably with low cost materials at low mould temperatures. The replication of surface microstructures in injection moulding has been explored...

  20. Quantitative characterization of microstructure of asphalt mixtures

    Science.gov (United States)

    2010-10-01

    The microstructure of the fine aggregate matrix has a significant influence on the : mechanical properties and evolution of damage in an asphalt mixture. However, very little : work has been done to define and quantitatively characterize the microstr...

  1. Microstructure and properties of ceramic materials

    International Nuclear Information System (INIS)

    Yen Tungsheng

    1984-01-01

    Ceramics materials study is an important field in modern materials science. Each side presented 19 papers most of which were recent investigations giving rather extensive coverage of microstructure and properties of new materials. (Auth.)

  2. Homogenization-based topology optimization for high-resolution manufacturable micro-structures

    DEFF Research Database (Denmark)

    Groen, Jeroen Peter; Sigmund, Ole

    2018-01-01

    This paper presents a projection method to obtain high-resolution, manufacturable structures from efficient and coarse-scale, homogenization-based topology optimization results. The presented approach bridges coarse and fine scale, such that the complex periodic micro-structures can be represente...... designs are almost equal to the homogenization-based solutions. A significant reduction in computational cost is observed compared to conventional topology optimization approaches....

  3. The Quest for Greater Chemical Energy Storage: A Deceiving Game of Nanometer Manipulation

    Science.gov (United States)

    Lindsay, C. Michael

    2015-06-01

    It is well known that modern energetic materials based on organic chemistry have nearly reached a plateau in performance with only ~ 40% improvement realized over the past half century. This fact has stimulated research on alternative chemical energy storage schema in various US government funded ``High Energy Density Materials'' (HEDM) programs since the 1950's. These efforts have examined a wide range of phenomena such as free radical stabilization, metallic hydrogen, metastable helium, polynitrogens, extended molecular solids, nanothermites, and others. In spite of the substantial research investments, significant improvements in energetic material performance have not been forthcoming. In this talk we will survey various fundamental modes of chemical energy storage, lesson's learned in the various HEDM programs, and areas that are being explored currently. A recurring theme in all of this work is the challenge to successfully manipulate and stabilize matter at the ~ 1 nm scale.

  4. Parallel nanogap fabrication with nanometer size control using III-V semiconductor epitaxial technology

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-MartInez, Ivan; Gonzalez, Yolanda; Briones, Fernando [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8 PTM, E-28760 Tres Cantos, Madrid (Spain)], E-mail: ivan@imm.cnm.csic.es

    2008-07-09

    A nanogap fabrication process using strained epitaxial III-V beams is reported. The process is highly reproducible, allowing parallel fabrication and nanogap size control. The beams are fabricated from MBE-grown (GaAs/GaP)/AlGaAs strained heterostructures, standard e-beam lithography and wet etching. During the wet etching process, the relaxation of the accumulated stress at the epitaxial heterostructure produces a controlled beam breakage at the previously defined beam notch. After the breakage, the relaxed strain is proportional to the beam length, allowing nanogap size control. The starting structure is similar to a mechanically adjustable break junction but the stress causing the breakage is, in this case, built into the beam. This novel technique should be useful for molecular-scale electronic devices.

  5. Microstructure and deformation behavior of nickel based superalloy Inconel 740 prepared by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yi, E-mail: tanyi@dlut.edu.cn; You, Xiaogang; You, Qifan; Li, Jiayan; Shi, Shuang; Li, Pengting

    2016-04-15

    Electron beam smelting (EBS) has been used to fabricate the Inconel 740 superalloy. Microstructures, hardness, and deformation characteristics of the alloy are studied. It is observed that carbides and fine secondary phase nuclei are distributed in the hot worked EBS 740 superalloy. The Ostwald ripening occurs during solution treatment and leads to aggregation of the γ′ precipitates, the size of γ′ precipitates varies from several nanometers to more than one hundred nanometers as a result. The average size of the secondary phase is < 30 nm after aging treatment and the average Vickers hardness is measured to be about 370. The critical shear stress is calculated to be 0.627 GPa with governing mechanism of shearing, causing a stronger strengthening effect than the traditionally prepared Inconel 740 superalloy. The compression behavior indicates that the EBS 740 superalloy shows higher flow stress than 740H at low Zener-Hollomon parameter, which may arise from the undissolved γ′ precipitates and higher activation energy Q. The tensile results show that the fracture surface exhibits a ductile fracture pattern, in contrast to no obvious plastic deformation on the macroscopic fracture. Crack propagation proceeds in a transgranular fracture mode with facets and voids presented on the fracture surface. - Graphical abstract: Electron beam smelting (EBS) has been used to fabricate the Inconel 740 superalloy. Microstructures, hardness, and deformation characteristics of the alloy are studied. The average size of the secondary phase is < 30 nm after aging treatment and the average Vickers hardness is measured to be about 370. The critical shear stress is calculated to be 0.627 GPa with governing mechanism of shearing, causing a stronger strengthening effect than the traditionally prepared Inconel 740 superalloy. The EBS 740 superalloy shows higher flow stress than 740H at low Zener-Hollomon parameter, which may arise from the undissolved γ′ precipitates and higher

  6. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  7. Superbainite. A novel very strong bainitic microstructure

    International Nuclear Information System (INIS)

    Garcia-Mateo, C.; Caballero, E. G.; Bhadeshia, H. K. D. H.

    2005-01-01

    In this work very recent results are how that reveals the possibility of obtaining bainite by isothermal transformation at very low temperatures, of about 150 degree centigree, in high carbon high silicon steels. The microstructure thus obtained is a mixture of fine plates of bainite ferrite (20-40 nm thickness) and thin films of carbon enriched austenite. These microstructures are very hard (600 HV) and strong (2.5 GPa). (Author) 18 refs

  8. Microstructure-sensitive extreme value probabilities of fatigue in advanced engineering alloys

    Science.gov (United States)

    Przybyla, Craig P.

    estimate the local driving forces for fatigue crack formation, to validate these with limited existing experiments, and to explore how the extreme value probabilities of certain fatigue indicator parameters (FIPs) affect overall variability in fatigue life in the HCF regime. Various FIPs have been introduced and used previously as a means to quantify the potential for fatigue crack formation based on experimentally observed mechanisms. Distributions of the extreme value FIPs are calculated for multiple SVEs simulated via the FEM with crystal plasticity constitutive relations. By using crystal plasticity relations, the FIPs can be computed based on the cyclic plastic strain on the scale of the individual grains. These simulated SVEs are instantiated such that they are statistically similar to real microstructures in terms of the crystallographic microstructure attributes that are hypothesized to have the most influence on the extreme value HCF response. The polycrystalline alloys considered here include the Ni-base superalloy IN100 and the alpha + beta Ti alloy Ti-6Al-4V. In applying this framework to study the microstructure dependent variability of HCF in these alloys, the extreme value distributions of the FIPs and associated extreme value marked correlations of crystallographic microstructure attributes are characterized. This information can then be used to rank order multiple variants of the microstructure for a specific material system for relative HCF performance or to design new microstructures hypothesized to exhibit improved performance. This framework enables limiting the (presently) large number of experiments required to characterize scatter in HCF and lends quantitative support to designing improved, fatigue-resistant materials and accelerating insertion of modified and new materials into service.

  9. Microstructural study of multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Masao Sakane

    2015-07-01

    Full Text Available This paper discusses the relationship between the stress response and the microstructure under tension-torsion multiaxial proportional and nonproportional loadings. Firstly, this paper discusses the material dependency of additional hardening of FCC materials in relation with the stacking fault energy of the materials. The FCC materials studied were Type 304 stainless steel, pure copper, pure nickel, pure aluminum and 6061 aluminum alloy. The material with lower stacking fault energy showed stronger additional hardening, which was discussed in relation with slip morphology and dislocation structures. This paper, next, discusses dislocation structures of Type 304 stainless steel under proportional and nonproportional loadings at high temperature. The relationship between the microstructure and the hardening behavior whether isotropic or anisotropic was discussed. The re-arrangeability of dislocation structure was discussed in loading mode change tests. Microstructures of the steel was discussed in more extensively programmed multiaxial low cycle fatigue tests at room temperature, where three microstructures, dislocation bundle, stacking fault and cells, which were discussed in relation with the stress response. Finally, temperature dependence of the microstructure was discussed under proportional and nonproportional loadings, by comparing the microstructures observed at room and high temperatures.

  10. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels.

    Science.gov (United States)

    Hsiao, Lilian C; Newman, Richmond S; Glotzer, Sharon C; Solomon, Michael J

    2012-10-02

    We report a simple correlation between microstructure and strain-dependent elasticity in colloidal gels by visualizing the evolution of cluster structure in high strain-rate flows. We control the initial gel microstructure by inducing different levels of isotropic depletion attraction between particles suspended in refractive index matched solvents. Contrary to previous ideas from mode coupling and micromechanical treatments, our studies show that bond breakage occurs mainly due to the erosion of rigid clusters that persist far beyond the yield strain. This rigidity contributes to gel elasticity even when the sample is fully fluidized; the origin of the elasticity is the slow Brownian relaxation of rigid, hydrodynamically interacting clusters. We find a power-law scaling of the elastic modulus with the stress-bearing volume fraction that is valid over a range of volume fractions and gelation conditions. These results provide a conceptual framework to quantitatively connect the flow-induced microstructure of soft materials to their nonlinear rheology.

  11. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  12. An exponential expansion method and its application to the strain wave equation in microstructured solids

    Directory of Open Access Journals (Sweden)

    M.G. Hafez

    2015-06-01

    Full Text Available The modeling of wave propagation in microstructured materials should be able to account for various scales of microstructure. Based on the proposed new exponential expansion method, we obtained the multiple explicit and exact traveling wave solutions of the strain wave equation for describing different types of wave propagation in microstructured solids. The solutions obtained in this paper include the solitary wave solutions of topological kink, singular kink, non-topological bell type solutions, solitons, compacton, cuspon, periodic solutions, and solitary wave solutions of rational functions. It is shown that the new exponential method, with the help of symbolic computation, provides an effective and straightforward mathematical tool for solving nonlinear evolution equations arising in mathematical physics and engineering.

  13. Electrochemical synthesis of metallic microstructures using etched ion tracks in nuclear track filters

    International Nuclear Information System (INIS)

    Sanjeev Kumar; Shyam Kumar; Rajesh Kumar; Chakravarti, K.

    2004-01-01

    Interest in nano/microstructures results from their numerous potential applications in various areas such as materials and biomedical sciences, electronics, optics, magnetism, energy storage and electrochemistry. Materials with micro/nanoscopic dimensions not only have potential technological applications in areas such as device technology and drug delivery, but also are of fundamental interest in that the properties of a material can change in this regime of transition between the bulk and molecular scales. Electrodeposition is a versatile technique combining low processing cost with ambient conditions that can be used to prepare metallic, polymeric and semiconducting microstructures. In the present work ion track membranes of Makrofol (KG) have been used as templates for synthesis of metallic microstructures using the technique of electrodeposition. (author)

  14. Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network

    Science.gov (United States)

    Mandal, Sumantra; Sivaprasad, P. V.; Dube, R. K.

    2007-12-01

    An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.

  15. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non...

  16. How to measure atomic diffusion processes in the sub-nanometer range

    International Nuclear Information System (INIS)

    Schmidt, H.; Gupta, M.; Gutberlet, T.; Stahn, J.; Bruns, M.

    2008-01-01

    Self-diffusion of the atomic constituents in the solid state is a fundamental transport process that controls various materials properties. With established methods of diffusivity determination it is only possible to measure diffusion processes on a length scale down to 10 nm at corresponding diffusivities of 10 -23 m 2 s -1 . However, for complex materials like amorphous or nano-structured solids the given values are often not sufficient for a proper characterization. Consequently, it is necessary to detect diffusion length well below 1 nm. Here, we present the method of neutron reflectometry on isotope multilayers. For two model systems, an amorphous semiconductor and an amorphous metallic alloy, the efficiency of this method is demonstrated to detect minimum diffusion lengths of only 0.6-0.7 nm. It is further shown that diffusivities can be derived which are more than two orders of magnitude lower than those obtainable with conventional methods. Prospects of this method in order to solve actual kinetic problems in materials science are given

  17. Measurement of contact-line dissipation in a nanometer-thin soap film.

    Science.gov (United States)

    Guo, Shuo; Lee, Chun Huen; Sheng, Ping; Tong, Penger

    2015-01-01

    We report a direct measurement of the friction coefficient ξ(c) of two fluctuating contact lines formed on a fiber surface when a long glass fiber intersects the two water-air interfaces of a thin soap film. The glass fiber of diameter d in the range of 0.4-4 μm and length 100-300 μm is glued onto the front end of a rectangular cantilever used for atomic force microscopy. As a sensitive mechanical resonator, the hanging fiber probe can accurately measure a minute change of its viscous damping caused by the soap film. By measuring the broadening of the resonant peak of the hanging fiber probe with varying viscosity η of the soap film and different surface treatments of the glass fiber, we confirm that the contact line dissipation obeys a universal scaling law, ξ(c)=απdη, where the coefficient α=1.1±0.3 is insensitive to the change of liquid-solid contact angle. The experimental result is in good agreement with the numerical result based on the phase field model under the generalized Navier boundary conditions.

  18. Computational Design of High-χ Block Oligomers for Accessing 1-Nanometer Domains.

    Science.gov (United States)

    Chen, Qile P; Barreda, Leonel; Oquendo, Luis E; Hillmyer, Marc A; Lodge, Timothy P; Siepmann, J Ilja

    2018-04-16

    Molecular dynamics simulations are used to design a series of high-χ block oligomers (HCBOs) that can self-assemble into a variety of mesophases with domain sizes as small as 1 nm. The exploration of these oligomers with various chain lengths, volume fractions, and chain architectures at multiple temperatures reveals the presence of ordered lamellae, perforated lamellae, and hexagonally-packed cylinders. The achieved periods are as small as 3.0 nm and 2.1 nm for lamellae and cylinders, respectively, which correspond to polar domains of approximately 1 nm. Interestingly, the phase behavior of these oligomers is distinct from that of either solvent-free surfactants or block polymers in detail. The simulations reveal that the behavior of these HCBOs is a product of interplay between both "surfactant factors" (head group interactions, chain flexibility, and interfacial curvature) and "block polymer factors" (χ, chain length N, and volume fraction f). This insight promotes the understanding of molecular features pivotal for the mesophase formation at the sub-5 nm length scale, which facilitates the design of HCBOs tailored towards particular desired morphologies.

  19. Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials

    KAUST Repository

    Tizei, Luiz H. G.

    2015-03-01

    Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the optical band gap can be measured with nanometer-scale resolution, which is 50 times smaller than the wavelength of the emitted photons. By performing core-loss EELS at the same regions, we observe that variations in the excitonic signature follow the chemical composition. The exciton peaks are observed to be broader at interfaces and heterogeneous regions, possibly due to interface roughness and alloying effects. Moreover, we do not observe shifts of the exciton peak across the interface, possibly because the interface width is not much larger than the exciton Bohr radius.

  20. Microstructure effects in CVD copper

    Science.gov (United States)

    Manger, Dirk Karl

    Computer chip manufacturers are beginning to implement copper as interconnect material in high-performance microprocessor metallization architectures. Replacing currently used aluminum metallization with its copper based counterpart will result in performance gain due to the low resistivity of copper (1.67muO·cm) which generates a reduction in (resistance x capacitance) signal delay. Futhermore, enhancements in stress and electromigration resistance by up to three orders of magnitude are expected from replacing aluminum with copper. Copper deposited by chemical vapor deposition has the proven ability to yield complete fill of aggressive via and trench structures at high deposition rates. At the same time, ultrathin Cu seed layers can be controlled grown by chemical vapor deposition (CVD) for use as activation layer in electrolytic plating (EP) applications. Additionally, integration studies using single and two-level damascene interconnect structures CVD Cu showed that excellent yield can be obtained. However, before CVD Cu can be incorporated into manufacturing process flows, several key reliability issues have to be addressed and resolved. At present, electroplating has the advantage of enhanced electromigration performance compared to CVD copper. It is therefore necessary to demonstrate the systematic ability to tailor the microstructure of CVD copper with the goal of enhanced electromigration and stress migration performance through the successful formation of (111) textured Cu with bamboo type microstructure. In the present work, the evolution of as-deposited Cu resistivity, grain size, texture, and surface roughness were systematically analyzed as a function of film thickness for an optimized CVD Cu process. In particular, investigations of the influence of substrate type and surface pretreatment on texture and grain size showed that: (a) Cu grows (111) textured on PVD TiN, if (002) Ti matrix is present, and on inorganic CVD TiN, regardless of the underlying