WorldWideScience

Sample records for nanomedicine techniques potentials

  1. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation.

    Science.gov (United States)

    Lao, Yeh-Hsing; Phua, Kyle K L; Leong, Kam W

    2015-03-24

    Aptamer nanomedicine, including therapeutic aptamers and aptamer nanocomplexes, is beginning to fulfill its potential in both clinical trials and preclinical studies. Especially in oncology, aptamer nanomedicine may perform better than conventional or antibody-based chemotherapeutics due to specificity compared to the former and stability compared to the latter. Many proof-of-concept studies on applying aptamers to drug delivery, gene therapy, and cancer imaging have shown promising efficacy and impressive safety in vivo toward translation. Yet, there remains ample room for improvement and critical barriers to be addressed. In this review, we will first introduce the recent progress in clinical trials of aptamer nanomedicine, followed by a discussion of the barriers at the design and in vivo application stages. We will then highlight recent advances and engineering strategies proposed to tackle these barriers. Aptamer cancer nanomedicine has the potential to address one of the most important healthcare issues of the society.

  2. Tangential Flow Filtration Technique: an Overview on Nanomedicine Applications.

    Science.gov (United States)

    Musumeci, Teresa; Leonardi, Antonio; Bonaccorso, Angela; Pignatello, Rosario; Puglisi, Giovanni

    2018-03-06

    Purification is a key step for different type of approaches, ranging from food, biotechnology to pharmaceutical fields. In biotechnology tangential flow filtration (TFF) allows to obtain the separation of different components of cells without instability phenomena. In food industry, TFF ensures the removal of contaminants or other substances that negatively affect visual appearance, organoleptic attributes, nutritional value and/or safety of aliments. Purification is an important and necessary step controlling the quality of final product also in the pharmaceutical area. In the field of research and development of nanomedicines, several techniques are used to purify and/or to concentrate the batches for in vitro and in vivo application. Despite many approaches exist; current data reveals continued unsatisfactory results. Between them, TFF showed promising results, even if, currently, its use is uncommon if compared with the other purification techniques usually reported in "materials and methods" sections. This review represents an overview of the different applications of TFF from protein purification to food application, with particular attention to the field of nanomedicine from polymeric to metallic nanoparticles, highlighting advantages and dis-advantages in the use of this technique. Theoretical aspect of the process has been examined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Nanotechnology and glaucoma: a review of the potential implications of glaucoma nanomedicine.

    Science.gov (United States)

    Kim, Nathaniel J; Harris, Alon; Gerber, Austin; Tobe, Leslie Abrams; Amireskandari, Annahita; Huck, Andrew; Siesky, Brent

    2014-04-01

    The purpose of this review is to discuss the evolution of nanotechnology and its potential diagnostic and therapeutic applications in the field of ophthalmology, particularly as it pertains to glaucoma. We reviewed literature using MEDLINE and PubMed databases with the following search terms: glaucoma, nanotechnology, nanomedicine, nanoparticles, ophthalmology and liposomes. We also reviewed pertinent references from articles found in this search. A brief history of nanotechnology and nanomedicine will be covered, followed by a discussion of the advantages and concerns of using this technology in the field of glaucoma. We will look at various studies concerning the development of nanomedicine, its potential applications in ocular drug delivery, diagnostic and imaging modalities and, surgical techniques. In particular, the challenges of assuring safety and efficacy of nanomedicine will be examined. We conclude that nanotechnology offers a novel approach to expanding diagnostic, imaging and surgical modalities in glaucoma and may contribute to the knowledge of disease pathogenesis at a molecular level. However, more research is needed to better elucidate the mechanism of cellular entry, the potential for nanoparticle cytotoxicity and the assurance of clinical efficacy.

  4. Cancer stem cells and drug resistance: the potential of nanomedicine

    Science.gov (United States)

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722

  5. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques

    Science.gov (United States)

    Khorasani, Ali A; Weaver, James L; Salvador-Morales, Carolina

    2014-01-01

    On the cusp of widespread permeation of nanomedicine, academia, industry, and government have invested substantial financial resources in developing new ways to better treat diseases. Materials have unique physical and chemical properties at the nanoscale compared with their bulk or small-molecule analogs. These unique properties have been greatly advantageous in providing innovative solutions for medical treatments at the bench level. However, nanomedicine research has not yet fully permeated the clinical setting because of several limitations. Among these limitations are the lack of universal standards for characterizing nanomaterials and the limited knowledge that we possess regarding the interactions between nanomaterials and biological entities such as proteins. In this review, we report on recent developments in the characterization of nanomaterials as well as the newest information about the interactions between nanomaterials and proteins in the human body. We propose a standard set of techniques for universal characterization of nanomaterials. We also address relevant regulatory issues involved in the translational process for the development of drug molecules and drug delivery systems. Adherence and refinement of a universal standard in nanomaterial characterization as well as the acquisition of a deeper understanding of nanomaterials and proteins will likely accelerate the use of nanomedicine in common practice to a great extent. PMID:25525356

  6. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques.

    Science.gov (United States)

    Khorasani, Ali A; Weaver, James L; Salvador-Morales, Carolina

    2014-01-01

    On the cusp of widespread permeation of nanomedicine, academia, industry, and government have invested substantial financial resources in developing new ways to better treat diseases. Materials have unique physical and chemical properties at the nanoscale compared with their bulk or small-molecule analogs. These unique properties have been greatly advantageous in providing innovative solutions for medical treatments at the bench level. However, nanomedicine research has not yet fully permeated the clinical setting because of several limitations. Among these limitations are the lack of universal standards for characterizing nanomaterials and the limited knowledge that we possess regarding the interactions between nanomaterials and biological entities such as proteins. In this review, we report on recent developments in the characterization of nanomaterials as well as the newest information about the interactions between nanomaterials and proteins in the human body. We propose a standard set of techniques for universal characterization of nanomaterials. We also address relevant regulatory issues involved in the translational process for the development of drug molecules and drug delivery systems. Adherence and refinement of a universal standard in nanomaterial characterization as well as the acquisition of a deeper understanding of nanomaterials and proteins will likely accelerate the use of nanomedicine in common practice to a great extent.

  7. Tunable resistive pulse sensing: potential applications in nanomedicine.

    Science.gov (United States)

    Sivakumaran, Muttuswamy; Platt, Mark

    2016-08-01

    An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics.

  8. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.

    Science.gov (United States)

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.

  9. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases.

    Science.gov (United States)

    Pichai, Madharasi V A; Ferguson, Lynnette R

    2012-06-21

    Inflammatory bowel diseases (IBDs) such as Crohn's disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied so far in animal and in vitro models, before comprehensive clinical testing in humans. The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy. We analyze the pros and cons of nanotechnology in IBD therapies studied in different models, aimed at different targets and mechanisms of IBD pathogenesis, in an attempt to predict its possible impact in humans.

  10. Horizons in clinical nanomedicine

    CERN Document Server

    Karagkiozaki, Varvara

    2014-01-01

    Nanomedicine-the application of nanotechnology to health sciences-has the potential to address many important medical problems by exploiting the advanced physicochemical characteristics of nanostructured materials and devices. It can revolutionize conventional medicine by offering cutting-edge developments in the processes of diagnosing, treating, and preventing diseases, injuries, or genetic disorders. Thus, clinical nanomedicine holds promise to preserve and improve human health.This book provides a comprehensive overview on the forefront developments of nanotechnology in various domains of

  11. The clinical nanomedicine handbook

    CERN Document Server

    Brenner, Sara

    2013-01-01

    Designed to foster a stronger awareness and exploration of the subject by practicing clinicians, medical researchers and scientists, The Clinical Nanomedicine Handbook discusses the integration of nanotechnology, biology, and medicine from a clinical point of view. The book highlights relevant research and applications by specialty; it examines nanotechnology in depth, and the potential to solve medical problems. It also increases literacy in nanotechnology, and allows for more effective communication and collaboration between disciplines. Details worldwide developments in nanomedicine Provide

  12. Mass Spectrometry Imaging in Nanomedicine: Unraveling the Potential of MSI for the Detection of Nanoparticles in Neuroscience.

    Science.gov (United States)

    Barre, Florian P Y; Heeren, Ron M A; Potocnik, Nina Ogrinc

    2017-01-01

    Mass spectrometry imaging (MSI) can uniquely detect thousands of compounds allowing both their identification and localization within biological tissue samples. MSI is an interdisciplinary science that crosses the borders of physics, chemistry and biology, and enables local molecular analysis at a broad range of length scales: From the subcellular level to whole body tissue sections. The spatial resolution of some mass spectrometers now allows nano-scale research, crucial for studies in nanomedicine. Recent developments in MSI have enabled the optimization and localization of drug delivery with nanoparticles within the body and in specific organs such as kidney, liver and brain. Combining MSI with nanomedicine has vast potential, specifically in the treatment of neurological disorders, where effective drug delivery has been hampered by the blood-brain barrier. This review provides an introduction to MSI and its different technologies, with the application of MSI to nanomedicine and the different possibilities that MSI offers to study molecular signals in the brain. Finally, we provide an outlook for the future and exciting potential of MSI in nanoparticle-related research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Inorganic nanomedicine--part 1.

    Science.gov (United States)

    Sekhon, Bhupinder S; Kamboj, Seema R

    2010-08-01

    Inorganic nanomedicine refers to the use of inorganic or hybrid nanomaterials and nanosized objects to achieve innovative medical breakthroughs for drug and gene discovery and delivery, discovery of biomarkers, and molecular diagnostics. Potential uses for fluorescent quantum dots include cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. Biocompatible quantum dot conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Magnetic nanowires applications include biosensing and construction of nucleic acids sensors. Magnetic cell therapy is used for the repair of blood vessels. Magnetic nanoparticles (MNPs) are important for magnetic resonance imaging, drug delivery, cell labeling, and tracking. Superparamagnetic iron oxide nanoparticles are used for hyperthermic treatment of tumors. Multifunctional MNPs applications include drug and gene delivery, medical imaging, and targeted drug delivery. MNPs could have a vital role in developing techniques to simultaneously diagnose, monitor, and treat a wide range of common diseases and injuries. From the clinical editor: This review serves as an update about the current state of inorganic nanomedicine. The use of inorganic/hybrid nanomaterials and nanosized objects has already resulted in innovative medical breakthroughs for drug/gene discovery and delivery, discovery of biomarkers and molecular diagnostics, and is likely to remain one of the most prolific fields of nanomedicine. 2010 Elsevier Inc. All rights reserved.

  14. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases

    OpenAIRE

    Pichai, Madharasi VA; Ferguson, Lynnette R

    2012-01-01

    Inflammatory bowel diseases (IBDs) such as Crohn’s disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied ...

  15. Personalized nanomedicine

    NARCIS (Netherlands)

    Lammers, Twan Gerardus Gertudis Maria; Rizzo, L.Y.; Storm, Gerrit; Kiessling, F.

    2012-01-01

    Abstract Personalized medicine aims to individualize chemotherapeutic interventions on the basis of ex vivo and in vivo information on patient- and disease-specific characteristics. By noninvasively visualizing how well image-guided nanomedicines-that is, submicrometer-sized drug delivery systems

  16. Nonporous Silica Nanoparticles for Nanomedicine Application

    OpenAIRE

    Tang, Li; Cheng, Jianjun

    2013-01-01

    Nanomedicine, the use of nanotechnology for biomedical applications, has potential to change the landscape of the diagnosis and therapy of many diseases. In the past several decades, the advancement in nanotechnology and material science has resulted in a large number of organic and inorganic nanomedicine platforms. Silica nanoparticles (NPs), which exhibit many unique properties, offer a promising drug delivery platform to realize the potential of nanomedicine. Mesoporous silica NPs have bee...

  17. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Adrian A, E-mail: a.walsh@nanobiosols.com [Liverpool Science Park, Nano Biosols Ltd (United Kingdom)

    2017-04-15

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  18. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine

    Science.gov (United States)

    Walsh, Adrian A.

    2017-04-01

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  19. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine

    International Nuclear Information System (INIS)

    Walsh, Adrian A

    2017-01-01

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  20. Interview: Nanomedicine and the fight against HIV/AIDS.

    Science.gov (United States)

    Nel, André; Swindells, Susan; Bronich, Tatiana; Gendelman, Howard E

    2014-02-01

    Ahead of the 4th Annual Meeting of the American Society of Nanomedicine, this collection of interviews brings together experts from the fields of nanomedicine and HIV/AIDS treatment. Professor André Nel gives us a general introduction and update on the nanomedicine field and how he hopes it will progress. Professor Susan Swindells describes the current challenges faced in the clinic for HIV/AIDS treatment. Professor Tatiana Bronich explains the research efforts being undertaken by the nanomedicine community for the treatment of microbial infections and HIV/AIDS specifically. Finally, Professor Howard Gendelman looks to the future and assesses the potential and challenges of nanomedicine approaches for HIV eradication.

  1. Theranostic nanomedicine for cancer detection and treatment.

    Science.gov (United States)

    Fan, Zhen; Fu, Peter P; Yu, Hongtao; Ray, Paresh C

    2014-03-01

    Cancer is the second leading cause of death in the USA according to the American Cancer Society. In the past 5 years, "theranostic nanomedicine", for both therapeutics and imaging, has shown to be "the right drug for the right patient at the right moment" to manage deadly cancers. This review article presents an overview of recent developments, mainly from the authors' laboratories, along with potential medical applications for theranostic nanomedicine including basic concepts and critical properties. Finally, we outline the future research direction and possible challenges for theranostic nanomedicine research. Copyright © 2014. Published by Elsevier B.V.

  2. Personalized Nanomedicine: A Revolution at the Nanoscale.

    Science.gov (United States)

    Fornaguera, Cristina; García-Celma, Maria José

    2017-10-12

    Nanomedicine is an interdisciplinary research field that results from the application of nanotechnology to medicine and has the potential to significantly improve some current treatments. Specifically, in the field of personalized medicine, it is expected to have a great impact in the near future due to its multiple advantages, namely its versatility to adapt a drug to a cohort of patients. In the present review, the properties and requirements of pharmaceutical dosage forms at the nanoscale, so-called nanomedicines, are been highlighted. An overview of the main current nanomedicines in pre-clinical and clinical development is presented, detailing the challenges to the personalization of these therapies. Next, the process of development of novel nanomedicines is described, from their design in research labs to their arrival on the market, including considerations for the design of nanomedicines adapted to the requirements of the market to achieve safe, effective, and quality products. Finally, attention is given to the point of view of the pharmaceutical industry, including regulation issues applied to the specific case of personalized medicine. The authors expect this review to be a useful overview of the current state of the art of nanomedicine research and industrial production, and the future opportunities of personalized medicine in the upcoming years. The authors encourage the development and marketing of novel personalized nanomedicines.

  3. Personalized Nanomedicine: A Revolution at the Nanoscale

    Science.gov (United States)

    García-Celma, Maria José

    2017-01-01

    Nanomedicine is an interdisciplinary research field that results from the application of nanotechnology to medicine and has the potential to significantly improve some current treatments. Specifically, in the field of personalized medicine, it is expected to have a great impact in the near future due to its multiple advantages, namely its versatility to adapt a drug to a cohort of patients. In the present review, the properties and requirements of pharmaceutical dosage forms at the nanoscale, so-called nanomedicines, are been highlighted. An overview of the main current nanomedicines in pre-clinical and clinical development is presented, detailing the challenges to the personalization of these therapies. Next, the process of development of novel nanomedicines is described, from their design in research labs to their arrival on the market, including considerations for the design of nanomedicines adapted to the requirements of the market to achieve safe, effective, and quality products. Finally, attention is given to the point of view of the pharmaceutical industry, including regulation issues applied to the specific case of personalized medicine. The authors expect this review to be a useful overview of the current state of the art of nanomedicine research and industrial production, and the future opportunities of personalized medicine in the upcoming years. The authors encourage the development and marketing of novel personalized nanomedicines. PMID:29023366

  4. Immunocompatibility of Bacteriophages as Nanomedicines

    Directory of Open Access Journals (Sweden)

    Tranum Kaur

    2012-01-01

    Full Text Available Bacteriophage-based medical research provides the opportunity to develop targeted nanomedicines with heightened efficiency and safety profiles. Filamentous phages also can and have been formulated as targeted drug-delivery nanomedicines, and phage may also serve as promising alternatives/complements to antibiotics. Over the past decade the use of phage for both the prophylaxis and the treatment of bacterial infection, has gained special significance in view of a dramatic rise in the prevalence of antibiotic resistance bacterial strains. Two potential medical applications of phages are the treatment of bacterial infections and their use as immunizing agents in diagnosis and monitoring patients with immunodeficiencies. Recently, phages have been employed as gene-delivery vectors (phage nanomedicine, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. As phage applications to human therapeutic development grow at an exponential rate, it will become essential to evaluate host immune responses to initial and repetitive challenges by therapeutic phage in order to develop phage therapies that offer suitable utility. This paper examines and discusses phage nanomedicine applications and the immunomodulatory effects of bacteriophage exposure and treatment modalities.

  5. [Development trend of nanomedicines].

    Science.gov (United States)

    Kato, Kumiko

    2013-01-01

    Nanotechnology has had a great impact on science, technology, and society since 2000, and its applications in medicine are also progressing in the diagnosis, treatment, and prevention of disease. In this review, international trends in nanomedicine regulation are introduced, including the definition of nanomedicines and the evaluation of liposomes and iron nanoparticles.

  6. Nanomedicine delivers promising treatments for rheumatoid arthritis.

    Science.gov (United States)

    Prasad, Leena Kumari; O'Mary, Hannah; Cui, Zhengrong

    2015-01-01

    An increased understanding in the pathophysiology of chronic inflammatory diseases, such as rheumatoid arthritis, reveals that the diseased tissue and the increased presence of macrophages and other overexpressed molecules within the tissue can be exploited to enhance the delivery of nanomedicine. Nanomedicine can passively accumulate into chronic inflammatory tissues via the enhanced permeability and retention phenomenon, or be surface conjugated with a ligand to actively bind to receptors overexpressed by cells within chronic inflammatory tissues, leading to increased efficacy and reduced systemic side-effects. This review highlights the research conducted over the past decade on using nanomedicine for potential treatment of rheumatoid arthritis and summarizes some of the major findings and promising opportunities on using nanomedicine to treat this prevalent and chronic disease.

  7. Nanomedicine: Governing uncertainties

    Science.gov (United States)

    Trisolino, Antonella

    Nanomedicine is a promising and revolutionary field to improve medical diagnoses and therapies leading to a higher quality of life for everybody. Huge benefits are expected from nanomedicine applications such as in diagnostic and therapeutic field. However, nanomedicine poses several issues on risks to the human health. This thesis aims to defense a perspective of risk governance that sustains scientific knowledge process by developing guidelines and providing the minimum safety standards acceptable to protect the human health. Although nanomedicine is in an early stage of its discovery, some cautious measures are required to provide regulatory mechanisms able to response to the unique set of challenges associated to nanomedicine. Nanotechnology offers an unique opportunity to intensify a major interplay between different disciplines such as science and law. This multidisciplinary approach can positively contributes to find reliable regulatory choices and responsive normative tools in dealing with challenges of novel technologies.

  8. EMERGING APPLICATIONS OF NANOMEDICINE FOR THERAPY AND DIAGNOSIS OF CARDIOVASCULAR DISEASES

    Science.gov (United States)

    Godin, Biana; Sakamoto, Jason H.; Serda, Rita E.; Grattoni, Alessandro; Bouamrani, Ali; Ferrari, Mauro

    2010-01-01

    Nanomedicine is an emerging field of medicine which utilizes nanotechnology concepts for advanced therapy and diagnostics. This convergent discipline, which merges research areas such as chemistry, biology, physics, mathematics and engineering thus bridging the gap between molecular and cellular interactions, has a potential to revolutionize current medical practice. This review presents recent developments in nanomedicine research, which are poised to have an important impact on cardiovascular disease and treatment by improving therapy and diagnosis of such cardiovascular disorders as atherosclerosis, restenosis and myocardial infarction. Specifically, we discuss the use of nanoparticles for molecular imaging and advanced therapeutics, specially designed drug eluting stents and in vivo/ex vivo early detection techniques. PMID:20172613

  9. Handbook of nanomedicine

    CERN Document Server

    Jain, Kewal K

    2012-01-01

    In its updated and reorganized second edition, this handbook captures the latest advances in nanomedicine applied to researching the pathomechanism of disease, refining molecular diagnostics, and aiding in the discovery, development, and delivery of drugs.

  10. [Regulatory science researches of nanomedicines].

    Science.gov (United States)

    Sakai-Kato, Kumiko; Goda, Yukihiro

    2014-01-01

    Recently, the development of nanomedicines is progressing. These are designed to ensure high stability and to optimize the pharmacokinetics in vivo. The polymeric micelles and lipid nanoparticles are typical such examples. Because the unique size-specific interaction with biological systems or biodistribution may have significant impacts on the efficacy and safety of nanomedicines, regulatory science researches of nanomedicines are required. In this review, the authors introduce our initiatives of the regulatory science researches of nanomedicines.

  11. Interlocked systems in nanomedicine.

    Science.gov (United States)

    Ornelas-Megiatto, Catia; Becher, Tiago B; Megiatto, Jackson D

    2015-01-01

    The concept of Nanomedicine emerged along with the new millennium, and it is expected to provide solutions to some of modern medicine's unsolved problems. Nanomedicine offers new hopes in several critical areas such as cancer treatment, viral and bacterial infections, medical imaging, tissue regeneration, and theranostics. To explore all these applications, a wide variety of nanomaterials have been developed which include liposomes, dendrimers, nanohydrogels and polymeric, metallic and inorganic nanoparticles. Recently, interlocked systems, namely rotaxanes and catenanes, have been incorporated into some of these chemical platforms in an attempt to improve their performance. This review focus on the nanomedicine applications of nanomaterials containing interlocked structures. The introduction gives an overview on the significance of interdisciplinary science in the progress of the nanomedicine field, and it explains the evolution of interlocked molecules until their application in nanomedicine. The following sections are organized by the type of interlocked structure, and it comprises details of the in vitro and/or in vivo experiments involving each material: rotaxanes as imaging agents, rotaxanes as cytotoxic agents, rotaxanes as peptide transporters, mechanized silica nanoparticles as stimuli responsive drug delivery systems, and polyrotaxanes as drug and gene delivery systems.

  12. Defining Nano, Nanotechnology and Nanomedicine: Why Should It Matter?

    Science.gov (United States)

    Satalkar, Priya; Elger, Bernice Simone; Shaw, David M

    2016-10-01

    Nanotechnology, which involves manipulation of matter on a 'nano' scale, is considered to be a key enabling technology. Medical applications of nanotechnology (commonly known as nanomedicine) are expected to significantly improve disease diagnostic and therapeutic modalities and subsequently reduce health care costs. However, there is no consensus on the definition of nanotechnology or nanomedicine, and this stems from the underlying debate on defining 'nano'. This paper aims to present the diversity in the definition of nanomedicine and its impact on the translation of basic science research in nanotechnology into clinical applications. We present the insights obtained from exploratory qualitative interviews with 46 stakeholders involved in translational nanomedicine from Europe and North America. The definition of nanomedicine has implications for many aspects of translational research including: fund allocation, patents, drug regulatory review processes and approvals, ethical review processes, clinical trials and public acceptance. Given the interdisciplinary nature of the field and common interest in developing effective clinical applications, it is important to have honest and transparent communication about nanomedicine, its benefits and potential harm. A clear and consistent definition of nanomedicine would significantly facilitate trust among various stakeholders including the general public while minimizing the risk of miscommunication and undue fear of nanotechnology and nanomedicine.

  13. Development of Individualized Anti-Metastasis Strategies by Engineering Nanomedicines

    Science.gov (United States)

    He, Qianjun; Guo, Shengrong; Qian, Zhiyong; Chen, Xiaoyuan

    2015-01-01

    Metastasis is deadly and also tough to treat as it is much more complicated than the primary tumour. Anti-metastasis approaches available so far are far from being optimal. A variety of nanomedicine formulas provide a plethora of opportunities for developing new strategies and means for tackling metastasis. It should be noted that individualized anti-metastatic nanomedicines are different from common anti-cancer nanomedicines as they specifically target different populations of malignant cells. This review briefly introduces the features of the metastatic cascade, and proposes a series of nanomedicine-based anti-metastasis strategies aiming to block each metastatic step. Moreover, we also concisely introduce the advantages of several promising nanoparticle platforms and their potential for constructing state-of-the-art individualized anti-metastatic nanomedicines. PMID:26056688

  14. Diverse Applications of Nanomedicine

    Science.gov (United States)

    2017-01-01

    The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic. PMID:28290206

  15. Patenting Nanomedicine in Europe:

    DEFF Research Database (Denmark)

    Nordberg, Ana

    Patenting Nanomedicine in Europe: Applying the ‘medical methods exception’ to emerging technologies is based on the authors PhD dissertation, defended in March 2014, at the University of Copenhagen. The book debates restrictions on the patentability of medical methods in European Patent Law....... The main question addressed is whether it is viable and advisable the reinterpretation, reformulation or replacement of Article 53 (c) EPC – a provision restricting the patenting of medical methods. The subject is approached by reference to emerging technologies, and using nanomedicine innovation...

  16. Fucoidans in Nanomedicine.

    Science.gov (United States)

    Chollet, Lucas; Saboural, Pierre; Chauvierre, Cédric; Villemin, Jean-Noël; Letourneur, Didier; Chaubet, Frédéric

    2016-07-29

    Fucoidans are widespread cost-effective sulfated marine polysaccharides which have raised interest in the scientific community over last decades for their wide spectrum of bioactivities. Unsurprisingly, nanomedicine has grasped these compounds to develop innovative therapeutic and diagnostic nanosystems. The applications of fucoidans in nanomedicine as imaging agents, drug carriers or for their intrinsic properties are reviewed here after a short presentation of the main structural data and biological properties of fucoidans. The origin and the physicochemical specifications of fucoidans are summarized in order to discuss the strategy of fucoidan-containing nanosystems in Human health. Currently, there is a need for reproducible, well characterized fucoidan fractions to ensure significant progress.

  17. Protein nanomedicines for cancer diagnostics and therapy

    International Nuclear Information System (INIS)

    Nair, Shantikumar

    2012-01-01

    New results and applications of the work on anti-cancer therapy using nanomedicines at the Amrita Centre for Nanosciences are presented. Proteins have been selected as having good potential for clinical translation and are excellent carriers for drugs, provide good release kinetics and are also amenable for fluorescent tagging with multiple functionalities for diagnostic purposes. (author)

  18. Image-Guided Cancer Nanomedicine

    OpenAIRE

    Dong-Hyun Kim

    2018-01-01

    Multifunctional nanoparticles with superior imaging properties and therapeutic effects have been extensively developed for the nanomedicine. However, tumor-intrinsic barriers and tumor heterogeneity have resulted in low in vivo therapeutic efficacy. The poor in vivo targeting efficiency in passive and active targeting of nano-therapeutics along with the toxicity of nanoparticles has been a major problem in nanomedicine. Recently, image-guided nanomedicine, which can deliver nanoparticles loca...

  19. Nanomedicine, Nanotechnology in medicine

    OpenAIRE

    Boisseau, Patrick; Loubaton, Bertrand

    2011-01-01

    27 pages, 10 figures, 26 references; International audience; Nanomedicine is a relatively new field of science and technology. It looks sometimes ill defined and interpretations of that term may vary, especially between Europe and the United States. By interacting with biological molecules, therefore at nanoscale, nanotechnology opens up a vast field of research and application. Interactions between artificial molecular assemblies or nanodevices and biomolecules can be understood both in the ...

  20. Nanomedicine science, business, and impact

    CERN Document Server

    Hehenberger, Michael

    2015-01-01

    By covering the science, business, and societal impact of nanomedicine, this book makes a strong case for funding of basic research, for effective translation of scientific breakthroughs into clinical care of patients, and for close collaboration among all stakeholders in the healthcare ecosystem. It covers the underlying science and technology of nanomedicine in detail to help understand the great promise of nanomedicine across all disease areas. Although rich and deep in content, the book attempts to introduce the topic of nanomedicine to a wide audience. Scientific jargon is avoided and adv

  1. Enhancing Tumor Penetration of Nanomedicines

    NARCIS (Netherlands)

    Sun, Qingxue; Ojha, Tarun; Kiessling, Fabian; Lammers, Twan; Shi, Yang

    2017-01-01

    Tumor-targeted nanomedicines have been extensively applied to alter the drawbacks and enhance the efficacy of chemotherapeutics. Despite the large number of preclinical nanomedicine studies showing initial success, their therapeutic benefit in the clinic has been rather modest, which is partially

  2. Nanomedicine a soft matter perspective

    CERN Document Server

    Pan, Dipanjan

    2014-01-01

    This book provides a broad introduction to soft matters for nanomedicinal applications, with a deeper discussion of the individual modalities for molecular imaging. It includes a general introduction to the opportunities provided by this technology in chemistry, materials, biology and nanomedicine. It is designed and written with the perspective that anyone, with or without previous knowledge of nanotechnology, would benefit.

  3. New Strategies in Cancer Nanomedicine.

    Science.gov (United States)

    Tong, Rong; Kohane, Daniel S

    2016-01-01

    We review recent progress in cancer nanomedicine, including stimulus-responsive drug delivery systems and nanoparticles responding to light for phototherapy or tumor imaging. In addition, several new strategies to improve the circulation of nanoparticles in vivo, tumor penetration, and tumor targeting are discussed. The application of nanomedicine in cancer immunology, a relatively new type of cancer therapy, is also highlighted.

  4. Public optimism towards nanomedicine

    Science.gov (United States)

    Bottini, Massimo; Rosato, Nicola; Gloria, Fulvia; Adanti, Sara; Corradino, Nunziella; Bergamaschi, Antonio; Magrini, Andrea

    2011-01-01

    Background Previous benefit–risk perception studies and social experiences have clearly demonstrated that any emerging technology platform that ignores benefit–risk perception by citizens might jeopardize its public acceptability and further development. The aim of this survey was to investigate the Italian judgment on nanotechnology and which demographic and heuristic variables were most influential in shaping public perceptions of the benefits and risks of nanotechnology. Methods In this regard, we investigated the role of four demographic (age, gender, education, and religion) and one heuristic (knowledge) predisposing factors. Results The present study shows that gender, education, and knowledge (but not age and religion) influenced the Italian perception of how nanotechnology will (positively or negatively) affect some areas of everyday life in the next twenty years. Furthermore, the picture that emerged from our study is that Italian citizens, despite minimal familiarity with nanotechnology, showed optimism towards nanotechnology applications, especially those related to health and medicine (nanomedicine). The high regard for nanomedicine was tied to the perception of risks associated with environmental and societal implications (division among social classes and increased public expenses) rather than health issues. However, more highly educated people showed greater concern for health issues but this did not decrease their strong belief about the benefits that nanotechnology would bring to medical fields. Conclusion The results reported here suggest that public optimism towards nanomedicine appears to justify increased scientific effort and funding for medical applications of nanotechnology. It also obligates toxicologists, politicians, journalists, entrepreneurs, and policymakers to establish a more responsible dialog with citizens regarding the nature and implications of this emerging technology platform. PMID:22267931

  5. [Nanotechnology, nanomedicine and nanopharmacology].

    Science.gov (United States)

    Fernández, Pedro Lorenzo

    2007-01-01

    Based on Nanotechnology methods, Nanomedicine and Nanotecnology will obtain significant advances in areas such as Diagnostic, Regenerative Medicine and pharmacological Therapeutics. With nanotechnology-based drug delivery systems,important improvement on pharmacokinetics of drugs will take place, due to increased solubility, protection against decrease in drug effects due to excessive metabolism and subsequent increase of bioavailability. Improvement on pharmacodynamic parameters will occur also due to increased drug concentration in target tissues. Also the use of Nanotechnology in the modern pharmacology will serve for a more accurate control of doses, which will decrease significantly drug toxicity.

  6. Nanomedicine and cancer therapies

    CERN Document Server

    Sebastian, Mathew; Ninan, Neethu

    2012-01-01

    Nanotechnology has the power to radically change the way cancer is diagnosed, imaged, and treated. The holistic approach to cancer involves noninvasive procedures that emphasize restoring the health of human energy fields. Presenting a wealth of information and research about the most potent cancer healing therapies, this forward-thinking book explores how nanomedicine, holistic medicine, and other cancer therapies play important roles in treatment of this disease. Topics include nanobiotechnology for antibacterial therapy and diagnosis, mitochondrial dysfunction and cancer, antioxidants and combinatorial therapies, and optical and mechanical investigations of nanostructures for biomolecular detection.

  7. Nanomedicine: The Medicine of Tomorrow

    Science.gov (United States)

    Logothetidis, S.

    Nowadays nanotechnology has become a technological field with great potential since it can be applied in almost every aspect of modern life. One of the sectors where nanotechnology is expected to play a vital role is the field of medical science. The interaction of nanotechnology with medicine gave birth to a completely new scientific field called nanomedicine. Nanomedicine is a field that aims to use the nanotechnology tools and principles in order to improve human health in every possible way. Nanotechnology provides monitoring tools and technology platforms that can be used in terms of detection, diagnostic, bioanalysis and imaging. New nanoscale drug-delivery systems are constantly designed with different morphological and chemical characteristics and unique specificity against tumours, offering a less harmful approach alternative to chemo- and radiotherapies. Furthermore, nanotechnology has led to great breakthroughs in the field of tissue engineering, making the replacement of damaged tissues and organs a much feasible procedure. The thorough analysis of bio and non-bio interactions achieved by versatile nanotools is essential for the design and development of highly performed medical implants. The continuous revolution in nanotechnology will result in the fabrication of nanostructures with properties and functionalities that can benefit patient's physiology faster and more effectively than conventional medical procedures and protocols. The number of nanoscale therapeutical products is rapidly growing since more and more nanomedical designs are reaching the global market. However the nanotoxic impact that these designs can have on human health is an era that requires still more investigation. The development of specific guidance documents at a European level for the safety evaluation of nanotechnology products in medicine is strongly recommended and the need for further research in nanotoxicology is identified. Ethical and moral concerns also need to be

  8. Nanomedicine in veterinary oncology.

    Science.gov (United States)

    Lin, Tzu-Yin; Rodriguez, Carlos O; Li, Yuanpei

    2015-08-01

    Nanomedicine is an interdisciplinary field that combines medicine, engineering, chemistry, biology and material sciences to improve disease management and can be especially valuable in oncology. Nanoparticle-based agents that possess functions such as tumor targeting, imaging and therapy are currently under intensive investigation. This review introduces the basic concept of nanomedicine and the classification of nanoparticles. Because of their favorable pharmacokinetics, tumor targeting properties, and resulting superior efficacy and toxicity profiles, nanoparticle-based agents can overcome several limitations associated with conventional diagnostic and therapeutic protocols in veterinary oncology. The two most important tumor targeting mechanisms (passive and active tumor targeting) and their dominating factors (i.e. shape, charge, size and nanoparticle surface display) are discussed. The review summarizes published clinical and preclinical studies that utilize different nanoformulations in veterinary oncology, as well as the application of nanoparticles for cancer diagnosis and imaging. The toxicology of various nanoformulations is also considered. Given the benefits of nanoformulations demonstrated in human medicine, nanoformulated drugs are likely to gain more traction in veterinary oncology. Published by Elsevier Ltd.

  9. Nanomedicine-mediated cancer stem cell therapy.

    Science.gov (United States)

    Shen, Song; Xia, Jin-Xing; Wang, Jun

    2016-01-01

    Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic

  10. Surface modification of promising cerium oxide nanoparticles for nanomedicine applications

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-14

    Cerium oxide nanoparticles (CNPs) or nanoceria have emerged as a potential nanomedicine for the treatment of several diseases such as cancer. CNPs have a natural tendency to aggregate or agglomerate in their bare state, which leads to sedimentation in a biological environment. Since the natural biological environment is essentially aqueous, nanoparticle surface modification using suitable biocompatible hydrophilic chemical moieties is highly desirable to create effective aqueous dispersions. In this report, (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl)triethoxysilane was used as a functional, biocompatible organosilane to modify the surface of CNPs to produce promising nanoparticles which open substantial therapeutic avenues. The surface modified nanoparticles were produced in situ via an ammonia-induced ethylene glycol-assisted precipitation method and were characterized using complimentary characterization techniques. The interaction between the functional moiety and the nanoparticle was studied using powerful cross polarization/magic angle sample spinning solid state nuclear magnetic resonance spectroscopy. The surface-modified nanoparticles were extremely small and demonstrated a significant improvement in aqueous dispersibility. Moreover, the existence of a strong ionic coordination between the functional moiety and the surface of the nanoparticle was realised, indicating that the surface modified nanoceria are stable and that the nanoparticles should demonstrate an enhanced circulation time in a biological environment. The surface modification approach should be promising for the production of CNPs for nanomedicine applications. © The Royal Society of Chemistry.

  11. Understanding nanomedicine an introductory textbook

    CERN Document Server

    Burgess, Rob

    2012-01-01

    "This book is a comprehensive effort to introduce the diverse field of nanomedicine to students. I know of nothing else like it on the market."-Prof. Rockford K. Draper - University of Texas at Dallas, USA"In a single book, Dr. Burgess has done an excellent job in providing the much-needed background in the numerous physical, chemical, and biological methods that are used to enable nanomedicine. This book will be a useful reference for any student in the field of nanomedicine and describes many examples where nanotechnology promises to improve the diagnosis, monitoring, and treatment of disease"-Dr. Gareth Hughes - Medical Nanotechnologies, Inc., USA.

  12. Informatics and standards for nanomedicine technology.

    Science.gov (United States)

    Thomas, Dennis G; Klaessig, Fred; Harper, Stacey L; Fritts, Martin; Hoover, Mark D; Gaheen, Sharon; Stokes, Todd H; Reznik-Zellen, Rebecca; Freund, Elaine T; Klemm, Juli D; Paik, David S; Baker, Nathan A

    2011-01-01

    There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration; data sharing; unambiguous representation and interpretation of data; semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this article, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, because of gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret, and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, and so on. Progress toward resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this article will be essential to the rapidly growing field of nanomedicine informatics. Copyright © 2011 John Wiley & Sons, Inc.

  13. Informatics and Standards for Nanomedicine Technology

    Science.gov (United States)

    Thomas, Dennis G.; Klaessig, Fred; Harper, Stacey L.; Fritts, Martin; Hoover, Mark D.; Gaheen, Sharon; Stokes, Todd H.; Reznik-Zellen, Rebecca; Freund, Elaine T.; Klemm, Juli D.; Paik, David S.; Baker, Nathan A.

    2011-01-01

    There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration, data sharing, unambiguous representation and interpretation of data, semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this review, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, due to gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, etc. Progress towards resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this review will be essential to the rapidly growing field of nanomedicine informatics. PMID:21721140

  14. Advanced Targeted Nanomedicine

    Science.gov (United States)

    Arachchige, Mohan C M; Reshetnyak, Yana K.; Andreev, Oleg A.

    2015-01-01

    Targeted drug delivery has been the major topic in drug formulation and delivery. As nanomedicine emerges to create nano scale therapeutics and diagnostics, it is still essential to embed targeting capability to these novel systems to make them useful. Here we discuss various targeting approaches for delivery of therapeutic and diagnostic nano materials in view of search for more universal methods to target diseased tissues. Many diseases are accompanied with hypoxia and acidosis. Coating nanoparticles with pH Low Insertion Peptides (pHLIPs) increases efficiency of targeting acidic diseased tissues. It has been showing promising results to create future nanotheranostics for cancer and other diseases which are dominating in the present world. PMID:25615945

  15. Nanomedicine applications towards the cure of HIV.

    Science.gov (United States)

    Lisziewicz, Julianna; Tőke, Enikő R

    2013-01-01

    Combination antiretroviral therapy (cART) successfully suppresses HIV replication. However, daily and lifelong treatment is necessary to manage patient illness because cART neither eradicates infected cells from reservoirs nor reconstitutes HIV-specific immunity that could kill infected cells. Toward the cure of HIV, different nanomedicine classes have been developed with the following disease-modifying properties: to eradicate the virus by activation of latently infected CD4+ T-cells and reservoirs flushing; to kill the infected cells in the reservoirs by boosting of HIV-specific T cells; and to prevent infection by the use of microbicides with improved epithelial penetration and drug half-life. Preclinical and clinical trials consistently demonstrated that DermaVir, the most advanced nanomedicine, induces long-lasting memory T-cell responses and reduces viral load in comparison with placebo. DermaVir and the nanomedicine pipelines have the potential to improve the health of HIV-infected people at lower costs, to decrease antiretroviral drug exposure, and to contribute to the cure of HIV/AIDS. Despite the leaps and bounds in the development of antiretroviral therapy, HIV remains a significant public health challenge. In this review, applications of nanomedicine- based technologies are discussed in the context of HIV treatment, including virus elimination by activation of latently infected CD4+ T-cells; infected cell elimination in the reservoirs by boosting HIV-specific T cells, and by preventing infection by the use of microbicides with improved epithelial penetration and drug half-life. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Augmented reality for personalized nanomedicines.

    Science.gov (United States)

    Lee, Yugyung; Lee, Chi H

    As our understanding of onset and progress of diseases at the genetic and molecular level rapidly progresses, the potential of advanced technologies, such as 3D-printing, Socially-Assistive Robots (SARs) or augmented reality (AR), that are applied to personalized nanomedicines (PNMs) to alleviate pathological conditions, has become more prominent. Among advanced technologies, AR in particular has the greatest potential to address those challenges and facilitate the translation of PNMs into formidable clinical application of personalized therapy. As AR is about to adapt additional new methods, such as speech, voice recognition, eye tracing and motion tracking, to enable interaction with host response or biological systems in 3-D space, a combination of multiple approaches to accommodate varying environmental conditions, such as public noise and atmosphere brightness, will be explored to improve its therapeutic outcomes in clinical applications. For instance, AR glasses still being developed by Facebook or Microsoft will serve as new platform that can provide people with the health information they are interested in or various measures through which they can interact with medical services. This review has addressed the current progress and impact of AR on PNMs and its application to the biomedical field. Special emphasis is placed on the application of AR based PNMs to the treatment strategies against senior care, drug addiction and medication adherence. Published by Elsevier Inc.

  17. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma.

    Science.gov (United States)

    Malarvizhi, Giridharan Loghanathan; Retnakumari, Archana Payickattu; Nair, Shantikumar; Koyakutty, Manzoor

    2014-11-01

    Combinatorial drug delivery is an attractive, but challenging requirement of next generation cancer nanomedicines. Here, we report a transferrin-targeted core-shell nanomedicine formed by encapsulating two clinically used single-agent drugs, doxorubicin and sorafenib against liver cancer. Doxorubicin was loaded in poly(vinyl alcohol) nano-core and sorafenib in albumin nano-shell, both formed by a sequential freeze-thaw/coacervation method. While sorafenib from the nano-shell inhibited aberrant oncogenic signaling involved in cell proliferation, doxorubicin from the nano-core evoked DNA intercalation thereby killing >75% of cancer cells. Upon targeting using transferrin ligands, the nanoparticles showed enhanced cellular uptake and synergistic cytotoxicity in ~92% of cells, particularly in iron-deficient microenvironment. Studies using 3D spheroids of liver tumor indicated efficient penetration of targeted core-shell nanoparticles throughout the tissue causing uniform cell killing. Thus, we show that rationally designed core-shell nanoparticles can effectively combine clinically relevant single-agent drugs for exerting synergistic activity against liver cancer. Transferrin-targeted core-shell nanomedicine encapsulating doxorubicin and sorafenib was studied as a drug delivery system against hepatocellular carcinoma, resulting in enhanced and synergistic therapeutic effects, paving the way towards potential future clinical applications of similar techniques. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Nanomedicine, nanotechnology in medicine

    Science.gov (United States)

    Boisseau, Patrick; Loubaton, Bertrand

    2011-09-01

    Nanomedicine is a relatively new field of science and technology. It looks sometimes ill defined and interpretations of that term may vary, especially between Europe and the United States. By interacting with biological molecules, therefore at nanoscale, nanotechnology opens up a vast field of research and application. Interactions between artificial molecular assemblies or nanodevices and biomolecules can be understood both in the extracellular medium and inside the human cells. Operating at nanoscale allows to exploit physical properties different from those observed at microscale such as the volume/surface ratio. The investigated diagnostic applications can be considered for in vitro as well as for in vivo diagnosis. In vitro, the synthesised particles and manipulation or detection devices allow for the recognition, capture, and concentration of biomolecules. In vivo, the synthetic molecular assemblies are mainly designed as a contrast agent for imaging. A second area exhibiting a strong development is "nanodrugs" where nanoparticles are designed for targeted drug delivery. The use of such carriers improves the drug biodistribution, targeting active molecules to diseased tissues while protecting healthy tissue. A third area of application is regenerative medicine where nanotechnology allows developing biocompatible materials which support growth of cells used in cell therapy. The application of nanotechnology to medicine raises new issues because of new uses they allow, for instance: Is the power of these new diagnostics manageable by the medical profession? What means treating a patient without any clinical signs? Nanomedicine can contribute to the development of a personalised medicine both for diagnosis and therapy. There exists in many countries existing regulatory frameworks addressing the basic rules of safety and effectiveness of nanotechnology based medicine, whether molecular assemblies or medical devices. However, there is a need to clarify or to

  19. Nanomedicine in cerebral palsy

    Science.gov (United States)

    Balakrishnan, Bindu; Nance, Elizabeth; Johnston, Michael V; Kannan, Rangaramanujam; Kannan, Sujatha

    2013-01-01

    Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed. PMID:24204146

  20. Nanomedicine in coronary artery disease.

    Science.gov (United States)

    Ambesh, Paurush; Campia, Umberto; Obiagwu, Chukwudi; Bansal, Rashika; Shetty, Vijay; Hollander, Gerald; Shani, Jacob

    Nanomedicine is one of the most promising therapeutic modalities researchers are working on. It involves development of drugs and devices that work at the nanoscale (10-9m). Coronary artery disease (CAD) is responsible for more than a third of all deaths in age group >35 years. With such a huge burden of mortality, CAD is one of the diseases where nanomedicine is being employed for preventive and therapeutic interventions. Nanomedicine can effectively deliver focused drug payload at sites of local plaque formation. Non-invasive strategies include thwarting angiogenesis, intra-arterial thrombosis and local inflammation. Invasive strategies following percutaneous coronary intervention (PCI) include anti-restenosis and healing enhancement. However, before practical application becomes widespread, many challenges need to be dealt with. These include manufacturing at the nanoscale, direct nanomaterial cellular toxicity and visualization. Copyright © 2017 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  1. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy.

    Science.gov (United States)

    Zhang, Bo; Shi, Wei; Jiang, Ting; Wang, Lanting; Mei, Heng; Lu, Heng; Hu, Yu; Pang, Zhiqing

    2016-09-20

    Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneously to improve tumor treatment. In the present study, imatinib mesylate (IMA) was used to normalize the tumor microenvironment including platelet-derived growth factor receptor-β expression inhibition, tumor vessel normalization, and tumor perfusion improvement as demonstrated by immunofluorescence staining. In addition, the effect of tumor microenvironment normalization on tumor delivery of nanomedicines with different sizes was carefully investigated. It was shown that IMA treatment significantly reduced the accumulation of nanoparticles (NPs) around 110 nm but enhanced the accumulation of micelles around 23 nm by in vivo fluorescence imaging experiment. Furthermore, IMA treatment limited the distribution of NPs inside tumors but increased that of micelles with a more homogeneous pattern. Finally, the anti-tumor efficacy study displayed that IMA pretreatment could significantly increase the therapeutic effects of paclitaxel-loaded micelles. All-together, a new strategy to improve nanomedicine delivery to tumor was provided by optimizing both nanomedicine size and the tumor microenvironment simultaneously, and it will have great potential in clinics for tumor treatment.

  2. Nanotechnology and nanomedicine: going small means aiming big.

    Science.gov (United States)

    Teli, Mahesh Kumar; Mutalik, Srinivas; Rajanikant, G K

    2010-06-01

    Nanotechnology is an emerging branch of science for designing tools and devices of size 1 to 100 nm with specific function at the cellular, atomic and molecular levels. The concept of employing nanotechnology in biomedical research and clinical practice is best known as nanomedicine. Nanomedicine is an upcoming field that could potentially make a major impact to human health. Nanomaterials are increasingly used in diagnostics, imaging and targeted drug delivery. Nanotechnology will assist the integration of diagnostics/imaging with therapeutics and facilitates the development of personalized medicine, i.e. prescription of specific medications best suited for an individual. This review provides an integrated overview of application of nanotechnology based molecular diagnostics and drug delivery in the development of nanomedicine and ultimately personalized medicine. Finally, we identify critical gaps in our knowledge of nanoparticle toxicity and how these gaps need to be evaluated to enable nanotechnology to transit safely from bench to bedside.

  3. Microfluidic desalination techniques and their potential applications.

    Science.gov (United States)

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-07

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  4. Complement: Alive and Kicking Nanomedicines

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Hashemi, S.H.; Andresen, Thomas Lars

    2009-01-01

    Administration of liposome- and polymer-based clinical nanomedicines, as well as many other proposed multifunctional nanoparticles, often triggers hypersensitivity reactions without the involvement of IgE. These anaphylactic reactions are believed to be secondary to activation of the complement s...

  5. Nanomedicines for renal disease: current status and future applications

    DEFF Research Database (Denmark)

    Kamaly, Nazila; He, John C.; Ausiello, Dennis A.

    2016-01-01

    Treatment and management of kidney disease currently presents an enormous global burden, and the application of nanotechnology principles to renal disease therapy, although still at an early stage, has profound transformative potential. The increasing translation of nanomedicines to the clinic, a...

  6. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  7. Oral nanomedicine approaches for the treatment of psychiatric illnesses.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-02-10

    Psychiatric illnesses are a leading cause of disability and morbidity globally. However, the preferred orally dosed pharmacological treatment options available for depression, anxiety and schizophrenia are often limited by factors such as low drug aqueous solubility, food effects, high hepatic first-pass metabolism effects and short half-lives. Furthermore, the discovery and development of more effective psychotropic agents has stalled in recent times, with the majority of new drugs reaching the market offering similar efficacy, but suffering from the same oral delivery concerns. As such, the application of nanomedicine formulation approaches to currently available drugs is a viable option for optimizing oral drug delivery and maximizing treatment efficacy. This review focuses on the various delivery challenges encountered by psychotropic drugs, and the ability of nanomedicine formulation strategies to overcome these. Specifically, we critically review proof of concept in vitro and in vivo studies of nanoemulsions/microemulsions, solid lipid nanoparticles, dendrimers, polymeric micelles, nanoparticles of biodegradable polymers and nanosuspensions, and provide new insight into the various mechanisms for improved drug performance. The advantages and limitations of current oral nanomedicine approaches for psychotropic drugs are discussed, which will provide guidance for future research directions and assist in fostering the translation of such delivery systems to the clinical setting. Accordingly, emphasis has been placed on correlating the in vitro/in vivo performance of these nanomedicine approaches with their potential clinical outcomes and benefits for patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantum dots in nanomedicine: recent trends, advances and unresolved issues

    International Nuclear Information System (INIS)

    Volkov, Yuri

    2015-01-01

    The review addresses the current state of progress in the use of ultra-small nanoparticles from the category of quantum dots (QDs), which presently embraces a widening range of nanomaterials of different nature, including “classical” semiconductor groups III-V and II-VI nanocrystals, along with more recently emerged carbon, silicon, gold and other types of nanoparticles falling into this class of nanomaterials due to their similar physical characteristics such as small size and associated quantum confinement effects. A diverse range of QDs applications in nanomedicine has been extensively summarised previously in numerous publications. Therefore, this review is not intended to provide an all-embracing survey of the well documented QDs uses, but is rather focused on the most recent emerging developments, concepts and outstanding unresolved problematic and sometimes controversial issues. Over 125 publications are overviewed and discussed here in the context of major nanomedicine domains, i.e. medical imaging, diagnostics, therapeutic applications and combination of them in multifunctional theranostic systems. - Highlights: • New types of nanomaterials have been recently added to the category of QDs with a potential in nanomedicine. • Within the main nanomedicine domains, best progress has been achieved with QDs for diagnostic tools. • Further studies are required for the theranostic QDs-based leads to reach clinical translation.

  9. Quantum dots in nanomedicine: recent trends, advances and unresolved issues

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Yuri, E-mail: yvolkov@tcd.ie

    2015-12-18

    The review addresses the current state of progress in the use of ultra-small nanoparticles from the category of quantum dots (QDs), which presently embraces a widening range of nanomaterials of different nature, including “classical” semiconductor groups III-V and II-VI nanocrystals, along with more recently emerged carbon, silicon, gold and other types of nanoparticles falling into this class of nanomaterials due to their similar physical characteristics such as small size and associated quantum confinement effects. A diverse range of QDs applications in nanomedicine has been extensively summarised previously in numerous publications. Therefore, this review is not intended to provide an all-embracing survey of the well documented QDs uses, but is rather focused on the most recent emerging developments, concepts and outstanding unresolved problematic and sometimes controversial issues. Over 125 publications are overviewed and discussed here in the context of major nanomedicine domains, i.e. medical imaging, diagnostics, therapeutic applications and combination of them in multifunctional theranostic systems. - Highlights: • New types of nanomaterials have been recently added to the category of QDs with a potential in nanomedicine. • Within the main nanomedicine domains, best progress has been achieved with QDs for diagnostic tools. • Further studies are required for the theranostic QDs-based leads to reach clinical translation.

  10. Bypassing the EPR effect with a nanomedicine harboring a sustained-release function allows better tumor control.

    Science.gov (United States)

    Shen, Yao An; Shyu, Ing Luen; Lu, Maggie; He, Chun Lin; Hsu, Yen Mei; Liang, Hsiang Fa; Liu, Chih Peng; Liu, Ren Shyan; Shen, Biing Jiun; Wei, Yau Huei; Chuang, Chi Mu

    2015-01-01

    The current enhanced permeability and retention (EPR)-based approved nanomedicines have had little impact in terms of prolongation of overall survival in patients with cancer. For example, the two Phase III trials comparing Doxil(®), the first nanomedicine approved by the US Food and Drug Administration, with free doxorubicin did not find an actual translation of the EPR effect into a statistically significant increase in overall survival but did show less cardiotoxicity. In the current work, we used a two-factor factorial experimental design with intraperitoneal versus intravenous delivery and nanomedicine versus free drug as factors to test our hypothesis that regional (intraperitoneal) delivery of nanomedicine may better increase survival when compared with systemic delivery. In this study, we demonstrate that bypassing, rather than exploiting, the EPR effect via intraperitoneal delivery of nanomedicine harboring a sustained-release function demonstrates dual pharmacokinetic advantages, producing more efficient tumor control and suppressing the expression of stemness markers, epithelial-mesenchymal transition, angiogenesis signals, and multidrug resistance in the tumor microenvironment. Metastases to vital organs (eg, lung, liver, and lymphatic system) are also better controlled by intraperitoneal delivery of nanomedicine than by standard systemic delivery of the corresponding free drug. Moreover, the intraperitoneal delivery of nanomedicine has the potential to replace hyperthermic intraperitoneal chemotherapy because it shows equal efficacy and lower toxicity. In terms of efficacy, exploiting the EPR effect may not be the best approach for developing a nanomedicine. Because intraperitoneal chemotherapy is a type of regional chemotherapy, the pharmaceutical industry might consider the regional delivery of nanomedicine as a valid alternative pathway to develop their nanomedicine(s) with the goal of better tumor control in the future.

  11. Medical nanotechnology and nanomedicine

    National Research Council Canada - National Science Library

    Tibbals, Harry F

    2011-01-01

    .... It also provides a broad overview of the history, current global status, and potential prospects of nanotechnology and its impact on medicine and health in the broadest sense"--Provided by publisher.

  12. Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine.

    Science.gov (United States)

    Arrue, Lily; Ratjen, Lars

    2017-12-07

    The photochemical control of structure and reactivity bears great potential for chemistry, biology, and life sciences. A key feature of photochemistry is the spatiotemporal control over secondary events. Well-established applications of photochemistry in medicine are photodynamic therapy (PDT) and photopharmacology (PP). However, although both are highly localizable through the application of light, they lack cell- and tissue-specificity. The combination of nanomaterial-based drug delivery and targeting has the potential to overcome limitations for many established therapy concepts. Even more privileged seems the merger of nanomedicine and cell-specific targeting (internal targeting) controlled by light (external control), as it can potentially be applied to many different areas of medicine and pharmaceutical research, including the aforementioned PDT and PP. In this review a survey of the interface of photochemistry, medicine and targeted drug delivery is given, especially focusing on phototriggered targeting in nanomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Translational nanomedicine : Through the therapeutic window

    NARCIS (Netherlands)

    Pierce, Robin

    2015-01-01

    Translational nanomedicine occurs only through the successful integration of multiple inputs and iterative modifications. The therapeutic window plays a pivotal role in the trajectory of translational nanomedicine. Often defined in terms of the range of dosage for safe and effective therapeutic

  14. Cancer nanomedicine: from drug delivery to imaging.

    Science.gov (United States)

    Chow, Edward Kai-Hua; Ho, Dean

    2013-12-18

    Nanotechnology-based chemotherapeutics and imaging agents represent a new era of "cancer nanomedicine" working to deliver versatile payloads with favorable pharmacokinetics and capitalize on molecular and cellular targeting for enhanced specificity, efficacy, and safety. Despite the versatility of many nanomedicine-based platforms, translating new drug or imaging agents to the clinic is costly and often hampered by regulatory hurdles. Therefore, translating cancer nanomedicine may largely be application-defined, where materials are adapted only toward specific indications where their properties confer unique advantages. This strategy may also realize therapies that can optimize clinical impact through combinatorial nanomedicine. In this review, we discuss how particular materials lend themselves to specific applications, the progress to date in clinical translation of nanomedicine, and promising approaches that may catalyze clinical acceptance of nano.

  15. Nanomedicine and nanobiotechnology

    CERN Document Server

    Logothetidis, Stergios

    2012-01-01

    This book presents the laboratory, scientific and clinical aspects of nanomaterials used for medical applications in the fields of regenerative medicine, dentistry and pharmacy. It gives a broad overview on the in vitro compatibility assessment of nanostructured materials implemented in the medical field by the combination of classical biological protocols and advanced non-destructive nano-precision techniques with special emphasis on the topographical, surface energy, optical and electrical properties. Materials in the physical form of nanoparticles, nanotubes, and thin films are addressed in

  16. Nanomedicine and the complement paradigm.

    Science.gov (United States)

    Moghimi, S Moein; Farhangrazi, Z Shadi

    2013-05-01

    The role of complement in idiosyncratic reactions to nanopharmaceutical infusion is receiving increasing attention. We discuss this in relation to nanopharmaceutical development and the possible use of complement inhibitors to prevent related adverse reactions. We further call on initiation of genetic association studies to unravel the genetic basis of nanomedicine infusion-related adverse responses, since most of the polymorphic genes in the genome belong to the immune system. In this paper, idiosyncratic reactions based on complement activation are discussed in the context of newly available complement inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Nanomedicine for the Treatment of Tuberculosis.

    Science.gov (United States)

    Ullah, Zabih; Athar, Md Tanwir; Samad, Abdus

    2017-10-06

    The diseases tuberculosis, triggered by intracellular pathogens, is a major problem for the global medical professionals. Treatments for these diseases through conventional dosage form consist of long-term therapy with multiple drugs leads to several side effects and contribute to low patient compliance and drug resistance. The pathogens are fond to be situated in the intracellular compartments of the cells, which ultimately results in additional blockades to effective treatment. Therefore, improved and more efficient therapies for such intracellular diseases are required. Nanoparticle-based drug delivery systems are suitable for the treatment of illnesses such as tuberculosis. Due to the unique size-dependent properties, nanocarriers such as nanoparticles, liposomes, niosomes, microspheres offer the opportunity to develop new therapeutic and diagnostic tools. The ability to integrate drugs into nanosystems displays a new standard in pharmacotherapy that could be used for cell-targeted drug therapy. Experimental data showed the possibility of intermittent chemotherapy with the main antituberculosis drugs by employing nanocarriers. Besides the advantage of controlled release of medications in organs, the other benefits of the nanocarriers include the possibility of various routes of therapy,reduction in drug dosage and adverse effects, reduced possibility of drug interactions, and drug-resistant targeting.This review discuss the potential of nanomedicine and related patents to improve intracellular disease chemotherapy by offering benefits such as targeting to the specific organs, sustained and controlled drug release, tuberculosis diagnosis, drug delivery to the pathogen's intracellular location, and tuberculosis vaccine development. The properties of nanomedicine may prove beneficial in developing improved, efficacious or alternative therapies for tuberculosis diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Nanomedicine for safe healing of bone trauma: Opportunities and challenges.

    Science.gov (United States)

    Behzadi, Shahed; Luther, Gaurav A; Harris, Mitchel B; Farokhzad, Omid C; Mahmoudi, Morteza

    2017-11-01

    Historically, high-energy extremity injuries resulting in significant soft-tissue trauma and bone loss were often deemed unsalvageable and treated with primary amputation. With improved soft-tissue coverage and nerve repair techniques, these injuries now present new challenges in limb-salvage surgery. High-energy extremity trauma is pre-disposed to delayed or unpredictable bony healing and high rates of infection, depending on the integrity of the soft-tissue envelope. Furthermore, orthopedic trauma surgeons are often faced with the challenge of stabilizing and repairing large bony defects while promoting an optimal environment to prevent infection and aid bony healing. During the last decade, nanomedicine has demonstrated substantial potential in addressing the two major issues intrinsic to orthopedic traumas (i.e., high infection risk and low bony reconstruction) through combatting bacterial infection and accelerating/increasing the effectiveness of the bone-healing process. This review presents an overview and discusses recent challenges and opportunities to address major orthopedic trauma through nanomedical approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Molecular imaging in nanomedicine - A developmental tool and a clinical necessity.

    Science.gov (United States)

    Dearling, Jason L J; Packard, Alan B

    2017-09-10

    The development of nanomedicines presents the potential to deliver more potent drugs targeted more specifically to the site(s) of disease than is currently achievable. While encouraging results have been achieved, including at the clinical level, significant challenges and opportunities for development remain, both in terms of further developing the technology and in understanding the underlying biology. Given the lessons learned regarding variations in nanomedicine delivery to different tumor types and between different patients with the same tumor type, this is an area of drug development that, rather than simply benefiting from a patient-specific approach, actually demands it. The only way that this distribution information can be obtained is through imaging, and this requires labeling of the nanomedicine to enable detection outside the body. In this review, we describe recent advances in the labeling of nanomedicines, how imaging studies are guiding nanomedicine development, and the role of imaging in the future development of nanomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Post isolation modification of exosomes for nanomedicine applications

    Science.gov (United States)

    Hood, Joshua L

    2016-01-01

    Exosomes are extracellular nanovesicles. They innately possess ideal structural and biocompatible nanocarrier properties. Exosome components can be engineered at the cellular level. Alternatively, when exosome source cells are unavailable for customized exosome production, exosomes derived from a variety of biological origins can be modified post isolation which is the focus of this article. Modification of exosome surface structures allows for exosome imaging and tracking in vivo. Exosome membranes can be loaded with hydrophobic therapeutics to increase drug stability and efficacy. Hydrophilic therapeutics such as RNA can be encapsulated in exosomes to improve cellular delivery. Despite advances in post isolation exosome modification strategies, many challenges to effectively harnessing their therapeutic potential remain. Future topics of exploration include: matching exosome subtypes with nanomedicine applications, optimizing exosomal nanocarrier formulation and investigating how modified exosomes interface with the immune system. Research into these areas will greatly facilitate personalized exosome-based nanomedicine endeavors. PMID:27348448

  1. Post isolation modification of exosomes for nanomedicine applications.

    Science.gov (United States)

    Hood, Joshua L

    2016-07-01

    Exosomes are extracellular nanovesicles. They innately possess ideal structural and biocompatible nanocarrier properties. Exosome components can be engineered at the cellular level. Alternatively, when exosome source cells are unavailable for customized exosome production, exosomes derived from a variety of biological origins can be modified post isolation which is the focus of this article. Modification of exosome surface structures allows for exosome imaging and tracking in vivo. Exosome membranes can be loaded with hydrophobic therapeutics to increase drug stability and efficacy. Hydrophilic therapeutics such as RNA can be encapsulated in exosomes to improve cellular delivery. Despite advances in post isolation exosome modification strategies, many challenges to effectively harnessing their therapeutic potential remain. Future topics of exploration include: matching exosome subtypes with nanomedicine applications, optimizing exosomal nanocarrier formulation and investigating how modified exosomes interface with the immune system. Research into these areas will greatly facilitate personalized exosome-based nanomedicine endeavors.

  2. Evaluation of groundwater potential using geospatial techniques

    Science.gov (United States)

    Hussein, Abdul-Aziz; Govindu, Vanum; Nigusse, Amare Gebre Medhin

    2017-09-01

    The issue of unsustainable groundwater utilization is becoming increasingly an evident problem and the key concern for many developing countries. One of the problems is the absence of updated spatial information on the quantity and distribution of groundwater resource. Like the other developing countries, groundwater evaluation in Ethiopia has been usually conducted using field survey which is not feasible in terms of time and resource. This study was conducted in Northern Ethiopia, Wollo Zone, in Gerardo River Catchment district to spatially delineate the groundwater potential areas using geospatial and MCDA tools. To do so, eight major biophysical and environmental factors like geomorphology, lithology, slope, rainfall, land use land cover (LULC), soil, lineament density and drainage density were considered. The sources of these data were satellite image, digital elevation model (DEM), existing thematic maps and metrological station data. Landsat image was used in ERDAS Imagine to drive the LULC of the area, while the geomorphology, soil, and lithology of the area were identified and classified through field survey and digitized from existing maps using the ArcGIS software. The slope, lineament and drainage density of the area were derived from DEM using spatial analysis tools. The rainfall surface map was generated using the thissen polygon interpolation. Finally, after all these thematic maps were organized, weighted value determination for each factor and its field value was computed using IDRSI software. At last, all the factors were integrated together and computed the model using the weighted overlay so that potential groundwater areas were mapped. The findings depicted that the most potential groundwater areas are found in the central and eastern parts of the study area, while the northern and western parts of the Gerado River Catchment have poor potential of groundwater availability. This is mainly due to the cumulative effect of steep topographic and

  3. Tumor-targeted nanomedicines for cancer theranostics

    Science.gov (United States)

    Lammers, Twan; Shi, Yang

    2017-01-01

    Chemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and the target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple different types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery. Based on the notion that tumors and metastases are highly heterogeneous, it is important to integrate imaging properties in nanomedicine formulations in order to enable non-invasive and quantitative assessment of targeting efficiency. By allowing for patient pre-selection, such next generation nanotheranostics are useful for facilitating clinical translation and personalizing nanomedicine treatments. PMID:27865762

  4. Translational nanomedicine--through the therapeutic window.

    Science.gov (United States)

    Pierce, Robin L

    2015-01-01

    Translational nanomedicine occurs only through the successful integration of multiple inputs and iterative modifications. The therapeutic window plays a pivotal role in the trajectory of translational nanomedicine. Often defined in terms of the range of dosage for safe and effective therapeutic effect, a second definition of the therapeutic window refers to the often narrow temporal window in which a therapeutic effect can be obtained. Expanding the second definition to explicitly include the spatial dimension, this article explores aspects of the therapeutic spaces created by nanomedicine that shift the traditional dimensions of symptom, sign and pathology. This article analyzes three aspects of the therapeutic window in nanomedicine - temporal, spatial and manner of construction and their impact on the dimensions of modern medicine.

  5. Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines

    DEFF Research Database (Denmark)

    Edmonds, Scott; Volpe, Alessia; Shmeeda, Hilary

    2016-01-01

    The clinical value of current and future nanomedicines can be improved by introducing patient selection strategies based on noninvasive sensitive whole-body imaging techniques such as positron emission tomography (PET). Thus, a broad method to radiolabel and track preformed nanomedicines...... such as liposomal drugs with PET radionuclides will have a wide impact in nanomedicine. Here, we introduce a simple and efficient PET radiolabeling method that exploits the metal-chelating properties of certain drugs (e.g., bisphosphonates such as alendronate and anthracyclines such as doxorubicin) and widely used...... ionophores to achieve excellent radiolabeling yields, purities, and stabilities with 89Zr, 52Mn, and 64Cu, and without the requirement of modification of the nanomedicine components. In a model of metastatic breast cancer, we demonstrate that this technique allows quantification of the biodistribution...

  6. A novel peptide nanomedicine for treatment of pancreatogenic diabetes.

    Science.gov (United States)

    Banerjee, Amrita; Onyuksel, Hayat

    2013-08-01

    Pancreatogenic diabetes (PD) is a potentially fatal disease that occurs secondary to pancreatic disorders. The current anti-diabetic therapy for PD is fraught with adverse effects that can increase morbidity. Here we investigated the efficacy of novel peptide nanomedicine: pancreatic polypeptide (PP) in sterically stabilized micelles (SSM) for management of PD. PP exhibits significant anti-diabetic efficacy but its short plasma half-life curtails its therapeutic application. To prolong and improve activity of PP in vivo, we evaluated the delivery of PP in SSM. PP-SSM administered to rats with PD, significantly improved glucose tolerance, insulin sensitivity and hepatic glycogen content compared to peptide in buffer. The studies established the importance of micellar nanocarriers in protecting enzyme-labile peptides in vivo and delivering them to target site, thereby enhancing their therapeutic efficacy. In summary, this study demonstrated that PP-SSM is a promising novel anti-diabetic nanomedicine and therefore should be further developed for management of PD. Pancreatic peptide was earlier demonstrated to address pancreatogenic diabetes, but its short half-life represented major difficulties in further development for therapeutic use. PP-SSM (pancreatic polypeptide in sterically stabilized micelles) is a promising novel anti-diabetic nanomedicine that enables prolonged half-life and increased bioactivity of PP, as shown in this novel study, paving the way toward clinical studies in the near future. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Nanomedicine to improve drug delivery outcomes [Retracted

    Directory of Open Access Journals (Sweden)

    Meenakshi Joshi

    2012-01-01

    Full Text Available The early genesis of the concept of nanomedicine sprang from the visionary idea that tiny nanorobots and related machines could be designed, manufactured, and introduced into the human body to perform cellular repairs at the molecular level. Nanomedicine today has branched out in hundreds of different directions, each of them embodying the key insight that the ability to structure materials and devices at the molecular scale can bring enormous immediate benefits in the research and practice of medicine. The integration of nanotechnology with biology and medicine has given birth to a new field of science called "Nanomedicine". Research into the rational delivery and targeting of pharmaceutical, therapeutic, and diagnostic agents is at the forefront of projects in nanomedicine. These involve the identification of precise targets (cells and receptors related to specific clinical conditions and choice of the appropriate nanocarriers to achieve the required responses while minimizing the side effects. Mononuclear phagocytes, dendritic cells, endothelial cells, and cancers (tumor cells as well as tumor neovasculature are key targets. The ultimate goal of nanomedicine is to develop well-engineered nanotools for the prevention, diagnosis, and treatment of many diseases. Nanomedicine today has branched out in hundreds of different directions, each of them embodying the key insight that the ability to structure materials and devices at the molecular scale can bring enormous immediate benefits in the research and practice of medicine.

  8. Nanomedicine approaches in vascular disease: a review.

    Science.gov (United States)

    Gupta, Anirban Sen

    2011-12-01

    Nanomedicine approaches have revolutionized the treatment of cancer and vascular diseases, where the limitations of rapid nonspecific clearance, poor biodistribution and harmful side effects associated with direct systemic drug administration can be overcome by packaging the agents within sterically stabilized, long-circulating nanovehicles that can be further surface-modified with ligands to actively target cellular/molecular components of the disease. With significant advancements in genetics, proteomics, cellular and molecular biology and biomaterials engineering, the nanomedicine strategies have become progressively refined regarding the modulation of surface and bulk chemistry of the nanovehicles, control of drug release kinetics, manipulation of nanoconstruct geometry and integration of multiple functionalities on single nanoplatforms. The current review aims to capture the various nanomedicine approaches directed specifically toward vascular diseases during the past two decades. Analysis of the promises and limitations of these approaches will help identify and optimize vascular nanomedicine systems to enhance their efficacy and clinical translation in the future. Nanomedicine-based approaches have had a major impact on the treatment and diagnosis of malignancies and vascular diseases. This review discusses various nanomedicine approaches directed specifically toward vascular diseases during the past two decades, highlighting their advantages, limitations and offering new perspectives on future applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. The big picture on nanomedicine: the state of investigational and approved nanomedicine products.

    Science.gov (United States)

    Etheridge, Michael L; Campbell, Stephen A; Erdman, Arthur G; Haynes, Christy L; Wolf, Susan M; McCullough, Jeffrey

    2013-01-01

    Developments in nanomedicine are expected to provide solutions to many of modern medicine's unsolved problems, so it is no surprise that the literature contains many articles discussing the subject. However, existing reviews tend to focus on specific sectors of nanomedicine or to take a very forward-looking stance and fail to provide a complete perspective on the current landscape. This article provides a more comprehensive and contemporary inventory of nanomedicine products. A keyword search of literature, clinical trial registries, and the Web yielded 247 nanomedicine products that are approved or in various stages of clinical study. Specific information on each was gathered, so the overall field could be described based on various dimensions, including FDA classification, approval status, nanoscale size, treated condition, nanostructure, and others. In addition to documenting the many nanomedicine products already in use in humans, this study identifies several interesting trends forecasting the future of nanomedicine. In this one of a kind review, the state of nanomedicine commercialization is discussed, concentrating only on nanomedicine-based developments and products that are either in clinical trials or have already been approved for use. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Nanomedicine and epigenome. Possible health risks.

    Science.gov (United States)

    Smolkova, Bozena; Dusinska, Maria; Gabelova, Alena

    2017-11-01

    Nanomedicine is an emerging field that combines knowledge of nanotechnology and material science with pharmaceutical and biomedical sciences, aiming to develop nanodrugs with increased efficacy and safety. Compared to conventional therapeutics, nanodrugs manifest higher stability and circulation time, reduced toxicity and improved targeted delivery. Despite the obvious benefit, the accumulation of imaging agents and nanocarriers in the body following their therapeutic or diagnostic application generates concerns about their safety for human health. Numerous toxicology studies have demonstrated that exposure to nanomaterials (NMs) might pose serious risks to humans. Epigenetic modifications, representing a non-genotoxic mechanism of toxicant-induced health effects, are becoming recognized as playing a potential causative role in the aetiology of many diseases including cancer. This review i) provides an overview of recent advances in medical applications of NMs and ii) summarizes current evidence on their possible epigenetic toxicity. To discern potential health risks of NMs, since current data are mostly based upon in vitro and animal models, a better understanding of functional relationships between NM exposure, epigenetic deregulation and phenotype is required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hard and soft nanoparticles for image-guided surgery in nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, Erica; Monaco, Ilaria; Comes Franchini, Mauro, E-mail: mauro.comesfranchini@unibo.it [University of Bologn, Department of Industrial Chemistry, “Toso Montanari” (Italy)

    2015-08-15

    The use of hard and/or soft nanoparticles for therapy, collectively called nanomedicine, has great potential in the battle against cancer. Major research efforts are underway in this area leading to development of new drug delivery approaches and imaging techniques. Despite this progress, the vast majority of patients who are affected by cancer today sadly still need surgical intervention, especially in the case of solid tumors. An important perspective for researchers is therefore to provide even more powerful tools to the surgeon for pre- and post-operative approaches. In this context, image-guided surgery, in combination with nanotechnology, opens a new strategy to win this battle. In this perspective, we will analyze and discuss the recent progress with nanoparticles of both metallic and biomaterial composition, and their use to develop powerful systems to be applied in image-guided surgery.

  12. Potential Applications of Light Robotics in Nanomedicine

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    We have recently pioneered a new generation of 3D micro-printed light robotic structures with multi-functional biophotonics capabilities. The uniqueness of this light robotic approach is that even if a micro-biologist aims at exploring e.g. cell biology at nanoscopic scales, the main support of e...

  13. Application of nanomedicine for crossing the blood-brain barrier: Theranostic opportunities in multiple sclerosis.

    Science.gov (United States)

    Ghalamfarsa, Ghasem; Hojjat-Farsangi, Mohammad; Mohammadnia-Afrouzi, Mousa; Anvari, Enayat; Farhadi, Shohreh; Yousefi, Mehdi; Jadidi-Niaragh, Farhad

    2016-09-01

    Multiple sclerosis (MS) is an autoimmune neurodegenerative disease characterized with immunopathobiological events, including lymphocytic infiltration into the central nervous system (CNS), microglia activation, demyelination and axonal degeneration. Although several neuroprotective drugs have been designed for the treatment of MS, complete remission is yet matter of debate. Therefore, development of novel therapeutic approaches for MS is of a high priority in immunological research. Nanomedicine is a recently developed novel medical field, which is applicable in both diagnosis and treatment of several cancers and autoimmune diseases. Although there is a marked progress in neuroimaging through using nanoparticles, little is known regarding the therapeutic potential of nanomedicine in neurological disorders, particularly MS. Moreover, the majority of data is limited to the MS related animal models. In this review, we will discuss about the brain targeting potential of different nanoparticles as well as the role of nanomedicine in the diagnosis and treatment of MS and its animal model, experimental autoimmune encephalomyelitis.

  14. Targeting the Brain with Nanomedicine.

    Science.gov (United States)

    Rueda, Felix; Cruz, Luis J

    2017-01-01

    Herein, we review innovative nanomedicine-based approaches for treating, preventing and diagnosing neurodegenerative diseases. We focus on nanoscale systems such as polymeric nanoparticles (NPs), liposomes, micelles and other vehicles (e.g. dendrimers, nanogels, nanoemulsions and nanosuspensions) for targeted delivery of bioactive molecules to the brain. To ensure maximum selectivity for optimal therapeutic or diagnostic results, researchers must employ delivery systems that are non-toxic, biodegradable and biocompatible. This entails: (i) use of "safe" materials, such as polymers or lipids; (ii) targeting to the brain and, specifically, to the desired active site within the brain; (iii) controlled release of the loaded agent; and (iv) use of agents that, once released into the brain, will exhibit the desired pharmacologic activity. Here, we explore the design and preclinical use of representative delivery systems that have been proposed to date. We then analyze the principal challenges that have delayed clinical application of these and other approaches. Lastly, we look at future developments in this area, addressing the needs for increased penetration of the blood brain barrier (BBB), enhanced targeting of specific brain sites, improved therapeutic efficacy and lower neurotoxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Redox-active nanomaterials for nanomedicine applications.

    Science.gov (United States)

    Sims, Christopher M; Hanna, Shannon K; Heller, Daniel A; Horoszko, Christopher P; Johnson, Monique E; Montoro Bustos, Antonio R; Reipa, Vytas; Riley, Kathryn R; Nelson, Bryant C

    2017-10-19

    Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials.

  16. Micellar nanomedicine of human neuropeptide Y.

    Science.gov (United States)

    Kuzmis, Antonina; Lim, Sok Bee; Desai, Esha; Jeon, Eunjung; Lee, Bao-Shiang; Rubinstein, Israel; Onyüksel, Hayat

    2011-08-01

    Human neuropeptide Y (NPY) is an important biologics that regulates a multitude of physiological functions and could be amenable to therapeutic manipulations in certain disease states. However, rapid (within minutes) enzymatic degradation and inactivation of NPY precludes its development as a drug. Accordingly, we determined whether self-association of NPY with biocompatible and biodegradable sterically stabilized phospholipid micelles (SSM) improves its stability and bioactivity. We found that in saline NPY spontaneously aggregates; however, in the presence of SSM it self-associates with the micelles as monomers. Three NPY molecules self-associate with 1 SSM at saturation. This process stabilizes the peptide in α-helix conformation, abrogates its degradation by dipeptidyl peptidase-4 and potentiates NPY-induced inhibition of cAMP elaboration in SK-N-MC cells. Collectively, these data indicate that self-association of NPY with SSM stabilizes and protects the peptide in active monomeric conformation, thereby amplifying its bioactivity in vitro. We propose further development of NPY in SSM as a novel, long-acting nanomedicine. Human neuropeptide Y (NPY) regulates a multitude of physiological functions and could be amenable to therapeutic manipulations, which is currently limited by its short half life. Self-association of NPY with spherically stabilized micelles (SSM) protects and stabilizes the peptide in active monomeric conformation, thereby amplifying its bioactivity in vitro, enabling future therapeutic considerations. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Recent developments in nanomedicine for melanoma treatment.

    Science.gov (United States)

    Tang, Jian-Qin; Hou, Xiao-Yang; Yang, Chun-Sheng; Li, Ya-Xi; Xin, Yong; Guo, Wen-Wen; Wei, Zhi-Ping; Liu, Yan-Qun; Jiang, Guan

    2017-08-15

    Melanoma is a most aggressive skin cancer with limited therapeutic options and its incidence is increasing rapidly in recent years. The discovery and application of new targeted therapy agents have shown significant benefits. However, adverse side-effects and resistance to chemotherapy remain formidable challenges in the clinical treatment of malignant melanoma. Nanotherapeutics offers an important prospect of overcoming these drawbacks. The anti-tumoral applications of nanomedicine are varied, including those in chemotherapy, RNA interference, photothermal therapy, and photodynamic therapy. Furthermore, nanomedicine allows delivery of the effector structures into the tumor site via passive or active targeting, thereby allowing increased therapeutic specificity and reduced side effects. In this review, we summarize the latest developments in the application of nanocarrier-mediated targeted drug delivery to melanoma and nanomedicine-related clinical trials in melanoma treatment. We also discuss existing problems and opportunities for future developments, providing direction and new thoughts for further studies. © 2017 UICC.

  18. Cancer nanomedicine: progress, challenges and opportunities.

    Science.gov (United States)

    Shi, Jinjun; Kantoff, Philip W; Wooster, Richard; Farokhzad, Omid C

    2017-01-01

    The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.

  19. The innovation potential of ECAP techniques of severe plastic deformation

    Science.gov (United States)

    Raab, Georgy

    2014-08-01

    The most considerable factors influencing flow uniformity and a strained state of billets, respectively, structure formation processes and ECAP techniques with industrial potential have been studied. It is shown that the industrial potential of ECAP techniques largely depends on the intensity of strain accumulation per a processing cycle. Enhancement of this value considerably reduces the labor intensity of manufacturing of semi-products with an ultrafinegrained (UFG) structure.

  20. The Use of Silk in Nanomedicine Applications

    DEFF Research Database (Denmark)

    Chiasson, Raymond; Hasan, Moaraj; Al Nazer, Q.

    2016-01-01

    Biopolymers made up of silk proteins have been used in numerous drug delivery applications and represent an excellent source of natural biomaterials. In particular silk fibroin has proved valuable as a building block for nanomedicines and drug delivery implants, owing to its favorable biocompatib......Biopolymers made up of silk proteins have been used in numerous drug delivery applications and represent an excellent source of natural biomaterials. In particular silk fibroin has proved valuable as a building block for nanomedicines and drug delivery implants, owing to its favorable...

  1. Complement propriety and conspiracy in nanomedicine

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein

    2016-01-01

    The complement system is the first line of body's defense against intruders and it acts as a functional bridge between innate and adaptive arms of the immune system. This commentary examines the key roles of complement activation in response to nanomedicine administration, including nucleic acid...... complexes. These comprise beneficial (eg, adjuvanticity) as well as adverse effects (eg, infusion-related reactions). Pigs (and sheep) are often used as predictive models of nanomedicine-mediated infusion-related reactions in humans. The validity of these models in relation to human responses is questioned...

  2. GIS-based bivariate statistical techniques for groundwater potential ...

    Indian Academy of Sciences (India)

    Groundwater potential analysis prepares better comprehension of hydrological settings of different regions. This study shows the potency of two GIS-based data driven bivariate techniques namely statistical index (SI) and Dempster–Shafer theory (DST) to analyze groundwater potential in Broujerd region of Iran.

  3. From bench to bedside: successful translational nanomedicine: highlights of the Third Annual Meeting of the American Academy of Nanomedicine.

    Science.gov (United States)

    Wei, Chiming; Liu, Nanhai; Xu, Pingyi; Heller, Mike; Tomalia, Donald A; Haynie, Donald T; Chang, Esther H; Wang, Kuan; Lee, Yoon-Sik; Lyubchenko, Yuri L; Bawa, Raj; Tian, Ryan; Hanes, Justin; Pun, Suzie; Meiners, Jens-Christian; Guo, Peixuan

    2007-12-01

    The Third Annual Meeting of the American Academy of Nanomedicine (AANM) was held at the University of California San Diego, in San Diego, California during September 7-8, 2007. The meeting was focused on successful translational nanomedicine: from bench to bedside. There were four keynote lectures and eight scientific symposiums in this meeting. The researchers and investigators reported the results and process of current nanomedicine research and approaches to clinical applications. The meeting provided exciting information for nanomedicine clinical-related researches and strategy for further development of nanomedicine research which will be benefits to clinical practice.

  4. Bypassing the EPR effect with a nanomedicine harboring a sustained-release function allows better tumor control

    Directory of Open Access Journals (Sweden)

    Shen YA

    2015-03-01

    -mesenchymal transition, angiogenesis signals, and multidrug resistance in the tumor microenvironment. Metastases to vital organs (eg, lung, liver, and lymphatic system are also better controlled by intraperitoneal delivery of nanomedicine than by standard systemic delivery of the corresponding free drug. Moreover, the intraperitoneal delivery of nanomedicine has the potential to replace hyperthermic intraperitoneal chemotherapy because it shows equal efficacy and lower toxicity. In terms of efficacy, exploiting the EPR effect may not be the best approach for developing a nanomedicine. Because intraperitoneal chemotherapy is a type of regional chemotherapy, the pharmaceutical industry might consider the regional delivery of nanomedicine as a valid alternative pathway to develop their nanomedicine(s with the goal of better tumor control in the future. Keywords: enhanced permeability and retention effect, liposome, paclitaxel, ovarian cancer 

  5. Noninvasive optical imaging of nanomedicine biodistribution

    Czech Academy of Sciences Publication Activity Database

    Kunjachan, S.; Gremse, F.; Theek, B.; Koczera, P.; Pola, Robert; Pechar, Michal; Etrych, Tomáš; Ulbrich, Karel; Storm, G.; Kiessling, F.; Lammers, T.

    2013-01-01

    Roč. 7, č. 1 (2013), s. 252-262 ISSN 1936-0851 R&D Projects: GA ČR GAP301/11/0325 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : nanomedicine * drug targeting * biodistribution Subject RIV: CD - Macromolecular Chemistry Impact factor: 12.033, year: 2013

  6. Designer DNA Architectures: Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Arun Richard Chandrasekaran

    2016-04-01

    Full Text Available DNA has been used as a material for the construction of nanoscale objects. These nanostructures are programmable and allow the conjugation of biomolecular guests to improve their functionality. DNA nanostructures display a wide variety of characteristics, such as cellular permeabil‐ ity, biocompatibility and stability, and responsiveness to external stimuli, making them excellent candidates for applications in nanomedicine.

  7. Omics-based nanomedicine: the future of personalized oncology.

    Science.gov (United States)

    Rosenblum, Daniel; Peer, Dan

    2014-09-28

    The traditional "one treatment fits all" paradigm disregards the heterogeneity between cancer patients, and within a particular tumor, thus limit the success of common treatments. Moreover, current treatment lacks specificity and therefore most of the anticancer drugs induce severe adverse effects. Personalized medicine aims to individualize therapeutic interventions, based on the growing knowledge of the human multiple '-oms' (e.g. genome, epigenome, transcriptome, proteome and metabolome), which has led to the discovery of various biomarkers that can be used to detect early stage cancers and predict tumor progression, drug response, and clinical outcome. Nanomedicine, the application of nanotechnology to healthcare, holds great promise for revolutionizing disease management such as drug delivery, molecular imaging, reduced adverse effects and the ability to contain both therapeutic and diagnostic modalities simultaneously termed theranostics. Personalizednanomedicine has the power of combining nanomedicine with clinical and molecular biomarkers ("OMICS" data) achieving improve prognosis and disease management as well as individualized drug selection and dosage profiling to ensure maximal efficacy and safety. Tumor's heterogeneity sets a countless challenge for future personalized therapy in cancer, however the use of multi-parameter 'omic's data for specific molecular biomarkers recognition together with versatile drug delivery nanocarriers, which could target concomitantly and specifically tumor cells subpopulations, might heralds a brighter future for personalized cancer management. In this review, we present the current leading technologies available for personalized oncology. We discusses the immense potential of combining the best of these two worlds, nanomedicine and high throughput OMICS technologies to pave the way towards cancer personalized medicine. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines

    Directory of Open Access Journals (Sweden)

    Vaks Lilach

    2011-12-01

    Full Text Available Abstract Background Targeted drug-carrying phage nanomedicines are a new class of nanomedicines that combines biological and chemical components into a modular nanometric drug delivery system. The core of the system is a filamentous phage particle that is produced in the bacterial host Escherichia coli. Target specificity is provided by a targeting moiety, usually an antibody that is displayed on the tip of the phage particle. A large drug payload is chemically conjugated to the protein coat of the phage via a chemically or genetically engineered linker that provides for controlled release of the drug after the particle homed to the target cell. Recently we have shown that targeted drug-carrying phage nanomedicines can be used to eradicate pathogenic bacteria and cultured tumor cells with great potentiation over the activity of the free untargeted drug. We have also shown that poorly water soluble drugs can be efficiently conjugated to the phage coat by applying hydrophilic aminoglycosides as branched solubility-enhancing linkers. Results With an intention to move to animal experimentation of efficacy, we tested anti-bacterial drug-carrying phage nanomedicines for toxicity and immunogenicity and blood pharmacokinetics upon injection into mice. Here we show that anti-bacterial drug-carrying phage nanomedicines that carry the antibiotic chloramphenicol conjugated via an aminoglycoside linker are non-toxic to mice and are greatly reduced in immunogenicity in comparison to native phage particles or particles to which the drug is conjugated directly and are cleared from the blood more slowly in comparison to native phage particles. Conclusion Our results suggest that aminoglycosides may serve as branched solubility enhancing linkers for drug conjugation that also provide for a better safety profile of the targeted nanomedicine.

  9. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective.

    Science.gov (United States)

    Hare, Jennifer I; Lammers, Twan; Ashford, Marianne B; Puri, Sanyogitta; Storm, Gert; Barry, Simon T

    2017-01-01

    Successfully translating anti-cancer nanomedicines from pre-clinical proof of concept to demonstration of therapeutic value in the clinic is challenging. Having made significant advances with drug delivery technologies, we must learn from other areas of oncology drug development, where patient stratification and target-driven design have improved patient outcomes. We should evolve our nanomedicine development strategies to build the patient and disease into the line of sight from the outset. The success of small molecule targeted therapies has been significantly improved by employing a specific decision-making framework, such as AstraZeneca's 5R principle: right target/efficacy, right tissue/exposure, right safety, right patient, and right commercial potential. With appropriate investment and collaboration to generate a platform of evidence supporting the end clinical application, a similar framework can be established for enhancing nanomedicine translation and performance. Building informative data packages to answer these questions requires the following: (I) an improved understanding of the heterogeneity of clinical cancers and of the biological factors influencing the behaviour of nanomedicines in patient tumours; (II) a transition from formulation-driven research to disease-driven development; (III) the implementation of more relevant animal models and testing protocols; and (IV) the pre-selection of the patients most likely to respond to nanomedicine therapies. These challenges must be overcome to improve (the cost-effectiveness of) nanomedicine development and translation, and they are key to establishing superior therapies for patients. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Respiratory gated radiotherapy: current techniques and potential benefits

    International Nuclear Information System (INIS)

    Giraud, P.; Campana, F.; Rosenwald, J.C.; Cosset, J.M.; Reboul, F.; Garcia, R.; Clippe, S.; Carrie, C.; Dubray, B.

    2003-01-01

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart...) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily breath-hold. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. These techniques presently investigated in several medical centers worldwide. Although promising, the first results obtained in lung and liver cancer patients require confirmation. Physical, technical and physiological questions still remain to be answered. This paper describes the most frequently used gated techniques and the main published clinical reports on the use of respiration-gated radiotherapy in order to evaluate the impact of these techniques. (author)

  11. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application.

    Science.gov (United States)

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Kim, Hye Hyun; Seo, Hansu; Lee, Kang Dae; Oh, Junghwan

    2017-01-01

    In this review, specific attention is paid to the development of nanostructured magnetic hydroxyapatite (MHAp) and its potential application in controlled drug/gene delivery, tissue engineering, magnetic hyperthermia treatment, and the development of contrast agents for magnetic resonance imaging. Both magnetite and hydroxyapatite materials have excellent prospects in nanomedicine with multifunctional therapeutic approaches. To date, many research articles have focused on biomedical applications of nanomaterials because of which it is very difficult to focus on any particular type of nanomaterial. This study is possibly the first effort to emphasize on the comprehensive assessment of MHAp nanostructures for biomedical applications supported with very recent experimental studies. From basic concepts to the real-life applications, the relevant characteristics of magnetic biomaterials are patented which are briefly discussed. The potential therapeutic and diagnostic ability of MHAp-nanostructured materials make them an ideal platform for future nanomedicine. We hope that this advanced review will provide a better understanding of MHAp and its important features to utilize it as a promising material for multifunctional biomedical applications.

  12. Nanomedicine for prostate cancer using nanoemulsion: A review.

    Science.gov (United States)

    Sasikumar, Aravindsiva; Kamalasanan, Kaladhar

    2017-08-28

    Prostate cancer (PCa) is a worldwide issue, with burgeoning rise in prevalence, morbidity and mortality. Targeted drug delivery, a long sort solution in this regard using controlled release (CR) - nanocarriers, is still a challenge. There is an emerging criticism that, the challenges are due to less appreciation for the biological barriers and lack of corresponding newer technologies. Over the years, more understanding about the biological barriers has come with the progress in characterization techniques. Correspondingly, there is a change in opinion about approaches in clinical trial that; focus of the end point need to be shifted towards disease stabilization for these explorative technologies. Currently, there is a requirement to overcome these newly identified challenges to develop newer affordable therapeutics. The ongoing clinical protocol for therapy using CR-nanocarriers is intravenous injection followed by local targeting to cancer site. This is the most accepted protocol and new CR-nanocarriers are being developed to suit this protocol. In this review, recent progress in treatment of PCa using CR-nanocarriers is analyzed with respect to newly identified biological barriers and design challenges. Possibilities of exploring nanoemulsion (NE) platform for targeted drug delivery to PCa are examined. Repurposing of drugs and combination therapy using NE platform targeted to PCa can be explored for design and development of affordable nanomedicine. In 20yrs. from now there expected to be numerous affordable nanomedicine technologies available in market exploring these lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-12-01

    Full Text Available Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.

  14. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Science.gov (United States)

    Zhang, Bo; Hu, Yu; Pang, Zhiqing

    2017-01-01

    Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents. PMID:29311946

  15. GIS-based bivariate statistical techniques for groundwater potential ...

    Indian Academy of Sciences (India)

    ... complicated relation between groundwater occurrence and groundwater conditioning factors, which permits investigation of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management ...

  16. GIS-based bivariate statistical techniques for groundwater potential ...

    Indian Academy of Sciences (India)

    Ali Haghizadeh

    2017-11-23

    Nov 23, 2017 ... of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management experts. Keywords. Groundwater; statistical index; Dempster–Shafer theory; water resource management; ...

  17. GIS-Based bivariate statistical techniques for groundwater potential ...

    Indian Academy of Sciences (India)

    24

    driven and knowledge-driven models (Corsini ... addition, the usage application of GIS-based SI technique in groundwater potential mapping .... lithology of an given area and affect the drainage density and can be of great big value for to evaluate ...

  18. Nanomedicine and experimental tuberculosis: facts, flaws, and future.

    Science.gov (United States)

    Pandey, Rajesh; Ahmad, Zahoor

    2011-06-01

    Nanoparticle-based drug delivery systems form the crux of nanomedicine and are suitable for targeting chronic diseases such as tuberculosis. Extensive experimental data supports the possibility of intermittent chemotherapy with key first-line as well as second-line antituberculosis drugs by employing synthetic or natural carriers, chiefly polymers. Besides sustained release of drugs in plasma and organs, other potential advantages of the system include the possibility of selecting various routes of chemotherapy; reduction in drug dosage, adverse effects, and drug interactions; and targeting drug-resistant and latent bacteria. On the other hand, the choice of carrier, large-scale production, stability, and toxicity of the formulation are some of the major issues that merit immediate attention and resolution. Nevertheless, keeping in view the hurdles in new antituberculosis drug development, nanomedicine has provided a sound platform and a ray of hope for an onslaught against tuberculosis. Tuberculosis remains a major public health concern worldwide. In this paper, the role and significance of nanoparticle-based drug delivery systems are discussed for targeting tuberculosis, including strains that are drug resistant with conventional methods. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Heat shock proteins and cancer: How can nanomedicine be harnessed?

    Science.gov (United States)

    Sauvage, Félix; Messaoudi, Samir; Fattal, Elias; Barratt, Gillian; Vergnaud-Gauduchon, Juliette

    2017-02-28

    Heat shock protein (hsp90) is an interesting target for cancer therapy because it is involved in the folding and stabilization of numerous proteins, including many that contribute to the development of cancer. It is part of the chaperone machinery that includes other heat shock proteins (hsp70, hsp27, hsp40) and is mainly localized in the cytosol, although many analogues or isoforms can be found in mitochondrion, endoplasmic reticulum and the cell membrane. Many potential inhibitors of hsp90 have been tested for cancer therapy but their usefulness is limited by their poor solubility in water and their ability to reach the target cells and the correct intracellular compartment. Nanomedicine, the incorporation of active molecules into an appropriate delivery system, could provide a solution to these drawbacks. In this review, we explain the rationale for using nanomedicine for this sort of cancer therapy, considering the properties of the chaperone machinery and of the different hsp90 analogues. We present some results that have already been obtained and put forward some strategies for delivery of hsp90 analogues to specific organelles. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ethical issues in nanomedicine: Tempest in a teapot?

    Science.gov (United States)

    Allon, Irit; Ben-Yehudah, Ahmi; Dekel, Raz; Solbakk, Jan-Helge; Weltring, Klaus-Michael; Siegal, Gil

    2017-03-01

    Nanomedicine offers remarkable options for new therapeutic avenues. As methods in nanomedicine advance, ethical questions conjunctly arise. Nanomedicine is an exceptional niche in several aspects as it reflects risks and uncertainties not encountered in other areas of medical research or practice. Nanomedicine partially overlaps, partially interlocks and partially exceeds other medical disciplines. Some interpreters agree that advances in nanotechnology may pose varied ethical challenges, whilst others argue that these challenges are not new and that nanotechnology basically echoes recurrent bioethical dilemmas. The purpose of this article is to discuss some of the ethical issues related to nanomedicine and to reflect on the question whether nanomedicine generates ethical challenges of new and unique nature. Such a determination should have implications on regulatory processes and professional conducts and protocols in the future.

  1. Nanomedicine: Past, present and future - A global perspective.

    Science.gov (United States)

    Chang, Esther H; Harford, Joe B; Eaton, Michael A W; Boisseau, Patrick M; Dube, Admire; Hayeshi, Rose; Swai, Hulda; Lee, Dong Soo

    2015-12-18

    Nanomedicine is an emerging and rapidly evolving field and includes the use of nanoparticles for diagnosis and therapy of a variety of diseases, as well as in regenerative medicine. In this mini-review, leaders in the field from around the globe provide a personal perspective on the development of nanomedicine. The focus lies on the translation from research to development and the innovation supply chain, as well as the current status of nanomedicine in industry. The role of academic professional societies and the importance of government funding are discussed. Nanomedicine to combat infectious diseases of poverty is highlighted along with other pertinent examples of recent breakthroughs in nanomedicine. Taken together, this review provides a unique and global perspective on the emerging field of nanomedicine. Copyright © 2015. Published by Elsevier Inc.

  2. Patenting Nanomedicines Legal Aspects, Intellectual Property and Grant Opportunities

    CERN Document Server

    Souto, Eliana B

    2012-01-01

    "Patenting Nanomedicines: Legal Aspects, Intellectual Property and Grant Opportunities" focuses on the fundamental aspects of Patenting Nanomedicines applied in different "Drug Delivery and Targeting Systems". The promoters of new findings in this field of research are numerous and spread worldwide; therefore, managing intellectual property portfolios, and the acquisition and exploitation of new knowledge face several contingency factors. Today, the scientific community is discussing issues of economic outcomes in the field of Nanomedicines. Major concerns include questions

  3. [Meta-legal paradigms of nanomedicine].

    Science.gov (United States)

    Pérez Alvarez, Salvador

    2012-01-01

    Nanomedicine is the Nanotechnology applied in the field of Medicine. Nanomedicine includes a wide range of technologies applied to devices, materials, medical procedures and treatment modalities are being developed, in some cases, through the convergence of living and nonliving materials. The developments in this scientific field are the prelude of a new era in health where Nanotechnology will provide, in a short period of time, substantial benefits for the general welfare and health of people with serious and incurable diseases using other more traditional medical treatments. This is, in brief, the object of this research that has been focused in the study of the ethical-legal paradigms that should inform the developments and expectations generated by medical applications of Nanotechnology.

  4. Silk nanoparticles—an emerging anticancer nanomedicine

    Directory of Open Access Journals (Sweden)

    F. Philipp Seib

    2017-03-01

    Full Text Available Silk is a sustainable and ecologically friendly biopolymer with a robust clinical track record in humans for load bearing applications, in part due to its excellent mechanical properties and biocompatibility. Our ability to take bottom-up and top-down approaches for the generation of silk (inspired biopolymers has been critical in supporting the evolution of silk materials and formats, including silk nanoparticles for drug delivery. Silk nanoparticles are emerging as interesting contenders for drug delivery and are well placed to advance the nanomedicine field. This review covers the use of Bombyx mori and recombinant silks as an anticancer nanomedicine, highlighting the emerging trends and developments as well as critically assessing the current opportunities and challenges by providing a context specific assessment of this multidisciplinary field.

  5. Nanomedicine: Drug Delivery Systems and Nanoparticle Targeting

    International Nuclear Information System (INIS)

    Youn, Hye Won; Kang, Keon Wook; Chung, Jun Key; Lee, Dong Soo

    2008-01-01

    Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic tool at the same time. The development of high affinity nanoparticles with large surface area and functional groups multiplies diagnostic and therapeutic capacities. Considering the specific conditions related to the disease of individual patient, customized therapy requires the identification of disease target at the cellular and molecular level for reducing side effects and enhancing therapeutic efficiency. Well-designed nanoparticles can minimize unnecessary exposure of cytotoxic drugs and maximize targeted localization of administrated drugs. This review will focus on major pharmaceutical nanomaterials and nanoparticles as key components of designing and surface engineering for targeted theragnostic drug development

  6. Nanomedicine therapeutics and diagnostics are the goal.

    Science.gov (United States)

    Miller, Andrew D

    2016-07-01

    Understanding and exploiting molecular mechanisms in biology is central to chemical biology. In 20 years, chemical biology research has advanced from simple mechanistic studies using isolated biological macromolecules to molecular-level and nanomolecular-level mechanistic studies involving whole organisms. This review documents the best of my personal and collaborative academic research work that has made use of a solid organic chemistry and chemical biology approach toward nanomedicine, in which my focus has been on the design, creation and use of synthetic, self-assembly lipid-based nanoparticle technologies for the functional delivery of active pharmaceutical ingredients to target cells in vivo. This research is now leading to precision therapeutics approaches (PTAs) for the treatment of diseases that may define the future of nanomedicine.

  7. [Platelet rich plasma (PRP): potentialities and techniques of extraction].

    Science.gov (United States)

    Pacifici, L; Casella, F; Maggiore, C

    2002-01-01

    This paper describes the various techniques of platelet-rich plasma (PRP) extraction codified in recent years and their use potential is evaluated. PRP is one of the techniques with which at the moment it is attempted to modulate and facilitate the cure of a wound. The use of PRP is based on the theoretical premise that by concentrating platelets the effects of the growth factors (PDGF, TGF-beta, IGF-I and -II) so released will be increased. Marx's original technique is described above all. This prescribes the sampling of a unit of blood (450-500 ml) and the use of a cell separator. We then analysed the technique of Marx and Hannon in which the quantity of blood sampled is reduced to 150 ml, and the two simplified techniques of the Sacchi and Bellanda group. Finally, a new PRP extraction technique is described. We conclude that platelet gel allows access to autologous growth factors which by definition are neither toxic nor immunogenic and are capable of accelerating the normal processes of bone regeneration. PRP can thus be considered a useful instrument for increasing the quality and final quantity of regenerated bone in oral and maxillo-facial surgery operations.

  8. Bringing nanomedicines to market: regulatory challenges, opportunities, and uncertainties.

    Science.gov (United States)

    Nijhara, Ruchika; Balakrishnan, Krishna

    2006-06-01

    Scientists and entrepreneurs who contemplate developing nanomedicine products face several unique challenges in addition to many of the traditional hurdles of product development. In this review we analyze the major physicochemical, biologic and functional characteristics of several nanomedicine products on the market and explore the question of what made them unique. What made them successful? We also focus on the regulatory challenges faced by nanomedicine product developers. Based on these analyses, we propose the factors that are most likely to contribute to the success of nanomedicine products.

  9. Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine

    Directory of Open Access Journals (Sweden)

    Elnaggar YS

    2015-06-01

    Full Text Available Yosra SR Elnaggar Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt Abstract: The human body has long provided pharmaceutical science with biomaterials of interesting applications. Bile salts (BSs are biomaterials reminiscent of traditional surfactants with peculiar structure and self-assembled topologies. In the pharmaceutical field, BSs were employed on the basis of two different concepts. The first concept exploited BSs’ metabolic and homeostatic functions in disease modulation, whereas the second one utilized BSs’ potential to modify drug-delivery characteristics, which recently involved nanotechnology. This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain. Endogenous applications highlighted the role of BS in modulating hypercholesterolemia and cancer therapy in view of enterohepatic circulation. In addition, recent BS-integrated nanomedicines have been surveyed, chiefly size-tunable cholate nanoparticles, BS-lecithin mixed micelles, bilosomes, probilosomes, and surface-engineered bilosomes. A greater emphasis has been laid on nanosystems for vaccine and cancer therapy. The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted. Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined. Keywords: bile salt, nanomedicine, bilosomes, liposomes, size-tunable nanoparticles 

  10. Therapeutic nanomedicine surmounts the limitations of pharmacotherapy

    Directory of Open Access Journals (Sweden)

    Odiba Arome

    2017-09-01

    Full Text Available Science always strives to find an improved way of doing things and nanoscience is one such approach. Nanomaterials are suitable for pharmaceutical applications mostly because of their size which facilitates absorption, distribution, metabolism and excretion of the nanoparticles. Whether labile or insoluble nanoparticles, their cytotoxic effect on malignant cells has moved the use of nanomedicine into focus. Since nanomedicine can be described as the science and technology of diagnosing, treating and preventing diseases towards ultimately improving human health, a lot of nanotechnology options have received approval by various regulatory agencies. Nanodrugs also have been discovered to be more precise in targeting the desired site, hence maximizing the therapeutic effects, while minimizing side-effects on the rest of the body. This unique property and more has made nanomedicine popular in therapeutic medicine employing nanotechnology in genetic therapy, drug encapsulation, enzyme manipulation and control, tissue engineering, target drug delivery, pharmacogenomics, stem cell and cloning, and even virus-based hybrids. This review highlights nanoproducts that are in development and have gained approval through one clinical trial stage or the other.

  11. GLP-1 nanomedicine alleviates gut inflammation.

    Science.gov (United States)

    Anbazhagan, Arivarasu N; Thaqi, Mentor; Priyamvada, Shubha; Jayawardena, Dulari; Kumar, Anoop; Gujral, Tarunmeet; Chatterjee, Ishita; Mugarza, Edurne; Saksena, Seema; Onyuksel, Hayat; Dudeja, Pradeep K

    2017-02-01

    The gut hormone, glucagon like peptide-1 (GLP-1) exerts anti-inflammatory effects. However, its clinical use is limited by its short half-life. Previously, we have shown that GLP-1 as a nanomedicine (GLP-1 in sterically stabilized phospholipid micelles, GLP-1-SSM) has increased in vivo stability. The current study was aimed at testing the efficacy of this GLP-1 nanomedicine in alleviating colonic inflammation and associated diarrhea in dextran sodium sulfate (DSS) induced mouse colitis model. Our results show that GLP-1-SSM treatment markedly alleviated the colitis phenotype by reducing the expression of pro-inflammatory cytokine IL-1β, increasing goblet cells and preserving intestinal epithelial architecture in colitis model. Further, GLP-1-SSM alleviated diarrhea (as assessed by luminal fluid) by increasing protein expression of intestinal chloride transporter DRA (down regulated in adenoma). Our results indicate that GLP-1 nanomedicine may act as a novel therapeutic tool in alleviating gut inflammation and associated diarrhea in inflammatory bowel disease (IBD). Published by Elsevier Inc.

  12. Application of Statistical Potential Techniques to Runaway Transport Studies

    Energy Technology Data Exchange (ETDEWEB)

    Eguilior, S.; Castejon, F. [Ciemat.Madrid (Spain); Parrondo, J. M. [Universidad Complutense. Madrid (Spain)

    2001-07-01

    A method is presented for computing runaway production rate based on techniques of noise-activated escape in a potential is presented in this work. A generalised potential in 2D momentum space is obtained from the deterministic or drift terms of Langevin equations. The diffusive or stochastic terms that arise directly from the stochastic nature of collisions, play the role of the noise that activates barrier crossings. The runaway electron source is given by the escape rate in such a potential which is obtained from an Arrenius-like relation. Runaway electrons are those skip the potential barrier due to the effect of stochastic collisions. In terms of computation time, this method allows one to quickly obtain the source term for a runway electron transport code.(Author) 11 refs.

  13. A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis.

    Science.gov (United States)

    Alaarg, Amr; Senders, Max L; Varela-Moreira, Aida; Pérez-Medina, Carlos; Zhao, Yiming; Tang, Jun; Fay, Francois; Reiner, Thomas; Fayad, Zahi A; Hennink, Wim E; Metselaar, Josbert M; Mulder, Willem J M; Storm, Gert

    2017-09-28

    Atherosclerosis is a leading cause of worldwide morbidity and mortality whose management could benefit from novel targeted therapeutics. Nanoparticles are emerging as targeted drug delivery systems in chronic inflammatory disorders. To optimally exploit nanomedicines, understanding their biological behavior is crucial for further development of clinically relevant and efficacious nanotherapeutics intended to reduce plaque inflammation. Here, three clinically relevant nanomedicines, i.e., high-density lipoprotein ([S]-HDL), polymeric micelles ([S]-PM), and liposomes ([S]-LIP), that are loaded with the HMG-CoA reductase inhibitor simvastatin [S], were evaluated in the apolipoprotein E-deficient (Apoe -/- ) mouse model of atherosclerosis. We systematically employed quantitative techniques, including in vivo positron emission tomography imaging, gamma counting, and flow cytometry to evaluate the biodistribution, nanomedicines' uptake by plaque-associated macrophages/monocytes, and their efficacy to reduce macrophage burden in atherosclerotic plaques. The three formulations demonstrated distinct biological behavior in Apoe -/- mice. While [S]-PM and [S]-LIP possessed longer circulation half-lives, the three platforms accumulated to similar levels in atherosclerotic plaques. Moreover, [S]-HDL and [S]-PM showed higher uptake by plaque macrophages in comparison to [S]-LIP, while [S]-PM demonstrated the highest uptake by Ly6C high monocytes. Among the three formulations, [S]-PM displayed the highest efficacy in reducing macrophage burden in advanced atherosclerotic plaques. In conclusion, our data demonstrate that [S]-PM is a promising targeted drug delivery system, which can be advanced for the treatment of atherosclerosis and other inflammatory disorders in the clinical settings. Our results also emphasize the importance of a thorough understanding of nanomedicines' biological performance, ranging from the whole body to the target cells, as well drug retention in the

  14. Soft matter assemblies as nanomedicine platforms for cancer chemotherapy: a journey from market products towards novel approaches.

    Science.gov (United States)

    Jäger, Eliézer; Giacomelli, Fernando C

    2015-01-01

    The current review aims to outline the likely medical applications of nanotechnology and the potential of the emerging field of nanomedicine. Nanomedicine can be defined as the investigation area encompassing the design of diagnostics and therapeutics at the nanoscale, including nanobots, nanobiosensors, nanoparticles and other nanodevices, for the remediation, prevention and diagnosis of a variety of illnesses. The ultimate goal of nanomedicine is to improve patient quality-of-life. Because nanomedicine includes the rational design of an enormous number of nanotechnology-based products focused on miscellaneous diseases, a variety of nanomaterials can be employed. Therefore, this review will focus on recent advances in the manufacture of soft matterbased nanomedicines specifically designed to improve diagnostics and cancer chemotherapy efficacy. It will be particularly highlighted liposomes, polymer-drug conjugates, drug-loaded block copolymer micelles and biodegradable polymeric nanoparticles, emphasizing the current investigations and potential novel approaches towards overcoming the remaining challenges in the field as well as formulations that are in clinical trials and marketed products.

  15. Isotope technique in JPS dam surveillance: its potential

    International Nuclear Information System (INIS)

    Sabri Hassan

    2006-01-01

    Controlling seepage is one of the most important requirements for safe dams. Any leakage at an earth embankment may be potentially dangerous since rapid internal erosion may quickly enlarge an initially minor defect. Thus dam owners need to have thorough surveillance programs that can forewarn of impending problems from seepage or other factors influencing the safety of dams. In carrying out dam surveillance works, all possible efforts should be considered and foreseeing the potential of isotope technique, JPS (Department of Irrigation and Drainage, Malaysia) and MINT (Malaysian Institute for Nuclear Technology Research) participated actively in the UNDP/RCA/IAEA program under RAS/8/093 project sponsored by the International Atomic Energy Agency (IAEA). Through these activities, it was noted that the technique demonstrated very promising potentials such as in assisting dam site selections, site investigations, watershed studies, dam and reservoir design, leakage investigations and sediments related issues, the two latter ones being relatively critical during the operational life of the dam. Establishment of baseline isotopic characteristics (or fingerprint), hydrochemistry, electrical conductivity and temperature profiles is underway for all JPS dams to be later utilized in diagnosing seepage related issues it is suggested that application of this technique be extended to other dam owners nationwide. (Author)

  16. Kidney stone nano-structure - Is there an opportunity for nanomedicine development?

    Science.gov (United States)

    Vordos, N; Giannakopoulos, S; Gkika, D A; Nolan, J W; Kalaitzis, Ch; Bandekas, D V; Kontogoulidou, C; Mitropoulos, A Ch; Touloupidis, S

    2017-06-01

    Kidney stone analysis techniques are well-established in the field of materials characterization and provide information for the chemical composition and structure of a sample. Nanomedicine, on the other hand, is a field with an increasing rate of scientific research, a big budget and increasingly developing market. The key scientific question is if there is a possibility for the development of a nanomedicine to treat kidney stones. The main calculi characterization techniques such as X-ray Diffraction and Fourier Transform Infrared Spectroscopy can provide information about the composition of a kidney stone but not for its nanostructure. On the other hand, Small Angle X-ray Scattering and Nitrogen Porosimetry can show the nanostructural parameters of the calculi. The combination of the previously described parameters can be used for the development of nano-drugs for the treatment of urolithiasis, while no such nano-drugs exist yet. In this study, we focus on the most well-known techniques for kidney stone analysis, the urolithiasis management and the search for possible nanomedicine for the treatment of kidney stone disease. We combine the results from five different analysis techniques in order to represent a three dimensional model and we propose a hypothetical nano-drug with gold nanoparticles. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Inner ear barriers to nanomedicine-augmented drug delivery and imaging

    Directory of Open Access Journals (Sweden)

    Jing Zou

    2016-12-01

    Full Text Available There are several challenges to inner ear drug delivery and imaging due to the existence of tight biological barriers to the target structure and the dense bone surrounding it. Advances in imaging and nanomedicine may provide knowledge for overcoming the existing limitations to both the diagnosis and treatment of inner ear diseases. Novel techniques have improved the efficacy of drug delivery and targeting to the inner ear, as well as the quality and accuracy of imaging this structure. In this review, we will describe the pathways and biological barriers of the inner ear regarding drug delivery, the beneficial applications and limitations of the imaging techniques available for inner ear research, the behavior of engineered nanomaterials in inner ear applications, and future perspectives for nanomedicine-based inner ear imaging.

  18. Potential of modern sonographic techniques in paediatric uroradiology

    International Nuclear Information System (INIS)

    Riccabona, Michael

    2002-01-01

    Objective: To describe the potential of modern sonographic techniques in paediatric uroradiology. Method: Ultrasound (US)--now being the primary imaging tool--has revolutionised imaging diagnostic in the urinary tract. Constant developments and technical refinements have secured the role of US in uroradiology. Colour Doppler Sonography (CDS) and innovative applications such as the transperineal approach or application of m-mode US to the urinary tract have helped to develop US from just a basic tool to a sophisticated and respected method. The ongoing introduction of new and even more sophisticated methods further enhance the sonographic potential, which shall be demonstrated by a more detailed discussion of these methods. Results: Harmonic imaging, extended field of view US, amplitude coded CDS, echo-enhanced US, and three-dimensional US as the most recent new sonographic techniques are successfully applicable to paediatric urinary tract disease. They improve sonographic diagnosis in many conditions, such as detection of vesico-ureteral reflux, renal parenchymal volume assessment, comprehensive visualisation of hydronephrosis and complex pathology, evaluation of renal perfusional disturbances or defects, superior documentation with improved comparability for follow-up, or simply by offering clearer tissue delineation and differentiation. Conclusion: Modern US techniques are successfully applicable to neonates, infants, and children, further boosting the value of US in the paediatric urinary tract. However, as handling became more sophisticated, and artefacts have to be considered, modern urosonography became not only a more powerful, but also a more demanding method, with the need for expert knowledge and dedicated training

  19. Undergraduate HBCU Student Summer Training Program for Developing Nanomedicines to Treat Prostate Cancers

    Science.gov (United States)

    2016-08-01

    cells and analyze the gene expression by real-time RT-PCR as well as identify the expression of different proteins using Western blot analysis...learned about cell counting, passaging, drug treatment, RNA and protein extraction, real-time RT-PCR, and Western blot analysis. Andrea Vincent... techniques (Ciera), polymer synthesis and nanomedicine development (Starr and Andrea), the effect of drug treatment on prostate cancer cells (My’Chelle

  20. The HVT technique and the 'uncertainty' relation for central potentials

    International Nuclear Information System (INIS)

    Grypeos, M E; Koutroulos, C G; Oyewumi, K J; Petridou, Th

    2004-01-01

    The quantum mechanical hypervirial theorems (HVT) technique is used to treat the so-called 'uncertainty' relation for quite a general class of central potential wells, including the (reduced) Poeschl-Teller and the Gaussian one. It is shown that this technique is quite suitable in deriving an approximate analytic expression in the form of a truncated power series expansion for the dimensionless product P nl ≡ (r 2 ) nl (p 2 ) nl /ℎ 2 , for every (deeply) bound state of a particle moving non-relativistically in the well, provided that a (dimensionless) parameter s is sufficiently small. Attention is also paid to a number of cases, among the limited existing ones, in which exact analytic or semi-analytic expressions for P nl can be derived. Finally, numerical results are given and discussed

  1. Obesity prevention: Comparison of techniques and potential solution

    Science.gov (United States)

    Zulkepli, Jafri; Abidin, Norhaslinda Zainal; Zaibidi, Nerda Zura

    2014-12-01

    Over the years, obesity prevention has been a broadly studied subject by both academicians and practitioners. It is one of the most serious public health issue as it can cause numerous chronic health and psychosocial problems. Research is needed to suggest a population-based strategy for obesity prevention. In the academic environment, the importance of obesity prevention has triggered various problem solving approaches. A good obesity prevention model, should comprehend and cater all complex and dynamics issues. Hence, the main purpose of this paper is to discuss the qualitative and quantitative approaches on obesity prevention study and to provide an extensive literature review on various recent modelling techniques for obesity prevention. Based on these literatures, the comparison of both quantitative and qualitative approahes are highlighted and the justification on the used of system dynamics technique to solve the population of obesity is discussed. Lastly, a potential framework solution based on system dynamics modelling is proposed.

  2. Development of Nanomedicines for Treatment of Posttraumatic Osteoarthritis

    Science.gov (United States)

    2016-03-01

    expression and provided sustained inhibition of osteoclast formation. 15. SUBJECT TERMS nanomedicine, PTOA, DMM, osteoarthritis, prodrug, glucocorticoid ...KEYWORDS: Nanomedicine, PTOA, DMM, osteoarthritis, prodrug, glucocorticoid , dexamethasone, HPMA copolymer 3. ACCOMPLISHMENTS: What were the...Nothing to Report 5. CHANGES/PROBLEMS: Actual or anticipated problems or delays and actions or plans to resolve them The in vivo imaging

  3. Factors affecting toxicity and efficacy of polymeric nanomedicines

    International Nuclear Information System (INIS)

    Igarashi, Eiki

    2008-01-01

    Nanomedicine is the application of nanotechnology to medicine. The purpose of this article is to review common characteristics of polymeric nanomedicines with respect to passive targeting. We consider several biodegradable polymeric nanomedicines that are between 1 and 100 nm in size, and discuss the impact of this technology on efficacy, pharmacokinetics, toxicity and targeting. The degree of toxicity of polymeric nanomedicines is strongly influenced by the biological conditions of the local environment, which influence the rate of degradation or release of polymeric nanomedicines. The dissemination of polymeric nanomedicines in vivo depends on the capillary network, which can provide differential access to normal and tumor cells. The accumulation of nanomedicines in the microlymphatics depends upon retention time in the blood and extracellular compartments, as well as the type of capillary endothelium surrounding specific tissues. Finally, the toxicity or efficacy of intact nanomedicines is also dependent upon tissue type, i.e., non-endocrine or endocrine tissue, spleen, or lymphatics, as well as tumor type

  4. Cancer Nanomedicine: From Targeted Delivery to Combination Therapy

    Science.gov (United States)

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-01-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of a variety of diseases, including cancer. The unique properties of nanoparticles, such as large surface-to volume ratio, small size, the ability to encapsulate a variety of drugs, and tunable surface chemistry, gives them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make nanoparticles a mode of treatment potentially superior to conventional cancer therapies. This article highlights the most recent developments in cancer treatment using nanoparticles as drug-delivery vehicles, including promising opportunities in targeted and combination therapy. PMID:25656384

  5. Nanomedicine concepts in the general medical curriculum: initiating a discussion.

    Science.gov (United States)

    Sweeney, Aldrin E

    2015-01-01

    Various applications of nanoscale science to the field of medicine have resulted in the ongoing development of the subfield of nanomedicine. Within the past several years, there has been a concurrent proliferation of academic journals, textbooks, and other professional literature addressing fundamental basic science research and seminal clinical developments in nanomedicine. Additionally, there is now broad consensus among medical researchers and practitioners that along with personalized medicine and regenerative medicine, nanomedicine is likely to revolutionize our definitions of what constitutes human disease and its treatment. In light of these developments, incorporation of key nanomedicine concepts into the general medical curriculum ought to be considered. Here, I offer for consideration five key nanomedicine concepts, along with suggestions regarding the manner in which they might be incorporated effectively into the general medical curriculum. Related curricular issues and implications for medical education also are presented.

  6. Nanomedicinal products: a survey on specific toxicity and side effects

    Directory of Open Access Journals (Sweden)

    Brand W

    2017-08-01

    Full Text Available Walter Brand,1,* Cornelle W Noorlander,1,* Christina Giannakou,2,3 Wim H De Jong,2 Myrna W Kooi,1 Margriet VDZ Park,2 Rob J Vandebriel,2 Irene EM Bosselaers,4 Joep HG Scholl,5 Robert E Geertsma2 1Centre for Safety of Substances and Products, 2Centre for Health Protection, National Institute for Public Health and the Environment (RIVM, Bilthoven, 3Department of Toxicogenomics, Maastricht University, Maastricht, 4Section Pharmacology, Toxicology and Pharmacokinetics, Medicines Evaluation Board (CBG-MEB, Utrecht, 5Research & Analysis Department, Netherlands Pharmacovigilance Centre Lareb, ‘s-Hertogenbosch, the Netherlands *These authors contributed equally to this work Abstract: Due to their specific properties and pharmacokinetics, nanomedicinal products (NMPs may present different toxicity and side effects compared to non-nanoformulated, conventional medicines. To facilitate the safety assessment of NMPs, we aimed to gain insight into toxic effects specific for NMPs by systematically analyzing the available toxicity data on approved NMPs in the European Union. In addition, by comparing five sets of products with the same active pharmaceutical ingredient (API in a conventional formulation versus a nanoformulation, we aimed to identify any side effects specific for the nano aspect of NMPs. The objective was to investigate whether specific toxicity could be related to certain structural types of NMPs and whether a nanoformulation of an API altered the nature of side effects of the product in humans compared to a conventional formulation. The survey of toxicity data did not reveal nanospecific toxicity that could be related to certain types of structures of NMPs, other than those reported previously in relation to accumulation of iron nanoparticles (NPs. However, given the limited data for some of the product groups or toxicological end points in the analysis, conclusions with regard to (a lack of potential nanomedicine-specific effects need to be

  7. Nanoinformatics: a new area of research in nanomedicine

    Directory of Open Access Journals (Sweden)

    Maojo V

    2012-07-01

    Full Text Available Victor Maojo,1 Martin Fritts,2,3 Diana de la Iglesia,1 Raul E Cachau,4 Miguel Garcia-Remesal,1 Joyce A Mitchell,5 Casimir Kulikowski61Biomedical Informatics Group, Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid, Spain; 2SAIC-Frederick Inc, National Cancer Institute at Frederick, Frederick, Maryland, 3National Institute of Standards and Technology, Gaithersburg, Maryland, 4Advanced Biomedical Computing Center, National Cancer Institute, SAIC-Frederick Inc, Frederick, Maryland, 5Department of Biomedical Informatics, University of Utah, Utah, 6Department of Computer Science, Rutgers, The State University of New Jersey, New Jersey, USAAbstract: Over a decade ago, nanotechnologists began research on applications of nanomaterials for medicine. This research has revealed a wide range of different challenges, as well as many opportunities. Some of these challenges are strongly related to informatics issues, dealing, for instance, with the management and integration of heterogeneous information, defining nomenclatures, taxonomies and classifications for various types of nanomaterials, and research on new modeling and simulation techniques for nanoparticles. Nanoinformatics has recently emerged in the USA and Europe to address these issues. In this paper, we present a review of nanoinformatics, describing its origins, the problems it addresses, areas of interest, and examples of current research initiatives and informatics resources. We suggest that nanoinformatics could accelerate research and development in nanomedicine, as has occurred in the past in other fields. For instance, biomedical informatics served as a fundamental catalyst for the Human Genome Project, and other genomic and –omics projects, as well as the translational efforts that link resulting molecular-level research to clinical problems and findings.Keywords: biomedical informatics, nanomedicine, nanotoxicology, ontologies

  8. Curcumin Nanomedicine: A Road to Cancer Therapeutics

    Science.gov (United States)

    Yallapu, Murali M.; Jaggi, Meena; Chauhan, Subhash C.

    2013-01-01

    Cancer is the second leading cause of death in the United States. Conventional therapies cause widespread systemic toxicity and lead to serious side effects which prohibit their long term use. Additionally, in many circumstances tumor resistance and recurrence is commonly observed. Therefore, there is an urgent need to identify suitable anticancer therapies that are highly precise with minimal side effects. Curcumin is a natural polyphenol molecule derived from the Curcuma longa plant which exhibits anticancer, chemo-preventive, chemo- and radio-sensitization properties. Curcumin’s widespread availability, safety, low cost and multiple cancer fighting functions justify its development as a drug for cancer treatment. However, various basic and clinical studies elucidate curcumin’s limited efficacy due to its low solubility, high rate of metabolism, poor bioavailability and pharmacokinetics. A growing list of nanomedicine(s) using first line therapeutic drugs have been approved or are under consideration by the Food and Drug Administration (FDA) to improve human health. These nanotechnology strategies may help to overcome challenges and ease the translation of curcumin from bench to clinical application. Prominent research is reviewed which shows that advanced drug delivery of curcumin (curcumin nanoformulations or curcumin nanomedicine) is able to leverage therapeutic benefits by improving bioavailability and pharmacokinetics which in turn improves binding, internalization and targeting of tumor(s). Outcomes using these novel drug delivery systems have been discussed in detail. This review also describes the tumor-specific drug delivery system(s) that can be highly effective in destroying tumors. Such new approaches are expected to lead to clinical trials and to improve cancer therapeutics. PMID:23116309

  9. Protein-Based Nanomedicine Platforms for Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong; Wang, Jun; Lin, Yuehe

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are also

  10. Nanomedicine approaches in acute lymphoblastic leukemia.

    Science.gov (United States)

    Tatar, Andra-Sorina; Nagy-Simon, Timea; Tomuleasa, Ciprian; Boca, Sanda; Astilean, Simion

    2016-09-28

    Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Translational nanomedicine: status assessment and opportunities.

    Science.gov (United States)

    Murday, James S; Siegel, Richard W; Stein, Judith; Wright, J Fraser

    2009-09-01

    Nano-enabled technologies hold great promise for medicine and health. The rapid progress by the physical sciences/engineering communities in synthesizing nanostructures and characterizing their properties must be rapidly exploited in medicine and health toward reducing mortality rate, morbidity an illness imposes on a patient, disease prevalence, and general societal burden. A National Science Foundation-funded workshop, "Re-Engineering Basic and Clinical Research to Catalyze Translational Nanoscience," was held 16-19 March 2008 at the University of Southern California. Based on that workshop and literature review, this article briefly explores scientific, economic, and societal drivers for nanomedicine initiatives; examines the science, engineering, and medical research needs; succinctly reviews the US federal investment directly germane to medicine and health, with brief mention of the European Union (EU) effort; and presents recommendations to accelerate the translation of nano-enabled technologies from laboratory discovery into clinical practice. An excellent review paper based on the NSF funded workshop "Re-Engineering Basic and Clinical Research to Catalyze Translational Nanoscience" (16-19 March 2008) and extensive literature search, this paper briefly explores the current state and future perspectives of nanomedicine.

  12. An annotated corpus with nanomedicine and pharmacokinetic parameters.

    Science.gov (United States)

    Lewinski, Nastassja A; Jimenez, Ivan; McInnes, Bridget T

    2017-01-01

    A vast amount of data on nanomedicines is being generated and published, and natural language processing (NLP) approaches can automate the extraction of unstructured text-based data. Annotated corpora are a key resource for NLP and information extraction methods which employ machine learning. Although corpora are available for pharmaceuticals, resources for nanomedicines and nanotechnology are still limited. To foster nanotechnology text mining (NanoNLP) efforts, we have constructed a corpus of annotated drug product inserts taken from the US Food and Drug Administration's Drugs@FDA online database. In this work, we present the development of the Engineered Nanomedicine Database corpus to support the evaluation of nanomedicine entity extraction. The data were manually annotated for 21 entity mentions consisting of nanomedicine physicochemical characterization, exposure, and biologic response information of 41 Food and Drug Administration-approved nanomedicines. We evaluate the reliability of the manual annotations and demonstrate the use of the corpus by evaluating two state-of-the-art named entity extraction systems, OpenNLP and Stanford NER. The annotated corpus is available open source and, based on these results, guidelines and suggestions for future development of additional nanomedicine corpora are provided.

  13. Review of Potential Characterization Techniques in Approaching Energy and Sustainability

    Directory of Open Access Journals (Sweden)

    David J. LePoire

    2014-03-01

    Full Text Available Societal prosperity is linked to sustainable energy and a healthy environment. However, tough global challenges include increased demand for fossil fuels, while approaching peak oil production and uncertainty in the environmental impacts of energy generation. Recently, energy use was identified as a major component of economic productivity, along with capital and labor. Other environmental resources and impacts may be nearing environmental thresholds, as indicated by nine planetary environmental boundaries, many of which are linked to energy production and use. Foresight techniques could be applied to guide future actions which include emphasis on (1 energy efficiency to bridge the transition to a renewable energy economy; (2 continued research, development, and assessment of new technologies; (3 improved understanding of environment impacts including natural capital use and degradation; (4 exploration of GDP alternative measures that include both economic production and environmental impacts; and (5 international cooperation and awareness of longer-term opportunities and their associated potential scenarios. Examples from the U.S. and the international community illustrate challenges and potential.

  14. Nanomedicine and neurodegenerative disorders: so close yet so far.

    Science.gov (United States)

    Tosi, Giovanni; Vandelli, Maria Angela; Forni, Flavio; Ruozi, Barbara

    2015-07-01

    This editorial provides an overview of the main advantages of the use of nanomedicine-based approach for innovation in the treatment of neurodegenerative diseases. Besides these aspects, a critical analysis on the main causes that slow the application of nanomedicine to brain disorders is given along with the identification of possible solutions and possible interventions. Better communication between the main players of research in this field and a detailed understanding of the most critical issues to be addressed should help in defining future directions towards the improvement and, finally, the clinical application of nanomedicine to neurodegenerative diseases.

  15. The perception of nanotechnology and nanomedicine: a worldwide social media study.

    Science.gov (United States)

    Sechi, Giovanni; Bedognetti, Davide; Sgarrella, Francesco; Van Eperen, Laura; Marincola, Francesco M; Bianco, Alberto; Delogu, Lucia Gemma

    2014-07-01

    We explore at a world level the awareness of nanotechnology expressed through the most popular online social media: Facebook. We aimed at identifying future trends, the most interested countries and the public perception of ethics, funding and economic issues. We found that graphene and carbon nanotubes are the most followed nanomaterials. Our poll showed that the continents with the most interest are Asia and Africa. A total of 43% would like to have a world commission regulating nanomedicine. In addition, 43% would give priority to theranostics. Over 90% believe that nanomedicine has an economic impact. Finally, we observed that the continents of living and origin of poll contributors correlated with ethic and funding opinions. This study highlights the potential of online social media to influence scientific communities, grant committees and nanotechnology companies, spreading nanotechnology awareness in emerging countries and among new generations.

  16. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction.

    Science.gov (United States)

    Gharagozloo, Marjan; Majewski, Slawomir; Foldvari, Marianna

    2015-05-01

    Autoimmune diseases are chronic, destructive diseases that can cause functional disability and multiple organ failure. Despite significant advances in the range of therapeutic agents, especially biologicals, limitations of the routes of administration, requirement for frequent long-term dosing and inadequate targeting options often lead to suboptimal effects, systemic adverse reactions and patient non-compliance. Nanotechnology offers promising strategies to improve and optimize autoimmune disease treatment with the ability to overcome many of the limitations common to the current immunosuppressive and biological therapies. Here we focus on nanomedicine-based delivery strategies of biological immunomodulatory agents for the treatment of autoimmune disorders including psoriasis, rheumatoid arthritis, systemic lupus erythematous, scleroderma, multiple sclerosis and type 1 diabetes. This comprehensive review details the concepts and clinical potential of novel nanomedicine approaches for inducing immunosuppression and immunological tolerance in autoimmune diseases in order to modulate aberrant and pathologic immune responses. The treatment of autoimmune diseases remains a significant challenge. The authors here provided a comprehensive review, focusing on the current status and potential of nanomedicine-based delivery strategies of immunomodulatory agents for the treatment of autoimmune disorders including psoriasis, rheumatoid arthritis, systemic lupus erythematous, scleroderma, multiple sclerosis, and type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Current applications of graphene oxide in nanomedicine

    Directory of Open Access Journals (Sweden)

    Wu SY

    2015-08-01

    Full Text Available Si-Ying Wu, Seong Soo A An, John Hulme Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Sungnamsi, Republic of Korea Abstract: Graphene has attracted the attention of the entire scientific community due to its unique mechanical and electrochemical, electronic, biomaterial, and chemical properties. The water-soluble derivative of graphene, graphene oxide, is highly prized and continues to be intensely investigated by scientists around the world. This review seeks to provide an overview of the currents applications of graphene oxide in nanomedicine, focusing on delivery systems, tissue engineering, cancer therapies, imaging, and cytotoxicity, together with a short discussion on the difficulties and the trends for future research regarding this amazing material. Keywords: imaging, green, cancer, therapy, diagnostics, antibacterial, cytotoxicity, contrast agent, biofunctionalization

  18. Reef Fish Survey Techniques: Assessing the Potential for Standardizing Methodologies.

    Directory of Open Access Journals (Sweden)

    Zachary R Caldwell

    Full Text Available Dramatic changes in populations of fishes living on coral reefs have been documented globally and, in response, the research community has initiated efforts to assess and monitor reef fish assemblages. A variety of visual census techniques are employed, however results are often incomparable due to differential methodological performance. Although comparability of data may promote improved assessment of fish populations, and thus management of often critically important nearshore fisheries, to date no standardized and agreed-upon survey method has emerged. This study describes the use of methods across the research community and identifies potential drivers of method selection. An online survey was distributed to researchers from academic, governmental, and non-governmental organizations internationally. Although many methods were identified, 89% of survey-based projects employed one of three methods-belt transect, stationary point count, and some variation of the timed swim method. The selection of survey method was independent of the research design (i.e., assessment goal and region of study, but was related to the researcher's home institution. While some researchers expressed willingness to modify their current survey protocols to more standardized protocols (76%, their willingness decreased when methodologies were tied to long-term datasets spanning five or more years. Willingness to modify current methodologies was also less common among academic researchers than resource managers. By understanding both the current application of methods and the reported motivations for method selection, we hope to focus discussions towards increasing the comparability of quantitative reef fish survey data.

  19. Targeted nanomedicines for the treatment of inflammatory disorders and cancer

    NARCIS (Netherlands)

    Crielaard, B.J.

    2012-01-01

    The therapeutic value of various targeted nanomedicines was evaluated in several inflammatory disorders, including cancer, while exploring which nanocarrier may be most suitable for a specific therapeutic application. First, an overview of drug targeting systems presently available for

  20. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications.

    Science.gov (United States)

    Wicki, Andreas; Witzigmann, Dominik; Balasubramanian, Vimalkumar; Huwyler, Jörg

    2015-02-28

    Cancer is a leading cause of death worldwide. Currently available therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology towards the development of nanomedicine products holds great promise to improve therapeutic strategies against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multi-functionality. They can improve the pharmacokinetic and pharmacodynamic profiles of conventional therapeutics and may thus optimize the efficacy of existing anti-cancer compounds. In this review, we discuss state-of-the-art nanoparticles and targeted systems that have been investigated in clinical studies. We emphasize the challenges faced in using nanomedicine products and translating them from a preclinical level to the clinical setting. Additionally, we cover aspects of nanocarrier engineering that may open up new opportunities for nanomedicine products in the clinic. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Structure and Biological Activity of Pathogen-like Synthetic Nanomedicines

    Science.gov (United States)

    Lőrincz, Orsolya; Tőke, Enikő R.; Somogyi, Eszter; Horkay, Ferenc; Chandran, Preethi; Douglas, Jack F.; Szebeni, János; Lisziewicz, Julianna

    2011-01-01

    Here we characterize the structure, stability and intracellular mode-of-action of DermaVir nanomedicine that is under clinical development for the treatment of HIV/AIDS. This nanomedicine is comprised of pathogen-like pDNA/PEIm nanoparticles (NPs) having the structure and function resembling spherical viruses that naturally evolved to deliver nucleic acids to the cells. Atomic force microscopy demonstrated spherical 100–200nm NPs with a smooth polymer surface protecting the pDNA in the core. Optical-absorption determined both the NP structural stability and biological activity relevant to their ability to escape from the endosome and release the pDNA at the nucleus. Salt, pH and temperature influence the nanomedicine shelf-life and intracellular stability. This approach facilitates the development of diverse polyplex nanomedicines where the delivered pDNA-expressed antigens induce immune responses to kill infected cells. PMID:21839051

  2. Targeting Nanomedicine to Brain Tumors: Latest Progress and Achievements.

    Science.gov (United States)

    Van't Root, Moniek; Lowik, Clemens; Mezzanotte, Laura

    2017-01-01

    Targeting nanomedicine to brain tumors is hampered by the heterogeneity of brain tumors and the blood brain barrier. These represent the main reasons of unsuccessful treatments. Nanomedicine based approaches hold promise for improved brain tissue distribution of drugs and delivery of combination therapies. In this review, we describe the recent advancements and latest achievements in the use of nanocarriers, virus and cell-derived nanoparticles for targeted therapy of brain tumors. We provide successful examples of nanomedicine based approaches for direct targeting of receptors expressed in brain tumor cells or modulation of pathways involved in cell survival as well as approaches for indirect targeting of cells in the tumor stroma and immunotherapies. Although the field is at its infancy, clinical trials involving nanomedicine based approaches for brain tumors are ongoing and many others will start in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Nanomedicine: tiny particles and machines give huge gains.

    Science.gov (United States)

    Tong, Sheng; Fine, Eli J; Lin, Yanni; Cradick, Thomas J; Bao, Gang

    2014-02-01

    Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Nano-scale structures and devices are compatible in size with proteins and nucleic acids in living cells. Therefore, the design, characterization and application of nano-scale probes, carriers and machines may provide unprecedented opportunities for achieving a better control of biological processes, and drastic improvements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of nanoparticle (NP)-based probes for molecular imaging, nano-carriers for drug/gene delivery, multifunctional NPs for theranostics, and molecular machines for biological and medical studies. This article provides an overview of the nanomedicine field, with an emphasis on NPs for imaging and therapy, as well as engineered nucleases for genome editing. The challenges in translating nanomedicine approaches to clinical applications are discussed.

  4. Reviewing the regulatory barriers for nanomedicine: global questions and challenges.

    Science.gov (United States)

    Bowman, Diana M; Gatof, Jake

    2015-01-01

    Nanomedicine will play an increasing role in prevention and treatment across the entire healthcare spectrum. However, their precise market size, economic value and areas of application remain unclear. This opacity, including the question of what constitutes nanomedicine matters, especially when considered alongside the key regulatory questions and concerns. This article begins by placing these key questions into context in relation to the current scientific state of the art, focusing particular attention on the human health and safety context. In exploring these central questions surrounding the regulation of nanomedicine, this perspective also explores existing and suggested frameworks that aim to deal with emerging technologies more generally. It then outlines priority areas for action and general conclusions specific to nanomedicine.

  5. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications

    NARCIS (Netherlands)

    Rizzo, L.Y.; Theek, B.; Storm, Gerrit; Kiessling, F.; Lammers, Twan Gerardus Gertudis Maria

    2013-01-01

    In recent years, the use of nanomedicine formulations for therapeutic and diagnostic applications has increased exponentially. Many different systems and strategies have been developed for drug targeting to pathological sites, as well as for visualizing and quantifying important (patho-)

  6. Near-IR responsive nanostructures for nanobiophotonics: emerging impacts on nanomedicine.

    Science.gov (United States)

    Song, Jun; Qu, Junle; Swihart, Mark T; Prasad, Paras N

    2016-04-01

    Nanobiophotonics is an emerging field at the intersection of nanoscience, photonics, and biotechnology. Harnessing interactions of light with nanostructures enables new types of bioimaging, sensing, and light-activated therapy which can make a major impact on nanomedicine. Low penetration through tissue limits the use of visible light in nanomedicine. Near infrared (NIR) light (~780-1100 nm) can penetrate significantly further, enabling free-space delivery into deep tissues. This review focuses on interactions of NIR light with nanostructures to produce three effects: direct photoactivation, photothermal effects, and photochemical effects. Applications of direct photoactivation include bioimaging and biosensing using NIR-emitting quantum dots, materials with localized surface plasmon resonance (LSPR) in the NIR, and upconverting nanoparticles. Two key nanomedicine applications using photothermal effects are photothermal therapy (PTT), and photoacoustic (PA) imaging. For photochemical effects, we present the latest advances in in-situ upconversion and upconverting nanostructures for NIR activation of photodynamic therapy (PDT). Nanobiophotonics is a relatively new field applying light for the interactions with nanostructures, which can be used in bioimaging, sensing, and therapy. As near infrared (NIR) light (~780-1100 nm) can have better tissue penetration, its clinical potential is far greater. In this review, the authors discussed the latest research on the applications of NIR light in imaging and therapeutics. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nanomedicine for the molecular diagnosis of cardiovascular pathologies

    Energy Technology Data Exchange (ETDEWEB)

    Juenet, Maya; Varna, Mariana; Aid-Launais, Rachida [Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris (France); Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris (France); Chauvierre, Cédric, E-mail: cedric.chauvierre@inserm.fr [Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris (France); Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris (France); Letourneur, Didier [Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris (France); Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris (France)

    2015-12-18

    Predicting acute clinical events caused by atherosclerotic plaque rupture remains a clinical challenge. Anatomic mapping of the vascular tree provided by standard imaging technologies is not always sufficient for a robust diagnosis. Yet biological mechanisms leading to unstable plaques have been identified and corresponding biomarkers have been described. Nanosystems charged with contrast agents and targeted towards these specific biomarkers have been developed for several types of imaging modalities. The first systems that have reached the clinic are ultrasmall superparamagnetic iron oxides for Magnetic Resonance Imaging. Their potential relies on their passive accumulation by predominant physiological mechanisms in rupture-prone plaques. Active targeting strategies are under development to improve their specificity and set up other types of nanoplatforms. Preclinical results show a huge potential of nanomedicine for cardiovascular diagnosis, as long as the safety of these nanosystems in the body is studied in depth. - Highlights: • Ischemic stroke and myocardial infarction are the main causes of death in the world. • Their prevalence is related to late detection of high-risk atherosclerotic plaques. • Biomarkers of atherosclerosis evolution and potential ligands have been identified. • Nanosystems based on these ligands appear promising for early molecular diagnosis. • Preclinical and clinical nanosystems for common imaging modalities are described.

  8. Nanomedicine for the molecular diagnosis of cardiovascular pathologies

    International Nuclear Information System (INIS)

    Juenet, Maya; Varna, Mariana; Aid-Launais, Rachida; Chauvierre, Cédric; Letourneur, Didier

    2015-01-01

    Predicting acute clinical events caused by atherosclerotic plaque rupture remains a clinical challenge. Anatomic mapping of the vascular tree provided by standard imaging technologies is not always sufficient for a robust diagnosis. Yet biological mechanisms leading to unstable plaques have been identified and corresponding biomarkers have been described. Nanosystems charged with contrast agents and targeted towards these specific biomarkers have been developed for several types of imaging modalities. The first systems that have reached the clinic are ultrasmall superparamagnetic iron oxides for Magnetic Resonance Imaging. Their potential relies on their passive accumulation by predominant physiological mechanisms in rupture-prone plaques. Active targeting strategies are under development to improve their specificity and set up other types of nanoplatforms. Preclinical results show a huge potential of nanomedicine for cardiovascular diagnosis, as long as the safety of these nanosystems in the body is studied in depth. - Highlights: • Ischemic stroke and myocardial infarction are the main causes of death in the world. • Their prevalence is related to late detection of high-risk atherosclerotic plaques. • Biomarkers of atherosclerosis evolution and potential ligands have been identified. • Nanosystems based on these ligands appear promising for early molecular diagnosis. • Preclinical and clinical nanosystems for common imaging modalities are described.

  9. The Potential of AI Techniques for Remote Sensing

    Science.gov (United States)

    Estes, J. E.; Sailer, C. T. (Principal Investigator); Tinney, L. R.

    1984-01-01

    The current status of artificial intelligence AI technology is discussed along with imagery data management, database interrogation, and decision making. Techniques adapted from the field of artificial intelligence (AI) have significant, wide ranging impacts upon computer-assisted remote sensing analysis. AI based techniques offer a powerful and fundamentally different approach to many remote sensing tasks. In addition to computer assisted analysis, AI techniques can also aid onboard spacecraft data processing and analysis and database access and query.

  10. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology.

    Science.gov (United States)

    Oberdörster, G

    2010-01-01

    Nanotechnology, nanomedicine and nanotoxicology are complementary disciplines aimed at the betterment of human life. However, concerns have been expressed about risks posed by engineered nanomaterials (ENMs), their potential to cause undesirable effects, contaminate the environment and adversely affect susceptible parts of the population. Information about toxicity and biokinetics of nano-enabled products combined with the knowledge of unintentional human and environmental exposure or intentional delivery for medicinal purposes will be necessary to determine real or perceived risks of nanomaterials. Yet, results of toxicological studies using only extraordinarily high experimental doses have to be interpreted with caution. Key concepts of nanotoxicology are addressed, including significance of dose, dose rate, and biokinetics, which are exemplified by specific findings of ENM toxicity, and by discussing the importance of detailed physico-chemical characterization of nanoparticles, specifically surface properties. Thorough evaluation of desirable versus adverse effects is required for safe applications of ENMs, and major challenges lie ahead to answer key questions of nanotoxicology. Foremost are assessment of human and environmental exposure, and biokinetics or pharmacokinetics, identification of potential hazards, and biopersistence in cells and subcellular structures to perform meaningful risk assessments. A specific example of multiwalled carbon nanotubes (MWCNT) illustrates the difficulty of extrapolating toxicological results. MWCNT were found to cause asbestos-like effects of the mesothelium following intracavitary injection of high doses in rodents. The important question of whether inhaled MWCNT will translocate to sensitive mesothelial sites has not been answered yet. Even without being able to perform a quantitative risk assessment for ENMs, due to the lack of sufficient data on exposure, biokinetics and organ toxicity, until we know better it should be

  11. Nanoinformatics: a new area of research in nanomedicine

    Science.gov (United States)

    Maojo, Victor; Fritts, Martin; de la Iglesia, Diana; Cachau, Raul E; Garcia-Remesal, Miguel; Mitchell, Joyce A; Kulikowski, Casimir

    2012-01-01

    Over a decade ago, nanotechnologists began research on applications of nanomaterials for medicine. This research has revealed a wide range of different challenges, as well as many opportunities. Some of these challenges are strongly related to informatics issues, dealing, for instance, with the management and integration of heterogeneous information, defining nomenclatures, taxonomies and classifications for various types of nanomaterials, and research on new modeling and simulation techniques for nanoparticles. Nanoinformatics has recently emerged in the USA and Europe to address these issues. In this paper, we present a review of nanoinformatics, describing its origins, the problems it addresses, areas of interest, and examples of current research initiatives and informatics resources. We suggest that nanoinformatics could accelerate research and development in nanomedicine, as has occurred in the past in other fields. For instance, biomedical informatics served as a fundamental catalyst for the Human Genome Project, and other genomic and –omics projects, as well as the translational efforts that link resulting molecular-level research to clinical problems and findings. PMID:22866003

  12. Clinical significance of metallothioneins in cell therapy and nanomedicine

    Directory of Open Access Journals (Sweden)

    Sharma S

    2013-04-01

    as free radical scavengers inhibit Charnoly body formation and neurodegenerative α-synucleinopathies, hence Charnoly body formation and α-synuclein index may be used as early and sensitive biomarkers to assess NP effectiveness and toxicity to discover better drug delivery and surgical interventions. Furthermore, pharmacological interventions augmenting MTs may facilitate the theranostic potential of NP-labeled cells and other therapeutic agents. These unique characteristics of MTs might be helpful in the synthesis, characterization, and functionalization of emerging NPs for theranostic applications. This report highlights the clinical significance of MTs and their versatility as early, sensitive biomarkers in cell-based therapy and nanomedicine.Keywords: metallothioneins, free radicals, Charnoly body, α-synuclein index, nanomedicine, toxicity, stem cells, theranostics

  13. Investigating the optimal size of anticancer nanomedicine.

    Science.gov (United States)

    Tang, Li; Yang, Xujuan; Yin, Qian; Cai, Kaimin; Wang, Hua; Chaudhury, Isthier; Yao, Catherine; Zhou, Qin; Kwon, Mincheol; Hartman, James A; Dobrucki, Iwona T; Dobrucki, Lawrence W; Borst, Luke B; Lezmi, Stéphane; Helferich, William G; Ferguson, Andrew L; Fan, Timothy M; Cheng, Jianjun

    2014-10-28

    Nanomedicines (NMs) offer new solutions for cancer diagnosis and therapy. However, extension of progression-free interval and overall survival time achieved by Food and Drug Administration-approved NMs remain modest. To develop next generation NMs to achieve superior anticancer activities, it is crucial to investigate and understand the correlation between the physicochemical properties of NMs (particle size in particular) and their interactions with biological systems to establish criteria for NM optimization. Here, we systematically evaluated the size-dependent biological profiles of three monodisperse drug-silica nanoconjugates (NCs; 20, 50, and 200 nm) through both experiments and mathematical modeling and aimed to identify the optimal size for the most effective anticancer drug delivery. Among the three NCs investigated, the 50-nm NC shows the highest tumor tissue retention integrated over time, which is the collective outcome of deep tumor tissue penetration and efficient cancer cell internalization as well as slow tumor clearance, and thus, the highest efficacy against both primary and metastatic tumors in vivo.

  14. Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis.

    Science.gov (United States)

    Heo, Roun; You, Dong Gil; Um, Wooram; Choi, Ki Young; Jeon, Sangmin; Park, Jong-Sung; Choi, Yuri; Kwon, Seunglee; Kim, Kwangmeyung; Kwon, Ick Chan; Jo, Dong-Gyu; Kang, Young Mo; Park, Jae Hyung

    2017-07-01

    With the aim of developing nanoparticles for targeted delivery of methotrexate (MTX) to inflamed joints in rheumatoid arthritis (RA), an amphiphilic polysaccharide was synthesized by conjugating 5β-cholanic acid to a dextran sulfate (DS) backbone. Due to its amphiphilic nature, the DS derivative self-assembled into spherical nanoparticles (220 nm in diameter) in aqueous conditions. The MTX was effectively loaded into the DS nanoparticles (loading efficiency: 73.0%) by a simple dialysis method. Interestingly, the DS nanoparticles were selectively taken up by activated macrophages, which are responsible for inflammation and joint destruction, via scavenger receptor class A-mediated endocytosis. When systemically administrated into mice with experimental collagen-induced arthritis (CIA), the DS nanoparticles effectively accumulated in inflamed joints (12-fold more than wild type mice (WT)), implying their high targetability to RA tissues. Moreover, the MTX-loaded DS nanoparticles exhibited significantly improved therapeutic efficacy against CIA in mice compared to free MTX alone. Overall, the data presented here indicate that DS nanoparticles are potentially useful nanomedicines for RA imaging and therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Targeted cancer therapy through antibody fragments-decorated nanomedicines.

    Science.gov (United States)

    Alibakhshi, Abbas; Abarghooi Kahaki, Fatemeh; Ahangarzadeh, Shahrzad; Yaghoobi, Hajar; Yarian, Fatemeh; Arezumand, Roghaye; Ranjbari, Javad; Mokhtarzadeh, Ahad; de la Guardia, Miguel

    2017-12-28

    Active targeting in cancer nanomedicine, for improved delivery of agents and diagnose, has been reviewed as a successful way for facilitating active uptake of theranostic agents by the tumor cells. The application of a targeting moiety in the targeted carrier complexes can play an important role in differentiating between tumor and healthy tissues. The pharmaceutical carriers, as main part of complexes, can be polymeric nanoparticles, micelles, liposomes, nanogels and carbon nanotubes. The antibodies are among the natural ligands with highest affinity and specificity to target pharmaceutical nanoparticle conjugates. However, the limitations, such as size and long circulating half-lives, hinder reproducible manufacture in clinical studies. Therefore, novel approaches have moved towards minimizing and engineering conventional antibodies as fragments like scFv, Fab, nanobody, bispecific antibody, bifunctional antibody, diabody and minibody preserving their functional potential. Different formats of antibody fragments have been reviewed in this literature update, in terms of structure and function, as smart ligands in cancer diagnosis and therapy of tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis of dextran/Se nanocomposites for nanomedicine application

    International Nuclear Information System (INIS)

    Shen Yuhua; Wang Xiufang; Xie Anjian; Huang Lachun; Zhu Jinmiao; Chen Long

    2008-01-01

    In this study, spherical Se nanoparticles were prepared by the reduction of aqueous selenious acid with ice bath through a simple, conventional, and one-step method without the aid of any surfactant, or template. The nanoparticles were characterized by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), X-ray powder diffraction (XRD), Ultraviolet-visible spectroscopy (UV-vis), Zeta potential, respectively. The results show the Se nanoparticles have good particle dispersion with the average diameters of 36 nm and are amorphous (α-Se). Tablets A and B containing dextran and Se nanoparticles were synthesized with different preparation methods. Se nanoparticles studded equably in the interior and the surface of the tablets, and there are strong interactions between Se and dextran. The release of Se from tablets is investigated in the simulated gastric and intestinal conditions. It is found that the pH environment and different synthetical methods have significant influence on the release rate of Se. The release mechanism of Se nanoparticles is also discussed. The nanocomposites can be applied in controlled releasing of Se nanomedicine

  17. Dendrimer-protein interactions versus dendrimer-based nanomedicine.

    Science.gov (United States)

    Shcharbin, Dzmitry; Shcharbina, Natallia; Dzmitruk, Volha; Pedziwiatr-Werbicka, Elzbieta; Ionov, Maksim; Mignani, Serge; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Maria Angeles; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-04-01

    Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Potential Ambient Energy-Harvesting Sources and Techniques

    Science.gov (United States)

    Yildiz, Faruk

    2009-01-01

    Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…

  19. Contemporary Research Techniques: Their Potential for Planning Educational Futures.

    Science.gov (United States)

    Weller, L. David

    1983-01-01

    Modern research methodologies can help educators understand possible futures of society and can aid them in planning and decision making that provides for effective use of resources. Statistical models, computer forecasting, human logic, and research techniques from disciplines such as history, anthropology, and political science can help in…

  20. GIS-based bivariate statistical techniques for groundwater potential ...

    Indian Academy of Sciences (India)

    Ali Haghizadeh

    2017-11-23

    Nov 23, 2017 ... So, these models are known as computational intel- ligence and machine learning techniques to use for replacing physically based models. In contrast, knowledge-driven methods (KDM) use rich prior knowledge for model building based on knowledge engineering and management technologies (Azkune.

  1. The use of different techniques for determination of pitting corrosion potential of austenitic stainless steel

    International Nuclear Information System (INIS)

    Eskelinen, P.; Forsen, O.; Onnela, J.; Ylaesaari, S.; Haenninen, H.

    1992-01-01

    Three different techniques for pitting corrosion potential measurement on austenitic stainless steel (Fe18Cr10Ni) were compared: conventional polarization method, a new Avesta electrochemical corrosion measurement cell and a scratch technique. Special attention was paid to the effects of crevice corrosion during pitting corrosion potential measurement and to their elimination. Development of a rapid test technique for reliable pitting corrosion potential determination was aimed at and resulted from comparison of the different techniques

  2. Endothelial nanomedicine for the treatment of pulmonary disease.

    Science.gov (United States)

    Brenner, Jacob S; Greineder, Colin; Shuvaev, Vladimir; Muzykantov, Vladimir

    2015-02-01

    Even though pulmonary diseases are among the leading causes of morbidity and mortality in the world, exceedingly few life-prolonging therapies have been developed for these maladies. Relief may finally come from nanomedicine and targeted drug delivery. Here, we focus on four conditions for which the pulmonary endothelium plays a pivotal role: acute respiratory distress syndrome, primary graft dysfunction occurring immediately after lung transplantation, pulmonary arterial hypertension and pulmonary embolism. For each of these diseases, we first evaluate the targeted drug delivery approaches that have been tested in animals. Then we suggest a 'need specification' for each disease: a list of criteria (e.g., macroscale delivery method, stability, etc.) that nanomedicine agents must meet in order to warrant human clinical trials and investment from industry. For the diseases profiled here, numerous nanomedicine agents have shown promise in animal models. However, to maximize the chances of creating products that reach patients, nanomedicine engineers and clinicians must work together and use each disease's need specification to guide the design of practical and effective nanomedicine agents.

  3. Essential components of a successful doctoral program in nanomedicine.

    Science.gov (United States)

    van de Ven, Anne L; Shann, Mary H; Sridhar, Srinivas

    2015-01-01

    The Nanomedicine program at Northeastern University provides a unique interdisciplinary graduate education that combines experiential research, didactic learning, networking, and outreach. Students are taught how to apply nanoscience and nanotechnology to problems in medicine, translate basic research to the development of marketable products, negotiate ethical and social issues related to nanomedicine, and develop a strong sense of community involvement within a global perspective. Since 2006, the program has recruited 50 doctoral students from ten traditional science, technology, and engineering disciplines to participate in the 2-year specialization program. Each trainee received mentoring from two or more individuals, including faculty members outside the student's home department and faculty members at other academic institutions, and/or clinicians. Both students and faculty members reported a significant increase in interdisciplinary scholarly activities, including publications, presentations, and funded research proposals, as a direct result of the program. Nearly 90% of students graduating with a specialization in nanomedicine have continued on to careers in the health care sector. Currently, 43% of graduates are performing research or developing products that directly involve nanomedicine. This article identifies some key elements of the Nanomedicine program, describes how they were implemented, and reports on the metrics of success.

  4. The Random-Map Technique: Enhancing Mind-Mapping with a Conceptual Combination Technique to Foster Creative Potential

    Science.gov (United States)

    Malycha, Charlotte P.; Maier, Günter W.

    2017-01-01

    Although creativity techniques are highly recommended in working environments, their effects have been scarcely investigated. Two cognitive processes are often considered to foster creative potential and are, therefore, taken as a basis for creativity techniques: knowledge activation and conceptual combination. In this study, both processes were…

  5. [New techniques and potential benefits for radiotherapy of lung cancer].

    Science.gov (United States)

    Lefebvre, L; Doré, M; Giraud, P

    2014-10-01

    Radiotherapy is used for inoperable lung cancers, sometimes in association with chemotherapy. Outcomes of conventional radiotherapy are disappointing. New techniques improve adaptation to tumour volume, decrease normal tissue irradiation and lead to increasing tumour dose with the opportunity for improved survival. With intensity-modulated radiation therapy, isodoses can conform to complex volumes. It is widely used and seems to be indicated in locally advanced stages. Its dosimetric improvements have been demonstrated but outcomes are still heterogeneous. Stereotactic radiotherapy allows treatment of small volumes with many narrow beams. Dedicated devices or appropriate equipment on classical devices are needed. In early stages, its efficacy is comparable to surgery with an acceptable toxicity. Endobronchial brachytherapy could be used for early stages with specific criteria. Hadrontherapy is still experimental regarding lung cancer. Hadrons have physical properties leading to very accurate dose distribution. In the rare published studies, toxicities are roughly lower than others techniques but for early stages its effectiveness is not better than stereotactic radiotherapy. These techniques are optimized by metabolic imaging which precisely defines the target volume and assesses the therapeutic response; image-guided radiation therapy which allows a more accurate patient set up and by respiratory tracking or gating which takes account of tumour respiratory motions. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  6. Predicting Potential C Mineralization of Tundra Soils Using Spectroscopy Techniques

    Science.gov (United States)

    The large amounts of organic matter stored in permafrost-region soils are preserved in a relatively undecomposed state by the cold and wet environmental conditions limiting decomposer activity. With pending climate changes and the potential for warming of Arctic soils, there is a need to better unde...

  7. Personalized nanomedicine: future medicine for cancer treatment

    Directory of Open Access Journals (Sweden)

    Shiekh FA

    2013-01-01

    Full Text Available Farooq A ShiekhAvalon University School of Medicine, Willemstad, CuracaoCancer as a grave disease is becoming a larger health problem,1 and the medicines used as treatments have clear limitations.2–4 Chemotherapy, radiation, and surgery, all of which are drastic treatments, wreak havoc on healthy cells and tissues as well as cancerous ones.5–7 Pathophysiologically, there are more than 200 types of cancers,8,9 each with many variants.10 Some are aggressive, some are not; some are easily treated, and others are always fatal.11Unlike previous "revolutions" in the "war" on cancer that raised hope, nanomedicine is not just one more tool, it is an entire field, and the science in this area is burgeoning, and benefiting from use of modern cutting edge molecular tools.12–14 These breakthrough advancements have radically changed the perception of future medicine. Importantly, they are enabling landmark research to combine all advances, creating nanosized particles that contain drugs targeting cell surface receptors and other potent molecules designed to kill cancerous cells.15–19 If there is a case to be made for personalized medicine, cancer is it. For example, the current literature reveals the need for a great scientific effort to be made in this field.20–22 However, new paradigms are needed to interpret toxicogenomic and nanotoxicological data in order to predict drug toxicities and gain a more indepth understanding of the mechanisms of toxicity, so that more specific therapeutic targets which are essentially devoid of side effects could be selected.23,24

  8. Anti-inflammatory Nanomedicine for Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Shunsuke Katsuki

    2017-12-01

    Full Text Available Coronary artery disease, in the development of which inflammation mediated by innate immune cells plays a critical role, is one of the leading causes of death worldwide. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins are a widely used lipid-lowering drug that has lipid-independent vasculoprotective effects, such as improvement of endothelial dysfunction, antioxidant properties, and inhibitory effects on inflammation. Despite recent advances in lipid-lowering therapy, clinical trials of statins suggest that anti-inflammatory therapy beyond lipid-lowering therapy is indispensible to further reduce cardiovascular events. One possible therapeutic option to the residual risk is to directly intervene in the inflammatory process by utilizing a nanotechnology-based drug delivery system (nano-DDS. Various nano-sized materials are currently developed as DDS, including micelles, liposomes, polymeric nanoparticles, dendrimers, carbon nanotubes, and metallic nanoparticles. The application of nano-DDS to coronary artery disease is a feasible strategy since the inflammatory milieu enhances incorporation of nano-sized materials into mononuclear phagocytic system and permeability of target lesions, which confers nano-DDS on “passive-targeting” property. Recently, we have developed a polymeric nanoparticle-incorporating statin to maximize its anti-inflammatory property. This statin nanoparticle has been tested in various disease models, including plaque destabilization and rupture, myocardial ischemia-reperfusion injury, and ventricular remodeling after acute myocardial infarction, and its clinical application is in progress. In this review, we present current development of DDS and future perspective on the application of anti-inflammatory nanomedicine to treat life-threatening cardiovascular diseases.

  9. Biological modelling of pelvic radiotherapy. Potential gains from conformal techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fenwick, J.D

    1999-07-01

    Models have been developed which describe the dose and volume dependences of various long-term rectal complications of radiotherapy; assumptions underlying the models are consistent with clinical and experimental descriptions of complication pathogenesis. In particular, rectal bleeding - perhaps the most common complication of modern external beam prostate radiotherapy, and which might be viewed as its principle dose-limiting toxicity - has been modelled as a parallel-type complication. Rectal dose-surface-histograms have been calculated for 79 patients treated, in the course of the Royal Marsden trial of pelvic conformal radiotherapy, for prostate cancer using conformal or conventional techniques; rectal bleeding data is also available for these patients. The maximum- likelihood fit of the parallel bleeding model to the dose-surface-histograms and complication data shows that the complication status of the patients analysed (most of whom received reference point doses of 64 Gy) was significantly dependent on, and almost linearly proportional to, the volume of highly dosed rectal wall: a 1% decrease in the fraction of rectal wall (outlined over an 11 cm rectal length) receiving a dose of 58 Gy or more lead to a reduction in the (RTOG) grade 1,2,3 bleeding rate of about 1.1% - 95% confidence interval [0.04%, 2.2%]. The parallel model fit to the bleeding data is only marginally biased by uncertainties in the calculated dose-surface-histograms (due to setup errors, rectal wall movement and absolute rectal surface area variability), causing the gradient of the observed volume-response curve to be slightly lower than that which would be seen in the absence of these uncertainties. An analysis of published complication data supports these single-centre findings and indicates that the reductions in highly dosed rectal wall volumes obtainable using conformal radiotherapy techniques can be exploited to allow escalation of the dose delivered to the prostate target volume, the

  10. The potential for gaming techniques in radiology education and practice.

    Science.gov (United States)

    Reiner, Bruce; Siegel, Eliot

    2008-02-01

    Traditional means of communication, education and training, and research have been dramatically transformed with the advent of computerized medicine, and no other medical specialty has been more greatly affected than radiology. Of the myriad of newer computer applications currently available, computer gaming stands out for its unique potential to enhance end-user performance and job satisfaction. Research in other disciplines has demonstrated computer gaming to offer the potential for enhanced decision making, resource management, visual acuity, memory, and motor skills. Within medical imaging, video gaming provides a novel means to enhance radiologist and technologist performance and visual perception by increasing attentional capacity, visual field of view, and visual-motor coordination. These enhancements take on heightened importance with the increasing size and complexity of three-dimensional imaging datasets. Although these operational gains are important in themselves, psychologic gains intrinsic to video gaming offer the potential to reduce stress and improve job satisfaction by creating a fun and engaging means of spirited competition. By creating customized gaming programs and rewards systems, video game applications can be customized to the skill levels and preferences of individual users, thereby creating a comprehensive means to improve individual and collective job performance.

  11. Emerging nanomedicine applications and manufacturing: progress and challenges.

    Science.gov (United States)

    Sartain, Felicity; Greco, Francesca; Hill, Kathryn; Rannard, Steve; Owen, Andrew

    2016-03-01

    APS 6th International PharmSci Conference 2015 7-9 September 2015 East Midlands Conference Centre, University of Nottingham, Nottingham, UK As part of the 6th APS International PharmSci Conference, a nanomedicine session was organised to address challenges and share experiences in this field. Topics ranged from the reporting on latest results and advances in the development of targeted therapeutics to the needs that the community faces in how to progress these exciting proof of concept results into products. Here we provide an overview of the discussion and highlight some of the initiatives that have recently been established to support the translation of nanomedicines into the clinic.

  12. Agroforestry techniques in tropical countries: potential and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Combe, J.

    1982-01-01

    A detailed scheme is proposed for classifying agroforestry systems on the basis of: the kinds of associated agricultural products (agrisilvicultural, silvopastoral and agrosilvopastoral systems); the major function of the forest component (productive or protective); the spatial distribution of the trees (regular or irregular); and the duration of the combination (temporary or permanent). Eight important tropical agroforestry systems are described and classified according to the scheme. The potential social, economic and ecological advantages of agroforestry systems are discussed and priorities for future research suggested. (Refs. 12).

  13. Applying inversion techniques to understanding nucleus-nucleus potentials

    International Nuclear Information System (INIS)

    Mackintosh, R.S.; Cooper, S.G.

    1996-01-01

    The iterative-perturbative (IP) inversion algorithm makes it possible to determine, essentially uniquely, the complex potential, including spin-orbit component, for spin half particles given the elastic scattering S-matrix S lj . We here report an extension of the method to the determination of energy dependent potentials V(r,E) defined over an energy range for which S lj (E) are provided. This is a natural development of the IP algorithm which has previously been applied to fixed energy, fixed partial wave and the intermediate mixed case inversion. The energy range can include negative energies i.e. V(r,E) can reproduce bound state energies. It can also fit the effective range parameter for low energy scattering. We briefly define the classes of cases which can be studied, outline the IP method itself and briefly review the range of applications. We show the power of the method by presenting nucleon-αV(r,E) for S lj (E) derived from experiments above and below the inelastic threshold and relating them to V(r,E) inverted from S lj (E) for RGM theory. Reference is given to the code IMAGO which embodies the IP algorithm. (author). 38 refs., 5 figs., 4 tabs

  14. Natural product-based nanomedicine: recent advances and issues

    Directory of Open Access Journals (Sweden)

    Watkins R

    2015-09-01

    Full Text Available Rebekah Watkins,1,2,* Ling Wu,1,* Chenming Zhang,3–5 Richey M Davis,3,5,6 Bin Xu1,3 1Department of Biochemistry, 2Program in Nanoscience, 3Center for Drug Discovery, 4Department of Biological Systems Engineering, 5Institute for Critical Technology and Applied Science, 6Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA *These authors contributed equally to this work Abstract: Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. Keywords: natural products, nanomedicine, drug delivery, bioavailability, targeting, controlled release

  15. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Directory of Open Access Journals (Sweden)

    Yacoby Iftach

    2008-04-01

    Full Text Available Abstract Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  16. Direct comparison of unloading compliance and potential drop techniques in J-integral testing

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.J.; Nanstad, R.K.

    1984-01-01

    Single-specimen J-integral testing is performed commonly with the unloading compliance technique. Use of modern instrumentation techniques and powerful desktop computers have made this technique a standard. However, this testing technique is slow and tedious, with the loading rate fixed at a slow quasi-static rate. For these reasons the dc potential drop technique was investigated for crack length measurement during a J-integral test. For direct comparison, both unloading compliance and potential drop were used simultaneously during a J-integral test. The results showed good agreement between the techniques. However, the potential drop technique showed an offset in crack length due to plastic blunting processes. Taking this offset into account, J/sub Ic/ values calculated by both techniques compared well.

  17. [Nanomedicine: application of nanotechnology in medicine. Opportunities in neuropsychiatry].

    Science.gov (United States)

    Szebeni, Janos

    2011-03-01

    One of the most popular, most intensely expanding borderline of science and technology today is nanomedicine, the utilization of nanotechnology in medicine. The long lists of innovative medicinal and other products, astonishing market and scientometric indicators and the broad scale of promising therapeutic and diagnostic opportunities support the view that nanomedicine heralds the future of medicine. The goals of this review are to provide a comprehensive overview of the field, to compile the nanomedicines and other medical products that are on the market, and to address in more detail the most successful trend, targeted pharmacotherapy. Various nanocarriers (liposomes, micelles, polymer-conjugates, polymerosomes, dendrimers, aptamers and carbon nanotubes) will be presented, along with their targeting ligands, with special emphasis on liposomal doxorubicin (Doxil), the prototype of long-circulating, targeted chemotherapeutic nanomedicine. Nanotechnology holds great promises for the field of neuropsychiatric pharmacotherapy as well, mainly through the introduction of pharmaceutical agents passing the blood-brain barrier. The review presents some of the approaches and examples of these attempts.

  18. Polymeric Nanomedicine for Cancer MR Imaging and Drug Delivery

    OpenAIRE

    Khemtong, Chalermchai; Kessinger, Chase W.; Gao, Jinming

    2009-01-01

    Multifunctional nanomedicine is emerging as a highly integrated platform that allows for molecular diagnosis, targeted drug delivery, and simultaneous monitoring and treatment of cancer. Advances in polymer and materials science are critical for the successful development of these multi-component nanocomposites in one particulate system with such a small size confinement (

  19. Nanomedicine as an emerging platform for metastatic lung cancer therapy.

    Science.gov (United States)

    Landesman-Milo, Dalit; Ramishetti, Srinivas; Peer, Dan

    2015-06-01

    Metastatic lung cancer is one of the most common cancers leading to mortality worldwide. Current treatment includes chemo- and pathway-dependent therapy aiming at blocking the spread and proliferation of these metastatic lesions. Nanomedicine is an emerging multidisciplinary field that offers unprecedented access to living cells and promises the state of the art in cancer detection and treatment. Development of nanomedicines as drug carriers (nanocarriers) that target cancer for therapy draws upon principles in the fields of chemistry, medicine, physics, biology, and engineering. Given the zealous activity in the field as demonstrated by more than 30 nanocarriers already approved for clinical use and given the promise of recent clinical results in various studies, nanocarrier-based strategies are anticipated to soon have a profound impact on cancer medicine and human health. Herein, we will detail the latest innovations in therapeutic nanomedicine with examples from lipid-based nanoparticles and polymer-based approaches, which are engineered to deliver anticancer drugs to metastatic lung cells. Emphasis will be placed on the latest and most attractive delivery platforms, which are developed specifically to target lung metastatic tumors. These novel nanomedicines may open new avenues for therapeutic intervention carrying new class of drugs such as RNAi and mRNA and the ability to edit the genome using the CRISPER/Cas9 system. Ultimately, these strategies might become a new therapeutic modality for advanced-stage lung cancer.

  20. Overcoming cellular multidrug resistance using classical nanomedicine formulations

    Czech Academy of Sciences Publication Activity Database

    Kunjachan, S.; Blauz, A.; Möckel, D.; Theek, B.; Kiessling, F.; Etrych, Tomáš; Ulbrich, K.; van Bloois, L.; Storm, G.; Bartosz, G.; Rychlik, B.; Lammers, T.

    2012-01-01

    Roč. 45, č. 4 (2012), s. 421-428 ISSN 0928-0987 R&D Projects: GA AV ČR IAA400500806 Institutional research plan: CEZ:AV0Z40500505 Keywords : cancer * nanomedicine * multidrug resistance Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.987, year: 2012

  1. Perspectives and opportunities for nanomedicine in the management of atherosclerosis

    NARCIS (Netherlands)

    Lobatto, Mark E.; Fuster, Valentin; Fayad, Zahi A.; Mulder, Willem J. M.

    2011-01-01

    The use of nanotechnology for medical purposes - nanomedicine - has grown exponentially over the past few decades. This is exemplified by the US Food and Drug Administration's approval of several nanotherapies for various conditions, as well as the funding of nanomedical programmes worldwide.

  2. Towards an alternative testing strategy for nanomaterials used in nanomedicine

    DEFF Research Database (Denmark)

    Dusinska, M; Boland, S; Saunders, M

    2015-01-01

    TEST project ( www.nanotest-fp7.eu ) was a better understanding of mechanisms of interactions of NPs employed in nanomedicine with cells, tissues and organs and to address critical issues relating to toxicity testing especially with respect to alternatives to tests on animals. Here we describe an approach...

  3. Naming it 'nano': Expert views on 'nano' terminology in informed consent forms of first-in-human nanomedicine trials.

    Science.gov (United States)

    Satalkar, Priya; Elger, Bernice Simone; Shaw, David

    2016-04-01

    Obtaining valid informed consent (IC) can be challenging in first-in-human (FIH) trials in nanomedicine due to the complex interventions, the hype and hope concerning potential benefits, and fear of harms attributed to 'nano' particles. We describe and analyze the opinions of expert stakeholders involved in translational nanomedicine regarding explicit use of 'nano' terminology in IC documents. We draw on content analysis of 46 in-depth interviews with European and North American stakeholders. We received a spectrum of responses (reluctance, ambivalence, absolute insistence) on explicit mention of 'nano' in IC forms with underlying reasons. We conclude that consistent, clear and honest communication regarding the 'nano' dimension of investigational product is critical in IC forms of FIH trials.

  4. Targeted endothelial nanomedicine for common acute pathological conditions.

    Science.gov (United States)

    Shuvaev, Vladimir V; Brenner, Jacob S; Muzykantov, Vladimir R

    2015-12-10

    Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal

  5. Role of gold and silver nanoparticles in cancer nano-medicine.

    Science.gov (United States)

    Chugh, Heerak; Sood, Damini; Chandra, Ishita; Tomar, Vartika; Dhawan, Gagan; Chandra, Ramesh

    2018-03-13

    Development of nanoparticles (NPs) as a part of cancer therapeutics has given rise to a new field of research - cancer nanomedicine. In comparison to traditional anti-cancer drugs, NPs provide a targeted approach which prevents undesirable effects. In this communication, we have reviewed the role of gold and silver NPs (AgNPs) in the cancer nanomedicine. The preparation of gold NPs (AuNPs) and AgNPs can be grouped into three categories - physical, chemical and biological. Among the three approaches, the biological approach is growing and receiving more attention due to its safe and effective production. In this review, we have discussed important methods for synthesis of gold and AgNPs followed by techniques employed in characterization of their physicochemical properties, such as UV-visible spectroscopy, electron microscopy (TEM and SEM) and size and surface analysis (DLS). The mechanism of formation of these NPs in an aqueous medium through various stages - reduction, nucleation and growth has also been reviewed briefly. Finally, we conclude our review with the application of these NPs as anti-cancer agents and numerous mechanisms by which they render cancer cell toxicity.

  6. Potential of improving the treatment of tuberculosis through nanomedicine

    CSIR Research Space (South Africa)

    Semete, B

    2012-03-01

    Full Text Available Controlled Release, 63, 235-259. Smith, P. J., van Dyk, J., & Fredericks, A. (1999) Determination of rifampicin, isoniazid and pyrazinamide by high performance liquid chromatography after their simultaneous extraction from plasma. Int J Lung Dis, 3, 325...

  7. Application of Electromigration Techniques: Metabolomics-Determination of Potential Biomarkers Using Electromigration Techniques

    Science.gov (United States)

    Markuszewski, Michał J.; Waszczuk-Jankowska, Małgorzata; Struck, Wiktoria; Kośliński, Piotr

    Over the last decade the systems biology has developed into a new research platform that is based on a multidisciplinary approach to the analysis of complex biological systems (e.g., molecules, cells, organisms, or specific species). In addition, technological advances combined with the rapid development of the advanced analytical equipment allowed the study of genes, transcriptomes, proteins, and metabolites at the global level. The complement of knowledge about the observed relationship between genome, transcriptome, proteome, and both patho- and physiological processes is the analysis of metabolites—intermediate products of the genetic code. While the human body is composed of 30,000-50,000 genes, 150,000-300,000 transcriptomes, and about 1 million proteins, it has only 3.5,000-10,000 metabolites. Compared to the transcriptome and proteome, the number of metabolites in the body is relatively small, but the number of dependencies that affect the final metabolic profile is multi-dimensional. This makes metabolomics research a field of interest. In this chapter we describe metabolomics in the context of its role in cancer diagnosis. As an example we compiled various approach for determination of urinary nucleosides and pterins using electromigration techniques as well as advanced bioinformatics methods of data processing and analysis.

  8. From self-assembly fundamental knowledge to nanomedicine developments.

    Science.gov (United States)

    Monduzzi, Maura; Lampis, Sandrina; Murgia, Sergio; Salis, Andrea

    2014-03-01

    This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food

  9. Designing Oversight for Nanomedicine Research in Human Subjects: Systematic Analysis of Exceptional Oversight for Emerging Technologies

    Science.gov (United States)

    Wolf, Susan M.; Jones, Cortney

    2012-01-01

    The basic procedures and rules for oversight of U.S. human subjects research have been in place since 1981. Certain types of human subjects research, however, have provoked creation of additional mechanisms and rules beyond the Department of Health & Human Services (DHHS) Common Rule and Food and Drug Administration (FDA) equivalent. Now another emerging domain of human subjects research—nanomedicine—is prompting calls for extra oversight. However, in 30 years of overseeing research on human beings, we have yet to specify what makes a domain of scientific research warrant extra oversight. This failure to systematically evaluate the need for extra measures, the type of extra measures appropriate for different challenges, and the usefulness of those measures hampers efforts to respond appropriately to emerging science such as nanomedicine. This article evaluates the history of extra oversight, extracting lessons for oversight of nanomedicine research in human beings. We argue that a confluence of factors supports the need for extra oversight, including heightened uncertainty regarding risks, fast-evolving science yielding complex and increasingly active materials, likelihood of research on vulnerable participants including cancer patients, and potential risks to others beyond the research participant. We suggest the essential elements of the extra oversight needed. PMID:23226969

  10. NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer?

    Science.gov (United States)

    Friberg, Sten; Nyström, Andreas M

    2016-03-09

    This review is written with the purpose to review the current nanomedicine literature and provide an outlook on the developments in utilizing nanoscale drug constructs in treatment of solid cancers as well as in the potential treatment of multi-drug resistant cancers. No specific design principles for this review have been utilized apart from our active choice to avoid results only based on in vitro studies. Few drugs based on nanotechnology have progressed to clinical trials, since most are based only on in vitro experiments which do not give the necessary data for the research to progress towards pre-clinical studies. The area of nanomedicine has indeed spark much attention and holds promise for improved future therapeutics in the treatment of solid cancers. However, despite much investment few targeted therapeutics have successfully progressed to early clinical trials, indicating yet again that the human body is complicated and that much more understanding of the fundamentals of receptor interactions, physics of nanomedical constructs and their circulation in the body is indeed needed. We believe that nanomedical therapeutics can allow for more efficient treatments of resistant cancers, and may well be a cornerstone for RNA based therapeutics in the future given their general need for shielding from the harsh environment in the blood stream.

  11. Nothing New (Ethically Under the Sun: Policy & Clinical Implications of Nanomedicine

    Directory of Open Access Journals (Sweden)

    MacDonald, Chris

    2012-06-01

    Full Text Available Nanotechnology research is beginning to see widespread coverage in the media and popular science literatures, but discussions of hopes and fears about nanotechnology have already become polarised into utopian and dystopian visions. More moderate discussions focus on the near-term applications of nanotechnologies, and on potential benefits and harms. However, in exploring the social and ethical implications of nanotechnology (or nanomedicine, the focus of this paper, important lessons should be learned from experiences in other fields. In particular, studies of the ethical, legal, and social issues (ELSI of genetics research have successfully mapped out many of the issues (and social and political responses that arise when new technologies are deployed. It is our contention that, for the most part, the ethical and social issues arising in nanomedicine are not altogether new, and thus do not require novel ethical principles or frameworks, nor a massive investment in ‘NELSI’ research. Instead, what is needed is support for the development of a culture of ethics amongst scientists and clinicians, basic scientific and medical knowledge for bioethicists, and a social competency for citizens to participate actively in debates about the implications of new technologies in general.

  12. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system.

    Science.gov (United States)

    Xie, Fang-Yuan; Xu, Wei-Heng; Yin, Chuan; Zhang, Guo-Qing; Zhong, Yan-Qiang; Gao, Jie

    2016-10-15

    Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.

  13. Designing oversight for nanomedicine research in human subjects: systematic analysis of exceptional oversight for emerging technologies

    Science.gov (United States)

    Wolf, Susan M.; Jones, Cortney M.

    2011-04-01

    The basic procedures and rules for oversight of U.S. human subjects research have been in place since 1981. Certain types of human subjects research, however, have provoked creation of additional mechanisms and rules beyond the Department of Health & Human Services (DHHS) Common Rule and Food and Drug Administration (FDA) equivalent. Now another emerging domain of human subjects research—nanomedicine—is prompting calls for extra oversight. However, in 30 years of overseeing research on human beings, we have yet to specify what makes a domain of scientific research warrant extra oversight. This failure to systematically evaluate the need for extra measures, the type of extra measures appropriate for different challenges, and the usefulness of those measures hampers efforts to respond appropriately to emerging science such as nanomedicine. This article evaluates the history of extra oversight, extracting lessons for oversight of nanomedicine research in human beings. We argue that a confluence of factors supports the need for extra oversight, including heightened uncertainty regarding risks, fast-evolving science yielding complex and increasingly active materials, likelihood of research on vulnerable participants including cancer patients, and potential risks to others beyond the research participant. We suggest the essential elements of the extra oversight needed.

  14. Designing oversight for nanomedicine research in human subjects: systematic analysis of exceptional oversight for emerging technologies

    International Nuclear Information System (INIS)

    Wolf, Susan M.; Jones, Cortney M.

    2011-01-01

    The basic procedures and rules for oversight of U.S. human subjects research have been in place since 1981. Certain types of human subjects research, however, have provoked creation of additional mechanisms and rules beyond the Department of Health and Human Services (DHHS) Common Rule and Food and Drug Administration (FDA) equivalent. Now another emerging domain of human subjects research—nanomedicine—is prompting calls for extra oversight. However, in 30 years of overseeing research on human beings, we have yet to specify what makes a domain of scientific research warrant extra oversight. This failure to systematically evaluate the need for extra measures, the type of extra measures appropriate for different challenges, and the usefulness of those measures hampers efforts to respond appropriately to emerging science such as nanomedicine. This article evaluates the history of extra oversight, extracting lessons for oversight of nanomedicine research in human beings. We argue that a confluence of factors supports the need for extra oversight, including heightened uncertainty regarding risks, fast-evolving science yielding complex and increasingly active materials, likelihood of research on vulnerable participants including cancer patients, and potential risks to others beyond the research participant. We suggest the essential elements of the extra oversight needed.

  15. Computational nanomedicine and nanotechnology lectures with computer practicums

    CERN Document Server

    Letfullin, Renat R

    2016-01-01

    This textbook, aimed at advanced undergraduate and graduate students, introduces the basic knowledge required for nanomedicine and nanotechnology, and emphasizes how the combined use of chemistry and light with nanoparticles can serve as treatments and therapies for cancer. This includes nanodevices, nanophototherapies, nanodrug design, and laser heating of nanoparticles and cell organelles. In addition, the book covers the emerging fields of nanophotonics and nanoplasmonics, which deal with nanoscale confinement of radiation and optical interactions on a scale much smaller than the wavelength of the light. The applications of nanophotonics and nanoplasmonics to biomedical research discussed in the book range from optical biosensing to photodynamic therapies. Cutting-edge and reflective of the multidisciplinary nature of nanomedicine, this book effectively combines knowledge and modeling from nanoscience, medicine, biotechnology, physics, optics, engineering, and pharmacy in an easily digestible format. Among...

  16. Polymeric nanomedicine for cancer MR imaging and drug delivery.

    Science.gov (United States)

    Khemtong, Chalermchai; Kessinger, Chase W; Gao, Jinming

    2009-06-28

    Multifunctional nanomedicine is emerging as a highly integrated platform that allows for molecular diagnosis, targeted drug delivery, and simultaneous monitoring and treatment of cancer. Advances in polymer and materials science are critical for the successful development of these multi-component nanocomposites in one particulate system with such a small size confinement (nanoscopic therapeutic and diagnostic systems have been translated into clinical practice. In this feature article, we will provide an up-to-date review on the development and biomedical applications of nanocomposite materials for cancer diagnosis and therapy. An overview of each functional component, i.e. polymer carriers, MR imaging agents, and therapeutic drugs, will be presented. Integration of different functional components will be illustrated in several highlighted examples to demonstrate the synergy of the multifunctional nanomedicine design.

  17. Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine.

    Science.gov (United States)

    Zou, Chunpeng; Wu, Beibei; Dong, Yanyan; Song, Zhangwei; Zhao, Yaping; Ni, Xianwei; Yang, Yan; Liu, Zhe

    Photoacoustic imaging (PAI) is an integrated biomedical imaging modality which combines the advantages of acoustic deep penetration and optical high sensitivity. It can provide functional and structural images with satisfactory resolution and contrast which could provide abundant pathological information for disease-oriented diagnosis. Therefore, it has found vast applications so far and become a powerful tool of precision nanomedicine. However, the investigation of PAI-based imaging nanomaterials is still in its infancy. This perspective article aims to summarize the developments in photoacoustic technologies and instrumentations in the past years, and more importantly, present a bright outlook for advanced PAI-based imaging nanomaterials as well as their emerging biomedical applications in nanomedicine. Current challenges and bottleneck issues have also been discussed and elucidated in this article to bring them to the attention of the readership.

  18. Nanomedicine for improved efficacy of tuberculosis drugs – Pharmacokinetic importance

    CSIR Research Space (South Africa)

    Hayeshi, R

    2012-10-01

    Full Text Available Efficacy of Tuberculosis Drugs ? Pharmacokinetic importance Emerging Researcher Symposium Dr. Rose Hayeshi 10 October 2012 Outline ? Challenges in TB treatment ? Nanomedicine as proposed solution ? Results ? Conclusions ? CSIR 2012 Slide 2... ? 1 x 106 cfu/lung 3 x 103 cfu/spleen Effects of the Nanodrug on Mycobacaterium tuberculosis replication ? Nanodrug once a week vs conventional drug daily ? Treatment with nanoencapsulated TB drugs once a week, comparable to daily treatment...

  19. Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines.

    Science.gov (United States)

    Carabineiro, Sónia Alexandra Correia

    2017-05-22

    Nowadays, gold is used in (nano-)medicine, usually in the form of nanoparticles, due to the solid proofs given of its therapeutic effects on several diseases. Gold also plays an important role in the vaccine field as an adjuvant and a carrier, reducing toxicity, enhancing immunogenic activity, and providing stability in storage. An even brighter golden future is expected for gold applications in this area.

  20. Modeling particle shape-dependent dynamics in nanomedicine.

    Science.gov (United States)

    Shah, Samar; Liu, Yaling; Hu, Walter; Gao, Jinming

    2011-02-01

    One of the major challenges in nanomedicine is to improve nanoparticle cell selectivity and adhesion efficiency through designing functionalized nanoparticles of controlled sizes, shapes, and material compositions. Recent data on cylindrically shaped filomicelles are beginning to show that non-spherical particles remarkably improved the biological properties over spherical counterpart. Despite these exciting advances, non-spherical particles have not been widely used in nanomedicine applications due to the lack of fundamental understanding of shape effect on targeting efficiency. This paper intends to investigate the shape-dependent adhesion kinetics of non-spherical nanoparticles through computational modeling. The ligand-receptor binding kinetics is coupled with Brownian dynamics to study the dynamic delivery process of nanorods under various vascular flow conditions. The influences of nanoparticle shape, ligand density, and shear rate on adhesion probability are studied. Nanorods are observed to contact and adhere to the wall much easier than their spherical counterparts under the same configuration due to their tumbling motion. The binding probability of a nanorod under a shear rate of 8 s(-1) is found to be three times higher than that of a nanosphere with the same volume. The particle binding probability decreases with increased flow shear rate and channel height. The Brownian motion is found to largely enhance nanoparticle binding. Results from this study contribute to the fundamental understanding and knowledge on how particle shape affects the transport and targeting efficiency of nanocarriers, which will provide mechanistic insights on the design of shape-specific nanomedicine for targeted drug delivery applications.

  1. Challenges of clinical translation in nanomedicine: A qualitative study.

    Science.gov (United States)

    Satalkar, Priya; Elger, Bernice Simon; Hunziker, Patrick; Shaw, David

    2016-05-01

    Clinical translation of breakthroughs in nanotechnology and nanomedicine is expected to significantly improve diagnostic tools and therapeutic modalities for various diseases. This will not only improve human health and well-being, but is also likely to reduce health care costs in the long run. However, clinical translation is a long, arduous, resource intensive process that requires priority setting, resource mobilization, successful national and international collaboration, and effective coordination between key stakeholders. The aim of this paper is to describe various challenges faced by the stakeholders involved in translational nanomedicine while planning and conducting first in human clinical trials. We draw on insights obtained from 46 in-depth qualitative interviews with key stakeholders from Europe and North America. Translational research is a crucial step in bringing basic research into clinical reality. This is particularly important in a new field like nanomedicine. Clinical translation is a long and resource intensive process with difficulties along the way. In this article, the authors looked at the challenges faced by various parties in order to help identify ways to overcome these challenges. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Nanoparticles used in medical applications for the lung: hopes for nanomedicine and fears for nanotoxicity

    International Nuclear Information System (INIS)

    Boland, S; Guadagnini, R; Baeza-Squiban, A; Hussain, S; Marano, F

    2011-01-01

    Nanotechnology is a promising tool for the development of innovative treatment strategies allowing to overcome obstacles encountered by classical drug delivery. This has led to the development of nanomedicine. Indeed, nano-delivery systems (NDS) may allow the controlled release of therapeutics, protection of drugs against degradation, targeted drug delivery and facilitated transport across barriers. All these advantages of NDS are particularly interesting for treatments of the lung which is a challenging organ in respect to drug delivery. However, for the development of nanomaterials aimed to transport therapeutics, there is also a need to assess the potential health hazards of these new materials, especially as a variety of nanoparticles have been shown to induce toxicity related to their nanometer size leading to the new field of nanotoxicology. We will address both aspects of NDS, specifically in respect to lung treatments: their potential benefits and the possible adverse health effects of these materials.

  3. Nanoparticles used in medical applications for the lung: hopes for nanomedicine and fears for nanotoxicity

    Science.gov (United States)

    Boland, S.; Guadagnini, R.; Baeza-Squiban, A.; Hussain, S.; Marano, F.

    2011-07-01

    Nanotechnology is a promising tool for the development of innovative treatment strategies allowing to overcome obstacles encountered by classical drug delivery. This has led to the development of nanomedicine. Indeed, nano-delivery systems (NDS) may allow the controlled release of therapeutics, protection of drugs against degradation, targeted drug delivery and facilitated transport across barriers. All these advantages of NDS are particularly interesting for treatments of the lung which is a challenging organ in respect to drug delivery. However, for the development of nanomaterials aimed to transport therapeutics, there is also a need to assess the potential health hazards of these new materials, especially as a variety of nanoparticles have been shown to induce toxicity related to their nanometer size leading to the new field of nanotoxicology. We will address both aspects of NDS, specifically in respect to lung treatments: their potential benefits and the possible adverse health effects of these materials.

  4. Nanoparticles used in medical applications for the lung: hopes for nanomedicine and fears for nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Boland, S; Guadagnini, R; Baeza-Squiban, A; Hussain, S; Marano, F, E-mail: boland@univ-paris-diderot.fr [Laboratory of Functional and Adaptative Biology, unit of Reponses Moleculaires et Cellulaires aux Xenobiotiques (RMCX), CNRS EAC 4413, University Paris Diderot-Paris 7, CC 7073, 75205 Paris Cedex 13 (France)

    2011-07-06

    Nanotechnology is a promising tool for the development of innovative treatment strategies allowing to overcome obstacles encountered by classical drug delivery. This has led to the development of nanomedicine. Indeed, nano-delivery systems (NDS) may allow the controlled release of therapeutics, protection of drugs against degradation, targeted drug delivery and facilitated transport across barriers. All these advantages of NDS are particularly interesting for treatments of the lung which is a challenging organ in respect to drug delivery. However, for the development of nanomaterials aimed to transport therapeutics, there is also a need to assess the potential health hazards of these new materials, especially as a variety of nanoparticles have been shown to induce toxicity related to their nanometer size leading to the new field of nanotoxicology. We will address both aspects of NDS, specifically in respect to lung treatments: their potential benefits and the possible adverse health effects of these materials.

  5. Mathematical analysis of the dimensional scaling technique for the Schroedinger equation with power-law potentials

    International Nuclear Information System (INIS)

    Ding Zhonghai; Chen, Goong; Lin, Chang-Shou

    2010-01-01

    The dimensional scaling (D-scaling) technique is an innovative asymptotic expansion approach to study the multiparticle systems in molecular quantum mechanics. It enables the calculation of ground and excited state energies of quantum systems without having to solve the Schroedinger equation. In this paper, we present a mathematical analysis of the D-scaling technique for the Schroedinger equation with power-law potentials. By casting the D-scaling technique in an appropriate variational setting and studying the corresponding minimization problem, the D-scaling technique is justified rigorously. A new asymptotic dimensional expansion scheme is introduced to compute asymptotic expansions for ground state energies.

  6. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine.

    Science.gov (United States)

    Jahangirian, Hossein; Lemraski, Ensieh Ghasemian; Webster, Thomas J; Rafiee-Moghaddam, Roshanak; Abdollahi, Yadollah

    2017-01-01

    This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.

  7. Novel intravaginal nanomedicine for the targeted delivery of saquinavir to CD4+ immune cells

    Directory of Open Access Journals (Sweden)

    Yang S

    2013-08-01

    Full Text Available Sidi Yang,1,2 Yufei Chen,1,2 Kaien Gu,1,2 Alicia Dash,1,2 Casey L Sayre,1 Neal M Davies,1 Emmanuel A Ho1,2 1Faculty of Pharmacy, 2Laboratory for Drug Delivery and Biomaterials, University of Manitoba, Winnipeg, MB, Canada Abstract: The goal of this study was to develop and characterize an intravaginal nanomedicine for the active targeted delivery of saquinavir (SQV to CD4+ immune cells as a potential strategy to prevent or reduce HIV infection. The nanomedicine was formulated into a vaginal gel to provide ease in self-administration and to enhance retention within the vaginal tract. SQV-encapsulated nanoparticles (SQV-NPs were prepared from poly(lactic-co-glycolic acid(PLGA and conjugated to antihuman anti-CD4 antibody. Antibody-conjugated SQV-NPs (Ab-SQV-NPs had an encapsulation efficiency (EE% of 74.4% ± 3.7% and an antibody conjugation efficiency (ACE% of 80.95% ± 1.10%. Over 50% of total loaded SQV was released from NPs over 3 days. NPs were rapidly taken up by Sup-T1 cells, with more than a twofold increase in the intracellular levels of SQV when delivered by Ab-SQV-NPs in comparison to controls 1 hour post-treatment. No cytotoxicity was observed when vaginal epithelial cells were treated for 24 hours with drug-free Ab-NPs (1,000 µg/mL, 1% HEC placebo gel (200 mg/mL, or 1% HEC gel loaded with drug-free Ab-NPs (5 mg NPs/g gel, 200 mg/mL of gel mixture. Overall, we described an intravaginal nanomedicine that is nontoxic and can specifically deliver SQV into CD4+ immune cells. This platform may demonstrate potential utility in its application as postexposure prophylaxis for the treatment or reduction of HIV infection, but further studies are required. Keywords: nanoparticles, saquinavir, antibody conjugation, intravaginal gel, HIV/AIDS, microbicide

  8. Physics of nanoplatforms and their applications in nanomanufacturing and nanomedicine

    Science.gov (United States)

    Gultepe, Evin

    Nanoplatforms are nanoscale structures designed as general platforms for multifunctional nanotechnology applications. Applications of nanotechnology cover broad spectrum of research fields and require true interdisciplinary and multidisciplinary studies. It also requires a fundamental understanding of physical principles in nanoscale since nanomaterials exhibit different properties and experience distinct forces compared to the materials in macroscale. In this thesis, we studied two different nanoplatforms, namely nanoporous oxide coatings and superparamagnetic nanoparticles. We analyzed their physical properties and illustrated their applications in two different fields, nanomanufacturing and nanomedicine. The first nanoplatform we studied is ordered nanoporous arrays of aluminum and titanium oxide. We investigated their fabrication as well as their applications in both nanomanufacturing and nanomedicine. We addressed the question of assembling spherical and cylindrical elements into porous holes - all in the same nanoscale. To investigate the assembly of nanoelements, one has to have an understanding of forces in nanoscale. In this length scale, the electronic and magnetic forces are the dominant forces whereas some macroscale forces like gravity has none to little effect. We demonstrated 3D directed assembly of nanobeads as well as single-wall carbon nanotubes (SWNT) into nanoholes by means of electrophoresis and dielectrophoresis at ambient temperatures. For nanobead assembly, SEM images were sufficient to demonstrate 100% assembly of loaded nanobeads. For SWNT, the connection through assembled nanotubes were used to prove the success of the assembly. The I-V measurements clearly showed that strong Si-SWNT interconnects carrying currents on the order of 1 mA were established inside the nanoholes. This assembly technique is particularly useful for large-scale, rapid, 3D assembly of 106 SWNT over a centimeter square area under mild conditions for nanoscale

  9. GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran)

    Science.gov (United States)

    Haghizadeh, Ali; Moghaddam, Davoud Davoudi; Pourghasemi, Hamid Reza

    2017-12-01

    Groundwater potential analysis prepares better comprehension of hydrological settings of different regions. This study shows the potency of two GIS-based data driven bivariate techniques namely statistical index (SI) and Dempster-Shafer theory (DST) to analyze groundwater potential in Broujerd region of Iran. The research was done using 11 groundwater conditioning factors and 496 spring positions. Based on the ground water potential maps (GPMs) of SI and DST methods, 24.22% and 23.74% of the study area is covered by poor zone of groundwater potential, and 43.93% and 36.3% of Broujerd region is covered by good and very good potential zones, respectively. The validation of outcomes displayed that area under the curve (AUC) of SI and DST techniques are 81.23% and 79.41%, respectively, which shows SI method has slightly a better performance than the DST technique. Therefore, SI and DST methods are advantageous to analyze groundwater capacity and scrutinize the complicated relation between groundwater occurrence and groundwater conditioning factors, which permits investigation of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management experts.

  10. Core-cross-linked polymeric micelles: a versatile nanomedicine platform with broad applicability

    NARCIS (Netherlands)

    Hu, Q.

    2015-01-01

    This dissertation addresses the broad applicability of the nanomedicine platform core-cross-linked polymeric micelles (CCL-PMs) composed of thermosensitive mPEG-b-pHPMAmLacn block copolymers. In Chapter 1, a general introduction to nanomedicines is provided, with a particular focus on polymeric

  11. Identification and Characterization of Novel Drug Targets for Personalized Breast Cancer Nanomedicine

    DEFF Research Database (Denmark)

    Block, Ines; Müller, Carolin; Sdogati, Daniel

    Personalized cancer nanomedicine aims at the design of novel nanodrugs that would match the molecular fingerprint of an individual patient`s tumor. Expression profiling and next generation-sequencing data represent rich resources for discovering new starting points for such approaches. Here, we...... selected a set of 140 genes, which have been proposed to show potentially relevant alterations in breast cancer by genome-wide next-generation sequencing. We constructed a panel of isogenic breast cancer cell lines and systematically analyzed the normal and the mutant gene variants for their effects...... on breast cancer cells. After completing about half of the primary screen, several novel growth modulators for breast cancer were identified. To this end, we will present data on detailed follow-up analyses of two of these novel genes, which represent novel breast cancer tumor suppressors. At least one...

  12. A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements

    Directory of Open Access Journals (Sweden)

    Giannakou C

    2016-06-01

    Full Text Available Christina Giannakou,1,2 Margriet VDZ Park,1 Wim H de Jong,1 Henk van Loveren,1,2 Rob J Vandebriel,1 Robert E Geertsma1 1Centre for Health Protection, National Institute for Public Health and the Environment (RIVM, Bilthoven, 2Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands Abstract: Nanomaterials (NMs are attractive for biomedical and pharmaceutical applications because of their unique physicochemical and biological properties. A major application area of NMs is drug delivery. Many nanomedicinal products (NMPs currently on the market or in clinical trials are most often based on liposomal products or polymer conjugates. NMPs can be designed to target specific tissues, eg, tumors. In virtually all cases, NMPs will eventually reach the immune system. It has been shown that most NMs end up in organs of the mononuclear phagocytic system, notably liver and spleen. Adverse immune effects, including allergy, hypersensitivity, and immunosuppression, have been reported after NMP administration. Interactions of NMPs with the immune system may therefore constitute important side effects. Currently, no regulatory documents are specifically dedicated to evaluate the immunotoxicity of NMs or NMPs. Their immunotoxicity assessment is performed based on existing guidelines for conventional substances or medicinal products. Due to the unique properties of NMPs when compared with conventional medicinal products, it is uncertain whether the currently prescribed set of tests provides sufficient information for an adequate evaluation of potential immunotoxicity of NMPs. The aim of this study was therefore, to compare the current regulatory immunotoxicity testing requirements with the accumulating knowledge on immunotoxic effects of NMPs in order to identify potential gaps in the safety assessment. This comparison showed that immunotoxic effects, such as complement activation-related pseudoallergy, myelosuppression, inflammasome

  13. Nanomedicine applications in orthopedic medicine: state of the art

    Science.gov (United States)

    Mazaheri, Mozhdeh; Eslahi, Niloofar; Ordikhani, Farideh; Tamjid, Elnaz; Simchi, Abdolreza

    2015-01-01

    The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions and challenges. PMID:26451110

  14. Nd3+ ions in nanomedicine: Perspectives and applications

    Science.gov (United States)

    del Rosal, B.; Rocha, U.; Ximendes, E. C.; Martín Rodríguez, E.; Jaque, D.; Solé, J. García

    2017-01-01

    In this work we evaluate the impact that neodymium ions can have in modern nanomedicine when they are incorporated as optically active dopants in nanocrystals. In particular, we here discuss how the particular absorption and emission properties of this ion can be conveniently exploited for important biomedical applications, such as fluorescence imaging at both in vitro and in vivo level, non-contact nanothermometry and photothermal therapy. All these features can confer neodymium-doped nanoparticles a multifunctional character and so Nd3+ is also envisaged as a paradigm ion for nanoparticle based theranostic applications.

  15. Determination of one-electron reduction potentials of tea polyphenol components using pulse radiolysis technique

    International Nuclear Information System (INIS)

    Jiang Yue; Lin Weizhen; Yao Side; Lin Nianyun

    1998-01-01

    One-electron reduction potential (E1/7) is one of the important parameters of electrophilic radioprotectors. In this work, one-electron reduction potential of tea polyphenol components including EGCG, ECG, EGC and EC in aqueous solution at pH7 were determined to be -321 mV, -326 mV, -331 mV and -330 mV, respectively, using pulse radiolysis techniques. 2,6-dimethyl benzoquinone (DQ) was used as a reference compound

  16. Curcumin nanoformulations: a future nanomedicine for cancer

    Science.gov (United States)

    Yallapu, Murali M; Jaggi, Meena; Chauhan, Subhash C

    2011-01-01

    Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion, apoptosis and cell death, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes and complex fabrication for sustained and efficient curcumin delivery. We also discuss the anticancer applications and clinical benefits of nanocurcumin formulations. Only a few novel multifunctional and composite nanosystem strategies offer simultaneous therapy as well as imaging characteristics. We also summarize the challenges to developing curcumin delivery platforms and up-to-date solutions for improving curcumin bioavailability and anticancer potential for therapy. PMID:21959306

  17. Managing water resources in Malaysia: the use of isotope technique and its potential

    International Nuclear Information System (INIS)

    Keizrul Abdullah

    2006-01-01

    This keynote address discusses the following subjects; state of Malaysia water resources, water related problem i.e floods, water shortage (droughts), water quality, river sedimentation, water resources management and the ongoing and potential application of isotope techniques in river management

  18. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  19. Nanomedicine and its application in treatment of microglia-mediated neuroinflammation.

    Science.gov (United States)

    Baby, N; Patnala, R; Ling, Eng-Ang; Dheen, S T

    2014-01-01

    Nanomedicine, an emerging therapeutic tool in current medical frontiers, offers targeted drug delivery for many neurodegenerative disorders. Neuroinflammation, a hallmark of many neurodegenerative disorders, is mediated by microglia, the resident immunocompetent cells of the central nervous system (CNS). Microglial cells respond to various stimuli in the CNS resulting in their activation which may have a beneficial or a detrimental effect. In general, the activated microglia remove damaged neurons and infectious agents by phagocytosis, therefore being neuroprotective. However, their chronic activation exacerbates neuronal damage through excessive release of proinflammatory cytokines, chemokines and other inflammatory mediators which contribute to neuroinflammation and subsequent neurodegeneration in the CNS. Hence, controlling microglial inflammatory response and their proliferation has been considered as an important aspect in treating neurodegenerative disorders. Regulatory factors that control microglial activation and proliferation also play an important role in microglia-mediated neuroinflammation and neurotoxicity. Various anti-inflammatory drugs and herbal compounds have been identified in treating microglia-mediated neuroinflammation in the CNS. However, hurdles in crossing blood brain barrier (BBB), expression of metabolic enzymes, presence of efflux pumps and several other factors prevent the entry of these drugs into the CNS. Use of non-degradable delivery systems and microglial activation in response to the drug delivery system further complicate drug delivery to the CNS. Nanomedicine, a nanoparticle-mediated drug delivery system, exhibits immense potential to overcome these hurdles in drug delivery to the CNS enabling new alternatives with significant promises in revolutionising the field of neurodegenerative disease therapy. This review attempts to summarise various regulatory factors in microglia, existing therapeutic strategies in controlling

  20. Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics.

    Science.gov (United States)

    Zhao, Yongmei; Houston, Zachary H; Simpson, Joshua D; Chen, Liyu; Fletcher, Nicholas L; Fuchs, Adrian V; Blakey, Idriss; Thurecht, Kristofer J

    2017-10-02

    Theranostics is a strategy that combines multiple functions such as targeting, stimulus-responsive drug release, and diagnostic imaging into a single platform, often with the aim of developing personalized medicine.1,2 Based on this concept, several well-established hyperbranched polymeric theranostic nanoparticles were synthesized and characterized as model nanomedicines to investigate how their properties affect the distribution of loaded drugs at both the cell and whole animal levels. An 8-mer peptide aptamer was covalently bound to the periphery of the nanoparticles to achieve both targeting and potential chemosensitization functionality against heat shock protein 70 (Hsp70). Doxorubicin was also bound to the polymeric carrier as a model chemotherapeutic drug through a degradable hydrazone bond, enabling pH-controlled release under the mildly acid conditions that are found in the intracellular compartments of tumor cells. In order to track the nanoparticles, cyanine-5 (Cy5) was incorporated into the polymer as an optical imaging agent. In vitro cellular uptake was assessed for the hyperbranched polymer containing both doxorubicin (DOX) and Hsp70 targeted peptide aptamer in live MDA-MB-468 cells, and was found to be greater than that of either the untargeted, DOX-loaded polymer or polymer alone due to the specific affinity of the peptide aptamer for the breast cancer cells. This was also validated in vivo with the targeted polymers showing much higher accumulation within the tumor 48 h postinjection than the untargeted analogue. More detailed assessment of the nanomedicine distribution was achieved by directly following the polymeric carrier and the doxorubicin at both the in vitro cellular level via compartmental analysis of confocal images of live cells and in whole tumors ex vivo using confocal imaging to visualize the distribution of the drug in tumor tissue as a function of distance from blood vessels. Our results indicate that this polymeric carrier shows

  1. Advances in nanotheranostics II cancer theranostic nanomedicine

    CERN Document Server

    2016-01-01

    This book surveys recent advances in theranostics based on magnetic nanoparticles, ultrasound contrast agents, silica nanoparticles and polymeric micelles. It presents magnetic nanoparticles, which offer a robust tool for contrast enhanced MRI imaging, magnetic targeting, controlled drug delivery, molecular imaging guided gene therapy, magnetic hyperthermia, and controlling cell fate. Multifunctional ultrasound contrast agents have great potential in ultrasound molecular imaging, multimodal imaging, drug/gene delivery, and integrated diagnostics and therapeutics. Due to their diversity and multifunctionality, polymeric micelles and silica-based nanocomposites are highly capable of enhancing the efficacy of multimodal imaging and synergistic cancer therapy. This comprehensive book summarizes the main advances in multifunctional nanoprobes for targeted imaging and therapy of gastric cancer, and explores the clinical translational prospects and challenges. Although more research is needed to overcome the substan...

  2. Nanotoxicology and nanomedicine: making hard decisions.

    Science.gov (United States)

    Linkov, Igor; Satterstrom, F Kyle; Corey, Lisa M

    2008-06-01

    Current nanomaterial research is focused on the medical applications of nanotechnology, whereas side effects associated with nanotechnology use, especially the environmental impacts, are not taken into consideration during the engineering process. Nanomedical users and developers are faced with the challenge of balancing the medical and societal benefits and risks associated with nanotechnology. The adequacy of available tools, such as physiologically-based pharmacokinetic modeling or predictive structure-activity relationships, in assessing the toxicity and risk associated with specific nanomaterials is unknown. Successful development of future nanomedical devices and pharmaceuticals thus requires a consolidated information base to select the optimal nanomaterial in a given situation--understanding the toxicology and potential side effects associated with candidate materials for medical applications, understanding product life cycle, and communicating effectively with personnel, stakeholders, and regulators. This can be achieved through an innovative combination of toxicology, risk assessment modeling, and tools developed in the field of multicriteria decision analysis (MCDA).

  3. Nanomedicine Drug Delivery across Mucous Membranes

    Science.gov (United States)

    Lancina, Michael George, III

    Control over the distribution of therapeutic compounds is a complex and somewhat overlooked field of pharmaceutical research. When swallowing a pill or receiving an injection, it is commonly assumed that drug will spread throughout the body in a more or less uniform concentration and find its way to wherever it is needed. In truth, drug biodistribuition is highly non-uniform and dependent on a large number of factors. The development of advanced drug delivery systems to control biodistribution can produce significant advances in clinical treatments without the need to discover new therapeutic compounds. This work focuses on a number of nanostructured materials designed to improve drug delivery by direct and efficient transfer of drugs across one of the body's external mucous membranes. Chapter 1 outlines the central concept that unites these studies: nanomaterials and cationic particles can be used to delivery therapeutic compounds across mucous membranes. Special attention is given to dendritic nanoparticles. In chapter 2, uses for dendrimers in ocular drug delivery are presented. The studies are divided into two main groups: topical and injectable formulations. Chapter 3 does not involve dendrimers but instead another cationic particle used in transmembrane drug delivery, chitosan. Next, a dendrimer based nanofiber mat was used to deliver anti-glaucoma drugs in chapter 4. A three week in vivo efficacy trial showed dendrimer nanofiber mats outperformed traditional eye drops in terms of intra-ocular pressure decrease in a normotensive rat model. Finally, we have developed a new dendrimer based anti-glaucoma drug in chapter 5. Collectively, these studies demonstrate some of the potential applications for nanotechnology to improve transmembrane drug delivery. These particles and fibers are able to readily adhere and penetrate across epithelial cell lays. Utilizing these materials to improve drug absorption through these portals has the potential to improve the

  4. Nanomedicine strategies for treatment of secondary spinal cord injury

    Directory of Open Access Journals (Sweden)

    White-Schenk D

    2015-01-01

    Full Text Available Désirée White-Schenk,1,4 Riyi Shi,1–3 James F Leary1–4 1Interdisciplinary Biomedical Sciences Program, 2Weldon School of Biomedical Engineering, 3Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, 4Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA Abstract: Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach. Keywords: spinal cord injury, acrolein, drug delivery, methylprednisolone, secondary injury

  5. DermAll nanomedicine for allergen-specific immunotherapy.

    Science.gov (United States)

    Garaczi, Edina; Szabó, Kornélia; Francziszti, László; Csiszovszki, Zsolt; Lőrincz, Orsolya; Tőke, Enikő R; Molnár, Levente; Bitai, Tamás; Jánossy, Tamás; Bata-Csörgő, Zsuzsanna; Kemény, Lajos; Lisziewicz, Julianna

    2013-11-01

    Allergen-specific immunotherapy (ASIT) the only disease-modifying treatment for IgE-mediated allergies is characterized with long treatment duration and high risk of side effects. We investigated the safety, immunogenicity and efficacy of a novel ASIT, called DermAll, in an experimental allergic rhinitis model. We designed and characterized DermAll-OVA, a synthetic plasmid pDNA/PEIm nanomedicine expressing ovalbumin (OVA) as model allergen. DermAll-OVA was administered topically with DermaPrep device to target Langerhans cells. To detect the clinical efficacy of DermAll ASIT we quantified the nasal symptoms and characterized the immunomodulatory activity of DermAll ASIT by measuring cytokine secretion after OVA-stimulation of splenocytes and antibodies from the sera. In allergic mice DermAll ASIT was as safe as Placebo, balanced the allergen-induced pathogenic TH2-polarized immune responses, and decreased the clinical symptoms by 52% [32%, 70%] compared to Placebo. These studies suggest that DermAll ASIT is safe and should significantly improve the immunopathology and symptoms of allergic diseases. A novel allergen-specific immunotherapy for IgE-mediated allergies is presented in this paper, using an experimental allergic rhinitis model and a synthetic plasmid pDNA/PEIm nanomedicine expressing ovalbumin as model allergen. Over 50% reduction of symptoms was found as the immune system's balance was favorably altered toward more TH2-polarized immune responses. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Confocal Laser Endomicroscopy in Neurosurgery: A New Technique with Much Potential

    Directory of Open Access Journals (Sweden)

    David Breuskin

    2013-01-01

    Full Text Available Technical innovations in brain tumour diagnostic and therapy have led to significant improvements of patient outcome and recurrence free interval. The use of technical devices such as surgical microscopes as well as neuronavigational systems have helped localising tumours as much as fluorescent agents, such as 5-aminolaevulinic acid, have helped visualizing pathologically altered tissue. Nonetheless, intraoperative instantaneous frozen sections and histological diagnosis remain the only method of gaining certainty of the nature of the resected tissue. This technique is time consuming and does not provide close-to-real-time information. In gastroenterology, confocal endoscopy closed the gap between tissue resection and histological examination, providing an almost real-time histological diagnosis. The potential of this technique using a confocal laser endoscope EndoMAG1 by Karl Storz Company was evaluated by our group on pig brains, tumour tissue cell cultures, and fresh human tumour specimen. Here, the authors report for the first time on the results of applying this new technique and provide first confocal endoscopic images of various brain and tumour structures. In all, the technique harbours a very promising potential to provide almost real-time intraoperative diagnosis, but further studies are needed to provide evidence for the technique’s potential.

  7. A review of DTCA techniques: Appraising their success and potential impact on medication users.

    Science.gov (United States)

    Babar, Zaheer-Ud-Din; Siraj, Ashna Medina; Curley, Louise

    2018-03-01

    subsequent success in sales. However some techniques, although beneficial to pharmaceutical promotion, need to be monitored by policymakers and regulatory advisors, as they have the potential to negatively impact consumer health knowledge. Overall, through this review it is evident that there are a number if techniques that employed by pharmaceutical marketers to augment the success of pharmaceutical promotion. While these techniques may be beneficial to pharmaceutical companies and might increase awareness amongst consumers, it is important to be critical of them, as they have the potential to be exploited by pharmaceutical marketers. This review indicated that although some techniques are successful and appear to be satisfactory in providing information to consumers, other techniques need to be appraised more closely. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy.

    Science.gov (United States)

    Jia, Yali; Sheng, Zonghai; Hu, Dehong; Yan, Fei; Zhu, Mingting; Gao, Guanhui; Wang, Pan; Liu, Xin; Wang, Xiaobing; Zheng, Hairong

    2018-04-25

    Liposome nanomedicine has been successfully applied for cancer chemotherapy in patients. However, in general, the therapeutic efficacy is confined by its limited accumulation and penetration in solid tumors. Here, we established a biomimetic strategy for the preparation of highly penetrative liposome nanomedicine for enhanced chemotherapeutic efficacy. By applying this unique type of nanomedicine, membrane proteins on the cancer cells are used as highly penetrative targeting ligands. Biomimetic liposomes are highly stable, exhibiting a superior in vitro homologous targeting ability, and a 2.25-fold deeper penetration in 3D tumor spheroids when compared to conventional liposome nanomedicine. The fluorescence/photoacoustic dual-modal imaging approach demonstrated enhanced tumor accumulation and improved tumor penetration of the biomimetic liposome in C6 glioma tumor-bearing nude mice. Following the intravenous administration of biomimetic liposome nanomedicine, the tumor inhibition rate reached up to 93.3%, which was significantly higher when compared to that of conventional liposome nanomedicine (69.3%). Moreover, histopathological analyses demonstrated that biomimetic liposome nanomedicine has limited side effects. Therefore, these results suggested that a cancer cell membrane-based biomimetic strategy may provide a breakthrough approach for enhancing drug penetration and improving treatment efficacy, holding a great promise for further clinical studies.

  9. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    nanomedicine delivery for tumor therapy. As captopril has already been extensively used clinically, such a strategy has great therapeutic potential. Copyright © 2017. Published by Elsevier B.V.

  10. Recommendations for Nanomedicine Human Subjects Research Oversight: An Evolutionary Approach for an Emerging Field

    Science.gov (United States)

    Fatehi, Leili; Wolf, Susan M.; McCullough, Jeffrey; Hall, Ralph; Lawrenz, Frances; Kahn, Jeffrey P.; Jones, Cortney; Campbell, Stephen A.; Dresser, Rebecca S.; Erdman, Arthur G.; Haynes, Christy L.; Hoerr, Robert A.; Hogle, Linda F.; Keane, Moira A.; Khushf, George; King, Nancy M.P.; Kokkoli, Efrosini; Marchant, Gary; Maynard, Andrew D.; Philbert, Martin; Ramachandran, Gurumurthy; Siegel, Ronald A.; Wickline, Samuel

    2015-01-01

    The nanomedicine field is fast evolving toward complex, “active,” and interactive formulations. Like many emerging technologies, nanomedicine raises questions of how human subjects research (HSR) should be conducted and the adequacy of current oversight, as well as how to integrate concerns over occupational, bystander, and environmental exposures. The history of oversight for HSR investigating emerging technologies is a patchwork quilt without systematic justification of when ordinary oversight for HSR is enough versus when added oversight is warranted. Nanomedicine HSR provides an occasion to think systematically about appropriate oversight, especially early in the evolution of a technology, when hazard and risk information may remain incomplete. This paper presents the consensus recommendations of a multidisciplinary, NIH-funded project group, to ensure a science-based and ethically informed approach to HSR issues in nanomedicine, and integrate HSR analysis with analysis of occupational, bystander, and environmental concerns. We recommend creating two bodies, an interagency Human Subjects Research in Nanomedicine (HSR/N) Working Group and a Secretary’s Advisory Committee on Nanomedicine (SAC/N). HSR/N and SAC/N should perform 3 primary functions: (1) analysis of the attributes and subsets of nanomedicine interventions that raise HSR challenges and current gaps in oversight; (2) providing advice to relevant agencies and institutional bodies on the HSR issues, as well as federal and federal-institutional coordination; and (3) gathering and analyzing information on HSR issues as they emerge in nanomedicine. HSR/N and SAC/N will create a home for HSR analysis and coordination in DHHS (the key agency for relevant HSR oversight), optimize federal and institutional approaches, and allow HSR review to evolve with greater knowledge about nanomedicine interventions and greater clarity about attributes of concern. PMID:23289677

  11. Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: The challenges ahead

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Andersen, Alina Joukainen; Hashemi, S.H.

    2010-01-01

    reactions to certain PEG-PL engineered nanomedicines in both experimental animals and man. These reactions are classified as pseudoallergy and may be associated with cardiopulmonary disturbance and other related symptoms of anaphylaxis. Recent studies suggest that complement activation may be a contributing......, but not a rate limiting factor, in eliciting hypersensitivity reactions to such nanomedicines in sensitive individuals. This is rather surprising since PEGylated structures are generally assumed to suppress protein adsorption and blood opsonization events including complement. Here, we examine the molecular...... basis of complement activation by PEG-PL engineered nanomedicines and carbon nanotubes and discuss the challenges ahead....

  12. A study of fatigue crack closure using electric potential and compliance techniques

    Science.gov (United States)

    Clarke, C. K.; Cassatt, G. C.

    1977-01-01

    The objective of this study was to compare closure data obtained on the same specimen with crack tip compliance gage and electric potential techniques. Equivalent results on closure using the two techniques were obtained on 7075-T651 aluminum center cracked panels. The results also indicated that closure was a function of stress ratio, specimen thickness and maximum applied stress intensity. Maximum stress intensity had a particularly strong effect on closure in the range of applied stresses used. This observed dependence of closure on specimen thickness and maximum stress intensity should account for many of the discrepancies in closure behavior found in the literature. Observations on potential system behavior during closure measurements are also reported.

  13. Spatial Analysis for Potential Water Catchment Areas using GIS: Weighted Overlay Technique

    Science.gov (United States)

    Awanda, Disyacitta; Anugrah Nurul, H.; Musfiroh, Zahrotul; Dinda Dwi, N. P.

    2017-12-01

    The development of applied GIS is growing rapidly and has been widely applied in various fields. Preparation of a model to obtain information is one of the benefits of GIS. Obtaining information for water resources such as water catchment areas is one part of GIS modelling. Water catchment model can be utilized to see the distribution of potential and ability of a region in water absorbing. The use of overlay techniques with the weighting obtained from the literature from previous research is used to build the model. Model builder parameters are obtained through remote sensing interpretation techniques such as land use, landforms, and soil texture. Secondary data such as rock type maps are also used as water catchment model parameters. The location of this research is in the upstream part of the Opak river basin. The purpose of this research is to get information about potential distribution of water catchment area with overlay technique. The results of this study indicate the potential of water catchment areas with excellent category, good, medium, poor and very poor. These results may indicate that the Upper river basin is either good or in bad condition, so it can be used for better water resources management policy determination.

  14. Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications.

    Science.gov (United States)

    Santos, Hélder A; Mäkilä, Ermei; Airaksinen, Anu J; Bimbo, Luis M; Hirvonen, Jouni

    2014-04-01

    The research on porous silicon (PSi) materials for biomedical applications has expanded greatly since the early studies of Leigh Canham more than 25 years ago. Currently, PSi nanoparticles are receiving growing attention from the scientific biomedical community. These nanostructured materials have emerged as promising multifunctional and versatile platforms for nanomedicine in drug delivery, diagnostics and therapy. The outstanding properties of PSi, including excellent in vivo biocompatibility and biodegradability, have led to many applications of PSi for delivery of therapeutic agents. In this review, we highlight current advances and recent efforts on PSi nanoparticles regarding the production properties, efficient drug delivery, multidrug delivery, permeation across biological barriers, biosafety and in vivo tracking for biomedical applications. The constant boost on successful preclinical in vivo data reported so far makes this the 'golden age' for PSi, which is expected to finally be translated into the clinic in the near future.

  15. Nanoparticles for multimodal in vivo imaging in nanomedicine

    Directory of Open Access Journals (Sweden)

    Key J

    2014-01-01

    Full Text Available Jaehong Key,1–3 James F Leary1–41Weldon School of Biomedical Engineering, 2Birck Nanotechnology Center, 3Bindley Bioscience Center, 4College of Veterinary Medicine, Purdue University, West Lafayette, IN, USAAbstract: While nanoparticles are usually designed for targeted drug delivery, they can also simultaneously provide diagnostic information by a variety of in vivo imaging methods. These diagnostic capabilities make use of specific properties of nanoparticle core materials. Near-infrared fluorescent probes provide optical detection of cells targeted by real-time nanoparticle-distribution studies within the organ compartments of live, anesthetized animals. By combining different imaging modalities, we can start with deep-body imaging by magnetic resonance imaging or computed tomography, and by using optical imaging, get down to the resolution required for real-time fluorescence-guided surgery.Keywords: nanomedicine, nanoparticles, multimodal imaging, CT, MRI, NIRF, PET, cancer

  16. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  17. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin

    Science.gov (United States)

    Li, Yuanpei; Lin, Tzu-Yin; Luo, Yan; Liu, Qiangqiang; Xiao, Wenwu; Guo, Wenchang; Lac, Diana; Zhang, Hongyong; Feng, Caihong; Wachsmann-Hogiu, Sebastian; Walton, Jeffrey H.; Cherry, Simon R.; Rowland, Douglas J.; Kukis, David; Pan, Chongxian; Lam, Kit S.

    2014-08-01

    Multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise towards personalized nanomedicine. However, attaining consistently high performance of these functions in vivo in one single nanoconstruct remains extremely challenging. Here we demonstrate the use of one single polymer to develop a smart ‘all-in-one’ nanoporphyrin platform that conveniently integrates a broad range of clinically relevant functions. Nanoporphyrins can be used as amplifiable multimodality nanoprobes for near-infrared fluorescence imaging (NIRFI), magnetic resonance imaging (MRI), positron emission tomography (PET) and dual modal PET-MRI. Nanoporphyrins greatly increase the imaging sensitivity for tumour detection through background suppression in blood, as well as preferential accumulation and signal amplification in tumours. Nanoporphyrins also function as multiphase nanotransducers that can efficiently convert light to heat inside tumours for photothermal therapy (PTT), and light to singlet oxygen for photodynamic therapy (PDT). Furthermore, nanoporphyrins act as programmable releasing nanocarriers for targeted delivery of drugs or therapeutic radio-metals into tumours.

  18. A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis

    NARCIS (Netherlands)

    Alaarg, Amr; Senders, Max L.; Varela-Moreira, Aida; Pérez-Medina, Carlos; Zhao, Yiming; Tang, Jun; Fay, Francois; Reiner, Thomas; Fayad, Zahi A.; Hennink, Wim E.; Metselaar, Josbert M.; Mulder, Willem J.M.; Storm, Gert

    2017-01-01

    Atherosclerosis is a leading cause of worldwide morbidity and mortality whose management could benefit from novel targeted therapeutics. Nanoparticles are emerging as targeted drug delivery systems in chronic inflammatory disorders. To optimally exploit nanomedicines, understanding their biological

  19. Is the European medical products authorization regulation equipped to cope with the challenges of nanomedicines?

    NARCIS (Netherlands)

    Dorbeck-Jung, Barbel R.; Chowdhury, Nupur; Chowdhury, Nupur

    2011-01-01

    This article analyses the emerging European regulatory activities in relation to nanopharmaceuticals. The central question is whether the regulatory responses are appropriate to cope with the regulatory problems nanomedicinal development is posing. The article explores whether the medical product

  20. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  1. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine.

    Science.gov (United States)

    Boreham, Alexander; Brodwolf, Robert; Walker, Karolina; Haag, Rainer; Alexiev, Ulrike

    2016-12-24

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  2. New technology and clinical applications of nanomedicine: highlights of the second annual meeting of the American Academy of Nanomedicine (Part I).

    Science.gov (United States)

    Wei, Chiming; Lyubchenko, Yuri L; Ghandehari, Hamid; Hanes, Justin; Stebe, Kathleen J; Mao, Hai-Quan; Haynie, Donald T; Tomalia, Donald A; Foldvari, Marianna; Monteiro-Riviere, Nancy; Simeonova, Petia; Nie, Shuming; Mori, Hidezo; Gilbert, Susan P; Needham, David

    2006-12-01

    The Second Annual Meeting of the American Academy of Nanomedicine (AANM) was held at the National Academy of Science Building in Washington, DC, September 9-10, 2006. The program included two Nobel Prize Laureate Lectures, two Keynote Lectures, and 123 invited outstanding State-in-Art lectures presenting in 23 special concurrent symposia. In addition, there were 22 poster presentations in the meeting addressing different areas in nanomedicine research. All of the presenters at the meeting are outstanding investigators and researchers in the field. The Second Annual Meeting of the AANM was a great success. The meeting provides investigators from different world areas a forum and an opportunity for discussion. We believe that nanomedicine research will develop rapidly in the future. The AANM invites basic and clinical researchers from the world to join this exciting research.

  3. Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine

    Science.gov (United States)

    Shu, Jessica Yo

    The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly

  4. Recurrent potential pulse technique for improvement of glucose sensing ability of 3D polypyrrole

    Science.gov (United States)

    Cysewska, Karolina; Karczewski, Jakub; Jasiński, Piotr

    2017-07-01

    In this work, a new approach for using a 3D polypyrrole (PPy) conducting polymer as a sensing material for glucose detection is proposed. Polypyrrole is electrochemically polymerized on a platinum screen-printed electrode in an aqueous solution of lithium perchlorate and pyrrole. PPy exhibits a high electroactive surface area and high electrochemical stability, which results in it having excellent electrocatalytic properties. The studies show that using the recurrent potential pulse technique results in an increase in PPy sensing stability, compared to the amperometric approach. This is due to the fact that the technique, under certain parameters, allows the PPy redox properties to be fully utilized, whilst preventing its anodic degradation. Because of this, the 3D PPy presented here has become a very good candidate as a sensing material for glucose detection, and can work without any additional dopants, mediators or enzymes.

  5. A Cultural Psychological Approach to Analyze Intercultural Learning: Potential and Limits of the Structure Formation Technique

    Directory of Open Access Journals (Sweden)

    Doris Weidemann

    2009-01-01

    Full Text Available Despite the huge interest in sojourner adjustment, there is still a lack of qualitative as well as of longitudinal research that would offer more detailed insights into intercultural learning processes during overseas stays. The present study aims to partly fill that gap by documenting changes in knowledge structures and general living experiences of fifteen German sojourners in Taiwan in a longitudinal, cultural-psychological study. As part of a multimethod design a structure formation technique was used to document subjective theories on giving/losing face and their changes over time. In a second step results from this study are compared to knowledge-structures of seven long-term German residents in Taiwan, and implications for the conceptualization of intercultural learning will be proposed. Finally, results from both studies serve to discuss the potential and limits of structure formation techniques in the field of intercultural communication research. URN: urn:nbn:de:0114-fqs0901435

  6. Simultaneous inhibition of aberrant cancer kinome using rationally designed polymer-protein core-shell nanomedicine.

    Science.gov (United States)

    Chandran, Parwathy; Gupta, Neha; Retnakumari, Archana Payickattu; Malarvizhi, Giridharan Loghanathan; Keechilat, Pavithran; Nair, Shantikumar; Koyakutty, Manzoor

    2013-11-01

    Simultaneous inhibition of deregulated cancer kinome using rationally designed nanomedicine is an advanced therapeutic approach. Herein, we have developed a polymer-protein core-shell nanomedicine to inhibit critically aberrant pro-survival kinases (mTOR, MAPK and STAT5) in primitive (CD34(+)/CD38(-)) Acute Myeloid Leukemia (AML) cells. The nanomedicine consists of poly-lactide-co-glycolide core (~250 nm) loaded with mTOR inhibitor, everolimus, and albumin shell (~25 nm thick) loaded with MAPK/STAT5 inhibitor, sorafenib and the whole construct was surface conjugated with monoclonal antibody against CD33 receptor overexpressed in AML. Electron microscopy confirmed formation of core-shell nanostructure (~290 nm) and flow cytometry and confocal studies showed enhanced cellular uptake of targeted nanomedicine. Simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells, was demonstrated using immunoblotting, cytotoxicity and apoptosis assays. This cell receptor plus multi-kinase targeted core-shell nanomedicine was found better specific and tolerable compared to current clinical regime of cytarabine and daunorubicin. These authors demonstrate simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells by using rationally designed polymer-protein core-shell nanomedicine, provoding an advanced method to eliminate cancer cells, with the hope of future therapeutic use. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. MR cholangiopancreatography: technique, potential indications, and diagnostic features of benign, postoperative, and malignant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.D. [Department of Radiology, Division of Diagnostic and Interventional Radiology, University Hospital of Geneva, CH-1211 Geneva (Switzerland); Grossholz, M. [Department of Radiology, Division of Diagnostic and Interventional Radiology, University Hospital of Geneva, CH-1211 Geneva (Switzerland); Mentha, G. [Department of Surgery, University Hospital of Geneva, CH-1211 Geneva (Switzerland); Peyer, R. de [Division of Gastroenterology, University Hospital of Geneva, CH-1211 Geneva (Switzerland); Terrier, F. [Department of Radiology, Division of Diagnostic and Interventional Radiology, University Hospital of Geneva, CH-1211 Geneva (Switzerland)

    1997-08-01

    The objective of this article is to review technical aspects, discuss potential clinical indications for MR cholangiopancreatography (MRCP) and demonstrate the spectrum of diagnostic findings in benign, postoperative, and malignant conditions. We describe our current imaging protocol in comparison with other available techniques. Using a non-breath-hold, heavily T2-weighted fast-spin-echo (FSE) sequence with or without respiratory gating we obtained coronal and axial source images and maximum intensity projections (MIPs) in 102 patients with suspected abnormalities of the biliary or pancreatic ducts. Based on this series we demonstrate the diagnostic appearance of a variety of benign, postoperative, and malignant conditions of the biliary and pancreatic ducts and discuss potential clinical indications for MRCP. The non-breath-hold FSE technique enables a consistent image quality even in patients who cannot cooperate well. Respiratory gating increased the rate of diagnostic examinations from 79 to 95 %. Acquisition of coronal and axial source images enables detection of bile duct stones as small as 2 mm, although calculi that are impacted and not surrounded by hyperintense bile may sometimes be difficult to detect. The MIP reconstructions help to determine the level of obstruction in malignant jaundice, delineate anatomical variants and malformations, and to diagnose inflammatory conditions, e. g., sclerosing cholangitis, the Mirizzi syndrome and inflammatory changes in the main pancreatic duct. The MRCP technique also correctly demonstrates the morphology of bilio-enteric or bilio-biliary anastomoses. Because MRCP provides sufficient diagnostic information in a wide range of benign and malignant biliary and pancreatic disorders, it could obviate diagnostic endoscopic retrograde cholangiopancreatography (ERCP) in many clinical settings. The ERCP technique may be increasingly reserved for patients in whom nonsurgical interventional procedures are anticipated. (orig

  8. THE BIG PICTURE ON SMALL MEDICINE: THE STATE OF NANOMEDICINE PRODUCTS APPROVED FOR USE OR IN CLINICAL TRIALS

    Science.gov (United States)

    Etheridge, Michael L.; Campbell, Stephen A.; Erdman, Arthur G.; Haynes, Christy L.; Wolf, Susan M.; McCullough, Jeffrey

    2015-01-01

    Developments in nanomedicine are expected to provide solutions to many of modern medicine’s unsolved problems, so it is no surprise that literature is flush with articles discussing the subject. However, existing reviews tend to focus on specific sectors of nanomedicine or take a very forward looking stance and fail to provide a complete perspective on the current landscape. This article provides a more comprehensive and contemporary inventory of nanomedicine products. A keyword search of literature, clinical trial registries, and the Web, yielded 247 nanomedicine products that are approved or in various stages of clinical study. Specific information on each was gathered, so the overall field could be described based on various dimensions, including: FDA classification, approval status, nanoscale size, treated condition, nanostructure, and others. In addition to documenting the large number of nanomedicine products already in human use, this study indentifies some interesting trends forecasting the future of nanomedicine. PMID:22684017

  9. Analytic approximate eigenvalues by a new technique. Application to sextic anharmonic potentials

    Science.gov (United States)

    Diaz Almeida, D.; Martin, P.

    2018-03-01

    A new technique to obtain analytic approximant for eigenvalues is presented here by a simultaneous use of power series and asymptotic expansions is presented. The analytic approximation here obtained is like a bridge to both expansions: rational functions, as Padé, are used, combined with elementary functions are used. Improvement to previous methods as multipoint quasirational approximation, MPQA, are also developed. The application of the method is done in detail for the 1-D Schrödinger equation with anharmonic sextic potential of the form V (x) =x2 + λx6 and both ground state and the first excited state of the anharmonic oscillator.

  10. New perspectives of nanoneuroprotection, nanoneuropharmacology and nanoneurotoxicity: modulatory role of amino acid neurotransmitters, stress, trauma, and co-morbidity factors in nanomedicine.

    Science.gov (United States)

    Sharma, Hari S; Sharma, Aruna

    2013-11-01

    Recent advancement in nanomedicine suggests that nanodrug delivery using nanoformulation of drugs or use of nanoparticles for neurodiagnostic and/or neurotherapeutic purposes results in superior effects than the conventional drugs or parent compounds. This indicates a bright future for nanomedicine in treating neurological diseases in clinics. However, the effects of nanoparticles per se in inducing neurotoxicology by altering amino acid neurotransmitters, if any, are still being largely ignored. The main aim of nanomedicine is to enhance the drug availability within the central nervous system (CNS) for greater therapeutic successes. However, once the drug together with nanoparticles enters into the CNS compartments, the fate of nanomaterial within the brain microenvironment is largely remained unknown. Thus, to achieve greater success in nanomedicine, our knowledge in understanding nanoneurotoxicology in detail is utmost important. In addition, how co-morbidity factors associated with neurological disease, e.g., stress, trauma, hypertension or diabetes, may influence the neurotherapeutic potentials of nanomedicine are also necessary to explore the details. Recent research in our laboratory demonstrated that engineered nanoparticles from metals or titanium nanowires used for nanodrug delivery in laboratory animals markedly influenced the CNS functions and alter amino acid neurotransmitters in healthy animals. These adverse reactions of nanoparticles within the CNS are further aggravated in animals with different co-morbidity factors viz., stress, diabetes, trauma or hypertension. This effect, however, depends on the composition and dose of the nanomaterials used. On the other hand, nanodrug delivery by TiO2 nanowires enhanced the neurotherapeutic potential of the parent compounds in CNS injuries in healthy animals and do not alter amino acids balance. However, in animals with any of the above co-morbidity factors, high dose of nanodrug delivery is needed to achieve

  11. In vitro biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a candidate for nanomedicine applications.

    Science.gov (United States)

    Zarrabi, Ali; Shokrgozar, Mohammad Ali; Vossoughi, Manouchehr; Farokhi, Mehdi

    2014-02-01

    In the present study, a detailed biocompatibility testing of a novel class of hybrid nanostructure based on hyperbranched polyglycerol and β-cyclodextrin is conducted. This highly water soluble nanostructure with size of less than 10 nm, polydispersity of less than 1.3, chemical tenability and highly branched architecture with the control over branching structure could be potentially used as a carrier in drug delivery systems. To this end, extensive studies in vitro and in vivo conditions have to be demonstrated. The in vitro studies include in vitro cytotoxicity tests; MTT and Neutral Red assay as an indicator of mitochondrial and lysosomal function, and blood biocompatibility tests such as effects on coagulation cascade, and complement activation. The results show that these hybrid nanostructures, which can be prepared in a simple reaction, are considerably biocompatible. The in vivo studies showed that the hybrid nanostructure is well tolerated by rats even in high doses of 10 mg ml(-1). After autopsy, the normal structure of liver tissue was observed; which divulges high biocompatibility and their potential applications as drug delivery and nanomedicine.

  12. Do nanomedicines require novel safety assessments to ensure their safety for long-term human use?

    Science.gov (United States)

    Hoet, Peter; Legiest, Barbara; Geys, Jorina; Nemery, Benoit

    2009-01-01

    Nanomaterials have different chemical, physical and biological characteristics than larger materials of the same chemical composition. These differences give nanotechnology a double identity: their use implies novel and interesting medical and/or industrial applications but also potential danger for human and environmental health. Here, we briefly review the most important types of nanomaterials, the difficulties in assessing safety or toxicity, and describe existing test protocols used in nanomaterial safety evaluation. In general, the big challenge of nanotechnology, particularly for nanomedicine (nano-bioengineering), is to understand which nano-specific characteristics interact with particular biological systems and functions in order to optimize the therapeutic potential and reduce the undesired responses. The evaluation of the safety of medicinal nanomaterials, especially for long-term application, is an important challenge for the near future. At present, it is still too early to predict, on the basis of the characteristics of the nanomaterial, a possible biological response because no reliable database exists. Therefore, a case-by-case approach for hazard identification is still required, so it is difficult to establish a risk assessment framework.

  13. Application of polymer nanocomposites in the nanomedicine landscape: envisaging strategies to combat implant associated infections.

    Science.gov (United States)

    Dwivedi, Poushpi; Narvi, Shahid S; Tewari, Ravi P

    2013-12-16

    This review article presents an overview of the potential biomedical application of polymer nanocomposites arising from different chemistries, compositions, and constructions. The interaction between the chosen matrix and the filler is of critical importance. The existing polymer used in the biomedical arena includes aliphatic polyesters such as polylactide (PLA), poly(ε-caprolactone) (PCL), poly(p-dioxanone) (PPDO), poly(butylenes succinate) (PBS), poly(hydroxyalkanoate)s, and natural biopolymers such as starch, cellulose, chitin, chitosan, lignin, and proteins. The nanosized fillers utilized to fabricate the nanocomposites are inorganic, organic, and metal particles such as clays, magnetites, hydroxyapatite, nanotubes chitin whiskers, lignin, cellulose, Au, Ag, Cu, etc. These nanomaterials are taking root in a variety of diverse healthcare applications in the sector of nanomedicine including the domain of medical implants and devices. Despite sterilization and aseptic procedures the use of these biomedical devices and prosthesis to improve the patient's 'quality of life' is facing a major impediment because of bacterial colonization causing nosocomial infection, together with the multi-drug-resistant 'super-bugs' posing a serious threat to its utility. This paper discusses the current efforts and key research challenges in the development of self-sterilizing nanocomposite biomaterials for potential application in this area.

  14. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  15. Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular Probes for Light-Based Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Raja Gopal Rayavarapu

    2007-01-01

    Full Text Available We have synthesized and characterized gold nanoparticles (spheres and rods with optical extinction bands within the “optical imaging window.” The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging techniques. Further, we have conjugated these gold nanoparticles to a mouse monoclonal antibody specific to HER2 overexpressing SKBR3 breast carcinoma cells. The bioconjugation protocol uses noncovalent modes of binding based on a combination of electrostatic and hydrophobic interactions of the antibody and the gold surface. We discuss various aspects of the synthesis and bioconjugation protocols and the characterization results of the functionalized nanoparticles. Some proposed applications of these potential molecular probes in the field of biomedical imaging are also discussed.

  16. Platelet-Rich Plasma in Androgenic Alopecia: Indications, Technique, and Potential Benefits.

    Science.gov (United States)

    Ferneini, Elie M; Beauvais, Daniel; Castiglione, Concetta; Ferneini, Moniek V

    2017-04-01

    The purpose of this study was to provide an overview of platelet-rich plasma (PRP) injected into the scalp for the management of androgenic alopecia. A literature review was performed to evaluate the benefits of PRP in androgenic alopecia. Hair restoration has been increasing. PRP's main components of platelet-derived growth factor, transforming growth factor, and vascular endothelial growth factor have the potential to stimulate hard and soft tissue wound healing. In general, PRP showed a benefit on patients with androgenic alopecia, including increased hair density and quality. Currently, different PRP preparations are being used with no standard technique. This review found beneficial effects of PRP on androgenic alopecia. However, more rigorous study designs, including larger samples, quantitative measurements of effect, and longer follow-up periods, are needed to solidify the utility of PRP for treating patients with androgenic alopecia. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Quality parameters of mango and potential of non-destructive techniques for their measurement- a review

    International Nuclear Information System (INIS)

    Jha, S.N.; Narsaiah, K.; Sharma, A.D.; Singh, M.; Bansal, S.; Kumar, R.

    2010-01-01

    The king of fruits 'Mango' (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars. (author)

  18. Quality parameters of mango and potential of non-destructive techniques for their measurement - a review.

    Science.gov (United States)

    Jha, S N; Narsaiah, K; Sharma, A D; Singh, M; Bansal, S; Kumar, R

    2010-01-01

    The king of fruits "Mango" (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars.

  19. An automated technique to identify potential inappropriate traditional Chinese medicine (TCM) prescriptions.

    Science.gov (United States)

    Yang, Hsuan-Chia; Iqbal, Usman; Nguyen, Phung Anh; Lin, Shen-Hsien; Huang, Chih-Wei; Jian, Wen-Shan; Li, Yu-Chuan

    2016-04-01

    Medication errors such as potential inappropriate prescriptions would induce serious adverse drug events to patients. Information technology has the ability to prevent medication errors; however, the pharmacology of traditional Chinese medicine (TCM) is not as clear as in western medicine. The aim of this study was to apply the appropriateness of prescription (AOP) model to identify potential inappropriate TCM prescriptions. We used the association rule of mining techniques to analyze 14.5 million prescriptions from the Taiwan National Health Insurance Research Database. The disease and TCM (DTCM) and traditional Chinese medicine-traditional Chinese medicine (TCMM) associations are computed by their co-occurrence, and the associations' strength was measured as Q-values, which often referred to as interestingness or life values. By considering the number of Q-values, the AOP model was applied to identify the inappropriate prescriptions. Afterwards, three traditional Chinese physicians evaluated 1920 prescriptions and validated the detected outcomes from the AOP model. Out of 1920 prescriptions, 97.1% of positive predictive value and 19.5% of negative predictive value were shown by the system as compared with those by experts. The sensitivity analysis indicated that the negative predictive value could improve up to 27.5% when the model's threshold changed to 0.4. We successfully applied the AOP model to automatically identify potential inappropriate TCM prescriptions. This model could be a potential TCM clinical decision support system in order to improve drug safety and quality of care. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Strategic approaches and assessment techniques-Potential for knowledge brokerage towards sustainability

    International Nuclear Information System (INIS)

    Sheate, William R.; Partidario, Maria Rosario

    2010-01-01

    The role of science in policy and decision-making has been an issue of intensive debate over the past decade. The concept of knowledge brokerage has been developing in this context contemplating issues of communication, interaction, sharing of knowledge, contribution to common understandings, as well as to effective and efficient action. For environmental and sustainability policy and decision-making the discussion has addressed more the essence of the issue rather than the techniques that can be used to enable knowledge brokerage. This paper aims to contribute to covering this apparent gap in current discussion by selecting and examining empirical cases from Portugal and the United Kingdom that can help to explore how certain environmental and sustainability assessment approaches can contribute, if well applied, to strengthen the science-policy link. The cases show that strategic assessment approaches and techniques have the potential to promote knowledge brokerage, but a conscious effort will be required to design in genuine opportunities to facilitate knowledge exchange and transfer as part of assessment processes.

  1. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Science.gov (United States)

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  2. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Directory of Open Access Journals (Sweden)

    Cuong D. Tran

    2015-05-01

    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  3. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler

    2016-11-01

    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  4. Nanomedicine to Deal With Cancer Cell Biology in Multi-Drug Resistance.

    Science.gov (United States)

    Tekchandani, Pawan; Kurmi, Balak Das; Paliwal, Shivani Rai

    2017-01-01

    Today Cancer still remains a major cause of mortality and death worldwide, in humans. Chemotherapy, a key treatment strategy in cancer, has significant hurdles such as the occurrence of chemoresistance in cancer, which is inherent unresponsiveness or acquired upon exposure to chemotherapeutics. The resistance of cancer cells to an antineoplastic agent accompanied to other chemotherapeutic drugs with different structures and mechanisms of action called multi-drug resistance (MDR) plays an important role in the failure of chemo- therapeutics. MDR is primarily based on the overexpression of drug efflux pumps in the cellular membrane, which belongs to the ATP-binding cassette (ABC) superfamily of proteins, are P-gp (P-glycoprotein) and multidrug resistance-associated protein (MRP). Over the years, various strategies have been evaluated to overcome MDR, based not only on the use of MDR modulators but also on the implementation an innovative approach and advanced nanosized drug delivery systems. Nanomedicine is an emerging tool of chemotherapy that focuses on alternative drug delivery for improvement of the treatment efficacy and reducing side effects to normal tissues. This review aims to focus on the details biology, reversal strategies option with the limitation of MDR and various advantages of the present medical science nanotechnology with intracellular delivery aspects for overcoming the significant potential for improving the treatment of MDR malignancies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine

    Science.gov (United States)

    Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe

    2015-08-01

    The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.

  6. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis.

    Science.gov (United States)

    Pawlowski, Christa L; Li, Wei; Sun, Michael; Ravichandran, Kavya; Hickman, DaShawn; Kos, Clarissa; Kaur, Gurbani; Sen Gupta, Anirban

    2017-06-01

    Intravascular administration of plasminogen activators is a clinically important thrombolytic strategy to treat occlusive vascular conditions. A major issue with this strategy is the systemic off-target drug action, which affects hemostatic capabilities and causes substantial hemorrhagic risks. This issue can be potentially resolved by designing technologies that allow thrombus-targeted delivery and site-specific action of thrombolytic drugs. To this end, leveraging a liposomal platform, we have developed platelet microparticle (PMP)-inspired nanovesicles (PMINs), that can protect encapsulated thrombolytic drugs in circulation to prevent off-target uptake and action, anchor actively onto thrombus via PMP-relevant molecular mechanisms and allow drug release via thrombus-relevant enzymatic trigger. Specifically, the PMINs can anchor onto thrombus via heteromultivalent ligand-mediated binding to active platelet integrin GPIIb-IIIa and P-selectin, and release the thrombolytic payload due to vesicle destabilization triggered by clot-relevant enzyme phospholipase-A 2 . Here we report on the evaluation of clot-targeting efficacy, lipase-triggered drug release and resultant thrombolytic capability of the PMINs in vitro, and subsequently demonstrate that intravenous delivery of thrombolytic-loaded PMINs can render targeted fibrinolysis without affecting systemic hemostasis, in vivo, in a carotid artery thrombosis model in mice. Our studies establish significant promise of the PMIN technology for safe and site-targeted nanomedicine therapies in the vascular compartment. Copyright © 2017. Published by Elsevier Ltd.

  7. Nanomedicine for Infectious Disease Applications: Innovation towards Broad-Spectrum Treatment of Viral Infections.

    Science.gov (United States)

    Jackman, Joshua A; Lee, Jaywon; Cho, Nam-Joon

    2016-03-02

    Nanomedicine enables unique diagnostic and therapeutic capabilities to tackle problems in clinical medicine. As multifunctional agents with programmable properties, nanomedicines are poised to revolutionize treatment strategies. This promise is especially evident for infectious disease applications, for which the continual emergence, re-emergence, and evolution of pathogens has proven difficult to counter by conventional approaches. Herein, a conceptual framework is presented that envisions possible routes for the development of nanomedicines as superior broad-spectrum antiviral agents against enveloped viruses. With lipid membranes playing a critical role in the life cycle of medically important enveloped viruses including HIV, influenza, and Ebola, cellular and viral membrane interfaces are ideal elements to incorporate into broad-spectrum antiviral strategies. Examples are presented that demonstrate how nanomedicine strategies inspired by lipid membranes enable a wide range of targeting opportunities to gain control of critical stages in the virus life cycle through either direct or indirect approaches involving membrane interfaces. The capabilities can be realized by enabling new inhibitory functions or improving the function of existing drugs through nanotechnology-enabled solutions. With these exciting opportunities, due attention is also given to the clinical translation of nanomedicines for infectious disease applications, especially as pharmaceutical drug-discovery pipelines demand new routes of innovation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanomedicine applications in the treatment of breast cancer: current state of the art.

    Science.gov (United States)

    Wu, Di; Si, Mengjie; Xue, Hui-Yi; Wong, Ho-Lun

    2017-01-01

    Breast cancer is the most common malignant disease in women worldwide, but the current drug therapy is far from optimal as indicated by the high death rate of breast cancer patients. Nanomedicine is a promising alternative for breast cancer treatment. Nanomedicine products such as Doxil ® and Abraxane ® have already been extensively used for breast cancer adjuvant therapy with favorable clinical outcomes. However, these products were originally designed for generic anticancer purpose and not specifically for breast cancer treatment. With better understanding of the molecular biology of breast cancer, a number of novel promising nanotherapeutic strategies and devices have been developed in recent years. In this review, we will first give an overview of the current breast cancer treatment and the updated status of nanomedicine use in clinical setting, then discuss the latest important trends in designing breast cancer nanomedicine, including passive and active cancer cell targeting, breast cancer stem cell targeting, tumor microenvironment-based nanotherapy and combination nanotherapy of drug-resistant breast cancer. Researchers may get insight from these strategies to design and develop nanomedicine that is more tailored for breast cancer to achieve further improvements in cancer specificity, antitumorigenic effect, antimetastasis effect and drug resistance reversal effect.

  9. Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique

    International Nuclear Information System (INIS)

    Suhartono Nurdin; Muzzneena Ahmad Mustapha; Tukimat Lihan; Mazlan Abdul Ghaffar; Muzzneena Ahmad Mustapha; Nurdin, S.

    2015-01-01

    Analysis of relationship between sea surface temperature (SST) and Chlorophyll-a (chl-a) improves our understanding on the variability and productivity of the marine environment, which is important for exploring fishery resources. Monthly level 3 and daily level 1 images of Moderate Resolution Imaging Spectroradiometer Satellite (MODIS) derived SST and chl-a from July 2002 to June 2011 around the archipelagic waters of Spermonde Indonesia were used to investigate the relationship between SST and chl-a and to forecast the potential fishing ground of Rastrelliger kanagurta. The results indicated that there was positive correlation between SST and chl-a (R=0.3, p<0.05). Positive correlation was also found between SST and chl-a with the catch of R. kanagurta (R=0.7, p<0.05). The potential fishing grounds of R. kanagurta were found located along the coast (at accuracy of 76.9 %). This study indicated that, with the integration of remote sensing technology, statistical modeling and geographic information systems (GIS) technique were able to determine the relationship between SST and chl-a and also able to forecast aggregation of R. kanagurta. This may contribute in decision making and reducing search hunting time and cost in fishing activities. (author)

  10. Signal averaging technique for noninvasive recording of late potentials in patients with coronary artery disease

    Science.gov (United States)

    Abboud, S.; Blatt, C. M.; Lown, B.; Graboys, T. B.; Sadeh, D.; Cohen, R. J.

    1987-01-01

    An advanced non invasive signal averaging technique was used to detect late potentials in two groups of patients: Group A (24 patients) with coronary artery disease (CAD) and without sustained ventricular tachycardia (VT) and Group B (8 patients) with CAD and sustained VT. Recorded analog data were digitized and aligned using a cross correlation function with fast Fourier transform schema, averaged and band pass filtered between 60 and 200 Hz with a non-recursive digital filter. Averaged filtered waveforms were analyzed by computer program for 3 parameters: (1) filtered QRS (fQRS) duration (2) interval between the peak of the R wave peak and the end of fQRS (R-LP) (3) RMS value of last 40 msec of fQRS (RMS). Significant change was found between Groups A and B in fQRS (101 -/+ 13 msec vs 123 -/+ 15 msec; p < .0005) and in R-LP vs 52 -/+ 11 msec vs 71-/+18 msec, p <.002). We conclude that (1) the use of a cross correlation triggering method and non-recursive digital filter enables a reliable recording of late potentials from the body surface; (2) fQRS and R-LP durations are sensitive indicators of CAD patients susceptible to VT.

  11. Production of genetically and developmentally modified seaweeds: Exploiting the potential of artificial selection techniques

    Directory of Open Access Journals (Sweden)

    Bénédicte eCharrier

    2015-03-01

    Full Text Available Plant feedstock with specific, modified developmental features has been a quest for centuries. Since the development and spread of agriculture, there has been a desire for plants producing disproportionate — or more abundant and more nutritional — biomass that meet human needs better than their native counterparts. Seaweed aquaculture, targeted for human consumption and the production of various raw materials, is a rapidly expanding field and its stakeholders have increasing vested interest for cost-effective and lucrative seaweed cultivation processes. Thus, scientific research on seaweed development is particularly timely: the potential for expansion of seaweed cultivation depends on the sector’s capacity to produce seaweeds with modified morphological features (e.g. thicker blades, higher growth rates or delayed (or even no fertility. Here, we review the various technical approaches used to modify development in macroalgae, which have attracted little attention from developmental biologists to date. Because seaweed (or marine macroalgae anatomy is much less complex than that of land plants and because seaweeds belong to three different eukaryotic phyla, the mechanisms controlling their morphogenesis are key to understanding their development. Here, we present efficient sources of developmentally and genetically modified seaweeds — somatic variants, artificial hybrids and mutants — as well as the future potential of these techniques.

  12. Assessment of groundwater potentiality using geophysical techniques in Wadi Allaqi basin, Eastern Desert, Egypt - Case study

    Science.gov (United States)

    Helaly, Ahmad Sobhy

    2017-12-01

    Electrical resistivity surveying has been carried out for the determination of the thickness and resistivity of layered media in Wadi Allaqi, Eastern Desert, Egypt. That is widely used geophysical tool for the purpose of assessing the groundwater potential and siting the best locations for boreholes in the unconfined Nubian Sandstone aquifers within the study area. This has been done using thirteen 1D Vertical Electrical Sounding (VES) surveys. 1D-VES surveys provide only layered model structures for the subsurface and do not provide comprehensive information for interpreting the structure and extent of subsurface hydro-geological features. The integration of two-dimensional (2D) geophysical techniques for groundwater prospecting has been done to provide a more detailed identification for the subsurface hydro-geological features from which potential sites for successful borehole locations are recognized. In addition, five magnetic profiles were measured for basement depth determination, expected geological structures and thickness of sedimentary succession that could include some basins suitable for groundwater accumulation as groundwater aquifers.

  13. Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines.

    Science.gov (United States)

    Rösslein, Matthias; Liptrott, Neill J; Owen, Andrew; Boisseau, Patrick; Wick, Peter; Herrmann, Inge K

    2017-03-01

    Nanotechnology has transformed materials engineering. However, despite much excitement in the scientific community, translation of nanotechnology-based developments has suffered from significant translational gaps, particularly in the field of biomedicine. Of the many concepts investigated, very few have entered routine clinical application. Safety concerns and associated socioeconomic uncertainties, together with the lack of incentives for technology transfer, are undoubtedly imposing significant hurdles to effective clinical translation of potentially game-changing developments. Commercialisation aspects are only rarely considered in the early stages and in many cases, the market is not identified early on in the process, hence precluding market-oriented development. However, methodologies and in-depth understanding of mechanistic processes existing in the environmental, health and safety (EHS) community could be leveraged to accelerate translation. Here, we discuss the most important stepping stones for (nano)medicine development along with a number of suggestions to facilitate future translation.

  14. The melding of nanomedicine in thrombosis imaging and treatment: a review

    Science.gov (United States)

    Karagkiozaki, Varvara; Pappa, Foteini; Arvaniti, Despoina; Moumkas, Anestis; Konstantinou, Dimitrios; Logothetidis, Stergios

    2016-01-01

    Thromboembolic diseases constitute a plague in our century, wherein an imbalance of hemostasis leads to thrombus formation and vessels constriction reducing blood flow. Hence, the recent rise of nanomedicine gives birth to advanced diagnostic modalities and therapeutic agents for the early diagnosis and treatment of such diseases. Multimodal nanoagents for the detection of intravascular thrombi and nanovehicles for thrombus-targeted fibrinolytic therapy are few paradigms of nanomedicine approaches to overcome current diagnostic treatment roadblocks and persistent clinical needs. This review highlights the nanomedicine strategies to improve the imaging and therapy of acute thrombi by nanoparticles and nanotheranostics, the detailed imaging of thrombogenic proteins and platelets via atomic force microscopy with the knowledge basis of thrombosis pathophysiology and nanotoxicity. PMID:28031960

  15. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Novel self-assembled sandwich nanomedicine for NIR-responsive release of NO

    Science.gov (United States)

    Fan, Jing; He, Qianjun; Liu, Yi; Ma, Ying; Fu, Xiao; Liu, Yijing; Huang, Peng; He, Nongyue; Chen, Xiaoyuan

    2015-01-01

    A novel sandwich nanomedicine (GO-BNN6) for near-infrared (NIR) light responsive release of nitric oxide (NO) has been constructed by self-assembling of graphene oxide (GO) nanosheets and a NO donor BNN6 through the π-π stacking interaction. GO-BNN6 nanomedicine has an extraordinarily high drug loading capacity (1.2 mg BNN6 per mg GO), good thermal stability, and high NIR responsiveness. The NO release from GO-BNN6 can be easily triggered and effectively controlled by adjusting the switching, irradiation time and power density of NIR laser. The intracellular NIR-responsive release of NO from GO-BNN6 nanomedicine causes a remarkable anti-cancer effect. PMID:26568270

  17. Just so stories: the random acts of anti-cancer nanomedicine performance.

    Science.gov (United States)

    Moghimi, Seyed Moein; Farhangrazi, Zahra Shadi

    2014-11-01

    Contrary to high expectations, the majority of clinically approved anti-cancer nanomedicine, and those under clinical trials, have shown limited therapeutic efficacy in humans. So, why these nanomedicine are not delivering their promise? Here, we discuss likely factors, and call for a paradigm shift in approach and design of future cancer nanotherapeutics based on realistic cancer models representing human disease, and better understanding of integrated pathophysiological processes, including systems immunology, that modulate human tumor functionality and growth. This critical review of the current state of translational oncology research utilizing nanomedicine-based approaches provides a comprehensive discussion of the multiple factors that are responsible for poor outcomes when translating these approaches models to the actual human disease.

  18. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications

    Directory of Open Access Journals (Sweden)

    Meng Meng Lin

    2010-02-01

    Full Text Available Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, makes such nanomagnets ideal in both in-vitro and in-vivo biomedical applications. In this review, a chemical, physical, and biological synthetic approach to prepare iron oxide-based nanomagnets with different physicochemical properties was illustrated and compared. The growing interest in iron oxide-based nanomagnets with multifunctionalities was explored in cancer diagnostics and treatment, focusing on their combined roles in a magnetic resonance contrast agent, hyperthermia, and magnetic force assisted drug delivery. Iron oxides as magnetic carriers in gene therapy were reviewed with a focus on the sophisticated design and construction of magnetic vectors. Finally, the iron oxide-based nanomagnet also represents a very promising tool in particle/cell interfacing in controlling cellular functionalities, such as adhesion, proliferation, differentiation, and cell patterning, in stem cell therapy and tissue engineering applications. Meng Meng Lin received a BSc in biotechnology at the University of Hong Kong, China in 2004 and an MSc in biomedical nanotechnology at Newcastle University, UK, in 2005. She is currently working toward her PhD at the Institute of Science and Technology in Medicine, Keele University, UK. She was a visiting student at the Royal Institute of Technology, Sweden, in 2006. Her research interests include nanoparticles preparation, cell/nanomaterials interface, and cancer-oriented drug delivery. Hyung-Hwan Kim received an MSc degree in

  19. Bio-inspired nanomedicine strategies for artificial blood components.

    Science.gov (United States)

    Sen Gupta, Anirban

    2017-11-01

    Blood is a fluid connective tissue where living cells are suspended in noncellular liquid matrix. The cellular components of blood render gas exchange (RBCs), immune surveillance (WBCs) and hemostatic responses (platelets), and the noncellular components (salts, proteins, etc.) provide nutrition to various tissues in the body. Dysfunction and deficiencies in these blood components can lead to significant tissue morbidity and mortality. Consequently, transfusion of whole blood or its components is a clinical mainstay in the management of trauma, surgery, myelosuppression, and congenital blood disorders. However, donor-derived blood products suffer from issues of shortage in supply, need for type matching, high risks of pathogenic contamination, limited portability and shelf-life, and a variety of side-effects. While robust research is being directed to resolve these issues, a parallel clinical interest has developed toward bioengineering of synthetic blood substitutes that can provide blood's functions while circumventing the above problems. Nanotechnology has provided exciting approaches to achieve this, using materials engineering strategies to create synthetic and semi-synthetic RBC substitutes for enabling oxygen transport, platelet substitutes for enabling hemostasis, and WBC substitutes for enabling cell-specific immune response. Some of these approaches have further extended the application of blood cell-inspired synthetic and semi-synthetic constructs for targeted drug delivery and nanomedicine. The current study provides a comprehensive review of the various nanotechnology approaches to design synthetic blood cells, along with a critical discussion of successes and challenges of the current state-of-art in this field. WIREs Nanomed Nanobiotechnol 2017, 9:e1464. doi: 10.1002/wnan.1464 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  20. Hybrid Organic-Inorganic Bridged Silsesquioxane Nanoparticles for Cancer Nanomedicine

    KAUST Repository

    Fatieiev, Yevhen

    2017-10-01

    It is well established that cancer is one of the leading causes of death globally. Its complete eradication requires early detection and intensive drug treatment. In many cases it might also require surgery. Unfortunately, current medicine is still more focused on cancer treatment rather than elimination of its reason. The mechanism of tumor emergence and development is quite complicated, although, we are constantly advancing in this field. Nanomedicine is envisioned as the silver bullet against cancer. Thus, nanoscale systems with therapeutic and diagnostic modalities can simultaneously perform several functions: accurate detection of tumor site, precise targeting, and controlled drug release inside abnormal cells and tissues while being nontoxic to healthy ones. Moreover, surface modification of such nanoparticles allows them to be invisible to the immune system and have longer blood circulating time. The performed research in this dissertation is completely based on hybrid organicinorganic bridged silsesquioxane (also known as organosilica) nanomaterials, therefore comprising "soft" organic/bioorganic part which can imitate certain biorelevant structures and facilitates successful escape from the immune system for more efficient accumulation in cancer cells, while "hard" inorganic part serves as a rigid and stable basis for the creation of cargo nanocarriers and imaging agents. This dissertation discusses the 5 critical points of safe biodegradable nanoplatforms, delivery of large biomolecules, and cytotoxicity regarding the shape of nanoparticles. As a result novel fluorescent biodegradable oxamide-based organosilica nanoparticles were developed, light-triggered surface charge reversal for large biomolecule delivery was applied with hollow bridged silsesquioxane nanomaterials, and biocompatibility of periodic mesoporous organosilicas with different morphologies was studied. Furthermore, the current achievements and future perspectives of mesoporous silica

  1. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    Science.gov (United States)

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  2. Sustainable Urban Forestry Potential Based Quantitative And Qualitative Measurement Using Geospatial Technique

    International Nuclear Information System (INIS)

    Rosli, A Z; Reba, M N M; Roslan, N; Room, M H M

    2014-01-01

    In order to maintain the stability of natural ecosystems around urban areas, urban forestry will be the best initiative to maintain and control green space in our country. Integration between remote sensing (RS) and geospatial information system (GIS) serves as an effective tool for monitoring environmental changes and planning, managing and developing a sustainable urbanization. This paper aims to assess capability of the integration of RS and GIS to provide information for urban forest potential sites based on qualitative and quantitative by using priority parameter ranking in the new township of Nusajaya. SPOT image was used to provide high spatial accuracy while map of topography, landuse, soils group, hydrology, Digital Elevation Model (DEM) and soil series data were applied to enhance the satellite image in detecting and locating present attributes and features on the ground. Multi-Criteria Decision Making (MCDM) technique provides structural and pair wise quantification and comparison elements and criteria for priority ranking for urban forestry purpose. Slope, soil texture, drainage, spatial area, availability of natural resource, and vicinity of urban area are criteria considered in this study. This study highlighted the priority ranking MCDM is cost effective tool for decision-making in urban forestry planning and landscaping

  3. Assessing Adipogenic Potential of Mesenchymal Stem Cells: A Rapid Three-Dimensional Culture Screening Technique

    Directory of Open Access Journals (Sweden)

    Jean F. Welter

    2013-01-01

    Full Text Available Bone-marrow-derived mesenchymal stem cells (MSCs have the potential to differentiate into a number of phenotypes, including adipocytes. Adipogenic differentiation has traditionally been performed in monolayer culture, and, while the expression of a fat-cell phenotype can be achieved, this culture method is labor and material intensive and results in only small numbers of fragile adherent cells, which are not very useful for further applications. Aggregate culture is a cell-culture technique in which cells are induced to form three-dimensional aggregates; this method has previously been used successfully, among others, to induce and study chondrogenic differentiation of MSCs. We have previously published an adaptation of the chondrogenic aggregate culture method to a 96-well plate format. Based on the success of this method, we have used the same format for the preparation of three-dimensional adipogenic cultures. The MSCs differentiate rapidly, the aggregates can be handled and processed for histologic and biochemical assays with ease, and the format offers significant savings in supplies and labor. As a differentiation assay, this method can distinguish between degrees of senescence and appears suitable for testing medium or drug formulations in a high-volume, high-throughput fashion.

  4. Evaluation of auditory perception development in neonates by event-related potential technique.

    Science.gov (United States)

    Zhang, Qinfen; Li, Hongxin; Zheng, Aibin; Dong, Xuan; Tu, Wenjuan

    2017-08-01

    To investigate auditory perception development in neonates and correlate it with days after birth, left and right hemisphere development and sex using event-related potential (ERP) technique. Sixty full-term neonates, consisting of 32 males and 28 females, aged 2-28days were included in this study. An auditory oddball paradigm was used to elicit ERPs. N2 wave latencies and areas were recorded at different days after birth, to study on relationship between auditory perception and age, and comparison of left and right hemispheres, and males and females. Average wave forms of ERPs in neonates started from relatively irregular flat-bottomed troughs to relatively regular steep-sided ripples. A good linear relationship between ERPs and days after birth in neonates was observed. As days after birth increased, N2 latencies gradually and significantly shortened, and N2 areas gradually and significantly increased (both Pauditory perception development. In the days following birth, the auditory perception ability of neonates gradually increases. This occurs predominantly in the left hemisphere, with auditory perception ability appearing to develop earlier in female neonates than in males. ERP can be used as an objective index used to evaluate auditory perception development in neonates. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  5. Assessment of high resolution melting analysis as a potential SNP genotyping technique in forensic casework.

    Science.gov (United States)

    Venables, Samantha J; Mehta, Bhavik; Daniel, Runa; Walsh, Simon J; van Oorschot, Roland A H; McNevin, Dennis

    2014-11-01

    High resolution melting (HRM) analysis is a simple, cost effective, closed tube SNP genotyping technique with high throughput potential. The effectiveness of HRM for forensic SNP genotyping was assessed with five commercially available HRM kits evaluated on the ViiA™ 7 Real Time PCR instrument. Four kits performed satisfactorily against forensically relevant criteria. One was further assessed to determine the sensitivity, reproducibility, and accuracy of HRM SNP genotyping. The manufacturer's protocol using 0.5 ng input DNA and 45 PCR cycles produced accurate and reproducible results for 17 of the 19 SNPs examined. Problematic SNPs had GC rich flanking regions which introduced additional melting domains into the melting curve (rs1800407) or included homozygotes that were difficult to distinguish reliably (rs16891982; a G to C SNP). A proof of concept multiplexing experiment revealed that multiplexing a small number of SNPs may be possible after further investigation. HRM enables genotyping of a number of SNPs in a large number of samples without extensive optimization. However, it requires more genomic DNA as template in comparison to SNaPshot®. Furthermore, suitably modifying pre-existing forensic intelligence SNP panels for HRM analysis may pose difficulties due to the properties of some SNPs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Assessing adipogenic potential of mesenchymal stem cells: a rapid three-dimensional culture screening technique.

    Science.gov (United States)

    Welter, Jean F; Penick, Kitsie J; Solchaga, Luis A

    2013-01-01

    Bone-marrow-derived mesenchymal stem cells (MSCs) have the potential to differentiate into a number of phenotypes, including adipocytes. Adipogenic differentiation has traditionally been performed in monolayer culture, and, while the expression of a fat-cell phenotype can be achieved, this culture method is labor and material intensive and results in only small numbers of fragile adherent cells, which are not very useful for further applications. Aggregate culture is a cell-culture technique in which cells are induced to form three-dimensional aggregates; this method has previously been used successfully, among others, to induce and study chondrogenic differentiation of MSCs. We have previously published an adaptation of the chondrogenic aggregate culture method to a 96-well plate format. Based on the success of this method, we have used the same format for the preparation of three-dimensional adipogenic cultures. The MSCs differentiate rapidly, the aggregates can be handled and processed for histologic and biochemical assays with ease, and the format offers significant savings in supplies and labor. As a differentiation assay, this method can distinguish between degrees of senescence and appears suitable for testing medium or drug formulations in a high-volume, high-throughput fashion.

  7. Sustainable Urban Forestry Potential Based Quantitative And Qualitative Measurement Using Geospatial Technique

    Science.gov (United States)

    Rosli, A. Z.; Reba, M. N. M.; Roslan, N.; Room, M. H. M.

    2014-02-01

    In order to maintain the stability of natural ecosystems around urban areas, urban forestry will be the best initiative to maintain and control green space in our country. Integration between remote sensing (RS) and geospatial information system (GIS) serves as an effective tool for monitoring environmental changes and planning, managing and developing a sustainable urbanization. This paper aims to assess capability of the integration of RS and GIS to provide information for urban forest potential sites based on qualitative and quantitative by using priority parameter ranking in the new township of Nusajaya. SPOT image was used to provide high spatial accuracy while map of topography, landuse, soils group, hydrology, Digital Elevation Model (DEM) and soil series data were applied to enhance the satellite image in detecting and locating present attributes and features on the ground. Multi-Criteria Decision Making (MCDM) technique provides structural and pair wise quantification and comparison elements and criteria for priority ranking for urban forestry purpose. Slope, soil texture, drainage, spatial area, availability of natural resource, and vicinity of urban area are criteria considered in this study. This study highlighted the priority ranking MCDM is cost effective tool for decision-making in urban forestry planning and landscaping.

  8. Potential impact of tsetse fly control involving the sterile insect technique

    International Nuclear Information System (INIS)

    Feldmann, U.; Dyck, V.A.; Mattioli, R.C.; Jannin, J.

    2005-01-01

    sterile insect technique (SIT), as a component of area-wide integrated pest management (AW-IPM) programmes to create tsetse-free zones, has been demonstrated in Zanzibar and other locations. This chapter (1) outlines the causal relationship between the T and T problem and food insecurity, malnutrition, poverty, and related disease and development constraints, (2) describes the impact of the problem on African rural communities and the overall economy, and (3) indicates the potential benefits of a reduced T and T burden, or even of its zonal elimination from selected priority areas in support of sustainable rural development. (author)

  9. Promise and peril in nanomedicine: the challenges and needs for integrated systems biology approaches to define health risk.

    Science.gov (United States)

    Halappanavar, Sabina; Vogel, Ulla; Wallin, Hakan; Yauk, Carole L

    2018-01-01

    In the 1966s visionary film 'Fantastic Voyage' a submarine crew was shrunk to 100 nm in size and injected into the body of an injured scientist to repair his damaged brain. The movie (written by Harry Kleiner; directed by Richard Fleischer; novel by Isaac Asimov) drew attention to the potential power of engineered nanoscale structures and devices to construct, monitor, control, treat, and repair individual cells. Even more interesting was the fact that the film elegantly noted that the structure had to be miniaturized to a size that is not detected by the body's immune surveillance system, and highlighted the many physiological barriers that are encountered on the submarine's long journey to the target. Although the concept of miniaturizing humans remains an element of science fiction, targeted drug delivery through nanobots to treat diseases such as cancer is now a reality. The ability of nanobots to evade immune surveillance is one of the most attractive features of nanoscale materials that are exploited in the field of medicine for molecular diagnostics, targeted drug delivery, and therapy of diseases. This article will provide a concise opinion on the state-of-the-art, the challenges, and the use of systems biology-another equally revolutionary field of science-to assess the unique health hazards of nanomaterial exposures. WIREs Nanomed Nanobiotechnol 2018, 10:e1465. doi: 10.1002/wnan.1465 This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials. © 2017 Her Majesty the Queen in Right of Canada. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  10. Nanomedicine-emerging or re-emerging ethical issues? A discussion of four ethical themes.

    Science.gov (United States)

    Lenk, Christian; Biller-Andorno, Nikola

    2007-06-01

    Nanomedicine plays a prominent role among emerging technologies. The spectrum of potential applications is as broad as it is promising. It includes the use of nanoparticles and nanodevices for diagnostics, targeted drug delivery in the human body, the production of new therapeutic materials as well as nanorobots or nanoprotheses. Funding agencies are investing large sums in the development of this area, among them the European Commission, which has launched a large network for life-sciences related nanotechnology. At the same time government agencies as well as the private sector are putting forward reports of working groups that have looked into the promises and risks of these developments. This paper will begin with an introduction to the central ethical themes as identified by selected reports from Europe and beyond. In a next step, it will analyse the most frequently invoked ethical concerns-risk assessment and management, the issues of human identity and enhancement, possible implications for civil liberties (e.g. nanodevices that might be used for covert surveillance), and concerns about equity and fair access. Although it seems that the main ethical issues are not unique to nanotechnologies, the conclusion will argue against shrugging them off as non-specific items that have been considered before in the context of other biomedical technologies, such as gene therapy or xenotransplantation. Rather, the paper will call on ethicists to help foster a rational, fair and participatory discourse on the different potential applications of nanotechnologies in medicine, which can form the basis for informed and responsible societal and political decisions.

  11. A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements.

    Science.gov (United States)

    Giannakou, Christina; Park, Margriet Vdz; de Jong, Wim H; van Loveren, Henk; Vandebriel, Rob J; Geertsma, Robert E

    2016-01-01

    Nanomaterials (NMs) are attractive for biomedical and pharmaceutical applications because of their unique physicochemical and biological properties. A major application area of NMs is drug delivery. Many nanomedicinal products (NMPs) currently on the market or in clinical trials are most often based on liposomal products or polymer conjugates. NMPs can be designed to target specific tissues, eg, tumors. In virtually all cases, NMPs will eventually reach the immune system. It has been shown that most NMs end up in organs of the mononuclear phagocytic system, notably liver and spleen. Adverse immune effects, including allergy, hypersensitivity, and immunosuppression, have been reported after NMP administration. Interactions of NMPs with the immune system may therefore constitute important side effects. Currently, no regulatory documents are specifically dedicated to evaluate the immunotoxicity of NMs or NMPs. Their immunotoxicity assessment is performed based on existing guidelines for conventional substances or medicinal products. Due to the unique properties of NMPs when compared with conventional medicinal products, it is uncertain whether the currently prescribed set of tests provides sufficient information for an adequate evaluation of potential immunotoxicity of NMPs. The aim of this study was therefore, to compare the current regulatory immunotoxicity testing requirements with the accumulating knowledge on immunotoxic effects of NMPs in order to identify potential gaps in the safety assessment. This comparison showed that immunotoxic effects, such as complement activation-related pseudoallergy, myelosuppression, inflammasome activation, and hypersensitivity, are not readily detected by using current testing guidelines. Immunotoxicity of NMPs would be more accurately evaluated by an expanded testing strategy that is equipped to stratify applicable testing for the various types of NMPs.

  12. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    International Nuclear Information System (INIS)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory's (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types of commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes

  13. Geotechnical Applications of the Self-Potential Method. Report 3. Development of Self-Potential Interpretation Techniques for Seepage Detection

    Science.gov (United States)

    1989-02-01

    D. V., and Corwin, R. F. 1982. Inversion of Self-Potential Data from the Cerro Prieto Geothermal Field , Mexico : Geophysics, Vol 47, No. 6, pp 938...type curves, and shows a field example for which quantitative tech- niques were used to interpret SP data for a geothermal area in terms of heat and...bibliography E Electrode studies DS Dam seepage investigation F In- field seepage investigation G Geothermal investigation L Laboratory measurement of streaming

  14. Complement-mediated tumour growth: implications for cancer nanotechnology and nanomedicines

    DEFF Research Database (Denmark)

    Moghimi, S. M.; Andresen, Thomas Lars

    2009-01-01

    The recent unexpected observation that complement activation helps turnout growth and progression has an important bearing on the future development of cancer nanomedicines for site-specific tumour targeting as these entities are capable of triggering complement. These issues are discussed and su...

  15. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    Science.gov (United States)

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  16. FRET Imaging Trackable Long Circulating Biodegradable Nanomedicines for Ovarian Cancer Therapy

    Science.gov (United States)

    2015-11-01

    treatment of rheumatoid arthritis . This research was stimulated by the demonstration of profound arthrotropism of HPMA copolymers in the adjuvant-induced...pressure and relieves physical constraints on smallmolecule perfusion, xic therapies permanently remodel the tumormicroenvironment to favor thedelivery...Award Number: W81XWH-13-1-0160 TITLE: FRET Imaging Trackable Long-Circulating Biodegradable Nanomedicines for Ovarian Cancer Therapy PRINCIPAL

  17. Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease.

    Science.gov (United States)

    Takedatsu, Hidetoshi; Mitsuyama, Keiichi; Torimura, Takuji

    2015-10-28

    Crohn's disease and ulcerative colitis are two important categories of human inflammatory bowel disease (IBD). Because the precise mechanisms of the inflammation and immune responses in IBD have not been fully elucidated, the treatment of IBD primarily aims to inhibit the pathogenic factors of the inflammatory cascade. Inconsistencies exist regarding the response and side effects of the drugs that are currently used to treat IBD. Recent studies have suggested that the use of nanomedicine might be advantageous for the treatment of intestinal inflammation because nano-sized molecules can effectively penetrate epithelial and inflammatory cells. We reviewed nanomedicine treatments, such as the use of small interfering RNAs, antisense oligonucleotides, and anti-inflammatory molecules with delivery systems in experimental colitis models and clinical trials for IBD based on a systematic search. The efficacy and usefulness of the treatments reviewed in this manuscript have been demonstrated in experimental colitis models and clinical trials using various types of nanomedicine. Nanomedicine is expected to become a new therapeutic approach to the treatment of IBD.

  18. Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy

    Czech Academy of Sciences Publication Activity Database

    Lammers, T.; Šubr, Vladimír; Ulbrich, Karel; Hennink, W. E.; Storm, G.; Kiessling, F.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 197-212 ISSN 1748-0132 R&D Projects: GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanomedicine s * drug targeting * polymer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.750, year: 2010

  19. Identification and Characterization of Novel Drug Targets for Personalized Breast Cancer Nanomedicine

    DEFF Research Database (Denmark)

    Block, Ines; Müller, Carolin; Sdogati, Daniel

    Personalized cancer nanomedicine aims at the design of novel nanodrugs that would match the molecular fingerprint of an individual patient`s tumor. Expression profiling and next generation-sequencing data represent rich resources for discovering new starting points for such approaches. Here, we...

  20. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines

    Czech Academy of Sciences Publication Activity Database

    Kunjachan, S.; Pola, Robert; Gremse, F.; Theek, B.; Ehling, J.; Moeckel, D.; Hermanns-Sachweh, B.; Pechar, Michal; Ulbrich, Karel; Hennink, W. E.; Storm, G.; Lederle, W.; Kiessling, F.; Lammers, T.

    2014-01-01

    Roč. 14, č. 2 (2014), s. 972-981 ISSN 1530-6984 R&D Projects: GA ČR GCP207/12/J030 Institutional support: RVO:61389013 Keywords : nanomedicine * drug targeting * EPR Subject RIV: CD - Macromolecular Chemistry Impact factor: 13.592, year: 2014

  1. Nanomedicine and personalised medicine: understanding the personalisation of health care in the molecular era.

    Science.gov (United States)

    Noury, Mathieu; López, José

    2017-05-01

    Globally supported by public policy and investment, nanomedicine is presented as an ongoing medical revolution that will radically change the practice of health care from diagnostic to therapeutic, and everything in between. One of nanomedicine's major promises is that of personalised medicine, enabling diagnostics and therapeutics tailored to individual needs and developing a truly 'patient-friendly' medical approach. Based on qualitative interviews with nanomedicine researchers in Canada, this article explores the emerging concept of personalised medicine as it becomes entangled with nanomedical research. More precisely, drawing on insights from science studies and the sociology of expectations, it analyses researchers' perceptions of personalised medicine in the cutting edge of current nanomedicine research. Two perceptions of personalisation are identified; a molecular conception of individuality and a technical conception of personalisation. The article concludes by examining the relationship between the two conceptions and contrasts them with the normative reflex of a more expansive conception of personalised medicine. © 2016 Foundation for the Sociology of Health & Illness.

  2. Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Fatima Khaja

    2016-01-01

    Full Text Available Since its discovery, small interfering RNA (siRNA has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA not easily accessed by conventional drugs. Hence, RNA interference (RNAi therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs. This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF, an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP, showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

  3. The potential of cell sheet technique on the development of hepatocellular carcinoma in rat models.

    Directory of Open Access Journals (Sweden)

    Alaa T Alshareeda

    Full Text Available Hepatocellular carcinoma (HCC is considered the 3rd leading cause of death by cancer worldwide with the majority of patients were diagnosed in the late stages. Currently, there is no effective therapy. The selection of an animal model that mimics human cancer is essential for the identification of prognostic/predictive markers, candidate genes underlying cancer induction and the examination of factors that may influence the response of cancers to therapeutic agents and regimens. In this study, we developed a HCC nude rat models using cell sheet and examined the effect of human stromal cells (SCs on the development of the HCC model and on different liver parameters such as albumin and urea.Transplanted cell sheet for HCC rat models was fabricated using thermo-responsive culture dishes. The effect of human umbilical cord mesenchymal stromal cells (UC-MSCs and human bone marrow mesenchymal stromal cells (BM-MSCs on the developed tumour was tested. Furthermore, development of tumour and detection of the liver parameter was studied. Additionally, angiogenesis assay was performed using Matrigel.HepG2 cells requires five days to form a complete cell sheet while HepG2 co-cultured with UC-MSCs or BM-MSCs took only three days. The tumour developed within 4 weeks after transplantation of the HCC sheet on the liver of nude rats. Both UC-MSCs and BM-MSCs improved the secretion of liver parameters by increasing the secretion of albumin and urea. Comparatively, the UC-MSCs were more effective than BM-MSCs, but unlike BM-MSCs, UC-MSCs prevented liver tumour formation and the tube formation of HCC.Since this is a novel study to induce liver tumour in rats using hepatocellular carcinoma sheet and stromal cells, the data obtained suggest that cell sheet is a fast and easy technique to develop HCC models as well as UC-MSCs have therapeutic potential for liver diseases. Additionally, the data procured indicates that stromal cells enhanced the fabrication of HepG2

  4. Technique of radiation polymerization in fine art conservation: a potentially new method of restoration and preservation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Major, G.

    1982-01-01

    The technique of using radiation polymerization for the restoration and preservation of art treasures is considered. The processes discussed include both radiation grafting and rapid cure procedures, particularly reactions initiated by uv and eb. Representative examples where the technique has already been used are treated including typical applications with paintings, tapestries, leather and archival repair. The structure of the monomers and oligomers used in both grafting and rapid cure systems is outlined. The experimental conditions where grafting may occur during radiation rapid cure processing are discussed. Possible future developments of the technique are outlined. 1 figure, 8 tables

  5. Nanomedicine and mammalian sperm: Lessons from the porcine model.

    Science.gov (United States)

    Barkalina, Natalia; Jones, Celine; Coward, Kevin

    2016-01-01

    Biomedical nanotechnology allows us to engineer versatile nanosized platforms that are comparable in size to biological molecules and intracellular organelles. These platforms can be loaded with large amounts of biological cargo, administered systemically and act at a distance, target specific cell populations, undergo intracellular internalization via endogenous uptake mechanisms, and act as contrast agents or release cargo for therapeutic purposes. Over recent years, nanomaterials have been increasingly viewed as favorable candidates for intragamete delivery. Particularly in the case of sperm, nanomaterial-based approaches have been shown to improve the efficacy of existing techniques such as sperm-mediated gene transfer, loading sperm with exogenous proteins, and tagging sperm for subsequent sex- or function-based sorting. In this short review, we provide an outline of the current state of nanotechnology for biomedical applications in reproductive biology and present highlights from a series of our studies evaluating the use of specialized silica nanoparticles in boar sperm as a potential delivery vehicle into mammalian gametes. The encouraging data obtained already from the porcine model in our laboratory have formed the basis for ethical approval of similar experiments in human sperm, thereby bringing us a step closer toward the potential use of this novel technology in the clinical environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Survey and assessment of techniques used to quantify the potential for rock mass instability.

    CSIR Research Space (South Africa)

    Brink, AVZ

    2000-03-01

    Full Text Available modelling, seismic monitoring, stress and deformation measuring. Industry, COMRO and SIMRAC funding provided for the development of these techniques. The South African research & development efforts towards early warning of large instabilities (rockbursts...

  7. Investigative Techniques: Federal Agency Views on the Potential Application of "Brain Fingerprinting"

    National Research Council Canada - National Science Library

    Grassley, Charles

    2001-01-01

    Brain Fingerprinting is a proposed investigative technique that incorporates the use of a test administered to a subject that consists of specific information related to a particular event or activity...

  8. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art.

    Science.gov (United States)

    Ahmad, Mohammad Zaki; Alkahtani, Saad Ahmed; Akhter, Sohail; Ahmad, Farhan Jalees; Ahmad, Javed; Akhtar, Mohammad Shabib; Mohsin, Nehal; Abdel-Wahab, Basel A

    2016-01-01

    Comprehensive pharmacological screening of curcumin (CUR) has given the evidence that it is an excellent naturally occurring therapeutic moiety for cancer. It is very well tolerated with insignificant toxicity even after high doses of oral administration. Irrespective of its better quality as an anticancer agent, therapeutic application of CUR is hampered by its extremely low-aqueous solubility and poor bioavailability, rapid clearance and low-cellular uptake. A simple means of breaking up the restrictive factor of CUR is to perk-up its aqueous solubility, improve its bioavailability, protect it from degradation, and metabolism and potentiate its targeting capacity towards the cancer cell. The development in the field of nanomedicine has made excellent progresses toward enhancing the bioavailability of lipophilic drugs like CUR. Nanoparticles (NPs) are capable to deliver the CUR at specific area and thereby prevent it from physiological degradation and systemic clearance. In recent year, an assortment of nanomedicine-based novel drug delivery system has been designed to potentiate the bioavailability of CUR towards anticancer therapy. In this review, we discuss the recent development in the field of nanoCUR (NanoCur), including polymeric micelles, liposome, polymeric NPs, nanoemulsion, nanosuspension, solid lipid NPs (SLNPs), polymer conjugates, nanogel, etc. in anticancer application.

  9. Using self-potential housing technique to model water seepage at the UNHAS housing Antang area

    Science.gov (United States)

    Syahruddin, Muhammad Hamzah

    2017-01-01

    The earth's surface has an electric potential that is known as self-potentiall (SP). One of the causes of the electrical potential at the earth's surface is water seepage into the ground. Electrical potential caused by water velocity seepage into the ground known as streaming potential. How to model water seepage into the ground at the housing Unhas Antang? This study was conducted to answer these questions. The self-potential measurements performed using a simple digital voltmeter Sanwa brand PC500 with a precision of 0.01 mV. While the coordinates of measurements points are self-potential using Global Positioning System. Mmeasurements results thus obtained are plotted using surfer image distribution self-potential housing Unhas Antang. The self-potential data housing Unhas Antang processed by Forward Modeling methods to get a model of water infiltration into the soil. Housing Unhas Antang self-potential has a value of 5 to 23 mV. Self-potential measurements carried out in the rainy season so it can be assumed that the measurement results caused by the velocity water seepage into the ground. The results of modeling the velocity water seepage from the surface to a depth of 3 meters was 2.4 cm/s to 0.2 cm /s. Modeling results showed that the velocity water seepage of the smaller with depth.

  10. MWCNTs-PANi nanocomposite films prepared by AC-EPD technique and its potential for enhance supercapacitor electrode

    Science.gov (United States)

    Hasnan, Nur Shamimie Nadzwin; Eleas, Nor Hamizah; Mohammad, Nurul Nazwa; Yusof, Azmi Mohamed; Zaine, Intan Syaffinazzilla

    2017-08-01

    MWCNTs-PANi nanocomposite thin film has been prepared by using alternating current electrophoretic deposition (AC-EPD) technique. The AC-EPD technique is used in aqueous suspension to avoid damage film deposited caused by the decomposition of water. The frequency and the waveform used in EPD process were 1 kHz and rectangular signal respectively. AC electric field applied in EPD process produced a smooth deposit of MWCNTs and MWCNTs-PANi nanocomposite on nickel foils. The films produced also have been evaluated for its potential application of supercapacitor electrode. Results show AC-EPD is a promising technique for successful MWCNTs-PANi nanocomposite film deposition and its potential application as supercapacitor electrode.

  11. Exploring the potential of data mining techniques for the analysis of accident patterns

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Bekhor, Shlomo; Galtzur, Ayelet

    2010-01-01

    Research in road safety faces major challenges: individuation of the most significant determinants of traffic accidents, recognition of the most recurrent accident patterns, and allocation of resources necessary to address the most relevant issues. This paper intends to comprehend which data mining...... and association rules) data mining techniques are implemented for the analysis of traffic accidents occurred in Israel between 2001 and 2004. Results show that descriptive techniques are useful to classify the large amount of analyzed accidents, even though introduce problems with respect to the clear...... importance of input and intermediate neurons, and the relative importance of hundreds of association rules. Further research should investigate whether limiting the analysis to fatal accidents would simplify the task of data mining techniques in recognizing accident patterns without the “noise” probably...

  12. Evaluation of the nugget diameter in spot welded joints between two steel sheets by means of a potential drop technique

    Science.gov (United States)

    Tohmyoh, Hironori; Ikarashi, Hidetomo; Matsui, Yoichi; Hasegawa, Yuta; Obara, Satoshi

    2015-08-01

    A potential drop technique which utilizes the electrical circuit used in resistance spot welding is reported. Spot welded samples comprising two steel sheets were inserted between the two Cu electrodes and a constant direct current was supplied between the electrodes. The potential drop between two points, one on each electrode, was determined by analysis for various values of nugget diameter and various values of the contact resistance between the Cu electrodes and the steel sheet sample. The nugget diameter of the spot welded joint could be quantitatively evaluated from the measured potential drop and the equation obtained from the analysis.

  13. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques

    NARCIS (Netherlands)

    Jager, D. H. J.; Vieira, A. M.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  14. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques.

    NARCIS (Netherlands)

    Jager, D.H.; Vieira, A.M.; Ruben, J.L.; Huysmans, M.C.D.N.J.M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  15. Assessment of positron annihilation as a potential non-destructive examination technique

    International Nuclear Information System (INIS)

    Jones, W.B.; Van Den Avyle, J.A.; Gauster, W.B.; Wampler, W.R.

    1979-01-01

    The positron annihilation technique can provide a sensitive measure of defect density in metals. In this program the technique has been used to monitor defects generated during plastic deformation by cold work or fatigue cycling. The primary goals have been: (1) to assess the degree of sensitivity of the technique; (2) to correlate positron annihilation readings with observed microstructural changes to better understand the physical basis for these readings; and (3) to determine correlations between positron annihilation measurements and number of fatigue cycles. Examination of fatigued samples by transmission electron microscopy indicates some correlation between dislocation density and positron annihilation lineshape parameter (determined by the Doppler broadening technique). However, annealing studies of deformed samples indicate that positron annihilation response in 316 stainless steel is sensitive primarily to excess vacancies generated during the deformation and is less sensitive to dislocation density. Data on deformed nickel show sensitivity to both vacancies and dislocations. In general, lineshape parameter values tend to achieve a constant level at approximately 10% of fatigue life

  16. A visualized investigation at the atomic scale of the antitumor effect of magnetic nanomedicine on gastric cancer cells.

    Science.gov (United States)

    Liu, Xiaokang; Deng, Xia; Li, Xinghua; Xue, Desheng; Zhang, Haoli; Liu, Tao; Liu, Qingfang; Mellors, Nigel J; Li, Yumin; Peng, Yong

    2014-07-01

    Discovering which anticancer drugs attack which organelle(s) of cancer cells is essential and significant, not only for understanding their therapeutic and adverse effects, but also to enable the development of new-generation therapeutics. Here, we show that novel Fe3O4-carboxymethyl cellulose-5-fluorouracil (Fe3O4-CMC-5FU) nanomedicine can apparently enhance the antitumor effect on gastric cancer cells, and its mechanism of killing the SGC-7901 gastric cancer cells can be directly observed at the atomic scale. The novel nanomedicine was prepared using the traditional antitumor drug 5FU to chemically bond onto the functionalized Fe3O4 nanoparticles (Fe3O4-CMC-5FU nanomedicine), and then was fed into SGC-7901 gastric cancer cells. The inorganic Fe3O4 nanoparticles were used to track the distribution and antitumor effect of the nanomedicine within individual SGC-7901 gastric cancer cells. Atomic-level observation and tracking the elemental distribution inside individual cells proved that the magnetic nanomedicine killed the gastric cells mainly by attacking their mitochondria. The enhanced therapeutic efficacy derives from the localized high concentration and poor mobility of the aggregated Fe3O4-CMC-5FU nanomedicine in the cytoplasm. A brand new mechanism of Fe3O4-CMC-5FU nanomedicine killing SGC-7901 gastric cancer cells by attacking their mitochondria was discovered, which is different from the classical mechanism utilized by traditional medicine 5FU, which kills gastric cancer cells by damaging their DNA. Our work might provide a partial solution in nanomedicines or even modern anticancer medicine for the visualized investigation of their antitumor effect.

  17. Polarization speckle imaging as a potential technique for in vivo skin cancer detection

    Science.gov (United States)

    Tchvialeva, Lioudmila; Dhadwal, Gurbir; Lui, Harvey; Kalia, Sunil; Zeng, Haishan; McLean, David I.; Lee, Tim K.

    2013-06-01

    Skin cancer is the most common cancer in the Western world. In order to accurately detect the disease, especially malignant melanoma-the most fatal form of skin cancer-at an early stage when the prognosis is excellent, there is an urgent need to develop noninvasive early detection methods. We believe that polarization speckle patterns, defined as a spatial distribution of depolarization ratio of traditional speckle patterns, can be an important tool for skin cancer detection. To demonstrate our technique, we conduct a large in vivo clinical study of 214 skin lesions, and show that statistical moments of the polarization speckle pattern could differentiate different types of skin lesions, including three common types of skin cancers, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, and two benign lesions, melanocytic nevus and seborrheic keratoses. In particular, the fourth order moment achieves better or similar sensitivity and specificity than many well-known and accepted optical techniques used to differentiate melanoma and seborrheic keratosis.

  18. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.

    Science.gov (United States)

    Vaks, Lilach; Benhar, Itai

    2011-01-01

    The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus there is an urgent need to develop new antimicrobial agents. To be effective, these new antimicrobials should possess novel modes of action and/or different cellular targets compared with existing antibiotics. Bacteriophages (phages) have been used for over a century as tools for the treatment of bacterial infections, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. We describe a new application in the area of antibacterial nanomedicines where filamentous phages can be formulated as targeted drug-delivery vehicles of nanometric dimensions (phage nanomedicines) and used for therapeutic purposes. This protocol involves both genetic and chemical engineering of these phages. The genetic engineering of the phage coat, which results in the display of a target-specificity-conferring peptide or protein on the phage coat, can be used to design the drug-release mechanism and is not described herein. However, the methods used to chemically conjugate cytotoxic drugs at high density on the phage coat are described. Further, assays to measure the drug load on the surface of the phage and the potency of the system in the inhibition of growth of target cells as well as assessment of the therapeutic potential of the phages in a mouse disease model are discussed.

  19. Investigation of the Potential for FTIR as a Nondestructive Inspection Technique for Aircraft Coating Degradation

    Science.gov (United States)

    2014-03-27

    eddy current, magnetic particle, liquid penetrant, and thermography[4]. The primary limitation of each of these techniques is that corrosion must...be applied is perhaps its greatest advantage. FTIR can be used to characterize solids, liquids , and gases using transmission or one of the many...2008. [14] . Y. Perera, “ ffect of hermal and Hygroscopic History on Physical Ageing of Organic Coatings,” Prog. Org. Coatings, vol. 44, no. 1, pp

  20. The potentialities of the complexation ultrafiltration technique for the decontamination of fission product contaminated aqueous effluents

    International Nuclear Information System (INIS)

    Thibert, V.

    1995-07-01

    Many nuclear researchers and industrial operators lay emphasis on improving the back end of the fuel cycle. A major problem concerns the liquid wastes generated by the reprocessing plant at La Hague, discharged into the sea after treatment in the Effluent Treatment Station (STE) 3), and which have become crucial matter. The activity of these wastes is well below the current legal limits, and is constantly decreasing these last years. To bring it close to zero, and ambitious goal, entails innovative new reprocessing techniques. We accordingly investigated the possibilities of complexation-ultrafiltration, a technique that uses water-soluble macromolecules to complex the target elements to be separated. We first achieved the strontium (II) separation with poly-acrylic and poly-sulfonic acids. The effects of pH and NaNO 3 concentration influence on Sr (II) complexation were studied. The Sr (II) complexation and concentration phases, followed by cation de-complexation to recover the polymer, were also taken into account. This research, combined with a potentiometric study of the polymers, offered a close understanding of the chemical systems involved, and of the operating conditions and limits of complexation-ultrafiltration. The laboratory results were also validated on a tangential ultrafiltration pilot plant. We then used complexation-ultrafiltration to treat a real effluent generated bu La Hague's STE 3 plant. This experiment demonstrated minimum 90 % decontamination of Sr (II) (with polyacrylate complexing agent), and also for 134-137 Cs (with simple ultrafiltration). The use of two polyamides allowed partial decontamination of the effluent for 60 Co and 106 Ru. This work therefore offers a global approach to complexation-ultrafiltration, from laboratory to pilot scale, on real and simulated effluents. The future of this technique relies chiefly on the ability to solve the problem of polymer recovery. In other respect, complexation-ultrafiltration clearly offers a

  1. The potential use of transmission tomographic techniques for the quality checking of cemented waste drums

    International Nuclear Information System (INIS)

    Huddleston, J.; Hutchinson, I.G.

    1986-01-01

    In support of the programme for the quality checking of encapsulated intermediate level waste, the possibilities of using transmission tomographic techniques for the determination of the physical properties of the drum are being considered. A literature survey has been undertaken and the possibilities of extracting data from video recordings of real time radiographs are considered. This work was carried out with financial support from British Nuclear Fuels plc and the UK Department of the Environment. In the DoE context, the results will be used in the formulation of Government Policy, but at this stage they do not necessarily represent Government Policy. (author)

  2. Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential

    NARCIS (Netherlands)

    Efremov, E.V.; Ariese, F.; Gooijer, C.

    2008-01-01

    In an extended introduction, key aspects of resonance Raman spectroscopy (RRS) such as enhanced sensitivity and selectivity are briefly discussed in comparison with normal RS. The analytical potential is outlined. Then achievements in different fields of research are highlighted in four sections,

  3. Assessment of Human Visual Performance with a Swept Evoked Potential Technique

    Science.gov (United States)

    1984-07-01

    ment are common (leg weakness, urinary incontinence ). More recently, psychophysical studies (Regan, Silver & Murray, 1977; Regan, Whitlock, Murray...effect diminution 13. Discrete potential generations (?) 14. Strobe stimulation responses 15. Random phase EEG 16. Phase sensitive detection...latency provide an objective assessment of neural pathway conduction in the visual system. However, aspects of the electrical waveform data which can

  4. Potential applications of rapid/elementary nonparametric statistical techniques (NST) to electrochemical problems

    International Nuclear Information System (INIS)

    Fahidy, Thomas Z.

    2009-01-01

    A major advantage of NST lies in the unimportance of the probability distribution of observations. In this paper, the sign test, the rank-sum test, the Kruskal-Wallis test, the Friedman test, and the runs test illustrate the potential of certain rapid NST for the evaluation of electrochemical process performance.

  5. Laboratory evaluation for a potential birth control diet for fruit fly sterilization insect technique (SIT)

    Science.gov (United States)

    A potential fruit fly steilizing diet was evaluated on fertility, mating, survival, and protein anaylsis for fruit fly species in Hawaii. Insects were continuously fed an agar diet with lufenuron(LFN) for an initial 7d after emergence and then switched to a control diet to simulate the actual field ...

  6. POTENTIAL AND PITFALLS OF CHROMATOGRAPHIC TECHNIQUES AND DETECTION MODES IN SUBSTANCE IDENTIFICATION FOR SYSTEMATIC TOXICOLOGICAL ANALYSIS

    NARCIS (Netherlands)

    DEZEEUW, RA; HARTSTRA, J; FRANKE, JP

    1994-01-01

    The potential and the constraints of thin-layer chromatography (TLC), gas chromatography (GC) and high-performance liquid chromatography (HPLC) towards substance identification, together with their detection modes, are considered. The latter include colour reactions on the plate, molecular masses

  7. Improved techniques in data analysis and interpretation of potential fields: examples of application in volcanic and seismically active areas

    Directory of Open Access Journals (Sweden)

    G. Florio

    2002-06-01

    Full Text Available Geopotential data may be interpreted by many different techniques, depending on the nature of the mathematical equations correlating specific unknown ground parameters to the measured data set. The investigation based on the study of the gravity and magnetic anomaly fields represents one of the most important geophysical approaches in the earth sciences. It has now evolved aimed both at improving of known methods and testing other new and reliable techniques. This paper outlines a general framework for several applications of recent techniques in the study of the potential methods for the earth sciences. Most of them are here described and significant case histories are shown to illustrate their reliability on active seismic and volcanic areas.

  8. Nanomedicine delivery: does protein corona route to the target or off road?

    Science.gov (United States)

    Maiolo, Daniele; Del Pino, Pablo; Metrangolo, Pierangelo; Parak, Wolfgang J; Baldelli Bombelli, Francesca

    2015-01-01

    Nanomedicine aims to find novel solutions for urgent biomedical needs. Despite this, one of the most challenging hurdles that nanomedicine faces is to successfully target therapeutic nanoparticles to cells of interest in vivo. As for any biomaterials, once in vivo, nanoparticles can interact with plasma biomolecules, forming new entities for which the name protein coronas (PCs) have been coined. The PC can influence the in vivo biological fate of a nanoparticle. Thus for guaranteeing the desired function of an engineered nanomaterial in vivo, it is crucial to dissect its PC in terms of formation and evolution within the body. In this contribution we will review the 'good' and 'bad' sides of the PC, starting from the scientific aspects to the technological applications.

  9. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives.

    Science.gov (United States)

    Zhang, Rui Xue; Wong, Ho Lun; Xue, Hui Yi; Eoh, June Young; Wu, Xiao Yu

    2016-10-28

    Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Exploration of the speleotherapeutic potential through the cellular and molecular biology techniques

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2011-02-01

    Full Text Available Objective: Exploring the speleotherapy effects on morphology and physiology of dermal and pulmonary fibroblast obtained from Wistar rats tissue in normal conditions and after induction of experimental “astma” awareness with ovalbumin. Materials and methods: Before initiation of dermal and pulmonary fibroblast cultures, 60 of Wistar rats 75-100 g were divided into two groups: control and sensitized with ovalalbumin. 10 animals of each group were sent to Cacica and Dej salt mines and maintained in a speleotherapy regime. Another 10 animals in each group were monitored separately in INRMFB Biobase . Dermal and pulmonary fibroblast cultures were initiated by enzymatic techniques from appropriate tissue taken of each group Wistar rats. Morphological monitoring was done by phase contast microscopy; biochemical and molecular changes of cultures obtained from animals treated speleothropic compared to control, was experimental establised by electrophoresis and Western Blotting techniques.Results: Experimental data revealed the expression of several proteins after the speleotherapeutic treatment. These data were analysed compared with control, using a specific software.Conclusions: Speleotherapeutic treatment of Wistar rats caused significant differences in morphology and protein expression of dermal and pulmonary fibroblatst grown in the laboratory. These differences support the protective effects of speleotherapy compared with data obtained from animals untreated and sensitized with ovalbumin, having induced experimental asthma status.

  11. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.

    Science.gov (United States)

    Yan, Deguang; Nguyen, Nam-Trung; Yang, Chun; Huang, Xiaoyang

    2006-01-14

    We have demonstrated a transient micro particle image velocimetry (micro-PIV) technique to measure the temporal development of electroosmotic flow in microchannels. Synchronization of different trigger signals for the laser, the CCD camera, and the high-voltage switch makes this measurement possible with a conventional micro-PIV setup. Using the transient micro-PIV technique, we have further proposed a method on the basis of inertial decoupling between the particle electrophoretic motion and the fluid electroosmotic flow to determine the electrophoretic component in the particle velocity and the zeta potential of the channel wall. It is shown that using the measured zeta potentials, the theoretical predictions agree well with the transient response of the electroosmotic velocities measured in this work.

  12. Measurement of soil water erosion in Africa: the potential support provided by nuclear techniques

    Science.gov (United States)

    Mabit, Lionel

    2010-05-01

    Conservation of soil and water resources has become a major agronomic and environmental concern. Degradation phenomena, such as erosion, desertification and salinization affect 65% of soils worldwide. Soil degradation is currently affecting 1.9 billion hectares and is increasing at a rate of 5 to 7 million hectares each year. Almost 50% of 133 million ha degraded soils by overexploitation are located in Africa. The degradation of arable lands affects especially arid areas with poor vegetation cover and tropical areas with high intensity rainfall. Water erosion is by far the most common type of land degradation in Africa. Accelerated erosion decreases soil productivity, increases sedimentation and is related to environmental pollution problems in agro-ecosystems. To control soil erosion there is a need to assess the impact of major land use and the effectiveness of specific soil conservation technologies using various approaches. Effective erosion control starts with the knowledge of soil erosion rates and mechanisms. In Africa, various research projects on water erosion have been implemented involving different conventional techniques such as remote sensing, morphometric investigation, sediment transport models and sediment loading measurements, runoff plots and rainfall erosivity measurements. However, only limited quantitative data on erosion and sedimentation magnitude under African agroenvironmental condition are available. Traditional monitoring and modeling techniques for soil water erosion require many parameters and years of measurements of (inter-annual and mid-term) climatic variability and cropping practices. Conventional erosion and sedimentation methods are limited to provide mid-term trends in soil erosion, however fallout radionuclides (FRN) - e.g. 137-Cs, 210-Pb and 7-Be - have proven to be very powerful tools to trace soil erosion and sedimentation within the landscape from plot to basin scale. FRN techniques allow the estimation of short and

  13. Potentials of Optical Damage Assessment Techniques in Automotive Crash-Concepts composed of FRP-Steel Hybrid Material Systems

    Science.gov (United States)

    Dlugosch, M.; Spiegelhalter, B.; Soot, T.; Lukaszewicz, D.; Fritsch, J.; Hiermaier, S.

    2017-05-01

    With car manufacturers simultaneously facing increasing passive safety and efficiency requirements, FRP-metal hybrid material systems are one way to design lightweight and crashworthy vehicle structures. Generic automotive hybrid structural concepts have been tested under crash loading conditions. In order to assess the state of overall damage and structural integrity, and primarily to validate simulation data, several NDT techniques have been assessed regarding their potential to detect common damage mechanisms in such hybrid systems. Significant potentials were found particularly in combining 3D-topography laser scanning and X-Ray imaging results. Ultrasonic testing proved to be limited by the signal coupling quality on damaged or curved surfaces.

  14. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques

    OpenAIRE

    Magesh, N.S.; Chandrasekar, N.; Soundranayagam, John Prince

    2012-01-01

    Integration of remote sensing data and the geographical information system (GIS) for the exploration of groundwater resources has become a breakthrough in the field of groundwater research, which assists in assessing, monitoring, and conserving groundwater resources. In the present paper, various groundwater potential zones for the assessment of groundwater availability in Theni district have been delineated using remote sensing and GIS techniques. Survey of India toposheets and IRS-1C satell...

  15. In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers

    Directory of Open Access Journals (Sweden)

    Li D

    2012-05-01

    Full Text Available Di Li,1,2,* Jian Xun Ding,1,3,* Zhao Hui Tang,1 Hai Sun,1 Xiu Li Zhuang,1 Jing Zhe Xu,2 Xue Si Chen1 1Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 2Department of Chemistry, Yanbian University, Yanji, 3Graduate University of Chinese Academy of Sciences, Beijing, China *These authors contributed equally to this workAbstract: Four monomethoxy poly(ethylene glycol-poly(L-lactide-co-glycolide2 (mPEG-P(LA-co-GA2 copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with double hydroxyl functionalized mPEG (mPEG-(OH2 as macroinitiator and stannous octoate as catalyst. The copolymers self-assembled into nanoscale micellar/vesicular aggregations in phosphate buffer at pH 7.4. Doxorubicin (DOX, an anthracycline anticancer drug, was loaded into the micellar/vesicular nanoparticles, yielding micellar/vesicular nanomedicines. The in vitro release behaviors could be adjusted by content of hydrophobic polyester and pH of the release medium. In vitro cell experiments showed that the intracellular DOX release could be adjusted by content of P(LA-co-GA, and the nanomedicines displayed effective proliferation inhibition against Henrietta Lacks’s cells with different culture times. Hemolysis tests indicated that the copolymers were hemocompatible, and the presence of copolymers could reduce the hemolysis ratio of DOX significantly. These results suggested that the novel anticancer nanomedicines based on DOX and amphiphilic Y-shaped copolymers were attractive candidates as tumor tissular and intracellular targeting drug delivery systems in vivo, with enhanced stability during circulation and accelerated drug release at the target sites.Keywords: amphiphilic Y-shaped copolymer, anticancer nanomedicine, cellular proliferation inhibition, doxorubicin

  16. Nanomedicine in the development of drugs for poverty-related diseases

    CSIR Research Space (South Africa)

    Hayeshi, R

    2012-01-01

    Full Text Available Everolimus HCC7 Everolimus TSC AML5 Everolimus ER + & HER2+ Breast Cancer Everolimus Gastric cancer, Lymphoma Pasireotideg Acromegaly and Carcinoid Nilotinib GIST6 & cKIT Melanoma Panobinostatc Multiple Myeloma PHASE III Phase 2 Phase 3...Nanomedicine in the Development of Drugs 3for Poverty-Related Diseases 4Rose Hayeshi, Boitumelo Semete, Lonji Kalombo, Lebogang Katata, 5Yolandy Lemmer, Paula Melariri, Belle Nyamboli, and Hulda Swai 6Abbreviations ACTs 7Artemisinin-based combination...

  17. Nanomedicine for cancer therapy from chemotherapeutic to hyperthermia-based therapy

    CERN Document Server

    Kumar, Piyush

    2017-01-01

    This Brief focuses on the cancer therapy available till date, from conventional drug delivery to nanomedicine in clinical trial. In addition, it reports on future generation based nanotherapeutics and cancer theranostic agent for effective therapeutic diagnosis and treatment. Breast cancer was chosen as the model system in this review. The authors give emphasis to multiple drug resistance (MDR) and its mechanism and how to overcome it using the nanoparticle approach. .

  18. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques

    Directory of Open Access Journals (Sweden)

    I.P. Senanayake

    2016-01-01

    Full Text Available The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources. Therefore, management of available groundwater resources is critical, to fulfil potable water requirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Hambantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, lithology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49% of Ambalantota area.

  19. Time-lapse analysis of potential cellular responsiveness to Johrei, a Japanese healing technique

    OpenAIRE

    Taft, Ryan; Moore, Dan; Yount, Garret

    2005-01-01

    Abstract Background Johrei is an alternative healing practice which involves the channeling of a purported universal healing energy to influence the health of another person. Despite little evidence to support the efficacy of such practices the use of such treatments is on the rise. Methods We assessed cultured human cancer cells for potential responsiveness to Johrei treatment from a short distance. Johrei treatment was delivered by practitioners who participated in teams of two, alternating...

  20. Supporting the potential of quantitative ultrasonic techniques for the evaluation of platelet concentration

    Science.gov (United States)

    Villamarín, J. A.; Jiménez, Y. M.; Molano, L. Tatiana; Gutierrez, W. Edgar; Londoño, L. Fernando; Gutierrez, D. A.

    2017-11-01

    This article describes the results obtained by making use of a non-destructive, non-invasive ultrasonic system for the acoustic characterization of bovine plasma rich in platelets using digital signal processing techniques. This study includes computational methods based on acoustic spectrometry estimation and experimental measurements of the speed of sound in blood plasma from different samples analyzed, using an ultrasonic field with resonance frequency of 5 MHz. The results showed that the measurements on ultrasonic signals can contribute to the hematological predictions based on the linear regression model applied to the relationship between experimental ultrasonic parameters calculated and platelet concentration, indicating a growth rate of 1 m/s for each 0.90 x103 platelet per mm3. On the other hand, the attenuation coefficient presented changes of 20% in the platelet concentration using a resolution of 0.057 dB/cm MHz.

  1. Palatal approach of anterior superior alveolar injection technique may not be potentially useful in periodontal procedures

    Directory of Open Access Journals (Sweden)

    Pragathi Raghavendra Bhat

    2016-01-01

    Full Text Available Background: The palatal approach of anterior superior alveolar (P-ASA using WAND injection was reported to effectively provide a profound bilateral maxillary anesthesia of the soft tissue of anterior one-third of the palate and facial gingivae extending from canine to canine which lasted for more than an hour thus making it ideal for scaling root planing and minor periodontal procedures in the anterior maxilla. Our study suggests that the conventional P-ASA injection is of very short duration and the extent of anesthesia was not profound and consistent. This has not been reported earlier in the literature. Materials and Methods: Thirty-five cases (20 males and 15 females, who underwent scaling, root planing and minor periodontal surgical procedures such as abscess drainage, gingivectomy, and frenectomy in the maxillary anterior region in the age range of 19–45 years was assessed for the efficacy of the P-ASA injection. After the administration of the P-ASA injection, the subjective and the objective symptoms were used to evaluate the extent and duration of the anesthesia at 10, 15, and 20 min. Results: This study suggests that the conventional P-ASA injection technique does not provide anesthesia for more than 20 min. Wilcoxon matched pairs test was used to compare the effect of anesthesia at the different time intervals and the results were found to be statistically significant (P < 0.05. Conclusions: The conventional P-ASA injection technique is of very short duration and does not demonstrate effectiveness in periodontal surgery of the anterior maxilla.

  2. In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers

    Science.gov (United States)

    Li, Di; Ding, Jian Xun; Tang, Zhao Hui; Sun, Hai; Zhuang, Xiu Li; Xu, Jing Zhe; Chen, Xue Si

    2012-01-01

    Four monomethoxy poly(ethylene glycol)-poly(L-lactide-co-glycolide)2 (mPEG-P( LA-co-GA)2) copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with double hydroxyl functionalized mPEG (mPEG-(OH)2) as macroinitiator and stannous octoate as catalyst. The copolymers self-assembled into nanoscale micellar/vesicular aggregations in phosphate buffer at pH 7.4. Doxorubicin (DOX), an anthracycline anticancer drug, was loaded into the micellar/vesicular nanoparticles, yielding micellar/vesicular nanomedicines. The in vitro release behaviors could be adjusted by content of hydrophobic polyester and pH of the release medium. In vitro cell experiments showed that the intracellular DOX release could be adjusted by content of P(LA-co-GA), and the nanomedicines displayed effective proliferation inhibition against Henrietta Lacks’s cells with different culture times. Hemolysis tests indicated that the copolymers were hemocompatible, and the presence of copolymers could reduce the hemolysis ratio of DOX significantly. These results suggested that the novel anticancer nanomedicines based on DOX and amphiphilic Y-shaped copolymers were attractive candidates as tumor tissular and intracellular targeting drug delivery systems in vivo, with enhanced stability during circulation and accelerated drug release at the target sites. PMID:22701317

  3. Current Status and Future Direction of Nanomedicine: Focus on Advanced Biological and Medical Applications.

    Science.gov (United States)

    Kim, Eun-Mi; Jeong, Hwan-Jeong

    2017-06-01

    Nanotechnology is the engineering and manipulation of materials and devices with sizes in the nanometer range. Colloidal gold, iron oxide nanoparticles and quantum dot semiconductor nanocrystals are examples of nanoparticles, with sizes generally ranging from 1 to 20 nm. These nanotechnologies have been researched tremendously in the last decade and this has led to a new area of "nanomedicine" which is the application of nanotechnology to human health-care for diagnosis, monitoring, treatment, prediction and prevention of diseases. Recently progress has been made in overcoming some of the difficulties in the human use of nanomedicines. In the mid-1990s, Doxil was approved by the FDA, and now various nanoconstructs are on the market and in clinical trials. However, there are many obstacles in the human application of nanomaterials. For translation to clinical use, a detailed understanding is needed of the chemical and physical properties of particles and their pharmacokinetic behavior in the body, including their biodistribution, toxicity, and biocompatibility. In this review, we provide a broad introduction to nanomedicines and discuss the preclinical and clinical trials in which they have been evaluated.

  4. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Hibbitts, Alan; O'Leary, Cian

    2018-02-23

    In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.

  5. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Alan Hibbitts

    2018-02-01

    Full Text Available In a recent report, the World Health Organisation (WHO classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.

  6. Nanomedicine applied to translational oncology: A future perspective on cancer treatment.

    Science.gov (United States)

    Bregoli, Lisa; Movia, Dania; Gavigan-Imedio, James D; Lysaght, Joanne; Reynolds, John; Prina-Mello, Adriele

    2016-01-01

    The high global incidence of cancer is associated with high rates of mortality and morbidity worldwide. By taking advantage of the properties of matter at the nanoscale, nanomedicine promises to develop innovative drugs with greater efficacy and less side effects than standard therapies. Here, we discuss both clinically available anti-cancer nanomedicines and those en route to future clinical application. The properties, therapeutic value, advantages and limitations of these nanomedicine products are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies. The main regulatory challenges toward the translation of innovative, clinically effective nanotherapeutics are discussed, with a view to improving current approaches to the clinical management of cancer. Ultimately, it becomes clear that the critical steps for clinical translation of nanotherapeutics require further interdisciplinary and international effort, where the whole stakeholder community is involved from bench to bedside. From the Clinical Editor: Cancer is a leading cause of mortality worldwide and finding a cure remains the holy-grail for many researchers and clinicians. The advance in nanotechnology has enabled novel strategies to develop in terms of cancer diagnosis and therapy. In this concise review article, the authors described current capabilities in this field and outlined comparisons with existing drugs. The difficulties in bringing new drugs to the clinics were also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Matrigel alters the pathophysiology of orthotopic human breast adenocarcinoma xenografts with implications for nanomedicine evaluation.

    Science.gov (United States)

    Shuhendler, Adam J; Prasad, Preethy; Cai, Ping; Hui, Kelvin K W; Henderson, Jeffrey T; Rauth, Andrew M; Wu, Xiao Yu

    2013-08-01

    Matrigel, a mouse sarcoma-derived basement membrane protein mixture, is frequently used to facilitate human tumor xenograft growth in rodents. Despite its known effects on tumor growth and metastasis, its impact on tumor pathophysiology and preclinical evaluation of nanomedicines in tumor xenografts has not been reported previously. Herein bilateral MDA435 tumors were established orthotopically with (Mat+) or without (Mat-) co-injection of Matrigel. Tumor perfusion, morphology and nanoparticle retention were evaluated. As compared to Mat- tumors, Mat+tumors exhibited enhanced vascular perfusion and lymphatic flow, greater blood vessel and lymphatic growth within the tumor core, and more deformation and collapse of lymphatics in tumor-associated lymph nodes. These changes were accompanied by reduced nanoparticle retention in Mat+tumors. The results suggest that Matrigel is not a passive medium for tumor growth, but rather significantly alters long-term tumor architecture. These findings have significant implications for the evaluation of therapeutic nanomedicine in xenograft mouse models. Matrigel is utilized in facilitating human tumor xenograft growth in rodents. The authors demonstrate that Matrigel is not a passive medium for tumor growth; instead it significantly alters long-term tumor architecture, with major implications in the evaluation of therapeutic nanomedicine in xenograft mouse models. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Nanotheranostics ˗ Application and Further Development of Nanomedicine Strategies for Advanced Theranostics

    Science.gov (United States)

    Muthu, Madaswamy S.; Leong, David Tai; Mei, Lin; Feng, Si-Shen

    2014-01-01

    Nanotheranostics is to apply and further develop nanomedicine strategies for advanced theranostics. This review summarizes the various nanocarriers developed so far in the literature for nanotheranostics, which include polymer conjugations, dendrimers, micelles, liposomes, metal and inorganic nanoparticles, carbon nanotubes, and nanoparticles of biodegradable polymers for sustained, controlled and targeted co-delivery of diagnostic and therapeutic agents for better theranostic effects with fewer side effects. The theranostic nanomedicine can achieve systemic circulation, evade host defenses and deliver the drug and diagnostic agents at the targeted site to diagnose and treat the disease at cellular and molecular level. The therapeutic and diagnostic agents are formulated in nanomedicine as a single theranostic platform, which can then be further conjugated to biological ligand for targeting. Nanotheranostics can also promote stimuli-responsive release, synergetic and combinatory therapy, siRNA co-delivery, multimodality therapies, oral delivery, delivery across the blood-brain barrier as well as escape from intracellular autophagy. The fruition of nanotheranostics will be able to provide personalized therapy with bright prognosis, which makes even the fatal diseases curable or at least treatable at the earliest stage. PMID:24723986

  9. Analysis of Self-Potential Response beyond the Fixed Geometry Technique

    Science.gov (United States)

    Mahardika, Harry

    2018-03-01

    The self-potential (SP) method is one of the oldest geophysical methods that are still available for today’s application. Since its early days SP data interpretation has been done qualitatively until the emerging of the fixed geometry analysis that was used to characterize the orientation and the electric-dipole properties of a mineral ore structure. Through the expansion of fundamental theories, computational methods, field-and-lab experiments in the last fifteen years, SP method has emerge from its low-class reputation to become more respectable. It became a complementary package alongside electric-resistivity tomography (ERT) for detecting groundwater flow in the subsurface, and extends to the hydrothermal flow in geothermal areas. As the analysis of SP data becomes more quantitative, its potential applications become more diverse. In this paper, we will show examples of our current SP studies such as the groundwater flow characterization inside a fault area. Lastly we will introduce the application of the "active" SP method - that is the seismoelectric method - which can be used for 4D real-time monitoring systems.

  10. A Review of Techniques for Detection of Movement Intention Using Movement-Related Cortical Potentials

    Directory of Open Access Journals (Sweden)

    Aqsa Shakeel

    2015-01-01

    Full Text Available The movement-related cortical potential (MRCP is a low-frequency negative shift in the electroencephalography (EEG recording that takes place about 2 seconds prior to voluntary movement production. MRCP replicates the cortical processes employed in planning and preparation of movement. In this study, we recapitulate the features such as signal’s acquisition, processing, and enhancement and different electrode montages used for EEG data recoding from different studies that used MRCPs to predict the upcoming real or imaginary movement. An authentic identification of human movement intention, accompanying the knowledge of the limb engaged in the performance and its direction of movement, has a potential implication in the control of external devices. This information could be helpful in development of a proficient patient-driven rehabilitation tool based on brain-computer interfaces (BCIs. Such a BCI paradigm with shorter response time appears more natural to the amputees and can also induce plasticity in brain. Along with different training schedules, this can lead to restoration of motor control in stroke patients.

  11. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques

    Directory of Open Access Journals (Sweden)

    N.S. Magesh

    2012-03-01

    Full Text Available Integration of remote sensing data and the geographical information system (GIS for the exploration of groundwater resources has become a breakthrough in the field of groundwater research, which assists in assessing, monitoring, and conserving groundwater resources. In the present paper, various groundwater potential zones for the assessment of groundwater availability in Theni district have been delineated using remote sensing and GIS techniques. Survey of India toposheets and IRS-1C satellite imageries are used to prepare various thematic layers viz. lithology, slope, land-use, lineament, drainage, soil, and rainfall were transformed to raster data using feature to raster converter tool in ArcGIS. The raster maps of these factors are allocated a fixed score and weight computed from multi influencing factor (MIF technique. Moreover, each weighted thematic layer is statistically computed to get the groundwater potential zones. The groundwater potential zones thus obtained were divided into four categories, viz., very poor, poor, good, and very good zones. The result depicts the groundwater potential zones in the study area and found to be helpful in better planning and management of groundwater resources.

  12. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques

    Science.gov (United States)

    Mohamed, Elsayed Said; Belal, Abdelaziz; Shalaby, Adel

    2015-10-01

    This paper highlights the impacts of soil sealing on the agricultural soils in Nile Delta using remote sensing and GIS. The current work focuses on two aims. The first aim is to evaluate soil productivity lost to urban sprawl, which is a significant cause of soil sealing in Nile Delta. The second aim is to evaluate the Land Use and Land Cover Changes (LU LC) from 2001 to 2013 in El-Gharbia governorate as a case study. Three temporal data sets of images from two different sensors: Landsat 7 Enhanced Thematic Mapper (ETM+) with 30 m resolution acquired in 2001 and Landsat 8 acquired in 2013 with 30 m resolution, and Egypt sat acquired in 2010 with 7.8 m resolution, consequently were used. Four different supervised classification techniques (Maximum Likelihood (ML), Minimum Distance, Neural Networks (NN); and Support Vector Machine (SVM) were applied to monitor the changes of LULC in the investigated area. The results showed that the agricultural soils of the investigated area are characterized by high soil productivity depending on its chemical and physical properties. During 2010-2013, soil sealing took place on 1397 ha from the study area which characterized by soil productivity classes ranging between I and II. It is expected that the urban sprawl will be increased to 12.4% by 2020 from the study area, which means that additional 3400 ha of productive soils will be lost from agriculture. However, population growth is the most significant factor effecting urban sprawl in Nile Delta.

  13. The Potential of Acousto-Ultrasonic Techniques for Inspection of Baked Carbon Anodes

    Directory of Open Access Journals (Sweden)

    Moez Ben Boubaker

    2016-07-01

    Full Text Available High quality baked carbon anodes contribute to the optimal performance of aluminum reduction cells. However, the currently decreasing quality and increasing variability of anode raw materials (coke and pitch make it challenging to manufacture the anodes with consistent overall quality. Intercepting faulty anodes (e.g., presence of cracks and pores before they are set in reduction cells and deteriorate their performance is therefore important. This is a difficult task, even in modern and well-instrumented anode plants, because lab testing using core samples can only characterize a small proportion of the anode production due to the costly, time-consuming, and destructive nature of the analytical methods. In addition, these results are not necessarily representative of the whole anode block. The objective of this work is to develop a rapid and non-destructive method for quality control of baked anodes using acousto-ultrasonic (AU techniques. The acoustic responses of anode samples (sliced sections were analyzed using a combination of temporal features computed from AU signals and principal component analysis (PCA. The AU signals were found sensitive to pores and cracks and were able to discriminate the two types of defects. The results were validated qualitatively by submitting the samples to X-ray Computed Tomography (CT scan.

  14. Simulation of energy saving potential of a centralized HVAC system in an academic building using adaptive cooling technique

    International Nuclear Information System (INIS)

    Bhaskoro, Petrus Tri; Gilani, Syed Ihtsham Ul Haq; Aris, Mohd Shiraz

    2013-01-01

    Highlights: • We have simulated and validated the cooling loads of a multi-zone academic building, in a tropical region. • We have analyzed the effect of occupancy patterns on the cooling loads. • Adaptive cooling technique has been utilized to minimize the energy usage of HVAC system. • The results are promising and show a reduction of energy saving in the range of 20–30%. - Abstract: Application of adaptive comfort temperature as room temperature set points potentially reduce energy usage of the HVAC system during a cooling and heating period. The savings are mainly due to higher indoor temperature set point during hot period and lower indoor temperature set point during cold period than the recommended value. Numerous works have been carried out to show how much energy can be saved during cooling and heating period by applying adaptive comfort temperature. The previous work, however, focused on a continuous cooling load as found in many office and residential buildings. Therefore, this paper aims to simulate the energy saving potential for an academic glazed building in tropical Malaysian climate by developing adaptive cooling technique. A building simulation program (TRNSYS) was used to model the building and simulate the cooling load characteristic using current and proposed technique. Two experimental measurements were conducted and the results were used to validate the model. Finally, cooling load characteristic of the academic building using current and proposed technique were compared and the results showed that annual energy saving potential as much as 305,150 kW h can be achieved

  15. Vasoactive Intestinal Peptide Nanomedicine for the Management of Inflammatory Bowel Disease.

    Science.gov (United States)

    Jayawardena, Dulari; Anbazhagan, Arivarasu N; Guzman, Grace; Dudeja, Pradeep K; Onyuksel, Hayat

    2017-11-06

    was abrogated in VIP-SSM treated mice and not with free VIP. Furthermore, reduced protein and mRNA levels of the major chloride bicarbonate exchanger, down regulated in adenoma (DRA), seen with DSS was reversed with VIP-SSM, but not with the free peptide. Similarly, VIP-SSM treatment significantly reduced the elevated mRNA levels of pro-inflammatory cytokines and showed significant histologic recovery when compared to mice treated with free VIP. Therefore, these results demonstrated that as a single dose, the anti-inflammatory and antidiarrheal effects of VIP can be achieved effectively when administered as a nanomedicine. Therefore, we propose VIP-SSM to be developed as a potential therapeutic tool for treating ulcerative colitis, a type of IBD.

  16. Analysis of potential component cleaning techniques. Final report, July 6, 1992 - July 5, 1995

    International Nuclear Information System (INIS)

    Hess, D.W.

    1997-01-01

    Elevated temperature, elevated pressure water, supercritical carbon dioxide and helical resonator plasmas were investigated for potential use in surface cleaning. A surface analysis system consisting of X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy was used to evaluate surfaces exposed to water and supercritical carbon dioxide. Langmuir probe and silicon oxidation studies were used to evaluate the effect of oxygen plasmas on silicon surfaces. Silicon oxides were removed from silicon surfaces by water at temperatures above 260 degrees C and pressures above 2000 psi; silicon oxidation and simultaneous dissolution of the oxide grown occurred under these conditions. A new approach for in-situ monitoring of subcritical and supercritical fluid density was devised

  17. Potential of irradiation technique for development of convenience foods in India

    International Nuclear Information System (INIS)

    Bawa, A.S.; Vibhakara, H.S.

    2001-01-01

    Full text: One of the important applications of ionising radiation is in the processing and preservation of food articles. An enormous research effort has been directed towards biological testing of irradiated foods for the evaluation of their safety and wholesomeness. Food irradiation has demonstrated several safe technically and economically feasible applications. Radiation processing of foods has the potential to provide mankind with such benefits as elimination of toxic fumigants for insect disinfestation, extended shelf life for refrigerated products, elimination of food borne pathogens and parasites and to provide high quality packaged food with long shelf life at room temperature. Food irradiation has been legally permitted in India and regulation is in place for its commercialization and marketing of irradiated foods. Marked changes in the life style have significantly influenced the growth of convenience foods. Food irradiation is now considered as a safe process, so with increased demand for high quality convenience food, efforts are required to evaluate the effectiveness of irradiation in combination with other processing methods to enhance their safety and shelf life since convenience foods are here to stay and play an even more significant role in the market place in future. Notable progress has been made in many countries in the recent past in the application of low dose irradiation process as combination treatment, synergistically complimentarily. There is a great hope in accelerating the pace of progress in potential application of the irradiation processes to prevent food losses. In view of the sociological changes occurring at a fast pace in our society as well as increased industrialization there is an ample scope for the convenience and processed traditional foods. So with today's demand for high quality convenience foods it is high time that irradiation technology is considered evaluated and popularized for the same

  18. Evaluation of the rockburst potential in longwall coal mining using passive seismic velocity tomography and image subtraction technique

    Science.gov (United States)

    Hosseini, Navid

    2017-09-01

    Rockburst is a typical dynamic disaster in underground coal mines which its occurrences relate to the mechanical quality of coal seam and surrounding rock mass and also the condition of stress distribution. The main aim of this paper is to study the potential of rockburst in a longwall coal mine by using of passive seismic velocity tomography and image subtraction technique. For this purpose, first by mounting an array of receivers on the surface above the active panel, the mining-induced seismic data as a passive source for several continuous days were recorded. Then, the three-dimensional tomograms using simultaneous iteration reconstruction technique (SIRT) for each day are created and by employing the velocity filtering, the overstressed zones are detected. In addition, the two-dimensional seismic velocity tomograms in coal seam level by slicing the three-dimensional tomograms are obtained. Then the state of stress changes in successive days by applying the image subtraction technique on these two-dimensional tomograms is considered. The results show that the compilation of filtered three-dimensional tomograms and subtracted images is an appropriate approach for detecting the overstressed zones around the panel and subsequent evaluation of rockburst potential. The research conclusion proves that the applied approach in this study in combination with field observations of rock mass status can effectively identify the rockburst-prone areas during the mining operation and help to improve the safety condition.

  19. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation.

    Science.gov (United States)

    Vassilev, N; Vassileva, M; Lopez, A; Martos, V; Reyes, A; Maksimovic, I; Eichler-Löbermann, B; Malusà, E

    2015-06-01

    The massive application of chemical fertilizers to support crop production has resulted in soil, water, and air pollution at a global scale. In the same time, this situation escalated consumers' concerns regarding quality and safety of food production which, due to increase of fertilizer prices, have provoked corresponding price increase of food products. It is widely accepted that the only solution is to boost exploitation of plant-beneficial microorganisms which in conditions of undisturbed soils play a key role in increasing the availability of minerals that otherwise are inaccessible to plants. This review paper is focused on the employment of microbial inoculants and their production and formulation. Special attention is given to biotechniques that are not fully exploited as tools for biofertilizer manufacturing such as microbial co-cultivation and co-immobilization. Another emerging area includes biotechnological production and combined usage of microorganisms/active natural compounds (biostimulants) such as plant extracts and exudates, compost extracts, and products like strigolactones, which improve not only plant growth and development but also plant-microbial interactions. The most important potential and novel strategies in this field are presented as well as the tendencies that will be developed in the near future.

  20. Time-lapse analysis of potential cellular responsiveness to Johrei, a Japanese healing technique.

    Science.gov (United States)

    Taft, Ryan; Moore, Dan; Yount, Garret

    2005-01-24

    Johrei is an alternative healing practice which involves the channeling of a purported universal healing energy to influence the health of another person. Despite little evidence to support the efficacy of such practices the use of such treatments is on the rise. We assessed cultured human cancer cells for potential responsiveness to Johrei treatment from a short distance. Johrei treatment was delivered by practitioners who participated in teams of two, alternating every half hour for a total of four hours of treatment. The practitioners followed a defined set of mental procedures to minimize variability in mental states between experiments. An environmental chamber maintained optimal growth conditions for cells throughout the experiments. Computerized time-lapse microscopy allowed documentation of cancer cell proliferation and cell death before, during and after Johrei treatments. Comparing eight control experiments with eight Johrei intervention experiments, we found no evidence of a reproducible cellular response to Johrei treatment. Cell death and proliferation rates of cultured human cancer cells do not appear responsive to Johrei treatment from a short distance.

  1. Mosquito habitat and dengue risk potential in Kenya: alternative methods to traditional risk mapping techniques.

    Science.gov (United States)

    Attaway, David F; Jacobsen, Kathryn H; Falconer, Allan; Manca, Germana; Rosenshein Bennett, Lauren; Waters, Nigel M

    2014-11-01

    Outbreaks, epidemics and endemic conditions make dengue a disease that has emerged as a major threat in tropical and sub-tropical countries over the past 30 years. Dengue fever creates a growing burden for public health systems and has the potential to affect over 40% of the world population. The problem being investigated is to identify the highest and lowest areas of dengue risk. This paper presents "Similarity Search", a geospatial analysis aimed at identifying these locations within Kenya. Similarity Search develops a risk map by combining environmental susceptibility analysis and geographical information systems, and then compares areas with dengue prevalence to all other locations. Kenya has had outbreaks of dengue during the past 3 years, and we identified areas with the highest susceptibility to dengue infection using bioclimatic variables, elevation and mosquito habitat as input to the model. Comparison of the modelled risk map with the reported dengue epidemic cases obtained from the open source reporting ProMED and Government news reports from 1982-2013 confirmed the high-risk locations that were used as the Similarity Search presence cells. Developing the risk model based upon the bioclimatic variables, elevation and mosquito habitat increased the efficiency and effectiveness of the dengue fever risk mapping process.

  2. Mosquito habitat and dengue risk potential in Kenya: alternative methods to traditional risk mapping techniques

    Directory of Open Access Journals (Sweden)

    David F. Attaway

    2014-11-01

    Full Text Available Outbreaks, epidemics and endemic conditions make dengue a disease that has emerged as a major threat in tropical and sub-tropical countries over the past 30 years. Dengue fever creates a growing burden for public health systems and has the potential to affect over 40% of the world population. The problem being investigated is to identify the highest and lowest areas of dengue risk. This paper presents “Similarity Search”, a geospatial analysis aimed at identifying these locations with- in Kenya. Similarity Search develops a risk map by combining environmental susceptibility analysis and geographical infor- mation systems, and then compares areas with dengue prevalence to all other locations. Kenya has had outbreaks of dengue during the past 3 years, and we identified areas with the highest susceptibility to dengue infection using bioclimatic variables, elevation and mosquito habitat as input to the model. Comparison of the modelled risk map with the reported dengue epi- demic cases obtained from the open source reporting ProMED and Government news reports from 1982-2013 confirmed the high-risk locations that were used as the Similarity Search presence cells. Developing the risk model based upon the bio- climatic variables, elevation and mosquito habitat increased the efficiency and effectiveness of the dengue fever risk mapping process.

  3. Fourier Transform Infrared Spectroscopy: A Potential Technique for Noninvasive Detection of Spermatogenesis

    Science.gov (United States)

    Gilany, Kambiz; Pouracil, Roudabeh Sadat Moazeni; Sadeghi, Mohammad Reza

    2014-01-01

    Background The seminal plasma is an excellent source for noninvasive detection of spermatogenesis. The seminal plasma of normospermic and azoospermic men has been analyzed for detection of spermatogenesis. Methods Optical spectroscopy (Attenuated Total Reflectance-Infrared spectroscopy (ATR-IR) and Fourier Transform infrared spectroscopy (FT-IR) has been used to analyze the seminal plasma and the metabolome of seminal plasma for detection of spermatogenesis. Results The seminal plasma of normospermic and azoospermic men has been analyzed by ATR-IR. The results show that there is a pattern variation in the azoospermic men compared to normospermic men. However, the seminal plasma is too complex to show significant pattern variation. Therefore, the metabolome which is a subcomponent of the seminal plasma was analyzed. The seminal plasma metabolome of normospermic and azoospermic men has been analyzed by FT-IR. A significant pattern change was observed. The data combined with chemometrics analysis showed that significant changes are observed at metabolome level. Conclusion We suggest that FT-IR has the potential as a diagnostic tool instead of testicular biopsy. PMID:24523955

  4. Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland)

    Science.gov (United States)

    Obermann, A.; Kraft, T.; Larose, E.; Wiemer, S.

    2015-06-01

    The failures of two recent deep geothermal energy projects in Switzerland (Basel, 2006; St. Gallen, 2013) have again highlighted that one of the key challenges for the successful development and operation of deep underground heat exchangers is to control the risk of inducing potentially hazardous seismic events. In St. Gallen, after an injection test and two acid injections that were accompanied by a small number of micro-earthquakes (MLkick). The "killing" procedures that had to be initiated following standard drilling procedures led to a ML3.5 earthquake. With ambient seismic noise cross correlations from nine stations, we observe a significant loss of waveform coherence that we can horizontally and vertically constrain to the injection location of the fluid. The loss of waveform coherence starts with the onset of the fluid injections 4 days prior to the gas kick. We interpret the loss of coherence as a local perturbation of the medium. We show how ambient seismic noise analysis can be used to assess the aseismic response of the subsurface to geomechanical well operations and how this method could have helped to recognize the unexpected reservoir dynamics at an earlier stage than the microseismic response alone, allowed.

  5. Potential of ambient seismic noise techniques to monitor injection induced subsurface changes

    Science.gov (United States)

    Obermann, A.; Kraft, T.; Wiemer, S.

    2015-12-01

    The failures of two recent deep geothermal energy projects in Switzerland (Basel, 2006; St. Gallen, 2013) have again highlighted that one of the key challenges for the successful development and operation of deep underground heat exchangers is to control the risk of inducing potentially hazardous seismic events. In St. Gallen, after an injection test and two acid injections that were accompanied by a small number of micro-earthquakes (ML kick). The "killing" procedures that had to be initiated following standard drilling procedures led to a ML3.5 earthquake. With ambient seismic noise cross correlations from nine stations, we observe a significant loss of waveform coherence that we can horizontally and vertically constrain to the injection location of the fluid. The loss of waveform coherence starts with the onset of the fluid injections 4 days prior to the gas kick. We interpret the loss of coherence as a local perturbation of the medium. We show how ambient seismic noise analysis can be used to assess the aseismic response of the subsurface to geomechanical well operations and how this method could have helped to recognize the unexpected reservoir dynamics at an earlier stage than the microseismic response alone, allowed.

  6. Time-lapse analysis of potential cellular responsiveness to Johrei, a Japanese healing technique

    Directory of Open Access Journals (Sweden)

    Moore Dan

    2005-01-01

    Full Text Available Abstract Background Johrei is an alternative healing practice which involves the channeling of a purported universal healing energy to influence the health of another person. Despite little evidence to support the efficacy of such practices the use of such treatments is on the rise. Methods We assessed cultured human cancer cells for potential responsiveness to Johrei treatment from a short distance. Johrei treatment was delivered by practitioners who participated in teams of two, alternating every half hour for a total of four hours of treatment. The practitioners followed a defined set of mental procedures to minimize variability in mental states between experiments. An environmental chamber maintained optimal growth conditions for cells throughout the experiments. Computerized time-lapse microscopy allowed documentation of cancer cell proliferation and cell death before, during and after Johrei treatments. Results Comparing eight control experiments with eight Johrei intervention experiments, we found no evidence of a reproducible cellular response to Johrei treatment. Conclusion Cell death and proliferation rates of cultured human cancer cells do not appear responsive to Johrei treatment from a short distance.

  7. INTERPRETATION OF POTENTIAL INTERMITTENCE TITRATION TECHNIQUE EXPERIMENTS FOR VARIOUS Li-INTERCALATION ELECTRODES

    Directory of Open Access Journals (Sweden)

    M.D.Levi

    2002-01-01

    Full Text Available In this paper we compare two different approaches for the calculation of the enhancement factor Wi, based on its definition as the ratio of the chemical and the component diffusion coefficients for species in mixed-conduction electrodes, originated from the "dilute solution" or "lattice gas" models for the ion system. The former approach is only applicable for small changes of the ion concentration while the latter allows one to consider a broad range of intercalation levels. The component diffusion coefficient of lithium ions has been determined for a series of lithium intercalation anodes and cathodes. A new "enhancement factor" for the ion transport has been defined and its relations to the intercalation capacitance and the intercalation isotherm have been established. A correlation between the dependences of the differential capacitance and the partial ion conductivity on the potential has been observed. It is considered as a prove that the intercalation process is controlled by the availability of sites for Li-ion insertion rather than by the concurrent insertion of the counter-balancing electronic species.

  8. Fourier transform infrared spectroscopy: a potential technique for noninvasive detection of spermatogenesis.

    Science.gov (United States)

    Gilany, Kambiz; Pouracil, Roudabeh Sadat Moazeni; Sadeghi, Mohammad Reza

    2014-01-01

    The seminal plasma is an excellent source for noninvasive detection of spermatogenesis. The seminal plasma of normospermic and azoospermic men has been analyzed for detection of spermatogenesis. Optical spectroscopy (Attenuated Total Reflectance-Infrared spectroscopy (ATR-IR) and Fourier Transform infrared spectroscopy (FT-IR) has been used to analyze the seminal plasma and the metabolome of seminal plasma for detection of spermatogenesis. The seminal plasma of normospermic and azoospermic men has been analyzed by ATR-IR. The results show that there is a pattern variation in the azoospermic men compared to normospermic men. However, the seminal plasma is too complex to show significant pattern variation. Therefore, the metabolome which is a subcomponent of the seminal plasma was analyzed. The seminal plasma metabolome of normospermic and azoospermic men has been analyzed by FT-IR. A significant pattern change was observed. The data combined with chemometrics analysis showed that significant changes are observed at metabolome level. We suggest that FT-IR has the potential as a diagnostic tool instead of testicular biopsy.

  9. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    Science.gov (United States)

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  10. Respiratory-gated electrical impedance tomography: a potential technique for quantifying stroke volume

    Science.gov (United States)

    Arshad, Saaid H.; Murphy, Ethan K.; Halter, Ryan J.

    2016-03-01

    Telemonitoring is becoming increasingly important as the proportion of the population living with cardiovascular disease (CVD) increases. Currently used health parameters in the suite of telemonitoring tools lack the sensitivity and specificity to accurately predict heart failure events, forcing physicians to play a reactive versus proactive role in patient care. A novel cardiac output (CO) monitoring device is proposed that leverages a custom smart phone application and a wearable electrical impedance tomography (EIT) system. The purpose of this work is to explore the potential of using respiratory-gated EIT to quantify stroke volume (SV) and assess its feasibility using real data. Simulations were carried out using the 4D XCAT model to create anatomically realistic meshes and electrical conductivity profiles representing the human thorax and the intrathoracic tissue. A single 5-second period respiration cycle with chest/lung expansion was modeled with end-diastole (ED) and end-systole (ES) heart volumes to evaluate how effective EIT-based conductivity changes represent clinically significant differences in SV. After establishing a correlation between conductivity changes and SV, the applicability of the respiratory-gated EIT was refined using data from the PhysioNet database to estimate the number of useful end-diastole (ED) and end-systole (ES) heart events attained over a 3.3 minute period. The area associated with conductivity changes was found to correlate to SV with a correlation coefficient of 0.92. A window of 12.5% around peak exhalation was found to be the optimal phase of the respiratory cycle from which to record EIT data. Within this window, ~47 useable ED and ES were found with a standard deviation of 28 using 3.3 minutes of data for 20 patients.

  11. Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles.

    Science.gov (United States)

    Bai, Ru; Zhang, Lili; Liu, Ying; Li, Bai; Wang, Liming; Wang, Peng; Autrup, Herman; Beer, Christiane; Chen, Chunying

    2014-04-07

    Health impacts of inhalation exposure to engineered nanomaterials have attracted increasing attention. In this paper, integrated analytical techniques with high sensitivity were used to study the brain translocation and potential impairment induced by intranasally instilled copper nanoparticles (CuNPs). Mice were exposed to CuNPs in three doses (1, 10, 40 mg/kg bw). The body weight of mice decreased significantly in the 10 and 40 mg/kg group (ptechniques for systematic investigations is a promising direction to better understand the biological activities of nanomaterials. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Metallomics investigations on potential binding partners of methylmercury in tuna fish muscle tissue using complementary mass spectrometric techniques.

    Science.gov (United States)

    Kutscher, Daniel J; Sanz-Medel, Alfredo; Bettmer, Jörg

    2012-08-01

    In this study, the binding behaviour of methylmercury (MeHg(+)) towards proteins is investigated. Free sulfhydryl groups in cysteine residues are known to be the most likely binding partners, due to the high affinity of mercury to sulphur. However, detailed knowledge about discrete binding sites in living organisms has been so far scarce. A metallomics approach using different methods like size-exclusion chromatography (SEC) and liquid chromatography (LC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) as well as complementary mass spectrometric techniques (electrospray ionisation-tandem mass spectrometry, ESI-MS/MS) are combined to sequence and identify possible target proteins or peptides after enzymatic digestion. Potential targets for MeHg(+) in tuna fish muscle tissue are investigated using the certified reference material CRM464 as a model tissue. Different extraction procedures appropriate for the extraction of proteins are evaluated for their efficiency using isotope dilution analysis for the determination of total Hg in the extracts. Due to the high chemical stability of the mercury-sulphur bond, the bioconjugate can be quantitatively extracted with a combination of tris(hydroxymethyl)aminomethane (TRIS) and sodium dodecyl sulphate (SDS). Using different separation techniques such as SEC and SDS-polyacrylamide gel electrophoresis (SDS-PAGE) it can be shown that major binding occurs to a high-molecular weight protein (M(w) > 200 kDa). A potential target protein, skeletal muscle myosin heavy chain, could be identified after tryptic digestion and capillary LC-ESI-MS/MS.

  13. Comparison and validation of classical and modified techniques for studies of genotoxic potential of peptides used in radiopharmaceuticals production

    International Nuclear Information System (INIS)

    Ocampo, Ivette Zegarra

    2016-01-01

    The in vitro micronucleus frequency test (FMN) is one method of choice in the development of toxicological safety tests. For its development, this work carried out modifications of the conventional technique regarding the cultivation substrate of the cells and staining for microscopy evaluation. The cell cultures were grown directly on slides, and staining was performed with acridine orange (AO) instead of the classical Giemsa staining. Positive controls were used for potential clastogenic (mitomycin C, benzo [a] pyrene) and aneugenic (colchicine) effects, recommended by the OECD (Organization for Economic Cooperation and Development). As test molecules, compounds were used whose association with radioactive isotopes make up radiopharmaceuticals produced by IPEN. DOTATATE and Ubiquicidine were tested at different concentrations proportional to the maximum concentrations used in adult patients. Therefore, corresponding to the concentrations dilutions were performed 0.1X, 1X and 10X cultures and CHO-KI cells were exposed to these concentrations for cytotoxicity assays and FMN. None of the concentrations induced significant cytotoxicity. For FMN analysis, it was recorded every mononuclear cells and multinucleated up to 1000 counts binucleated cells with or without micronuclei. In this way it was possible to analyze the frequency of micronuclei and the proliferation index (CBPI). The concentrations of the test drug (0.1X, 1X and 10X) did not induce aggression to cells. None of the concentrations showed cytotoxicity and genotoxicity, or any changes in cell cycle compared to controls, demonstrating their safety according to the parameters required by international standards. The results also showed good agreement between the comparison of readings by independent analysts, with minor discrepancies debatable, and good correlation comparing to classical staining technique. Thus the changes made in FMN technique showed potential to fulfill all requirements as preclinical

  14. Leishman Giemsa cocktail as a new, potentially useful cytological technique comparable to Papanicolaou staining for oral cancer diagnosis.

    Science.gov (United States)

    Belgaumi, Ui; Shetty, P

    2013-01-01

    Papanicolaou staining is commonly used for staining exfoliative cytology smears with Romanowsky stains being used sparingly. Leishman Giemsa (LG) cocktail, being a relatively new staining technique, has not been used in exfoliative cytology. This easy, cost-effective and one-step technique warrants further study because of its potential application in screening of oral cancer. To study and evaluate the diagnostic efficiency and reliability of Leishman Giemsa (LG) cocktail in comparison with Papanicolaou (Pap) and May-Grünwald Giemsa (MGG) stains in exfoliated cells for the detection of oral squamous cell carcinoma. Three smears were prepared from each 100 controls (buccal mucosa) and 100 patients, clinically diagnosed with oral squamous cell carcinoma and stained with Pap, MGG and LG cocktail stains. The slides were evaluated for the staining characteristics of nucleus and cytoplasm. The diagnostic efficiency of each stain was evaluated by comparing the cytologic diagnosis of each stain with the histopathological diagnosis. Finally, the diagnostic reliability was evaluated by comparing the three stains with each other and the histologic diagnosis. The data were statistically evaluated with Friedman test, Wilcoxon sign rank test and McNemar chi square test using SPSS15 software. The results from the histologically confirmed cases of squamous cell carcinoma and the number of cases diagnosed by Pap and LG cocktail were almost identical and both were superior to MGG. The P value obtained for the confirmed cases of squamous cell carcinoma in comparison for Pap vs MGG was 0.001, MGG vs LG cocktail was 0.001 and LG cocktail vs Pap was 0.157. Hence, no statistical significant difference was observed between the diagnostic ability of Pap and LG cocktail stains. LG cocktail is an easy, cost-effective and one-step technique comparable to Pap staining; however, it warrants further study in its potential application in screening of oral cancer.

  15. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. -g.; Zhou, G.; Yang, P.; Liu, Y.; Sun, B.; Huynh, T.; Meng, H.; Zhao, L.; Xing, G.; Chen, C.; Zhao, Y.; Zhou, R.

    2012-09-18

    Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C82(OH)22 can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C82(OH)22 effectively blocks tumor growth in human pancreatic cancer xenografts in a nude mouse model. Enzyme activity assays also show Gd@C82(OH)22 not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C82(OH)22–MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C82(OH)22 inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C82(OH)22 exhibits specific binding modes near the ligand-specificity loop S1', thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C82(OH)22 a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Finally, our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.

  16. Progress and potential of nanomedicine to address infectious diseases of poverty

    CSIR Research Space (South Africa)

    Hayeshi, R

    2013-11-01

    Full Text Available Nanotechnology is a multidisciplinary field that encompasses the design, manipulation, characterization, production, and application of structures, devices, and systems at the nanometer scale range (~1–500 nm), which present unique and/or superior...

  17. Antioxidant potential of different melatonin-loaded nanomedicines in an experimental model of sepsis.

    Science.gov (United States)

    Li Volti, Giovanni; Musumeci, Teresa; Pignatello, Rosario; Murabito, Paolo; Barbagallo, Ignazio; Carbone, Claudia; Gullo, Antonino; Puglisi, Giovanni

    2012-06-01

    Oxidative stress has been shown to play a major role in the complex pathophysiological processes leading to organ failure during sepsis. The aim of the present research was to evaluate the effect of different melatonin nanoparticle (NP) carriers in an experimental animal model of sepsis. Poly-D,L-lactide-co-glycolide (PLGA [NP-A]) and polyethylene glycol-co-(poly-D,L-lactide-co-glycolide) (PLGA-PEG [NP-B]) were used to obtain melatonin-loaded nanocarriers (10 mg/kg). Oxidative stress was measured in tissue homogenates by measuring heme oxygenase-1 (HO-1) expression, total thiol groups and lipid hydroperoxides (LOOH). In vitro NPs showed a long lag time followed by a controlled release of melatonin. All the different melatonin formulations restored total thiol group levels to those of controls in all the examined organs, with no significant changes among them. Both melatonin NP formulations significantly decreased LOOH levels when compared with sepsis vehicle animals. The stealth formulation NP-B was able to produce a more significant reduction in LOOH levels in the heart, lung and liver when compared with NP-A. No significant changes were observed between the two NP formulations in the kidney. Interestingly, HO-1 expression was differently affected following treatment with various melatonin formulations. The NP-B formulation was more effective in inducing HO-1 protein compared with free melatonin and NP-A, with the exception of the kidney. Taken together, our results show that melatonin possesses a significant antioxidant activity during sepsis and that it is possible to improve this ability by delivering the compound with specific drug delivery systems.

  18. Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk.

    Science.gov (United States)

    Gunasekera, T S; Veal, D A; Attfield, P V

    2003-08-25

    Monitoring the quality and safety of milk requires careful analysis of microbial and somatic cell loading. Our aim was to demonstrate proof of the principle that flow cytometry (FCM), coupled with fluorescence techniques for distinguishing between cell types, could potentially be employed in a wide variety of biological assays relevant to the dairy industry. To this end, we studied raw milk samples and ultraheat-treated milk, into which known numbers of bacteria or mouse cells were inoculated. For bacterial analyses, protein and lipids were removed, whereas only centrifugal lipid clearing was needed for somatic cell analyses. Cleared samples were stained with fluorescent dyes or with bacterial-specific fluorescent-labeled oligonucleotides and analyzed by FCM. A fluoresceinated peptide nucleic acid probe enabled efficient enumeration of bacteria in milk. Dual staining of samples with fluorescent dyes that indicate live (5-cyanol-2,3-ditolyl tetrazolium chloride, CTC or SYTO 9) or damaged cells (oxonol or propidium iodide, PI) enabled determination of viable bacteria in milk. Gram-positive and -negative bacteria were distinguished using hexidium iodide and SYTO 13 in dual staining of cleared milk samples. An FCM-based method gave a good correlation (r=0.88) with total microscopic counts of somatic cells in raw milk. The FCM method also correlated strongly (r=0.98) with the standard Fossomatic method for somatic cell detection. We conclude that FCM, coupled with fluorescence staining techniques, offers potentially diverse and rapid approaches to biological safety and quality testing in the dairy industry. Potential application of flow cytometers to a broad range of assays for milk biological quality should make this instrumentation more attractive and cost effective to the dairy industry and indeed the broader food industry.

  19. Nano-Medicine as a Newly Emerging Approach to Combat Human Immunodeficiency Virus (HIV).

    Science.gov (United States)

    Saravanan, Muthupandian; Asmalash, Tsehaye; Gebrekidan, Atsebaha; Gebreegziabiher, Dawit; Araya, Tadele; Hilekiros, Haftamu; Barabadi, Hamed; Ramanathan, Kumaresan

    2018-01-01

    Human Immuno deficiency Virus (HIV) infection has attained pandemic level due to its complexity on both the HIV infection cycle and on the targets for drug delivery. This limits medication and consequently requires prominent and promising drug delivery systems to be invented. Notably, various nanomaterial have been studied to enhance effective delivery of the antiretroviral drugs for HIV prevention, diagnosis and cure. Some of these nanomaterials are liposomes, dendrimers, inorganic nanoparticles (NPs), polymeric micelles, natural and synthetic polymers. The present study aimed to review the recent progress in nanomedicine as a newly emerging approach to combat HIV. The scientific data bases reviewed carefully to find both in vitro and in vivo studies representing the role of nonomedicine to combat HIV. Impressively, nanomedicine drug delivery systems have been commendable in various models ranging from in vitro to in vivo. It gives notion about the application of nano-carrier systems for the delivery of anti-retroviral drugs which ideally should provide better distribution to surpass Blood- Brain Barrier (BBB) and other tissue or to overcome innate barriers such as mucus. Considerably, nanomaterials such as dendrimers and many other inorganic NPs such as silver, gold, iron, and zinc can be used for HIV treatment by interfering in varying stages of HIV life cycle. Furthermore, NPs could best act as adjuvants, convoys during vaccine delivery, as intra-vaginal microbicides and for the early detection of HIV-1 p24 antigen. Nanomedicine may be a proper approach in HIV/AIDS therapy by means of offering lower dosage and side effect, better patient-to-patient consistency, bioavailability, target specificity and improved sensitivity of HIV diagnosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications.

    Science.gov (United States)

    Kannan, R M; Nance, E; Kannan, S; Tomalia, D A

    2014-12-01

    Dendrimers are discrete nanostructures/nanoparticles with 'onion skin-like' branched layers. Beginning with a core, these nanostructures grow in concentric layers to produce stepwise increases in size that are similar to the dimensions of many in vivo globular proteins. These branched tree-like concentric layers are referred to as 'generations'. The outer generation of each dendrimer presents a precise number of functional groups that may act as a monodispersed platform for engineering favourable nanoparticle-drug and nanoparticle-tissue interactions. These features have attracted significant attention in medicine as nanocarriers for traditional small drugs, proteins, DNA/RNA and in some instances as intrinsically active nanoscale drugs. Dendrimer-based drugs, as well as diagnostic and imaging agents, are emerging as promising candidates for many nanomedicine applications. First, we will provide a brief survey of recent nanomedicines that are either approved or in the clinical approval process. This will be followed by an introduction to a new 'nanoperiodic' concept which proposes nanoparticle structure control and the engineering of 'critical nanoscale design parameters' (CNDPs) as a strategy for optimizing pharmocokinetics, pharmocodynamics and site-specific targeting of disease. This paradigm has led to the emergence of CNDP-directed nanoperiodic property patterns relating nanoparticle behaviour to critical in vivo clinical translation issues such as cellular uptake, transport, elimination, biodistribution, accumulation and nanotoxicology. With a focus on dendrimers, these CNDP-directed nanoperiodic patterns are used as a strategy for designing and optimizing nanoparticles for a variety of drug delivery and imaging applications, including a recent dendrimer-based theranostic nanodevice for imaging and treating cancer. Several emerging preclinical dendrimer-based nanotherapy concepts related to inflammation, neuro-inflammatory disorders, oncology and infectious

  1. Nanomedicines for chronic non-infectious arthritis: The clinician’s perspective

    Science.gov (United States)

    Rubinstein, Israel; Weinberg, Guy L.

    2012-01-01

    Rheumatoid arthritis (RA) and osteoarthritis (OA) are prevalent chronic health conditions. However, despite recent advances in medical therapeutics, their treatment still represents an unmet medical need because of safety and efficacy concerns with currently prescribed drugs. Accordingly, there is an urgent need to develop and test new drugs for RA and OA that selectively target inflamed joints thereby mitigating damage to healthy tissues. Conceivably, biocompatible, biodegradable, disease-modifying antirheumatic nanomedicines (DMARNs) could represent a promising therapeutic approach for RA and OA. To this end, the unique physicochemical properties of drug-loaded nanocarriers coupled with pathophysiological characteristics of inflamed joints amplify bioavailability and bioactivity of DMARNs and promote their selective targeting to inflamed joints. This, in turn, minimizes the amount of drug required to control articular inflammation and circumvents collateral damage to healthy tissues. Thus, nanomedicine could provide selective control both in space and time of the inflammatory process in affected joints. However, bringing safe and efficacious DMARNs for RA and OA to the marketplace is challenging because regulatory agencies have no official definition of nanotechnology, and rules and definitions for nanomedicines are still being developed. Although existing toxicology tests may be adequate for most DMARNs, as new toxicity risks and adverse health effects derived from novel nanomaterials with intended use in humans are identified, additional toxicology tests would be required. Hence, we propose that detailed pre-clinical in vivo safety assessment of promising DMARNs leads for RA and OA, including risks to the general population, must be conducted before clinical trials begin. PMID:22640912

  2. Investigation of Potential Thermal Processing Techniques for the Enhancement of PS300 High Temperature Solid Lubricant Coatings

    Science.gov (United States)

    Benoy, Patricia A.

    2000-01-01

    Contemporary trends in rotating machinery development have produced a continuous evolution towards ever increasing speeds and higher operating temperatures. This process has been particularly evident in aerospace and automotive applications such as turbochargers. The combination of high temperature and high speed has exceeded the capacity of mainstream liquid lubrication technology. The NASA Glenn Research Center has been at the forefront in developing innovative solid lubricants for the oil free protection of rotating machinery under these extreme environmental conditions. The most recent of these is the PS 300 series of plasma sprayed solid lubricant coatings. St Louis University and NASA Glenn Research Center entered into this cooperative agreement to investigate potential thermal processing techniques for the enhancement of the PS 304 solid lubricant.

  3. RNAi nanomedicines: challenges and opportunities within the immune system

    International Nuclear Information System (INIS)

    Weinstein, Shiri; Peer, Dan

    2010-01-01

    RNAi, as a novel therapeutic modality, has an enormous potential to bring the era of personalized medicine one step further from notion into reality. However, delivery of RNAi effector molecules into their target tissues and cells remain extremely challenging. Major attempts have been made in recent years to develop sophisticated nanocarriers that could overcome these hurdles. This review will present the recent progress with the challenges and opportunities in this emerging field, focusing mostly on the in vivo applications with special emphasis on the strategies for RNAi delivery into immune cells. (topical review)

  4. On the potential of 2-D-Video Disdrometer technique to measure micro physical parameters of solid precipitation

    Science.gov (United States)

    Bernauer, F.; Hürkamp, K.; Rühm, W.; Tschiersch, J.

    2015-03-01

    Detailed characterization and classification of precipitation is an important task in atmospheric research. Line scanning 2-D-video disdrometer technique is well established for rain observations. The two orthogonal views taken of each hydrometeor passing the sensitive area of the instrument qualify this technique especially for detailed characterization of non symmetric solid hydrometeors. However, in case of solid precipitation problems related to the matching algorithm have to be considered and the user must be aware of the limited spacial resolution when size and shape descriptors are analyzed. This work has the aim of clarifying the potential of 2-D-video disdrometer technique in deriving size, velocity and shape parameters from single recorded pictures. The need of implementing a matching algorithm suitable for mixed and solid phase precipitation is highlighted as an essential step in data evaluation. For this purpose simple reproducible experiments with solid steel spheres and irregularly shaped styrofoam particles are conducted. Self-consistency of shape parameter measurements is tested in 40 cases of real snow fall. As result it was found, that reliable size and shape characterization with a relative standard deviation of less than 5% is only possible for particles larger than 1 mm. For particles between 0.5 and 1.0 mm the relative standard deviation can grow up to 22% for the volume, 17% for size parameters and 14% for shape descriptors. Testing the adapted matching algorithm with a reproducible experiment with styrofoam particles a mismatch probability of less than 2.5% was found. For shape parameter measurements in case of real solid phase precipitation the 2DVD shows self-consistent behavior.

  5. Potential of spectroscopic techniques and chemometric analysis for rapid measurement of docosahexaenoic acid and eicosapentaenoic acid in algal oil.

    Science.gov (United States)

    Wu, Di; He, Yong

    2014-09-01

    Developing rapid methods for measuring long-chain ω-3 (n-3) poly-unsaturated fatty acid (LCPUFA) contents has been a crucial request from the algal oil industry. In this study, four spectroscopy techniques, namely visible and short-wave near infra-red (Vis-SNIR), long-wave near infra-red (LNIR), mid-infra-red (MIR) and nuclear magnetic resonance (NMR) spectroscopy, were exploited for determining the docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents in algal oil. The best prediction for both DHA and EPA were achieved by NMR spectroscopy, in which the determination coefficients of cross-validation (rCV(2)) values were 0.963 and 0.967 for two LCPUFAs. The performances of Vis-SNIR and LNIR spectroscopy were also accepted. The variable selection was proved as an efficient and necessary step for the spectral analysis in this study. The results were promising and implied that spectroscopy techniques have a great potential for assessment of DHA and EPA in algal oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates.

    Science.gov (United States)

    Shortle, E; O'Grady, M N; Gilroy, D; Furey, A; Quinn, N; Kerry, J P

    2014-12-01

    Six extracts were prepared from hawthorn (Crataegus monogyna) leaves and flowers (HLF) and berries (HB) using solid-liquid [traditional (T) (HLFT, HBT), sonicated (S) (HLFS, HBS)] and supercritical fluid (C) extraction (HLFC, HBC) techniques. The antioxidant activities of HLF and HB extracts were characterised using in vitro antioxidant assays (TPC, DPPH, FRAP) and in 25% bovine muscle (longissimus lumborum) homogenates (lipid oxidation (TBARS), oxymyoglobin (% of total myoglobin)) after 24h storage at 4°C. Hawthorn extracts exhibited varying degrees of antioxidant potency. In vitro and muscle homogenate (TBARS) antioxidant activity followed the order: HLFS>HLFT and HBT>HBS. In supercritical fluid extracts, HLFC>HBC (in vitro antioxidant activity) and HLFC≈HBC (TBARS). All extracts (except HBS) reduced oxymyoglobin oxidation. The HLFS extract had the highest antioxidant activity in all test systems. Supercritical fluid extraction (SFE) exhibited potential as a technique for the manufacture of functional ingredients (antioxidants) from hawthorn for use in muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Improving the biocontrol potential of entomopathogenic nematodes against Mamestra brassicae: effect of spray application technique, adjuvants and an attractant.

    Science.gov (United States)

    Beck, Bert; Brusselman, Eva; Nuyttens, David; Moens, Maurice; Temmerman, Femke; Pollet, Sabien; Van Weyenberg, Stephanie; Spanoghe, Pieter

    2014-01-01

    Steinernema carpocapsae Weiser, an entomopathogenic nematode (EPN), is a potential biological control agent for the cabbage moth (Mamestra brassicae L.). This research aimed to identify a suitable spray application technique, and to determine whether yeast extract added to an EPN spray has an attracting and/or a feeding stimulant effect on M. brassicae. The biological control capabilities of EPN against this pest were examined in the field. Good coverage of the underside of cauliflower leaves, the habitat of young instar larvae (L1-L4) of M. brassicae was obtained using different spray boom configurations with vertical extensions that carried underleaf spraying nozzles. One of the configurations was selected for field testing with an EPN spray. Brewer's yeast extract stimulated larval feeding on leaves, and increased the mortality of these larvae when exposed to EPN. The field trial showed that a spray application with S. carpocapsae, Addit and xanthan gum can effectively lower the numbers of cabbage heads damaged by M. brassicae. Brewer's yeast extract did not significantly increase this field performance of EPN. Steinernema carpocapsae, applied with an appropriate spray technique, can be used within biological control schemes as part of a resistance management programme for Bt. © 2013 Society of Chemical Industry.

  8. Natural product-based nanomedicine: recent advances and issues.

    Science.gov (United States)

    Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin

    2015-01-01

    Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds' low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications.

  9. Natural product-based nanomedicine: recent advances and issues

    Science.gov (United States)

    Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin

    2015-01-01

    Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. PMID:26451111

  10. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine.

    Science.gov (United States)

    Genchi, Giada Graziana; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-10

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  11. Nanomedicine for the prevention, treatment and imaging of atherosclerosis.

    Science.gov (United States)

    Psarros, Costas; Lee, Regent; Margaritis, Marios; Antoniades, Charalambos

    2012-09-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in developed countries, with an increasing prevalence due to an aging population. The pathology underpinning CVD is atherosclerosis, a chronic inflammatory state involving the arterial wall. Accumulation of low density lipoprotein (LDL) laden macrophages in the arterial wall and their subsequent transformation into foam cells lead to atherosclerotic plaque formation. Progression of atherosclerotic lesions may gradually lead to plaque related complications and clinically manifest as acute vascular syndromes including acute myocardial or cerebral ischemia. Nanotechnology offers emerging therapeutic strategies, which may have advantage overclassical treatments for atherosclerosis. In this review, we present the potential applications of nanotechnology toward prevention, identification and treatment of atherosclerosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Current status and future direction of nanomedicine: Focus on advanced biological and medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Mi; Jeong, Hwan Jeong [Dept. of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of)

    2017-06-15

    Nanotechnology is the engineering and manipulation of materials and devices with sizes in the nanometer range. Colloidal gold, iron oxide nanoparticles and quantum dot semiconductor nanocrystals are examples of nanoparticles, with sizes generally ranging from 1 to 20 nm. These nanotechnologies have been researched tremendously in the last decade and this has led to a new area of “nanomedicine” which is the application of nanotechnology to human health-care for diagnosis, monitoring, treatment, prediction and prevention of diseases. Recently progress has been made in overcoming some of the difficulties in the human use of nanomedicines. In the mid-1990s, Doxil was approved by the FDA, and now various nanoconstructs are on the market and in clinical trials. However, there are many obstacles in the human application of nanomaterials. For translation to clinical use, a detailed understanding is needed of the chemical and physical properties of particles and their pharmacokinetic behavior in the body, including their biodistribution, toxicity, and biocompatibility. In this review, we provide a broad introduction to nanomedicines and discuss the preclinical and clinical trials in which they have been evaluated.

  13. Current status and future direction of nanomedicine: Focus on advanced biological and medical applications

    International Nuclear Information System (INIS)

    Kim, Eun Mi; Jeong, Hwan Jeong

    2017-01-01

    Nanotechnology is the engineering and manipulation of materials and devices with sizes in the nanometer range. Colloidal gold, iron oxide nanoparticles and quantum dot semiconductor nanocrystals are examples of nanoparticles, with sizes generally ranging from 1 to 20 nm. These nanotechnologies have been researched tremendously in the last decade and this has led to a new area of “nanomedicine” which is the application of nanotechnology to human health-care for diagnosis, monitoring, treatment, prediction and prevention of diseases. Recently progress has been made in overcoming some of the difficulties in the human use of nanomedicines. In the mid-1990s, Doxil was approved by the FDA, and now various nanoconstructs are on the market and in clinical trials. However, there are many obstacles in the human application of nanomaterials. For translation to clinical use, a detailed understanding is needed of the chemical and physical properties of particles and their pharmacokinetic behavior in the body, including their biodistribution, toxicity, and biocompatibility. In this review, we provide a broad introduction to nanomedicines and discuss the preclinical and clinical trials in which they have been evaluated

  14. Development of a multifunctional envelope-type nano device and its application to nanomedicine.

    Science.gov (United States)

    Sato, Yusuke; Nakamura, Takashi; Yamada, Yuma; Harashima, Hideyoshi

    2016-12-28

    Successful nanomedicines should be based on sound drug delivery systems (DDS) the permit intracellular trafficking as well as the biodistribution of cargos to be controlled. We have been developing new types of DDS that are multifunctional envelope-type nano devices referred to as MENDs. First, we will focus the in vivo delivery of siRNA to hepatocytes using a YSK-MEND which is composed of pH-responsive cationic lipids. The YSK-MEND is capable of inducing efficient silencing activity in hepatocytes and can be used to cure mice that are infected with hepatitis C or B. The YSK-MEND can also be applied to cancer immunotherapy through the activation of immune cells by delivering different compounds such as cyclic-di-GMP, siRNA or alpha-galactosylceramide as a lipid antigen. The findings indicate that, as predicted, these compounds, when encapsulated in the YSK-MEND, can be delivered to the site of action and induced immune activation through different mechanisms. Finally, a MITO-Porter, a membrane fusion-based delivery system to mitochondria, is introduced as an organelle targeting DDS and a new strategy for cancer therapy is proposed by delivering gentamicin to mitochondria of cancer cells. These new technologies are expected to extend the therapeutic area of Nanomedicine by increasing the power of DDS, especially from the view point of controlled intracellular trafficking. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Large Scale Molecular Simulation of Nanoparticle-Biomolecule Interactions and their Implications in Nanomedicine

    Science.gov (United States)

    Zhou, Ruhong

    Nanoscale particles have become promising materials in various biomedical applications, however, in order to stimulate and facilitate these applications, there is an urgent need for a better understanding of their biological effects and related molecular mechanism/physics as well. In this talk, I will discuss some of our recent works, mostly molecular modelling, on nanotoxicity and their implications in de novo design of nanomedicine. We show that carbon-based nanoparticles (carbon nanotubes, graphene nanosheets, and fullerenes) can interact and disrupt the structures and functions of many important proteins. The hydrophobic interactions between the carbon nanotubes and hydrophobic residues, particularly aromatic residues through the so-called π- π stacking interactions, are found to play key roles. Meanwhile, metallofullerenol Gd@C82(OH)22 is found to inhibit tumour growth and metastases with both experimental and theoretical approaches. Graphene and graphene oxide (GO) nanosheets show strong destructive interactions to E. coli cell membranes (antibacterial activity) and A β amyloid fibrils (anti-AD, Alzheimer's disease, capability) with unique molecular mechanisms, while on the other hand, they also show a strong supportive role in enzyme immobilisation such as lipases through lid opening. In particular, the lid opening is assisted by lipase's sophisticated interaction with GO, which allows the adsorbed lipase to enhance its enzyme activity. The lipase enzymatic activity can be further optimized through fine tuning of the GO surface hydrophobicity. These findings might provide a better understanding of ``nanotoxicity'' at the molecular level with implications in de novo nanomedicine design.

  16. A unique highly hydrophobic anticancer prodrug self-assembled nanomedicine for cancer therapy.

    Science.gov (United States)

    Ren, Guolian; Jiang, Mengjuan; Xue, Peng; Wang, Jing; Wang, Yongjun; Chen, Bo; He, Zhonggui

    2016-11-01

    In contrast with common thought, we generated highly hydrophobic anticancer prodrug self-assembled nanoparticles without the aid of surface active substances, based on the conjugation of docetaxel to d-α-tocopherol succinate. The reduction-sensitive prodrug was synthesized with a disulfide bond inserted into the linker and was compared with a control reduction-insensitive prodrug. The morphology and stability of self-assembled nanoparticles were investigated. Cytotoxicity and apoptosis assays showed that the reduction-sensitive nanoparticles had higher anticancer activity than the reduction-insensitive nanoparticles. The reduction-sensitive nanoparticles exhibited favorable in vivo antitumor activity and tolerance compared with docetaxel Tween80-containing formulation and the reduction-insensitive nanoparticles. Taken together, the unique nanomedicine demonstrated a number of advantages: (i) ease and reproducibility of preparation, (ii) high drug payload, (iii) superior stability, (iv) prolonged circulation, and (v) improved therapeutic effect. This highly reproducible molecular assembly strategy should motivate the development of new nanomedicines. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances.

    Science.gov (United States)

    Nash, Kevin M; Ahmed, Salahuddin

    2015-11-01

    Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these, ischemia reperfusion injury, Alzheimer's disease and rheumatoid arthritis are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed. However, due to the ubiquitous production of ROS in living systems, poor in vivo efficiency of these agents and lack of target specificity, the current clinical modalities to treat oxidative stress damage are limited. Advances in the developing field of nanomedicine have yielded nanoparticles that can prolong antioxidant activity, and target specificity of these agents. This article reviews recent advances in antioxidant nanoparticles and their applications to manage oxidative stress-mediated diseases. Production of reactive oxygen species (ROS) is a purely physiological process in many disease conditions. However, excessive and uncontrolled production will lead to oxidative stress and further tissue damage. Advances in nanomedicine have provided many novel strategies to try to combat and counteract ROS. In this review article, the authors comprehensively highlighted the current status and future developments in using nanotechnology for providing novel therapeutic options in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications

    Directory of Open Access Journals (Sweden)

    Ranganathan R

    2012-02-01

    Full Text Available Ramya Ranganathan1,*, Shruthilaya Madanmohan1,*, Akila Kesavan1, Ganga Baskar1, Yoganathan Ramia Krishnamoorthy2, Roy Santosham3, D Ponraju4, Suresh Kumar Rayala2, Ganesh Venkatraman1 1Department of Human Genetics, Sri Ramachandra University, Porur, 2Department of Biotechnology, Indian Institute of Technology, Madras, 3Department of Radiology and Imaging Sciences, Sri Ramachandra University, Porur, Chennai, 4Safety Engineering Division, Nuclear and Engineering Safety Group, Indira Gandhi Center for Atomic Research, Kalpakkam, India*Authors contributed equally to this workAbstract: The focus on nanotechnology in cancer treatment and diagnosis has intensified due to the serious side effects caused by anticancer agents as a result of their cytotoxic actions on normal cells. This nonspecific action of chemotherapy has awakened a need for formulations capable of definitive targeting with enhanced tumor-killing. Nanooncology, the application of nanobiotechnology to the management of cancer, is currently the most important area of nanomedicine. Currently several nanomaterial-based drug-delivery systems are in vogue and several others are in various stages of development. Tumor-targeted drug-delivery systems are envisioned as magic bullets for cancer therapy and several groups are working globally for development of robust systems.Keywords: patient-friendly, drug-delivery systems, cancer, nanomedicine

  19. Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives.

    Science.gov (United States)

    Pengo, Paolo; Şologan, Maria; Pasquato, Lucia; Guida, Filomena; Pacor, Sabrina; Tossi, Alessandro; Stellacci, Francesco; Marson, Domenico; Boccardo, Silvia; Pricl, Sabrina; Posocco, Paola

    2017-12-01

    Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.

  20. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2016-01-01

    Full Text Available Phytochemicals as dietary constituents are being explored for their cancer preventive properties. Quercetin is a major constituent of various dietary products and recently its anti-cancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. Quercetin is known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, quercetin possesses great medicinal value, its applications as a therapeutic drug are limited. Problems like low oral bioavailability and poor aqueous solubility make quercetin an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of quercetin is also a major barrier for its clinical translation. Hence, to overcome these disadvantages quercetin-based nanoformulations are being considered in recent times. Nanoformulations of quercetin have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to summarize various methods utilized for nanofabrication of quercetin formulations and for stable and sustained delivery of quercetin. We have also highlighted the various desirable measures for its use as a promising onco-therapeutic agent.

  1. Protein corona: a new approach for nanomedicine design

    Directory of Open Access Journals (Sweden)

    Nguyen VH

    2017-04-01

    Full Text Available Van Hong Nguyen, Beom-Jin Lee Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea Abstract: After administration of nanoparticle (NP into biological fluids, an NP–protein complex is formed, which represents the “true identity” of NP in our body. Hence, protein–NP interaction should be carefully investigated to predict and control the fate of NPs or drug-loaded NPs, including systemic circulation, biodistribution, and bioavailability. In this review, we mainly focus on the formation of protein corona and its potential applications in pharmaceutical sciences such as prediction modeling based on NP-adsorbed proteins, usage of active proteins for modifying NP to achieve toxicity reduction, circulation time enhancement, and targeting effect. Validated correlative models for NP biological responses mainly based on protein corona fingerprints of NPs are more highly accurate than the models solely set up from NP properties. Based on these models, effectiveness as well as the toxicity of NPs can be predicted without in vivo tests, while novel cell receptors could be identified from prominent proteins which play important key roles in the models. The ungoverned protein adsorption onto NPs may have generally negative effects such as rapid clearance from the bloodstream, hindrance of targeting capacity, and induction of toxicity. In contrast, controlling protein adsorption by modifying NPs with diverse functional proteins or tailoring appropriate NPs which favor selective endogenous peptides and proteins will bring promising therapeutic benefits in drug delivery and targeted cancer treatment. Keywords: protein-nanoparticle interaction, protein corona, exchange of adsorbed protein, toxicity reduction, predictive modeling, targeting drug delivery

  2. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Khajuria, Deepak Kumar, E-mail: deepak_kumarkhajuria@yahoo.co.in [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Disha, Choudhary [Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Vasireddi, Ramakrishna [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Razdan, Rema [Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Mahapatra, D. Roy [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2016-06-01

    Targeting of superior osteogenic drugs to bone is an ideal approach for treatment of osteoporosis. Here, we investigated the potential of using risedronate/zinc-hydroxyapatite (ZnHA) nanoparticles based formulation in a rat model of experimental osteoporosis. Risedronate, a targeting moiety that has a strong affinity for bone, was loaded to ZnHA nanoparticles by adsorption method. Prepared risedronate/ZnHA drug formulation was characterized by field-emission scanning electron microscopy, X-ray diffraction analysis and fourier transform infrared spectroscopy. In vivo performance of the prepared risedronate/ZnHA nanoparticles was tested in an experimental model of postmenopausal osteoporosis. Therapy with risedronate/ZnHA drug formulation prevented increase in serum levels of bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase 5b better than risedronate/HA or risedronate. With respect to improvement in the mechanical strength of the femoral mid-shaft and correction of increase in urine calcium and creatinine levels, the therapy with risedronate/ZnHA drug formulation was more effective than risedronate/HA or risedronate therapy. Moreover, risedronate/ZnHA drug therapy preserved the cortical and trabecular bone microarchitecture better than risedronate/HA or risedronate therapy. Furthermore, risedronate/ZnHA drug formulation showed higher values of calcium/phosphorous ratio and zinc content. The results strongly implicate that risedronate/ZnHA drug formulation has a therapeutic advantage over risedronate or risedronate/HA therapy for the treatment of osteoporosis. - Highlights: • Risedronate functionalized zinc-hydroxyapatite nanoparticles were prepared. • Risedronate was used as a carrier to deliver zinc-hydroxyapatite nanoparticles to bones. • Application of risedronate/ZnHA drug formulation in osteoporosis is described.

  3. Nanomedicines for Inflammatory Arthritis: Head-To-Head Comparison of Glucocorticoid-Containing Polymers, Micelles and Liposomes

    Science.gov (United States)

    Crielaard, Bart J.; Dusad, Anand; Lele, Subodh M.; Rijcken, Cristianne J. F.; Metselaar, Josbert M; Kostková, Hana; Etrych, Tomáš; Ulbrich, Karel; Kiessling, Fabian; Mikuls, Ted R.; Hennink, Wim E.; Storm, Gert; Lammers, Twan; Wang, Dong

    2014-01-01

    As an emerging research direction, nanomedicine has been increasingly utilized to treat inflammatory diseases. In this head-to-head comparison study, four established nanomedicine formulations of dexamethasone, including liposomes (L-Dex), core-crosslinked micelles (M-Dex), slow releasing polymeric prodrugs (P-Dex-slow) and fast releasing polymeric prodrugs (P-Dex-fast), were evaluated in an adjuvant-induced arthritis rat model with an equivalent dose treatment design. It was found that after a single i.v. injection, the formulations with the slower drug release kinetics (i.e. M-Dex and P-Dex-slow) maintained longer duration of therapeutic activity than those with relatively faster drug release kinetics, resulting in better joint protection. This finding will be instructional in the future development and optimization of nanomedicines for the clinical management of rheumatoid arthritis. The outcome of this study also illustrates the value of such head-to-head comparison studies in translational nanomedicine research. PMID:24341611

  4. Multiparameter Quantification of Liposomal Nanomedicines at the Single-Particle Level by High-Sensitivity Flow Cytometry.

    Science.gov (United States)

    Chen, Chaoxiang; Zhu, Shaobin; Wang, Shuo; Zhang, Wenqiang; Cheng, Yu; Yan, Xiaomei

    2017-04-26

    Drug-encapsulated liposomes have been considered the most clinically acceptable drug-delivery systems. However, current methods fall short in the quantitative characterization of individual nanoliposomes because of their small sizes and large heterogeneity. Here, we report a high-throughput method for the absolute quantification of particle size, drug content, fraction of drug encapsulation, and particle concentration of liposomal nanomedicines at the single-particle level. A laboratory-built high-sensitivity flow cytometer was used to simultaneously detect the side-scatter and fluorescence signals generated by individual nanomedicine particles at a speed up to 10 000 nanoparticles/min. To cope with the size dependence of the refractive index of liposomal nanomedicines, different sizes of doxorubicin-loaded liposomes were fabricated and characterized to serve as the calibration standards for the measurement of both particle size and drug content. This method provides a highly practical platform for the characterization of liposomal nanomedicines, and broad applications can be envisioned.

  5. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections.

    Science.gov (United States)

    Lembo, David; Donalisio, Manuela; Civra, Andrea; Argenziano, Monica; Cavalli, Roberta

    2018-01-01

    Viral infections represent a public health problem and one of the leading causes of global mortality. Nanomedicine strategies can be considered a powerful tool to enhance the effectiveness of antiviral drugs, often associated with solubility and bioavailability issues. Consequently, high doses and frequent administrations are required, resulting in adverse side effects. To overcome these limitations, various nanomedicine platforms have been designed. Areas covered: This review focuses on the state of the art of organic-based nanoparticles for the delivery of approved antivirals. A brief description of the main characteristics of nanocarriers is followed by an overview of the most promising research addressing the treatment of most important viral infections. Expert opinion: The activity of antiviral drugs could be improved with nanomedicine formulations. Indeed, nanoparticles can affect the fate of the encapsulated drugs, allowing controlled release kinetics, enhanced bioavailability, modified pharmacokinetics, and reduced side effects. In addition, the physicochemical properties of nanocarriers can enable their capability to target specific sites and to interact with virus structures. In this regard, nanomedicines can be considered an opportunity to enhance the therapeutic index of antivirals. Efficacy, safety, and manufacturing issues need to be carefully assessed to bring this promising approach to the clinic.

  6. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes

    Czech Academy of Sciences Publication Activity Database

    Quan, L.; Zhang, Y.; Crielaard, B. J.; Dusad, A.; Lele, S. M.; Rijcken, C. J. F.; Metselaar, J. M.; Kostková, Hana; Etrych, Tomáš; Ulbrich, Karel; Kiessling, F.; Mikuls, T. R.; Hennink, W. E.; Storm, G.; Lammers, T.; Wang, D.

    2014-01-01

    Roč. 8, č. 1 (2014), s. 458-466 ISSN 1936-0851 Grant - others:AV ČR(CZ) AP0802 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:61389013 Keywords : nanomedicine * drug targeting * inflammation Subject RIV: CD - Macromolecular Chemistry Impact factor: 12.881, year: 2014

  7. The potential of PEGylated BaMnO3 nanoparticles as drug delivery agents

    International Nuclear Information System (INIS)

    Hayat, Khizar; Rafiq, M A; Hasan, M M; Khurshid, A; Ikram, M; Durrani, S K; Zaidi, S S Z

    2013-01-01

    Nanoparticles are extensively used as efficient drug carriers in various biological studies. PEGylated barium manganate powder consisting of nanoparticles was synthesized using a hydrothermal technique. The nanoparticle morphology of the powder was confirmed via scanning electron microscopy. The average diameter of the nanoparticles was ∼90 nm. The x-ray diffraction pattern revealed that these nanoparticles consisted of single phase polycrystalline 2H-BaMnO 3 . The PEGylated BaMnO 3 nanoparticles were loaded with 5-aminolevulinic acid (5-ALA) to evaluate their drug carrying potential. The toxicity of these nanoparticles was tested against the Hep2c cell line and found to be suitable for biological applications. It was seen that the drug uptake was a million times higher in the case of encapsulation compared to a conventional drug delivery system. This new formulation may find extensive use in nanomedicine as a multidrug delivery system. (letter)

  8. NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential.

    Science.gov (United States)

    Sarpal, Amarjit S; Teixeira, Cláudia M L L; Silva, Paulo Roque Martins; da Costa Monteiro, Thays Vieira; da Silva, Júlia Itacolomy; da Cunha, Valnei Smarcaro; Daroda, Romeu José

    2016-03-01

    In the present investigation, the application of NMR spectroscopic techniques was extensively used with an objective to explore the biodiesel potential of biomass cultivated on a lab scale using strains of Chlorella vulgaris and Scenedesmus ecornis. The effect of variation in the composition of culturing medium on the neutral and polar lipids productivity, and fatty acid profile of solvent extracts of microalgae biomass was studied. Determination of unsaturated fatty acid composition (C18:N = 1-3, ω3 C20:5, ω3 C22:6), polyunsaturated fatty esters (PUFEs), saturated fatty acids (SFAs), unsaturated fatty acids (UFAs), free fatty acids (FFAs), and iodine value were achieved from a single (1)H NMR spectral analysis. The results were validated by (13)C NMR and GC-MS analyses. It was demonstrated that newly developed methods based on (1)H and (13)C NMR techniques are direct, rapid, and convenient for monitoring the microalgae cultivation process for enhancement of lipid productivity and their quality aspects in the solvent extracts of microalgal biomasses without any sample treatment and prior separation compared to other methods. The fatty acid composition of algae extracts was found to be similar to vegetable and fish oils, mostly rich in C16:0, C18:N (N = 0 to 3), and n-3 omega polyunsaturated fatty acids (PUFAs). The lipid content, particularly neutral lipids, as well as most of the quality parameters were found to be medium specific by both the strains. The newly developed methods based on NMR and ultrasonic procedure developed for efficient extraction of neutral lipids are cost economic and can be an effective aid for rapid screening of algae strains for modulation of lipid productivity with desired biodiesel quality and value-added products including fatty acid profile.

  9. The p300 event-related potential technique for libido assessment in women with hypoactive sexual desire disorder.

    Science.gov (United States)

    Vardi, Yoram; Sprecher, Elliot; Gruenwald, Ilan; Yarnitsky, David; Gartman, Irena; Granovsky, Yelena

    2009-06-01

    There is a need for an objective technique to assess the degree of hypoactive sexual desire disorder (HSDD). Recently, we described such a methodology (event-related potential technique [ERP]) based on recording of p300 electroencephalography (EEG) waves elicited by auditory stimuli during synchronous exposure to erotic films. To compare sexual interest of sexually healthy women to females with sexual dysfunction (FSD) using ERP, and to explore whether FSD women with and without HSDD would respond differently to two different types of erotic stimuli-films containing (I) or not containing (NI) sexual intercourse scenes. Twenty-two women with FSD, of which nine had HSDD only, and 30 sexually healthy women were assessed by the Female Sexual Functioning Index. ERP methodology was performed applying erotic NI or I films. Significant differences in percent of auditory p300 amplitude reduction (PR) in response to erotic stimuli within and between all three groups for each film type. PRs to each film type were similar in sexually healthy women (60.6% +/- 40.3 (NI) and 51.7% +/- 32.3 [I]), while in women with FSD, reduction was greater when viewing the NI vs. I erotic films (71.4% +/- 41.0 vs. 37.7% +/- 45.7; P = 0.0099). This difference was mainly due to the greater PR of the subgroup with HSDD in response to NI vs. I films (77.7% +/- 46.7 vs. 17.0% +/- 50.3) than in the FSD women without HSDD group or the sexually healthy women (67.5% +/- 38.7 vs. 50.4% +/- 39.4 respectively), P = 0.0084. For comparisons, we used the mixed-model one-way analysis of variance. Differences in neurophysiological response patterns between sexually healthy vs. sexually dysfunctional females may point to a specific inverse discrimination ability for sexually relevant information in the subgroup of women with HSDD. These findings suggest that the p300 ERP technique could be used as an objective quantitative tool for libido assessment in sexually dysfunctional women.

  10. Investigating Potential Artesian Aquifers in Rod-Kohi Area of DI Khan, NWFP using GIS and Geo-Processing Techniques

    Directory of Open Access Journals (Sweden)

    Arshad Ashraf

    2012-07-01

    Full Text Available The artesian aquifers provide economical and sustainable source of groundwater for irrigation and domestic use. GIS (Geographic Information System was used for development and integration of spatial databases, analysis and visualization of spatial data in two- and three-dimensional views. The aquifer system of Daraban Rod-Kohi area of DI Khan was analyzed to identify potential artesian aquifers using geological sections of the observation wells representing detail of subsurface lithology and strata encountered. According to an estimate, about 1,700 million m3 of extractable volume of groundwater exists in this part of rod-kohi area. Different profile sections were drawn to analyze the subsurface condition of the study area using Rockworks GIS-based software. The geo-processing technique of horizontal litho-blending was utilized for lithological modeling. Based on stratigraphic information of the area, three distinct aquifers were identified down to a depth of about 200 meters among which two are semi-confined to confined having prospects of artesian water. The 2D and 3D analysis show that characteristics of the confined aquifers vary spatially with the subsurface lithology and structural setup of the area. The depth range of confined layer-1 is found between 118 and 133 meters while of confined layer-2 between 182 and 195 meters. The output data indicated a close agreement with the observed data of the artesian wells. The study results can provide base for detail investigation of artesian resource and selection of potential sites for installation of artesian wells in the target area.

  11. Potential errors in conventional DOT measurement techniques in shake flasks and verification using a rotating flexitube optical sensor

    Directory of Open Access Journals (Sweden)

    Käser Andreas

    2011-05-01

    Full Text Available Abstract Background Dissolved oxygen tension (DOT is an important parameter for evaluating a bioprocess. Conventional means to measure DOT in shake flasks using fixed Clark-type electrodes immersed in the bulk liquid are problematic, because they inherently alter the hydrodynamics of the systems. Other approaches to measure DOT that apply fluorescing sensor spots fixed at the inside wall of a shake flask are also suboptimal. At low filling volumes for cultivating microorganisms with a high oxygen demand, the measured DOT signal may be erroneous. Here, the sensor spot is sometimes exposed to gas in the head space of the flask. Merely repositioning the sensor spot elsewhere in the flask does not address this problem, since there is no location in the shake flask that is always covered by the rotating bulk liquid. Thus, the aim of this prospective study is first, to verify the systemic error of Clark-type electrodes for measuring DOT in shake flasks. The second principle aim is to use the newly built "flexitube optical sensor" to verify potential errors in conventional optical DOT measurements based on fixed sensor spots. Results With the Clark-type electrode, the maximum oxygen transfer capacity in shake flasks rose compared to that of an analogous system without an electrode. This proves changed hydrodynamics in the system with the Clark-type electrode. Furthermore, regarding the sensor spot experiments under oxygen-limited conditions where the DOT value ought to approach zero, the acquired signals were clearly above zero. This implies that the sensor spot is influenced by oxygen present in the headspace and not only by oxygen in the bulk liquid. Conclusions The Clark-type electrode is unsuitable for measuring DOT. Moreover, the newly built rotating flexitube optical sensor is useful to verify potential errors of conventional optical DOT measurement techniques applying fixed sensor spots.

  12. Reverse osmosis as a potential technique to improve antioxidant properties of fruit juices used for functional beverages.

    Science.gov (United States)

    Gunathilake, K D P P; Yu, Li Juan; Rupasinghe, H P Vasantha

    2014-04-01

    Reverse osmosis (RO) as a potential technique to improve the antioxidant properties of cranberry, blueberry and apple juices was evaluated for the formulation of a functional beverage. The effects of temperature (20-40 °C) and trans-membrane pressure (25-35 bars) on physico-chemical and antioxidant properties of fruit juices were evaluated to optimize the operating parameters for each fruit juice. There was no significant effect on any quality parameters of fruit juices under studied operating parameters of RO. However, total soluble solid, total acidity and colour (a(∗)) of the concentrated juices increased in proportion to their volumetric concentrations. Antioxidant capacity measured by FRAP assay of concentrated apple, blueberry and cranberry juice was increased by 40%, 34%, and 30%, respectively. LDL oxidation inhibition by concentrated blueberry and cranberry juice was increased up to 41% and 45%, respectively. The results suggest that RO can be used for enhancing the health promoting properties of fruit juices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques

    International Nuclear Information System (INIS)

    Zhao, Lei; Gao, Ying; Mi, Dong; Sun, Yeqing

    2016-01-01

    Highlights: • A combined algorithm is proposed to mine biomarkers of spaceflight in C. elegans. • This algorithm makes the feature selection more reliable and robust. • Apply this algorithm to predict 17 positive biomarkers to space environment stress. • The strategy can be used as a general method to select important features. - Abstract: To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  14. Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists

    Directory of Open Access Journals (Sweden)

    Gopalakrishna Pillai

    2013-11-01

    Full Text Available Nanomedicine, the medical applications of devices based on nanotechnology, promises an endless range of applications from biomedical imaging to drug and gene delivery. The size range of the nanomaterials is strictly defined as 1–100 nm, although many marketed nanomedicines are in the submicron range of 100–1000 nm. The major advantages of using nanomaterials as a carrier for anticancer agents are the possibility of targeted delivery to the tumor; their physical properties such as optical and magnetic properties, which can be exploited for developing contrast agents for tumor imaging; their ability to hold thousands of molecules of a drug and deliver at the required site and also the ability to overcome solubility and stability issues. Currently, there are several nanotechnology-enabled diagnostic and therapeutic agents undergoing clinical trials and a few already approved by Food and Drug Administration. Targeted delivery of anticancer agents is achieved by exploiting a unique characteristic of the rapidly dividing tumor cells called “the enhanced permeability and retention effect.” Nanoparticles with mean diameter between 100 and 200 nm or even above 200 nm have also been reported to be taken up by tumor cells via the enhanced permeability and retention effect. In addition to this passive targeting based on size, the nanoparticle surface may be modified with a variety of carefully chosen ligands that would interact with specific receptors on the surface of the tumor cells, thus imparting additional specificity for active targeting. Regional release of a drug contained in a nanoparticulate system by the application of external stimuli such as hyperthermia to a thermosensitive device is another innovative strategy for targeted delivery. Nanoparticles protect the enclosed drug from rapid elimination from the body, keep them in circulation for prolonged periods and often evade expulsion by the efflux pump mechanisms, which also leads to

  15. Rational Design of Iron Oxide Nanoparticles as Targeted Nanomedicines for Cancer Therapy

    Science.gov (United States)

    Kievit, Forrest M.

    2011-07-01

    Nanotechnology provides a flexible platform for the development of effective therapeutic nanomaterials that can interact specifically with a target in a biological system and provoke a desired biological response. Of the nanomaterials studied, superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as one of top candidates for cancer therapy due to their intrinsic superparamagnetism that enables non-invasive magnetic resonance imaging (MRI) and biodegradability favorable for in vivo application. This dissertation is aimed at development of SPION-based nanomedicines to overcome the current limitations in cancer therapy. These limitations include non-specificity of therapy which can harm healthy tissue, the difficulty in delivering nucleic acids for gene therapy, the formation of drug resistance, and the inability to detect and treat micrometastases. First, a SPION-based non-viral gene delivery vehicle was developed through functionalization of the SPION core with a co-polymer designed to provide stable binding of DNA and low toxicity which showed excellent gene delivery in vitro and in vivo. This SPION-based non-viral gene delivery vehicle was then activated with a targeting agent to improve gene delivery throughout a xenograft tumor of brain cancer. It was found that targeting did not promote the accumulation of SPIONs at the tumor site, but rather improved the distribution of SPIONs throughout the tumor so a higher proportion of cells received treatment. Next, the high surface area of SPIONs was utilized for loading large amounts of drug which was shown to overcome the multidrug resistance acquired by many cancer cells. Drug bound to SPIONs showed significantly higher multidrug resistant cell uptake as compared to free drug which translated into improved cell kill. Also, an antibody activated SPION was developed and was shown to be able to target micrometastases in a transgenic animal model of metastatic breast cancer. These SPION-based nanomedicines

  16. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique.

    Science.gov (United States)

    McCollough, Cynthia H; Leng, Shuai; Sunnegardh, Johan; Vrieze, Thomas J; Yu, Lifeng; Lane, John; Raupach, Rainer; Stierstorfer, Karl; Flohr, Thomas

    2013-06-01

    To assess the z-axis resolution improvement and dose reduction potential achieved using a z-axis deconvolution technique with iterative reconstruction (IR) relative to filtered backprojection (FBP) images created with the use of a z-axis comb filter. Each of three phantoms were scanned with two different acquisition modes: (1) an ultrahigh resolution (UHR) scan mode that uses a comb filter in the fan angle direction to increase in-plane spatial resolution and (2) a z-axis ultrahigh spatial resolution (zUHR) scan mode that uses comb filters in both the fan and cone angle directions to improve both in-plane and z-axis spatial resolution. All other scanning parameters were identical. First, the ACR CT Accreditation phantom, rotated by 90° so that the high-contrast spatial resolution targets were parallel to the coronal plane, was scanned to assess limiting spatial resolution and image noise. Second, section sensitivity profiles (SSPs) were measured using a copper foil embedded in an acrylic cylinder and the full-width-at-half-maximum (FWHM) and full-width-at-tenth-maximum (FWTM) of the SSPs were calculated. Third, an anthropomorphic head phantom containing a human skull was scanned to assess clinical acceptability for imaging of the temporal bone. For each scan, FBP images were reconstructed for the zUHR scan using the narrowest image thickness available. For the CT accreditation phantom, zUHR images were also reconstructed using an IR algorithm (SAFIRE, Siemens Healthcare, Forchheim, Germany) to assess the influence of the IR algorithm on image noise. A z-axis deconvolution technique combined with the IR algorithm was used to reconstruct images at the narrowest image thickness possible from the UHR scan data. Images of the ACR and head phantoms were reformatted into the coronal plane. The head phantom images were evaluated by a neuroradiologist to assess acceptability for use in patients undergoing clinically indicated CT imaging of the temporal bone. The limiting

  17. What's down below? Current and potential future applications of geophysical techniques to identify subsurface permafrost conditions (Invited)

    Science.gov (United States)

    Douglas, T. A.; Bjella, K.; Campbell, S. W.

    2013-12-01

    For infrastructure design, operations, and maintenance requirements in the North the ability to accurately and efficiently detect the presence (or absence) of ground ice in permafrost terrains is a serious challenge. Ground ice features including ice wedges, thermokarst cave-ice, and segregation ice are present in a variety of spatial scales and patterns. Currently, most engineering applications use borehole logging and sampling to extrapolate conditions at the point scale. However, there is high risk of over or under estimating the presence of frozen or unfrozen features when relying on borehole information alone. In addition, boreholes are costly, especially for planning linear structures like roads or runways. Predicted climate warming will provide further challenges for infrastructure development and transportation operations where permafrost degradation occurs. Accurately identifying the subsurface character in permafrost terrains will allow engineers and planners to cost effectively create novel infrastructure designs to withstand the changing environment. There is thus a great need for a low cost rapidly deployable, spatially extensive means of 'measuring' subsurface conditions. Geophysical measurements, both terrestrial and airborne, have strong potential to revolutionize our way of mapping subsurface conditions. Many studies in continuous and discontinuous permafrost have used geophysical measurements to identify discrete features and repeatable patterns in the subsurface. The most common measurements include galvanic and capacitive coupled resistivity, ground penetrating radar, and multi frequency electromagnetic induction techniques. Each of these measurements has strengths, weaknesses, and limitations. By combining horizontal geophysical measurements, downhole geophysics, multispectral remote sensing images, LiDAR measurements, and soil and vegetation mapping we can start to assemble a holistic view of how surface conditions and standoff measurements

  18. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    Science.gov (United States)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  19. Enzyme-triggered nanomedicine: Drug release strategies in cancer therapy (Invited Review)

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Thompson, David H.; Kaasgaard, Thomas

    2010-01-01

    Nanomedicine as a field has emerged from the early success of nanoparticle-based drug delivery systems, in particular for treatment of cancer, and the advances made in nano- and biotechnology over the past decade. A prerequisite for nanoparticle-based drug delivery systems to be effective...... is that the drug payload is released at the target site. A large number of drug release strategies have been proposed that can be classified into certain areas. The simplest and most successful strategy so far, probably due to relative simplicity, is based on utilizing certain physico-chemical characteristics...... of drugs to obtain a slow drug leakage from the formulations after accumulation in the cancerous site. However, this strategy is only applicable to a relatively small range of drugs and cannot be applied to biologicals. Many advanced drug release strategies have therefore been investigated. Such strategies...

  20. Recycling of silicon: from industrial waste to biocompatible nanoparticles for nanomedicine

    Science.gov (United States)

    Kozlov, N. K.; Natashina, U. A.; Tamarov, K. P.; Gongalsky, M. B.; Solovyev, V. V.; Kudryavtsev, A. A.; Sivakov, V.; Osminkina, L. A.

    2017-09-01

    The formation of photoluminescent porous silicon (PSi) nanoparticles (NPs) is usually based on an expensive semiconductor grade wafers technology. Here, we report a low-cost method of PSi NPs synthesis from the industrial silicon waste remained after the wafer production. The proposed method is based on metal-assisted wet-chemical etching (MACE) of the silicon surface of cm-sized metallurgical grade silicon stones which leads to a nanostructuring of the surface due to an anisotropic etching, with subsequent ultrasound fracturing in water. The obtained PSi NPs exhibit bright red room temperature photoluminescence (PL) and demonstrate similar microstructure and physical characteristics in comparison with the nanoparticles synthesized from semiconductor grade Si wafers. PSi NPs prepared from metallurgical grade silicon stones, similar to silicon NPs synthesized from high purity silicon wafer, show low toxicity to biological objects that open the possibility of using such type of NPs in nanomedicine.

  1. Multimodal Nanomedicine Strategies for Targeting Cancer Cells as well as Cancer Stem Cell Signalling Mechanisms.

    Science.gov (United States)

    Kanwar, Jagat R; Samarasinghe, Rasika M; Kamalapuram, Sishir K; Kanwar, Rupinder K

    2017-01-01

    Increasing evidence suggests that stem cells, a small population of cells with unique selfrenewable and tumour regenerative capacity, are aiding tumour re-growth and multidrug resistance. Conventional therapies are highly ineffective at eliminating these cells leading to relapse of disease and formation of chemoresistance tumours. Cancer and stem cells targeted therapies that utilizes nanotherapeutics to delivery anti-cancer drugs to specific sites are continuously investigated. This review focuses on recent research using nanomedicine and targeting entities to eliminate cancer cells and cancer stem cells. Current nanotherapeutics in clinical trials along with more recent publications on targeted therapies are addressed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. PET imaging with copper-64 as a tool for real-time in vivo investigations of the necessity for crosslinking of polymeric micelles in nanomedicine

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann; Binderup, Tina; Ek, Pramod Kumar

    2017-01-01

    Polymeric micelles in nanomedicine are often crosslinked to prevent disintegration in vivo. This typically requires clinically problematic chemicals or laborious procedures. In addition, crosslinking may interfere with advanced release strategies. Despite this, it is often not investigated whether...

  3. Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment

    Science.gov (United States)

    Rycroft, Taylor; Trump, Benjamin; Poinsatte-Jones, Kelsey; Linkov, Igor

    2018-02-01

    The fields of nanomedicine, risk analysis, and decision science have evolved considerably in the past decade, providing developers of nano-enabled therapies and diagnostic tools with more complete information than ever before and shifting a fundamental requisite of the nanomedical community from the need for more information about nanomaterials to the need for a streamlined method of integrating the abundance of nano-specific information into higher-certainty product design decisions. The crucial question facing nanomedicine developers that must select the optimal nanotechnology in a given situation has shifted from "how do we estimate nanomaterial risk in the absence of good risk data?" to "how can we derive a holistic characterization of the risks and benefits that a given nanomaterial may pose within a specific nanomedical application?" Many decision support frameworks have been proposed to assist with this inquiry; however, those based in multicriteria decision analysis have proven to be most adaptive in the rapidly evolving field of nanomedicine—from the early stages of the field when conditions of significant uncertainty and incomplete information dominated, to today when nanotoxicology and nano-environmental health and safety information is abundant but foundational paradigms such as chemical risk assessment, risk governance, life cycle assessment, safety-by-design, and stakeholder engagement are undergoing substantial reformation in an effort to address the needs of emerging technologies. In this paper, we reflect upon 10 years of developments in nanomedical engineering and demonstrate how the rich knowledgebase of nano-focused toxicological and risk assessment information developed over the last decade enhances the capability of multicriteria decision analysis approaches and underscores the need to continue the transition from traditional risk assessment towards risk-based decision-making and alternatives-based governance for emerging technologies.

  4. Techniques and methodologies to identify potential generated industries of NORM in Angola Republic and evaluate its impacts

    International Nuclear Information System (INIS)

    Diogo, José Manuel Sucumula

    2017-01-01

    Numerous steps have been taken worldwide to identify and quantify the radiological risks associated with the mining of ores containing Naturally Occurrence Radioactive Material (NORM), often resulting in unnecessary exposures to individuals and high environmental damage, with devastating consequences for the health of workers and damage to the economy of many countries due to a lack of regulations or inadequate regulations. For these and other reasons, the objective of this work was to identify industrial potential generating NORM in the Republic of Angola and to estimate its radiological environmental impacts. To achieve this objective, we studied the theoretical aspects, identified the main internationally recognized industrial companies that as generate by NORM. The Brazilian experience in the regulatory aspect was observed in the evaluation criteria to classify industries that generate NORM, the methods of mining and its radiological environmental impacts, as well as the main techniques applied to evaluate the concentrations of radionuclides in a specific environmental matrix and/or a NORM sample. The study approach allowed the elaboration of a NORM map for the main provinces of Angola, establishing the evaluation criteria for implementing the Radiation Protection Plan in the extractive industry, establishing measures to control ionizing radiation in mining, identifying and quantifying radionuclides present in samples of lees oil. However, in order to assess adequately the radiological environmental impact of the NORM industry, it is not enough to identify them, it is important to know the origin, quantify the radioactive material released as liquid and gaseous effluents, identify the main routes of exposure and examine how this material spreads into the environment until it reaches man. (author)

  5. MALDI-TOF and SELDI-TOF analysis: “tandem” techniques to identify potential biomarker in fibromyalgia

    Directory of Open Access Journals (Sweden)

    A. Lucacchini

    2011-11-01

    Full Text Available Fibromyalgia (FM is characterized by the presence of chronic widespread pain throughout the musculoskeletal system and diffuse tenderness. Unfortunately, no laboratory tests have been appropriately validated for FM and correlated with the subsets and activity. The aim of this study was to apply a proteomic technique in saliva of FM patients: the Surface Enhance Laser Desorption/Ionization Time-of-Flight (SELDI-TOF. For this study, 57 FM patients and 35 HC patients were enrolled. The proteomic analysis of saliva was carried out using SELDI-TOF. The analysis was performed using different chip arrays with different characteristics of binding. The statistical analysis was performed using cluster analysis and the difference between two groups was underlined using Student’s t-test. Spectra analysis highlighted the presence of several peaks differently expressed in FM patients compared with controls. The preliminary results obtained by SELDI-TOF analysis were compared with those obtained in our previous study performed on whole saliva of FM patients by using electrophoresis. The m/z of two peaks, increased in FM patients, seem to overlap well with the molecular weight of calgranulin A and C and Rho GDP-dissociation inhibitor 2, which we had found up-regulated in our previous study. These preliminary results showed the possibility of identifying potential salivary biomarker through salivary proteomic analysis with MALDI-TOF and SELDI-TOF in FM patients. The peaks observed allow us to focus on some of the particular pathogenic aspects of FM, the oxidative stress which contradistinguishes this condition, the involvement of proteins related to the cytoskeletal arrangements, and central sensibilization.

  6. Bioluminescence : the potential of a non-invasive bio-optical imaging technique and improvement of animal research

    NARCIS (Netherlands)

    Hesselink, J. W.; van Dam, G. M.

    2007-01-01

    Bioluminescence is an optical imaging technique that exploits the emission of photons at specific wavelengths based on energy-dependent reactions catalysed by luciferases. The technique makes it possible to monitor measure, and track biological processes in living animals. A short review is

  7. A new vision on the averaging technique for the estimation of non-stationary Brainstem Auditory-Evoked Potentials: application of a metaheuristic method.

    Science.gov (United States)

    Naït-Ali, Amine; Siarry, Patrick

    2006-06-01

    The aim of this paper consists in highlighting the use of the averaging technique in some biomedical applications, such as evoked potentials (EP) extraction. We show that this technique, which is generally considered as classical, can be very efficient if the dynamic model of the signal to be estimated is a priori known. Therefore, using an appropriate model and under some specific conditions, one can show that the estimation can be performed efficiently even in case of a very low signal to noise ratio (SNR), which occurs when handling Brainstem Auditory-Evoked Potentials.

  8. Technique of radiation polymerization in fine art conservation: a potentially new method of restoration and preservation. [Uv and electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, J.L. (Univ. of New South Wales, Kensington, Australia); Major, G.

    1982-01-01

    The technique of using radiation polymerization for the restoration and preservation of art treasures is considered. The processes discussed include both radiation grafting and rapid cure procedures, particularly reactions initiated by uv and eb. Representative examples where the technique has already been used are treated including typical applications with paintings, tapestries, leather and archival repair. The structure of the monomers and oligomers used in both grafting and rapid cure systems is outlined. The experimental conditions where grafting may occur during radiation rapid cure processing are discussed. Possible future developments of the technique are outlined. 1 figure, 8 tables.

  9. A new opportunity for nanomedicines: Micellar cytochrome P450 inhibitors to improve drug efficacy in a cancer therapy model.

    Science.gov (United States)

    Paolini, Marion; Poul, Laurence; Darmon, Audrey; Germain, Matthieu; Pottier, Agnès; Levy, Laurent; Vibert, Eric

    2017-07-01

    Nanomedicines are mainly used as drug delivery systems; here we evaluate a new application - to inhibit a drug's metabolism thereby enhancing its effective dose. Micelles containing the natural furanocoumarin 6',7'-dihydroxybergamottin (DHB), a known CYP450 inhibitor, were developed to transiently block hepatic CYP450-mediated drug metabolism and increase the bioavailability of the oncology drug docetaxel. Administered in mice 24h prior to the drug, DHB-micelles enhanced antitumor efficacy in the tumor xenograft models HT-29 and MDA-MB-231, when compared to the drug alone. These DHB-micelles have similar composition to marketed docetaxel-micelles for human use. Despite not being optimized in terms of targeting hepatocytes, they do represent the first injectable example of nanosized metabolism-blocking agents and open the way for further work on such nanomedicines in man. Copyright © 2017 NANOBIOTIX. Published by Elsevier Inc. All rights reserved.

  10. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments

    Science.gov (United States)

    Dawidczyk, Charlene; Russell, Luisa; Searson, Peter

    2014-08-01

    The ability to efficiently deliver a drug or gene to a tumor site is dependent on a wide range of factors including circulation time, interactions with the mononuclear phagocyte system, extravasation from circulation at the tumor site, targeting strategy, release from the delivery vehicle, and uptake in cancer cells. Nanotechnology provides the possibility of creating delivery systems where the design constraints are decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing tumor accumulation, and improving efficacy. The physico-chemical properties of nanoparticle-based delivery platforms introduce additional complexity associated with pharmacokinetics and tumor accumulation. To assess the impact of nanoparticle-based delivery systems, we first review the design strategies and pharmacokinetics of FDA-approved nanomedicines. Next we review nanomedicines under development, summarizing the range of nanoparticle platforms, strategies for targeting, and pharmacokinetics. We show how the lack of uniformity in preclinical trials prevents systematic comparison and hence limits advances in the field.

  11. Applying and advancing behavior change theories and techniques in the context of a digital health revolution: proposals for more effectively realizing untapped potential.

    Science.gov (United States)

    Moller, Arlen C; Merchant, Gina; Conroy, David E; West, Robert; Hekler, Eric; Kugler, Kari C; Michie, Susan

    2017-02-01

    As more behavioral health interventions move from traditional to digital platforms, the application of evidence-based theories and techniques may be doubly advantageous. First, it can expedite digital health intervention development, improving efficacy, and increasing reach. Second, moving behavioral health interventions to digital platforms presents researchers with novel (potentially paradigm shifting) opportunities for advancing theories and techniques. In particular, the potential for technology to revolutionize theory refinement is made possible by leveraging the proliferation of "real-time" objective measurement and "big data" commonly generated and stored by digital platforms. Much more could be done to realize this potential. This paper offers proposals for better leveraging the potential advantages of digital health platforms, and reviews three of the cutting edge methods for doing so: optimization designs, dynamic systems modeling, and social network analysis.

  12. IFPA meeting 2015 workshop report III: nanomedicine applications and exosome biology, xenobiotics and endocrine disruptors and pregnancy, and lipid.

    Science.gov (United States)

    Albrecht, C; Caniggia, I; Clifton, V; Göhner, C; Harris, L; Hemmings, D; Jawerbaum, A; Johnstone, E; Jones, H; Keelan, J; Lewis, R; Mitchell, M; Murthi, P; Powell, T; Saffery, R; Smith, R; Vaillancourt, C; Wadsack, C; Salomon, C

    2016-12-01

    Workshops are an important part of the IFPA annual meeting, as they allow for discussion of specialized topics. At the IFPA meeting 2015 there were twelve themed workshops, three of which are summarized in this report. These workshops were related to various aspects of placental biology but collectively covered areas of pregnancy pathologies and placental metabolism: 1) nanomedicine applications and exosome biology; 2) xenobiotics and endocrine disruptors and pregnancy; 3) lipid mediators and placental function. Copyright © 2016. Published by Elsevier Ltd.

  13. A nanomedicine based combination therapy based on QLPVM peptide functionalized liposomal tamoxifen and doxorubicin against Luminal A breast cancer.

    Science.gov (United States)

    Wang, Xiaoyou; Chen, Xianhui; Yang, Xiucong; Gao, Wei; He, Bing; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Dai, Zhifei; Zhang, Qiang

    2016-02-01

    Though combination chemotherapy or antitumor nanomedicine is extensively investigated, their combining remains in infancy. Additionally, enhanced delivery of estrogen or its analogs to tumor with highly-expressed estrogen-receptor (ER) is seldom considered, despite its necessity for ER-positive breast cancer treatment. Here, nanomedicine based combination therapy using QLPVM conjugated liposomal tamoxifen (TAM) and doxorubicin (DOX) was designed and testified, where the penta-peptide was derived from Ku70 Bax-binding domain. Quantitative, semi-quantitative and qualitative approaches demonstrated the enhanced endocytosis and cytotoxicity of QLPVM conjugated sterically stabilized liposomes (QLPVM-SSLs) in vitro and in vivo. Mechanism studies of QLPVM excluded the possible electrostatic, hydrophobic or receptor-ligand interactions. However, as a weak cell-penetrating peptide, QLPVM significantly induced drug release from QLPVM-SSLs during their interaction with cells, which was favorable for drug internalization. These findings suggested that the nanomedicine based combination therapy using QLPVM-SSL-TAM and QLPVM-SSL-DOX might provide a rational strategy for Luminal A breast cancer. Breast cancer remains a leading cause of mortality in women worldwide. Although combined therapy using hormonal antagonist and chemotherapy is the norm nowadays, the use of these agents together in a single delivery system has not been tested. Here, the authors investigated this approach using QLPVM conjugated liposomes in in-vitro and in-vivo models. The positive findings may provide a novel direction for breast cancer treatment in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A Comparison of Potential IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements From Space

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed

    2014-01-01

    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.

  15. Potentials of enhancing the physicochemical and functional characteristics of Nigella sativa oil by using the screw pressing technique for extraction

    International Nuclear Information System (INIS)

    Hamed, S.F.; Shaaban, H.A.; Ramadan, A.A.; Edris, A.E.

    2017-01-01

    In the current investigation the crude oil of Nigella sativa was extracted from seeds using hydraulic and screw pressing techniques. Different parameters were evaluated in order to find out the appropriate technique to enhance the physicochemical and functional-related characteristics of the extracted crude oil. Results showed that the acid and peroxide values were significantly lower in the screw pressed oil (SPO) than in the hydraulic pressed oil (HPO). The total phenolic content of the SPO was significantly higher than that of HPO. Evaluation of the oxidative stability using the Rancimat test showed that SPO recorded a much higher oxidative stability index (40.07 h) than HPO (0.51 h). The yield of the volatile oil fraction and its contents of thymoquinone isolated from the SPO were higher than that from the HPO. Biological evaluation revealed that the SPO had significantly higher antimicrobial activity than HPO against Listeria monocytogenes and Staphylococcus aureus at 40 μL/well. [es

  16. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond.

    Science.gov (United States)

    Chang, Thomas M S

    2012-06-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymer membrane. Extensions into oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics.

  17. Nanoporous Silica-Based Protocells at Multiple Scales for Designs of Life and Nanomedicine

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2015-01-01

    Full Text Available Various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interior structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1 to emulate life in order to understand it; and (2 to use biomimicry to engineer desired cellular interactions.

  18. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies.

    Science.gov (United States)

    Hanagata, Nobutaka

    2017-01-01

    Unmethylated cytosine-guanine dinucleotide-containing oligodeoxynucleotides (CpG ODNs), which are synthetic agonists of Toll-like receptor 9 (TLR9), activate humoral and cellular immunity and are being developed as vaccine adjuvants to prevent or treat cancers, infectious diseases, and allergies. Free CpG ODNs have been used in many clinical trials implemented to verify their effects. However, recent research has reported that self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes demonstrate higher adjuvant effects than free CpG ODNs, owing to their improved uptake efficiency into cells expressing TLR9. Moreover, protein/peptide-CpG ODN conjugates and nanomaterial-CpG ODN complexes are able to deliver CpG ODNs and antigens (or allergens) to the same types of cells, which enables a higher degree of prophylaxis or therapeutic effect. In this review, the author describes recent trends in the research and development of CpG ODN nanomedicines containing self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes, focusing mainly on the results of preclinical and clinical studies.

  19. Management of Treatment and Prevention of Acute OP Pesticide Poisoning by Medical Informatics, Telemedicine and Nanomedicine

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Sahoo

    2013-10-01

    Full Text Available Acute organophosphorous pesticide (OP poisoning kills a lot of people each year. Treatment of acute OP poisoning is of very difficult task and is a time taking event. Present day informatics methods (telemedicine, bioinformatics methods (data mining, molecular modeling, docking, cheminformatics, and nanotechnology (nanomedicine should be applied in combination or separately to combat the rise of death rate due to OP poisoning. Use of informatics method such as Java enabled camera mobiles will enable us early detection of insecticidal poisoning. Even the patients who are severely intoxicated (suicidal attempts can be diagnosed early. Telemedicine can take care for early diagnosis and early treatment. Simultaneously efforts must be taken with regard to nanotechnology to find lesser toxic compounds (use less dose of nanoparticle mediated compounds: nano-malathion as insecticides and find better efficacy of lesser dose of compounds for treatment (nano-atropine of OP poisoning. Nano-apitropine (atropine oxide may be a better choice for OP poisoning treatment as the anticholinergic agent; apitropine and hyoscyamine have exhibited higher binding affinity than atropine sulfate. Synthesis of insecticides (malathion with an antidote (atropine, apitropine in nanoscale range will prevent the lethal effect of insecticides.

  20. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

    Science.gov (United States)

    Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere

    2017-07-01

    We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

  1. Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine

    Directory of Open Access Journals (Sweden)

    Giada Graziana Genchi

    2017-12-01

    Full Text Available With the increasing advances in the fabrication and in monitoring approaches of nanotechnology devices, novel materials are being synthesized and tested for the interaction with biological environments. Among them, smart materials in particular provide versatile and dynamically tunable platforms for the investigation and manipulation of several biological activities with very low invasiveness in hardly accessible anatomical districts. In the following, we will briefly recall recent examples of nanotechnology-based materials that can be remotely activated and controlled through different sources of energy, such as electromagnetic fields or ultrasounds, for their relevance to both basic science investigations and translational nanomedicine. Moreover, we will introduce some examples of hybrid materials showing mutually beneficial components for the development of multifunctional devices, able to simultaneously perform duties like imaging, tissue targeting, drug delivery, and redox state control. Finally, we will highlight challenging perspectives for the development of theranostic agents (merging diagnostic and therapeutic functionalities, underlining open questions for these smart nanotechnology-based devices to be made readily available to the patients in need.

  2. Functionalization of carbon nanotubes and its application in nanomedicine: A review

    Directory of Open Access Journals (Sweden)

    Hamidreza Sadegh

    2015-10-01

    Full Text Available This review focuses on the latest developments in applications of carbon nanotubes (CNTs in medicine. A brief history of CNTs and a general introduction to the field are presented. Then, surface modification of CNTs that makes them ideal for use in medical applications is highlighted. Examples of common applications, including cell penetration, drug delivery, gene delivery and imaging, are given. At the same time, there are concerns about their possible adverse effects on human health, since there is evidence that exposure to CNTs induces toxic effects in experimental models. However, CNTs are not a single substance but a growing family of different materials possibly eliciting different biological responses. As a consequence, the hazards associated with the exposure of humans to the different forms of CNTs may be different. Understanding the structure–toxicity relationships would help towards the assessment of the risk related to these materials. Finally, toxicity of CNTs, are discussed. This review article overviews the most recent applications of CNTs in Nanomedicine, covering the period from 1991 to early 2015.

  3. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ...

    African Journals Online (AJOL)

    The zeta potential (ZP) of colloidal systems and nano-medicines, as well as their particle size exert a major effect on the various properties of nano-drug delivery systems. Not only the stability of dosage forms and their release rate are affected but also their circulation in the blood stream and absorption into body membranes ...

  4. The potential of imaging techniques as a screening tool for colorectal cancer: a cost-effectiveness analysis

    NARCIS (Netherlands)

    Greuter, Marjolein J. E.; Berkhof, Johannes; Fijneman, Remond J. A.; Demirel, Erhan; Lew, Jie-Bin; Meijer, Gerrit A.; Stoker, Jaap; Coupé, Veerle M. H.

    2016-01-01

    Imaging may be promising for colorectal cancer (CRC) screening, since it has test characteristics comparable with colonoscopy but is less invasive. We aimed to assess the potential of CT colonography (CTC) and MR colonography (MRC) in terms of (cost-effectiveness) using the Adenoma and Serrated

  5. Determination of J-integral R-curves for the pressure vessel material A 533 B1 using the potential drop technique and the multi-specimen method

    International Nuclear Information System (INIS)

    Krompholz, K.; Ullrich, G.

    1985-01-01

    J-integral experiments at room temperature were performed on three point bend type specimens of the nuclear pressure vessel material A 533 B1 with a/w-ratios of 0.3 and 0.5. Following the ASTM-proposal for the multi-specimen technique a value is obtained close to the value obtained in the HSST round robin test. On the other hand, from the measurement of the Jsub(IC)-value by means of the potential drop technique there is an indication that a lower value of Jsub(IC) is correct. This is in agreement with the multi-specimen technique using linear regression lines without excluding 'invalid' points. That is reasonable if fractographic investigations gives clear indications that stable crack growth has occurred as is the case in this work. (Auth.)

  6. the potential use of some amendments to remediate heavy metal polluted soil in egypt as determined by nuclear techniques

    International Nuclear Information System (INIS)

    Lotfy, S.M.

    2003-01-01

    the objectives of this work were four folds. first ,to characterize the behavior of some heavy metals (zinc and Cr) in tested-amended soil as affected by its physical and chemical properties using Zn 65 and Zr 51 tracer technique. second, to describe the sorption and desorption of these metals. (Zn 65 and Cr 51 ), which may help in remediation technique for the contaminated sites. third, to assess the effect of some oil amendments on heavy metals uptake and recovery from the contaminated soil . fourth, to enhance the remediation of pollutants as well as to protect soil quality. adsorption maximum for Zn 65 ranged between 161 and 909 mg Kg - 1 and from 303 mg Kg - 1 to 1111 mg Kg - 1 for Cr 51 . the highest values were reported for the organic enriched soils. the total contents of tested heavy metals increased in soil due to sludge and/or gypsum application . the addition of sludge resulted in a remarkable increase in heavy metals content

  7. Error and bias in determining exposure potential of children at school locations using proximity-based GIS techniques.

    Science.gov (United States)

    Zandbergen, Paul A; Green, Joseph W

    2007-09-01

    The widespread availability of powerful tools in commercial geographic information system (GIS) software has made address geocoding a widely employed technique in spatial epidemiologic studies. The objective of this study was to determine the effect of the positional error in geocoding on the analysis of exposure to traffic-related air pollution of children at school locations. For a case study of Orange County, Florida, we determined the positional error of geocoding of school locations through comparisons with a parcel database and digital orthophotography. We used four different geocoding techniques for comparison to establish the repeatability of geocoding, and an analysis of proximity to major roads to determine bias and error in environmental exposure assessment. RESULTS INDICATE THAT THE POSITIONAL ERROR IN GEOCODING OF SCHOOLS IS VERY SUBSTANTIAL: We found that the 95% root mean square error was 196 m using street centerlines, 306 m using TIGER roads, and 210 and 235 m for two commercial geocoding firms. We found bias and error in proximity analysis to major roads to be unacceptably large at distances of < 500 m. Bias and error are introduced by lack of positional accuracy and lack of repeatability of geocoding of school locations. These results suggest that typical geocoding is insufficient for fine-scale analysis of school locations and more accurate alternatives need to be considered.

  8. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    OpenAIRE

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 G...

  9. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    Science.gov (United States)

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  10. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique

    Science.gov (United States)

    Pinto, Domingos; Shrestha, Sangam; Babel, Mukand S.; Ninsawat, Sarawut

    2017-03-01

    Groundwater plays an important role for socio-economic development of Comoro watershed in Timor Leste. Despite the significance of groundwater for sustainable development, it has not always been properly managed in the watershed. Therefore, this study seeks to identify groundwater potential zones in the Comoro watershed, using geographical information systems and remote sensing and analytic hierarchy process technique. The groundwater potential zones thus obtained were divided into five classes and validated with the recorded bore well yield data. It was found that the alluvial plain in the northwest along the Comoro River has very high groundwater potential zone which covers about 5.4 % (13.5 km2) area of the watershed. The high groundwater potential zone was found in the eastern part and along the foothills and covers about 4.8 % (12 km2) of the area; moderate zone covers about 2.0 % (5 km2) of the area and found in the higher elevation of the alluvial plain. The poor and very poor groundwater potential zone covers about 87.8 % (219.5 km2) of the watershed. The hilly terrain located in the southern and central parts of the study area has a poor groundwater potential zone due to higher degree of slope and low permeability of conglomerate soil type. The demarcation of groundwater potential zones in the Comoro watershed will be helpful for future planning, development and management of the groundwater resources.

  11. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(2-(diisopropylaminoethyl methacrylate (MPC-DPA polymeric nanoparticle micelles for nanomedicine applications

    Directory of Open Access Journals (Sweden)

    Jonathan P. Salvage

    2016-01-01

    Full Text Available Abstract Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(2-(diisopropylaminoethyl methacrylate (MPC-DPA. Atom transfer radical polymerisation (ATRP, and gel permeation chromatography (GPC were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64–69 nm, and increased upon hydrophobic compound loading, circa 65–71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system

  12. Backfilling techniques and materials in underground excavations: Potential alternative backfill materials in use in Posiva's spent fuel repository concept

    International Nuclear Information System (INIS)

    Dixon, D.A.; Keto, P.

    2009-05-01

    A variety of geologic media options have been proposed as being suitable for safely and permanently disposing of spent nuclear fuel or fuel reprocessing wastes. In Finland the concept selected is construction of a deep repository in crystalline rock (Posiva 1999, 2006; SKB 1999), likely at the Olkiluoto site (Posiva 2006). Should that site prove suitable, excavation of tunnels and several vertical shafts will be necessary. These excavations will need to be backfilled and sealed as emplacement operations are completed and eventually all of the openings will need to be backfilled and sealed. Clay-based materials were selected after extensive review of materials options and the potential for practical implementation in a repository and work over a 30+ year period has led to the development of a number of workable clay-based backfilling options, although discussion persists as to the most suitable clay materials and placement technologies to use. As part of the continuous process of re-evaluating backfilling options in order to provide the best options possible, placement methods and materials that have been given less attention have been revisited. Primary among options that were and continue to be evaluated as a potential backfill are cementitious materials. These materials were included in the list of candidate materials initially screened in the late 1970's for use in repository backfilling. Conventional cement-based materials were quickly identified as having some serious technical limitations with respect their ability to fulfil the identified requirements of backfill. Concerns related to their ability to achieve the performance criteria defined for backfill resulted in their exclusion from large-scale use as backfill in a repository. Development of new, less chemically aggressive cementitious materials and installation technologies has resulted in their re-evaluation. Concrete and cementitious materials have and are being developed that have chemical, durability

  13. Potential application of quantitative microbiological risk assessment techniques to an aseptic-UHT process in the food industry.

    Science.gov (United States)

    Pujol, Laure; Albert, Isabelle; Johnson, Nicholas Brian; Membré, Jeanne-Marie

    2013-04-01

    Aseptic ultra-high-temperature (UHT)-type processed food products (e.g., milk or soup) are ready to eat products which are consumed extensively globally due to a combination of their comparative high quality and long shelf life, with no cold chain or other preservation requirements. Due to the inherent microbial vulnerability of aseptic-UHT product formulations, the safety and stability-related performance objectives (POs) required at the end of the manufacturing process are the most demanding found in the food industry. The key determinants to achieving sterility, and which also differentiates aseptic-UHT from in-pack sterilised products, are the challenges associated with the processes of aseptic filling and sealing. This is a complex process that has traditionally been run using deterministic or empirical process settings. Quantifying the risk of microbial contamination and recontamination along the aseptic-UHT process, using the scientifically based process quantitative microbial risk assessment (QMRA), offers the possibility to improve on the currently tolerable sterility failure rate (i.e., 1 defect per 10,000 units). In addition, benefits of applying QMRA are (i) to implement process settings in a transparent and scientific manner; (ii) to develop a uniform common structure whatever the production line, leading to a harmonisation of these process settings, and; (iii) to bring elements of a cost-benefit analysis of the management measures. The objective of this article is to explore how QMRA techniques and risk management metrics may be applied to aseptic-UHT-type processed food products. In particular, the aseptic-UHT process should benefit from a number of novel mathematical and statistical concepts that have been developed in the field of QMRA. Probabilistic techniques such as Monte Carlo simulation, Bayesian inference and sensitivity analysis, should help in assessing the compliance with safety and stability-related POs set at the end of the manufacturing

  14. A potential high risk for fatty liver disease was found in mice generated after assisted reproductive techniques.

    Science.gov (United States)

    Gu, Leilei; Zhang, Jingjing; Zheng, Meimei; Dong, Guoying; Xu, Jingyi; Zhang, Wuyue; Wu, Yibo; Yang, Yang; Zhu, Hui

    2018-02-01

    Abnormal gametogenesis and embryonic development may lead to poor health status of the offspring. The operations involved in the assisted reproductive technologies (ARTs) occur during the key stage of gametogenesis and early embryonic development. To assess the potential risk of abnormal lipid metabolism in the liver of adult ARTs offspring, two ARTs mice models derived from preimplantation genetic diagnosis (PGD group) and in vitro cultured embryos without biopsy (IVEM group) were constructed. And control mice were from in vivo naturally conceived (Normal group). The results showed that ARTs offspring had increased body weight and body fat content comparing to normal group. An increasing volume and amount of lipid droplets as well as lipid droplet fusion were found in the hepatocytes of ARTs mice, and a significantly increased liver TG content was also shown in the ARTs mice, which due to the increased TG synthesis and decreased TG transport in the liver. All the results indicated that the manipulations involved in ARTs might play an important role in the lipid accumulation of adult offspring. By analyzing the DNA methylation profiles of 7.5dpc embryos, we proposed that methylation deregulation of the genes related to liver development in ARTs embryos might contribute to the abnormal phenotype in the offspring. The study demonstrated that ARTs procedures have adverse effect on liver development which resulted in abnormal lipid metabolism and induced the potential high risk of fatty liver in adulthood. © 2017 Wiley Periodicals, Inc.

  15. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials.

    Science.gov (United States)

    Wu, Zehan; Xie, Tao; Yao, Lin; Zhang, Dingguo; Sheng, Xinjun; Farina, Dario; Chen, Liang; Mao, Ying; Zhu, Xiangyang

    2017-01-01

    We propose electrocorticographic temporal alteration mapping (ETAM) for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs) within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM), which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases) were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS) procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8%) and specificity (94.3%) in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%). These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  16. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials

    Directory of Open Access Journals (Sweden)

    Zehan Wu

    2017-06-01

    Full Text Available We propose electrocorticographic temporal alteration mapping (ETAM for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM, which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8% and specificity (94.3% in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%. These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  17. Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine.

    Science.gov (United States)

    Monguió-Tortajada, Marta; Roura, Santiago; Gálvez-Montón, Carolina; Pujal, Josep Maria; Aran, Gemma; Sanjurjo, Lucía; Franquesa, Marcel la; Sarrias, Maria-Rosa; Bayes-Genis, Antoni; Borràs, Francesc E

    2017-01-01

    Undesired immune responses have drastically hampered outcomes after allogeneic organ transplantation and cell therapy, and also lead to inflammatory diseases and autoimmunity. Umbilical cord mesenchymal stem cells (UCMSCs) have powerful regenerative and immunomodulatory potential, and their secreted extracellular vesicles (EVs) are envisaged as a promising natural source of nanoparticles to increase outcomes in organ transplantation and control inflammatory diseases. However, poor EV preparations containing highly-abundant soluble proteins may mask genuine vesicular-associated functions and provide misleading data. Here, we used Size-Exclusion Chromatography (SEC) to successfully isolate EVs from UCMSCs-conditioned medium. These vesicles were defined as positive for CD9, CD63, CD73 and CD90, and their size and morphology characterized by NTA and cryo-EM. Their immunomodulatory potential was determined in polyclonal T cell proliferation assays, analysis of cytokine profiles and in the skewing of monocyte polarization. In sharp contrast to the non-EV containing fractions, to the complete conditioned medium and to ultracentrifuged pellet, SEC-purified EVs from UCMSCs inhibited T cell proliferation, resembling the effect of parental UCMSCs. Moreover, while SEC-EVs did not induce cytokine response, the non-EV fractions, conditioned medium and ultracentrifuged pellet promoted the secretion of pro-inflammatory cytokines by polyclonally stimulated T cells and supported Th17 polarization. In contrast, EVs did not induce monocyte polarization, but the non-EV fraction induced CD163 and CD206 expression and TNF-α production in monocytes. These findings increase the growing evidence confirming that EVs are an active component of MSC's paracrine immunosuppressive function and affirm their potential for therapeutics in nanomedicine. In addition, our results highlight the importance of well-purified and defined preparations of MSC-derived EVs to achieve the immunosuppressive

  18. Evaluation of the potential of applying composting/bioremediation techniques to wastes generated within the construction industry.

    Science.gov (United States)

    McMahon, V; Garg, A; Aldred, D; Hobbs, G; Smith, R; Tothill, I E

    2009-01-01

    The objective of the present study was to evaluate the viability of reducing landfill requirements to satisfy EC Landfill Directive requirements by applying composting/bioremediation techniques to the construction and demolition (C&D) industry waste stream at laboratory scale. The experimental study was carried out in nine test rigs to examine different wood mixtures; untreated timber, creosote treated timber and chromated copper arsenate (CCA) treated timber. Several experimental variables affecting the process were characterised and optimised. These include the best nitrogen additive and optimum moisture content required for composting. Poultry manure was found to be the best nitrogen additive. The optimum moisture content was decreased after the addition of poultry manure. The composting/bioremediation process was evaluated through monitoring the microbial activity, carbon dioxide emissions and toxicity examination of the composted product. A typical temperature profile suggested that untreated and CCA treated mix could be classified as hot composting whereas creosote treated mix could be classified as cold composting. The paper reports on the results obtained during this investigation.

  19. Ni0,5Zn0,5Fe2O3 ferrite synthesized by combustion and Pechini method for use in nanomedicine: methods evaluation

    International Nuclear Information System (INIS)

    Albuquerque, I.L.T. de; Nascimento, A.L.C.; Costa, A.C.F.M.

    2016-01-01

    The objective of this work was to synthesize the Ni0.5Zn0.5Fe2O3 ferrite by combustion reaction and Pechini method, and to evaluate structural characteristics and magnetic behavior for its use in nanomedicine. The synthesized ferrite was characterized by DRX, BET, TG and magnetic properties. According to the results of XRD, the Ni 0,5 Zn 0,5 Fe 2 O 3 ferrite synthesized by both methods presented nano crystallite sizes, high crystallinity, surface area, stable at high temperatures and with high saturation magnetization, being higher in the ferrite synthesized by combustion reaction. Both methods produced materials that could be used in nanomedicine

  20. Lacquerware Pigment Identification with Fixed and Mobile Raman Microspectrometers: A Potential Technique to Differentiate Original/Fake Artworks

    Directory of Open Access Journals (Sweden)

    Philippe Colomban

    2013-07-01

    Full Text Available (FT Raman spectroscopy is used for the first time to identify pigments used in 19th & 20th century Japanese and Vietnamese Lacquerwares. IR spectroscopy is used to assess the Lacquer matrix. Different operative conditions and parameters were experimented with on a limited number of lacquerwares in order to determine the optimal procedure for the identification of pigments/dyes as potential chronological or technological markers. The test was then performed in the collector’s rooms with a mobile Raman set-up. Different pigments (vermilion, Prussian Blue, Naples Yellow, Phtalocyanine Blue, anatase, rutile, chalk, carbon black were identified despite a strong fluorescence and a rapid degradation of both pigments and binder under increasing laser power. Better spectra were obtained on older lacquerwares.

  1. Riparian forest potential to retain sediment and carbon evaluated by the 137Cs fallout and carbon isotopic ratio techniques

    Directory of Open Access Journals (Sweden)

    Luiz F. Pires

    2009-06-01

    Full Text Available Riparian forests can provide an important service for aquatic ecosystems by sequestering hillslopederived sediments. However, the width of a riparian buffer zone required to filter sediments is not yet wellunderstood. Here are used two complementary tracers to measure sediment retention. The 137Cs technique and the soil carbon isotopic ratios (δ13C are utilized to investigate sediment deposition and erosion rates on a slope transect cultivated with sugarcane followed by a secondary riparian forest zone in Iracemápolis, State of São Paulo, Brazil. The 137Cs technique and the δ13C analysis showed that the width of a riparian vegetation in accordance to a Brazilian Environmental Law (Nº4.771/65 was not sufficient in trapping sediments coming from agricultural lands, but indicated the importance of these forests as a conservation measure at the watershed scale. The complementary δ13C analysis together with soil morphology aspects allowed a better interpretation of the sediment redistribution along the sugarcane and riparian forest transects.As matas ciliares podem fornecer serviços importantes para os ecossistemas aquáticos sequestrando sedimentos oriundos das áreas de encostas. No entanto, a largura da zona ripária necessária para a retenção de sedimentos ainda não está bem determinada. Aqui são usadas duas técnicas complementares para medir a retenção de sedimentos. As metodologias do137Cs e da composição isotópica do carbono (δ13C são utilizadas para avaliar a deposição de sedimentos e taxas de erosão em uma encosta cultivada com cana-de-açúcar seguida poruma mata ciliar situada em Iracemápolis, no Estado de São Paulo, Brasil. As análises pelas técnicas do 137Cs e δ13C mostraram que a largura da mata ciliar definida pela Lei Ambiental Brasileira (Nº4.771/65 não foi suficiente na retenção de sedimentos oriundos de áreas cultivadas, mas indicou a importância destas florestas como medida de conservação de

  2. Identification of potential antioxidant compounds in the essential oil of thyme by gas chromatography with mass spectrometry and multivariate calibration techniques.

    Science.gov (United States)

    Masoum, Saeed; Mehran, Mehdi; Ghaheri, Salehe

    2015-02-01

    Thyme species are used in traditional medicine throughout the world and are known for their antiseptic, antispasmodic, and antitussive properties. Also, antioxidant activity is one of the interesting properties of thyme essential oil. In this research, we aim to identify peaks potentially responsible for the antioxidant activity of thyme oil from chromatographic fingerprints. Therefore, the chemical compositions of hydrodistilled essential oil of thyme species from different regions were analyzed by gas chromatography with mass spectrometry and antioxidant activities of essential oils were measured by a 1,1-diphenyl-2-picrylhydrazyl radical scavenging test. Several linear multivariate calibration techniques with different preprocessing methods were applied to the chromatograms of thyme essential oils to indicate the peaks responsible for the antioxidant activity. These techniques were applied on data both before and after alignment of chromatograms with correlation optimized warping. In this study, orthogonal projection to latent structures model was found to be a good technique to indicate the potential antioxidant active compounds in the thyme oil due to its simplicity and repeatability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    Science.gov (United States)

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two

  4. Cardiovascular CT angiography in neonates and children: Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    International Nuclear Information System (INIS)

    Tricarico, Francesco; Hlavacek, Anthony M.; Schoepf, U.J.; Ebersberger, Ullrich; Nance, John W.; Vliegenthart, Rozemarijn; Cho, Young Jun; Spears, J.R.; Secchi, Francesco; Savino, Giancarlo; Marano, Riccardo; Bonomo, Lorenzo; Schoenberg, Stefan O.; Apfaltrer, Paul

    2013-01-01

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. (orig.)

  5. Determination of the distribution coefficient of pesticides in soil and potential mobility to bodies of water using isotopic techniques

    International Nuclear Information System (INIS)

    Gonzalez Moreno, Marcela Angelica

    2014-01-01

    The Carbaryl, Diazinon and Chloropyrifos insecticides, herbicides Atrazine and Glyphosate and the fungicide Tebuconazole are widely used pesticides in agriculture. Due the large use of this products that is important the knowledge of their destiny after their application. This way you can prevent and minimize pollution and decreased quality of different environmental compartments like soil and water. In this work, the adsorption of pesticides 14 C-Atrazine, 14 C-Carbaryl , 14 C-Chloropyrifos, 14 C-Diazinon, 14 C-Glyphosate-and 14 C-Tebuconazol was studied by adsorption isotherms through the Batch equilibrium method in an agricultural soil in the region of Araucania in 4 depths (0-10, 10-20, 20-30 and 30-40 cm). To the adsorption isotherm was applied the model of Freundlich to obtain distribution Freundlich constant (Kf) and subsequently the normalized adsorption constant depending (according?) on the content of organic matter (Koc). Besides the potential mobility and toxicity of pesticides on nearby bodies of water to the study site by the Pesticide Impact Rating Index program was obtained. Was considered for adsorption curves 5 concentrations for each pesticide unchecked, this solution pesticide was marked by an addition of 14 C-so to achieve a given activity. The solutions were added to 0.1 M CaCl 2 in a ratio soil: solution of 1: 2. The equilibration time was 24 hours with continuous agitation at 170 rpm horizontally pulse. Adsorbed pesticide concentration was determined by the difference between the concentration of pesticide added and the adsorbed pesticide concentration for which no activity (dpm) in the sample was quantified in a liquid scintillation counter (CCL). In addition the ground with the adsorbed pesticide was put to combustion in a Biological Oxidizer where pesticide molecules are degraded to CO 2 marking, this methodology recovery method is determined, which are considered low in this study. Koc indicate that has a weak adsorption Atrazine (Koc

  6. Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea

    Science.gov (United States)

    Kim, Youn Jong; Hamm, Se-Yeong

    Groundwater contamination is becoming a major environmental problem in South Korea with the marked expansion of the industrial base and the explosive growth of the population. Even in rural areas, the increased use of fertilizers and pesticides, the presence of acid-mine drainage, and increase of volumes of domestic wastewaters are adding to groundwater pollution. The DRASTIC/EGIS model was used to evaluate the potential for groundwater contamination in the Cheongju city area, the first of several pilot studies. The model allows the designation of hydrogeologic settings within the study area, based on a composite description of all the major geologic and hydrogeologic factors for each setting. Then, a scheme for relative ranking of the hydrogeologic factors is applied to evaluate the relative vulnerability to groundwater contamination of each hydrogeologic setting. DRASTIC/EGIS can serve as a tool to evaluate pollution potential and so facilitate programs to protect groundwater resources. Résumé La contamination de l'eau souterraine devient un problème environnemental majeur en Corée du Sud, en relation avec le développement industriel bien marqué et l'explosion démographique. Meme dans les zones rurales, l'utilisation accrue d'engrais et de pesticides, le drainage acide de mines et les rejets croissants d'eaux usées contribuent à la pollution des nappes. Le modèle DRASTIC/EGIS a été utilisé pour évaluer le potentiel de contamination des eaux souterraines dans la région de la ville de Cheongju, la première de plusieurs régions pilotes. Le modèle permet de définir des ensembles hydrogéologiques dans la région étudiée, à partir de la description composite de tous les facteurs géologiques et hydrogéologiques essentiels pour chaque ensemble. Ensuite, un schéma pour le classement des facteurs hydrogéologiques est mis en oeuvre pour évaluer la vulnérabilité relative à la contamination des eaux souterraines pour chaque ensemble. DRASTIC

  7. Emerging analytical separation techniques with high throughput potential for pharmaceutical analysis, part I: Stationary phase and instrumental developments in LC.

    Science.gov (United States)

    Pieters, Sigrid; Dejaegher, Bieke; Vander Heyden, Yvan

    2010-07-01

    In recent years, a trend of change has been observed within pharmaceutical industry. As modern drug discovery has reached a remarkable level of complexity and drugs need to be discovered, developed and produced against strict timelines and within cost- and regulatory constraints, industry seeks "lean" solutions to increase productivity. Among them, increasing the sample throughput of the ever-growing number of necessary (routine) analyses has become a popular target to cut precious time. For the last thirty years, High-Performance Liquid Chromatography (HPLC) has been the leading technology when it comes to various analyses in pharmaceutical industry; however, its necessity of serial analyses taking typically 10-45 min has been a sample throughput-limiting barrier. Lately, the fundamentals of HPLC have been exploited to raise new technologies that can speed up analyses to ground breaking limits, without compromising separation efficiency. This paper reviews some promising technologies, i.e. totally porous sub-2microm particles accompanied by pressures up to 1000 bar (Ultra-Performance Liquid Chromatography or UPLC), fused-core particle technology, monolithic supports and High Temperature Liquid Chromatography (HTLC), having the potential to take LC to the next level in pharmaceutical industry. As each analytical method has its own demands, the advances of the above technologies are discussed for different applications in pharmaceutical analysis where high-throughput analysis can be meaningful, i.e. in a drug discovery and development setting, and in quality operations. Both chemical and biological pharmaceuticals are considered. We discuss the perspectives of these technologies and their realizations up to now in high-throughput pharmaceutical analysis.

  8. Novel description of ionic currents recorded with the action potential clamp technique: application to excitatory currents in suprachiasmatic nucleus neurons.

    Science.gov (United States)

    Clay, John R

    2015-07-01

    The traditional method of recording ionic currents in neurons has been with voltage-clamp steps. Other waveforms such as action potentials (APs) can be used. The AP clamp method reveals contributions of ionic currents that underlie excitability during an AP (Bean BP. Nat Rev Neurosci 8: 451-465, 2007). A novel usage of the method is described in this report. An experimental recording of an AP from the literature is digitized and applied computationally to models of ionic currents. These results are compared with experimental AP-clamp recordings for model verification or, if need be, alterations to the model. The method is applied to the tetrodotoxin-sensitive sodium ion current, INa, and the calcium ion current, ICa, from suprachiasmatic nucleus (SCN) neurons (Jackson AC, Yao GL, Bean BP. J Neurosci 24: 7985-7998, 2004). The latter group reported voltage-step and AP-clamp results for both components. A model of INa is constructed from their voltage-step results. The AP clamp computational methodology applied to that model compares favorably with experiment, other than a modest discrepancy close to the peak of the AP that has not yet been resolved. A model of ICa was constructed from both voltage-step and AP-clamp results of this component. The model employs the Goldman-Hodgkin-Katz equation for the current-voltage relation rather than the traditional linear dependence of this aspect of the model on the Ca(2+) driving force. The long-term goal of this work is a mathematical model of the SCN AP. The method is general. It can be applied to any excitable cell.

  9. Geoprocessing techniques to evaluate the spatial distribution of natural rain erosion potential in the Hydrographic Basin of Cachoeira Dourada Reservoir – Brazil

    Directory of Open Access Journals (Sweden)

    João Batista Pereira CABRAL

    2005-12-01

    Full Text Available Natural potential erosion were defined from their main natural conditioners in the region of hydrographic basin of Cachoeira Dourada (between Goiás and Minas Gerais states −Brazil, with geoprocessing techniques and the Universal Soil Loss Equation (USLE. Upon the decision for natural erosion potential, a matrix with values of erosivity (R, erodibility (K, declivity, and ramp length (LS was elaborated, where classes of low, medium, high, very high, and extremely high natural erosion potential (NEP were established. Spatial distribution for the factors R, K, LS, and PNE was defined. The highest average R index for the rainy series was 8173.50 MJ ha mm-1 h-1 year-1. The period with data from 30 years (1973 – 2002 showed that the reservoir basin displayed areas susceptible to rill and interill erosion (69.16% of the total. There is a predominance of low erosion potential among the classes, which can be explained due to the soil predominant classes as well as to the low declivity. Areas with medium to extremely high erosion potential require the adoption of measures to avoid start and development of more severe erosion processes (ravines and gullies.

  10. A rationally designed photo-chemo core-shell nanomedicine for inhibiting the migration of metastatic breast cancer cells followed by photodynamic killing.

    Science.gov (United States)

    Malarvizhi, Giridharan Loghanathan; Chandran, Parwathy; Retnakumari, Archana Payickattu; Ramachandran, Ranjith; Gupta, Neha; Nair, Shantikumar; Koyakutty, Manzoor

    2014-04-01

    A multifunctional core-shell nanomedicine capable of inhibiting the migratory capacity of metastatic cancer cells followed by imparting cytotoxic stress by photodynamic action is reported. Based on in silico design, we have developed a core-shell nanomedicine comprising of ~80nm size poly(lactic-co-glycolic acid) (PLGA) nano-core encapsulating photosensitizer, m-tetra(hydroxyphenyl)chlorin (mTHPC), and ~20nm size albumin nano-shell encapsulating tyrosine kinase inhibitor, Dasatinib, which impair cancer migration. This system was prepared by a sequential process involving electrospray of polymer core and coacervation of protein shell. Cell studies using metastatic breast cancer cells demonstrated disruption of Src kinase involved in the cancer migration by albumin-dasatinib nano-shell and generation of photoactivated oxidative stress by mTHPC-PLGA nano-core. This unique combinatorial photo-chemo nanotherapy resulted synergistic cytotoxicity in ~99% of the motility-impaired metastatic cells. This approach of blocking cancer migration followed by photodynamic killing using rationally designed nanomedicine is a promising new strategy against cancer metastasis. A multifunctional core-shell nanomedicine capable of inhibiting metastatic cancer cell migration, in addition to inducing photodynamic effects, is described in this paper. The authors document cytotoxicity in approximately 99% of the studied metastatic breast cancer cells. Similar approaches would be a very welcome addition to the treatment protocols of advanced metastatic breast cancer and other types of neoplasms. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases.

    Science.gov (United States)

    Chandran, Parwathy; Kavalakatt, Anu; Malarvizhi, Giridharan Loghanathan; Vasanthakumari, Divya Rani Vikraman Nair; Retnakumari, Archana Payickattu; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar; Koyakutty, Manzoor

    2014-05-01

    Aberrant epigenetics play a key role in the onset and progression of acute myeloid leukemia (AML). Herein we report in silico modelling based development of a novel, protein-vorinostat nanomedicine exhibiting selective and superior anti-leukemic activity against heterogeneous population of AML patient samples (n=9), including refractory and relapsed cases, and three representative cell lines expressing CD34(+)/CD38(-) stem cell phenotype (KG-1a), promyelocytic phenotype (HL-60) and FLT3-ITD mutation (MV4-11). Nano-vorinostat having ~100nm size exhibited enhanced cellular uptake rendering significantly lower IC50 in AML cell lines and patient samples, and induced enhanced HDAC inhibition, oxidative injury, cell cycle arrest and apoptosis compared to free vorinostat. Most importantly, nanomedicine showed exceptional single-agent activity against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. Collectively, this epigenetics targeted nanomedicine appears to be a promising therapeutic strategy against various French-American-British (FAB) classes of AML. Through the use of a protein-vorinostat agent, exceptional single-agent activity was demonstrated against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. The studied epigenetics targeted nanomedicine approach is a promising therapeutic strategy against various French-American-British classes of acute myeloid leukemia. © 2014 Elsevier Inc. All rights reserved.

  12. Microbial and molecular techniques to evaluate and to implement in-situ biodegradation potential and activity at sites contaminated with aromatic and chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Karg, F. [HPC Envirotec / France and HPC AG (Germany); Henkler, Ch. [Planreal (Switzerland)

    2005-07-01

    Intrinsic bio-remediation harnesses the ability of indigenous microorganisms to degrade contaminants that are present in soil and groundwater. Over the past decade many environmental regulatory agencies especially in Europe have come to recognize the importance of these natural processes in contaminant attenuation. In order to use in-situ bio-remediation to clean up a site successfully it is necessary to investigate the indigenous microbial population and its potential activity to degrade the contaminants of concern (COCs). The evaluation of naturally-occurring degradative activity in initial screening of soil and groundwater samples using recently developed molecular and microbial methods may allow for the implementation of a contaminant reduction and management program without the need for fully engineered remediation intervention. Limited engineering approaches (nutrient delivery etc.) can be implemented to support naturally-occurring bio-restoration processes to achieve a controlled, dynamic attenuation of COCs. Techniques for monitoring pollutant-degrading microorganisms were previously limited to standard culturing techniques. More recently, techniques based upon detection of genetic elements and metabolic activities have been developed in collaboration with university partners Europe, especially in France. The modern techniques are more sensitive for monitoring microbial populations, metabolic activity and the genetic potential to degrade the COCs, and avoid the need for cultivation of microbes under artificial conditions in the laboratory. Especially the application of PCR-Tests (Polymerase Chain Reaction) are able to quantify the Genetic Potential of Pollutant Microbiological Degradation on a contaminated site. This enables to use very economic in-situ site rehabilitation strategies as for example (Dynamic Natural Attenuation). For this modern application of these new strategies PLANREAL created with HPC Envirotec and together with a French University

  13. Microbial and molecular techniques to evaluate and to implement in-situ biodegradation potential and activity at sites contaminated with aromatic and chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Karg, F.; Henkler, Ch.

    2005-01-01

    Intrinsic bio-remediation harnesses the ability of indigenous microorganisms to degrade contaminants that are present in soil and groundwater. Over the past decade many environmental regulatory agencies especially in Europe have come to recognize the importance of these natural processes in contaminant attenuation. In order to use in-situ bio-remediation to clean up a site successfully it is necessary to investigate the indigenous microbial population and its potential activity to degrade the contaminants of concern (COCs). The evaluation of naturally-occurring degradative activity in initial screening of soil and groundwater samples using recently developed molecular and microbial methods may allow for the implementation of a contaminant reduction and management program without the need for fully engineered remediation intervention. Limited engineering approaches (nutrient delivery etc.) can be implemented to support naturally-occurring bio-restoration processes to achieve a controlled, dynamic attenuation of COCs. Techniques for monitoring pollutant-degrading microorganisms were previously limited to standard culturing techniques. More recently, techniques based upon detection of genetic elements and metabolic activities have been developed in collaboration with university partners Europe, especially in France. The modern techniques are more sensitive for monitoring microbial populations, metabolic activity and the genetic potential to degrade the COCs, and avoid the need for cultivation of microbes under artificial conditions in the laboratory. Especially the application of PCR-Tests (Polymerase Chain Reaction) are able to quantify the Genetic Potential of Pollutant Microbiological Degradation on a contaminated site. This enables to use very economic in-situ site rehabilitation strategies as for example (Dynamic Natural Attenuation). For this modern application of these new strategies PLANREAL created with HPC Envirotec and together with a French University

  14. Comparison of sampling techniques for Rift Valley Fever virus potential vectors, Aedes aegypti and Culex pipiens complex, in Ngorongoro District in northern Tanzania.

    Science.gov (United States)

    Mweya, Clement N; Kimera, Sharadhuli I; Karimuribo, Esron D; Mboera, Leonard E G

    2013-07-01

    We investigated mosquito sampling techniques with two types of traps and attractants at different time for trapping potential vectors for Rift Valley Fever virus. The study was conducted in six villages in Ngorongoro district in Tanzania from September to October 2012. A total of 1814 mosquitoes were collected, of which 738 were collected by CDC light traps and 1076 by Mosquito Magnet trapping technique. Of the collected mosquitoes, 12.46% (N = 226) were Aedes aegypti and 87.54% (N = 1588) were Culex pipiens complex. More mosquitoes were collected outdoors using Mosquito Magnets baited with octenol attractant, 36.38% (N =660) followed by indoor trapping using CDC light traps without attractant, 29.60% (N = 537). Most of Ae. aegypti mosquitoes were collected outdoor using Mosquito Magnets, 95% (N = 214) whereas Cx. pipiens complex were trapped both indoor using CDC light traps without attractant and outdoors using both CDC light traps baited with carbon dioxide (CO2) sachets and Mosquito Magnets. Analysis on the differences in abundance of mosquitoes trapped by different techniques using Generalized Linear Models was statistically significance at p-value < 0.05 for both species. Three hours mosquito collections show differing patterns in activity, most Ae. aegypti species were collected primarily during the first and last quarters of the day. Cx pipiens complex was active throughout the night, early evening and early morning then decreased markedly during the day time. The results presented in this paper emphasize the possibility of using Mosquito Magnets in order to efficiently capture these potential RVF vectors.

  15. Evaluating the potential of thermal read-out techniques combined with molecularly imprinted polymers for the sensing of low-weight organic molecules.

    Science.gov (United States)

    van Grinsven, B; Betlem, K; Cleij, T J; Banks, C E; Peeters, M

    2017-01-01

    In recent years, there has been a tremendous increase in the papers published on synthetic recognition elements. Molecularly imprinted polymers (MIPs), also referred to as "man-made mimics" of antibodies, are able to rebind their template molecules with high affinity. Advantages compared with those of natural receptors include their excellent thermal and chemical stability, low cost, and ease of the production process. However, their use in commercial biosensors is limited owing to the difficulty to incorporate MIPs into suitable sensing platforms and traditional detection techniques, such as chromatography, that require bulky and sophisticated equipment. In this review, we evaluate the potential to use MIPs combined with thermal read-out for the detection of low-weight organic molecules. We discuss thermal methods to study MIP-template complexation and to determine neurotransmitters concentrations. In particular, we highlight the heat-transfer method, a recent technique that is straightforward and low cost and requires minimal instrumentation. Until now, sample preparation involves a 2-step process, making it time-consuming, and measuring biological samples is difficult owing to the noise in the signal. Different sample preparation methods are discussed, and it will be demonstrated how this affects the thermal response. An outlook is given in novel methods that can simplify and speed up sample preparation. Finally, we show a novel thermal technique, which is based on the analysis of transport of thermal waves rather than evaluating the fixed heat-transfer resistance. Through applying the concept of thermal waves, signal-noise ratio is significantly increased, which results in lower detection limits and has potential for the study of biological samples. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment.

    Science.gov (United States)

    Mahato, Niladri K; Montuelle, Stephane; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian

    2016-05-18

    .31 % and 5.26 % for the two pulse sequences, respectively, while the ICCs were 0.99 for both. For rotation measures, the CVs were 3.19 % and 2.44 % for the two pulse sequences with the ICCs being 0.98 and 0.97, respectively. A novel biplanar imaging approach also yielded high reliability with mean CVs of 2.66 % and 3.39 % for translation in the x- and z-planes, respectively, and ICCs of 0.97 in both planes. This work provides basic proof-of-concept for a reliable marker-less non-ionizing-radiation-based quasi-dynamic motion quantification technique that can potentially be developed into a tool for real-time joint kinematics analysis.

  17. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment

    International Nuclear Information System (INIS)

    Mahato, Niladri K.; Montuelle, Stephane; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian

    2016-01-01

    .31 % and 5.26 % for the two pulse sequences, respectively, while the ICCs were 0.99 for both. For rotation measures, the CVs were 3.19 % and 2.44 % for the two pulse sequences with the ICCs being 0.98 and 0.97, respectively. A novel biplanar imaging approach also yielded high reliability with mean CVs of 2.66 % and 3.39 % for translation in the x- and z-planes, respectively, and ICCs of 0.97 in both planes. This work provides basic proof-of-concept for a reliable marker-less non-ionizing-radiation-based quasi-dynamic motion quantification technique that can potentially be developed into a tool for real-time joint kinematics analysis

  18. Potential of remote sensing techniques for tsunami hazard and vulnerability analysis – a case study from Phang-Nga province, Thailand

    Directory of Open Access Journals (Sweden)

    H. Römer

    2012-06-01

    Full Text Available Recent tsunami disasters, such as the 2004 Indian Ocean tsunami or the 2011 Japan earthquake and tsunami, have highlighted the need for effective risk management. Remote sensing is a relatively new method for risk analysis, which shows significant potential in conducting spatially explicit risk and vulnerability assessments. In order to explore and discuss the potential and limitations of remote sensing techniques, this paper presents a case study from the tsunami-affected Andaman Sea coast of Thailand. It focuses on a local assessment of tsunami hazard and vulnerability, including the socio-economic and ecological components. High resolution optical data, including IKONOS data and aerial imagery (MFC-3 camera as well as different digital elevation models, were employed to create basic geo-data including land use and land cover (LULC, building polygons and topographic data sets and to provide input data for the hazard and vulnerability assessment. Results show that the main potential of applying remote sensing techniques and data derives from a synergistic combination with other types of data. In the case of hazard analysis, detailed LULC information and the correction of digital surface models (DSMs significantly improved the results of inundation modeling. The vulnerability assessment showed that remote sensing can be used to spatially extrapolate field data on socio-economic or ecological vulnerability collected in the field, to regionalize exposure elements and assets and to predict vulnerable areas. Limitations and inaccuracies became evident regarding the assessment of ecological resilience and the statistical prediction of vulnerability components, based on variables derived from remote sensing data.

  19. An improved technique for isolation of environmental Vibrio cholerae with epidemic potential: monitoring the emergence of a multiple-antibiotic-resistant epidemic strain in Bangladesh.

    Science.gov (United States)

    Faruque, Shah M; Islam, M Johirul; Ahmad, Qazi Shafi; Biswas, Kuntal; Faruque, A S G; Nair, G Balakrish; Sack, R Bradley; Sack, David A; Mekalanos, John J

    2006-04-01

    Predicting cholera epidemics through monitoring the environment for the presence of pathogenic Vibrio cholerae is complicated by the presence in water of a large number of mostly nonpathogenic V. cholerae strains. V. cholerae strains causing recent cholera epidemics in Bangladesh carry the sulfamethoxazole-trimethoprim (SXT) element, which encodes resistance to several antibiotics. Here, we show that the use of a culture medium containing streptomycin, sulfamethoxazole, and trimethoprim (the antibiotic selection technique [AST]) can significantly enhance the isolation of environmental V. cholerae O1 with epidemic potential (Pantibiotic-resistant strain of V. cholerae in Bangladesh. The results of this study support the hypothesis that pre-epidemic amplification of pathogenic V. cholerae occurs in the human host and leads to the start of an epidemic cycle dominated by a single clone of V. cholerae that spreads rapidly through environmental waters.

  20. Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms.

    Science.gov (United States)

    Ahmad, Faheem; Babalola, Olubukola O; Tak, Hamid I

    2012-09-01

    Plant diseases caused by plant pathogens substantially reduce crop production every year, resulting in massive economic losses throughout the world. Accurate detection and identification of plant pathogens is fundamental to plant pathogen diagnostics and, thus, plant disease management. Diagnostics and disease-management strategies require techniques to enable simultaneous detection and quantification of a wide range of pathogenic and non-pathogenic microorganisms. Over the past decade, rapid development of matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for characterization of microorganisms has enabled substantially improved detection and identification of microorganisms. In the biological sciences, MALDI-TOF MS is used to analyze specific peptides or proteins directly desorbed from intact bacteria, fungal spores, nematodes, and other microorganisms. The ability to record biomarker ions, in a broad m/z range, which are unique to and representative of individual microorganisms, forms the basis of taxonomic identification of microorganisms by MALDI-TOF MS. Recent advances in mass spectrometry have initiated new research, i.e. analysis of more complex microbial communities. Such studies are just beginning but have great potential for elucidation not only of the interactions between microorganisms and their host plants but also those among different microbial taxa living in association with plants. There has been a recent effort by the mass spectrometry community to make data from large scale mass spectrometry experiments publicly available in the form of a centralized repository. Such a resource could enable the use of MALDI-TOF MS as a universal technique for detection of plant pathogens and non-pathogens. The effects of experimental conditions are sufficiently understood, reproducible spectra can be obtained from computational database search, and microorganisms can be rapidly characterized by genus, species