WorldWideScience

Sample records for nanocomposite combination coatings

  1. Hard and superhard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. [Univ. of West Bohemia, Plzen (Czech Republic). Dept. of Phys.

    2000-03-01

    This article reviews the development of hard coatings from a titanium nitride film through superlattice coatings to nanocomposite coatings. Significant attention is devoted to hard and superhard single layer nanocomposite coatings. A strong correlation between the hardness and structure of nanocomposite coatings is discussed in detail. Trends in development of hard nanocomposite coatings are also outlined. (orig.)

  2. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  3. Based Adaptive Nanocomposite Coatings

    Science.gov (United States)

    Ramazani, M.; Ashrafizadeh, F.; Mozaffarinia, R.

    2014-08-01

    A promising Ni(Al)-Cr2O3-Ag-CNT-WS2 self-lubricating wear-resistant coating was deposited via atmospheric plasma spray of Ni(Al), nano Cr2O3, nano silver and nano WS2 powders, and CNTs. Feedstock powders with various compositions prepared by spray drying were plasma sprayed onto carbon steel substrates. The tribological properties of coatings were tested by a high temperature tribometer in a dry environment from room temperature to 400 °C, and in a natural humid environment at room temperature. It was found that all nanocomposite coatings have better frictional behavior compared with pure Ni(Al) and Ni(Al)-Cr2O3 coatings; the specimen containing aproximately 7 vol.% Ag, CNT, and WS2 had the best frictional performance. The average room temperature friction coefficient of this coating was 0.36 in humid atmosphere, 0.32 in dry atmosphere, and about 0.3 at high temperature.

  4. Synthesis carbon-encapsulated NiZn ferrite nanocomposites by in-situ starch coating route combined with hydrogen thermal reduction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fuming [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Xie, Yu, E-mail: xieyu_121@163.com [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Duan, Junhong; Hua, Helin [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Gao, Yunhua [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Huang, Yan; Pan, Jianfei; Ling, Yun [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-05

    Carbon-encapsulated NiZn ferrite magnetic nanocomposites were successfully synthesized by an inexpensive and environment-friendly method of in-situ starch coating route combined with hydrogen thermal reduction. The nanocomposites were characterized in detail by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and vibrate sample magnetometer (VSM) and so on techniques. XRD, FT-IR, TGA and TEM images indicate the formation of carbon-encapsulated NiZn ferrite magnetic nanocomposites. XRD patterns reveal that the crystalline structure of the nanocomposites is cubic spinel and taenite emerges under the hydrogen thermal reductive ambient. FT-IR spectra suggest that there are interactions on the NiZn ferrite nanocomposites and a spinel-type structure corresponding to NiZn ferrite has formed. TGA shows that the weight loss of the nanocomposites can be divided into three stages in the course of heat decomposition. TEM observations reveal that the carbon-encapsulated NiZn ferrite magnetic nanocomposites have an intact core–shell structure. Under the magnetic field, the nanocomposites exhibited the ferrimagnetic behavior. The saturated magnetization (M{sub s}) of carbon-encapsulated NiZn ferrite nanocomposites calcined at 400 °C can reach a high value up to 72.67 emu/g, and the saturated magnetization (M{sub s}) decreases as the annealing temperature goes up, while the coercivity (Hc), magnetic residual (Mr) magnetic parameters practically fixed on 115.15 Oe and 7.85 emu/g. - Graphical abstract: Carbon-encapsulated NiZn ferrite magnetic nanocomposites were successfully synthesized by an inexpensive and environment-friendly method of in-situ starch coating route combined with hydrogen thermal reduction (Fig. 1). The nanocomposites were characterized and the experimental results were discussed. Under applied magnetic field, the nanocomposites exhibited the ferromagnetic behavior

  5. Studies on Nanocomposite Conducting Coatings

    Directory of Open Access Journals (Sweden)

    Amitava Bhattacharyya

    2013-01-01

    Full Text Available Nanocomposite conducting coatings can impart stable surface electrical conductivity on the substrate. In this paper, carbon nanofiber (CNF and nanographite (NG are dispersed in thermoplastic polyurethane matrix and coated on the surface of glass and polyethylene terephthalate (PET film. The nanoparticles dispersion was studied under TEM. The coating thicknesses were estimated. Further, their resistance and impedance were measured. It has been observed that the 5 wt% CNF dispersed nanocomposite coatings show good conductivity. The use of NG can bring down the amount of CNF; however, NG alone has failed to show significant improvement in conductivity. The nanocomposite coating on PET film using 2.5 wt% of both CNF and NG gives frequency-independent impedance which indicates conducting network formation by the nanoparticles. The study was carried out at different test distances on nanocomposite coated PET films to observe the linearity and continuity of the conducting network, and the result shows reasonable linearity in impedance over total test length (from 0.5 cm to 4.5 cm. The impedance of nanocomposite coatings on glass is not frequency independent and also not following linear increase path with distance. This indicates that the dispersion uniformity is not maintained in the coating solution when it was coated on glass.

  6. Superhard nano-multilayers and nanocomposite coatings

    Institute of Scientific and Technical Information of China (English)

    BAI Xiaoming; ZHENG Weitao; AN Tao

    2005-01-01

    This paper reviews the recent development of nano-multilayers and nanocomposite coatings. The hardening mechanisms and design of hard coating are discussed in details. Recent research on Ti/TiN and nitride/nitride multilayer, Ti-Si-N and Ti-Al-Si-N nanocomposite coatings is described, and the perspectives of the related research are proposed.

  7. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  8. NANOCOMPOSITE COATINGS WITH ENHANCED HARDNESS

    Institute of Scientific and Technical Information of China (English)

    J. Musil

    2005-01-01

    The article reviews the present state of the art in the magnetron sputtering of hart and superhard nanocomposite coatings. It is shown that there are (1) two groups of hard and superhard nanocomposites: (i) nc-MN/hard phase and (ii) nc-MN/soft phase, (2) three possible origins of the enhanced hardness: (i) dislocation-dominated plastic deformation, (ii) cohesive forces between atoms and (iii) nanostructure of materials, and (3) huge differences in the microstructure of single- and two-phase films. A main attention is devoted to the formation of nanocrystalline and/or X-ray amorphous films. Such films are created in a vicinity of transitions between (i)crystalline and amorphous phases, (ii) two crystalline phases of different chemical composition or (iii) two different preferred orientations of grains of the sane material from which the coating is composed. The existence of the last transition makes it possible to explain the enhanced hardness in single-phase films. The thermal stability and oxidation resistance of hard nanocomposite films is also shortly discussed.

  9. Coatings and films derived from clay/wax nanocomposites

    Science.gov (United States)

    Chaiko, David J.; Leyva, Argentina A.

    2006-11-14

    The invention provides methods for making clay/wax nanocomposites and coatings and films of same with improved chemical resistance and gas barrier properties. The invention further provides methods for making and using emulsions of such clay/wax nanocomposites. Typically, an organophillic clay is combined with a wax or wax/polymer blend such that the cohesion energy of the clay matches that of the wax or wax/polymer blend. Suitable organophilic clays include mica and phyllosilicates that have been surface-treated with edge or edge and surface modifying agents. The resulting nanocomposites have applications as industrial coatings and in protective packaging.

  10. Thermal Imaging Processes of Polymer Nanocomposite Coatings

    Science.gov (United States)

    Meth, Jeffrey

    2015-03-01

    Laser induced thermal imaging (LITI) is a process whereby infrared radiation impinging on a coating on a donor film transfers that coating to a receiving film to produce a pattern. This talk describes how LITI patterning can print color filters for liquid crystal displays, and details the physical processes that are responsible for transferring the nanocomposite coating in a coherent manner that does not degrade its optical properties. Unique features of this process involve heating rates of 107 K/s, and cooling rates of 104 K/s, which implies that not all of the relaxation modes of the polymer are accessed during the imaging process. On the microsecond time scale, the polymer flow is forced by devolatilization of solvents, followed by deformation akin to the constrained blister test, and then fracture caused by differential thermal expansion. The unique combination of disparate physical processes demonstrates the gamut of physics that contribute to advanced material processing in an industrial setting.

  11. Adaptive multicomponent nanocomposite coatings in surface engineering

    Science.gov (United States)

    Pogrebnjak, A. D.; Bagdasaryan, A. A.; Pshyk, A.; Dyadyura, K.

    2017-06-01

    This paper reviews experimental research on nanocomposite coatings of different chemical composition. For adaptive multi-element and multi-layer systems with specific phase composition, structure, substructure, stress state and high functional properties, formation conditions are reviewed; the behavior under extreme conditions and in tribological applications is examined; the structural, phase, and chemical composition, and the hardness, friction and wear at elevated temperatures are discussed; and the adhesive strength of hierarchical protective coatings is analyzed. Finally, the adaptive behavior at different tribological test conditions of multifunctional, multi-layer coatings as a function of their properties and structure is examined.

  12. Present and possible future applications of superhard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Holubar, P.; Jilek, M.; Sima, M. [SHM, Ltd., Sumperk (Czech Republic)

    2000-11-01

    Recent investigations into the multicomponent (TiAlSi)N and TiBN superhard coatings revealed that the nanostructure, properties and deposition conditions needed for their preparation are in agreement with the known generic concept for the design of novel superhard nanocomposites due to thermodynamically driven phase segregation. All coatings to be reported here were developed on a production scale plasma PVD and CVD equipment consisting of vacuum arc evaporation from a central cathode for the metals in combination with PCVD of non-metals, such as boron, from gaseous reactant. Depending on the composition and deposition conditions the hardness of the coatings is controlled in the range between 35 and 45 GPa or higher. However, for the majority of applications the highest hardness is not the primary goal. More important is the appropriate combination of high hardness with other properties, such as fracture toughness, oxidation resistance, adhesion, etc. The effect of these properties on the resulting utility value of the coated tools will be discussed with respect to the available cutting tools made of cemented carbide and coated with the nanocomposites. Presently, dry milling, drilling and possibly turning are the most important applications of such coated tools. In view of the fairly fast transition from the initial development of these coatings towards their industrial production many further applications are expected. Therefore, future possibilities will be discussed as well. (orig.)

  13. Lipid-coated gold nanocomposites for enhanced cancer therapy.

    Science.gov (United States)

    Kang, Ji Hee; Ko, Young Tag

    2015-01-01

    The aim of the work reported here was to develop lipid-coated multifunctional nanocomposites composed of drugs and nanoparticles for use in cancer therapy. We incorporated thermosensitive phospholipids onto the surface of anisotropic gold nanoparticles (AuNPs) to further enhance drug delivery, with possible additional applications for in vivo imaging and photothermal cancer therapy. Lipid-coated nanohybrids loaded with the drug docetaxel (DTX) were prepared by a thin-film formation, hydration, and sonication method. Nanoparticles and their composites were characterized using particle-size analysis, zeta potential measurements, transmission electron microscopy, UV-visible spectroscopy, and reverse-phase high-performance liquid chromatography, demonstrating successful loading of DTX into the lipid bilayer on the surface of the gold nanoparticles. Initial in vitro studies using breast-cancer (MCF-7) and melanoma (B16F10) cell lines demonstrated that the drug-containing nanocomposites at equivalent drug concentrations caused significant cytotoxicity compared to free DTX. Differential flow cytometry analysis confirmed the improved cellular uptake of lipid-coated nanocomposites. Our preliminary results show that DTX-loaded anionic lipid-coated gold nanorod (AL_AuNR_DTX) and cationic lipid-coated gold nanoparticle (CL_AuNP_DTX) possess effective tumor cell-suppression abilities and can therefore be considered promising chemotherapeutic agents. Further evaluation of the therapeutic efficacy of these hybrid nanoparticles combined with external near-infrared photothermal treatment is warranted to assess their synergistic anticancer actions and potential bioimaging applications.

  14. Recent Advances in Hard, Tough, and Low Friction Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    A.A.Voevodin; J. S. Zabinski; C.Muratore

    2005-01-01

    Nanocomposite coatings demonstrate improved friction and wear responses under severe sliding conditions in extreme environments. This paper provides a review how thin film multilayers and nanocomposites result in hard, tough, low-friction coatings. Approaches to couple multilayered and nanocomposite materials with other surface engineering strategies to achieve higher levels of performance in a variety of tribological applications are also discussed. Encapsulating lubricious phases in hard nanocomposite matrices is one approach that is discussed in detail. Results from state-of-the-art "chameleon" nanocomposites that exhibit reversible adaptability to ambient humidity or temperature are presented.

  15. Polyurethane Organosilicate Nanocomposites as Blood Compatible Coatings

    Directory of Open Access Journals (Sweden)

    Johnson H. Y. Chung

    2012-02-01

    Full Text Available Polymer clay nanocomposites (NCs show remarkable potential in the field of drug delivery due to their enhanced barrier properties. It is hypothesised that well dispersed clay particles within the polymer matrix create a tortuous pathway for diffusing therapeutic molecules, thereby resulting in more sustained release of the drug. As coatings for medical devices, these materials can simultaneously modulate drug release and improve the mechanical performance of an existing polymer system without introducing additional materials with new chemistries that can lead to regulatory concerns. In this study, polyurethane organosilicate nanocomposites (PUNCs coated onto stainless steel wires were evaluated for their feasibility as blood compatible coatings and as drug delivery systems. Heparin was selected as the model drug to examine the impact of silicate loading and modifier chain length in modulating release. Findings revealed that better dispersion was achieved from samples with lower clay loadings and longer alkyl chains. The blood compatibility of PUNCs as assessed by thrombin generation assays showed that the addition of silicate particles did not significantly decrease the thrombin generation lag time (TGT, p = 0.659 or the peak thrombin (p = 0.999 of polyurethane (PU. PUNC coatings fabricated in this research were not cytotoxic as examined by the cell growth inhibition assay and were uniformly intact, but had slightly higher growth inhibition compared to PU possibly due to the presence of organic modifiers (OM. The addition of heparin into PUNCs prolonged the TGT, indicating that heparin was still active after the coating process. Cumulative heparin release profiles showed that the majority of heparin released was from loosely attached residues on the surface of coils. The addition of heparin further prolonged the TGT as compared to coatings without added heparin, but a slight decrease in heparin activity was observed in the NCs

  16. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  17. Electrodeposition and characterization of Co–BN (h) nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shahri, Z.; Allahkaram, S.R., E-mail: akaram@ut.ac.ir; Zarebidaki, A.

    2013-07-01

    Co–BN (h) nanocomposite coatings were prepared by means of the conventional electrodeposition in a chloride solution containing different concentrations of hexagonal boron nitride particles, and pure Co coating was also prepared as a comparison. Morphology of the coatings and the effect of incorporated particles on metal matrix structure and composition were investigated via scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Microhardness, roughness, friction coefficient and wear resistance of the coatings were also evaluated using Vickers microhardness, stylus profilometer and pin-on disk machine. The results showed that Co–BN (h) nanocomposite coatings exhibit higher hardness and lower friction coefficient. Roughness and wear resistance compared with that of the pure Co coating obtained under the same electrodeposition condition and the wear mechanism of the coatings were also discussed.

  18. Synthesis of Superhydrophobic Nanocomposite Coatings Using Electrodeposition

    Science.gov (United States)

    Iacovetta, Daniel John

    The focus of the current research is to produce a metal matrix composite material that possesses a superhydrophobic surface using electrodeposition. The objective is to create a multifunctional coating that is able to provide high strength as well as high water repellency using nanocrystalline nickel and polytetrafluoroethylene (PTFE) particles. The co-deposition process was first studied. It was determined that the amount of PTFE co-deposited is highly dependent on the concentration of PTFE particles in the electroplating bath. The wetting angle of the surface greatly increased when the PTFE content increases. Next the electroplating procedure of pure nickel is altered to produce a nanocrystalline material, resulting in a large increase in the hardness of the nickel coatings. The two techniques are combined to produce a nanocrystalline Nickel-PTFE composite. Under optimum conditions, the composite coating displayed a highly water repellent surface and improved mechanical properties.

  19. Nanoscale deformation in TiC/a-C multilayered nanocomposite coatings

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Shaha, K.P.; Hosson, J.Th.M. De

    2008-01-01

    Nanoscale deformation in TiC/a-C nanocomposite coatings is revealed by combined nanoindentation and high resolution cross-sectional transmission electron microscopy. A process characterized by rearrangement of TiC nanocrystallites and the displacement of a-C matrix is found to dominate the deformati

  20. Nanoscale deformation in TiC/a-C multilayered nanocomposite coatings

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Shaha, K.P.; Hosson, J.Th.M. De

    2008-01-01

    Nanoscale deformation in TiC/a-C nanocomposite coatings is revealed by combined nanoindentation and high resolution cross-sectional transmission electron microscopy. A process characterized by rearrangement of TiC nanocrystallites and the displacement of a-C matrix is found to dominate the

  1. Cross sectional TEM observation and nanoindentation study of multilayered nanocomposite coatings

    NARCIS (Netherlands)

    Chen, C. Q.; Pei, Y. T.; Shaha, K. P.; De Hosson, J. Th. M.; Fan, JH; Chen, HB

    2008-01-01

    Combined nanoindentation and XTEM investigations were carried out on TiC/a-C nanocomposite coatings. The most striking findings related to the deformation and toughening mechanisms are: firstly, multiple shear bands delocalizing shear deformation and secondly nanoparticles flow and reordering in the

  2. Room temperature synthesis of water-repellent polystyrene nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yonggang; Jiang Dong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhang Xia; Zhang Zhijun [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Wang Qihua, E-mail: wangqh@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-09-15

    A stable superhydrophobic polystyrene nanocomposite coating was fabricated by means of a very simple and easy method. The coating was characterized by scanning electron microscopy and X-ray photoelectron spectrum. The wettability of the products was also investigated. By adding the surface-modified SiO{sub 2} nanoparticles, the wettability of the coating changed to water-repellent superhydrophobic, not only for pure water, but also for a wide pH range of corrosive liquids. The influence of the drying temperature and SiO{sub 2} content on the wettability of the nanocomposite coating was also investigated. It was found that both factors had little or no significant effect on the wetting behavior of the coating surface.

  3. Fabrication of advanced organic-inorganic nanocomposite coatings for biomedical applications by electrodeposition

    Science.gov (United States)

    Pang, Xin

    Novel electrodeposition strategies have been developed for the fabrication of thick adherent zirconia ceramic and composite coatings for biomedical applications. The new method is based on the electrophoretic deposition (EPD) of polyelectrolyte additives combined with the cathodic precipitation of zirconia. The method enables the room-temperature electrosynthesis of crystalline zirconia nanoparticles in the polymer matrix. Adherent crack-free coatings up to several microns thick were obtained. The deposits were studied by thermogravimetric and differential thermal analysis, X-ray diffraction analysis, scanning and transmission electron microscopy, and atomic force microscopy. Obtained results pave the way for electrodeposition of other ceramic-polymer composites. Novel advanced nanocomposite coatings based on bioceramic hydroxyapatite (HA) have been developed for the surface modification of orthopaedic and dental implant metals. HA nanopartic1es prepared by a chemical precipitation method were used for the fabrication of novel HA-chitosan nanocomposite coatings. The use of chitosan enables room-temperature fabrication of the composite coatings. The problems related to the sintering of HA can be avoided. A new electrodeposition strategy, based on the EPD of HA nanoparticles and electrochemical deposition of chitosan macromolecules, has been developed. The method enabled the formation of dense, adherent and uniform coatings of various thicknesses in the range of up to 60 mum. Bioactive composite coatings containing 40.9-89.8 wt% HA were obtained. The deposit composition and microstructure can be tailored by varying the chitosan and HA concentrations in the deposition bath. A mathematical model describing the formation of the HA-chitosan composite deposit has been developed. X-ray studies revealed preferred orientation of HA nanoparticles in the nanocomposites. Obtained coatings provide corrosion protection of the substrates and can be utilized for the fabrication of

  4. Nanocomposite W-C : H diamond-like carbon coatings

    NARCIS (Netherlands)

    Strondl, Carl Gunnar Christian

    2007-01-01

    It has been demonstrated that the rotation speed of the substrate table and the gas flow rate of acetylene gas are important process parameters for determining the nano/micro-structure of W-C:H coatings. Either a homogeneous or a pronounced multilayer or a nanocomposite structure of the W-C:H

  5. Cirrus Dopant Nano-Composite Coatings

    Science.gov (United States)

    2014-11-01

    Inorganic Nano-particles • Ti • Zr • Al • Zn • Yr • Si Coatings • Au • Ag • Sn • Cu • Zn • Ni • NiB • NiCo • NiP cirrus Broadened...1000 1200 HARDNESS (HV) MICROHARDNESS - ELECTROLESS NIP STANDARD COATING TI DOPED COATING ZR DOPED COATING ↑74% Standard DC NiB Cirrus DC NiB 15

  6. Biomimetic organic-inorganic nanocomposite coatings for titanium implants.

    Science.gov (United States)

    Sikirić, Maja Dutour; Gergely, Csilla; Elkaim, Rene; Wachtel, Ellen; Cuisinier, Frederic J G; Füredi-Milhofer, Helga

    2009-06-01

    A new class of organic-inorganic nanocomposites, to be used as coatings for surface enhancement of metal implants for bone replacement and repair, has been prepared by a biomimetic three-step procedure: (1) embedding amorphous calcium phosphate (ACP) particles between organic polyelectrolyte multilayers (PE MLs), (2) in situ transformation of ACP to octacalcium phospate (OCP) and/or poorly crystalline apatite nanocrystals by immersion of the material into a metastable calcifying solution (MCS) and (3) deposition of a final PE ML. The organic polyelectrolytes used were poly-L-glutamic acid and poly-L-lysine. The nanocomposites obtained by each successive step were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDS), and XRD, and their suitability as coatings for metal implants was examined by mechanical and in vitro biological tests. Coatings obtained by the first deposition step are mechanically unstable and therefore not suitable. During the second step, upon immersion into MCS, ACP particles were transformed into crystalline calcium phosphate, with large platelike OCP crystals as the top layer. After phase transformation, the nanocomposite was strongly attached to the titanium, but the top layer did not promote cell proliferation. However, when the coating was topped with an additional PE ML (step 3), smoother surfaces were obtained, which facilitated cell adhesion and proliferation as shown by in vitro biological tests using primary human osteoblasts (HO) directly seeded onto the nanocomposites. In fact, cell proliferation on nanocomposites with top PE MLs was far superior than on any of the individual components and was equivalent to proliferation on the golden standard (plastic).

  7. Surface functionalization with strontium-containing nanocomposite coatings via EPD.

    Science.gov (United States)

    Ma, Kena; Huang, Dan; Cai, Jing; Cai, Xinjie; Gong, Lingling; Huang, Pin; Wang, Yining; Jiang, Tao

    2016-10-01

    Metal orthopedic implants still face challenges in some compromised conditions, partly due to bio-inertness. The present study aimed to functionalize metallic implants with organic-inorganic nanocomposite (strontium-containing chitosan/gelatin) coatings through a simple single-step electrophoretic deposition under mild conditions. The surface characterization and in vitro cellular response were studied and compared with chitosan/gelatin (CS/G) coatings. SEM images suggested the inorganic nanoparticles may be encapsulated within or mixed with organic polymers. The XRD patterns showed that strontium carbonate was generated in the coatings. The TEM images revealed strontium-containing nanoparticles were released from the coatings in PBS. The continuous release after the initial burst release ensured the enduring effects of the functionalized surface. The tensile bond strength of the coatings to the substrates increased after the addition of strontium. In vitro cellular study confirmed that strontium-containing coatings supported the proliferation of MC3T3-E1 cells and exhibited excellent ability to enhance the differentiation of such pre-osteoblasts. Therefore, such organic-inorganic nanocomposite coatings are a promising candidate to functionalize orthopedic implant surfaces.

  8. Mesoporous nanocomposite coatings for photonic devices: sol-gel approach

    Science.gov (United States)

    Islam, Shumaila; Bidin, Noriah; Riaz, Saira; Suan, Lau Pik; Naseem, Shahzad; Sanagi, Mohd. Marsin

    2016-10-01

    Thermally stable, optically active inorganic nanocomposites, i.e., aluminum-silicate (AS) and silica-titania (ST), are synthesized via acid-catalyzed low-temperature sol-gel method in order to get stable, crack-free coating material for photonic devices. The samples are characterized by atomic force microscope, field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett--Teller (BET) surface area, Barrett-Joyner-Halenda (BJH) pore size distribution surface analysis and UV-Vis spectroscopy. Microscopic results show good incorporation of ST and AS particles as composites with grain size within range of 12-17 and 62-109 nm, respectively. EDX analysis substantiated the stoichiometric formation of homogeneous nanocomposites. XRD of the films reveals primary polycrystalline anatase titania phase and mullite phase of ST and AS nanocomposites. FTIR confirms the heterogeneous bond linkage between titania, silica and alumina species. Furthermore, the fabricated samples have mesoporous nature with high surface area, large pore volume and diameter. The tunable refractive index of 1.33-1.35 with high transparency is obtained for synthesized nanocomposites. The experimental findings show that these physically modified and thermally stable alumina- and titania-doped silica-based composite coatings are promising for photonic devices modification.

  9. Nanocomposite coatings based on Ti-N-Cr/Ni-Cr-B-Si-Fe, gained by two technologies

    Directory of Open Access Journals (Sweden)

    N.K. Erdybayeva

    2009-01-01

    Full Text Available The first results of manufacturing and investigations of a new type of nanocomposite protective coatings are presented. They were manufactured using a combination of two technologies: plasma-detonation coating deposition with the help of plasma jets and thin coating vacuum-arc deposition. We investigated structure, morphology, physical and mechanical properties of the coatings of 80-90 μm thickness, as well as defined the hardness, elastic Young modulus and their corrosion resistance in different media. Grain dimensions of the nanocomposite coatings on Ti-N-Cr base varied from 2.8 to 4 nm. The following phases and compounds formed as a result of plasma interaction with the thick coating surface were found in the coatings: Ti-N-Cr (200, (220, y-Ni3-Fe, a hexagonal Cr2-Ti, Fe3-Ni, (Fe, NiN and the following Ti-Ni compounds: Ti2Ni, Ni3Ti, Ni4Ti, etc. We also found that the nanocomposite coating microhardness increased to H = 31.6 ± 1.1 GPa. The Young elastic modulus was determined to be E = 319 ± 27 GPa – it was derived from the loading-unloading curves. The protective coating demonstrated the increased corrosion resistance in acidic and alkaline media in comparison with that of the stainless steel substrate.

  10. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  11. Synthesis and characterization of polyaniline coated gold nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, Siti Nurzulaiha Mohd; Kamarun, Dzaraini; Zaki, Hamizah; Kamarudin, Mohamad Shukri [Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Thomas, Sabu; Kalarikkal, Nandakumar [International and Inter University Centre of Nanoscience and Nanotechnoogy, Mahatma Ghandi University, Priyadarsini Hills Kottayam, Kerala India-686560 (India)

    2015-08-28

    Considerable attention has been drawn during the last two decades to prepare nanocomposites consists of conducting polymer and noble metal due to their potential ability to generate a new class of material with novel optical, chemical, electronic or mechanical properties for various applications. In this work, an attempt has been made to synthesize nanocomposite of polyaniline (PANI) coated with gold nanoparticles (AuNPs) chemically with various types of surfactants such as polyvinylpyrrolidone (PVP), and sodium dodecyl sulphate (SDS) which act as stabilizing agents to help in stabilization of the PANI/Gold nanocomposites system. The synthesized nanocomposites were characterized by UV-Visible, field emission scanning electron microscope (FESEM) and particle size analyzer (PSA). The formation of finger like structure can be seen in the FESEM images when the AuNPs were incorporated into the polymer matrix. The EDX data showed that 18.66% and 12.67% of AuNPs atoms were present in the composite system thus proved the incorporation of AuNPs into the polymer matrix. A small red shift of the absorption peak in the UV-Vis of both PANI/AuNPs composites system may be due to the incorporation of AuNPs in the PANI matrix.

  12. Tribology of polymeric nanocomposites friction and wear of bulk materials and coatings

    CERN Document Server

    Friedrich, Klaus

    2013-01-01

    Tribology of Polymeric Nanocomposites provides a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and provides rare, focused coverage of their tribological behavior and potential use in tribological applications. Providing engineers and designers with the preparation techniques, friction and wear mechanisms, property information and evaluation methodology needed to select the right polymeric nanocomposites for the job, this unique book also includes valuable real-world examples of polymeric nanocomposites in a

  13. Advanced TiC/a-C : H nanocomposite coatings deposited by magnetron sputtering

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing subs

  14. Nano-Composite Superfine Nickel Powder Double Absorbent Coating Designing

    Institute of Scientific and Technical Information of China (English)

    LU Yan-hong; WANG Zhi-hui; HUANG Dong-zhen; HU Chuan-xin; ZHANG Chen-jia; LI Wan-zhi; LIANG Wen-ting

    2004-01-01

    We adopt a definite procedure to compound traditional absorbing material-superfine powder nickel and nano -SiC powder to obtain the nano-composite nickel powder, then testing the absorbing speciality of the composite powder. In virtue of computer assistant designing, we apply double-deck absorbent structure to improve absorbent effect and widen wave band. The experiment indicated that it is possible to achieve the anticipative object to improve the absorbing capability by adopting nano-composite absorbing material, but each component of the composite material must have matched electromagnetic parameter with another. For matching double-coating structure, it ought to modulate the correlativity of each factor to achieve the most matching in order to optimise the absorbent speciality.

  15. Fabrication of Bionic Superhydrophobic Manganese Oxide/Polystyrene Nanocomposite Coating

    Institute of Scientific and Technical Information of China (English)

    Xianghui Xu; Zhaozhu Zhang; Fang Guo; Jin Yang; Xiaotao Zhu; Xiaoyan Zhou; Qunji Xue

    2012-01-01

    A superhydrophobic manganese oxide/polystyrene (MnO2/PS) nanocomposite coating was fabricated by a facile spraying process.The mixture solution of MnO2/PS was poured into a spray gun,and then sprayed onto the copper substrate using 0.2 MPa nitrogen gas to construct superhydrophobic coating.The wettability of the composite coating was measured by sessile drop method.When the weight ratio of MnO2 to PS is 0.5:1,the maximum of contact angle (CA) (140°) is obtained at drying temperature of 180 ℃.As the content of MnO2 increases,the maximum of CA (155°) is achieved at 100 ℃.Surface morphologies and chemical composition were analyzed to understand the effect of the content of MnO2 nanorods and the drying temperature on CA.The results show that the wettability of the coating can be controlled by the content ofMnO2 nanorods and the drying temperature.Using the proposed method,the thickness of the coating can be controlled by the spraying times.If damaged,the coating can be repaired just by spraying the mixture solution again.

  16. Electrodeposition and characterization of Ni–W/ZrO2 nanocomposite coatings

    Indian Academy of Sciences (India)

    Chunmei Zhao; Yingwu Yao; Liang He

    2014-08-01

    Ni–W/ZrO2 nanocomposite coatings were prepared by electrodeposition in Ni–W plating bath containing ZrO2 nanoparticles. The influences of preparation parameter, such as ZrO2 nanoparticles concentration, current density and stirring rate, on weight percentage of codeposited ZrO2 nanoparticles in the nanocomposite coatings were investigated. The surface morphology of Ni–W/ZrO2 nanocomposite coating was characterized by scanning electron microscopy (SEM). The microhardness, wear resistance and corrosion resistance properties of Ni–W/ZrO2 nanocomposite coatings were studied. The results indicated that the addition of ZrO2 nanoparticles leads to an increase in microhardness and wear resistance of the nanocomposite coatings and a reduction in the wear weight loss. The corrosion behaviour of Ni–W/ZrO2 nanocomposite coatings was evaluated by the anodic polarization curves and weight loss measurements. The results revealed that Ni–W/ZrO2 nanocomposite coating has better corrosion resistance than the Ni–W alloy coating.

  17. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    Science.gov (United States)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  18. Silver-polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets.

    Science.gov (United States)

    Travan, Andrea; Marsich, Eleonora; Donati, Ivan; Benincasa, Monica; Giazzon, Marta; Felisari, Laura; Paoletti, Sergio

    2011-01-01

    Bisphenol A glycidylmethacrylate (BisGMA)/triethyleneglycol dimethacrylate (TEGDMA) thermosets are receiving increasing attention as biomaterials for dental and orthopedic applications; for both these fields, bacterial adhesion to the surface of the implant represents a major issue for the outcome of the surgical procedure. Moreover, the biological behaviour of these materials is influenced by their ability to establish proper interactions between their surface and the eukaryotic cells of the surrounding tissues, which is important for good implant integration. The aim of this work was to develop an antimicrobial non-cytotoxic coating for methacrylic thermosets by means of a nanocomposite material based on a lactose-modified chitosan and antibacterial silver nanoparticles. The coating was characterized by UV-vis spectrophotometry, optical microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). In vitro tests were employed for a biological characterization of the material: antimicrobial efficacy tests were carried out with both Gram+ and Gram- strains. Osteoblast-like cell-lines, primary human fibroblasts and adipose-derived stem cells, were used for LDH cytotoxicity assays and Alamar blue cell proliferation assays. Cell morphology and distribution were evaluated by SEM and confocal laser scanning microscopy. In vitro results showed that the nanocomposite coating is effective in killing both bacterial strains and that this material does not exert any significant cytotoxic effect towards tested cells, which are able to firmly attach and proliferate on the surface of the coating. Such biocompatible antimicrobial polymeric films containing silver nanoparticles may have good potential for surface modification of medical devices, especially for prosthetic applications in orthopedics and dentistry.

  19. Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, S. [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Anthuvan, J. Tennis [M. Kumarasamy College of Engineering, Karur, Tamil Nadu (India)

    2015-12-30

    Graphical abstract: - Highlights: • PTFE polymer inclusion on Ni–W alloy matrix was electrodeposited by pulse current method. • Tribological properties and electrochemical characterizations of the nanocomposite coatings were analyzed. • The hydrophobic behaviour of Ni–W/PTFE nanocomposite coating was measured. • Ni–W/PTFE nanocomposite coatings have showed superior tribological properties and corrosion resistance relative to that of the Ni–W alloy matrix. - Abstract: Ni–W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni–W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni–W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni–W/PTFE nanocomposite coating has better corrosion resistance than the Ni–W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni–W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  20. EFFECT OF SURFACTANTS ON Ni-TiN NANOCOMPOSITE COATINGS PREPARED BY ULTRASONIC ELECTRODEPOSITION

    Institute of Scientific and Technical Information of China (English)

    XIA Fafeng; JIA Zhenyuan; WU Menghua; LI Zhi

    2008-01-01

    Ni-TiN nanocomposite coatings were prepared by ultrasonic electrodeposition, and the effects of the surfactants on the coatings were investigated and the microstructure and micro rigidity of the coatings were characterized. Samples were also submitted to corrosion tests in 3% NaCl solution. The results showed that the surfactants had great effects on Ni-TiN nanocomposite coatings. The composite coatings prepared by ultrasonic electrodeposition with the surfactants were better than that of the coatings prepared without surfactants. The favorable properties of Ni-TiN nanocomposite coatings were prepared with the mixing of the non-ion and positive ion surfactants. The concentration of the mixing was 80 mg/L, and the ratio of the non-ion and positive ion surfactants was 1: 2.

  1. Multiphase Nano-Composite Coatings for Achieving Energy Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Nainaparampil, Jose

    2012-03-26

    UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL's feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

  2. Hard and flexible nanocomposite coatings using nanoclay-filled hyperbranched polymers.

    Science.gov (United States)

    Fogelström, Linda; Malmström, Eva; Johansson, Mats; Hult, Anders

    2010-06-01

    The combination of hardness, scratch resistance, and flexibility is a highly desired feature in many coating applications. The aim of this study is to achieve this through the introduction of an unmodified nanoclay, montmorillonite (Na(+)MMT), in a polymer resin based on the hyperbranched polyester Boltorn H30. Smooth and transparent films were prepared from both the neat and the nanoparticle-filled hyperbranched resins. X-ray diffraction (XRD) and transmission electron microscopy (TEM) corroborated a mainly exfoliated structure in the nanocomposite films, which was also supported by results from dynamic mechanical analysis (DMA). Furthermore, DMA measurements showed a 9-16 degrees C increase in Tg and a higher storage modulus-above and below the T(g)-both indications of a more cross-linked network, for the clay-containing film. Thermogravimetric analysis (TGA) demonstrated the influence of the nanofiller on the thermal properties of the nanocomposites, where a shift upward of the decomposition temperature in oxygen atmosphere is attributed to the improved barrier properties of the nanoparticle-filled materials. Conventional coating characterization methods demonstrated an increase in the surface hardness, scratch resistance and flexibility, with the introduction of clay, and all coatings exhibited excellent chemical resistance and adhesion.

  3. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Bharathibai J., E-mail: bharathi@nal.res.in [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560017 (India); Dinesh Kumar, V.; Anandan, C. [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560017 (India)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Superhydrophobic coatings were rendered oleophobic by applying a topcoat of FAS. Black-Right-Pointing-Pointer The coatings exhibited stable oleophobic property with oil CA of 79 Degree-Sign . Black-Right-Pointing-Pointer Fluoroalkyl groups have more affinity towards silica nanoparticles than for PDMS. Black-Right-Pointing-Pointer Very small amount of fluorine was required to render oil repellency to the coating. - Abstract: Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160 Degree-Sign and stable oleophobic property with oil CA of 79 Degree-Sign . The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  4. Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites.

    Science.gov (United States)

    Zhang, Xianpeng; Lan, Pinjun; Lu, Yuehui; Li, Jia; Xu, Hua; Zhang, Jing; Lee, YoungPak; Rhee, Joo Yull; Choy, Kwang-Leong; Song, Weijie

    2014-02-12

    Antireflection (AR) coatings that exhibit multifunctional characteristics, including high transparency, robust resistance to moisture, high hardness, and antifogging properties, were developed based on hollow silica-silica nanocomposites. These novel nanocomposite coatings with a closed-pore structure, consisting of hollow silica nanospheres (HSNs) infiltrated with an acid-catalyzed silica sol (ACSS), were fabricated using a low-cost sol-gel dip-coating method. The refractive index of the nanocomposite coatings was tailored by controlling the amount of ACSS infiltrated into the HSNs during synthesis. Photovoltaic transmittance (TPV) values of 96.86-97.34% were obtained over a broad range of wavelengths, from 300 to 1200 nm; these values were close to the theoretical limit for a lossy single-layered AR coating (97.72%). The nanocomposite coatings displayed a stable TPV, with degradation values of less than 4% and 0.1% after highly accelerated temperature and humidity stress tests, and abrasion tests, respectively. In addition, the nanocomposite coatings had a hardness of approximately 1.6 GPa, while the porous silica coatings with an open-pore structure showed more severe degradation and had a lower hardness. The void fraction and surface roughness of the nanocomposite coatings could be controlled, which gave rise to near-superhydrophilic and antifogging characteristics. The promising results obtained in this study suggest that the nanocomposite coatings have the potential to be of benefit for the design, fabrication, and development of multifunctional AR coatings with both omnidirectional broadband transmission and long-term durability that are required for demanding outdoor applications in energy harvesting and optical instrumentation in extreme climates or humid conditions.

  5. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    Science.gov (United States)

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I SBIR program is to develop polymer derived rare earth silicate nanocomposite environmental barrier coatings (EBC) for providing...

  7. Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs

    KAUST Repository

    Zhou, Jian

    2013-07-10

    We describe a strategy to design highly electrically conductive polycarbonate nanocomposites by using multiwalled carbon nanotubes (MWCNTs) coated with a thin layer of poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate), a conductive polymer. We found that this coating method improves the electrical properties of the nanocomposites in two ways. First, the coating becomes the main electrical conductive path. Second, the coating promotes the formation of a percolation network at a low filler concentration (0.3 wt %). To tailor the electrical properties of the conductive polymer coating, we used a polar solvent ethylene glycol, and we can tune the final properties of the nanocomposite by controlling the concentrations of the elementary constituents or the intrinsic properties of the conductive polymer coating. This very flexible technique allows for tailoring the properties of the final product. © 2013 American Chemical Society.

  8. Enhanced Anti-Weathering of Nanocomposite Coatings with Silanized Graphene Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ramazan Asmatulu

    2016-06-01

    Full Text Available This article presents the development of a nanocomposite coating using nanographene platelets associated with an epoxy primer to improve the coating resistance against corrosion and weathering. Based on the hypothesis that coatings containing nanoadditives would provide strong resistance to degradation and that modified graphene particles through silanization improve the stability of the graphene particles in the coatings, the performance of the nanocomposite coatings was assessed by exposing them to ultraviolet (UV light and salt fog by placing specimens alternatively in two respective chambers for intervals of 24 hours for 20 days. Coating performance analyses were carried out using atomic force microscopy (AFM, Fourier transform infrared (FTIR spectrometer thickness measurements, water contact angle, and electro impedance spectroscopy (EIS testing. Results show that a 17.15% reduction in coating thickness is observed for the coating containing silanized graphene in contrast to a 20.60% reduction in thickness for the coating with unmodified graphene. Furthermore, nanocomposite coatings containing unmodified graphene had a higher corrosion rate (38.71E-06 mpy and a lower impedance value (75,040 ohms than nanocomposite coatings containing silanized graphene, boasting a corrosion rate of 12.11E-06 mpy and an impedance value of 140,000 ohms, which confirmed the positive effects of graphene silanization

  9. Pulse electrodeposition of self-lubricating Ni-W/PTFE nanocomposite coatings on mild steel surface

    Science.gov (United States)

    Sangeetha, S.; Kalaignan, G. Paruthimal; Anthuvan, J. Tennis

    2015-12-01

    Ni-W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni-W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni-W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni-W/PTFE nanocomposite coating has better corrosion resistance than the Ni-W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni-W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  10. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    Science.gov (United States)

    Liu, Xingguang; Iamvasant, Chanon; Liu, Chang; Matthews, Allan; Leyland, Adrian

    2017-01-01

    CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of 'self-replenishing' silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  11. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  12. Pulse electrodeposition and corrosion properties of Ni–Si3N4 nanocomposite coatings

    Indian Academy of Sciences (India)

    S Kasturibai; G Paruthimal Kalaignan

    2014-05-01

    The development of modern technology requires metallic materials with better surface properties. In the present investigation; Si3N4-reinforced nickel nanocomposite coatings were deposited on a mild steel substrate using pulse current electrodeposition process employing a nickel acetate bath. Surface morphology, composition, microstructure and crystal orientation of Ni and Ni–Si3N4 nanocomposite coatings were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction analysis, respectively. The effect of incorporation of Si3N4 particles in the Ni nanocomposite coating on the micro hardness, corrosion behaviour has been evaluated. Smooth composite deposits containing well-distributed silicon nitride particles were obtained and the crystal grains on the surface of Ni–Si3N4 composite coating are compact. The crystallite structure was face centred cubic () for electrodeposited nickel and Ni–Si3N4 nanocomposite coatings. The micro hardness of the composite coatings (720 HV) was higher than that of pure nickel (310 HV) due to dispersion-strengthening and matrix grain refining and increased with the increase of incorporated Si3N4 particle content. The corrosion potential (corr) in the case of Ni–Si3N4 nanocomposite had shown a negative shift, confirming the cathodic protective nature of the coating.

  13. Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing.

    Science.gov (United States)

    Ahmed, Farid; Santos, Catherine M; Mangadlao, Joey; Advincula, Rigoberto; Rodrigues, Debora F

    2013-08-01

    This study demonstrated that coated nitrocellulose membranes with a nanocomposite containing 97% (wt%) of polyvinyl-N-carbazole (PVK) and 3% (wt%) of single-walled carbon nanotubes (SWNTs) (97:3 wt% ratio PVK:SWNT) achieve similar or improved removal of bacteria when compared with 100% SWNTs coated membranes. Membranes coated with the nanocomposite exhibited significant antimicrobial activity toward Gram-positive and Gram-negative bacteria (≈ 80-90%); and presented a virus removal efficiency of ≈ 2.5 logs. Bacterial cell membrane damage was considered a possible mechanism of cellular inactivation since higher efflux of intracellular material (Deoxyribonucleic acid, DNA) was quantified in the filtrate of PVK-SWNT and SWNT membranes than in the filtrate of control membranes. To evaluate possible application of these membrane filters for drinking water treatment, toxicity of PVK-SWNT was tested against fibroblast cells. The results demonstrated that PVK-SWNT was non toxic to fibroblast cells as opposed to pure SWNT (100%). These results suggest that it is possible to synthesize antimicrobial nitrocellulose membranes coated with SWNT based nanocomposites for drinking water treatment. Furthermore, membrane filters coated with the nanocomposite PVK-SWNT (97:3 wt% ratio PVK:SWNT) will produce more suitable coated membranes for drinking water than pure SWNTs coated membranes (100%), since the reduced load of SWNT in the nanocomposite will reduce the use of costly and toxic SWNT nanomaterial on the membranes.

  14. Preparation of Zinc Oxide-Starch Nanocomposite and Its Application on Coating

    Science.gov (United States)

    Ma, Jinxia; Zhu, Wenhua; Tian, Yajun; Wang, Zhiguo

    2016-04-01

    A new production method of zinc oxide (ZnO)-starch nanocomposite was invented in this study. Starch was dissolved in zinc chloride (ZnCl2) solution (65 wt%) at 80 °C. Then, ZnO-starch nanocomposite was achieved when the pH of the solution was adjusted to 8.4 by NaOH solution (15 wt%). ZnO nanoparticles were also obtained when the generated ZnO-starch nanocomposite was calcined at 575 °C. The properties of ZnO-starch nanocomposite and ZnO nanoparticle were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated that the sizes of ZnO-starch composite and ZnO particle were 40-60 nm. UV blocking effect was observed from both ZnO-starch nanocomposite and ZnO nanoparticle. The ZnO-starch nanocomposite was used to directly coat the surface of plain paper with a laboratory paper coater. The surface strength and smoothness of paper were improved by the coating of ZnO-starch nanocomposite. The antibacterial property was also identified from the coated paper.

  15. Thermal Stability and Oxidation Resistance of Nanocomposite TiC/a-C Protective Coatings

    NARCIS (Netherlands)

    Martinez-Martinez, Diego; Lopez-Cartes, Carlos; Gago, Raul; Fernandez, Asuncion; Carlos Sanchez-Lopez, Juan

    2009-01-01

    Nanocomposite films composed by small crystallites of hard phases embedded in an amorphous lubricant matrix have been extensively studied as protective coatings. These kinds of coatings have often to work in extreme environments, exposed to high temperatures (above 800-900 degrees C), and/or oxidizi

  16. Influence of deposition parameters on the structure and mechanical properties of nanocomposite coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y. T.; De Hosson, J. Th. M.

    2006-01-01

    Nanocomposite coatings based on TiC nanoparticles embedded in an amorphous hydrocarbon (a-C:H) matrix are deposited via reactive closed field unbalanced magnetron sputtering, employing Ti targets and acetylene gas as material precursors. The composition of the coatings is varied by changing the acet

  17. Tribological behavior and thermal stability of TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De

    2006-01-01

    Advanced TiC/a-C:H nanocomposite coatings have been produced via reactive deposition in a closed-field unbalanced magnetron sputtering system (Hauzer HTC-1200). These wear-resistant coatings are targeted for automotive applications where high load-bearing capacity and thermal stability, low friction

  18. Deformation and failure mechanism of nano-composite coatings under nano-indentation

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; Hosson, J.Th.M. De

    2006-01-01

    Two nano-composite coatings based on nc-TiC particles in an a-C:H matrix are deposited via closed-field unbalanced reactive magnetron sputtering. The compositions of the coatings are varied by changing the acetylene gas flow during the depositions. A Cr/Cr-Ti/Ti-TiC graded interlayer is introduced b

  19. Characterization of nano-composite PVD coatings for wear-resistant applications

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    Various methodologies for the characterization of nano-composite coatings are discussed, which consist TiC nano-particles distributed in an amorphous hydrocarbon (a-C:H) matrix. Complications that arise from the influence of coating roughness and underlying substrate on the properties are evaluated

  20. On the composition analysis of nc-TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Chechenin, N.G.; Chernykh, P.N.; Kulikauskas, V.S.; Pei, Y.T.; Vainshtein, D.; Hosson, J.Th.M. De

    2008-01-01

    Using a set of ion beam analysis (IBA) techniques the compositions of hydrogenated diamond-like carbon (DLC) nanocomposite coatings are scrutinized, including the hydrogen content. The coatings are composed of two constituents: amorphous hydrocarbon matrix (a-C : H) and nanocrystalline titanium carb

  1. Relationship between dispersibility of ZrO2 nanoparticles in Ni-ZrO2 electroplated nanocomposite coatings and mechanical properties of nanocomposite coatings

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; HOU Feng-yan; GUO He-tong

    2004-01-01

    Ni-ZrO2 nanocomposite coatings with monodispersed ZrO2 nanoparticles were prepared from the composite plating bath containing dispersant under DC electrodeposition condition. It is found that the morphology, orientation and hardness of the composite coating with monodispersed ZrO2 nanoparticles have lots of difference from the composite coating with agglomerated ZrO2 nanoparticles and pure nickel coating. Especially, the result of hardness shows that only a very low volume fraction (less than 1%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles are HV 529 and HV 393, respectively. The hardness value of the former composite coatings is over 1.3 times higher than that of the later. All these composite coatings are 2 - 3 times higher than that of pure nickel plating (HV 207) prepared under the same conditions.

  2. Thermal Alternating Polymer Nanocomposite (TAPNC) Coating Designed to Prevent Aerodynamic Insect Fouling

    Science.gov (United States)

    Bayer, Ilker S.; Krishnan, K. Ghokulla; Robison, Robert; Loth, Eric; Berry, Douglas H.; Farrell, Thomas E.; Crouch, Jeffrey D.

    2016-12-01

    Insect residue adhesion to moving surfaces such as turbine blades and aircraft not only causes surface contamination problems but also increases drag on these surfaces. Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircraft with laminar-flow surfaces. Hence, certain topographical and chemical features of non-wettable surfaces need to be designed properly for preventing insect residue accumulation on surfaces. In this work, we developed a superhydrophobic coating that is able to maintain negligible levels of insect residue after 100 high speed (50 m/s) insect impact events produced in a wind tunnel. The coating comprises alternating layers of a hydrophobic, perfluorinated acrylic copolymer and hydrophobic surface functional silicon dioxide nanoparticles that are infused into one another by successive thermal treatments. The design of this coating was achieved as a result of various experiments conducted in the wind tunnel by using a series of superhydrophobic surfaces made by the combination of the same polymer and nanoparticles in the form of nanocomposites with varying surface texture and self-cleaning hydrophobicity properties. Moreover, the coating demonstrated acceptable levels of wear abrasion and substrate adhesion resistance against pencil hardness, dry/wet scribed tape peel adhesion and 17.5 kPa Taber linear abraser tests.

  3. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer.

    Science.gov (United States)

    Xia, Bing; Wang, Bin; Shi, Jisen; Zhang, Yu; Zhang, Qi; Chen, Zhenyu; Li, Jiachen

    2017-03-15

    To develop photothermal and biodegradable nanocarriers for combined chemo-photothermal therapy of cancer, polyaniline/porous silicon hybrid nanocomposites had been successfully fabricated via surface initiated polymerization of aniline onto porous silicon nanoparticles in our experiments. As-prepared polyaniline/porous silicon nanocomposites could be well dispersed in aqueous solution without any extra hydrophilic surface coatings, and showed a robust photothermal effect under near-infrared (NIR) laser irradiation. Especially, after an intravenous injection into mice, these biodegradable porous silicon-based nanocomposites as non-toxic agents could be completely cleared in body. Moreover, these polyaniline/porous silicon nanocomposites as drug carriers also exhibited an efficient loading and dual pH/NIR light-triggered release of doxorubicin hydrochloride (DOX, a model anticancer drug). Most importantly, assisted with NIR laser irradiation, polyaniline/PSiNPs nanocomposites with loading DOX showed a remarkable synergistic anticancer effect combining chemotherapy with photothermal therapy, whether in vitro or in vivo. Therefore, based on biodegradable PSiNPs-based nanocomposites, this combination approach of chemo-photothermal therapy would have enormous potential on clinical cancer treatments in the future.

  4. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Litong, E-mail: guolitong810104@163.com [China University of Mining and Technology, Xuzhou 221116 (China); ustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia); Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei [China University of Mining and Technology, Xuzhou 221116 (China); Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai [China University of Mining and Technology, Xuzhou 221116 (China)

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO{sub 2} nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO{sub 2} content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO{sub 2} content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity. - Highlights: • Surface roughness of Ti was increased by surface modification of Ti. • Corrosion resistance was enhanced by surface modification of Ti. • Porous nano-composite coatings were synthesized on Ti by sol–gel process. • TiO{sub 2} nanoparticles were added into the coating to avoid formation of cracks. • The nano-composite coatings increased the bonding strength of about 24%.

  5. Characterizations of electrodeposited Ni–CeO{sub 2} nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kasturibai, S., E-mail: s.kasturibai@yahoo.co.in [Department of Chemistry, Alagappa Government Arts College, Karaikudi 630 003, Tamilnadu (India); Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamilnadu (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamilnadu (India)

    2014-10-15

    The expansion of current machinery requires metallic materials with better surface properties. In the present investigation, CeO{sub 2} reinforced nickel nanocomposite coatings were deposited on mild steel substrate by direct current electrodeposition process employing nickel acetate bath. The effect of incorporation of CeO{sub 2} particles in the Ni nanocomposite coatings on the micro hardness and corrosion behaviour has been evaluated. Smooth and compact nanocomposite deposits containing well-distributed cerium oxide particles were obtained. The crystallite structure was fcc for electrodeposited nickel and Ni–CeO{sub 2} nanocomposite coatings. It has been observed that, the presence of CeO{sub 2} nanoparticles favours the [111] and [200] texture of nickel matrix. The co-deposition of CeO{sub 2} nanoparticles with nickel was found to be favoured at applied current density of 8 A dm{sup −2}. The micro hardness values of the nickel nanocomposite coatings (725 HV) was higher than that of pure nickel (265 HV).The decrease in I{sub corr} values and increase in Constant Phase Element values were investigated in 3.5% NaCl solution which showed the higher corrosion resistant nature of Ni–CeO{sub 2} coatings. - Highlights: • Ni–CeO{sub 2} composite coatings have electrodeposited from eco-friendly acetate bath. • Inclusion of CeO{sub 2} in the composite coating has refined the crystallite size. • Micro hardness values have increased with CeO{sub 2} content in the composite coatings. • The negative shift of E{sub corr} confirming cathodic protective nature of coatings.

  6. Improvement of Microhardness and Corrosion Resistance of Stainless Steel by Nanocomposite Coating

    Directory of Open Access Journals (Sweden)

    Hiba Husam Ismail

    2014-12-01

    Full Text Available Stainless steel (AISI 304 has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and corrosion resistance of stainless steel, and to analyze effect of nanoparticles (Al2O3, ZrO2 , and SiC on properties of composite coatings. In this paper employed Electroco-deposition process to develop a composite coating with (Ni matrix and Ceramic oxide particles: Al2O3 (135nm, ZrO2 (40nm, and SiC (80nm as reinforcements. The coatings were developed with 10 g/L, and 20 g/L concentrations in bath, at four different current densities (0.5, 1, 2, 3 A/dm2 using Watts bath to study the effect of current density and particle concentration in bath, on structure and properties of the coatings developed. The surface morphology of nanocomposite coating was characterized by Scanning Electron Microscopy (SEM. The hardness of the nanocoating was carried out using Digital Vickers microhardness tester. The corrosion resistance property of nanocomposite coating was carried out in 3.5% NaCl solution used Open circuit potential (OCP and potentialastic polarization. The results showed the nanocomposites coating have a smooth and compact surface and have higher hardness than the uncoated stainless steel (2.3 times, and also found that the nanocomposite coating improves the corrosion resistance significantly (89.25%.

  7. A silanol-based nanocomposite coating for protection of AA-2024 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.; Pavez, J.; Azocar, I.; Zagal, J.H. [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Zhou, X. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Melo, F. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Santiago de Chile, Avenida Bernardo O' Higgins 3363, Santiago (Chile); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Paez, M.A., E-mail: maritza.paez@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile)

    2011-09-01

    Highlights: {center_dot} A new silanol-based hybrid coating has been synthesized. {center_dot} The incorporation of CeO{sub 2} and ZrO{sub 2} nanoparticles into the coating greatly improves the corrosion resistance of the coated aluminium alloy. {center_dot} The effectiveness of the coating is increasingly evident for long term exposure to the sodium chloride solution. {center_dot} The silanol-based nanocomposite coatings have self-healing ability. - Abstract: A new hybrid sol-gel type film, composed of tetraethylorthosilicate (TEOS) and tetraocthylorthosilicate (TEOCS), and modified with different nanoparticle systems, has been investigated as a coating for protection of AA-2024-T3 aluminium alloy. The nanoparticle systems considered were either ZrO{sub 2} or CeO{sub 2} or their combination{sub .} The zirconia nanoparticles were prepared from a Zr (IV) propoxide sol (TPOZ), using an organic stabilizer, and the CeO{sub 2} nanoparticles were developed spontaneously after adding cerium nitrate solution to the hybrid sol. The chemical composition and the structure of the hybrid sol-gel films were examined by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion resistance of the coated AA-2024 alloy was examined by potentiodynamic polarization. The results revealed that, for short exposure times in the electrolyte, incorporation of ZrO{sub 2} or CeO{sub 2} nanoparticles in the hybrid film does not provide an increase in the corrosion resistance of the coated AA-2024 alloy. Further, the resistance was significantly reduced by increasing the nanoparticle content. Conversely, by incorporating both nanoparticles (ZrO{sub 2} and CeO{sub 2}), the corrosion resistance of the resulting hybrid films increased slightly. The behavior changed significantly when the coated alloy was exposed to the electrolyte for 5 days. The corrosion resistance of the coatings, unmodified and modified with CeO{sub 2} or Zr

  8. Facile and efficient route to polyimide-TiO2 nanocomposite coating onto carbon fiber.

    Science.gov (United States)

    He, Shuqing; Lu, Chunxiang; Zhang, Shouchun

    2011-12-01

    Polyamic acid-TiO(2) hybrid colloid emulsion with an average particle size of 200 nm was formed by dispersing nano-TiO(2) into polyamic acid colloidal emulsion. The polyimide-TiO(2) nanocomposite was coated onto carbon fiber by electrophoretic deposition. The primary properties of polyamic acid-TiO(2) hybrid colloid emulsion and polyimide-TiO(2) nanocomposite coating onto carbon fiber were characterized using laser scattering, ZetaPlus particle sizing, transmission electron microscopy, field-emission scanning electron microscope, Fourier transforms infrared spectroscopy, and X-ray Diffraction analysis. The results indicated that the small amount of nano-TiO(2) would be effectively dispersed in polyamic acid colloidal particles. The polyimide-TiO(2) hybrid nanocomposite coating carbon fiber sheet displayed an excellent photodegradation performance of methyl orange, which could be degraded more than 70 wt % after 10 cycles.

  9. Physico-chemical and antimicrobial properties of co-sputtered Ag-Au/PTFE nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zaporojtchenko, V [Chair for Multicomponent Materials, Technische Fakultaet der CAU, Kaiserstrasse 2, D-24143 Kiel (Germany); Podschun, R [Institute for Infection Medicine, University Hospital SH, Campus Kiel (Germany); Schuermann, U [Chair for Multicomponent Materials, Technische Fakultaet der CAU, Kaiserstrasse 2, D-24143 Kiel (Germany); Kulkarni, A [Chair for Multicomponent Materials, Technische Fakultaet der CAU, Kaiserstrasse 2, D-24143 Kiel (Germany); Faupel, F [Chair for Multicomponent Materials, Technische Fakultaet der CAU, Kaiserstrasse 2, D-24143 Kiel (Germany)

    2006-10-14

    In this work, we used co-sputtering of noble metals together with polytetrafluorethylene (PTFE) as a method for producing antibacterial metal/polymer nanocomposite coatings, where the precious metals are only incorporated in a thin surface layer. Moreover, they are finely dispersed as nanoparticles, thus saving additional material and providing a very large effective surface for metal ion release. Nanocomposite films with thickness between 100 and 300 nm were prepared with a wide range of metal filling between 10 and 40%. The antimicrobial effect of the nanocomposite coatings was evaluated by means of two different assays. The bactericidal activity due to silver release from the surface was determined by a modification of conventional disc diffusion methods. Inhibition of bacterial growth on the coated surface was investigated through a modified proliferation assay. Staphylococcus aureus and S. epidermidis were used as test bacteria, as these species commonly cause infections associated with medical polymer devices. The antibacterial efficiency of the coatings against different bacteria was demonstrated at extremely small noble metal consumption: Au: {approx}1 mg m{sup -2} and Ag: {approx}0.1 g m{sup -2}. The maximum ability for having an antibacterial effect was shown by the Ag-Au/PTFE nanocomposite, followed by the Ag/PTFE nanocomposite.

  10. Pilot Study on the Nano-Composites Coats of Radar Wave's Absorption

    Institute of Scientific and Technical Information of China (English)

    HU Chuan-xin; ZhANG Lei; GAN Ai-feng; LI Wan-zhi; LIANG Wen-ting; ZHANG Chen-jia

    2004-01-01

    This thesis mainly introduced the guiding principle and physical model of the research on the nano-composites coats of radar wave's absorption, and then studied the qualitative analysis of the performance ameliorating of radar wave's absorption composite coats. And on the basis of the optimum design of multilayer wave's absorption materials, two new kinds of radar wave's absorption composite coats have been made, which are composed of nano-composites hydroxyl iron powder and hollow micro-sphere. The research indicated that the surface-density of these two new composite coats is less than 3.5 Kg/m2.The coats' thickness is about 1 mm. And the waves absorption capability is above the level of 5 db, in the range of 3 ~ 18GHz. Therefore the wave's absorption performance of these two new coats is better than nano-crystalloid in low frequency area. The pilot study has proved that the nano-composites coat's performance of radar wave's absorption excels the ordinary radar wave's absorption coats, so it needs to be further studied.

  11. Nanocomposite TiSiBC Hard Coatings with High Resistance to Wear, Fracture and Scratching

    Science.gov (United States)

    Mahato, P.; Nyati, G.; Singh, R. J.; Mishra, S. K.

    2016-09-01

    The sliding wear under fretting condition, scratch adhesion, deformation behavior during micro- and nanoscratch studies have been studied for nanocomposite TiSiBC hard coating deposited on steel substrate by magnetron sputtering. The nanocomposite coatings having hardness and modulus around 30 and 300 GPa, respectively, showed a very significant decrease in fretting wear as compared to the uncoated steel. Pileup occurred along the sides of the scratch track due to plastic deformation of the substrate at the scratch load; however, cracks were not seen in films. The coefficient of friction remained scratch, higher wear resistance, higher toughness and low coefficient of friction.

  12. Oxidation resistance of co-deposited Ni-SiC nanocomposite coating

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ni-6.0%SiC (mass fraction) nanocomposite coating was prepared from a nickel sulfate bath by co-electrodeposition of Ni and SiC nanoparticles in an average size of 30 nm. The oxidation at 1 000 ℃ shows that the Ni-6.0%SiC nanocomposite coating has a superior oxidation resistance compared with the pure Ni film due to the formation of SiO2 oxide particles along grain boundaries,blocking the outward diffusion of Ni and changing the oxidation growth mechanism. The effect of SiC nanoparticles on the oxidation progress was discussed in detail.

  13. Characterization, mechanical properties and corrosion resistance of biocompatible Zn-HA/TiO2 nanocomposite coatings.

    Science.gov (United States)

    Mirak, Mohammad; Alizadeh, Morteza; Ghaffari, Mohammad; Ashtiani, Mohammad Najafi

    2016-09-01

    Biocompatible Zinc-hydroxyapatite-titania and Zinc-hydroxyapatite nanocomposite coatings have been prepared by electrodeposition on NiTi shape memory alloy. Structures of coatings were characterized using X-ray diffraction (XRD). It was found that addition of TiO2 particles cause to reduction of crystallite size of coating. Scanning Electronic Microscope (SEM) observation showed that the Zn-HA/TiO2 coating consists of plate-like regions which can express that this plate-like structure can facilitate bone growth. X-ray photoelectron microscope (XPS) was performed to investigation of chemical state of composite coating and showed that Zinc matrix was bonded to oxygen. high-resolution transmission electron microscope (HRTEM) result illustrated the crystalline structure of nanocomposite coating. Mechanical behavior of coating was evaluated using microhardness and ball on disk wear test. The TiO2 incorporated composite coatings exhibited the better hardness and anti-wear performance than the Zn-HA coatings. Polarization measurements have been used to evaluate the electrochemical coatings performance. The Zn-HA/TiO2 composite coatings showed the highest corrosion resistance compared with Zn-HA and bare NiTi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Preparation of ZnO/Ag nanocomposite and coating on polymers for anti-infection biomaterial application

    Science.gov (United States)

    Sadeghi, Babak

    2014-01-01

    ZnO/Ag nanocomposites coated with polyvinyl chloride (PVC) were prepared by chemical reduction method, for anti-infection biomaterial application. There is a growing interest in attempts in using biomolecular as the templates to grow inorganic nanocomposites in controlled morphology and structure. By optimizing the experiment conditions, we successfully fabricated high yield of ZnO/Ag nanocomposite with full coverage of high-density polyvinyl chloride (PVC) coating. More importantly, ZnO/Ag nanocomposites were shown to significantly inhibit the growth of Staphylococcus aureus in solution. It was further shown that ZnO/Ag nanocomposites induced thiol depletion that caused death of S. aureus. The coatings were fully characterized using techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Most importantly, compared to uncoated metals, the coatings on PVC promoted healthy antibacterial activity. Importantly, compared to ZnO-Ag -uncoated PVC, the ZnO/Ag nanocomposites coated was approximately triplet more effective in preventing bacteria attachment. The result of Thermal Gravimetric Analysis (TGA) indicates that, the ZnO/Ag nanocomposites are chemically stable in the temperature range from 50 to 900 °C. This result, for the first time, demonstrates the potential of using ZnO/Ag nanocomposites as a coating material for numerous anti-bacterial applications.

  15. Formation and Characterization of Ceramic Nanocomposite Crystalline Coatings on Aluminium by Anodization

    Institute of Scientific and Technical Information of China (English)

    M.Mubarak Ali; V.Raj

    2013-01-01

    Ceramic nanocomposite coatings have been synthesized on aluminium by using lithium sulphate electrolyte with zirconium silicate additive by anodization.The effects of current density (CD) on microhardness,structure,composition and surface topography of the oxide layer formed at various CDs (0.1-0.25 A/cm2) have been studied.Crystalline coatings formed at 0.25 A/cm2 have been (width 95 nm) observed with a relatively uniform distribution confirmed by scanning electron microscopy.Additionally,the average microhardness value of ceramic nanocomposite coatings fabricated from lithium sulphate-zirconium silicate bath is approximately 8.5 times higher than that of the as-received aluminium.The surface statistics of the coatings is discussed in detail to explain the roughness and related parameters for better understanding.These observations demonstrate the importance of surface statistics in controlling the morphology of the coatings and its properties.From the X-ray diffraction investigations,it can be concluded that the formed nanocomposite coatings are crystalline in nature and that the crystallinity of the coatings decreases with increasing applied current density.

  16. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  17. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain.

    Science.gov (United States)

    Guo, Litong; Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei; Li, Baoe; Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO2 nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO2 content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO2 content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity.

  18. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  19. Conformal ZnO nanocomposite coatings on micro-patterned surfaces for superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Adam, E-mail: asteele4@illinois.ed [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street Urbana, IL, 61801 (United States); Bayer, Ilker; Moran, Stephen [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street Urbana, IL, 61801 (United States); Cannon, Andrew; King, William P. [Mechanical Science and Engineering Department, niversity of Illinois at Urbana-Champaign, 4409 Mechanical Engineering Laboratory, 1206 West Green Street, MC-244 Urbana, IL 61801 (United States); Loth, Eric [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street Urbana, IL, 61801 (United States)

    2010-07-30

    A conformal coating process is presented to transform surfaces with inherent micro-morphology into superhydrophobic surfaces with hierarchical surface structure using wet chemical spray casting. Nanocomposite coatings composed of zinc oxide nanoparticles and organosilane quaternary nitrogen compound are dispersed in solution for application. The coating is applied to a micro-patterned polydimethylsiloxane substrate with a regular array of cylindrical microposts as well as a surface with random micro-structure for the purpose of demonstrating improved non-wettability and a superhydrophobic state for water droplets. Coating surface morphology is investigated with an environmental scanning electron microscope and surface wettability performance is characterized by static and dynamic contact angle measurements.

  20. Effect of UV/EB radiation dosages on the properties of nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Nik Salleh, Nik Ghazali, E-mail: Nik_Ghazali@nuclearmalaysia.gov.m [Malaysian Nuclear Agency, Block 42, Radiation Curing and Synthesis Group, Bangi, 43000 Kajang, Selangor (Malaysia); Firdaus Yhaya, Mohd; Hassan, Azman; Abu Bakar, Aznizam; Mokhtar, Munirah [Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2011-02-15

    The aim of this study was to compare the effects of ultraviolet (UV) and electron beam (EB) radiation on the properties of cured nanocomposite coatings. Surface hardness increased with increase in radiation dosages (number of passes) for all samples. This was due to the increase in crosslinking with increase in radiation dosage. Pendulum hardness, gel content, and thumb twist results were analyzed to choose appropriate curing dosage for both curing techniques. The selected dosages were then used to cure coatings for scratch and abrasion resistance tests. It was found that the UV curing produced coatings with better abrasion resistance, whereas EB curing was a more suitable approach for producing scratch resistance coatings.

  1. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites.

    Science.gov (United States)

    Wagener, Philipp; Brandes, Gudrun; Schwenke, Andreas; Barcikowski, Stephan

    2011-03-21

    The crucial step in the production of solid nanocomposites is the uniform embedding of nanoparticles into the polymer matrix, since the colloidal properties or specific physical properties are very sensitive to particle dispersion within the nanocomposite. Therefore, we studied a laser-based generation method of a nanocomposite which enables us to control the agglomeration of nanoparticles and to increase the single particle dispersion within polyurethane. For this purpose, we ablated targets of silver and copper inside a polymer-doped solution of tetrahydrofuran by a picosecond laser (using a pulse energy of 125 μJ at 33.3 kHz repetition rate) and hardened the resulting colloids into solid polymers. Electron microscopy of these nanocomposites revealed that primary particle size, agglomerate size and particle dispersion strongly depend on concentration of the polyurethane added before laser ablation. 0.3 wt% polyurethane is the optimal polymer concentration to produce nanocomposites with improved particle dispersion and adequate productivity. Lower polyurethane concentration results in agglomeration whereas higher concentration reduces the production rate significantly. The following evaporation step did not change the distribution of the nanocomposite inside the polyurethane matrix. Hence, the in situ coating of nanoparticles with polyurethane during laser ablation enables simple integration into the structural analogue polymer matrix without additives. Furthermore, it was possible to injection mold these in situ-stabilized nanocomposites without affecting particle dispersion. This clarifies that sufficient in situ stabilization during laser ablation in polymer solution is able to prevent agglomeration even in a hot polymer melt.

  2. Hydrophilic polydopamine-coated magnetic graphene nanocomposites for highly efficient tryptic immobilization.

    Science.gov (United States)

    Shi, Chenyi; Deng, Chunhui; Li, Yan; Zhang, Xiangmin; Yang, Pengyuan

    2014-06-01

    In this work, polydopamine-coated magnetic graphene (MG@PDA) nanocomposites were synthesized by a facile method. Trypsin was then directly immobilized on the surface of the nanocomposites through simple PDA chemistry with no need for introducing any other coupling groups. The as-made MG@PDA nanocomposites inherit not only the large surface area of graphene which makes them capable of immobilizing high amount of trypsin (up to 0.175 mg/mg), but also the good hydrophilicity of PDA which greatly improves their biocompatibility. Moreover, the strong magnetic responsibility makes them easy to be separated from the digested peptide solution when applying a magnetic field. The feasibility of the trypsin-immobilized MG@PDA (MG@PDA-trypsin) nanocomposites for protein digestion was investigated and the results indicated their high digestion efficiency in a short digestion time (10 min). In addition, the reusability and stability of the MG@PDA-trypsin nanocomposites were also tested in our work. To further confirm the efficiency of MG@PDA-trypsin nanocomposites for proteome analysis, they were applied to digest proteins extracted from skimmed milk, followed by nano RPLC-ESI-MS/MS analysis, and a total of 321 proteins were identified, much more than those obtained by 16-h in-solution digestion (264 proteins), indicating the great potential of MG@PDA-trypsin nanocomposites as the supports for high-throughput proteome study.

  3. Nanocomposite Lanthanum Zirconate Thermal Barrier Coating Deposited by Suspension Plasma Spray Process

    Science.gov (United States)

    Wang, Chaohui; Wang, You; Wang, Liang; Hao, Guangzhao; Sun, Xiaoguang; Shan, Fan; Zou, Zhiwei

    2014-10-01

    This work seeks to develop an innovative nanocomposite thermal barrier coating (TBC) exhibiting low thermal conductivity and high durability compared with that of current TBCs. To achieve this objective, nanosized lanthanum zirconate particles were selected for the topcoat of the TBC system, and a new process—suspension plasma spray—was employed to produce desirable microstructural features: the nanocomposite lanthanum zirconate TBC contains ultrafine splats and high volume porosity, for lower thermal conductivity, and better durability. The parameters of plasma spray experiment included two main variables: (i) spray distance varying from 40 to 80 mm and (ii) the concentration of suspension 20, 25, and 30 wt.%, respectively. The microstructure of obtained coatings was characterized with scanning electron microscope and x-ray diffraction. The porosity of coatings is in the range of 6-10%, and the single phase in the as-sprayed coatings was pyrochlore lanthanum zirconate.

  4. Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-07-21

    We obtained highly conductive nanocomposites by adding conductive polymer poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS)-coated carbon nanotubes (CNTs) to pristine insulating Polycarbonate. Because the PEDOT/PSS ensures efficient charge transfer both along and between the CNTs, we could attribute the improvement in electrical conductivity to coating. In addition to improving the electrical conductivity, the coating also modified the piezoresistive behavior of the nanocomposites compared to the material with pristine uncoated CNTs: whereas CNT/Polycarbonate samples exhibited a very strong piezoresistive effect, PEDOT/PSS-coated MWCNT/Polycarbonate samples exhibited very little piezoresistivity. We studied this change in piezoresistive behavior in detail by investigating various configurations of filler content. We investigated how this observation could be explained by changes in the microstructure and in the conduction mechanism in the interfacial regions between the nanofillers. Our study suggests that tailoring the piezoresistive response to specific application requirements is possible.

  5. Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm.

    Science.gov (United States)

    Konwar, Achyut; Kalita, Sanjeeb; Kotoky, Jibon; Chowdhury, Devasish

    2016-08-17

    We report a robust biofilm with antimicrobial properties fabricated from chitosan-iron oxide coated graphene oxide nanocomposite hydrogel. For the first time, the coprecipitation method was used for the successful synthesis of iron oxide coated graphene oxide (GIO) nanomaterial. After this, films were fabricated by the gel-casting technique aided by the self-healing ability of the chitosan hydrogel network system. Both the nanomaterial and the nanocomposite films were characterized by techniques such as scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. Measurements of the thermodynamic stability and mechanical properties of the films indictaed a significant improvement in their thermal and mechanical properties. Moreover, the stress-strain profile indicated the tough nature of the nanocomposite hydrogel films. These improvements, therefore, indicated an effective interaction and good compatibility of the GIO nanomaterial with the chitosan hydrogel matrix. In addition, it was also possible to fabricate films with tunable surface properties such as hydrophobicity simply by varying the loading percentage of GIO nanomaterial in the hydrogel matrix. Fascinatingly, the chitosan-iron oxide coated graphene oxide nanocomposite hydrogel films displayed significant antimicrobial activities against both Gram-positive and Gram-negative bacterial strains, such as methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, and also against the opportunistic dermatophyte Candida albicans. The antimicrobial activities of the films were tested by agar diffusion assay and antimicrobial testing based on direct contact. A comparison of the antimicrobial activity of the chitosan-GIO nanocomposite hydrogel films with those of individual chitosan-graphene oxide and chitosan-iron oxide nanocomposite films demonstrated a higher antimicrobial activity for the former in both types of tests. In vitro hemolysis

  6. Nanocomposite Apatite-biopolymer Materials and Coatings for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    L.F. Sukhodub

    2014-04-01

    Full Text Available The microoverview paper describes synthesis and characterization of novel third generation composite biomaterials and coatings which correspond to the second structural level of human bone tissue (HBT organization obtained at Sumy state university “Bionanocomposite” laboratory. To obtain such composites an animal collagen is usually used, which is not potentially safe for medical applications. That is why investigations were started using some other biopolymers to obtain composites close to the second level in the structural hierarchy of HBT. Proposed natural polymers (Na alginate, chitosan are the most perspective because they have bacteriostatic properties for a vast number of aerobic and anaerobic bacteria, high biocompatibility towards the connective tissue, low toxicity, an ability to improve regenerative processes during wounds healing, degradation ability with the creation of chemotaxic activity towards fibroblasts and osteoblasts. The formation of nanosized (25-75 nm calcium deficient hydroxyapatite (cdHA particles in the polymer scaffold approaches the derived material to the biogenic bone tissue, which can provide its more effective implantation. The influence of the imposition of static magnetic field on brushite (CaHPO4·2H2O crystallization was also investigated. It was shown that changing the magnetic field configuration could greatly affect crystallinity and texture of the derived particles. To increase the biocompatibility of existing medical implants (Ti–6Al 4V, Ti Ni, Mg the technology for obtaining bioactive coatings with corresponding mechanical, structural and morphology characteristics is developed in our laboratory. In this direction coatings based on cdHA in combination with biopolymer matrices (Na alginate, chitosan, are obtained in “soft” conditions using a thermal substrate technology. This technology was proposed by Japan scientists [1] and was sufficiently improved by us [2] in order to obtain coatings in

  7. Improving Anti-frosting Performance for Super-hydrophobic Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Xiao Min WU; Li Ming TANG; Wan Tian DAI; Feng You JIN

    2006-01-01

    New super-hydrophobic nanocomposite coatings were formed from modified nano-sized CaCO3 particles and polyacrylate at weight ratio of 9/1-8/2. SEM and XPS analysis indicated that such hydrophobicity could be attributed to the surface nano-microstructure and the surface enrichment of fluorine atoms. As the surface hydrophobicity increased, longer time was required for formation the initial frost, which makes super-hydrophobic coatings suitable for anti-frosting purpose.

  8. Microstructure, magnetic and elastic properties of electrodeposited Cu+Ni nanocomposites coatings

    OpenAIRE

    A. Chrobak; M. Kubisztal; J. Kubisztal; E. Chrobak; Haneczok, G.

    2011-01-01

    Purpose: The paper presents systematic studies of fabrication and properties of Cu+Ni nanocomposite coatings obtained by electrodeposition technique. Special attention is paid to establish the influence of fabrication conditions and microstructure of the coating material on its magnetic and elastic properties. Design/methodology/approach: The results were obtained by applying electrochemical impedance spectroscopy (EIS, PARSTAT 2273, roughness factor), magnetization versus temperature measure...

  9. Self-lubricant nanocomposite hard coatings in Ti-Al-N-C system

    Institute of Scientific and Technical Information of China (English)

    Y. Z. Huang; M. Stueber; P. Barna; J.M. Rodenburg

    2004-01-01

    An ambitious objective in the development of self-lubricating wear-resistant coatings is to make use of lubricious phases such as graphite, amorphous carbon or MoS2 incorporated into coatings. A series of (Ti,Al)(N,C)coatings with different carbon contents (0 -28 %, mole fraction) were deposited by reactive magnetron sputtering of TiAl in a mixture of Ar, N2 and CH4 gases. The microstructure and constitution of these coatings were investigated using EPMA, AFM, XPS, (HR)TEM, Raman spectroscopy and X-ray diffraction. Starting from a pure TiAlN coating significant changes in the microstructure of the coatings were observed dependent on the carbon concentration. Under optimum conditions nanocomposite coatings with a structure of a coexisting metastable hard, nanocrystalline fcc (Ti,Al)(N,C) phase and an amorphous carbon phase were deposited. The localization of an amorphous carbon phase was shown by HRTEM.

  10. TiC/a-C nanocomposite coatings for low friction and wear resistance

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.T.M. De; Zhong, ZY; Saka, H; Kim, TH; Holm, EA; Han, YF; Xie, XS

    2005-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron sputtering and are composed of 2-5nm TiC nanocrystallites well separated by amorphous hydrocarbon (a-C:H) of about 2nm separation width. A transition from columnar to glassy microstructure has been observed with increasing substrate b

  11. In situ ZnO-PVA nanocomposite coated microfluidic chips for biosensing

    DEFF Research Database (Denmark)

    Habouti, S.; Kunstmann-Olsen, C.; Hoyland, J. D.

    2014-01-01

    Microfluidic chips with integrated fluid and optical connectors have been generated via a simple PDMS master-mould technique. In situ coating using a Zinc oxide polyvinylalcohol based sol-gel method results in ultrathin nanocomposite layers on the fluid channels, which makes them strongly...... hydrophilic and minimizes auto contamination of the chips by injected fluorescent biomarkers....

  12. Thermally Sprayable Anti-corrosion Marine Coatings Based on MAH-g-LDPE/UHMWPE Nanocomposites

    Science.gov (United States)

    Jeeva Jothi, K.; Santhoskumar, A. U.; Amanulla, Syed; Palanivelu, K.

    2014-12-01

    Polymer composite coatings based on low-density polyethylene (LDPE) and ultra-high-molecular-weight polyethylene (UHMWPE) blends were prepared for marine coatings. The incorporation of carboxyl moiety in the polymer blends of LDPE/UHMWPE was carried out by grafting with maleic anhydride (MAH) at varying concentrations of 1-8 wt.% using reactive extrusion process. An optimum percentage of grafting of 2.1% was achieved with 5 wt.% of maleic anhydride. Further, the nanocomposites of MAH-grafted-LDPE/UHMWPE blends were prepared by incorporating cloisite 15A nanoclay at varying concentrations of 1-4 wt.%. The polymer nanocomposites were converted into fine powders suitable for thermal spray having ≤200 μ particle size using cryogenic grinding. The effect of the intact coatings applied on grit-blasted mild steel by thermal spray technique was evaluated for abrasion resistance, adhesion strength, and corrosion resistance. The corrosion resistance of the polymer nanocomposites was studied by salt spray technique and Electrochemical Impedance Spectroscopy The abrasion resistance of coatings increases with increasing UHMWPE content in the blends. However, blends with higher concentration of UHMWPE resulted in coarse coatings with poor adhesion. The coatings with 90:10 MAH-grafted-LDPE/UHMWPE having 3 wt.% of nanoclay showed good abrasion resistance, adhesion strength, and better corrosion resistance.

  13. Preparation and characterization of the hydrophilic nanocomposite coating based on epoxy resin and titanate on the glass substrate.

    Science.gov (United States)

    Sadjadi, M S; Farhadyar, N

    2009-02-01

    The hydrophilic organic-inorganic nanocomposite hybrid coatings were prepared using Tetrabutyl titanate. A simple sol-gel method has been developed for the preparation of nanocomposite coatings, at a molecular level and providing suitable conditions to obtain a complete conversion. The films were prepared on the glass substrates by dip-coating from a sol containing alcoholic tetrabutyl titanate which after the curing treatment, the gel forms a stable thin homogeneous nanocomposite coating. The obtained films were transparent to visible light and their surface hydrophilicity values were increased by increasing titania content in the water damp permeable self leveling flooring system. Characterization of the nanocomposite coating were performed by Transmission electron microscopy (TEM), Atomic force microscopy (AFM) analysis and contact angle test for water on TiO2 films that gave evidence of a strong interaction between the organic and inorganic phase with the formation of titania domains in the nanoscale range.

  14. Microstructure and mechanical properties of nanocomposite coatings deposited by cathodic arc evaporation

    Directory of Open Access Journals (Sweden)

    K. Lukaszkowicz

    2010-09-01

    Full Text Available Purpose: The main aim of the this research was the investigation of the structure and the mechanical properties of the nanocomposite TiAlSiN, CrAlSiN, AlTiCrN coatings deposited by cathodic arc evaporation method onto hot work tool steel substrate.Design/methodology/approach: The surfaces’ topography and the structure of the PVD coatings were observed on the scanning electron microscopy. Diffraction and thin film structure were tested with the use of the transmission electron microscopy. The microhardness tests were made on the dynamic ultra-microhardness tester. Tests of the coatings’ adhesion to the substrate material were made using the scratch test.Findings: It was found that the structure of the PVD coatings consisted of fine crystallites, while their average size fitted within the range of 11-25 nm, depending on the coating type. The coatings demonstrated columnar structure and dense cross-section morphology as well as good adhesion to the substrate. The critical load LC2 lies within the range of 46-54 N, depending on the coating and substrate type. The coatings demonstrate a high hardness (~40 GPa.Practical implications: In order to evaluate with more detail the possibility of applying these surface layers in tools, further investigations should be concentrated on the determination of the thermal fatigue resistance of the coatings. The very good mechanical properties of the nanocomposite coatings make them suitable in industrial applications.Originality/value: The investigation results will provide useful information to applying the nanocomposite coatings for the improvement of mechanical properties of the hot work tool steels.

  15. Corrosion resistance of Ni–Co alloy and Ni–Co/SiC nanocomposite coatings electrodeposited by sediment codeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Bakhit, Babak, E-mail: b_bakhit@sut.ac.ir [Surface Engineering Group, Advanced Materials Research Center, Faculty of Materials Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of); Akbari, Alireza; Nasirpouri, Farzad [Surface Engineering Group, Advanced Materials Research Center, Faculty of Materials Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of); Hosseini, Mir Ghasem [Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-07-01

    Corrosion resistance of Ni–Co alloy and Ni–Co/SiC nanocomposite coatings electrodeposited in a modified Watts bath using sediment codeposition (SCD) technique was evaluated by potentiodynamic polarization measurements in the 3.5% NaCl solution and studied as a function of deposition conditions In order to characterize the morphology, chemical and phase compositions of the coatings, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and X-ray diffraction (XRD) were utilized, respectively. It was observed that the cobalt content in the Ni–Co alloy coatings was increased through an anomalous behavior by increasing the cobalt concentration in the electrolyte. The highest percentage of SiC nano-particles (8.1 vol.%) in the Ni–Co/SiC nanocomposite coatings was achieved at 3 A/dm{sup 2} deposition current density and 5 g/l particle concentration. SEM and EDS analysis illustrated that SiC nano-particles were distributed uniformly throughout the nanocomposite coatings. The potentiodynamic polarization tests indicated that the corrosion resistance of the Ni–Co alloy coatings was varied as a function of the cobalt content, and the corrosion resistance of the Ni–Co/SiC nanocomposite coatings was markedly higher than the corrosion resistance of the Ni–Co alloy coatings. Among the studied coatings, Ni–Co/SiC nanocomposite coatings containing 8.1 vol.% SiC nano-particles exhibited the best corrosion resistance.

  16. Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO 2 nanoparticles

    Science.gov (United States)

    Mirabedini, S. M.; Sabzi, M.; Zohuriaan-Mehr, J.; Atai, M.; Behzadnasab, M.

    2011-02-01

    Nano-filled polyurethane coatings were prepared by incorporation of various amounts of untreated and amino propyltrimethoxy silane (APS) treated TiO2 nanoparticles. TEM and AFM techniques were employed to evaluate dispersion of nanoparticles and surface morphology of the coating, respectively. TEM observations revealed that the APS treated nanoparticles have a better dispersion and smaller agglomeration, compared with their untreated counterparts. AFM images revealed that, surface roughness of the coatings increased with increasing of nanoparticles content, however, at equal level of loadings; coatings containing untreated nanoparticles showed a higher surface roughness. Colour changes (colour coordinates data measurements), mechanical properties and surface morphology of the PU nanocomposite coatings, before and after being exposed to a QUV chamber for 1000 h were studied using various techniques. The results revealed that addition of 0.5 to 1.0 wt.% APS treated TiO2 nanoparticles reduces photocatalytic activity, and improves the weathering performance PU nanocomposite coatings. Tensile strength measurements showed significant improvement of mechanical properties of PU coatings containing modified TiO2 nanoparticles. Results also revealed that the colour measurement is a useful technique and non destructive method for evaluation of coating's performance against weathering conditions. The experimental results showed a good correlation between different techniques findings.

  17. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: Sharif_m@metaleng.iust.ac.i [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Faghihi-Sani, M.A. [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saberi, A. [Tabriz University (Iran, Islamic Republic of); Soltani, Ali Khalife [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-06-18

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 {sup o}C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  18. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling.

    Science.gov (United States)

    Al-Naamani, Laila; Dobretsov, Sergey; Dutta, Joydeep; Burgess, J Grant

    2017-02-01

    Marine biofouling is a worldwide problem affecting maritime industries. Global concerns about the high toxicity of antifouling paints have highlighted the need to develop less toxic antifouling coatings. Chitosan is a natural polymer with antimicrobial, antifungal and antialgal properties that is obtained from partial deacetylation of crustacean waste. In the present study, nanocomposite chitosan-zinc oxide (chitosan-ZnO) nanoparticle hybrid coatings were developed and their antifouling activity was tested. Chitosan-ZnO nanoparticle coatings showed anti-diatom activity against Navicula sp. and antibacterial activity against the marine bacterium Pseudoalteromonas nigrifaciens. Additional antifouling properties of the coatings were investigated in a mesocosm study using tanks containing natural sea water under controlled laboratory conditions. Each week for four weeks, biofilm was removed and analysed by flow cytometry to estimate total bacterial densities on the coated substrates. Chitosan-ZnO hybrid coatings led to better inhibition of bacterial growth in comparison to chitosan coatings alone, as determined by flow cytometry. This study demonstrates the antifouling potential of chitosan-ZnO nanocomposite hybrid coatings, which can be used for the prevention of biofouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel

    Directory of Open Access Journals (Sweden)

    H. Alhumade

    2016-12-01

    Full Text Available Epoxy-Graphene (E/G nanocomposites with different loading of graphene were prepared via in situ prepolymerization and evaluated as protective coating for Stainless Steel 304 (SS304. The prepolymer composites were spin coated on SS304 substrates and thermally cured. Transmission Electron Microscopy (TEM and Scanning Electron Microscopy (SEM were utilized to examine the dispersion of graphene in the epoxy matrix. Epoxy and E/G nanocomposites were characterized using X-ray diffraction (XRD and Fourier Transform Infrared (FTIR techniques and the thermal behavior of the prepared coatings is analyzed using Thermogravimetric analysis (TGA and Differential scanning calorimetry (DSC. The corrosion protection properties of the prepared coatings were evaluated using Electrochemical Impedance Spectroscopy (EIS and Cyclic Voltammetry (CV measurements. In addition to corrosion mitigation properties, the long-term adhesion performance of the coatings was evaluated by measuring the adhesion of the coatings to the SS304 substrate after 60 days of exposure to 3.5 wt% NaCl medium. The effects of graphene loading on the impact resistance, flexibility, and UV stability of the coating are analyzed and discussed. SEM was utilized to evaluate post adhesion and UV stability results. The results indicate that very low graphene loading up to 0.5 wt % significantly enhances the corrosion protection, UV stability, and impact resistance of epoxy coatings.

  20. Elaboration and characterization of a multifunctional silane/ZnO hybrid nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Nicolay, A. [Research Institute for Materials Science and Engineering, University of Mons, Place du Parc 20, 7000 Mons (Belgium); Lanzutti, A. [Department of Chemistry Physics and Environment, University of Udine, Via del Cotonificio 108, 33100 Udine (Italy); Poelman, M.; Ruelle, B. [Materia Nova ASBL, Avenue Copernic 1, 7000 Mons (Belgium); Fedrizzi, L. [Department of Chemistry Physics and Environment, University of Udine, Via del Cotonificio 108, 33100 Udine (Italy); Dubois, Ph. [Research Institute for Materials Science and Engineering, University of Mons, Place du Parc 20, 7000 Mons (Belgium); Materia Nova ASBL, Avenue Copernic 1, 7000 Mons (Belgium); Olivier, M.-G., E-mail: marjorie.olivier@umons.ac.be [Research Institute for Materials Science and Engineering, University of Mons, Place du Parc 20, 7000 Mons (Belgium); Materia Nova ASBL, Avenue Copernic 1, 7000 Mons (Belgium)

    2015-02-01

    Highlights: • Synthesis of ZnO/sol–gel nanocomposite films. • Study of ZnO nanoparticle dispersion in the sol–gel matrix. • Highlighting barrier properties of the sol–gel coatings. • Highlighting UV-absorption properties of the sol–gel coatings. • Influence of ZnO nanofiller percentage on these properties. - Abstract: The present study aims at investigating the elaboration of a ZnO/sol–gel nanocomposite coating, which can provide a number of properties such as UV-absorption, mechanical and barrier effects, etc. depending on targeted applications. The sol–gel coating formulation is an inorganic–organic hybrid based on tetraethoxysilane (TEOS) and glycidyloxypropyltrimethoxysilane (GPTMS). In order to ensure good dispersion in the sol–gel matrix, ZnO nanoparticles were surface-modified with a silane coupling agent. The functionalization was confirmed by Fourier transform infrared (FTIR) and thermogravimetric (TGA) analyses. Field emission gun-scanning electron microscopy (FEG-SEM) characterization of the nanocomposite film reveals a homogeneous distribution and dispersion of the ZnO nanoparticles throughout the film. Glow discharge optical emission spectrometry (GDOES) analysis allows evaluating the thickness of coatings and getting a depth composition profile. Some properties such as UV-absorption and barrier effect are highlighted using a UV–visible spectrometer and electrochemical impedance spectroscopy (EIS), respectively. The effect of ZnO concentration is also presented.

  1. Preparation and properties of nano-composite ceramic coating by thermo chemical reaction method

    Institute of Scientific and Technical Information of China (English)

    MA Zhuang; SUN Fang-hong; LI Zhi-chao

    2007-01-01

    Nano-composite ceramic coating was fabricated on Q235 steel through thermo chemical reaction method. Structure of the coating was analyzed and the properties were tested. The results show that a few of new ceramic phases, such as MgAl2O4, ZnAl2O4,Al2SiO5, Ni3Fe and Fe3Al, are formed on the coating during the process of solidifying at 600 ℃. The ceramic coating is dense and the high bonding strength is obtained. The average bonding strength between the coating and matrix could be 14.22 MPa. The acid resistance of the coating increase by 8.8 times, the alkali resistance by 4.1 times, the salt resistance by 10.3 times, and the wear resistance by 2.39 times.

  2. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    Energy Technology Data Exchange (ETDEWEB)

    Susilowati, Endang, E-mail: endwati@yahoo.co.id; Ashadi [Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Sebelas Maret Surakarta (Indonesia); Maryani [Medical Doctor Program, Faculty of Medicine, Universitas Sebelas Maret Surakarta, Indonesia Jl. Ir Sutami 36 A Surakarta Indonesia 53126 (Indonesia)

    2016-02-08

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO{sub 3}) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 – 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.

  3. Electrochemical hydroxyapatite-cobalt ferrite nanocomposite coatings as well hyperthermia treatment of cancer.

    Science.gov (United States)

    Abdel-Hamid, Z; Rashad, M M; Mahmoud, Salwa M; Kandil, A T

    2017-07-01

    The fabrication of hydroxyapatite-Co-ferrite nanocomposite coatings was performed on stainless steel by chronoamperometry technique. HA-CoFe2O4 nanocomposite films were characterized using X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer (VSM). The results reveal that CoFe2O4 nanoparticles dispersed within the HA matrix have flake and strip shapes. The magnetic property of the nanocomposite was increased by increasing the concentration of CoFe2O4 and a good saturation magnetization value was found to be 20.6emu/g with 50% CoFe2O4. By comparing with pure CoFe2O4, the composite still retain moderate magnetization as well as its biocompatible characters. The specific absorption rate (SAR) values were altered according to the change in CoFe2O4 concentration and the maximum SAR value was 125W/g. The incorporation of CoFe2O4 nanoparticles with HA coating was increased the corrosion resistance of HA in simulated body fluid (SBF). The results indicated that HA-CoFe2O4 nanocomposite coating could be a promising surface treatment technique for stainless steel medical implants as well hyperthermia treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Facile approach in fabricating superhydrophobic coatings from silica-based nanocomposite

    Science.gov (United States)

    Guo, Yonggang; Wang, Qihua

    2010-10-01

    This study develops a one-step technique to synthesize various super water-repellent coatings with addition of modified silica nanoparticles. Surface topography observation showed that stacking of spherical silica nanoparticles formed primary surface roughness. The wettability of the products was investigated. It was found that the as-prepared surface possesses superhydrophobic properties not only for pure water but also for corrosive water under both acidic and basic conditions. The silica-based nanocomposite coatings can be fabricated on glass substrates and other functional engineering material surfaces, such as copper, iron, aluminum alloy, to form self-cleaning coatings.

  5. Preparation and properties of poly(vinylidene fluoride nanocomposites blended with graphene oxide coated silica hybrids

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-04-01

    Full Text Available Graphene oxide coated silica hybirds (SiO2-GO were fabricated through electrostatic assembly in this work, then blended with poly(vinylidene fluoride (PVDF by solution mixing to make PVDF nanocomposites. The interfacial interaction was investigated by scanning electron microscopy (SEM, polarized optical microscopy (POM and Fourier transform infrared spectroscopy (FTIR. The results showed that the interfacial interaction was enhanced by adding of SiO2-GO and strong hydrogen bonds were observed. The as-made nanocomposites were investigated using standard tensile test and dynamic mechanical analysis (DMA measurements, mechanical properties of PVDF with SiO2-GO hybrids showed limited improvement.

  6. Composite Electroplating to Obtain Ni-ZrO2 Nanocomposite Coatings Containing Monodispersed ZrO2 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; HOU Feng-yan; GUO He-tong

    2004-01-01

    The Zirconia nanoparticles are dispersed well in the plating bath using polyelectrolyte dispersant and NiZrO2 nanocomposite coatings containing monodispersed ZrO2 nanoparticles are successfully prepared under DC electrodeposition condition. The effects of the dispersant concentration on the dispersibility of Zirconia nanoparticles in the plating bath and the hardness of nanocomposite coatings have been investigated. The results shows that the hardness of nanocomposite coatings are strongly influenced by the dispersion state of ZrO2 nanoparticles in the composite coatings and only a very low volume percent of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating.

  7. Electrochemical and structural properties of electroless Ni-P-SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farzaneh, Amir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman (Iran, Islamic Republic of); Department of Materials Science and Engineering, Faculty of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of); Mohammadi, Maysam, E-mail: maysam.mohammadi84@gmail.com [High Technology and Environmental Sciences, International Center for Science, Materials Research Institute, Kerman (Iran, Islamic Republic of); Ehteshamzadeh, Maryam [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman (Iran, Islamic Republic of); High Technology and Environmental Sciences, International Center for Science, Materials Research Institute, Kerman (Iran, Islamic Republic of); Mohammadi, Farzad [Department of Materials Engineering, The University of British Columbia, Vancouver, BC (Canada)

    2013-07-01

    Silicon carbide (SiC) nanoparticles were co-deposited with nickel-phosphorous (Ni-P) coatings through electroless deposition process. The effects of annealing temperature and SiC contents on properties of the coatings were investigated. Corrosion performance of the coatings was examined using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). X-ray diffraction and Scanning Electron Microscopy (SEM) were employed for structural and morphological studies, respectively. It was shown that the structure of the as-deposited Ni-P-SiC nanocomposite coating was amorphous, and changed to the nickel crystal, nickel phosphide (Ni{sub 3}P) and silicide compounds (Ni{sub x}Si{sub y}) with heat treatment. Addition of the SiC concentration in the coating bath affected both composition and morphology of the coating. Presence of SiC nanoparticles in the Ni-P coating enhanced the corrosion resistance of the coating. Higher SiC contents, however, negatively affected the corrosion behavior of the coatings. Heat treatment also improved the corrosion resistance of the Ni-P-SiC coating. Annealing at 400 °C decreased the corrosion current density of the coating by approximately 60%.

  8. Preparation and property of duplex Ni-B-TiO2/Ni nano-composite coatings

    Science.gov (United States)

    Wang, Shu-Jen; Wang, Yuxin; Shu, Xin; Tay, Seeleng; Gao, Wei; Shakoor, R. A.; Kahraman, Ramazan

    2015-03-01

    The duplex Nickel-Boron-Titania/Nickel (Ni-B-TiO2/Ni) coatings were deposited on mild steel by using two baths with Ni as the inner layer. TiO2 nanoparticles were incorporated into the Ni-B coatings as the outer layer by using solid particle mixing method. The microstructure, morphology and corrosion resistance of the duplex Ni-B-TiO2/Ni nanocomposite coatings were systemically investigated. The results show that the duplex interface was uniform and the adhesion between two layers was very good. The microhardness of duplex Ni-B-TiO2/Ni coating was much higher than the Ni coating due to the outer layer of Ni-B-TiO2 coating. The corrosion resistance of the duplex Ni-B-TiO2/Ni coating was also significantly improved comparing with single Ni-B coating. The Ni-B-10 g/L TiO2/Ni coating was found to have the best corrosion resistance among these duplex coatings. This type of duplex Ni-B-TiO2/Ni coating, with high hardness and good corrosion resistance properties, should be able to find broad applications under adverse environmental conditions.

  9. Recrystallization and grain growth of nanocomposite Ti-B-N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, P.H.; Willmann, H.; Mitterer, C

    2003-09-01

    Nanocomposite Ti-B-N coatings with different chemical composition were prepared by non-reactive co-sputtering of a segmented TiN-TiB{sub 2} target. The coatings investigated are primarily composed of nanocrystalline TiN and TiB{sub 2} phases. Increasing boron content results in a decreasing grain size from approximately 6 to 2 nm. During a thermal treatment of such coatings solely recovery and recrystallization with subsequent grain growth would appear, since the two phases are in thermodynamic equilibrium. Differential scanning calorimetry (DSC) and X-ray diffraction analysis were used to investigate the recrystallization behavior and subsequent grain growth of the nanocomposite Ti-B-N coatings. On heating the coating samples, which were removed chemically from their low alloyed steel substrates, an exothermal peak appeared during the DSC measurements indicating grain growth. From the onset temperature of this peak the recrystallization temperature was found which increases with increasing boron content from 1032 to 1070 deg. C. Activation energies for grain growth are obtained from Kissinger plots and yield values decreasing from 7.9 to 4.4 eV with increasing boron content. After heat treatment up to 1400 deg. C during the DSC measurements the coatings showed grain sizes within the range of 15-30 nm. It was found that the highest recrystallization temperature does not imply the highest activation energy for grain growth.

  10. UV enhanced synthesis of high density Au coated ZnO nanocomposite.

    Science.gov (United States)

    Song, Kwan-Woo; Park, Min-Ho; Kim, Tae-Hoon; Lim, Su-Hee; Yang, Cheol-Woong

    2014-11-01

    We report the synthesis of high density Au coated ZnO nanocomposites by UV irradiation using a mixed solution of ZnO nanowires, HAuCl4 and Na2CO3. This synthesis process is easier and faster than a hydrothermal process in synthesizing Au/ZnO nanocomposites. The morphology, size distribution and density of the Au nanoparticles on the ZnO nanowires, which affect the photocatalytic efficiency of the synthesized Au/ZnO nanocomposite, were affected by the pH of the mixed solution. In order to obtain damage-free ZnO nanowires and small Au nanoparticles, the pH of the mixed solution should be adjusted to 7-8. UV irradiation promoted the formation of metallic Au nuclei, regardless of the presence of a ZnO photocatalyst. Au/ZnO nanocomposites were fabricated by Au reduction due to UV irradiation, followed by attachment of metallic Au nuclei to the ZnO nanowires, rather than by the photocatalytic reaction of ZnO. We propose this process as the dominent mechanism of the UV enhanced synthesis of Au/ZnO nanocomposites.

  11. Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weiwei [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Material Processing Research Department, Korea Institute of Materials Science (KIMS), 66 Sangnam-dong, Changwon, Kyungnam 641-010 (Korea, Republic of); Chen, Wanglin; Yang, Shubao; Lin, Yue [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Zhang, Shihong, E-mail: shzhang@ahut.edu.cn [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Cho, Tong-Yul [Institute of Industrial Technology, Changwon National University, Changwon, Kyungnam 641-773 (Korea, Republic of); Lee, G.H. [Material Processing Research Department, Korea Institute of Materials Science (KIMS), 66 Sangnam-dong, Changwon, Kyungnam 641-010 (Korea, Republic of); Kwon, Sik-Chol [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China)

    2015-10-01

    Highlights: • Design of the AlCrSiN multilayer and composite coating. • Tribological/mechanical properties of the coatings. • AlCrSiN coating with the special structures presented lowest F.C. • AlCrSiN coating possessed best service life and cutting performance for the application of high-speed steel (HSS) tools. - Abstract: In the present work, AlCrN coating and AlCrSiN multilayer and nanocomposite coating were designed and deposited on the surface of high speed steel (HSS) cutters. The microstructures of these coatings were investigated systematically by means of grazing incidence X-ray diffraction (GIXRD), X-ray photoelectron spectroscope (XPS), electron probe X-ray microanalysis (EPMA), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM), in association with mechanical property measurement and corresponding cutting test. The results showed that the AlCrN coating mainly composed of nanocrystalline fcc-CrN, hcp-AlN and fcc-(Cr,Al)N solid-solution. In addition to these nanocrystalline phases, a few amorphous Si{sub 3}N{sub 4} phases were observed for the AlCrSiN multilayers and nanocomposite coating with a stronger {2 0 0} preferred orientation. The modulation period (6 nm) of the AlCrSiN coating was much smaller than that of the AlCrN coating (18 nm). The service life of the AlCrSiN coated tool increased approximately 40% longer in comparison with the AlCrN coated tool because of its more excellent mechanical properties (48 GPa hardness, 1123 MPa toughness, 52 N LC2 adhesion strength and 0.25 average friction coefficient). During the cutting process, the wear mechanisms of coated tools at the early stage and mid-stage were abrasion wear and adhesion wear, respectively. And the worn loss of AlCrSiN coated tool was less than that of AlCrN coated tool.

  12. Anticorrosive Properties of Poly(o-phenylenediamine/ZnO Nanocomposites Coated Stainless Steel

    Directory of Open Access Journals (Sweden)

    Aisha Ganash

    2014-01-01

    Full Text Available Poly(o-phenylenediamine and poly(o-phenylenediamine/ZnO (PoPd/ZnO nanocomposites coating were prepared on type-304 austenitic stainless steel (SS using H2SO4 acid as electrolyte by potentiostatic methods. Fourier transforms infrared spectroscopy and scanning electron microscopy techniques were used to characterize the composition and structure of PoPd/ZnO nanocomposites. The corrosion protection of polymer coatings ability was studied by Eocp-time measurement, anodic and cathodic potentiodynamic polarization and impedance techniques in 3.5% NaCl as corrosive solution. It was found that ZnO nanoparticles improve the barrier and electrochemical anticorrosive properties of poly(o-phenylenediamine.

  13. Acrylic polymer nanocomposite resins for water borne coating applications

    NARCIS (Netherlands)

    Nobel, M.L.

    2007-01-01

    Due to environmental and safety regulations the use of volatile organic components (VOC's) containing lacquers for exterior automotive purposes is under growing pressure. As a consequence there is a demand for more environmentally friendly alternatives like water borne coatings, high solid coatings,

  14. Improvement of Microhardness and Corrosion Resistance of Stainless Steel by Nanocomposite Coating

    OpenAIRE

    Hiba Husam Ismail; Kareem Neamah Sallomi; Hamid S. Mahdi

    2014-01-01

    Stainless steel (AISI 304) has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and cor...

  15. Porous Silicon Nanocomposites with Combined Hard and Soft Magnetic Properties

    Science.gov (United States)

    Rumpf, Klemens; Granitzer, Petra; Michor, Herwig

    2016-09-01

    Magnetic nanostructures of two ferromagnetic metals have been combined within porous silicon, and the magnetic switching behavior of the resulting porous silicon/metal nanocomposite has been modified by varying the arrangement. The two magnetic materials are Ni and Co, whereas Co is the magnetic harder one. These "hard/soft" magnetic nanocomposites have been achieved by two different routes. On the one hand, double-sided porous silicon has been used whereas one side has been filled with Ni nanostructures and the other one with Co nanostructures. On the other hand, Ni and Co have been deposited within one porous layer alternatingly. The filling of the pores has been carried out by electrodeposition with varying the deposition parameters. In systems which offer two distinct slopes of the hysteresis curves due to the different saturation behavior of the two types of deposited metal, magnetic exchange coupling is not present. For samples which show smooth hysteresis curves exchange, coupling between the Ni and Co nanostructures seems to be present. The aim is to control especially the structure size of the soft and the hard magnetic materials and the distance between them at the nanoscale to optimize exchange coupling resulting in a maximum energy product.

  16. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating.

    Science.gov (United States)

    Wang, Xuefen; Chen, Xuming; Yoon, Kyunghwan; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin

    2005-10-01

    A novel high flux filtration medium, consisting of a three-tier composite structure, i.e., a nonporous hydrophilic nanocomposite coating top layer, an electrospun nanofibrous substrate midlayer, and a conventional nonwoven microfibrous support, was demonstrated for oil/water emulsion separations for the first time. The nanofibrous substrate was prepared by electrospinning of poly(vinyl alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. The resulting cross-linked PVA substrates showed excellent water resistance and good mechanical properties. The top coating was based on a nanocomposite layer containing hydrophilic polyether-b-polyamide copolymer or a cross-linked PVA hydrogel incorporated with surface-oxidized multiwalled carbon nanotubes (MWNTs). Scanning electron microscopy (SEM) examinations indicated that the nanocomposite layer was nonporous within the instrumental resolution and MWNTs were well dispersed in the polymer matrix. Oil/ water emulsion tests showed that this unique type of filtration media exhibited a high flux rate (up to 330 L/m2-h at the feed pressure of 100 psi) and an excellent total organic solute rejection rate (99.8%) without appreciable fouling. The increase in the concentration of surface-oxidized MWNT in the coating layer generally improves the flux rate, which can be attributed to the generation of more effective hydrophilic nanochannels for water passage in the composite membranes.

  17. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  18. Ni–Fe–Al$_2$O$_3$ electrodeposited nanocomposite coating with functionally graded microstructure

    Indian Academy of Sciences (India)

    V TORABINEJAD; A SABOUR ROUHAGHDAM; M ALIOFKHAZRAEI; M H ALLAHYARZADEH

    2016-06-01

    In this study, a Ni–Fe–Al$_2$O$_3$ nanocomposite coating was deposited on the substrate of low-carbon steel by electrodeposition from a sulphate-based bath. The effects of frequency and duty cycle were investigated to producethe functionally graded (FG) coating. For this purpose, first, the coatings with duty cycle-decreased method (DDM) were deposited in eight steps from 88 to 11%. At the second step, frequency-increased method (FIM) was utilized from 50 to 6400 Hz during eight steps. Assessing of coatings was carried out by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), potentiodynamic test, Vickers microhardness test and wear test.Microstructure evaluations gained by SEM and EDS demonstrated that the continuous alterations of duty cycle contribute for manufacturing of FG coatings, so that the maximum particle fraction was in the free surface of the coating and its amount was gradually decreased to the interface. These investigations showed that FIM had no effect on production of graded structure. Corrosion and wear tests indicated high corrosion and wear resistance of DDM coatings in comparison to FIM coatings. Investigating the best coatings obtained from both above methods exhibited 50 and 20% reduction in corrosion current density and wear rate, respectively, for DDM specimen in comparison to FIM sample.

  19. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  20. Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Meng, W. J.; Tittsworth, R. C.; Rehn, L. E.; Materials Science Division; Louisana State Univ.

    2000-12-01

    Using the techniques of reactive magnetron sputter deposition and inductively coupled plasma (ICP) assisted hybrid physical vapor deposition (PVD)/chemical vapor deposition (CVD), we have synthesized a wide variety of metal-free amorphous hydrocarbon (a-C:H) and Ti-containing hydrocarbon (Ti-C:H) coatings. Coating elastic modulus and hardness have been measured by the technique of instrumented nanoindentation and related to Ti and hydrogen compositions. We show that both metal and hydrogen compositions significantly influence the mechanical properties of Ti-C:H coatings. The microstructure of Ti-C:H coatings is further characterized by transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. XANES spectroscopy and high-resolution TEM examination of Ti-C:H specimens shows that the dissolution limit of Ti atoms in an a-C:H matrix is between 0.9 and 2.5 at.%. Beyond the Ti dissolution limit, precipitation of nanocrystalline B1-TiC cluster occurs and Ti-C:H coatings are in fact TiC/a-C:H thin film nanocomposites. Measurements of the average Ti bonding environment in TiC/a-C:H nanocomposites by EXAFS spectroscopy are consistent with a microstructure in which bulk-like B1-TiC clusters are embedded in an a-C:H matrix.

  1. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Science.gov (United States)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  2. Structure-property correlation in EEMAO fabricated TiO₂-Al₂O₃ nanocomposite coatings.

    Science.gov (United States)

    Niazi, H; Golestani-Fard, F; Wang, W; Shahmiri, M; Zargar, H R; Alfantazi, A; Bayati, R

    2014-04-23

    We grew TiO2-Al2O3 nanocomposite coatings on titanium substrates by electrophoretic enhanced microarc oxidation (EEMAO) technique under several voltages and established a correlation between microstructure, surface hardness, and corrosion resistance of the coatings in sulfuric acid and sodium chloride solutions. Structural analysis revealed that the coatings contained anatase, rutile, alumina, and tialite phases. Formation kinetics of tialite phase was studied. It was found that increasing the voltage gives rise to a coarser morphology, i.e., larger pore size, and incorporation of more alumina nanoparticles into the layers. It is shown that surface hardness of the titanium substrates increased by a factor of 4 following EEMAO treatment. Corrosion resistance of titanium was enhanced significantly. Resistance against pitting corrosion was improved as well. We proposed a formation mechanism for the TiO2-Al2O3 composite coatings at different voltages based on the chemical and electrochemical foundations.

  3. Self-healing phenomenon and dynamic hardness of C60-based nanocomposite coatings.

    Science.gov (United States)

    Penkov, Oleksiy V; Pukha, Volodymyr E; Devizenko, Alexander Yu; Kim, Hae-Jin; Kim, Dae-Eun

    2014-05-14

    The phenomenon of surface self-healing in C60-based polymer coatings deposited by ion-beam assisted physical vapor deposition was investigated. Nanoindentation of the coatings led to the formation of a protrusion rather than an indent. This protrusion was accompanied by an abnormal shape of the force-distance curve, where the unloading curve lies above the loading curve due to an additional force applied in pulling the indenter out of the media. The coatings exhibited a nanocomposite structure that was strongly affected by the ratio of C60 ion and C60 molecular beam intensities during deposition. The coatings also demonstrated the dynamic hardness effect, where the effective value of the hardness depends significantly on the indentation speed.

  4. Characterisation and corrosion resistance of TiN-Ni nanocomposite coatings using RBS and NRA

    Energy Technology Data Exchange (ETDEWEB)

    Noli, F., E-mail: noli@chem.auth.grl [Department of Chemistry, Aristotle University, GR-54124 Thessaloniki (Greece); Misaelides, P., E-mail: misailid@auth.gr [Department of Chemistry, Aristotle University, GR-54124 Thessaloniki (Greece); Lagoyannis, A., E-mail: lagoya@inp.demokritos.gr [Tandem Accelerator Laboratory, Nuclear Physics Institute, NCSR Demokritos, GR-15310 Aghia Paraskevi, Attiki (Greece); Akbari, A., E-mail: alireza_ak@yahoo.com [Universite de Poitiers, Laboratoire de Physique des Materiaux (PHYMAT), UMR6630-CNRS, 86960 Chasseneuil, Futuroscope Cedex (France)

    2011-12-15

    Nanocomposite TiN-Ni coatings were produced by a duplex treatment on Ti-6Al-4V substrates. The procedure consisted of plasma nitriding of the substrate followed by deposition of a TiN-Ni layer by sputtering a composite Ti-Ni target with 1.2 keV Ar{sup +} ions. The growing film was bombarded during deposition by a mixture of 50 eV Ar{sup +}-N{sup 2+}-N{sup +} ions. The temperature as well as the Ni- and the N-content of the coatings varied in order to obtain the optimum structural and mechanical properties. The surface morphology of the coatings was examined by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The results showed that Ni appears as an amorphous phase around the TiN crystallites. The thickness and the composition of the coatings were investigated by Rutherford Backscattering Spectrometry (RBS) using deuterons as projectiles. The nitrogen depth distribution in the coatings was determined by Nuclear Reaction Analysis (NRA) using {sup 14}N(d, {alpha}) and {sup 14}N(d, p) nuclear reactions. The corrosion resistance of the nitrided and non-nitrided coatings in aggressive environment (NaCl 3% solution at RT) was investigated using electrochemical techniques (potentiodynamic polarisation and cyclic voltammetry). It was found that nanocomposite coatings are stable and do not influence the corrosion resistance of the Ti-alloy substrate. The nitrided coatings exhibited higher wear and corrosion resistance related with their Ni-content.

  5. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites

    Science.gov (United States)

    Song, Ping'an; Liu, Lina; Fu, Shenyuan; Yu, Youming; Jin, Chunde; Wu, Qiang; Zhang, Yan; Li, Qian

    2013-03-01

    The extraordinary properties of carbon nanotubes (CNTs) and graphene stimulate the development of advanced composites. Recently, several studies have reported significant synergies in the mechanical, electrical and thermal conductivity properties of polymer nanocomposites by incorporating their nanohybrids. In this work, we created polypropylene nanocomposites with homogeneous dispersion of CNTs and reduced graphene oxides via a facile polymer-latex-coating plus melt-mixing strategy, and investigated their synergistic effects in their viscoelastic, gas barrier, and flammability properties. Interestingly, the results show remarkable synergies, enhancing their melt modulus and viscosity, O2 barrier, and flame retardancy properties and respectively exhibiting a synergy percentage of 15.9%, 45.3%, and 20.3%. As previously reported, we also observed remarkable synergistic effects in their tensile strength (14.3%) and Young’s modulus (27.1%), electrical conductivity (32.3%) and thermal conductivity (34.6%). These impressive results clearly point towards a new strategy to create advanced materials by adding binary combinations of different types of nanofillers.

  6. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

    Science.gov (United States)

    Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao

    2015-04-22

    Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.

  7. Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications.

    Science.gov (United States)

    Zhang, Bokai; Kwok, Chi Tat

    2011-10-01

    In order to eliminate micro-cracks in the monolithic hydroxyapatite (HA) and composite hydroxyapatite/carbon nanotube (HA/CNT) coatings, novel HA/TiO(2)/CNT nanocomposite coatings on Ti6Al4V were attempted to fabricate by a single-step electrophoretic codeposition process for biomedical applications. The electrophoretically deposited layers with difference contents of HA, TiO(2) (anatase) and CNT nanoparticles were sintered at 800°C for densification with thickness of about 7-10 μm. A dense and crack-free coating was achieved with constituents of 85 wt% HA, 10 wt% TiO(2) and 5 wt% CNT. Open-circuit potential measurements and cyclic potentiodynamic polarization tests were used to investigate the electrochemical corrosion behavior of the coatings in vitro conditions (Hanks' solution at 37°C). The HA/TiO(2)/CNT coatings possess higher corrosion resistance than that of the Ti6Al4V substrate as reflected by nobler open circuit potential and lower corrosion current density. In addition, the surface hardness and adhesion strength of the HA/TiO(2)/CNT coatings are higher than that of the monolithic HA and HA/CNT coatings without compromising their apatite forming ability. The enhanced properties were attributed to the nanostructure of the coatings with the appropriate TiO(2) and CNT contents for eliminating micro-cracks and micro-pores.

  8. Synthesis and magnetic properties of carbon-coated Ni/SiO2 core/shell nanocomposites

    Institute of Scientific and Technical Information of China (English)

    AU; ChakTong

    2009-01-01

    A simple method for the synthesis of carbon-coated Ni/SiO2 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ′) of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ″) stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ′ almost constant and the imaginary part μ″ very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range.

  9. Synthesis and magnetic properties of carbon-coated Ni/SiO2 core/shell nanocomposites

    Institute of Scientific and Technical Information of China (English)

    TANG NuJiang; L(U) LiYa; ZHONG Wei; AU ChakTong; DU YouWei

    2009-01-01

    A simple method for the synthesis of carbon-coated Ni/Si02 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ') of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ") stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ' almost constant and the imaginary part μ" very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range.

  10. Optimization of coating solution for preparation of antibacterial copper-polyethylene nanocomposite

    Science.gov (United States)

    Ghorbani, Hamid Reza; Molaei, Mazaher

    2017-06-01

    Polyethylene film was coated with copper nanoparticles and its antibacterial properties were investigated. To make nanocomposite film, the solutions containing the copper nanoparticles were prepared using polyamide resin in six different concentrations of copper nanoparticles (1%, 2%, 3%, 5%, 7% and 10 wt%). Corona discharge was used to improve the nonpolar surface of polyethylene and prepare it for coating. Corona discharge was carried out in 5 min with power of 10 000 W. Characterisation of nanoparticles and the coated surface were performed using dynamic light scattering (DLS), x-ray diffraction (XRD) and scanning electron microscope (SEM). The antibacterial activity of polyethylene-copper nanocomposite against two type of bacteria including gram-negative Escherichia coli and gram-positive Staphylococcus aureus was measured by disc-diffusion method. In addition, the optimum concentration of copper nanoparticles was determined about 5 wt%. The current technique of coated film preparation reduces the amount of required nanoparticles which finally offers lower production cost.

  11. Antimicrobial activity of nanocomposite zirconium nitride/silver coatings to combat external bone fixation pin infections.

    Science.gov (United States)

    Wickens, David J; West, Glen; Kelly, Peter J; Verran, Joanna; Lynch, Stephen; Whitehead, Kathryn A

    2012-10-01

    During external fixation, temporary implants are used to penetrate the skin, muscle and bone to support severely fractured bones. This creates a biologically critical interface at the site of entry, which potentially allows a risk of infection. The aim of this study, therefore, was to investigate potential antimicrobial nanocomposites to combat infection. Magnetron sputtering was used to produce zirconium nitride/silver nanocomposite coatings, which were prepared at two different silver concentrations of 15.5 at.% and 29.8 at.%. These coatings were characterized for morphology, chemical composition, and antimicrobial activity in comparison to pure zirconium nitride and stainless steel. Staphylococcus aureus and Staphylococcus epidermidis were used as in vitro test organisms in a range of antimicrobial assays; retention of the bacteria on the surfaces and their survival using LiveDead™ staining; the use of a metabolic redox dye to indicate a contact kill and zone of inhibition assays to indicate leaching of inhibitory silver ions. Antimicrobial tests demonstrated a significant kill when the bacterial cells came in contact with the coatings containing silver at both 15.5 at.% and 29.8 at.%. No inhibitory leaching from the surfaces occurred. These surfaces demonstrate potential for use as antimicrobial fixation pin coatings.

  12. Nanocomposite coatings by ALD: in-situ growth investigation and applications (Conference Presentation)

    Science.gov (United States)

    Mane, Anil U.; Elam, Jeffrey W.

    2016-10-01

    We have established ALD methodology to synthesize nanocomposite coatings comprised of conducting, metallic nanoparticles embedded in an amorphous dielectric matrix. These films are nominally composed of M:Al2O3 where (M= W, Mo, and Ta) and are prepared using alternating exposures to trimethyl aluminum (TMA) and H2O for the Al2O3 ALD and alternating MF6/Si2H6 exposures for the metal ALD. By varying the ratio of ALD cycles for the metal and the Al2O3 components during material growth, we can tune precisely the various material properties such as microstructure, electrical, optical and chemical properties. The resistance of these coatings can be controlled over a very broad range (e.g. 1e11-1e4 Ohm-cm) and these films exhibit Ohmic behavior and resist breakdown even at high electric fields of chips) for maskless reflection electron beam lithography system, protective coatings for Li-ion battery cathodes and solar selective absorber coating for high temperature concentrated solar power (CSP). Here we will discuss the ALD in-situ growth study, various nanocomposite material characterizations, and some of these applications.

  13. Polydopamine-Coated Manganese Complex/Graphene Nanocomposite for Enhanced Electrocatalytic Activity Towards Oxygen Reduction

    Science.gov (United States)

    Parnell, Charlette M.; Chhetri, Bijay; Brandt, Andrew; Watanabe, Fumiya; Nima, Zeid A.; Mudalige, Thilak K.; Biris, Alexandru S.; Ghosh, Anindya

    2016-08-01

    Platinum electrodes are commonly used electrocatalysts for oxygen reduction reactions (ORR) in fuel cells. However, this material is not economical due to its high cost and scarcity. We prepared an Mn(III) catalyst supported on graphene and further coated with polydopamine, resulting in superior ORR activity compared to the uncoated PDA structures. During ORR, a peak potential at 0.433 V was recorded, which is a significant shift compared to the uncoated material’s -0.303 V (both versus SHE). All the materials reduced oxygen in a wide pH range via a four-electron pathway. Rotating disk electrode and rotating ring disk electrode studies of the polydopamine-coated material revealed ORR occurring via 4.14 and 4.00 electrons, respectively. A rate constant of 6.33 × 106 mol-1s-1 was observed for the polydopamine-coated material-over 4.5 times greater than the uncoated nanocomposite and superior to those reported for similar carbon-supported metal catalysts. Simply integrating an inexpensive bioinspired polymer coating onto the Mn-graphene nanocomposite increased ORR performance significantly, with a peak potential shift of over +730 mV. This indicates that the material can reduce oxygen at a higher rate but with lower energy usage, revealing its excellent potential as an ORR electrocatalyst in fuel cells.

  14. Preparation and characterization of polymeric nanocomposite films for application as protective coatings

    Science.gov (United States)

    Gagliardi, S.; Rondino, F.; D'Erme, C.; Persia, F.; Menchini, F.; Santarelli, M. L.; Paulke, B.-R.; Enayati, A. L.; Falconieri, M.

    2017-08-01

    Addiction of ceramic nanoparticles to acrylic polymers provides a simple and effective means to produce paints with important properties, such as mechanical resistance and tailored wettability, even though for optimal performances, an engineered nanoparticle distribution would be desirable. In this paper we report on the realization and on the morphological and functional characterization of nanocomposites where the nanophase is distributed on the surface of acrylic polymer films, in order to enhance the expression of surface-related properties. To this aim, commercial titanium oxide and silicon oxide nanopowders were dispersed in water and the suspensions were air-sprayed on polymeric films prepared by paint brushing, thus producing a nanostructured ceramic surface coating. Control of the pH of suspensions and acrylic acid functionalization of the surface of titania were used together with high power ultrasonic treatments in order to control dimension of the aggregates in the sprayed suspensions. Optical microscopy, mechanical profilometry, and atomic force microscopy were used to characterize the nanocomposite surface morphology and correlate it to the coating functional properties, evaluated through mechanical abrasion tests and contact angle measurements; also, colorimetry on coated stones was performed in order to test the impact of the coatings on the aesthetical appearance and their photostability under UV irradiation. Results show that the nanostructured ceramic layer slightly improves the resistance of coatings to mechanical abrasion in case of polymer films prepared from latexes. The nanocomposite surface layer does not affect the wettability of the polymer, which remained slightly hydrophilic; this behavior is likely due to inadequate distribution of the nanophase. On the other hand UV-induced superhydrophilicity was observed when the concentration of surface titania nanoparticles is about 0.6 mg/cm2. Colorimetric analysis on historical and Carrara

  15. Reversible wettability conversion of electrodeposited graphene oxide/titania nanocomposite coating: Investigation of surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Naghdi, Samira; Jaleh, Babak, E-mail: bkjaleh@yahoo.com; Shahbazi, Nima

    2016-04-15

    Graphical abstract: - Highlights: • Electrophoretic deposition of Graphene oxide/titania on aluminum surface. • Superhydrophilicity of the GO/TiO{sub 2} coating (WCA ≈ 5°). • Wettability switching of the coating via thermal annealing to superhyrophobic. • The superhydrophobic coating was changed to superhydrophilic due to UV irradiance. • The GO/TiO{sub 2} coating has reversible wettability. - Abstract: Graphene oxide/titania (GO/TiO{sub 2}) nanocomposite have been successfully prepared by a simple method and deposited on the surface of aluminum (Al) by the electrophoretic deposition method. The effect of thermal annealing on wettability of GO/TiO{sub 2} coating has been investigated. According to the obtained results, the water contact angle (WCA) increased with an increase in annealing temperature which may be attributed to the regulation of coating from superhydrophilic (WCA ≈ 5°) to superhydrophobic (WCA ≈ 148°) via thermal annealing. Moreover, the superhydrophobic coating was changed to a superhydrophilic one by using ultraviolet irradiation and this effect was reversible by heat treatment.

  16. Mechanical and antibacterial properties of recycled carton paper coated by PS/Ag nanocomposites for packaging.

    Science.gov (United States)

    Nassar, Mona A; Youssef, Ahmed M

    2012-06-05

    Polymer nanocomposites and paper constitute a new class of packaging materials. In this study silver nanoparticles were prepared by novel method as antibacterial additive, where, synthetic takes place with aid of a novel, non-toxic, and eco-friendly biological materials namely rice straw (RS) powder. The prepared Ag nanoparticle was examined by transmission electron microscope (TEM), X-ray diffraction pattern (XRD) and UV-spectroscopy. The silver nanoparticles were then embedded into commercial polystyrene solution. The recycled carton paper was coated by the polystyrene nanocomposites containing different concentration of silver nanoparticles, namely 2, 4, 6 and 8% based on polystyrene. The prepared recycled carton sheets were characterized by scanning electron microscope (SEM). The mechanical properties, water vapor permeability and antibacterial effect of recycled carton sheets were also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings

    Science.gov (United States)

    Liu, Xiangmei; Mou, Yanan; Wu, Shuilin; Man, H. C.

    2013-05-01

    Because of excellent osteoconductivity and resorbability, hydroxyapatite (HA) is commonly used as a bone substitute material or implant coating. Both ionic and metallic silver are considered to have a broad spectrum of antimicrobial properties especially associated with biomaterial-related infections. The present work proposes a facile chemical reduction method to synthesize an Ag incorporated HA nanocomposite. Ammoniacal silver solution was firstly prepared and then added into the HA solution, followed by hydrazine hydrate (N2H4·H2O) being used to reduce the silver ions to metallic silver. The formed Ag nanoparticles had diameters of 20-30 nm and were firmly attached on the HA particle surfaces. This approach can also keep the integrity of the HA chemical structure and the morphology. The strain Escherichia coli was used to evaluate the antibacterial effect of the nanocomposite. An In vitro bacterial adhesion study indicated a significant enhancement in the antibacterial property of silver containing HA.

  18. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    Science.gov (United States)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  19. Biomimetic organic-inorganic nanocomposite coatings for titanium implants. In vitro and in vivo biological testing.

    Science.gov (United States)

    Schade, R; Sikirić, M Dutour; Lamolle, S; Ronold, H J; Lyngstadass, S P; Liefeith, K; Cuisinier, F; Füredi-Milhofer, H

    2010-12-01

    Recently described organic-inorganic nanocomposite coatings of the chemical composition: (PLL/PGA)(10)CaP[(PLL/PGA)(5)CaP](4) (coating A) and (PLL/PGA)(10)CaP[(PLL/PGA)(5)CaP](4)(PLL/PGA)(5) (coating B), applied to chemically etched titanium plates, have been tested by extensive cell culture tests and in vivo biological experiments, with uncoated titanium plates serving as controls. Before testing, coated samples were stored for extended periods of time (from 2 weeks to 8 months) under dry, sterile conditions. Cells of the cell-lines MC3T3-E1 and/or SAOS-2 were used for the following cell culture tests: initial adhesion (4 h) and proliferation (up to 21 days), cell activity (XTT test), morphology, synthesis of collagen type I and alkaline phosphatase activity (all incubation up to 21 days). In addition, coating B was tested against uncoated control in a validated in vivo pull-out model in rabbit tibia. The results of both in vitro and in vivo experiments show excellent biological properties of chemically etched titanium which are even surpassed by surfaces covered with coating B. Thus, after 8 weeks of healing the implants coated with B were significantly better attached to the cortical bone of rabbit thibiae than uncoated titanium controls with more than twice the force needed to detach coated implants. However, coating A (top crystal layer) had an adverse effect on both cell proliferation and activity, which is explained by morphological observations, showing inhibited spreading of the cells on its rough surfaces. The results also show the remarkable stability of the coatings when shelved under dry and sterile conditions.

  20. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    Science.gov (United States)

    Takacs, H.; Viala, B.; Tortai, J.-H.; Hermán, V.; Duclairoir, F.

    2016-03-01

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P1/P2, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P1 = pyrene-terminated polystyrene is the second shell for electrical insulation, and P2 = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (˜0.6 T) and ultra-high resistivity (˜1010 μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P1. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  1. -SiC nanocomposite coatings synthesized by co-electrodeposition

    Science.gov (United States)

    Masoudi, Mehran; Hashim, Mansor; Kamari, Halimah Mohamed

    2014-08-01

    In the present work, Ni-Al2O3, Ni-SiC and novel Ni-Al2O3-SiC metal matrix composite (MMC) coatings were electrodeposited onto pure copper samples using a modified Watt's nickel electroplating bath containing nano alumina and silicon carbide particles with an average particle size of 50 nm. The composition, crystalline structure and surface morphology of the deposits were characterized by X-ray diffractometry (XRD), energy-dispersive X-ray spectroscopy (EDS) and field emission scanning electron microscopy (FESEM). The results indicated that Ni-Al2O3-SiC hybrid composite films with an acceptable homogeneity and granular structure having 9.2 and 7.7 % vol. Al2O3 and SiC nanoparticles, respectively were developed successfully. The nanoparticles incorporated in the nickel layer effectively increased the micro hardness and wear resistance owing to dispersion and grain-refinement strengthening, changing the nickel matrix morphology as well as the texture and preferred grain growth direction from to the close-packed . The oxidation resistance of the Ni-Al2O3-SiC hybrid composite coatings was measured to be approximately 41 % greater than the unreinforced Ni deposit and almost 30 % better than the Ni-Al2O3 composite coatings.

  2. Preparation and Properties of Biphasic Calcium Phosphate Scaffolds Multiply Coated with HA/PLLA Nanocomposites for Bone Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Lei Nie

    2012-01-01

    Full Text Available A well-developed BCP scaffolds coated with multilayer of HA/PLLA nanocomposites with interconnectivity, high porosity, and moderate compressive strength as well as good biocompatibility were fabricated for bone tissue engineering. After being multiply coated with HA/PLLA nanocomposites, the scaffolds maintained the BCP framework structure, and the porous network structure of scaffolds remained unchanged; however, the compressive strength was increased with the increase of coating layer number of HA/PLLA nanocomposites. The prepared scaffolds showed lower variation of pH values in SBF solution, and an increase of coating layer number led to the decrease of the biodegradation rate at different days. Moreover, the multilayer coating scaffolds had good cytocompatibility, showing no negative effects on cells growth and proliferation. Furthermore, the bone-like apatite layer was built obviously in the interface of scaffold after 21 days after implantation in SD rat muscle. In conclusion, the BCP scaffold coated with multilayer of HA/PLLA nanocomposites could be a candidate as an excellent substitute for damaged or defect bone in bone tissue engineering.

  3. Elaboration and characterization of a multifunctional silane/ZnO hybrid nanocomposite coating

    Science.gov (United States)

    Nicolay, A.; Lanzutti, A.; Poelman, M.; Ruelle, B.; Fedrizzi, L.; Dubois, Ph.; Olivier, M.-G.

    2015-02-01

    The present study aims at investigating the elaboration of a ZnO/sol-gel nanocomposite coating, which can provide a number of properties such as UV-absorption, mechanical and barrier effects, etc. depending on targeted applications. The sol-gel coating formulation is an inorganic-organic hybrid based on tetraethoxysilane (TEOS) and glycidyloxypropyltrimethoxysilane (GPTMS). In order to ensure good dispersion in the sol-gel matrix, ZnO nanoparticles were surface-modified with a silane coupling agent. The functionalization was confirmed by Fourier transform infrared (FTIR) and thermogravimetric (TGA) analyses. Field emission gun-scanning electron microscopy (FEG-SEM) characterization of the nanocomposite film reveals a homogeneous distribution and dispersion of the ZnO nanoparticles throughout the film. Glow discharge optical emission spectrometry (GDOES) analysis allows evaluating the thickness of coatings and getting a depth composition profile. Some properties such as UV-absorption and barrier effect are highlighted using a UV-visible spectrometer and electrochemical impedance spectroscopy (EIS), respectively. The effect of ZnO concentration is also presented.

  4. Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability

    Directory of Open Access Journals (Sweden)

    Xuejun Fan

    2015-09-01

    Full Text Available Modeling vapor pressure is crucial for studying the moisture reliability of microelectronics, as high vapor pressure can cause device failures in environments with high temperature and humidity. To minimize the impact of vapor pressure, a super-hydrophobic (SH coating can be applied on the exterior surface of devices in order to prevent moisture penetration. The underlying mechanism of SH coating for enhancing device reliability, however, is still not fully understood. In this paper, we present several existing theories for predicting vapor pressure within microelectronic materials. In addition, we discuss the mechanism and effectiveness of SH coating in preventing water vapor from entering a device, based on experimental results. Two theoretical models, a micro-mechanics-based whole-field vapor pressure model and a convection-diffusion model, are described for predicting vapor pressure. Both methods have been successfully used to explain experimental results on uncoated samples. However, when a device was coated with an SH nanocomposite, weight gain was still observed, likely due to vapor penetration through the SH surface. This phenomenon may cast doubt on the effectiveness of SH coatings in microelectronic devices. Based on current theories and the available experimental results, we conclude that it is necessary to develop a new theory to understand how water vapor penetrates through SH coatings and impacts the materials underneath. Such a theory could greatly improve microelectronics reliability.

  5. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants

    Energy Technology Data Exchange (ETDEWEB)

    Madhan Kumar, A. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagarajan, S. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo (Japan); Ramakrishna, Suresh [Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Sungdong-gu, Seoul (Korea, Republic of); Sudhagar, P.; Kang, Yong Soo [Energy Materials Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Hyongbum [Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Sungdong-gu, Seoul (Korea, Republic of); Gasem, Zuhair M. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rajendran, N., E-mail: nrajendran@annauniv.edu [Department of Chemistry, Anna University, Chennai (India)

    2014-10-01

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb{sub 2}O{sub 5} nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb{sub 2}O{sub 5} nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb{sub 2}O{sub 5} nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb{sub 2}O{sub 5} nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb{sub 2}O{sub 5} nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings. - Highlights: • Effect of Nb{sub 2}O{sub 5} nanoparticles on the bio activity of PPy coatings was evaluated. • Hydrophilic, more compact and smooth morphology of nanocomposite was achieved. • Nb{sub 2}O{sub 5} nanoparticles enhanced the corrosion protection performance of PPy coating. • Mechanical and surface wettability of nanocomposite exhibited higher than PPy. • Nano Nb{sub 2}O{sub 5} in PPy coating improved the biocompatibility on osteoblast MG63 cells.

  6. Ag transport in CrN-Ag nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-09-01

    2-{mu}m-thick CrN-Ag composite coatings containing 22 at.% Ag were deposited on Si(001) by reactive co-sputtering at T{sub s} = 300, 400, and 500 Degree-Sign C. Subsequent vacuum annealing at T{sub a} = 425, 525, and 625 Degree-Sign C causes Ag transport to the surface. Auger electron spectroscopy and plan-view microscopy are used to quantify the Ag transport to the surface, which increases strongly with increasing {Delta}T = T{sub a} - T{sub s}. Compositional depth profiles and cross-sectional microscopy show that annealing causes a negligible Ag gradient through the composite layer, suggesting that the Ag transport is detachment-limited as opposed to diffusion-limited. Statistical analyses of Ag aggregate size-distributions within the matrix show that large aggregates ({>=} 50 nm) are unaffected by annealing, while the Ag in a large fraction of small aggregates (< 50 nm) moves to the surface, leaving behind 10-50 nm wide voids in the annealed composite. This indicates that the Ag from the smaller grains, with a higher chemical potential and thus a higher detachment rate, is transferred to the large grains on the surface which are 200-1000 nm wide. - Highlights: Black-Right-Pointing-Pointer CrN-Ag coatings were deposited at T{sub s} = 300-500 Degree-Sign C and annealed at T{sub a} = 425-625 Degree-Sign C. Black-Right-Pointing-Pointer Ag diffuses from aggregates in the coating to the surface, if T{sub a} > T{sub s}. Black-Right-Pointing-Pointer During annealing, aggregates < 50 nm become voids, those > 50 nm are unaffected. Black-Right-Pointing-Pointer The Ag transport is detachment rather than diffusion limited.

  7. Towards lightweight nanocomposite coatings for corrosion inhibition: Graphene, carbon nanotubes, and nanostructured magnesium as case studies

    Science.gov (United States)

    Dennis, Robert Vincent, III

    The field of nanocomposites is a burgeoning area of research due to the interest in the remarkable properties which can be achieved through their use in a variety of applications, including corrosion resistant coatings. Lightweighting is of increasing importance in the world today due to the ever growing push towards energy efficiency and the green movement and in recent years there has been a vast amount of research performed in the area of developing lightweight nanocomposites for corrosion inhibition. Many new composite materials have been developed through the use of newly developed nanomaterials (including carbonaceous and metallic constituents) and their specialized incorporation in the coating matrix materials. We start with a general review on the development of hybrid nanostructured composites for corrosion protection of base metals from a sustainability perspective in Chapter 1. This review demonstrates the ever swelling requirements for a paradigm shift in the way that we protect metals against corrosion due to the costs and environmental concerns that exist with currently used technology. In Chapter 2, we delve into the much required understanding of graphene oxide and reduced graphene oxide through near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements to elucidate information about the electronic structure upon incorporation of nitrogen within the structure. For successful integration of the carbonaceous nanomaterials into a composite coating, a full swath of knowledge is necessary. Within this work we have shown that upon chemical defunctionalization of graphene oxide to reduced graphene oxide by means of hydrazine treatment, nitrogen is incorporated into the structure in the form of a pyrazole ring. In Chapter 3, we demonstrate that by way of in situ polymerization, graphene and multiwalled carbon nanotubes can be incorporated within a polymer (polyetherimide, PEI) matrix. Two systems have been developed including graphene and

  8. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, G., E-mail: giovannibarbaro@email.it; Galdi, M. R., E-mail: mrgaldi@unisa.it; Di Maio, L., E-mail: ldimaio@unisa.it; Incarnato, L., E-mail: lincarnato@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%{sub wt/wt}) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  9. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Science.gov (United States)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  10. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    Science.gov (United States)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  11. Adhesion of silver/polypyrrole nanocomposite coating to a fluoropolymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, Barbara; Kawakita, Jin, E-mail: KAWAKITA.Jin@nims.go.jp; Chikyow, Toyohiro

    2016-10-30

    Highlights: • Interfacial structure between Ag/polypyrrole (PPy) nanocomposite and PTFE was revealed. • PPy enters into PTFE substrate as a dispersion with up to 12 nm size Ag nanoparticles. • The nanocomposite is absorbed by PTFE substrate up to 1–2 μm deep. • Ag/PPy interlocks mechanically with PTFE causing strong adhesion. - Abstract: This paper describes the adhesive interface between a conducting polymer/metal composite and a polytetrafluoroethylene (PTFE) substrate. Strong adhesion was observed from using a Ag/polypyrrole (Ag/PPy) composite on a fluoropolymer substrate, which in most cases has a very low adhesion to different materials. To clarify the adhesion mechanism between the Ag/PPy composite and the PTFE substrate, the interfacial structure was studied by the use of transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Our results show that Ag/PPy composite is absorbed inside the nano-sized pores of PTFE and the composite mechanically interlocks after solidifying, which causes the nanocomposite to stick strongly to the substrate. The use of Ag/PPy coating could be a novel technique for developing electrodes, antennae or other high performance applications as this metal/conductive polymer composite has excellent adhesion properties on various plastics.

  12. One-pot synthesis of carbon-coated SnO2 nano-composite using hydrothermal method for lithium ion battery application.

    Science.gov (United States)

    Lee, Hye Rim; Kim, Hwan Jin; Park, Jong Hyeok; Yoon, Dae Ho

    2013-06-01

    Carbon-coated SnO2 nano-composite was synthesized by using a hydrothermal method in a one step process with sizes of 1 to 3 microm. The carbon-coated SnO2 nano-composite was easily obtained by changing firing atmosphere from air to argon (600 degrees C for 3 hours). The carbon-coating thickness and size of the SnO2 nanoparticles in carbon-coated SnO2 nano-composite were confirmed through a high-resolution transmission electron microscopy (HRTEM) as 40 and 5 nm, respectively. Carbon-coating and particle size affect to the capacity retention property. Carbon-coated and non carbon-coated samples were investigated as anode materials. It was confirmed that the non carbon-coated SnO2 nano-composite had a 718 mA h/g initial charge capacity, 91% reached to theoretical value of SnO2 (790 mA h/g), while the carbon-coated SnO2 nano-composite had an excellent capacity retention of 89.6% after 70 cycles (10.88% for non carbon-coated SnO2 nano-composite).

  13. Sol-gel fabrication and optical absorption properties of C-NiO nanocomposite coatings

    CSIR Research Space (South Africa)

    Tile, N

    2010-12-01

    Full Text Available of the sunlight as possible, then prevent thermal emittance The manufacturing process for most commercial thermal products is complicated C-NiO/Al has been fabricated using a simple and cheap sol-gel procedure combined with spin coating technique C... SOLUTION) Structure directing templateFinal C-NiO gel By suitable choice of precursor, we can engineer novel composite materials Sol-gel technique can be adapted to different coating methods coating substrate Spray coating Spin coating The material...

  14. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

    Directory of Open Access Journals (Sweden)

    V. Jovanov

    2017-02-01

    Full Text Available The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %, was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency after the water rinsing procedure.

  15. Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy.

    Science.gov (United States)

    Xu, Wujun; Thapa, Rinez; Liu, Dongfei; Nissinen, Tuomo; Granroth, Sari; Närvänen, Ale; Suvanto, Mika; Santos, Hélder A; Lehto, Vesa-Pekka

    2015-11-01

    In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.

  16. Novel POSS-PCU Nanocomposite Material as a Biocompatible Coating for Quantum Dots.

    Science.gov (United States)

    Rizvi, Sarwat B; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2015-12-16

    Quantum dots (QDs) are fluorescent nanoparticles with unique photophysical properties that enable them to potentially replace traditional organic dyes and fluorescent proteins in various bioimaging applications. However, the inherent toxicity of their cores based on cadmium salts limits their widespread biomedical use. We have developed a novel nanocomposite polymer emulsion based on polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) that can be used to coat quantum dots to nullify their toxicity and enhance photostability. Here we report the synthesis and characterization of a novel POSS-PCU nanocomposite polymer emulsion and describe its application for coating QDs for biological application. The polymer was synthesized by a process of emulsion polymerization and formed stable micelles of ∼33 nm in diameter. CdTe/CdS/ZnS QDs were efficiently stabilized by the polymer emulsion through encapsulation within the polymer micelles. Characterization studies showed no significant change in the unique photophysical properties of QDs after coating. The polymer was biocompatible to HepG2, HUVECs, and mouse skeletal muscle cells at 2.5% after 24 h exposure on in vitro testing. Polymer encapsulated QDs showed enhanced photostability on exposure to high degrees of UV irradiation and air as well as significantly reduced cytotoxicity on exposure to HepG2 cells at 30 μg/mL for 24 h. We have therefore concluded that the POSS-PCU polymer emulsion has the potential to make a biocompatible and photostable coating for QDs enabling a host of biomedical applications to take this technology to the next level.

  17. Inorganic/organic hybrid nanocomposite coating applications: Formulation, characterization, and evaluation

    Science.gov (United States)

    Eyassu, Tsehaye

    Nanotechnology applications in coatings have shown significant growth in recent years. Systematic incorporation of nano-sized inorganic materials into polymer coating enhances optical, electrical, thermal and mechanical properties significantly. The present dissertation will focus on formulation, characterization and evaluation of inorganic/organic hybrid nanocomposite coatings for heat dissipation, corrosion inhibition and ultraviolet (UV) and near infrared (NIR) cut applications. In addition, the dissertation will cover synthesis, characterization and dispersion of functional inorganic fillers. In the first project, we investigated factors that can affect the "Molecular Fan" cooling performance and efficiency. The investigated factors and conditions include types of nanomaterials, size, loading amount, coating thickness, heat sink substrate, substrate surface modification, and power input. Using the optimal factors, MF coating was formulated and applied on commercial HDUs, and cooling efficiencies up to 22% and 23% were achieved using multi-walled carbon nanotube and graphene fillers. The result suggests that molecular fan action can reduce the size and mass of heat-sink module and thus offer a low cost of LED light unit. In the second project, we report the use of thin organic/inorganic hybrid coating as a protection for corrosion and as a thermal management to dissipate heat from galvanized steel. Here, we employed the in-situ phosphatization method for corrosion inhibition and "Molecular fan" technique to dissipate heat from galvanized steel panels and sheets. Salt fog tests reveal successful completion of 72 hours corrosion protection time frame for samples coated with as low as ~0.7microm thickness. Heat dissipation measurement shows 9% and 13% temperature cooling for GI and GL panels with the same coating thickness of ~0.7microm respectively. The effect of different factors, in-situ phosphatization reagent (ISPR), cross-linkers and nanomaterial on corrosion

  18. Surface Coating of Oxide Powders: A New Synthesis Method to Process Biomedical Grade Nano-Composites

    Directory of Open Access Journals (Sweden)

    Paola Palmero

    2014-07-01

    Full Text Available Composite and nanocomposite ceramics have achieved special interest in recent years when used for biomedical applications. They have demonstrated, in some cases, increased performance, reliability, and stability in vivo, with respect to pure monolithic ceramics. Current research aims at developing new compositions and architectures to further increase their properties. However, the ability to tailor the microstructure requires the careful control of all steps of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering. This review aims at deepening understanding of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on the key role of the synthesis methods to develop homogeneous and tailored microstructures. In this frame, the authors have developed an innovative method, named “surface-coating process”, in which matrix oxide powders are coated with inorganic precursors of the second phase. The method is illustrated into two case studies; the former, on Zirconia Toughened Alumina (ZTA materials for orthopedic applications, and the latter, on Zirconia-based composites for dental implants, discussing the advances and the potential of the method, which can become a valuable alternative to the current synthesis process already used at a clinical and industrial scale.

  19. Nonlinear optical studies of inorganic nanoparticles-polymer nanocomposite coatings fabricated by electron beam curing

    Science.gov (United States)

    Misra, Nilanjal; Rapolu, Mounika; Venugopal Rao, S.; Varshney, Lalit; Kumar, Virendra

    2016-05-01

    The optical nonlinearity of metal nanoparticles in dielectrics is of special interest because of their high polarizability and ultrafast response that can be utilized in potential device applications. In this study nanocomposite thin films containing in situ generated Ag nanoparticles dispersed in an aliphatic urethane acrylate (AUA) matrix were synthesized using electron beam curing technique, in presence of an optimized concentration of diluent Trimethylolpropanetriacrylate (TMPTA). The metal nanocomposite films were characterized using UV-visible spectrophotometry, transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM) techniques. Ag nanoparticle impregnated films demonstrated an absorption peak at ∼420 nm whose intensity increased with increase in the Ag concentration. The optical limiting property of the coatings was tested using a nanosecond Nd-YAG laser operated at third harmonic wavelength of 355 nm. For a 25 ns pulse and 10 Hz cycle, Ag-polymer coatings showed good optical limiting property and the threshold fluence for optical limiting was found to be ∼3.8×10-2 J/cm2 while the transmission decreased to 82%. The nonlinear optical coefficients were also determined using the standard Z-scan technique with picosecond (∼2 ps, 1 kHz) and femtosecond (∼150 fs, 100 MHz) pulses. Open aperture Z-scan data clearly suggested two-photon absorption as the dominant nonlinear absorption mechanism. Our detailed studies suggest these composites are potential candidates for optical limiting applications.

  20. A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction.

    Science.gov (United States)

    Bagheri, Habib; Javanmardi, Hasan; Abbasi, Alireza; Banihashemi, Solmaz

    2016-01-29

    A metal organic framework-polyaniline (MOF/PANI) nanocomposite was electrodeposited on a stainless steel wire and used as a solid phase microextraction (SPME) fiber coating. The electropolymerization process was carried out under a constant deposition potential and applied to the corresponding aqueous electrolyte containing aniline and MOF particles. The employment of MOFs with their large and small cages and 3-D structures in synthesizing a nanocomposite was assumed to be efficient constitutes to induce more non-smooth and porous structures, approved by scanning electron microscopy (SEM) images. Three different MOFs were incorporated to synthesize the desired nanocomposites and the preliminary experiments showed that all of them, particularly the one containing MOF2, have higher extraction performances in compared with PANI. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some chlorobenzenes (CBs) from aqueous samples. Influencing parameters on the synthesize and extraction processes including the electrodeposition voltage and its duration time, the weight ratio of PANI and MOF, the ionic strength, desorption temperature and time, and extraction time and temperature were optimized. The developed method was validated by analyzing the spiked distilled water and gas chromatography-mass spectrometry (GC-MS). Under optimum condition, the relative standard deviation (RSD%) values for a double distilled water spiked with the selected CBs at 20ngL(-1) were 5-8% (n=3) and the detection limits were below 0.2ngL(-1). The linear dynamic range (LDR) of the method was in the concentration range of 0.5-1000ngL(-1) (R(2)>0.9994). The fiber-to-fiber reproducibility was found to be in the range of 4-7%. Eventually, various real-water samples were analyzed by the MOF/PANI-based HS-SPME and GC-MS and the relative recovery values were found to be in the range of 92-98%.

  1. Characterization of NbSi2-Al2O3 nanocomposite coatings prepared with plasma spraying mechanically alloyed powders

    Science.gov (United States)

    Yazdani, Zohreh; Karimzadeh, Fathallah; Abbasi, Mohammad-Hasan; Amini, Abbas

    2015-07-01

    The present study characterized NbSi2-Al2O3 nanocomposite powders plasma-sprayed on Ti-6Al-4V substrates. The powders were agglomerated to obtain suitable particle sizes for spraying. The agglomerated powders were then plasma-sprayed using atmospheric plasma spraying. The structural transformations of the powders along with the morphological and mechanical changes of the coatings were examined by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, and hardness testing. The results showed that after plasma spraying, the grain size increased, and the lattice strain decreased. However, the grain size of this compound after spraying was still in the nanometer range. The coating was uniform and exhibited good adhesion to the substrate. The microhardness and fracture toughness of the nanocomposite coating were higher than those of a nanostructured NbSi2 coating.

  2. Influence of SiO2 Particles on Microstructures and Properties of Ni-W-P-CeO2-SiO2 Nano-Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    Xu Ruidong; Wang Junli; Guo Zhongcheng; Wang Hua

    2007-01-01

    Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on the carbon steel surface by pulse co-deposition of nickel, tungsten, phosphorus, nano-CeO2 and nano-SiO2 particles. The influence of nano-SiO2 particles concentrations in electrolyte on microstructures and properties of the nano-composite coatings were researched, and the characteristics were assessed by chemical compositions, element distribution, deposition rate, microhardness and microstructures. The results indicate that when nano-SiO2 particles concentrations in electrolyte are controlled at 20g·L-1, the deposition rate with 27.07μm·h-1 and the microhardness with 666 Hv of the nano-composite coatings are highest, element line scanning and area scanning analyses show that the average contents of elements W, P, Si and Ce in the nano-composite coatings are close. displaying that the distribution of every element within the nano-composite coatings is even. An increase in nano-SiO2 particles concentrations in electrolyte (when lower than 20g·L-1) leads to refinement in grain structure of nano-composite coatings, but when it improved to 30g·L-1, the crystallite sizes increase again and in the meantime there are a lot of small boss with nodulation shape appearing on the surface of nano-composite coatings.

  3. Diamond-like nanocomposite coatings for LIGA-fabricated nickel alloy parts.

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Somuri V.; Scharf, Thomas W.

    2005-03-01

    A commercial plasma enhanced chemical vapor deposition (PECVD) technique with planetary substrate rotation was used to apply a thin (200-400 nm thick) conformal diamond-like carbon (DLC) coating (known as a diamond-like nanocomposite (DLN)) on LIGA fabricated Ni-Mn alloy parts. The PECVD technique is known to overcome the drawbacks associated with the line-of-sight nature of physical vapor deposition (PVD) and substrate heating inherent with traditional chemical vapor deposition (CVD). The purpose of the present study is to characterize the coverage, adhesion, and tribological (friction and wear) behavior of DLN coatings applied to planar and sidewall surfaces of small featured LIGA Ni-Mn fabricated parts, e.g. 280 {micro}m thick sidewalls. Friction and wear tests were performed in dry nitrogen, dry air, and air with 50% RH at Hertzian contact pressures ranging from 0.3 to 0.6 GPa. The friction coefficient of bare Ni-Mn alloy was determined to be 0.9. In contrast, low friction coefficients ({approx}0.02 in dry nitrogen and {approx}0.2 in 50% RH air) and minimal amount of wear were exhibited for the DLN coated LIGA Ni-Mn alloy parts and test coupons. This behavior was due to the ability of the coating to transfer to the rubbing counterface providing low interfacial shear at the sliding contact; resultantly, coating one surface was adequate for low friction and wear. In addition, a 30 nm thick titanium bond layer was determined to be necessary for good adhesion of DLN coating to Ni-Mn alloy substrates. Raman spectroscopy and cross-sectional SEM with energy dispersive x-ray analysis revealed that the DLN coatings deposited by the PECVD with planetary substrate rotation covered both the planar and sidewall surfaces of LIGA fabricated parts, as well as narrow holes of 300 {micro}m (0.012 inch) diameter.

  4. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.

    Science.gov (United States)

    Azad, Mohammad; Moreno, Jacqueline; Bilgili, Ecevit; Davé, Rajesh

    2016-11-20

    Formation of core-shell nanocomposites of Fenofibrate and Itraconazole, model poorly water soluble drugs, via fluidized bed (FB) coating of their well-stabilized high drug loaded nanosuspensions is investigated. Specifically, the extent of dissolution enhancement, when fine carrier particles (sub-50μm) as opposed to the traditional large carrier particles (>300μm) are used, is examined. This allows testing the hypothesis that greatly increased carrier surface area and more importantly, thinner shell for finer carriers at the same drug loading can significantly increase the dissolution rate when spray-coated nanosuspensions are well-stabilized. Fine sub-50μm lactose (GranuLac(®) 200) carrier particles were made fluidizable via dry coating with nano-silica, enabling decreased cohesion, fluidization and subsequent nanosuspension coating. For both drugs, 30% drug loaded suspensions were prepared via wet-stirred media milling using hydroxypropyl methyl cellulose and sodium dodecyl sulfate as stabilizers. The stabilizer concentrations were varied to affect the milled particle size and prepare a stable nanosuspension. The suspensions were FB coated onto hydrophilic nano-silica (M-5P) dry coated sub-50μm lactose (GranuLac(®) 200) carrier particles or larger carrier particles of median size >300μm (PrismaLac(®)40). The resulting finer composite powders (sub-100μm) based on GranuLac(®) 200 were freely flowing, had high bulk density, and had much faster, immediate dissolution of the poorly water-soluble drugs, in particular for Itraconazole. This is attributed to a much higher specific surface area of the carrier and corresponding thinner coating layer for fine carriers as opposed to those for large carrier particles.

  5. 1,2,3-Triazole/MWCNT conjugates as filler for gelcoat nanocomposites: new active antibiofouling coatings for marine application

    Science.gov (United States)

    Iannazzo, Daniela; Pistone, Alessandro; Visco, Annamaria; Galtieri, Giovanna; Giofrè, Salvatore V.; Romeo, Roberto; Romeo, Giovanni; Cappello, Simone; Bonsignore, Martina; Denaro, Renata; Galvagno, Signorino

    2015-11-01

    A polyester-based gelcoat nanocomposite was synthesized by using as nanofiller multi-walled carbon nanotubes (MWCNTs) conjugated with a biocidal 1,2,3-triazole to be used as a new eco-friendly antibiofouling coating. 1,2,3-Triazole/MWCNT conjugates containing differently substituted 1,2,3-triazoles have been synthesized and characterized by physical, chemical, and morphological analyses. Ecotoxicological studies, performed on marine organisms belonging to different evolutive classes, provided information about the choice of the more interesting nanofiller. The synthesized gelcoat nanocomposite showed a significant improvement in the wet ability with respect to the Gelcoat alone. Preliminary biological tests performed on the nanocomposite revealed great biocidal properties, thus providing new opportunities to develop an effective antibiofouling coating.

  6. Anisotropic SmCo5/FeCo core/shell nanocomposite chips prepared via electroless coating

    Directory of Open Access Journals (Sweden)

    Narayan Poudyal

    2015-08-01

    Full Text Available We report the preparation of anisotropic SmCo5/FeCo core/shell nanocomposite chip-like particles via an electroless coating process. The anisotropic SmCo5 nanoscale chips were first prepared by surfactant-assisted ball milling then coated with soft magnetic FeCo using cobalt sulfate (CoSO4.7H2O and iron sulfate (FeSO4.7H2O as metal precursors in presence of complexing agents. The influence of the soft-phase coating on the magnetic properties of the nanocomposite particles has been studied. The saturation magnetization of the composite particles increases with increasing coating while the coercivity decreases. The FeCo coated chips have an enhanced remanence (Mr = 44.5 emu/g with 16 wt % of FeCo compared to the uncoated chips (Mr = 36.7 emu/g, indicating exchange coupling between the hard and soft phases for the optimal soft-phase coating. Results of magnetic field alignment show the strong anisotropy of SmCo5/FeCo core/shell nanocomposite particles which can be used as building blocks of high-strength anisotropic magnets.

  7. Analysis of Wear Mechanisms in Low Friction, Nanocomposite AlMgB14-TiB2 Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Bruce A [Ames Laboratory; Harringa, J [Ames Laboratory; Anderegg, A [Ames Laboratory; Russell, A M [Iowa State University; Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Higdon, Clifton [Eaton Corporation; Elmoursi, Alaa A [Eaton Corporation

    2010-01-01

    Recent developments in coating science and technology offer new opportunities to enhance the energy-efficiency and performance of industrial machinery such as hydraulic fluid pumps and motors. The lubricated friction and wear characteristics of two wear-resistant coatings, diamond-like carbon and a nanocomposite material based on AlMgB{sub 14}-50 vol.% TiB{sub 2}, were compared in pin-on-disk tribotests using Mobil DTE-24{trademark} oil as the lubricant. In each case, the pins were fixed 9.53 mm diameter spheres of AISI 52100 steel, the load was 10 N, and the speed 0.5 m/s in all tests. Average steady-state friction coefficient values of 0.10 and 0.08 were measured for the DLC and nanocomposite, respectively. The coatings and their 52100 steel counterfaces were analyzed after the tests by X-ray photoelectron and Auger spectroscopy for evidence of material transfer or tribo-chemical reactions. The low-friction behavior of the boride nanocomposite coating is due to the formation of lubricative boric acid, B(OH){sub 3}. In contrast, the low-friction behavior of the DLC coating is related to the relatively low dielectric constant of the oil-based lubricant, leading to desorption of surface hydrogen from the coating.

  8. Corrosion and Wear Resistance Characterization of Environmentally Friendly Sol-gel Hybrid Nanocomposite Coating on AA5083

    Institute of Scientific and Technical Information of China (English)

    Hamed Rahimi; Reza Mozaffarinia; Akbar Hojjati Najafabadi

    2013-01-01

    Environmentally friendly organic-inorganic hybrid nanocomposite films have been developed by sol-gel method for corrosion protection of AA5083 alloy.The hybrid nanocomposite coatings have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors.The multilayer coatings were prepared by dip-coating technique.Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was carried out to show the formation of the Si-O-Si structural backbone of the hybrid coatings.Structure and surface morphology of the coatings were studied by optical microscopy (OM),scanning electron microscopy (SEM) and atomic force microscopy (AFM).Characterization of the coatings with respect to pencil scratch hardness,adhesive and abrasion resistance was performed.The corrosion protection performance of these coatings was examined by using cyclic potentiodynamic polarization technique in Persian Gulf water.The results revealed that crack-free films with smooth surface were obtained.With increasing the number of sol-gel coated layers,corrosion resistance increased from 81 to 419 kΩ cm2,while the abrasion wear resistance did not change significantly.However,the triple sol-gel coated layer offered excellent protection against corrosion.

  9. Further improvement of mechanical and tribological properties of Cr-doped diamond-like carbon nanocomposite coatings by N codoping

    Science.gov (United States)

    Zou, Changwei; Xie, Wei; Tang, Xiaoshan

    2016-11-01

    In this study, the effects of nitrogen codoping on the microstructure and mechanical properties of Cr-doped diamond-like carbon (DLC) nanocomposite coatings were investigated in detail. Compared with undoped DLC coatings, the Cr-DLC and N/Cr-DLC coatings showed higher root-mean-square (RMS) roughness values. However, from the X-ray photoelectron spectroscopy (XPS) and Raman results, the fraction of sp2 carbon bonds of N/Cr-DLC coatings increased with increasing N content, which indicated the graphitization of the coatings. The hardness and elastic modulus of N/Cr-DLC coatings with 1.8 at. % N were about 26.8 and 218 GPa, respectively. The observed hardness increase with N codoping was attributed to the incorporation of N in the C network along with the formation of CrC(N) nanoparticles, as confirmed from the transmission electron microscopy (TEM) results. The internal stress markedly decreased from 0.93 to 0.32 GPa as the N content increased from 0 to 10.3 at. %. Furthermore, N doping significantly improved the high-temperature dry friction behavior of DLC coatings. The friction coefficient of N/Cr-DLC coatings with 8.0 and 10.3 at. % N was kept at about 0.2 during the overall sliding test at 500 °C. These results showed that appropriate N doping could promote the mechanical and tribological properties of Cr-DLC nanocomposite coatings.

  10. A New Approach of Improving Rain Erosion Resistance of Nanocomposite Sol-Gel Coatings by Optimization Process Factors

    Science.gov (United States)

    Hojjati Najafabadi, Akbar; Shoja Razavi, Reza; Mozaffarinia, Reza; Rahimi, Hamed

    2014-05-01

    Erosion protection nanocomposite sol-gel coatings based on tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxisilane (GPTMS) are prepared and characterized to protect marine structures susceptible to damage caused by liquid impact, e.g., the submarine body. This study focuses on the optimization of compositional and process parameters of transparent hybrid nanocomposite sol-gel coatings resistant to rain erosion by using statistical design of experimental methodology (DoE) based on Taguchi orthogonal design. The impact of compositional and process parameters of the coatings on the erosion protection performance is investigated by five-factor-four-level design methodology. Hybrid coatings were deposited on AA5083 by a dip coating technique. Optimization coatings are analyzed regarding their adhesion (pull-off), flexibility (impact and mandrel bending), hardness (pencil), wear (Taber wear index), and rain erosion resistance (stationary sample erosion test). The surface morphology and roughness were studied by field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The optimization coatings showed excellent flexibility and adhesion to the substrate with smooth nanostructure surface; the RMS surface roughness was 1.85 nm. The evaluation of the result obtained from abrasion shows cohesive and interfacial wear with abrasive and adhesive mechanisms, respectively. Liquid impact results show cohesive failure of the coatings without any sign of delamination.

  11. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants.

    Science.gov (United States)

    Madhan Kumar, A; Nagarajan, S; Ramakrishna, Suresh; Sudhagar, P; Kang, Yong Soo; Kim, Hyongbum; Gasem, Zuhair M; Rajendran, N

    2014-10-01

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb2O5 nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb2O5 nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb2O5 nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb2O5 nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb2O5 nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings.

  12. Anti-biofilm efficacy of low temperature processed AgCl–TiO{sub 2} nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Kshipra, E-mail: kshipra_naik21@yahoo.co.in; Kowshik, Meenal, E-mail: meenal@goa.bits-pilani.ac.in

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO{sub 2} nanoparticles are presented as potential anti-biofilm agents, wherein TiO{sub 2} acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO{sub 2} nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO{sub 2} nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO{sub 2} nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO{sub 2} being porous and inorganic in nature acts as a good supporting matrix.

  13. Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines

    Directory of Open Access Journals (Sweden)

    Patricia A. Saliba

    2016-01-01

    Full Text Available The performance of fusion-bonded epoxy coatings can be improved through advanced composite coatings reinforced with nanomaterials. Hence, in this study a novel organic-inorganic nanocomposite finish was designed, synthesized, and characterized, achieved by adding γ-aminopropyltriethoxysilane modified silica nanoparticles produced via sol-gel process in epoxy-based powder. After the curing process of the coating reinforced with nanoparticles, the formation of a homogenous novel nanocomposite with the development of interfacial reactions between organic-inorganic and inorganic-inorganic components was observed. These hybrid nanostructures produced better integration between nanoparticles and epoxy matrix and improved mechanical properties that are expected to enhance the overall performance of the system against underwater corrosion.

  14. MoS2-coated ZnO nanocomposite as an active heterostructure photocatalyst for hydrogen evolution

    Science.gov (United States)

    Zhang, Shibao; Tang, Fumin; Liu, Jinkun; Che, Wei; Su, Hui; Liu, Wei; Huang, Yuanyuan; Jiang, Yong; Yao, Tao; Liu, Qinghua; Wei, Shiqiang

    2017-08-01

    To obtain an efficient photocatalyst for solar energy conversion is a key issue in photocatalytic water splitting. Here, we have synthesized MoS2-coated ZnO nanocomposite photocatalyst and investigated the structure-performance relationship by UV-vis absorption and photoluminescence (PL) spectroscopy. Under the simulated sunlight irradiation, the MoS2-coated ZnO nanocomposite in aqueous Na2SO3 solution achieves a high H2 production rate of 1410 μmol/g/h, 5.8 times higher than that of pristine ZnO nanoparticles. The UV-vis spectra and PL results reveal that the MoS2 coated on the surface of ZnO nanoparticles can significantly facilitate the photoexcited electrons transfer and suppress the recombination of the electrons and holes, thus increasing the H2 evolution activity of the composite system.

  15. Synthesis and Properties of Pulse Electrodeposited Lead-Free Tin-Based Sn/ZrSiO4 Nanocomposite Coatings

    Science.gov (United States)

    Bhattacharya, Sumit; Sharma, Ashutosh; Das, Siddhartha; Das, Karabi

    2016-03-01

    The Sn-based ZrSiO4 nanocomposite coatings have been synthesized by pulse co-electrodeposition technique from an aqueous electrolyte containing SnCl2·2H2O, C6H17N3O7, Triton X, and varying amounts of nano-sized ZrSiO4 particles (0, 5, 10, 15, 20, 25, 30, and 35 g/L). As-deposited films have been analyzed using X-ray diffraction, scanning electron microscope equipped with an energy dispersive X-ray spectrometer, and transmission electron microscope. The microhardness, wear as well as corrosion property of the coatings have been also evaluated. It is observed that the surface morphology of Sn-ZrSiO4 nanocomposite coatings is strongly dependent on the reinforcement concentration in the electrolyte, and the Sn-ZrSiO4 nanocomposite solder deposited from the electrolyte containing 25 g/L ZrSiO4 yields the highest hardness and the best wear and corrosion property among all the synthesized samples. The whisker growth propensity of the developed Sn-ZrSiO4 nanocomposites has also been examined after 90 days of aging at room temperature and reported here.

  16. Sonoelectrochemical Synthesis of PPy-MWCNTs-Chitosan Nanocomposite Coatings: Characterization and Corrosion Behavior

    Science.gov (United States)

    Ashassi-Sorkhabi, Habib; Bagheri, Robabeh; Rezaei-moghadam, Babak

    2015-01-01

    This study investigated the effect of co-incorporation of a kind of nanomaterials and organic additives in a polymer matrix coating on corrosion performance of St-12 steel. We synthesized sonoelectrochemically the polypyrrole (PPy), polypyrrole/chitosan (PPy-chitosan), polypyrrole/multiwalled carbon nanotubes (PPy/MWCNTs), and polypyrrole/MWCNTs/chitosan (PPy-MWCNTs-chitosan) films on the base alloy. In-situ polymerization carried out in a solution containing 0.1 mol/L oxalic acid, 100 mg/L dodecylbenzen sulfonic acid, and 0.1 mol/L pyrrole in the absence and presence of a certain amount of MWCNTs and chitosan. The corrosion protection behavior of the synthesized coatings in 3.5% NaCl aqueous solution was studied by the evolution of the open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques. The results revealed that PPy-MWCNTs-chitosan nanocomposite coating exhibits significantly better corrosion protection than others. The PPy-MWCNTs-chitosan film acts as a physical barrier against the corrosive species, because it has a very dense and more compact structure. The surface morphology was investigated by scanning electron microscopy.

  17. Beneficial effects of Co2+ on co-electrodeposited Ni-SiC nanocomposite coating

    Institute of Scientific and Technical Information of China (English)

    YANG Xiu-ying; LI Kang-ju; PENG Xiao; WANG Fu-hui

    2009-01-01

    Ni-SiC nanocomposites were fabricated by co-electrodeposition of nickel with silicon carbide nanoparticles on the pure nickel substrates from a nickel sulfate bath with and without the addition of Co2+. The presence of Co2+ in the electrolyte modifies the Ni matrix to Ni-Co solid solution matrix. It helps to refine the grain size of the nanocomposite coating and improves the content of SiC dispersed in the matrix, and consequently results in higher microhardness. The cathodic polarization curves and electrochemical impedance spectroscopy (EIS) at cathodic potential were investigated in the electrolyte with and without Co2+. A modified cathodic polarization curve with a positive shift in reduction potential and a smaller capacitive loop of EIS are observed. These are attributed to the strong adsorption of Co2+ on the SiC nanoparticles. Consequently, it increases the forces of electrostatic attraction between the SiC nanoparticles and the cathode, which promotes the codeposition of SiC nanoparticles in the matrix.

  18. Structure and properties of hard and superhard Zr-Cu-N nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, P.; Cerstvy, R.; Musil, J. [Univ. of West Bohemia, Plzen (Czech Republic). Dept. of Phys.; Mayrhofer, P.H.; Mitterer, C. [Institut fuer Metallkunde und Werkstoffpruefung, Montanuniversitaet, Franz-Josef-Strasse 18, A-8700, Leoben (Austria)

    2000-09-30

    Zr-Cu-N nanocomposite films represent a new material of the type-nanocrystalline transition metal nitride (nc-MeN)/metal. In the present work, films were deposited onto steel substrates using unbalanced dc reactive magnetron sputtering of a Zr-Cu (62/38 at.%) target. Film structure, chemical composition, mechanical and optical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, wavelength dispersive electron probe microanalysis, depth-sensing microindentation and spectroscopic ellipsometry. It was found that (i) there is a strong correlation between the film structure, Cu content and film properties and (ii) either hard or superhard Zr-Cu-N films can be formed. The superhard coatings with hardness H>40 GPa are characterized by a columnar structure, a strong 111 XRD peak from ZrN grains and no diffraction peaks from Cu. These films exhibit a high elastic recovery of about 80% and contain a very low amount of Cu, approximately 1-2 at.%. In contrast, the hard (<40 GPa) Zr-Cu-N films are characterized by many diffraction peaks from polyoriented ZrN and Cu grains, a more random microstructure and a Cu content higher than 2 at.%. The optical properties of nanocomposite Zr-Cu-N films depend on the stoichiometry of the hard ZrN{sub x} compound and the content of Cu in the film. (orig.)

  19. Corrigendum to "Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process" [J. Power Sources 165 (2007) 1-2

    Science.gov (United States)

    Kim, Tae Kyoung; Kang, Myeongsoon; Choi, Yeong Suk; Kim, Hae Kyung; Lee, Wonmok; Chang, Hyuk; Seung, Doyoung

    The author regrets that the above paper was printed with an error in the title. The correct title reads: "Preparation of Nafion-sulfonated clay nanocomposite membrane for direct methanol fuel cells via a film coating process".

  20. A Cost-Effective Solid-State Approach to Synthesize g-C3N4 Coated TiO2 Nanocomposites with Enhanced Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Min Fu

    2013-01-01

    Full Text Available Novel graphitic carbon nitride (g-C3N4 coated TiO2 nanocomposites were prepared by a facile and cost-effective solid-state method by thermal treatment of the mixture of urea and commercial TiO2. Because the C3N4 was dispersed and coated on the TiO2 nanoparticles, the as-prepared g-C3N4/TiO2 nanocomposites showed enhanced absorption and photocatalytic properties in visible light region. The as-prepared g-C3N4 coated TiO2 nanocomposites under 450°C exhibited efficient visible light photocatalytic activity for degradation of aqueous MB due to the increased visible light absorption and enhanced MB adsorption. The g-C3N4 coated TiO2 nanocomposites would have wide applications in both environmental remediation and solar energy conversion.

  1. Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives

    DEFF Research Database (Denmark)

    Daroonparvar, Mohammadreza; Yajid, M. A. M.; Yusof, N. M.

    2016-01-01

    Titania nanoparticles were utilized as suspension in alkaline aluminate electrolyte to form nanocomposite coatings on magnesium alloy containing 1 wt% calcium by plasma electrolytic oxidation process. Microhardness, wettability, potentiodynamic polarization, wettability, electrochemical impedance...

  2. Adhesion of silver/polypyrrole nanocomposite coating to a fluoropolymer substrate

    Science.gov (United States)

    Horváth, Barbara; Kawakita, Jin; Chikyow, Toyohiro

    2016-10-01

    This paper describes the adhesive interface between a conducting polymer/metal composite and a polytetrafluoroethylene (PTFE) substrate. Strong adhesion was observed from using a Ag/polypyrrole (Ag/PPy) composite on a fluoropolymer substrate, which in most cases has a very low adhesion to different materials. To clarify the adhesion mechanism between the Ag/PPy composite and the PTFE substrate, the interfacial structure was studied by the use of transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Our results show that Ag/PPy composite is absorbed inside the nano-sized pores of PTFE and the composite mechanically interlocks after solidifying, which causes the nanocomposite to stick strongly to the substrate. The use of Ag/PPy coating could be a novel technique for developing electrodes, antennae or other high performance applications as this metal/conductive polymer composite has excellent adhesion properties on various plastics.

  3. The influence of silver content on the tribological and antimicrobial properties of ZrN/Ag nanocomposite coatings.

    Science.gov (United States)

    Kelly, P J; Whitehead, K A; Li, H; Verran, J; Arnell, R D

    2011-06-01

    ZrN/Ag nanocomposite coatings with varying silver contents were produced by co-deposition in a dual pulsed magnetron sputtering system. The coatings were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scratch adhesion testing, thrust washer wear testing and nanoindentation. The hardness of the ZrN/Ag coatings and the friction coefficient running unlubricated against a steel counterface decreased with increasing silver content, whereas the coating-to-substrate adhesion increased for coatings with higher silver contents, compared to a 'pure' ZrN coating. The antimicrobial properties of the coatings were investigated using two well established microbiological assay techniques: zones of inhibition and a NBT (nitro-blue tetrazolium) redox dye. Zones of inhibition were used to determine the extent of silver ion release from the nanocomposite materials, and a NBT (nitro-blue tetrazolium) redox dye was used to determine the antimicrobial effectiveness of the surfaces following incubation. The microorganisms tested were Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Whilst no zones of inhibition were observed for S. aureus, on any of the surfaces, the diameter of the 'kill' zones generally increased with increasing silver content for the other microorganisms. For the NBT assays, after incubation, no P. aeruginosa colony forming units were observed on any surface and the number of viable cells of E. coli and S. aureus decreased with increasing silver content, compared to a 'pure' ZrN surface.

  4. Abrasion resistance of biaxially oriented polypropylene films coated with nanocomposite hard coatings

    Science.gov (United States)

    Wang, Jing; Zhu, Yaofeng; Fu, Yaqin

    2013-11-01

    KMnO4-treated, functionalized, biaxially oriented polypropylene (BOPP) films coated with nano-silica hybrid material were synthesized. The abrasion resistance of the films was examined using a reciprocating fabric abrasion tester. Functional groups were confirmed by Fourier-transform infrared spectroscopy. Contact angle measurements were performed on the BOPP film surface to quantify the effectiveness of the functionalization. Results indicate that the abrasion resistance and roughness of the composite film were significantly affected by the modification of the BOPP film. Water surface contact angle of the modified BOPP films decreased from 90.1° to 71.4°,when KMnO4 concentration increased from 0 M to 0.25 M. Wettability of the BOPP films clearly improved after KMnO4 treatment. Abrasion resistance of the functionalized films coated with hybrid materials improved by 27.4% compared with that of the original film.

  5. Corrosion and wear behaviour of multilayer pulse electrodeposited Ni–Al$_2$O$_3$ nanocomposite coatings assisted with ultrasound

    Indian Academy of Sciences (India)

    H MAJIDI; M ALIOFKHAZRAEI; A KARIMZADEH; A SABOUR ROUHAGHDAM

    2016-12-01

    In this study, the Ni/Al$_2$O$_3$ nanocomposite multilayer coatings with six consecutive layers were electrodeposited on the mild steel by pulse electrodeposition with ultrasound agitation from nickelWatts-type bath. Thestructure and morphology of the etched coatings cross-section were characterized by scanning electron microscopy (SEM). The corrosion behaviour of these coatings was investigated in 1 M H$_2$SO$_4$ solution. All of the coatings showed the active–passive transition and the distinct difference in structure had negative influence on their corrosion resistance. Moreover, the tribological behaviour of these coatings was evaluated by pin-on-disc type. The results showed that wear resistance increased with increase in duty cycle and frequency.

  6. Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages.

    Science.gov (United States)

    Thaya, Rajagopalan; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Sivakamavalli, Jeyachandran; Jeyasekar, Raja; Shanthi, Sathappan; Vaseeharan, Baskaralingam; Ramasamy, Palaniappan; Sonawane, Avinash

    2016-11-01

    In the present study, chitosan coated Ag/ZnO (CS/Ag/ZnO) nanocomposite was synthesized and characterized by UV-Vis spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The CS/Ag/ZnO nanocomposite exhibited antibacterial activity against Gram positive (B. licheniformis and B. cereus) bacteria at 8 μg mL(-1) compared to Gram negative (V. parahaemolyticus. and P. vulgaris) bacteria. CS/Ag/ZnO nanocomposite effectively inhibited the biofilm growth of Gram positive bacteria compared to Gram negative bacteria at 30 μg mL(-1). The hydrophobicity index and EPS (extracellular polysaccharide) production of both Gram positive and Gram negative bacteria was decreased after treatment with 30 μg mL(-1) of CS/Ag/ZnO nanocomposite. CS/Ag/ZnO nanocomposite showed effective control of fungal C. albicans biofilm (92%) at 50 μg mL(-1). The inhibition of bacterial and fungal biofilms was clearly visualized under light and confocal laser scanning microscopy (CLSM). CS/Ag/ZnO nanocomposite was observed to be non toxic to RAW264.7 murine macrophages and no changes in the morphology of macrophages was observed under phase contrast microscopy. The study concludes that CS/Ag/ZnO nanocomposite is the promising candidate to be used as biomaterial against bacterial and fungal infections without any toxicity risk.

  7. Influence of electro-co-deposition parameters on nano-TiO{sub 2} inclusion into nickel matrix and properties characterization of nanocomposite coatings obtained

    Energy Technology Data Exchange (ETDEWEB)

    Benea, Lidia, E-mail: Lidia.Benea@ugal.ro [Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Faculty of Materials and Environmental Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, RO-800008 Galati (Romania); Danaila, Eliza [Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Faculty of Materials and Environmental Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, RO-800008 Galati (Romania); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Celis, Jean-Pierre [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium)

    2014-07-29

    In this paper Ni/TiO{sub 2} nanocomposite coatings with various contents of TiO{sub 2} nanoparticles (diameter size of ∼10 nm) were successfully obtained by electrodeposition from a nickel electrolyte in which the titania nanoparticles were suspended. The surface morphology of nanocomposite coatings was characterized by a scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiO{sub 2} nanoparticles in the Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the nanocomposite coatings. The electrodeposited nanocomposite coatings obtained were evaluated for their thicknesses, roughness, nanohardness and wear behavior under reciprocating sliding conditions in a ball-on-disc configuration. The results show that the concentration of nano-TiO{sub 2} particles added in the electrolyte affects the inclusion percentage of titania into nanocomposite coatings, as well as the corresponding relative texture coefficients, the roughness and thickness indicating an increasing tendency with the increasing concentration of nano-TiO{sub 2} concentration in electrolyte. By increasing the amount of TiO{sub 2} nanoparticles in the electrolyte their incorporation into nickel matrix also increases as well as the nano hardness and the wear resistance of Ni/nano-TiO{sub 2} composite coatings.

  8. Research Course on Electrodeposited and Electroless Nanocomposite Coatings%纳米复合镀层的研究历程

    Institute of Scientific and Technical Information of China (English)

    郭崇武

    2012-01-01

    总结了纳米复合镀层的研究结果,纳米复合镀层具有硬度高、耐磨损和耐腐蚀的特性,一些纳米复合镀层还具有自润滑性、光催化活性、良好的电接触性及耐高温等性能.纳米复合镀层的基体材料主要是金属镍,还有铜和锌等.纳米粒子材料包括SiC、SiO2、CeO2、金刚石、碳纳米管、Al2O3 、Si3 N4 、TiO2、PTFE、MoS2、WS2、石墨、ZrO2 、La2O3、Cr、Ag及Si微粒等.目前,纳米复合镀层的制备技术还不成熟,需要进行更深入的研究.%The reviews on electrodeposited and electroless nanocomposite coatings were summarized. The nanocomposite coatings have the characteristics of high hardness, wear resistance and corrosion resistance, and some of which have the properties of self-lubrication, pholocatalysis, electrical contact and antioxida-tion. The based materials for preparing nanocomposite coatings are mostly nickel,zinc and copper,and the nanoparticles used are normally SiC, SiO2, CeO2, diamond, carbon nanotube, Al2 O3, Si3 N4, TiO2, PTFE, MoS2 ,WS2 .graphite,ZrO2 ,La2O3 ,Cr particulate,Ag paniculate,Si paniculate and so on. Al present, the preparation processes for nanocomposite coatings are still in developing,and need further investigation.

  9. The improvement of corrosion resistance of fluoropolymer coatings by SiO2/poly(styrene-co-butyl acrylate) nanocomposite particles

    Science.gov (United States)

    Chen, L.; Song, R. G.; Li, X. W.; Guo, Y. Q.; Wang, C.; Jiang, Y.

    2015-10-01

    The effects of nano-silica particles on the anticorrosion properties of fluoropolymer coatings on mild steel have been investigated in this paper. In order to enhance the dispersibility of nano-silica in fluoropolymer coatings, we treated the surface of nano-silica with poly(styrene-co-butyl acrylate) (P(St-BA)). The surface grafting of P(St-BA) on the nanoparticles were detected using Fourier transform infrared spectroscopy (FT-IR), thermo gravimetric analyzer (TGA), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The surface of nanocomposite coatings and the coating-substrates bond texture were detected by FE-SEM. We also used energy-dispersive X-ray spectroscopy (EDS) to analyze whether the nanocomposite particles were added into the fluoropolymer coatings. In addition, the influences of various nanoparticles on the corrosion resistance of fluoropolymer-coated steel were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results shown that nanocomposite particles can be dispersed better in fluoropolymer coatings, and the electrochemical results clearly shown the improvement of the protective properties of the nanocomposite coatings when 4 wt.% SiO2/P(St-BA) was added to the fluoropolymer coatings.

  10. Morphology and Transport Properties of Novel Polymer Nanocomposites Resulted from Melt Processing of Polyvinylacetate Substrates Coated with Layer-by-Layer Assemblies

    Science.gov (United States)

    Soltani, Iman; Spontak, Richard J.

    Novel polymer nanocomposites (PNCs) were processed through layer-by-layer (LBL) deposition of clay and polyethylene terephthalate ionomer layers on polyvinylacetate (PVAc) substrates, followed by repetitive melt pressing of coated samples to crush LBL assemblies into the polymeric matrix. The increase in the clay content in resulted PNCs prepared through similar LBL coatings, relative to previously studied hydrophobic polystyrene-based nanocomposites, postulated superiority of PVAc, with relatively higher hydrophilicity, to interact with LBL assemblies. Also, these PNCs showed relatively good barrier improvement against transport of oxygen and carbon dioxide gases, proposing the scavenging effect of LBL assemblies crushed portions as highly tortuous labyrinths with high aspect ratios, comprising edge-edge flocculated exfoliated clay platelets, observed through transmission electron micrographs. However, combinative morphological investigations through optical microscopy, x-ray diffractometry, and transmission electron microscopy proposed low global dispersion of clay throughout polymeric matrix, conjecturing insufficient intensity of stress applied through cyclic melt pressing, and/or slight thermal degradation of samples via extended times of processing at high temperatures.

  11. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Science.gov (United States)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  12. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Nosrati, Rahimeh, E-mail: ra.nosrati@gmail.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Olad, Ali, E-mail: a.olad@yahoo.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Nofouzi, Katayoon, E-mail: nofouzi@tabrizu.ac.ir [Faculty of Veterinary Medicine, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-08-15

    Graphical abstract: - Highlights: • A novel nanocomposite coating based on polyacrylic was prepared. • Nanostructured TiO{sub 2}/Ag-exchanged-zeolite-A composite material was prepared. • Prepared nanocomposite used as additive for modification of polyacrylic latex. • Modified coatings show self-cleaning and antibacterial properties. • Modified coatings show better stability in water in versus of unmodified polymer. - Abstract: The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV–visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO{sub 2}/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite additive with TiO{sub 2} to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  13. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Prabha, G., E-mail: gprabhagovinn@gmail.com; Raj, V., E-mail: alaguraj2@rediffmail.com

    2016-06-15

    In the present research work, the anticancer drug ‘curcumin’ is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe{sub 3}O{sub 4}) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183–390 nm with a zeta potential value of 26–41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix. - Highlights: • The considered drug carrier Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were prepared and entrapping (Curcumin). • The amount of the drug had great effect on the drug LC and EE and zeta potential Nanocomposites. • The Curcumin- loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanocomposites showed pH responsive drug release.

  14. Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights

    Science.gov (United States)

    Duan, Ke; Li, Li; Hu, Yujin; Wang, Xuelin

    2017-04-01

    The molecular bridging between carbon nanotube (CNT) within the meta matrix is hopeful for enhancing nanocomposite's mechanical performance. One of the main problems for nanocomposites is the inadequate bonding between nonstructural reinforcement and meta matrix. Ni-coating on CNT is an effective method to overcome the drawback of the inadequate strength, but the enhancing mechanism has not well interpreted yet. In this paper, the enhancing mechanism will be interpreted from the molecular-dynamics insights. The pullout process of CNT and Ni-coated CNT against copper matrix is investigated. The effects of geometric parameters, including CNT length and diameter, are taken into considerations and discussed. Results show that the interfacial strength is significantly improved after the Ni-coated CNT, which shows a good agreement with the experimental results available in the open literature. Besides, the sliding mechanism of Ni-coated CNTs against copper matrix is much more like a kind of friction sliding and directly related to the embedded zone. However, the pullout force of the CNT without Ni-coating is nearly proportional to its diameter, but independent of embedded length.

  15. Sustainable design and manufacturing of multifunctional polymer nanocomposite coatings: A multiscale systems approach

    Science.gov (United States)

    Xiao, Jie

    Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and

  16. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  17. TEM characterization of a Cr/Ti/TiC graded interlayer for magnetron-sputtered TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; Hosson, J.Th.M. De

    2005-01-01

    A TiC/a-C:H nanocomposite coating is deposited on top of a Cr/Ti/TiC graded interlayer. Cross-section transmission electron microscopy is employed to investigate the detailed structure of the interlayer and the coating. Five different phases are formed as a consequence of the compositional gradient

  18. TEM characterization of a Cr/Ti/TiC graded interlayer for magnetron-sputtered TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; Hosson, J.Th.M. De

    A TiC/a-C:H nanocomposite coating is deposited on top of a Cr/Ti/TiC graded interlayer. Cross-section transmission electron microscopy is employed to investigate the detailed structure of the interlayer and the coating. Five different phases are formed as a consequence of the compositional gradient

  19. TEM characterization of a Cr/Ti/TiC graded interlayer for magnetron-sputtered TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; Hosson, J.Th.M. De

    2005-01-01

    A TiC/a-C:H nanocomposite coating is deposited on top of a Cr/Ti/TiC graded interlayer. Cross-section transmission electron microscopy is employed to investigate the detailed structure of the interlayer and the coating. Five different phases are formed as a consequence of the compositional gradient

  20. Dependence of Microstructure and Hardness of Nanocomposite Coatings of nc-(Ti1-xAlxN)/a-Si3N4 on Aluminum Contents

    Institute of Scientific and Technical Information of China (English)

    MA Sheng-li; MA Da-yan; XU Ke-wei

    2004-01-01

    Super-hard nanocomposite coatings have been received a great attention during recent years. Based on our previous investigations onto the several super-hard nanocomposite coating systems including nc-TiN/a-Si3N4,nc-TiN/a-BN. This paper reports on the nc-(Ti1-xAlxN)/a-Si3N4 nanocomposite coatings prepared by direct current plasma enhanced chemical vapor deposition (PECVD). And the effect of aluminum contents on the microstructure and hardness of the coatings have been mainly investigated. The coatings were characterized by means of X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive analysis of X-rays (EDX), and the hardness measurements were done by means of the automated load-depth sensing technique using Vickers diamond indenter. The thermal stability of nanocomposite coatings of TiN/a-Si3N4 was evaluated by annealing at elevated temperatures up to 1000℃. The results shows that super hardness of nc-(Ti1-xAlxN)/a-Si3N4 could be obtained with a wide aluminum content from 10at.% to 86at.% in (Ti1-xAlx)N phase, while the silicon content can be kept at 4~5 at.%. These nanocomposite coatings shows a relatively better thermal stability of nanocrystallite size and therefore high hardness up to 1000℃, which further support our earlier concept for the design of super-hard nanocomposite coatings. These results are suggested mainly due to the formation of nanostructure, and this indicates that the aluminum has also the role of controlling the crystallite size within nc-(Ti1-xAlxN)/a-Si3N4 besides its known well property of the super anti-oxidation.

  1. Dependence of Microstructure and Hardness of Nanocomposite Coatings of nc-(Ti1-xAlxN)/a-Si3N4 on Aluminum Contents

    Institute of Scientific and Technical Information of China (English)

    MASheng-li; MADa-yan; XUKe-wei

    2004-01-01

    Super-hard nanocomposite coatings have been received a great attention during recent years. Based on our previous investigations onto the several super-hard nanocomposite coating systems including nc-TiN/a-Si3N4,nc-TiN/a-BN. This paper reports on the nc-(Ti1-xAlxN)/a-Si3N4 nanocomposite coatings prepared by direct current plasma enhanced chemical vapor deposition (PECVD). And the effect of aluminum contents on the microstructure and hardness of the coatings have been mainly investigated. The coatings were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive analysis of X-rays (EDX), and the hardness measurements were done by means of the automated load-depth sensing technique using Vickers diamond indenter. The thermal stability of nanocomposite coatings of TiN/a-Si3N4 was evaluated by annealing at elevated temperatures up to 1000~C. The results shows that super hardness of nc-(Til_xAlxN)/a-Si3N4 could be obtained with a wide aluminum content from 10at.% to 86at.% in (Til-xAlx)N phase, while the silicon content can be kept at 4-5 at.%. These nanocomposite coatings shows a relatively better thermal stability of nanocrystallite size and therefore high hardness up to 1000~C, which further support our earlier concept for the design of super-hard nanocomposite coatings. These results are suggested mainly due to the formation of nanostructure, and this indicates that the aluminum has also the role of controlling the crystallite size within nc-(Ti1-xAlxN)/a-Si3N4 besides its known well property of the super anti-oxidation.

  2. Influence of Ag contents on structure and tribological properties of TiSiN-Ag nanocomposite coatings on Ti-6Al-4V

    Science.gov (United States)

    Dang, Chaoqun; Li, Jinlong; Wang, Yue; Yang, Yitao; Wang, Yongxin; Chen, Jianmin

    2017-02-01

    TiSiN-Ag nanocomposite coatings with different Ag contents were deposited on Ti-6Al-4V using reactive co-sputtering in multi-arc ion plating system. Influence of Ag contents on structure and tribological properties of TiSiN-Ag nanocomposite coatings was investigated. The TiSiN-Ag coatings were found to have unique nanocomposite structures composed of nanocrystallite and amorphous nc-TiN/nc-Ag/a-Si3N4. When the silver content was 1.4 at.%, the coating exhibited high hardness (36 GPa), but poor wear resistance. When the silver content was increased from 5.3 to 8.7 at.%, the coatings possessed homogeneous distribution and small variation in hardness. Although these coatings revealed obvious decrease in hardness, significantly reduced in the friction coefficient and possessed excellent tribological properties, besides, the coating with the Ag content of 5.3 at.% showed best wear resistance in artificial seawater and the coating (7.9 at.% Ag) revealed the best wear resistance in ambient air. However, with a further increased incorporation of Ag into the TiSiN-Ag coating (17.0 at.%) resulted in the formation of a large volume fraction of metallic silver, which caused a decrease both in hardness and wear resistance. The coating containing highest Ag concentration (21.0 at.%) exhibited low friction coefficient both in ambient air and artificial seawater, although possessing low hardness.

  3. Biomimetic hierarchical growth and self-assembly of hydroxyapatite/titania nanocomposite coatings and their biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Nathanael, A. Joseph, E-mail: ajosephnc@yahoo.com [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan (Korea, Republic of); Im, Young Min [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan (Korea, Republic of); Oh, Tae Hwan, E-mail: taehwanoh@ynu.ac.kr [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan (Korea, Republic of); Yuvakkumar, R. [Department of Nanomaterials Engineering, Chungnam National University, Daejeon (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore (India)

    2015-03-30

    Graphical abstract: - Highlights: • Novel ‘bowtie’ like biomimetic HA/TiO{sub 2} nanocomposite coatings were prepared. • Simple sol–gel method was used to achieve this novel structure. • Details analysis confirms the formation of bowtie like structure in many ways. • Their functional analysis showed their enhanced activity for biomedical application. - Abstract: This article describes a systematic study of the biomimetic hierarchical growth of hydroxyapatite (HA)/titania (TiO{sub 2}) nanocomposite layered coatings applied by a simple sol–gel dip coating method. Highly stable HA and TiO{sub 2} sols were prepared prior to inducing biomimetic hierarchical growth. Initially, the samples formed a small leaf like structure; however, increasing the dipping cycle resulted in formation of an elongated seed-like structure. Increasing the number of dipping cycles further resulted in a ‘bowtie’ or straw-bale like nanowire structure with a length of 500 nm and a width of 100 nm. Each nanowire like structure had a width of very few nanometers. The crystalline structures, micro/nano structures and surface properties of the coatings were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy respectively. In vitro cellular assays revealed that the growth of the cells in the ‘bowtie’ like structure improved over other samples.

  4. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ziming; Sun Hongjing; Gao Faming, E-mail: fmgao@ysu.edu.cn; Hou Li; Li Na [Yanshan University, Key Laboratory of Applied Chemistry (China)

    2012-12-15

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe-Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe-Au process.

  5. Structural and microtribological studies of Ti-C-N based nanocomposite coatings prepared by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Martinez, D. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Avda, Americo Vespucio, s/n, Sevilla 41092 (Spain); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Avda, Americo Vespucio, s/n, Sevilla 41092 (Spain)]. E-mail: jcslopez@icmse.csic.es; Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Avda, Americo Vespucio, s/n, Sevilla 41092 (Spain); Fernandez, A. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Avda, Americo Vespucio, s/n, Sevilla 41092 (Spain); Eaton, P. [Instituto de Investigaciones Quimicas (CSIC-Univ. de Sevilla) (Spain); Belin, M. [Ecole Centrale de Lyon, LTDS (France)

    2005-01-24

    Ti-C-N thin films were synthesized at near room temperature by reactive magnetron sputtering of titanium and graphite targets in Ar or Ar/N{sub 2} mixtures. The microstructure and chemical composition of the coatings were studied by transmission electron microscopy, atomic force microscopy (AFM), electron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. For a pure Ar atmosphere, a microstructure constituted by small grains (10-20 nm) of a TiC phase encapsulated into an amorphous matrix is observed. AFM lateral force mapping shows a strong frictional contrast between the two phases. When nitrogen is introduced in the gas phase during preparation, the granular microstructure is not seen and the chemical composition is enriched in amorphous nonstoichiometric CN{sub x} phases (a-CN{sub x}) with different content of nitrogen (0.5{<=}x{<=}0.7). The type of structure and chemical bonding of the Ti-C-N films are correlated with the tribological properties at the microscopic level in order to establish the synthesis conditions leading to the nanocomposite formation.

  6. Synthesis of Oxide Nanoparticles in Hybrid Nanocomposite Coatings as Nanoreservoirs of Corrosion Inhibitors

    Science.gov (United States)

    Pirhady Tavandashti, Nahid; Sanjabi, Sohrab

    Nanostructured hybrid silica/epoxy films containing boehmite nanoparticles were investigated in the present work as pretreatments for AA2024 alloy. To produce the nanocomposite sol-gel films, boehmite nanoparticles prepared from hydrolysis/condensation of aluminum isopropoxide (AlI) were doped into another hybrid organosiloxane sol. The produced oxide nanoparticles have the capability to act as nanoreservoirs of corrosion inhibitors, releasing them controllably to protect the metallic substrate from corrosion. For this purpose the corrosion inhibitor, cerium nitrate, was introduced into the sol-gel system via loading the nanoparticles. The morphology and the structure of the hybrid sol-gel films were studied by Scanning Electron Microscopy (SEM). The corrosion protection properties of the films were investigated by Potentiodynamic Scanning (PDS) and Electrochemical Impedance Spectroscopy (EIS). The results show that the presence of boehmite nanoparticles highly improved the corrosion protection performance of the silica/epoxy coatings. Moreover, they can act as nanoreservoirs of corrosion inhibitors and provide prolonged release of cerium ions, offering a self-healing property to the film.

  7. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    Science.gov (United States)

    Prabha, G.; Raj, V.

    2016-06-01

    In the present research work, the anticancer drug 'curcumin' is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe3O4) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183-390 nm with a zeta potential value of 26-41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix.

  8. Electrochemical deposition of Ni–TiN nanocomposite coatings and the effect of sodium dodecyl sulphate surfactant on the coating properties

    Indian Academy of Sciences (India)

    NAFISE PARHIZKAR; ABOLGHASEM DOLATI; ROYA AGHABABAZADEH; ZAHRA LALEGANI

    2016-08-01

    Ni–TiN nanocomposite coatings were prepared by using electrochemical deposition in a Watt’s bath containing TiN particles to increase the hardness of Ni. The effects of deposition current density, electrolyte agitation speed and the number of particles in the solution on the amount of incorporated particles in the coating process were investigated. The optimum deposition current density of 4 A dm$^{−2}$ and agitation speed of 450 rpm were obtained. The effect of sodium dodecyl sulphate (SDS) anionic surfactant on the amount of particles in the coatings was investigated. It was observed that the maximum amount of incorporated particles, with a value of 7.5% by volume, was created in the current density of 4 A dm$^{−2}$, stirring rate of 450 rpm, 30 g l$^{−1}$ TiN particles and in the presence of 0.6 g l$^{−1}$ SDS anionic surfactant.

  9. SiO2-nanocomposite film coating of CAD/CAM composite resin blocks improves surface hardness and reduces susceptibility to bacterial adhesion.

    Science.gov (United States)

    Kamonwanon, Pranithida; Hirose, Nanako; Yamaguchi, Satoshi; Sasaki, Jun-Ichi; Kitagawa, Haruaki; Kitagawa, Ranna; Thaweboon, Sroisiri; Srikhirin, Toemsak; Imazato, Satoshi

    2017-01-31

    Composite resin blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications have recently become available. However, CAD/CAM composite resins have lower wear resistance and accumulate more plaque than CAD/CAM ceramic materials. We assessed the effects of SiO2-nanocomposite film coating of four types of CAD/CAM composite resin blocks: Cerasmart, Katana Avencia block, Lava Ultimate, and Block HC on surface hardness and bacterial attachment. All composite blocks with coating demonstrated significantly greater Vickers hardness, reduced surface roughness, and greater hydrophobicity than those without coating. Adhesion of Streptococcus mutans to the coated specimens was significantly less than those for the uncoated specimens. These reduced levels of bacterial adherence on the coated surface were still evident after treatment with saliva. Surface modification by SiO2-nanocomposite film coating has potential to improve wear resistance and susceptibility to plaque accumulation of CAD/CAM composite resin restorations.

  10. Polymer/metal nanocomposite coating with antimicrobial activity against hospital isolated pathogen

    Science.gov (United States)

    Carvalho, D.; Sousa, T.; Morais, P. V.; Piedade, A. P.

    2016-08-01

    Nosocomial infections are considered an important problem in healthcare systems and are responsible for a high percentage of morbidity. Among the pathogenic microorganisms responsible for this situation Pseudomonas aeruginosa (P. aeruginosa) is consider one of the most hazardous also due to the fact that antibiotic resistant and multi-resistant organisms begin to emerge as the prevalent strains. In this work the surface of poly(tetrafluoroethylene) (PTFE) was modified by the deposition of PTFE thin films with and without silver. The hydrophobic characteristics of PTFE were attenuated by the co-deposition of PTFE and poly(amide) (PA) with and without silver. The results show that this hospital isolated bacteria is able to degrade PTFE as bulk material as well as some of the developed thin films. However, the combination of both polymer and metal induced the formation of a nanocomposite structure with antimicrobial properties against P. aeruginosa, assessed in three different biotic tests.

  11. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications

    Science.gov (United States)

    Kádár, Roland; Abbasi, Mahdi; Figuli, Roxana; Rigdahl, Mikael; Wilhelm, Manfred

    2017-01-01

    The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate) (EBA) nanocomposite hybrids containing graphite nanoplatelets (GnP) and carbon black (CB). The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests. PMID:28336857

  12. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications.

    Science.gov (United States)

    Kádár, Roland; Abbasi, Mahdi; Figuli, Roxana; Rigdahl, Mikael; Wilhelm, Manfred

    2017-01-24

    The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate) (EBA) nanocomposite hybrids containing graphite nanoplatelets (GnP) and carbon black (CB). The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests.

  13. Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process

    Science.gov (United States)

    Kim, Tae Kyoung; Kang, Myeongsoon; Choi, Yeong Suk; Kim, Hae Kyung; Lee, Wonmok; Chang, Hyuk; Seung, Doyoung

    Nafion sulfonated clay nanocomposite membranes were successfully produced via a film coating process using a pilot coating machine. For producing the composite membranes, we optimized the solvent ratio of N-methyl-2-pyrrolidinone (NMP) to N, N‧-dimethylacetamide (DMAc), the amount of sulfonated montmorillonite (S-MMT) in composite membranes and the overall concentration of composite dispersions. Based on the optimized viscosity and composition, the composite dispersions were coated on a poly(ethylene terephthalate) (PET) substrate film. The distance between a metering roll and a PET film and the ratio of metering roll speed versus coating roll speed of the pilot coating machine were varied to control membrane thickness. The film coated composite membrane exhibited enhanced properties in the swelling behavior against MeOH solution, ion conductivity and MeOH permeability, compared to the cast Nafion composite membrane due to the higher dispersion state of S-MMT in Nafion matrix and the uniform distribution of small-size ion clusters. These properties influenced a cell performance test of a direct methanol fuel cell (DMFC), showing the film coated composite membrane had a higher power density than that of Nafion 115. The power density was also related with the higher selectivity of the composite membrane than Nafion 115.

  14. Multiwall Carbon Nanotube Coated with Conducting Polyaniline Nanocomposites for Quasi-Solid-State Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2013-01-01

    Full Text Available Multiwalled carbon nanotube (MWNT coated with conducting polyaniline (PAni nanocomposites has been enforced as for quasi-solid-state electrolyte layer in the dye-sensitized solar cells (DSSCs, and the incorporation of MWNT-PAni nanoparticles on the cell performance has been examined. The MWNT-PAni nanoparticles exploited as the extended electron transfer materials, which can reduce charge diffusion length and serve simultaneously as catalyst for the electrochemical reduction of I3-. An ionic liquid of 1-methyl-3-propyl-imidazolium iodide (PMII together with the hybrid MWNT-PAni nanocomposites was placed between the dye-sensitized porous TiO2 and the Pt counter electrode without adding iodine and achieved a moderately higher cell efficiency (3.15%, as compared to that containing bare PMII (0.26%.

  15. Influence of carbon chemical bonding on the tribological behavior of sputtered nanocomposite TiBC/a-C coatings

    Energy Technology Data Exchange (ETDEWEB)

    Abad, M.D. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, 41092-Sevilla (Spain); Sanchez-Lopez, J.C., E-mail: jcslopez@icmse.csic.e [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, 41092-Sevilla (Spain); Brizuela, M.; Garcia-Luis, A. [Fundacion Inasmet-Tecnalia, Mikeletegui Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Shtansky, D.V. [State Tecnological University ' Moscow Institute of Steel and Alloys' , Leninsky pr. 4, 119049-Moscow (Russian Federation)

    2010-07-30

    The tribological performance of nanocomposite coatings containing Ti-B-C phases and amorphous carbon (a-C) are studied. The coatings are deposited by a sputtering process from a sintered TiB{sub 2}:TiC target and graphite, using pulsed direct current and radio frequency sources. By varying the sputtering power ratio, the amorphous carbon content of the coatings can be tuned, as observed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The crystalline component consists of very disordered crystals with a mixture of TiB{sub 2}/TiC or TiB{sub x}C{sub y} phases. A slight increase in crystalline order is detected with the incorporation of carbon in the coatings that is attributed to the formation of a ternary TiB{sub x}C{sub y} phase. An estimation of the carbon present in the form of carbide (TiB{sub x}C{sub y} or TiC) and amorphous (a-C) is performed using fitting analysis of the C 1s XPS peak. The film hardness (22 to 31 GPa) correlates with the fraction of the TiB{sub x}C{sub y} phase that exists in the coatings. The tribological properties were measured by a pin-on-disk tribometer in ambient conditions, using 6 mm tungsten carbide balls at 1 N. The friction coefficients and the wear rates show similar behavior, exhibiting an optimum when the fraction of C atoms in the amorphous phase is near 50%. This composition enables significant improvement of the friction coefficients and wear rates ({mu} {approx} 0.1; k < 1 x 10{sup -6} mm{sup 3}/Nm), while maintaining a good value of hardness (24.6 GPa). Establishing the correlation between the lubricant properties and the fraction of a-C is very useful for purposes of tailoring the protective character of these nanocomposite coatings to engineering applications.

  16. Preparation, characterization, and biological properties of organic-inorganic nanocomposite coatings on titanium substrates prepared by sol-gel.

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2014-02-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay.

  17. Synthesis of Polyaniline-Coated Graphene Oxide@SrTiO3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-09-01

    Full Text Available The present investigation highlights the synthesis of polyaniline (PANI-coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB and the anionic dye methyl orange (MO. The presence of oxygenated functional groups comprised of hydroxyl and epoxy groups in graphene oxide (GO and nitrogen-containing functionalities such as imine groups and amine groups in polyaniline work synergistically to impart cationic and anionic nature to the synthesised nanocomposite, whereas SrTiO3 nanocubes act as spacers aiding in segregation of GO sheets, thereby increasing the effective surface area of nanocomposite. The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FTIR. The adsorption efficiencies of graphene oxide (GO, PANI homopolymer, and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt % SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO, respectively, in a very short duration of time.

  18. Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS

    Science.gov (United States)

    Ma, Quansheng; Li, Liuhe; Xu, Ye; Gu, Jiabin; Wang, Lei; Xu, Yi

    2017-01-01

    TiAlSiN nanocomposite coatings were deposited onto cemented carbide (WC-10 wt.%, Co) substrates by high power impulse magnetron sputtering (HiPIMS). The effect of substrate bias voltage on plasma discharge characterization of HiPIMS, element concentration, deposition rate, microstructure, surface/cross-sectional morphology, hardness and adhesion strength of coatings were studied. Compared with those deposited with direct current magnetic sputtering (DCMS), HiPIMS-deposited TiAlSiN coatings show improvements in some properties, including the surface roughness, the grain size, the hardness and adhesion strength, but a decrease in the deposition rate. When the bias voltage increases, the discharge current rose up from 118A to 165A. HiPIMS-deposited TiAlSiN coatings show a shift of the preferred crystallographic orientation from (220) to (200) and decreases in surface roughness from 14.1 nm down to 7.4 nm and grain size from 10.5 nm to 7.4 nm. Meanwhile, a change in crystal morphology from columnar to equiaxial and a grain refinement, as well as an increase of hardness from 30 GPa up to 42 GPa of those TiAlSiN coatings were observed with the increasing bias voltage and a decrease in adhesion strength from HF2 to HF5 of those coatings were revealed by indentation adhesion test.

  19. Preparation and characterization of carbon/nickel oxide nanocomposite coatings for solar absorber applications

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-04-01

    Full Text Available Nanocomposite materials have wide range of applications in solar energy conversion. In this work, C/NiO nanocomposite solar energy absorbing surfaces were prepared using sol-gel synthesis and deposited on aluminium substrates using a spin coater...

  20. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites

    Science.gov (United States)

    Ramoraswi, Nteseng O.; Ndungu, Patrick G.

    2015-10-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m2/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  1. Low-cost carbon-coated Si-Cu3Si-Al2O3 nanocomposite anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Kim, Sang-Ok; Manthiram, Arumugam

    2016-11-01

    Carbon-coated Si-Cu3Si-Al2O3 nanocomposites have been synthesized via a facile mechanochemical reaction and employed as anode materials for lithium-ion batteries. Combined X-ray and microscopic studies show that the nanocomposites are composed of agglomerated nanostructured particles with uniform distribution of crystalline silicon, Cu3Si, and amorphous Al2O3. Electrochemical characterization reveals that the in situ incorporation of both the conductive Cu3Si and electrochemically stable Al2O3 phases results in a dramatic improvement of cyclability and rate capability, while the specific capacity decreases with increasing amount of Cu3Si. By controlling the Cu3Si content, the composite with a high tap density of ∼1.2 g cm-3 delivers a high reversible capacity of 841 mA h g-1, excellent cyclability, and good rate performance up to 3.2 A g-1 in half cells. Full-cell test coupled with a commercial spinel cathode also displays a high average operating voltage of >3.5 V, a relatively good capacity retention of ∼77.2% after 50 cycles with a high initial efficiency of ∼86.3%. The enhanced electrochemical performance is mainly attributed to the presence of the conductive Cu3Si buffer phase that mitigates structural degradation and offers high conductivity.

  2. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    Science.gov (United States)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  3. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties

    Directory of Open Access Journals (Sweden)

    David Thompson

    2016-10-01

    Full Text Available This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.

  4. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes.

    Science.gov (United States)

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-12-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  5. THE SYNTHESIS OF Ag-POLYPYRROLE NANOCOMPOSITE COATED LATEX PARTICLES AND THEIR APPLICATION AS A FLUORESCENT QUENCHING AGENT

    Institute of Scientific and Technical Information of China (English)

    Jiang-ru Zhang; Teng Qiu; Hong-fu Yuan; Xiao-yu Li

    2013-01-01

    Submicron-sized Ag-polypyrrole/poly(styrene-co-methacrylic acid) (Ag-PPy/P(St-co-MAA)) composite particles were fabricated via a redox reaction between pyrrole and AgNO3 in the presence of P(St-co-MAA) soap-free latex.The products are characterized by transmission electron microscopy (TEM),electron diffraction spectra (EDS),Raman spectra,thermogravimetric analysis (TGA) and scanning electron microscopy (SEM).The results showed that Ag-PPy nanocomposites were in situ deposited onto the surface of P(St-co-MAA) latex particles tailored by carboxylic-acid groups.The nanocomposites of Ag-PPy distributed on the surface of polymer particles transformed from discretely dots to continuously coating as the reaction temperature increased from 15℃ to 60℃.Strawberry-like composite particles were obtained at the reaction temperature of 60℃.The TGA characterization confirmed that the Ag-PPy nanocomposites loading onto the P(St-co-MAA) particles were systematically controlled over a range of 6 wt%-42 wt% by changing the reaction temperatures.The fluorescence quenching effect of the Ag-PPy/P(St-co-MAA) composite particles was explored on Rhodamine B as a model molecule with the Stern-V(o)1mer quenching constant Ksv of 5.9 × 104 (g/mL)-1.It is suggested that the fluorescence quenching effect is caused by the resonance energy transfer mechanism.

  6. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-12-16

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  7. Polyolefin nanocomposites

    Science.gov (United States)

    Chaiko, David J.

    2007-01-02

    The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.

  8. Blocked-micropores, surface functionalized, bio-compatible and silica-coated iron oxide nanocomposites as advanced MRI contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Darbandi, Masih, E-mail: masih.darbandi@uni-due.de [Vanderbilt University, Department of Physics and Vanderbilt Institute of Nanoscale Science and Engineering (VINSE) (United States); Laurent, Sophie [University of Mons, Department of General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory (Belgium); Busch, Martin [University of Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Li Zian [University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Yuan Ying; Krueger, Michael [University of Freiburg, Department of Microsystems Engineering and Freiburg Materials Research Centre (Germany); Farle, Michael [University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Winterer, Markus [University of Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Vander Elst, Luce; Muller, Robert N. [University of Mons, Department of General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory (Belgium); Wende, Heiko [University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2013-05-15

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. In this article, a systematic study of the design and development of surface-modification schemes for silica-coated iron oxide nanoparticles (IONP) via a one-pot, in situ method at room temperature is presented. Silica-coated IONP were prepared in a water-in-oil microemulsion, and subsequently the surface was modified via addition of organosilane reagents to the microemulsion system. The structure and the morphology of the as synthesized nanoparticles have been investigated by means of transmission electron microscopy (TEM) and measurement of N{sub 2} adsorption-desorption. Electron diffraction and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the IONP structures. Nitrogen adsorption indicates microporous and blocked-microporous structures for the silica-coated and amine functionalized silica-coated IONP, respectively which could prove less cytotoxicity of the functionalized final product. Besides, the colloidal stability of the final product and the presence of the modified functional groups on top of surface layer have been proven by zeta-potential measurements. Owing to the benefit from the inner IONP core and the hydrophilic silica shell, the as-synthesized nanocomposites were exploited as an MRI contrast enhancement agent. Relaxometric results prove that the surface functionalized IONP have also signal enhancement properties. These surface functionalized nanocomposites are not only potential candidates for highly efficient contrast agents for MRI, but could also be used as ultrasensitive biological-magnetic labels, because they are in nanoscale size, having magnetic properties, blocked-microporous and are well dispersible in biological environment.

  9. Europium-phenolic network coated BaGdF5 nanocomposites for tri-modal computed tomography/magnetic resonance/luminescence imaging.

    Science.gov (United States)

    Zhu, Wei; Liang, Shuang; Wang, Jing; Yang, Zhe; Zhang, Li; Yuan, Tianmeng; Xu, Zushun; Xu, Haibo; Li, Penghui

    2017-05-01

    Multifunctional nanocomposites based on BaGdF5 nanoparticles (NPs) and metal phenolic network (MPN) have been engineered as novel contrast agents for potential applications in X-ray computed tomography, magnetic resonance and luminescence imaging. The BaGdF5@MPN nanocomposites were synthesized at room temperature by coating BaGdF5 NPs with europium-phenolic network, which was obtained by the coordination of europium (III) with tannic acid (TA). The in vitro cytotoxicity assays against HepG2 cells revealed that the BaGdF5@MPN nanocomposites presented better cytocompatibility and lower cytotoxity than pure BaGdF5 NPs. In addition, vivid red and green luminescence can be observed by confocal laser scanning microscope (CLSM) from the BaGdF5@MPN nanocomposites laden HepG2 cells under the excitation of UV (390 nm) and visible light (440 nm), respectively. The longitudinal relaxivity value (r1) of the nanocomposites was 2.457 mM(-1)s(-1). Moreover, the nanocomoposites exhibited X-ray computed tomography (CT) and T1-weighted magnetic resonance (MR) imaging capacities, and the intensities of the enhanced signals of in vitro CT and MR images were proportional to the concentrations of the nanocomposites. These results indicated that the as-prepared BaGdF5@MPN nanocomposites are promising contrast agents for CT/MR/luminescence imaging.

  10. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications

    Directory of Open Access Journals (Sweden)

    Roland Kádár

    2017-01-01

    Full Text Available The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate (EBA nanocomposite hybrids containing graphite nanoplatelets (GnP and carbon black (CB. The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests.

  11. Mesoporous carbon-zirconium oxide nanocomposite derived from carbonized metal organic framework: A coating for solid-phase microextraction.

    Science.gov (United States)

    Saraji, Mohammad; Mehrafza, Narges

    2016-08-19

    In this paper, a mesoporous carbon-ZrO2 nanocomposite was fabricated on a stainless steel wire for the first time and used as the solid-phase microextraction coating. The fiber was synthesized with the direct carbonization of a Zr-based metal organic framework. With the utilization of the metal organic framework as the precursor, no additional carbon source was used for the synthesis of the mesoporous carbon-ZrO2 nanocomposite coating. The fiber was applied for the determination of BTEX compounds (benzene, toluene, ethylbenzene and m, p-xylenes) in different water samples prior to gas chromatography-flame ionization detection. Such important experimental factors as synthesis time and temperature, salt concentration, equilibrium and extraction time, extraction temperature, desorption time and desorption temperature were studied and optimized. Good linearity in the concentration range of 0.2-200μgL(-1) and detection limits in the range of 0.05-0.56μgL(-1) was achieved for BTEX compounds. The intra- and inter-day relative standard deviations were in the range of 3.5-4.8% and 4.9-6.7%, respectively. The prepared fiber showed high capability for the analysis of BTEX compounds in different water and wastewater samples with good relative recoveries in the range of 93-107%.

  12. Supercritical CO2-Assisted Spray Drying of Strawberry-Like Gold-Coated Magnetite Nanocomposites in Chitosan Powders for Inhalation

    Directory of Open Access Journals (Sweden)

    Marta C. Silva

    2017-01-01

    Full Text Available Lung cancer is one of the leading causes of death worldwide. Therefore, it is of extreme importance to develop new systems that can deliver anticancer drugs into the site of action when initiating a treatment. Recently, the use of nanotechnology and particle engineering has enabled the development of new drug delivery platforms for pulmonary delivery. In this work, POXylated strawberry-like gold-coated magnetite nanocomposites and ibuprofen (IBP were encapsulated into a chitosan matrix using Supercritical Assisted Spray Drying (SASD. The dry powder formulations showed adequate morphology and aerodynamic performances (fine particle fraction 48%–55% and aerodynamic diameter of 2.6–2.8 µm for deep lung deposition through the pulmonary route. Moreover, the release kinetics of IBP was also investigated showing a faster release of the drug at pH 6.8, the pH of lung cancer. POXylated strawberry-like gold-coated magnetite nanocomposites proved to have suitable sizes for cellular internalization and their fluorescent capabilities enable their future use in in vitro cell based assays. As a proof-of-concept, the reported results show that these nano-in-micro formulations could be potential drug vehicles for pulmonary administration.

  13. Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique

    Directory of Open Access Journals (Sweden)

    Ebrahim Karamian

    2017-07-01

    Full Text Available Objecttive (s: Silicate bioceramics like Baghdadite with chemical formula Ca3ZrSi2O9, has attracted the attention of researchers in biomedical field due to its remarkable in-vitro and in-vivo bioactivity and mechanical properties.Materials and Methods: Therefore, in the current study the baghdadite powder with Sol-Gel method was synthesized. Then, hydroxyapatite/Baghdadite (HA/Bagh scaffolds were prepared by the replacing the polyurethane polymeric sponge technique. Afterwhile, the ceramic scaffolds were sintered at 1150ºC for 3 h. The prepared scaffold was then coated by polycaprolactone/bioglass (PCL/BG polymer nanocomposite. Results: Bioactivity and biomineralization in the simulated body fluid (SBF revealed that the nanocomposite scaffolds coate with PCL/BG had significant bioactivity properties. The morophology and microstructure investigation of soaked samples in SBF indicate that bone-like apatite formed on the surfaces. Also, ion release in SBF containing the scaffolds was measured by inductively coupled plasma (ICP analysis. The nucleation positions of apatite crystals were areas with high silicon containing, Si+4 ion positions.Conclusion: The study indicates that scaffold containing 30 wt. % baghdadite had proper bioactivity behaviordue to its ability to form bone-like apatite on the surface of specimens.

  14. Surface structuring and coating performance: novel biocidefree nanocomposite coatings with anti-fouling and fouling-release properties

    NARCIS (Netherlands)

    Wouters, M.E.L.; Rentrop, C.H.A.; Willemsen, P.R.

    2010-01-01

    State-of-the-art coatings consist of all kinds of ingredients amongst which (inorganic) filler particles are important additives. Knowledge of particle modification and chemistry of the coating formulation allows tailoring the coating properties and thus its performance and applicability. Recently n

  15. Fabrication and Characterization of Ni-SiC Nanocomposite Coatings on Al Substrates by Ball Impact Deposition Method

    Science.gov (United States)

    Yazdani, Arash; Zakeri, Alireza

    2017-06-01

    Micron-size Ni and SiC powder mixtures were used to prepare Ni-SiC nanocomposite coatings on an Al substrate by employing a high-energy ball milling technique. Ni:SiC weight ratio was varied over a wide range to explore the effect of the charge composition on the microstructure, composition, microhardness, and wear properties of the depositions. It was observed that the composition of the produced coating was correlated to the charge composition in a complex manner, which suggests that deposition rates for Ni and SiC particles significantly vary depending on the charge composition; SiC deposition rate was higher than that of Ni when Ni:SiC weight ratio was greater than 3:1. Diffusion of Al from the substrate into the Ni matrix provided evidence for the metallurgical bonding at the interface. Both microstructural and mechanical properties of the produced coatings were found to be crucially dependent on the charge composition. By increasing the SiC content in the charge from about 5 to 33 wt pct, the mechanical properties enhanced due to the dispersion strengthening effect of the incorporated SiC particles in the coatings and the crystallite size of the Ni matrix decreasing to the nanometer range. However, a further increase resulted in the formation of a coating with a poor degree of compaction. It was found that the composite coating with about 15 vol pct SiC, produced from the charge with Ni:SiC weight ratio of 2:1, showed a microhardness as high as 830 HV0.05 along with excellent wear resistance. Despite the current sample size limitations for applying high-energy ball milling, the present findings demonstrate that the adopted technique holds good prospect for the synthesis of nanostructured metal matrix composite coatings with enhanced and tunable properties.

  16. Fabrication and Characterization of Ni-SiC Nanocomposite Coatings on Al Substrates by Ball Impact Deposition Method

    Science.gov (United States)

    Yazdani, Arash; Zakeri, Alireza

    2017-09-01

    Micron-size Ni and SiC powder mixtures were used to prepare Ni-SiC nanocomposite coatings on an Al substrate by employing a high-energy ball milling technique. Ni:SiC weight ratio was varied over a wide range to explore the effect of the charge composition on the microstructure, composition, microhardness, and wear properties of the depositions. It was observed that the composition of the produced coating was correlated to the charge composition in a complex manner, which suggests that deposition rates for Ni and SiC particles significantly vary depending on the charge composition; SiC deposition rate was higher than that of Ni when Ni:SiC weight ratio was greater than 3:1. Diffusion of Al from the substrate into the Ni matrix provided evidence for the metallurgical bonding at the interface. Both microstructural and mechanical properties of the produced coatings were found to be crucially dependent on the charge composition. By increasing the SiC content in the charge from about 5 to 33 wt pct, the mechanical properties enhanced due to the dispersion strengthening effect of the incorporated SiC particles in the coatings and the crystallite size of the Ni matrix decreasing to the nanometer range. However, a further increase resulted in the formation of a coating with a poor degree of compaction. It was found that the composite coating with about 15 vol pct SiC, produced from the charge with Ni:SiC weight ratio of 2:1, showed a microhardness as high as 830 HV0.05 along with excellent wear resistance. Despite the current sample size limitations for applying high-energy ball milling, the present findings demonstrate that the adopted technique holds good prospect for the synthesis of nanostructured metal matrix composite coatings with enhanced and tunable properties.

  17. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 7114 Bucharest (Romania); Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Olaru, Mihaela, E-mail: olaruma@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed.

  18. Potentiodynamic studies of Ni-P-TiO2 nano-composited coating on the mild steel deposited by electroless plating method

    Science.gov (United States)

    Uttam, Vibha; Duchaniya, R. K.

    2016-05-01

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.

  19. Potentiodynamic studies of Ni-P-TiO{sub 2} nano-composited coating on the mild steel deposited by electroless plating method

    Energy Technology Data Exchange (ETDEWEB)

    Uttam, Vibha, E-mail: vibhauttam74@gmail.com; Duchaniya, R. K., E-mail: rkduchaniya.meta@mnit.ac.in [Department of Metallurgical and Materials Engineering, MNIT Jaipur (India)

    2016-05-06

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO{sub 2} on mild steel are deposited by varying volume of TiO{sub 2} nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO{sub 2} nano powder. Electroless Ni-P-TiO{sub 2} coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO{sub 2} nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy–dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coating.

  20. Comparative study of nanocomposites prepared by pulsed and dc sputtering combined with plasma polymerization suitable for photovoltaic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Amreen A. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Pal, Arup R., E-mail: arpal@iasst.gov.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Kar, Rajib [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India); Bailung, Heremba; Chutia, Joyanti [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Patil, Dinkar S. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2014-12-15

    Plasma processing, a single step method for production of large area composite films, is employed to deposit plasma polymerized aniline-Titanium dioxide (PPani-TiO{sub 2}) nanocomposite thin films. The deposition of PPani-TiO{sub 2} nanocomposite films are made using reactive magnetron sputtering and plasma polymerization combined process. This study focuses on the direct comparison between continuous and pulsed dc magnetron sputtering techniques of titanium in combination with rf plasma polymerization of aniline. The deposited PPani-TiO{sub 2} nanocomposite films are characterized and discussed in terms of structural, morphological and optical properties. A self powered hybrid photodetector has been developed by plasma based process. The proposed method provides a new route where the self-assembly of molecules, that is, the spontaneous association of atomic or molecular building blocks under plasma environment, emerge as a successful strategy to form well-defined structural and morphological units of nanometer dimensions. - Highlights: • PPani-TiO{sub 2} nanocomposite by pulsed and dc sputtering with rf plasma polymerization. • In-situ and Ex-situ H{sub 2}SO{sub 4} doping in PPani-TiO{sub 2} nanocomposite. • PPani-TiO{sub 2} nanocomposite based self-powered-hybrid photodetector.

  1. Optimization and mechanism elucidation of the catalyticphoto-degradation of the dyes Eosin Yellow (EY) and Naphthol blueblack (NBB) by a polyaniline-coated titanium dioxide nanocomposite

    CSIR Research Space (South Africa)

    Debnath, S

    2015-02-01

    Full Text Available : Environmental Volume 163, February 2015, Pages 330–342 Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite Sushanta...

  2. Effects of rare earth on microstructures and properties of Ni-W-P-CeO2-SiO2 nano-composite coatings

    Institute of Scientific and Technical Information of China (English)

    XU Ruidong; WANG Junli; GUO Zhongcheng; WANG Hua

    2008-01-01

    Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on common carbon steel surface by pulse electrodeposition of nickel, tungsten, phosphorus, rare earth (nano-CeO2) and silicon carbide (nano-SiO2) particles. The effects of nano-CeO2 concentrations in electrolyte on microstructures and properties of nano-composite coatings were studied. The samples were characterized with chemical compositions, elements distributions, microhardness and microstructures. The results indicated that when nano-CeO2 concentration was controlled at 10 g/L, the nano-composite coatings possessed higher microhardness and compact microstructures with clear outline of spherical matrix metal crystallites, fine crystallite sizes and uniform distribution of elements W, P, Ce and Si within the Ni-W-P matrix metal. Increasing the nano-CeO2 particles concentrations from 4 to 10 g/L led to refinement in grain structure and improvement of microstructures, while when increased to 14 g/L, the crystallite sizes began to increase again and there were a lot of small boss with nodulation shape appearing on the nano-composite coatings surface.

  3. Synthesis and Characterization of Chitosan-Coated Near-Infrared (NIR Layered Double Hydroxide-Indocyanine Green Nanocomposites for Potential Applications in Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Pei-Ru Wei

    2015-09-01

    Full Text Available We designed a study for photodynamic therapy (PDT using chitosan coated Mg–Al layered double hydroxide (LDH nanoparticles as the delivery system. A Food and Drug Administration (FDA approved near-infrared (NIR fluorescent dye, indocyanine green (ICG with photoactive properties was intercalated into amine modified LDH interlayers by ion-exchange. The efficient positively charged polymer (chitosan (CS coating was achieved by the cross linkage using surface amine groups modified on the LDH nanoparticle surface with glutaraldehyde as a spacer. The unique hybridization of organic-inorganic nanocomposites rendered more effective and successful photodynamic therapy due to the photosensitizer stabilization in the interlayer of LDH, which prevents the leaching and metabolization of the photosensitizer in the physiological conditions. The results indicated that the polymer coating and the number of polymer coats have a significant impact on the photo-toxicity of the nano-composites. The double layer chitosan coated LDH–NH2–ICG nanoparticles exhibited enhanced photo therapeutic effect compared with uncoated LDH–NH2–ICG and single layer chitosan-coated LDH–NH2–ICG due to the enhanced protection to photosensitizers against photo and thermal degradations. This new class of organic-inorganic hybrid nanocomposites can potentially serve as a platform for future non-invasive cancer diagnosis and therapy.

  4. How deposition parameters affect corrosion behavior of TiO2-Al2O3 nanocomposite coatings

    Science.gov (United States)

    Niazi, H.; Yari, S.; Golestani-Fard, F.; Shahmiri, M.; Wang, W.; Alfantazi, A.; Bayati, R.

    2015-10-01

    Titania-Alumina coatings were grown on titanium substrates by Eectrophoretic Enhanced Micro Arc Oxidation (EEMAO) technique in electrolytes containing various concentrations of alumina nanoparticles. The effect of concentration of alumina on surface morphology, phase composition, microhardness, and corrosion behavior was investigated at different voltages. It was found that the impact of alumina concentration on microstructure actually depends on the voltage and its effects gets more conspicuous at intermediate and high voltages. A finer morphology was obtained at higher concentrations of alumina at a constant voltage. The coatings mainly consisted of anatase and rutile. Tialite was observed at 450 V and 3 g l-1 alumina. The formation kinetics and thermodynamics of the tialite phase was studied. In all voltages, samples prepared in an alumina-rich electrolyte showed a higher surface hardness. The nanocomposite coatings exhibited an enhanced corrosion resistance compared to the titanium substrates where the effect of alumina concentration became more tangible when the voltage exceeded a critical value (350 V). At 450 V, the polarization resistance of the sample prepared in alumina-rich electrolytes was higher by 3 orders of magnitude compared to the coating prepared in the electrolyte containing 1 g l-1 alumina. A processing-microstructure-properties correlation is established.

  5. Preparation of antibacterial coating based on in situ synthesis of ZnO/SiO{sub 2} hybrid nanocomposite on cotton fabric

    Energy Technology Data Exchange (ETDEWEB)

    Barani, Hossein, E-mail: barani@birjand.ac.ir

    2014-11-30

    Graphical abstract: - Highlights: • In situ approach was used to synthesize ZnO/SiO{sub 2} nanocomposites. • Spherical structure and stabilized ZnO/SiO{sub 2} hybrid nanocomposites were synthesized. • The synthesized ZnO particles have a hexagonal wurtzite crystal structure. • The ZnO nanoparticles enhance the moisture content of cotton fabric. • ZnO/SiO{sub 2} loaded cotton fabrics presented a good antibacterial property. - Abstract: In this study, the antibacterial cotton fabric was prepared using zinc oxide/silicon dioxide (ZnO/SiO{sub 2}) nanocomposite. The ZnO nanoparticles were synthesized with an in situ approach using two different methods on the cotton fabric. One of the methods was to synthesize ZnO nanoparticles into the prepared sol solution, and then coating on the cotton fabric. The other method was to synthesize ZnO nanoparticles on the silicon dioxide-coated cotton fabric. The morphological, structural, thermal, and antibacterial properties of ZnO/SiO{sub 2} nanocomposite-coated cotton fabric was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffractometer, thermo gravimetric analysis, and Attenuated Total Reflection-Fourier Transform Infrared spectrometer. Synthesis of ZnO nanoparticles on the silicon dioxide coated cotton fabric sample resulted in agglomerated nanoparticles on the surface of cotton fiber, while the spherical nanoparticles structure was formed by synthesizing them into the sol solution of silicon dioxide. The EDS results indicated presence of ZnO/SiO{sub 2} nanocomposite on the surface of coated cotton fabric, and presented an inhibition zone against Staphylococcus aureus and Escherichia coli.

  6. Thick Low-Friction nc-MeC/a-C Nanocomposite Coatings on Ti-6Al-4V Alloy: Microstructure and Tribological Properties in Sliding Contact with a Ball

    Science.gov (United States)

    Zimowski, Sławomir; Moskalewicz, Tomasz; Wendler, Bogdan; Kot, Marcin; Czyrska-Filemonowicz, Aleksandra

    2014-08-01

    In this paper, we show that duplex surface treatment, combining oxygen diffusion hardening with the subsequent deposition of thick, low-friction nanocomposite nc-MeC/a-C coatings to improve the tribological properties of the Ti-6Al-4V alloy. We have synthesized, in a magnetron sputtering process, the nanocomposite nc-MeC/a-C coatings (where Me denotes W or Ti transition metal) consisting of two dissimilar materials (nanocrystallites of transition metal carbides MeC and an amorphous carbon matrix a-C). The nano and microstructure of the substrate material and coatings were examined with the use of scanning and transmission electron microscopy as well as by X-ray diffractometry. It was found that different carbide nanocrystals of the same transition metal were embedded in an amorphous carbon matrix of both coatings. The HRTEM analysis indicated that the volume fraction of tungsten carbides in the nc-WC/a-C coating was equal to 13 pct, whereas in the nc-TiC/a-C one the volume fraction of the titanium carbides was equal to just 3 pct. The tribological properties, hardness, and scratch resistance of the coatings were investigated as well. The coefficient of friction (COF) of the coatings during dry sliding against 6 mm diameter alumina ball reached very low value, 0.05, in comparison with an oxygen-hardened alloy, whose COF was equal to 0.8. This low-friction effect of the coatings has been attributed to the formation of a self-lubricating film in sliding contact. The coatings exhibited similar failure morphology in the scratch tests. Even though the hardness was rather low, the coatings exhibited a very good wear resistance during sliding friction. The wear rate of the nc-WC/a-C coating was equal to 0.08 × 10-6 mm3 N-1 m-1 and for the nc-TiC/a-C one it was 0.28 × 10-6 mm3 N-1 m-1.

  7. Silver-doped nanocomposite carbon coatings (Ag-DLC) for biomedical applications – Physiochemical and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bociaga, Dorota, E-mail: dorota.bociaga1@gmail.com [Division of Biomedical Engineering and Functional Materials, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); Komorowski, Piotr [Division of Biophysics, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); BioNanoPark Laboratories of Lodz Regional Park of Science and Technology, Lodz (Poland); Batory, Damian [Division of Biomedical Engineering and Functional Materials, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); Szymanski, Witold [Division of Biophysics, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); Olejnik, Anna; Jastrzebski, Krzysztof [Division of Biomedical Engineering and Functional Materials, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); Jakubowski, Witold [Division of Biophysics, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland)

    2015-11-15

    Graphical abstract: - Highlights: • The DLC coatings with interlayer improving adhesion were manufactured using the author's method in dual RF/MS PCVD system. • The Ag ions were incorporated into DLC matrix using ion beam implantation method. • The morphology, chemical structure and composition of coatings were examined. • Viability, cytotoxicity of human cells and the formation of bacterial biofilm on the samples surface were evaluated. • <5% of Ag in DLC coating is efficient to make it bactericidal and biocompatible. - Abstract: The formation of bacteria biofilm on the surface of medical products is a major clinical issue nowadays. Highly adaptive ability of bacteria to colonize the surface of biomaterials causes a lot of infections. This study evaluates samples of the AISI 316 LVM with special nanocomposite silver-doped (by means of ion implantation) diamond-like carbon (DLC) coating prepared by hybrid RF/MS PACVD (radio frequency/magnetron sputtering plasma assisted chemical vapour deposition) deposition technique in order to improve the physicochemical and biological properties of biomaterials and add new features such as antibacterial properties. The aim of the following work was to evaluate antimicrobial efficacy and biocompatibility of gradient a-C:H/Ti + Ag coatings in relation to the physiochemical properties of the surface and chemical composition of coating. For this purpose, samples were tested in live/dead test using two cell strains: human endothelial cells (Ea.hy926) and osteoblasts-like cells (Saos-2). For testing bactericidal activity of the coatings, an exponential growth phase of Escherichia coli strain DH5α was used as a model microorganism. Surface condition and its physicochemical properties were investigated using SEM, AFM and XPS. Examined coatings showed a uniformity of silver ions distribution in the amorphous DLC matrix, good biocompatibility in contact with mammalian cells and an increased level of bactericidal

  8. Influence of pulse electrodeposition parameters on microhardness, grain size and surface morphology of Ni–Co/SiO$_2$ nanocomposite coating

    Indian Academy of Sciences (India)

    SIAVASH IMANIAN GHAZANLOU; ALI SHOKUHFAR; SHIVA NAVAZANI; REZVAN YAVARI

    2016-09-01

    Ni–Co/SiO$_2$ nanocomposite coatings and Ni–Co alloy coatings were prepared on steel substrate using direct and pulse electrodeposition methods. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-raymap and energy dispersive X-ray spectroscopy (EDX) were employed to investigate the phase structure, surface morphology, and elemental analysis of coatings, respectively. In high discharge rates, the surface morphology was rough, disordered and gross globular; on the contrary, in the low rates, it was smoother, more ordered and fine globular. Also, effect of electrodeposition parameters such as average current density, pulse frequency and duty cycle on the microhardness and grain size of nanocomposite coatings that produced through the pulse current electrodeposition method have been investigated. By amplifying both duty cycles up to 50% and average currentdensity from 2 to 6 A dm$^{−2}$, microhardness increased, while the grain size decreased. But when duty cycle mounted on more than 50% and the average current density went up to 8 A dm$^{−2}$, microhardness lessened, while the grain size rose. The optimum value for pulse frequency was about 25 Hz. Results showed that microhardness of nanocomposite coatings which were produced by pulse current method was higher than that of produced by direct currentmethod.

  9. Influence of SiC nanoparticles and saccharin on the structure and properties of electrodeposited Ni-Fe/SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ataee-Esfahani, Hamed [Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of)] [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of); Vaezi, M.R., E-mail: vaezi9016@yahoo.co [Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Nikzad, Leila; Yazdani, Bahare [Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Sadrnezhaad, S.K. [Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of)] [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2009-09-18

    In this study, Ni-Fe/SiC nanocomposite coatings with smooth and crack-free surface were successfully prepared by means of the conventional electrodeposition in the presence of saccharin in electrolyte. The goal of this work was to investigate the effect of SiC nanoparticles and saccharin on the structure and properties of permalloy nanocomposite coatings. The nanocomposite coatings were characterized using optical and scanning electron microscopy, energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) technique. The significant variation in the crystallographic texture of the coatings was observed due to the addition of SiC nanoparticles and saccharin in the electrodeposition bath. Increasing the amount of saccharin in the electrolyte led to a change in the texture from a (2 0 0) fiber texture to mixed (3 1 1) and (2 0 0) textures. Our results indicated that inclusion of SiC nanoparticles suppressed the preferred growth direction of the Ni-Fe matrix, resulting in a decrease in the sharpness of the (2 0 0) fiber texture and formation of a more random texture. The presence of SiC nanoparticles in the metallic matrix also led to the production of composite films with better corrosion resistance and higher microhardness than the Ni-Fe coating.

  10. Facile approach in fabricating superhydrophobic SiO{sub 2}/polymer nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hengzhen [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Zhang Xia, E-mail: zhangxia0307@yahoo.com.cn [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Zhang Pingyu; Zhang Zhijun [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Fluorine-free superhydrophobic SiO{sub 2}/polymer composite coatings are fabricated by a simple spin-coating method without any surface chemical modification. Black-Right-Pointing-Pointer The SiO{sub 2}/polymer coatings show long-term stability in the condition of continuous contact with corrosive water. Black-Right-Pointing-Pointer The coating can be fabricated on various metal substrates to prevent metal from corrosion. - Abstract: We have developed a facile spin-coating method to prepare water-repellent SiO{sub 2}/polymer composite coating without any surface chemical modification. The wettability can be adjusted by controlling the content of SiO{sub 2} nanoparticles. The coating demonstrates sustainable superhydrophobicity in the condition of continuous contact with corrosive liquids. Importantly, the coating can be fabricated on various metal substrates to prevent metal from corrosion.

  11. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  12. Plasma Sprayed Dense MgO-Y2O3 Nanocomposite Coatings Using Sol-Gel Combustion Synthesized Powder

    Science.gov (United States)

    Wang, Jiwen; Jordan, Eric H.; Gell, Maurice

    2010-09-01

    MgO-Y2O3 nanostructured composite powder (volume ratio of 50:50) was synthesized by a sol-gel combustion process which generated crystal sizes in the 10-20 nm range. The MgO-Y2O3 nanopowder was plasma sprayed using a conventional, DC arc plasma spray system. X-ray diffraction analysis shows that the as-sprayed MgO-Y2O3 coating is composed of cubic MgO and Y2O3 phases and has ~95% density. Microstructure characterization by SEM reveals that the as-sprayed coating has fine grain sizes of 100-300 nm as a result of rapid solidification. The hardness of the coating, 7.5 ± 0.6 GPa, is higher than that of coarse-grained, dense MgO, and Y2O3 ceramics. This approach demonstrates the potential of plasma spray processes for making thick, dense MgO-Y2O3 nanocomposite performs for applications as durable, infrared windows.

  13. Densification and mechanical properties of mullite–SiC nanocomposites synthesized through sol–gel coated precursors

    Indian Academy of Sciences (India)

    K G K Warrier; G M Anil Kumar; S Ananthakumar

    2001-04-01

    Mullite–SiC nanocomposites are synthesized by introducing surface modified sol–gel mullite coated SiC particles in the matrix and densification and associated microstructural features of such precursor are reported. Nanosize SiC (average size 180 nm) surface was first provided with a mullite precursor coating which was characterized by the X-ray analysis and TEM. An average coating thickness of 120 nm was obtained on the SiC particles. The green compacts obtained by cold isostatic pressing were sintered in the range 1500–1700°C under pressureless sintering in the N2 atmosphere. The percentage of the theoretical sintered density decreases with increase in SiC content. A maximum sintered density of 97% was achieved for mullite–5 vol.% SiC. The fractograph of the sintered composite showed a highly dense, fine grained microstructure with the SiC particles uniformly distributed along the grains as well as at the grain boundaries inside the mullite. The Vicker’s microhardness of mullite–5 vol.% SiC composite was measured as 1320 kg/mm2 under an applied indentation load of 500 . This value gradually decreased with an increase in SiC content.

  14. Self-cleaning properties of TiO2/palygorskite and TiO2/halloysite nanocomposite coatings

    Science.gov (United States)

    Panagiotaras, Dionisios; Kaplani, Eleni; Stathatos, Elias; Papoulis, Dimitrios

    2014-10-01

    Tubular halloysite and microfibrous palygorskite clay mineral combined with nanocrystalline TiO2 are involved in the preparation of nanocomposite films on glass substrates via sol-gel route at 450°C. The synthesis employing nonionic surfactant molecule as pore directing agent along with the acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite and halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite/TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye's decoloration in spite of small amount of palygorskite/TiO2 or halloysite/TiO2 catalyst immobilized onto glass substrates.

  15. Polypyrrole-coated halloysite nanotube clay nanocomposite: synthesis, characterization and Cr(VI) adsorption behaviour

    CSIR Research Space (South Africa)

    Ballav, N

    2014-12-01

    Full Text Available in nature. XPS study confirmed the adsorption of Cr(VI) onto the NC where some part of Cr(VI) reduced to Cr(III) by electron-rich PPy moiety. The desorption study suggested that the nanocomposite (NC) can be reused three times without loss of its original...

  16. Comparison of in situ and ex situ reduced graphene oxide reinforced electroless nickel phosphorus nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Sadhir, M. Hasan; Saranya, M.; Aravind, M. [Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025 (India); Srinivasan, A. [Departments of Chemistry, College of Engineering Guindy, Anna University, Chennai 600025 (India); Siddharthan, A., E-mail: sidharth@annauniv.edu [Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025 (India); Department of Mechanical Engineering, CEG Campus, Anna University, Chennai 600025 (India); Rajendran, N. [Departments of Chemistry, College of Engineering Guindy, Anna University, Chennai 600025 (India)

    2014-11-30

    Highlights: • First kind of electroless nickel phosphorous (EN) reduced graphene oxide (rGO) coatings. • Change in preferential orientation of grain growth of heat treated in situ EN-rGO coating. • Better corrosion resistance of in situ EN-rGO coating. • 2 stages of reduction of Graphene (GE) to GO, during - coating and heat treatment. • Soft nature of GO for similar to polymer from low hardness of EN-GO coating. - Abstract: Electroless nickel-phosphorus (EN)–reduced graphene oxide (rGO) composite coating was carried out to compare the ex situ route of reinforcement of reduced GO in EN coating (EN-rGO) and in situ route of reinforced of rGO in EN coating (EN-GO). The coatings were characterized using X-ray diffraction (XRD) and attenuated total reflectance infrared spectroscopy (ATR-IR) for phase determination and to show the presence of reinforcement of rGO in the coatings respectively. ATR-IR spectra indicated that GO was chemically reduced in situ while deposition of EN-GO composite and thermal reduction during its heat treatment. XRD pattern of heat treated EN-GO coating show the change in preferred orientation of nickel deposit. Upon heat treatment, the hardness of EN and EN-GO and EN-rGO deposits increased while the corrosion resistance decreased except for EN-GO coating. The hardness of EN-rGO and EN-GO coating is approximately half the value of EN deposit. The electrochemical polarization studies indicated that EN-GO deposit was corrosive resistant than EN-rGO and EN deposit.

  17. Synthesis and electrochemical performance of hierarchical nanocomposite of carbon coated LiCoPO{sub 4} crosslinked by graphene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Houyong [School of Chemistry and Materials Science, Harbin Engineering University, Harbin 150080 (China); Chen, Meng, E-mail: chenmeng@hrbeu.edu.cn [School of Chemistry and Materials Science, Harbin Engineering University, Harbin 150080 (China); Du, Chunyu, E-mail: cydu@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Cui, Yingzhi; Zuo, Pengjian; Cheng, Xinqun; Yin, Geping [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-01

    We report the design and synthesis of a novel hierarchical LiCoPO{sub 4}@C/G cathode material, consisting of carbon coated LiCoPO{sub 4} nanoparticles crosslinked by wrinkled graphene, for high-energy-density lithium ion batteries. This material is facilely prepared by a solid-state milling process followed by heat annealing. Its morphology and structure are characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction. It is revealed that the LiCoPO{sub 4} nanoparticles are coated by an amorphous carbon layer with ∼3 nm thickness and further crosslinked by wrinkled graphene. The LiCoPO{sub 4}@C/G material delivers a high discharge capacity of 146.1 mAh g{sup −1} at 0.1 C rate and 93.0 mAh g{sup −1} at 2 C rate. The enhanced electrochemical properties are attributed to the nanosized LiCoPO{sub 4} particles and the high electronic conductivity resulted from the synergistic carbon coating and graphene crosslinking. Our work provides a facile approach to prepare high performance LiCoPO{sub 4} cathode materials for lithium ion batteries. - Highlights: • Hierarchical LiCoPO{sub 4}@C/G nanocomposite is prepared by a facile solid state method. • The LiCoPO{sub 4}@C/G material shows excellent discharge capacity and rate capability. • Synergy of graphene and carbon coating enhances the electrochemical properties. • LiCoPO{sub 4}@C/G is a promising cathode for high-energy-density Li-ion batteries.

  18. Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity.

    Science.gov (United States)

    Fischer, Marion; Vahdatzadeh, Maryam; Konradi, Rupert; Friedrichs, Jens; Maitz, Manfred F; Freudenberg, Uwe; Werner, Carsten

    2015-07-01

    While silver-loaded catheters are widely used to prevent early-onset catheter-related infections [1], long term antimicrobial protection of indwelling catheters remains to be achieved [2] and antiseptic functionalization of coatings often impairs their hemocompatibility characteristics. Therefore, this work aimed to capitalize on the antimicrobial properties of silver nanoparticles, incorporated in anticoagulant poly(ethylene glycol) (PEG)-heparin hydrogel coatings [3] on thermoplastic polyurethane materials. For prolonged antimicrobial activity, the silver-containing starPEG-heparin hydrogel layers were shielded with silver-free hydrogel layers of otherwise similar composition. The resulting multi-layered gel coatings showed long term antiseptic efficacy against Escherichia coli and Staphylococcus epidermidis strains in vitro, and similarly performed well when incubated with freshly drawn human whole blood with respect to hemolysis, platelet activation and plasmatic coagulation. The introduced hydrogel multilayer system thus offers a promising combination of hemocompatibility and long-term antiseptic capacity to meet an important clinical need.

  19. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel.

    Science.gov (United States)

    Arukalam, Innocent O; Oguzie, Emeka E; Li, Ying

    2016-12-15

    Perfluorodecyltrichlorosilane-based poly(dimethylsiloxane)-ZnO (FDTS-based PDMS-ZnO) nanocomposite coating with anti-corrosion and anti-fouling capabilities has been prepared using a one-step fabrication technique. XPS analysis and contact angle measurements showed the fluorine content to increase, while the hydrophobicity of the coatings decreased with addition of FDTS. XRD analysis revealed existence of ZnO nanoparticles of dimensions ranging from 11.45 to 93.01nm on the surface of coatings, with the mean particle size decreasing with FDTS addition, and was confirmed by SEM and TEM observations. Interestingly, the anti-corrosion performance and mechanical properties of the coatings increased remarkably on addition of FDTS. Indeed, the observed low adhesion strength, surface energies and the outstanding anti-corrosive properties imply that the obtained coating would be useful in anti-fouling applications.

  20. Sand-wear resistance of brush electroplated nanocomposite coating in oil and its application to remanufacturing

    Institute of Scientific and Technical Information of China (English)

    DONG Shi-yun; XU Bin-shi; DU Ling-zhong; YANG Hua

    2005-01-01

    Sand-wear resistance of nano scale alumina particle reinforced nickel matrix composite coating (n-Al2O3/ Ni) prepared by brush electroplating technique was investigated via wear tests in sand-contaminated oil lubricant,comparing with that of AISI1045 steel and brush electroplated Ni coating. Effects of testing load, sand content and sand size on worn volume of the three materials, and also coating surface roughness on worn volume of the brush electroplated coatings were accessed. Results show that the worn volume of all the three materials increases with increasing of testing load, sand content and sand size. In the same conditions, n-Al2 O3/Ni composite coating has the smallest worn volume while AISI1045 steel has the largest because of the n-Al2 O3 particle effects. As to n-Al2 O3/Ni and Ni coatings, the surface-polished coatings have obviously lower worn volume than the as-plated coatings. The brush electroplated n-Als O3/Ni composite coating was employed to remanufacture the sand-worn bearing seats of a heavy vehicle and good results were gained.

  1. Development of Anticorrosive Polymer Nanocomposite Coating for Corrosion Protection in Marine Environment

    Science.gov (United States)

    Mardare, L.; Benea, L.

    2017-06-01

    The marine environment is considered to be a highly aggressive environment for metal materials. Steels are the most common materials being used for shipbuilding. Corrosion is a major cause of structural deterioration in marine and offshore structures. Corrosion of carbon steel in marine environment becomes serious due to the highly corrosive nature of seawater with high salinity and microorganism. To protect metallic materials particularly steel against corrosion occurrence various organic and inorganic coatings are used. The most used are the polymeric protective coatings. The nanostructured TiO2 polymer coating is able to offer higher protection to steel against corrosion, and performed relatively better than other polymer coatings.

  2. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    Science.gov (United States)

    Manninen, N. K.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S.

    2016-07-01

    Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  3. Characterization of surface Ag nanoparticles in nanocomposite a-C:Ag coatings by grazing incidence X-ray diffraction at sub-critical angles of incidence

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, N.K.; Oliveira, J.C.; Cavaleiro, A. [University of Coimbra, SEG-CEMUC, Mechanical Engineering Department, Coimbra (Portugal); Carvalho, S. [University of Minho, GRF-CFUM, Physics Department, Guimaraes (Portugal)

    2016-03-15

    Silver diffusion within nanocomposite films and/or toward the film surface is often observed during annealing of the silver-based nanocomposite films. In order to control and/or minimize this process, it is crucial to characterize the aggregated silver nanoparticles on the films surface. In this paper grazing incidence X-ray diffraction (GIXRD) with both sub-critical and supra-critical angles of incidence is used to characterize the Ag nanoparticles distribution, shape and structure both inside the matrix and on the nanocomposite film surface. The nanocomposite carbon coating containing Ag nanoparticles (a-C:Ag) was deposited by dc magnetron sputtering. The coatings were analyzed by GIXRD using fixed incident angles both below and above the critical angle for total reflection. By using sub-critical angles it was possible to eliminate diffraction from the bulk material allowing to estimate the size distribution of the nanoparticles sitting on the surface. The results obtained by GIXRD analysis were checked through comparison with the observations made by both TEM and SEM analysis. The proposed methodology can be used to characterized nanoparticles deposition on a surface and/or island formation during film growth as long an adequate substrate with high critical angle for total reflection is used. (orig.)

  4. A polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries

    Science.gov (United States)

    Ye, Fei; Zhao, Bote; Ran, Ran; Shao, Zongping

    2015-09-01

    Although intensive efforts have been made during the past decades, development of an anode material with high specific capacity and stable cycling performance for lithium-ion batteries (LIBs) using a cost-effective preparation method still remains challenging. Herein, we report a polyaniline (PANI)-coated mechanochemically synthesized SnO2/graphene (SG) nanocomposite via in situ polymerization. PANI-coated nanocomposites are successfully prepared with different raw material mass ratios (aniline:SG, 0.15:1, 0.2:1, 0.25:1). The nanocomposite with initial aniline:SG mass ratio of 0.2:1 (20%PANI-SG) contains an optimal structure housing genuine PANI nanofibers as conductive bridges and a relatively high surface area of 158.5 m2 g-1; furthermore, it exhibits a stable cycling performance over 100 cycles at high current density (1000 mA g-1) with a specific capacity of more than twice that of the starting SG electrode at the 100th cycle. Additionally, this material achieved an outstanding cycling rate with current densities changing stepwise from 100 to 3000 mA g-1 and back, and exhibited a specific capacity of 467 mA h g-1 even at 2000 mA g-1. In terms of the electrochemical stability, rate capability and cost-effective preparation process, the PANI-SG nanocomposite is a viable anode material for next-generation high-power and high-energy LIBs.

  5. Probing the role of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) -coated multiwalled carbon nanotubes in the thermal and mechanical properties of polycarbonate nanocomposites

    KAUST Repository

    Zhou, Jian

    2014-03-05

    The role played by multiwalled carbon nanotubes (MWCNTs) coated with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) in the thermal and mechanical properties of polycarbonate (PC) nanocomposites was analyzed. We used differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) to demonstrate that the glass transition temperature of polycarbonate nanocomposites decreased whereas the storage modulus of the samples increased by including PEDOT/PSS-coated MWCNTs. These results indicated that PEDOT/PSS acts as an antiplasticizer. We attributed the enhancement of the storage modulus to the strong hydrogen bonding between PSS and the PC matrix and the reduction of the free volume in the PC matrix due to the shrinkage of PEDOT/PSS upon heating. We also investigated changes in the thermal conductivity and thermal degradation behavior of the nanocomposites. The results indicated that PEDOT/PSS did not play a significant role in improving the thermal conductivity and thermal stability of PC nanocomposites. The relative improvements in the conductivity and thermal stability of the samples that contained PEDOT/PSS were attributed to the better dispersion of the MWCNTs in the PC matrix. © 2014 American Chemical Society.

  6. Sliding friction of nanocomposite WC1-x/C coatings: transfer film and its influence on tribology.

    Science.gov (United States)

    Liu, Y; Gubisch, M; Spiess, L; Schaefer, J A

    2009-06-01

    The transfer film on steel spheres formed in reciprocating sliding against nanocomposite coatings based on nanocrystalline WC1-x in amorphous carbon matrix is characterized and correlated with the tribological properties measured by a precision microtribometer. With the presence of transfer film, a coefficient of friction approximately 0.13 and a depth wear rate approximately 0.35 x 10(-10) m/N.Pass were obtained. The central zone of the transfer film covering approximately 25% of the Hertz contact area is intact while cracks and wear debris are found in the vast peripheral area. It is also heavily oxidized due to the absence of carbon, which is located at the peripherals and acts as lubricants. We propose that the oxidation of WC and adhesion of the oxides to the surface of sphere is the main mechanism for the buildup of the transfer films. With the thickening of the film, the internal stress increases. Under the shear stress, spalling and cracking of the transfer film take place. The overall tribological performance of the coatings is therefore a competing process of buildup and spalling of transfer films.

  7. Microstructure, mechanical properties, and oxidation resistance of nanocomposite Ti Si N coatings

    Science.gov (United States)

    Zhang, C. H.; Lu, X. C.; Wang, H.; Luo, J. B.; Shen, Y. G.; Li, K. Y.

    2006-07-01

    Ti-Si-N coatings with different silicon contents (0-12 at.%) were deposited onto Si(1 0 0) wafer, AISI M42 high speed steel, and stainless steel plate, respectively. These coatings were characterized and analyzed by using a variety of analytical techniques, such as XRD, AES, SEM, XPS, nanoindentation measurements, Rockwell C-type indentation tester, and scratch tester. The results revealed that the hardness was strongly correlated to the amount of silicon addition into a growing TiN film. The maximum hardness of 47.1 GPa was achieved as the Si content was 8.6 at.%. In the mechanical and oxidation resistance measurements, the Ti-Si-N coatings showed three distinct behaviors. (i) The coatings with Si contents of no more than 8.6 at.% performed good adhesion strength quality onto the HSS substrates. (ii) The fracture toughness of the coatings decreased with the increase in Si content. (iii) The Ti-Si-N coating with 8.6 at.% Si showed the excellent oxidation resistance behavior. The cutting performance under using coolant conditions was also evaluated by a conventional drilling machine. The drills with Ti-Si-N coatings performed much better than the drills with TiN coating and the uncoated drills.

  8. Effect of the size of silica nanoparticles on wettability and surface chemistry of sol–gel superhydrophobic and oleophobic nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V., E-mail: lakshmi_rv@nal.res.in; Bera, Parthasarathi; Anandan, C.; Basu, Bharathibai J.

    2014-11-30

    Highlights: • Superhydrophobic coatings from Cab-O-Sil EH5 and M5 particles in MTEOS sol. • Particle size of Cab-O-Sil influenced its optimum concentration in coating. • FAS-13 modification improved the oleophobicity of the coating. • Coating surface exhibited porous structure with nanovoids and microscale bumps. • Coatings with Cab-O-Sil EH5 retained water repelling property for a long time. - Abstract: Superhydrophobic sol–gel nanocomposite coatings have been fabricated by incorporating silica nanoparticles with different particle sizes separately in an acid-catalyzed sol of methyltriethoxysilane (MTEOS). Water contact angle (WCA) of the coatings increased with increase in the concentration of silica nanoparticles in both the cases. The coatings became superhydrophobic at an optimum silica concentration. The water repellency was further improved by the addition of fluoroalkylsilane (FAS). The optimum silica concentration was found to depend on the size of silica nanoparticles and FAS content and the coatings exhibited WCA of about 160° and water sliding angle (WSA) of <2°. FAS addition also improved the oleophobicity of the coatings. The coatings exhibited oil-repellency with a lubricant oil contact angle of 126° and ethylene glycol contact angle of 153.3°. Surface morphology of the coatings analyzed using field emission scanning electron microscopy (FESEM) showed a rough surface with microscale bumps and nanoscale pores. XPS was used to study the surface composition of the coatings. The superhydrophobic property of the coatings was due to the synergistic effect of surface chemistry and surface microstructure and can be explained using Cassie-Baxter model.

  9. Unique visible-light-assisted field emission of tetrapod-shaped ZnO/reduced graphene-oxide core/coating nanocomposites

    Science.gov (United States)

    Wu, Chaoxing; Kim, Tae Whan; Guo, Tailiang; Li, Fushan

    2016-12-01

    The electronic and the optoelectronic properties of graphene-based nanocomposites are controllable, making them promising for applications in diverse electronic devices. In this work, tetrapod-shaped zinc oxide (T-ZnO)/reduced graphene oxide (rGO) core/coating nanocomposites were synthesized by using a hydrothermal-assisted self-assemble method, and their optical, photoelectric, and field-emission properties were investigated. The ZnO, an ideal ultraviolet-light-sensitive semiconductor, was observed to have high sensitivity to visible light due to the rGO coating, and the mechanism of that sensitivity was investigated. We demonstrated for the first time that the field-emission properties of the T-ZnO/rGO core/coating nanocomposites could be dramatically enhanced under visible light by decreasing the turn-on field from 1.54 to 1.41 V/μm and by increasing the current density from 5 to 12 mA/cm2 at an electric field of 3.5 V/μm. The visible-light excitation induces an electron jump from oxygen vacancies on the surface of ZnO to the rGO layer, resulting in a decrease in the work function of the rGO and an increase in the emission current. Furthermore, a field-emission light-emitting diode with a self-enhanced effect was fabricated making full use of the photo-assisted field-emission process.

  10. Ag surface diffusion and out-of-bulk segregation in CrN-Ag nano-composite coatings.

    Science.gov (United States)

    Incerti, L; Rota, A; Ballestrazzi, A; Gualtieri, E; Valeri, S

    2011-10-01

    CrN-Ag nanocomposite coatings are deposited on Si(100) wafers and 20MnCr5 steel disks in a mixed Ar+N2 atmosphere by reactive magnetron sputtering. Structure, composition and morphology were investigated by Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), X-ray Photoemission Spectroscopy (XPS), X-ray Diffraction (XRD) and Focused Ion Beam (FIB) cross sectional analysis. The as deposited film matrix is mainly composed by CrN phase (78%), but a relevant part (28%) is composed by Cr2N. Ag agglomerates in the CrN matrix forming elongated grains 200-400 nm wide and 50-100 nm high, which extends on the top of CrN columns. At the surface Ag aggregates into two different structures: large tetrahedral crystalline clusters, with typical dimension ranging from 200 to 500 nm, and smaller Ag nanoparticles with diameter of 15-25 nm. The annealing in N2 atmosphere up to 500 degrees C does not affect size and distribution of the Ag grains in the sub-surface region, while it induces a size increase of the bigger Ag clusters on the surface, mainly related to Ag surface diffusion and clusters coalescence. Annealing at higher temperature leads to an evident Ag out-of-bulk segregation, generating Ag depleted voids in the near-surface region, and further increasing of the Ag clusters size at the surface. Tribological tests on as deposited CrN-Ag film reveal a coefficient of friction against a steel ball reduced with respect to CrN film, probably related to the presence of Ag which acts as solid lubricant, but the coating is removed after a very short sliding distance. The poor mechanical properties of the realized Ag-based coatings are confirmed by lower hardness and Young modulus values with respect to pure CrN.

  11. Effect of the size of silica nanoparticles on wettability and surface chemistry of sol-gel superhydrophobic and oleophobic nanocomposite coatings

    Science.gov (United States)

    Lakshmi, R. V.; Bera, Parthasarathi; Anandan, C.; Basu, Bharathibai J.

    2014-11-01

    Superhydrophobic sol-gel nanocomposite coatings have been fabricated by incorporating silica nanoparticles with different particle sizes separately in an acid-catalyzed sol of methyltriethoxysilane (MTEOS). Water contact angle (WCA) of the coatings increased with increase in the concentration of silica nanoparticles in both the cases. The coatings became superhydrophobic at an optimum silica concentration. The water repellency was further improved by the addition of fluoroalkylsilane (FAS). The optimum silica concentration was found to depend on the size of silica nanoparticles and FAS content and the coatings exhibited WCA of about 160° and water sliding angle (WSA) of oleophobicity of the coatings. The coatings exhibited oil-repellency with a lubricant oil contact angle of 126° and ethylene glycol contact angle of 153.3°. Surface morphology of the coatings analyzed using field emission scanning electron microscopy (FESEM) showed a rough surface with microscale bumps and nanoscale pores. XPS was used to study the surface composition of the coatings. The superhydrophobic property of the coatings was due to the synergistic effect of surface chemistry and surface microstructure and can be explained using Cassie-Baxter model.

  12. Tribological Characteristics of Single-phase AlMgB14 and Nanocomposite AlMgB14-TiB2 Superhard Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Zhu, Dong [Eaton Corporation; Cook, Bruce A [Ames Laboratory; Elmoursi, Alaa A [Eaton Corporation

    2008-01-01

    This study investigated the friction and wear characteristics of AlMgB14 and AlMgB14-TiB2 superhard coatings, produced by pulse laser deposition (PLD) and physical vapor deposition (PVD), respectively. Tests were conducted under unidirectional and reciprocating sliding against AISI 52100 bearing steel in both dry and oil-lubricated conditions. The AlMgB14 coating exhibited an encouraging but short-lived low friction stage (u = 0.2) in dry sliding. The AlMgB14-TiB2 coating reduced the wear rates by one order of magnitude for itself and three orders of magnitude for the counterface compared with the uncoated M2 tool steel in dry sliding. This nanocomposite coating also demonstrated significant extension (>2.5X) of the low friction (non-scuffing) stage in a lubricant starvation sliding.

  13. Synergistic effects of zirconia-coated carbon nanotube on crystalline structure of polyvinylidene fluoride nanocomposites: electrical properties and flame-retardant behavior.

    Science.gov (United States)

    Pal, Kaushik; Kang, Dong Jin; Zhang, Zhen Xiu; Kim, Jin Kuk

    2010-03-02

    Pristine multiwalled carbon nanotubes (MWNTs) and zirconia-coated multiwalled carbon nanotubes (ZrO(2)/MWNTs) by isothermal hydrolysis and the traditional chemical precipitation method have been dispersed into polyvinylidene fluoride (PVDF) copolymer by solution mixing in N,N-dimethylformamide (DMF). The effect of ZrO(2)-coated MWNTs on morphological properties, electrical properties, and flame-retardant behavior has been studied in comparison with virgin PVDF and PVDF/MWNTs nanocomposites. Due to the improved dispersion of the coated nanotubes, the incorporation of 3 wt % of ZrO(2)-coated MWNTs leads to an increase of the thermal stability and dielectric properties and a decrease of the peak heat-release rate.

  14. UV-Curable Hybrid Nanocomposite Coating to Protect Tether Polymer Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for coatings to protect and strengthen tether materials for Momentum-exchange Electrodynamic Reboost (MXER) technology, Luminit, LLC,...

  15. Preparation of ultraviolet-cured nanocomposite coatings for protecting against corrosion of metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Malucelli, G.; Di Gianni, A. [Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, c. so Duca degli Abruzzi 24, 10129 Torino (Italy); Deflorian, F. [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento, Via Mesiano 77, 38050 Trento (Italy)], E-mail: defloria@ing.unitn.it; Fedel, M. [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento, Via Mesiano 77, 38050 Trento (Italy); Bongiovanni, R. [Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, c. so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2009-08-15

    A cycloaliphatic di-epoxy monomer was used to prepare ultraviolet-cured coatings, in the presence of montmorillonites, either commercially available, or modified on purpose (Cloisite Na{sup +}, Cloisite 30B), dispersed at two different concentrations (5% and 10% w/w). The corrosion resistance of the ultraviolet-cured films coated on a metal substrate was investigated with electrochemical techniques and compared to the behaviour of the neat ultraviolet-cured epoxy resin films. The coatings showed different stability as revealed by the measurements of the barrier properties depending on the type of nanoclay used. Changing the modifier employed the coatings exhibited intercalated or exfoliated morphologies, as assessed by electron microscopy analysis and confirmed by X-ray diffraction results; the prevention of corrosion was proved dependent on the morphology.

  16. Polydopamine-Coated Manganese Complex/Graphene Nanocomposite for Enhanced Electrocatalytic Activity Towards Oxygen Reduction

    National Research Council Canada - National Science Library

    Parnell, Charlette M; Chhetri, Bijay; Brandt, Andrew; Watanabe, Fumiya; Nima, Zeid A; Mudalige, Thilak K; Biris, Alexandru S; Ghosh, Anindya

    2016-01-01

    .... However, this material is not economical due to its high cost and scarcity. We prepared an Mn(III) catalyst supported on graphene and further coated with polydopamine, resulting in superior ORR activity compared to the uncoated PDA structures...

  17. Fabrication Of Al 2024/SiC Nanocomposite with Al and Cu Pure Coatings

    Directory of Open Access Journals (Sweden)

    P. Melali

    2015-06-01

    Full Text Available Composites find an important place as new advanced materials in last decades; those especially produced with nanoparticles reinforcements, attracts researchers and a number of researches were executed on this topic. In this study, Al-base 2024 alloy composites reinforced with SiC nanoparticles were fabricated and the effects of two different coating materials were investigated. Coatings were pure Al and Cu powder with constant grain particle size. The results show that the Al coating has impacts on grain size and the interface layer between reinforcement and matrix. The mechanism of formation of interface layer between SiC nanoparticles and the Al-base 2024 matrix with reinforced with Cu coated SiC particles is quite different.

  18. Obtention of polyester-montmorillonite (MMT) nanocomposites applied to powder coating - part 1: nanocomposites characterization;Obtencao de nanocompositos de poliester-montmorilonita (MMT) aplicados em tinta em po - parte 1: caracterizacao dos nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, Diego; Zattera, Ademir J., E-mail: piazza@nol.com.b [Universidade de Caxias do Sul (UCS), RS (Brazil). Lab. de Polimeros; Silveira, Debora S.; Lorandi, Natalia P.; Birriel, Eliena J.; Scienza, Lisete C., E-mail: ajzattera@terra.com.b [Universidade de Caxias do Sul (UCS), RS (Brazil). Lab. de Corrosao

    2009-07-01

    The development and obtention of polymeric nanocomposites in the nanotechnology and nanoscience field have attracted great attention due to diversity of potential applications and significant property improvement when compared to conventional composites. In this work, commercial formulations of polyester-based powder coating with 0, 2 and 4% (w/w) of montmorillonite (MMT) were obtained by incorporation in the melting state and characterized by TEM, SEM, DSC, TGA and XRD. The nanocoatings were applied on the mild carbon steel panels by electrostatic paint. The microscopy analysis showed MMT in the coating film, predominantly in the exfoliated form, corroborated by XRD results. Some tactoid structures and a surface film with some defects and porous were also revealed. Progressive reduction of crosslinking temperature and thermal stability was observed in thermal analysis. The best clay dispersion in the coating and a higher quality film were achieved at 2% MMT concentration. (author)

  19. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant.

    Science.gov (United States)

    Abdal-Hay, Abdalla; Hasan, Anwarul; Kim, Yu-Kyoung; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek

    2016-01-01

    This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants.

  20. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, N.K., E-mail: nora.sousa@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Calderon, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Carvalho, I. [GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Henriques, M. [CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Carvalho, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal)

    2016-07-30

    Highlights: • Amorphous carbon (a-C), Ag/a-C and Ag coatings were deposited by magnetron sputtering. • a-C/Ag coating shows antibacterial activity against S. epidermidis. • The formation of nano-galvanic couples in a-C/Ag enhances the Ag{sup +} ionization rate. • The Ag{sup +} ionization occurs along with Ag nanoparticles agglomeration in 0.9% NaCl. - Abstract: Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag{sup +} due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  1. Effects of Si content on microstructure and mechanical properties of TiAlN/Si3N4-Cu nanocomposite coatings

    Science.gov (United States)

    Feng, Changjie; Hu, Shuilian; Jiang, Yuanfei; Wu, Namei; Li, Mingsheng; Xin, Li; Zhu, Shenglong; Wang, Fuhui

    2014-11-01

    TiAlN/Si3N4-Cu nanocomposite coatings of various Si content (0-5.09 at.%) were deposited on AISI-304 stainless steel by DC reactive magnetron sputtering technique. The chemical composition, microstructure, mechanical and tribological properties of these coatings were systematically investigated by means of X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), nanoindentation tester, a home-made indentation system, a scratch tester and a wear tester. Results indicated that with increasing Si content in these coatings, a reduction of grain size and surface roughness, a transformation of the (1 1 1) preferred orientation was detected by XRD and FESEM. Furthermore the hardness of these coatings increase from 9.672 GPa to 18.628 GPa, and the elastic modulus reveal the rising trend that increase from 224.654 GPa to 251.933 GPa. However, the elastic modulus of TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content dropped rapidly and changed to about 180.775 GPa. The H3/E2 ratio is proportional to the film resistance to plastic deformation. The H3/E2 ratio of the TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content possess of the maximum of 0.11 GPa, and the indentation test indicate that few and fine cracks were observed from its indentation morphologies. The growth pattern of cracks is mainly bending growing. The present results show that the best toughness is obtained for TiAlN/Si3N4-Cu nanocomposite coating containing 3.39 at.% Si content. In addition, the TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content also has good adhesion property and superior wear resistance, and the wear mechanism is mainly adhesion wear.

  2. Process and properties of electroless Ni-Cu-P-ZrO{sub 2} nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ranganatha, S. [Department of Studies in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta 577451, Shimoga, Karnataka (India); Venkatesha, T.V., E-mail: drtvvenkatesha@yahoo.co.uk [Department of Studies in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta 577451, Shimoga, Karnataka (India); Vathsala, K. [Nanotribology Laboratory, Mechanical engineering department, Indian Institute of Science, Bangalore (India)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The Ni-P and Ni-P-Cu-ZrO{sub 2} coatings were produced by electroless technique. Black-Right-Pointing-Pointer The influence of copper and ZrO{sub 2} nanoparticles on Ni-P was studied. Black-Right-Pointing-Pointer Surface morphology, structure and electrochemical behavior were evaluated. Black-Right-Pointing-Pointer The Ni-Cu-P-ZrO{sub 2} and Ni-P-ZrO{sub 2} coatings are more resistant to corrosion than Ni-P. Black-Right-Pointing-Pointer Introduction of Cu and ZrO{sub 2} in the matrix aids to the enhancement of microhardness. -- Abstract: Electroless Ni-Cu-P-ZrO{sub 2} composite coating was successfully obtained on low carbon steel matrix by electroless plating technique. Coatings with different compositions were obtained by varying copper as ternary metal and nano sized zirconium oxide particles so as to obtain elevated corrosion resistant Ni-P coating. Microstructure, crystal structure and composition of deposits were analyzed by SEM, EDX and XRD techniques. The corrosion behavior of the deposits was studied by anodic polarization, Tafel plots and electrochemical impedance spectroscopy (EIS) in 3.5% sodium chloride solution. The ZrO{sub 2} incorporated Ni-P coating showed higher corrosion resistance than plain Ni-P. The introduction of copper metal into Ni-P-ZrO{sub 2} enhanced the protection ability against corrosion. The influence of copper metal and nanoparticles on microhardness of coatings was evaluated.

  3. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    Science.gov (United States)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  4. Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy.

    Science.gov (United States)

    Liu, Dongfei; Zhang, Hongbo; Mäkilä, Ermei; Fan, Jin; Herranz-Blanco, Bárbara; Wang, Chang-Fang; Rosa, Ricardo; Ribeiro, António J; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-01-01

    An advanced nanocomposite consisting of an encapsulated porous silicon (PSi) nanoparticle and an acid-degradable acetalated dextran (AcDX) matrix (nano-in-nano), was efficiently fabricated by a one-step microfluidic self-assembly approach. The obtained nano-in-nano PSi@AcDX composites showed improved surface smoothness, homogeneous size distribution, and considerably enhanced cytocompatibility. Furthermore, multiple drugs with different physicochemical properties have been simultaneously loaded into the nanocomposites with a ratiometric control. The release kinetics of all the payloads was predominantly controlled by the decomposition rate of the outer AcDX matrix. To facilitate the intracellular drug delivery, a nona-arginine cell-penetrating peptide (CPP) was chemically conjugated onto the surface of the nanocomposites by oxime click chemistry. Taking advantage of the significantly improved cell uptake, the proliferation of two breast cancer cell lines was markedly inhibited by the CPP-functionalized multidrug-loaded nanocomposites. Overall, this nano-in-nano PSi@polymer composite prepared by the microfluidic self-assembly approach is a universal platform for nanoparticles encapsulation and precisely controlled combination chemotherapy.

  5. Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal-chemotherapy.

    Science.gov (United States)

    Zhang, Nan; Xu, Xuefan; Zhang, Xue; Qu, Ding; Xue, Lingjing; Mo, Ran; Zhang, Can

    2016-01-30

    Development of combination photothermal-chemotherapy platform is of great interest for enhancing antitumor efficacy and inhibiting tumor recurrence, which supports selective and dose-controlled delivery of heat and anticancer drugs to tumor. Here, an injectable nanocomposite hydrogel incorporating PEGylated gold nanorods (GNRs) and paclitaxel-loaded chitosan polymeric micelles (PTX-M) is developed in pursuit of improved local tumor control. After intratumoral injection, both GNRs and PTX-M can be simultaneously delivered and immobilized in the tumor tissue by the thermo-sensitive hydrogel matrix. Exposure to the laser irradiation induces the GNR-mediated photothermal damage confined to the tumor with sparing the surrounding normal tissue. Synergistically, the co-delivered PTX-M shows prolonged tumor retention with the sustained release of anticancer drug to efficiently kill the residual tumor cells that evade the photothermal ablation due to the heterogeneous heating in the tumor region. This combination photothermal-chemotherapy presents superior effects on suppressing the tumor recurrence and prolonging the survival in the Heps-bearing mice, compared to the photothermal therapy alone.

  6. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites.

  7. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn-SiC nanocomposite coatings

    Science.gov (United States)

    Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M.

    2014-05-01

    Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect.

  8. Strong and Stable Nanocomposites Prepared by High-Pressure Torsion of Cu-Coated Fe Powders

    Directory of Open Access Journals (Sweden)

    Timo Müller

    2016-09-01

    Full Text Available Segregation and chemical inhomogeneity are well-known problems in powder metallurgy and are also an issue for new applications of powder mixtures, for example as starting materials for severe plastic deformation. In this study, Cu-coated Fe powder was prepared via immersion deposition, inductively hot-pressed and subsequently deformed using high-pressure torsion. The homogeneity of the pressed material was found to be much better than that of powder mixtures that were prepared for comparison. During severe plastic deformation, higher hardness was observed for the coated powder as compared to powder mixtures even after low strains. In the saturation state, the coated powder was found to result in a hardness of about 600 HV, which is significantly harder than for the powder mixtures. This is attributed to the greater amount of impurities introduced by the coating process. It is shown that coated powders are promising starting materials for severe plastic deformation in order to reduce the amount of strain necessary to reach the saturation state and to obtain high strength and more homogeneous mechanical alloying.

  9. Development of a Stable TiO2 Nanocomposite Self-Cleaning Coating for Outdoor Applications

    Directory of Open Access Journals (Sweden)

    F. Madidi

    2016-01-01

    Full Text Available A convenient and low-cost approach for the elaboration of a stable superhydrophobic coating is reported, involving the use of TiO2 nanoparticles via the spray coating method. This method can be used for preparing self-cleaning superhydrophobic coatings on large areas for different kinds of substrates. The synergistic effect of the micro/nanobinary scale roughness was produced by a multilayer RTV SR/TiO2 composite. The influence of the nanofiller concentration in a specific frequency range (40 Hz to 2 MHz on the dielectric behavior was analyzed as well. It was found that the real relative permittivity (εr′ increases as the nanofiller concentration increases. Superhydrophobic behavior is analyzed by contact angle measurements, scanning electron microscopy (SEM, and profilometer. The stability of the developed coating also has been evaluated in terms of immersion in various aqueous solutions, heating, adhesion, and exposure to UV irradiation, and the results showed good stability against these factors. The coating retained its superhydrophobicity after several days of immersion in solutions of different pH levels (2, 4, 6, and 12 and different conductivities. In addition, they also exhibited exceptional stability against UV radiation and heating, as well as good mechanical stability.

  10. A combined experimental and theoretical approach to establish the relationship between shear force and clay platelet delamination in melt-processed polypropylene nanocomposites

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2014-04-01

    Full Text Available In this article, a combined experimental and theoretical approach has been proposed to establish a relationship between the required shear force and the degree of delamination of clay tactoids during the melt-processing of polymer nanocomposites...

  11. Facile approach in fabricating superhydrophobic ZnO/polystyrene nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Qing, Yongquan [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China); Zheng, Yansheng, E-mail: zhyansh88@163.com [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China); Lushan College of Guangxi University of Science and Technology, Liuzhou 545616, Guangxi (China); Hu, Chuanbo; Wang, Yong; He, Yi [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China); Gong, Yong [College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan (China); Mo, Qian [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China)

    2013-11-15

    In this paper, we report a simple and inexpensive method for fabricating modified-ZnO/polystyrene superhydrophobic surface on the cotton textiles. The surface wettability and topology of coating were characterized by contact angle measurement, Scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic -CH{sub 3} and -CF{sub 2}- group was introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to polystyrene was 7:3, the ZnO/polystyrene composite coating contact angle was 158°, coating surface with hierarchical micro/nano structures. Furthermore, the superhydrophobic cotton texiles have a very extensive application prospect in water–oil separation.

  12. Hard nanocomposite Zr-Y-N coatings, correlation between hardness and structure

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.; Polakova, H. [Univ. of West Bohemia, Plzen (Czech Republic). Dept. of Phys.

    2000-05-01

    The article reports on structure and mechanical properties of Zr-Y-N nanocomposite films containing two immiscible elements (Zr,Y) as metals. Films were prepared by d.c.-reactive magnetron sputtering of alloyed targets ZrY (80/20 at.%) and ZrY (93/7 at.%) in a mixture of Ar+N{sub 2} using round planar unbalanced magnetrons of diameter 100 mm. It was shown that: (i) there is a strong correlation between the structure of the film and its hardness, H; (ii) the film structure can be controlled with the interlayer inserted between the substrate and the Zr-Y-N film; and (iii) the film hardness depends on the ratio N/(Zr+Y) in the film and the crystallographic orientation of ZrN grains. Superhard nanocomposite films with hardness greater than 40 GPa were prepared. These films are characterized by (i) the X-ray reflection from ZrN(200) grains and no reflection from the second phase containing Y; and (ii) the ratio N/(Zr+Y){approx}1. Also, it was found that the incorporation of nitrogen into the pure ZrY alloy film results in dramatic changes of its mechanical properties. The Zr-Y-N film can be very hard (up to 47 GPa), exhibits the high elastic recovery (W{sub e} up to 83%) and the high resistance to plastic deformation [H{sup 3}/E*{sup 2} up to approx. 0.75, where E*=E/(1-{nu}{sup 2}), E is the Young's modulus and {nu} is the Poisson's ratio]. On the contrary, the ZrY alloy film is soft (H{approx}6 GPa) and exhibits a low elastic recovery (W{sub e}=32%). (orig.)

  13. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA

    Energy Technology Data Exchange (ETDEWEB)

    Slamborova, Irena [Centre for Nanomaterials, Advanced Technologies and Innovations, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic); Zajicova, Veronika, E-mail: veronika.zajicova@tul.cz [Centre for Nanomaterials, Advanced Technologies and Innovations, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic); Karpiskova, Jana [Institute of Novel Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 2, 461 17 Liberec 1 (Czech Republic); Exnar, Petr; Stibor, Ivan [Centre for Nanomaterials, Advanced Technologies and Innovations, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic)

    2013-01-01

    Epidemics spread many types of pathogenic bacterial strains, especially strains of MRSA (Methicillin-resistant Staphylococcus aureus), which are being increasingly reported in many geographical areas [1]. This is becoming to be a serious global problem, particularly in hospitals. Not only are antibiotics proving to be increasingly ineffective but also the bacteria responsible for more than 70% of hospital-acquired bacterial infections are resistant to at least one of the drugs commonly used to treat them. In this study, hybrid coating A1 and nanocomposite hybrid coating A2 based on TMSPM (3-(trimethoxysilyl)propyl methacrylate, MMA (methyl methacrylate), TEOS (tetraethyl orthosilicate) and IPTI (titanium isopropoxide) containing silver and copper ions with or without nanoparticles of titanium dioxide were prepared by the sol-gel method. They were deposited on glass, poly(methyl methacrylate) and cotton using dip-coating or spin-coating, and then cured at 150 Degree-Sign C for 3 h or, in the case of poly(methyl methacrylate), at 100 Degree-Sign C for 4.5 h. The morphology and microstructure of these hybrid coatings were examined by SEM. The abrasion resistance was tested using a washability tester and found to depend heavily on the curing temperature. Seven types of bacterial strains were used to determine the profile of antibacterial activity, namely Escherichia coli, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus - MRSA (CCM 4223), MRSA-2 (CCM 7112), Acinetobacter baumanii, Pseudomonas aeruginosa, and Proteus vulgaris (according to ALE-G18, CSNI). All the samples were tested by irradiating with either a UV-A or a daylight fluorescent lamp. All types of hybrid coating A1 and nanocomposite hybrid coating A2 were found to possess an excellent antibacterial effect, including against the pathogenic bacterial strains of MRSA, which present a dangerous threat on a global scale.

  14. Development of Castor Oil Based Poly(urethane-esteramide/TiO2 Nanocomposites as Anticorrosive and Antimicrobial Coatings

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2015-01-01

    Full Text Available Castor oil based polyesteramide (CPEA resin has been successfully synthesized by the condensation polymerization of N-N-bis (2-hydroxyethyl castor oil fatty amide (HECA with terephthalic acid and further modified with different percentages of 7, 9, 11, and 13 wt.% of toluene-2,4-diisocyanate (TDI to obtain poly(urethane-esteramide (UCPEA, via addition polymerization. TiO2 (0.1, 0.2, 0.3, 0.4, and 0.5 wt% nanoparticles were dispersed in UCPEA resin. The structural elucidation of HECA, CPEA, and UCPEA has been carried out using FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques while physicochemical and physicomechanical properties were investigated by standard methods. Thermal stability and molecular weight of UCPEA have been assessed by thermogravimetric analysis (TGA and gel permeation chromatography (GPC, respectively. Furthermore, the corrosion behavior of UCPEA coatings on mild steel has been investigated by potentiodynamic polarization measurements in different corrosive environments (3.5 wt% HCl, 5 wt% NaCl, 3.5 wt% NaOH, and tap water at room temperature and surface analysis by scanning electron microscope (SEM and energy dispersive X-ray (EDX. The antibacterial activities of the UCPEA were tested against bacteria and fungi by agar disc diffusion method. The results of this study have revealed that UCPEA nanocomposite coatings exhibit good physicomechanical, anticorrosion and antimicrobial properties, which can be safely used up to 200°C.

  15. A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat

    OpenAIRE

    Verdier, Jerome; Dessaint, Fabrice; Schneider, Charles; Abirached-Darmency, Mona

    2012-01-01

    The seed coat is involved in the determination of seed quality traits such as seed size, seed composition, seed permeability, and hormonal regulation. Understanding seed coat structure is therefore a prerequisite to deciphering the genetic mechanisms that govern seed coat functions. By combining histological and transcriptomic data analyses, cellular and molecular events occurring during Medicago truncatula seed coat development were dissected in order to relate structure to function and pinp...

  16. Glassy carbon electrode modified by graphene–gold nanocomposite coating for detection of trace lead ions in acetate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Pui Mun [Interdisplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Environmental Chemistry and Materials Group (ECMG), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, Zhaomeng [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Xiaoxu [Heilongjiang University of Science and Technology, Harbin 150027 (China); Chen, Zhong [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Erjia, E-mail: MEJLiu@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2015-06-01

    Reduced graphene oxide (RGO) decorated with gold nanoparticles (AuNPs) was electrodeposited on glassy carbon electrode (GCE) using cyclic voltammetric method. The results of Raman spectroscopy confirmed the simultaneous formation of AuNPs and reduction of graphene oxide through the electrodeposition process. Scanning electron microscopic measurements showed a uniform distribution of the AuNPs on the RGO sheets. The RGO-AuNP nanocomposite coated GCE (G–Au/GCE) was used to detect lead ions (Pb{sup 2+}) contained in a 0.1 M acetate buffer solution (pH 5.3) using square wave anodic stripping voltammetry (SWASV). The G–Au/GCE demonstrated higher detection sensitivity and stronger SWASV signals than the bare GCE, with the limit of detection of about 0.8 nM. - Highlights: • Graphene with gold nanoparticles was electrodeposited on glassy carbon electrode. • The prepared electrode was able to detect trace lead ions at nM concentration. • Interference study against copper confirmed the selectivity of the electrode for lead. • The prepared electrode showed a promising recovery tested in tap water samples.

  17. Bridging Redox Species-Coated Graphene Oxide Sheets to Electrode for Extending Battery Life Using Nanocomposite Electrolyte.

    Science.gov (United States)

    Huang, Yi Fu; Ruan, Wen Hong; Lin, Dong Ling; Zhang, Ming Qiu

    2017-01-11

    Substituting conventional electrolyte for redox electrolyte has provided a new intriguing method for extending battery life. The efficiency of utilizing the contained redox species (RS) in the redox electrolyte can benefit from increasing the specific surface area of battery electrodes from the electrode side of the electrode-electrolyte interface, but is not limited to that. Herein, a new strategy using nanocomposite electrolyte is proposed to enlarge the interface with the aid of nanoinclusions from the electrolyte side. To do this, graphene oxide (GO) sheets are first dispersed in the electrolyte solution of tungstosilicic salt/lithium sulfate/poly(vinyl alcohol) (SiWLi/Li2SO4/PVA), and then the sheets are bridged to electrode, after casting and evaporating the solution on the electrode surface. By applying in situ conductive atomic force microscopy and Raman spectra, it is confirmed that the GO sheets doped with RS of SiWLi/Li2SO4 can be bridged and electrically reduced as an extended electrode-electrolyte interface. As a result, the RS-coated GO sheets bridged to LiTi2(PO4)3//LiMn2O4 battery electrodes are found to deliver extra energy capacity (∼30 mAh/g) with excellent electrochemical cycling stability, which successfully extends the battery life by over 50%.

  18. Effects of Si content on microstructure and mechanical properties of TiAlN/Si{sub 3}N{sub 4}-Cu nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Changjie; Hu, Shuilian [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063 (China); Jiang, Yuanfei, E-mail: jyf88889@126.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063 (China); Wu, Namei [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063 (China); Li, Mingsheng [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013 (China); Xin, Li; Zhu, Shenglong; Wang, Fuhui [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang, 110016 (China)

    2014-11-30

    Highlights: • The grain size and surface roughness decreased with the increase of Si content. • The microhardness of these coatings increased with the increasing content of Si. • The ratio H{sup 3}/E{sup 2} of TiAlN/Si3N4-Cu coating of 3.39 at.% Si reached the maximum value of 0.11 GPa. • Indentation morphology of TiAlN/Si3N4-Cu coating contained 3.39 at.% Si has fewer cracks. • TiAlN/Si3N4-Cu coating contained 3.39 at.% Si has good adhesion property and wear resistance. - Abstract: TiAlN/Si{sub 3}N{sub 4}-Cu nanocomposite coatings of various Si content (0–5.09 at.%) were deposited on AISI-304 stainless steel by DC reactive magnetron sputtering technique. The chemical composition, microstructure, mechanical and tribological properties of these coatings were systematically investigated by means of X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), nanoindentation tester, a home-made indentation system, a scratch tester and a wear tester. Results indicated that with increasing Si content in these coatings, a reduction of grain size and surface roughness, a transformation of the (1 1 1) preferred orientation was detected by XRD and FESEM. Furthermore the hardness of these coatings increase from 9.672 GPa to 18.628 GPa, and the elastic modulus reveal the rising trend that increase from 224.654 GPa to 251.933 GPa. However, the elastic modulus of TiAlN/Si{sub 3}N{sub 4}-Cu coating containing 3.39 at.% Si content dropped rapidly and changed to about 180.775 GPa. The H{sup 3}/E{sup 2} ratio is proportional to the film resistance to plastic deformation. The H{sup 3}/E{sup 2} ratio of the TiAlN/Si{sub 3}N{sub 4}-Cu coating containing 3.39 at.% Si content possess of the maximum of 0.11 GPa, and the indentation test indicate that few and fine cracks were observed from its indentation morphologies. The growth pattern of cracks is mainly bending growing. The present results show that the best toughness is obtained for TiAlN/Si{sub 3}N{sub 4

  19. Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zarghami, V. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Ghorbani, M., E-mail: Ghorbani@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)

    2014-06-15

    Highlights: • Preparing Ni/SiC coatings on the Cu substrate by using of rotating disk electrode. • Optimizing of pulse current density parameters. • Optimizing of SiC content in the bath. • Investigation the effect of codeposited SiC amount on the properties of coatings. - Abstract: Nickel/silicon carbide composite electrodeposits were prepared on a rotating disk electrode (RDE), under pulse current condition. The effect of pulse parameters, current density, SiC content in the electrolyte on the codeposition of SiC were studied. Afterwards, the effect of codeposited SiC amount was investigated on electrochemical behavior and nanomechanical properties of coatings. The coatings were analyzed with Scanning Electron Microscopy (SEM), linear polarization, nanoindentation and Atomic Force Microscopy (AFM). The Ni–SiC electrocomposites, prepared at optimum conditions, exhibited improved nanomechanical properties in comparison to pure nickel electrodeposits. With increasing current density the morphology changed from flat surface to cauliflower structure. The Ni–SiC electrocomposites exhibited improved nanomechanical properties and corrosion resistances in comparison to pure nickel electrodeposits and these properties were improving with increasing codeposited SiC particles in electrocomposites.

  20. Study on the Carbonyl Iron Powder Based Nano-Composite Radar Wave Absorbing Coatings

    Institute of Scientific and Technical Information of China (English)

    HUANG Dong-zhen; WANG Zhi-hui; LV Yan-hong; HU Chuan-xin; LI Wan-zhi; LIANG wen-ting; YAO Jun-min

    2004-01-01

    With the rapid development of stealth technique, carbonyl iron powder is regarded as an ideal radar absorbing material. In this paper, radar absorbing properties of carbonyl iron powder was investigated by using nano composite and macroscopic multi- layer composite approach. The machine- chemistry composite methods were employed during the experiment to produce nano composite absorbent. Two carbonyl iron powders named HP1, HP2 and nano powder named HP3 were employed. Absorbents were obtained by adding 10% HP3 powder with average size of 28 nm to the HP1 and HP2 carbonyl iron powders by weight respectively. By a series of composite techniques, sample plate with the radar absorbing coating was prepared. Compared with the single coating, the wave absorbing properties were significantly improved. The working band in which the wave reflectivity was less than 5 db was 4.8 ~ 18 GHz with the coating thickness of 1.0 mm. The lowest reflectivity was found to be 12.34 db at 8 GHz. The wave absorbing coating with thin thickness,broadband and strong absorbing properties was obtained.

  1. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Mangilal; Xing Qi; Lvov, Yuri [Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272 (United States); Shim, Bong Sup; Kotov, Nicholas [Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Varahramyan, Kody [Electrical and Computer Engineering Department, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)], E-mail: agarwal@iupui.edu

    2009-05-27

    Composite nanocoating of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) and aqueous dispersion of carbon nanotubes (CNT-PSS) on lignocellulose wood microfibers has been developed to make conductive microfibers and paper sheets. To construct the multilayers on wood microfibers, cationic poly(ethyleneimine) (PEI) has been used in alternate deposition with anionic conductive PEDOT-PSS and solubilized CNT-PSS. Using a Keithley microprobe measurement system, current-voltage measurements have been carried out on single composite microfibers after deposition of each layer to optimize the electrical properties of the coated microfibers. The conductivity of the resultant wood microfibers was in the range of 10{sup -2}-2 S cm{sup -1} depending on the architecture of the coated layer. Further, the conductivity of the coated wood microfibers increased up to 20 S cm{sup -1} by sandwiching multilayers of conductive co-polymer PEDOT-PSS with CNT-PSS through a polycation (PEI) interlayer. Moreover, paper hand sheets were manufactured from these coated wood microfibers with conductivity ranging from 1 to 20 S cm{sup -1}. A paper composite structure consisting of conductive/dielectric/conductive layers that acts as a capacitor has also been fabricated and is reported.

  2. Optical properties of selectively absorbing C/NiO nanocomposite coatings

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2010-12-01

    Full Text Available absorbers. According to Katumba et al., among the three carbon/metal oxide composite materials, carbon in NiO matrix has shown superior optical properties. Although the feasibility of the C/NiO composite coatings for a selective solar absorber application...

  3. Microstructural evolution of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering

    NARCIS (Netherlands)

    Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; De Hosson, J. Th. M.; Bradley, J. W.; Voronin, S.; Cada, M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2007-01-01

    The microstructure and property of magnetron Sputtered coatings are strongly affected by the intensity of concurrent ion impingement, in particular, by the energy distribution of impinging ions and the flux ratio between impinging ions and depositing atoms. In this paper, we report some striking res

  4. Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings.

    Science.gov (United States)

    Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Murali, Adhigan; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2012-02-01

    Sol-gel silica/nanoclay composites were prepared through sol-gel polymerization technique using tetraethylorthosilicate precursor and montmorillonite (MMT) clay in aqueous media. In this study, both montmorillonite-K(+) and organically modified MMT (OMMT) clays were used. The prepared composites were coated on glass substrate by making 1 wt% solution in ethyltrichlorosilane. The incorporation of nanoclay does not alter the intensity of characteristic Si-O-Si peak of silica network. Thermogravimetric studies show that increasing clay content increased the degradation temperature of the composites. Differential scanning calorimetry (DSC) results of organically modified MMT nanoclay incorporated composite show a shift in the melting behavior up to 38°C. From DSC thermograms, we observed that the ΔH value decreased with increasing clay loading. X-ray diffraction patterns prove the presence of nanoclay in the composite and increase in the concentration of organically modified nanoclay from 3 to 5 wt% increases the intensity of the peak at 2θ=8° corresponds to OMMT. Morphology of the control silica gel composite was greatly influenced by the incorporation of OMMT. The presence of nanoclay changed the surface of control silica gel composite into cleaved surface with brittle in nature. Contact angle measurements were done for the coatings to study their surface behavior. These hybrid coatings on glass substrate may have applications for hydrophobic coatings on leather substrate.

  5. Multiscale design and life-cycle based sustainability assessment of polymer nanocomposite coatings

    Science.gov (United States)

    Uttarwar, Rohan G.

    In recent years, nanocoatings with exceptionally improved and new performance properties have found numerous applications in the automotive, aerospace, ship-making, chemical, electronics, steel, construction, and many other industries. Especially the formulations providing multiple functionalities to cured paint films are believed to dominate the coatings market in the near future. It has shifted the focus of research towards building sustainable coating recipes which can deliver multiple functionalities through applied films. The challenge to this exciting area of research arrives from the insufficient knowledge about structure-property correlations of nanocoating materials and their design complexity. Experimental efforts have been successful in developing certain types of nanopaints exhibiting improved properties. However, multifunctional nanopaint design optimality is extremely difficult to address if not impossible solely through experiments. In addition to this, the environmental implications and societal risks associated with this growing field of nanotechnology raise several questions related to its sustainable development. This research focuses on the study of a multiscale sustainable nanocoating design which can have the application from novel function envisioning and idea refinement point of view, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications. The nanocoating design is studied using computational simulations of nano- to macro- scale models and sustainability assessment study over the life-cycle. Computational simulations aim at integrating top-down, goals/means, inductive systems engineering and bottom-up, cause and effect, deductive systems engineering approaches for material development. The in-silico paint resin system is a water-dispersible acrylic polymer with hydrophilic nanoparticles incorporated into it. The nano-scale atomistic and micro-scale coarse-grained (CG) level

  6. Structural characterization of electro-codeposited Ni–Al{sub 2}O{sub 3}–SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, M., E-mail: Alizadeh@sutech.ac.ir [Department of Materials Science and Engineering, Shiraz University of Technology, P.O. Box 71555-313, Shiraz (Iran, Islamic Republic of); Mirak, M. [Department of Materials Science and Engineering, Shiraz University of Technology, P.O. Box 71555-313, Shiraz (Iran, Islamic Republic of); Salahinejad, E. [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Bruker AXS Inc, 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Young Researchers Club, Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of); Amini, R. [Department of Materials Science and Engineering, Shiraz University of Technology, P.O. Box 71555-313, Shiraz (Iran, Islamic Republic of); Roosta, A. [Chemical Engineering, Petroleum and Gas Department, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2014-10-25

    Highlights: • Ni–Al{sub 2}O{sub 3}–SiC and Ni coatings were prepared by co-electrodeposition. • The metallic and composite coatings showed different morphologies. • The incorporation of nanoparticles affected the crystallite size of the matrix. - Abstract: In this study, nanostructured Ni–Al{sub 2}O{sub 3}–SiC composite and pure nickel coatings were prepared by co-electrodeposition from a modified Watt’s type bath, with and without adding nanosized Al{sub 2}O{sub 3} and SiC particles, respectively. The structure of the coatings was studied by using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The composition of the coatings was also evaluated by energy dispersive X-ray spectroscopy. The results confirmed the presence of a face centered cubic crystalline structure of the Ni matrix for both of the deposition routes. It was also found that the morphology of the pure nickel coating is uniform, whereas the Ni–Al{sub 2}O{sub 3}–SiC nanocomposite coatings indicate a protrusive and heterogeneous morphology. Moreover, the incorporation of the nanoparticles significantly affected the crystallite size of the Ni matrix.

  7. Molybdenum blues based conducting nanocomposites of polypyrrole, polyN-vinylcarbazole and of their binary combination

    Energy Technology Data Exchange (ETDEWEB)

    Ballav, Nirmalya [Department of Chemistry, Presidency College, 86/1 College Street, Kolkata 700073 (India)]. E-mail: tnb123@rediffmail.com

    2005-11-20

    Molybdenum blues (MB) based nanocomposites of polypyrrole (PPY), polyN-vinylcarbazole (PNVC) and their binary combination (PPY-PNVC) were prepared by in situ polymerization (without using external oxidant) of PY and NVC and also by using ammonium perdisulfate oxidant (PDS). Formation and incorporation of PPY and PNVC in the respective MB based composite was confirmed by FTIR spectral analyses. Scanning electron microscopic (SEM) analyses revealed the formation of PPY-MB, PNVC-MB and PPY-MB-PNVC composite particles with average diameter in the nanometer range. Thermogravimetric analyses (TGA) showed the following thermal stability trend: MB > PPY-MB > PNVC-MB > PPY-MB-PNVC > PPY {>=} PNVC. Differential thermal analysis (DTA) for the PPY-MB-PNVC composite revealed exothermic oxidative degradation process characteristics of PPY and PNVC backbones. DC conductivity values (S/cm) for PPY-MB, PNVC-MB and PPY-MB-PNVC were 1.5 x 10{sup -5} and 7 x 10{sup -2} (a value 10{sup 12}-fold improved compared to that of unmodified PNVC-10{sup -12} to 10{sup -16}), respectively.

  8. Effect of WO3 nanoparticle loading on the microstructural, mechanical and corrosion resistance of Zn matrix/TiO2-WO3 nanocomposite coatings for marine application

    Science.gov (United States)

    Popoola, A. P. I.; Daniyan, A. A.; Umoru, L. E.; Fayomi, O. S. I.

    2017-03-01

    In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.

  9. Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Amanzadeh, Hatam; Yamini, Yadollah [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175 Tehran (Iran, Islamic Republic of); Moradi, Morteza [Department of Semiconductors, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of)

    2015-07-16

    Highlights: • ZnO/polypyrrole (ZNO/PPY) nanocomposite coating was fabricated on stainless steel. • Nanocomposite coating morphology was evaluated using scanning electron microscopy. • It was applied for HS-SPME of aliphatic hydrocarbons in water and soil samples. • Separation and determination of the hydrocarbons were performed by GC-FID. • The method is suitable for routine analysis of n-alkanes in various environmental samples. - Abstract: In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L{sup −1}, whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results

  10. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell.

    Science.gov (United States)

    Liu, Fei; Zhu, Jinghan; Yang, Wenlong; Dong, Yunhe; Hou, Yanglong; Zhang, Chenzhen; Yin, Han; Sun, Shouheng

    2014-02-17

    Controlling exchange coupling between hard magnetic and soft magnetic phases is the key to the fabrication of advanced magnets with tunable magnetism and high energy density. Using FePt as an example, control over the magnetism in exchange-coupled nanocomposites of hard magnetic face-centered tetragonal (fct) FePt and soft magnetic Co (or Ni, Fe2C) is shown. The dispersible hard magnetic fct-FePt nanoparticles are first prepared with their coercivity (Hc) reaching 33 kOe. Then core/shell fct-FePt/Co (or Ni, Fe2C) nanoparticles are synthesized by reductive thermal decomposition of the proper metal precursors in the presence of fct-FePt nanoparticles. These core/shell nanoparticles are strongly coupled by exchange interactions and their magnetic properties can be rationally tuned by the shell thickness of the soft phase. This work provides an ideal model system for the study of exchange coupling at the nanoscale, which will be essential for building superstrong magnets for various permanent magnet applications in the future.

  11. SiO2-coated magnetic graphene oxide modified with polypyrrole-polythiophene: A novel and efficient nanocomposite for solid phase extraction of trace amounts of heavy metals.

    Science.gov (United States)

    Molaei, Karam; Bagheri, Hasan; Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Shamsipur, Mojtaba

    2017-05-15

    The synthesis of a novel nanocomposite comprised of SiO2-coated magnetic graphene oxide modified with a pyrrole-thiophene (mGO/SiO2@coPPy-Th) copolymer is reported in the present work. The nanocomposite was applied for the fast magnetic solid phase extraction (MSPE) of trace levels of copper, lead, chromium, zinc and cadmium from water and agricultural samples. The nanocomposite was prepared in three steps: (1) decoration of graphene oxide sheets with magnetite nanoparticles thorough a facile one-step chemical reaction strategy; (2) chemical grafting by a silica layer to obtain high stability in acidic solutions; and (3) surface modification by coPPy-Th via simultaneous oxidation polymerization of pyrrole and thiophene in the presence of mGO/SiO2 composite. The nanocomposite was subsequently characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and vibrating sample magnetometry (VSM) techniques. Several important experimental variables that could affect MSPE performance, including the pH of the sample, sorption time, sorbent dosage, eluent type and its concentration, eluent volume and elution time, were investigated and optimized. Under optimal conditions, the limits of detection for the target heavy metals ranged from 0.15 to 0.65μgL(-1). The maximum sorption capacity of the mGO/SiO2@coPPy-Th nanocomposite was 201, 230, 125, 98 and 80mgg(-1) for Cu(II), Pb(II), Zn(II), Cr(III) and Cd(II), respectively. Finally, the feasibility of the proposed method was investigated for the extraction and determination of the target metals from real matrices.

  12. Characterization of Ni–P–SiO{sub 2} nano-composite coating on magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Sadreddini, S., E-mail: sina.sadreddini1986@gmail.com [Department of Materials Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Salehi, Z. [Department of Chemical Science and Technology, Tor Vergata University, Rome (Italy); Rassaie, H. [Department of Materials Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-01-01

    Highlights: • The enhancement of SiO{sub 2} nanoparticles in the bath up to 12.5 g/l, increased the amount of coating particles to 4.62 wt%. • Better corrosion resistance and lower porosity could be obtained by expansion prevention of corrosion cavity with deposition of nanoparticles in the coating. • Microhardness increases with increasing the SiO{sub 2} particles concentration. - Abstract: In this study, the effects of SiO{sub 2} nanoparticles added to the electroless Ni–P coating were studied. The surface morphology, corrosion behavior, hardness and porosity of Ni–P–SiO{sub 2}composite were investigated. The related microstructure was investigated through field emission scanning electron microscopy (FESEM) and the amount of SiO{sub 2} was examined by Energy Dispersive Analysis of X-ray (EDX). The corrosion behavior was evaluated through electrochemical impedance spectroscopy (EIS) and polarization techniques. The results illustrated that with increasing the quantity of the SiO{sub 2} nanoparticles, the corrosion rate decreased and the hardness increased.

  13. Functionalised Au Coated Iron Oxide Nanocomposites Based Reusable Immunosensor for AFB1 Detection

    Directory of Open Access Journals (Sweden)

    Ruchika Chauhan

    2015-01-01

    Full Text Available A reusable sandwiched electrochemical piezoelectric immunosensor has been developed for aflatoxin B1 (AFB1 detection using gold coated iron oxide core-shell (Au-Fe3O4 nanostructure. The monoclonal anti-aflatoxin antibody (aAFB1 was immobilized on self-assembled monolayer of 4-aminothiophenol on gold coated quartz crystal to fabricate immunoelectrode (BSA/aAFB1/4-ATP/Au. In addition, secondary rabbit-immunoglobulin antibodies (r-IgGs functionalized with Au-Fe3O4 NPs via cysteamine (r-IgG-Cys-Au-Fe3O4 were allowed to interact with AFB1. Both competitive and noncompetitive strategies were employed and a competition between coated AFB1 and free AFB1 was carried out. The competitive mode shows higher linear range (0.05 to 5 ng mL−1 than the noncompetitive one (0.5 to 5 ng mL−1, high sensitivity 335.7 µA ng−1 mL cm−2, and LOD 0.07 ng mL−1. The fabricated immunosensor has been tested using cereal samples spiked with different concentrations of AFB1. The developed competitive immunoelectrode displays good reproducibility, and storage stability and regenerated with negligible loss in activity through removal of the r-IgG-Cys-Au-Fe3O4 conjugate using a strong external magnet.

  14. Structure and Properties Characterization of Ceramic Coatings Produced on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHENDe-jiu; WANGYu-lin; GUWei-chao; XINGGuang-zhong

    2004-01-01

    Metallurgically bonded ceramic coatings were prepared on a steel surface with a combined method of arc spraying and micro-arc oxidation for the first time. Coatings were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Point and line distribution of elements of the ceramic coatings were determined using energy dispersive spectroscopy (EDS). Coatings abrasive wear resistance, corrosion resistance and hot impact property were assessed respectively. The property test results show that metallurgically bonded ceramic coatings were formed on aluminum coatings and the ceramic coatings is mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and a little amorphous. The coatings possess excellent abrasive wear, corrosion and hot shock resistance, which can in part be attributed to the gradual distribution of different phases from surface to the substrate.

  15. Stability of Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} nanocomposite coatings in near-neutral sulphate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, A., E-mail: aboavida@fc.ul.pt; Almeida, I.; Frade, T. [CCMM, Departamento Quimica e Bioquimica da Faculdade de Ciencias da Universidade de Lisboa (Portugal); Tavares, A. C. [Institut National de la Recherche Scientifique-Energie Materiaux et Telecommunications (INRS-EMT) (Canada)

    2012-02-15

    Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} nanocomposites were prepared by galvanostatic cathodic square wave deposition. X-ray diffraction analysis and scanning electron microscopy revealed that the occlusion of TiO{sub 2} nanoparticles (spherical shaped with diameter between 19.5 and 24.2 nm) promotes the formation of the {gamma}-Ni{sub 5}Zn{sub 21} phase, changes the preferred crystallographic orientation of Zn from (101) and (102) planes to (002), and decreases the particle size of the metallic matrices. The stability of the nanocomposites immersed in near-neutral 0.05 mold m{sup -3} Na{sub 2}SO{sub 4} solution (pH 6.2) was investigated over 24 h. The initial open circuit potential for the Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} coatings were -1.32 and -1.51 V (vs. Hg/Hg{sub 2}SO{sub 4}), respectively, and changed to -1.10 and -1.49 V (vs. Hg/Hg{sub 2}SO{sub 4}) after 24 h of immersion. Data extracted from the steady state polarization curves demonstrated that the metal-TiO{sub 2} nanocomposites have, with respect to the metal coatings, a higher corrosion potential in the case of the Zn-Ni alloy composite; a lower corrosion potential in the case of Zn-based nanocomposite albeit the predominant (002) crystallographic orientation; and a lower initial corrosion resistance due to the smaller grain size and higher porosity in the Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} nanocomposites. Morphological and chemical analyses showed that a thicker passive layer is formed on the surface of the Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} deposits. After 24 h of immersion in the sulphate solution, the Zn-Ni-TiO{sub 2} coating has the highest corrosion stability due to the double-protective action created by the deposit's surface enrichment in Ni plus the higher amount of corrosion products.

  16. Microstructure and properties of thick nanocomposite TiN/Si{sub 3}N{sub 4} coatings on Vanadis 23 HS steel

    Energy Technology Data Exchange (ETDEWEB)

    Moskalewicz, Tomasz; Czyrska-Filemonowicz, Aleksandra [AGH Univ. of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow (Poland); Zimowski, Slawomir [AGH Univ. of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow (Poland); Wendler, Bogdan; Progalskiy, Ivan [Lodz Univ. of Technology (Poland). Inst. of Materials Science and Engineering

    2015-07-15

    The microstructure and selected micro-mechanical properties of a 13.4 μm thick nanocomposite TiN/Si{sub 3}N{sub 4} coating deposited onto Vanadis 23 HS steel by a new gas pulsed magnetron sputtering technique were investigated. Scanning and transmission electron microscopy were employed to investigate the detailed microstructure of the coating. It was found that the coating exhibited a fully nanocrystalline structure and was composed of two zones: the outer zone with columnar structure and the inner one with equiaxed, fine columnar structure. Both zones consisted mainly of the δ-TiN nanocrystallites with a small amount of α-Si{sub 3}N{sub 4} and β-Si{sub 3}N{sub 4}. In order to increase coating adhesion to the substrate, a graded intermediate layer consisting of three different phases (pure Cr, CrN and Cr2N) was applied. The hardness of the as-deposited TiN/Si{sub 3}N{sub 4} coating was equal to 48 GPa, whereas it was equal to 40 GPa after annealing. The coatings exhibited very good adhesion to the underlying steel substrate.

  17. CrN-Ag nanocomposite coatings: Control of lubricant transport by diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-12-01

    1-{mu}m-thick self-lubricating CrN-Ag composite coatings containing 16 at.% Ag were deposited on Si substrates by reactive co-sputtering at T{sub s} = 400 Degree-Sign C, and were covered with CrN cap layers with a columnar microstructure and a thickness d = 0-1000 nm. Vacuum annealing at T{sub a} = 500 and 600 Degree-Sign C for 1 h causes Ag transport to the sample surface and the formation of Ag surface grains. Quantitative scanning electron microscopy and energy dispersive spectroscopy analyses show that increasing d from 0 to 10 to 100 nm for T{sub a} = 500 Degree-Sign C leads to a decrease in the areal density of Ag surface grains from 0.86 to 0.45 to 0.04 {mu}m{sup -2}, while their lateral size remains constant at 360 {+-} 60 nm. However, increasing T{sub a} to 600 Degree-Sign C causes a doubling of the Ag grain size, and a 4-30 times larger overall Ag transport. These results are explained by kinetic barriers for Ag diffusion through the porous cap layer with a porosity that decreases with increasing d, resulting in an effective activation barrier for Ag transport that increases from 0.78 eV in the absence of a cap layer to 0.89 eV for d = 10 nm and 1.07 eV for d = 30 nm. Auger electron spectroscopy depth profile analyses of annealed layers reveal no detectable Ag within the CrN cap layer and a uniform depletion of the Ag reservoir throughout the composite coating thickness, indicating unhindered Ag transport within the composite. The overall results show that a CrN diffusion barrier cap layer is an effective approach to control Ag lubricant transport to the surface of CrN-Ag composite coatings. - Highlights: Black-Right-Pointing-Pointer CrN-Ag composite coatings are capped with CrN diffusion barriers. Black-Right-Pointing-Pointer Ag diffuses to the surface during annealing at 500 or 600 Degree-Sign C. Black-Right-Pointing-Pointer The Ag transport is controlled by the cap thickness d = 0-1000 nm. Black-Right-Pointing-Pointer The activation energy for Ag

  18. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pporcelain.

  19. Synthesis of layered zinc hydroxide intercalated with dodecyl sulfate organic-inorganic hybrid nanocomposite as a fiber coating for the headspace solid-phase microextraction of aromatic hydrocarbons from water.

    Science.gov (United States)

    Yousefi, Vahid; Parastari, Sheyda; Gorji, Mohsen; Foroutani, Reza; Mahdavi, Mehri; Hazizadeh, Behzad

    2016-12-01

    We describe the synthesis of a layered zinc hydroxide-dodecyl sulfate organic-inorganic hybrid nanocomposite as a new solid-phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide-dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69-3.2 ng/L and 10-500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o-, p-, and m-xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2-7.3% and 4.2-11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polyaniline/clay conducting nanocomposite for use in protecting coatings; Nanocompositos condutores polianilina/argila para utilizacao em revestimentos protetores

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Nanomaterials have been shown highly promising materials for various technological applications. In engineering, may be noted the polymer nanocomposites, which are a new class of composite materials, where a nanoclay, or charge with nanometric dimensions, is dispersed in a polymer matrix at low concentration or volume. The clays are more common and when added in quantities less than 5% in the nanocomposites, cause a significant increase in these properties, such as mechanical, optical, magnetic barrier, and especially permeability and flammability. In this context, this work aimed at obtaining the polymeric nanocomposites of polyaniline (PAni) with different commercial clays (Cloisite Na{sup +}, 10A, 15A, 20A and 30B). The preparation of PAni-MMT nanocomposites was performed by in situ polymerization of aniline in acidic (HCl). Electrical conductivity measurements, FT-IR, TGA and X- ray diffraction were some of the techniques used to characterize the nanocomposites. (author)

  1. How deposition parameters affect corrosion behavior of TiO{sub 2}-Al{sub 2}O{sub 3} nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, H., E-mail: hamid.niazi@outlook.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Yari, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Golestani-Fard, F.; Shahmiri, M. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Wang, W.; Alfantazi, A. [Department of Metals and Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Bayati, R. [Intel Corporation, IMO-SC, SC2, Santa Clara, CA 95054 (United States)

    2015-10-30

    Graphical abstract: - Highlights: • TiO{sub 2}-Al{sub 2}O{sub 3} nanocomposite coatings were synthesized by EEMAO on titanium substrate. • It is shown that alumina concentration plays different roles at different voltages. • The incorporation mechanism of Al{sub 2}O{sub 3} is discussed. • Thermodynamic and kinetic of tialite formation are studied. - Abstract: Titania-Alumina coatings were grown on titanium substrates by Eectrophoretic Enhanced Micro Arc Oxidation (EEMAO) technique in electrolytes containing various concentrations of alumina nanoparticles. The effect of concentration of alumina on surface morphology, phase composition, microhardness, and corrosion behavior was investigated at different voltages. It was found that the impact of alumina concentration on microstructure actually depends on the voltage and its effects gets more conspicuous at intermediate and high voltages. A finer morphology was obtained at higher concentrations of alumina at a constant voltage. The coatings mainly consisted of anatase and rutile. Tialite was observed at 450 V and 3 g l{sup −1} alumina. The formation kinetics and thermodynamics of the tialite phase was studied. In all voltages, samples prepared in an alumina-rich electrolyte showed a higher surface hardness. The nanocomposite coatings exhibited an enhanced corrosion resistance compared to the titanium substrates where the effect of alumina concentration became more tangible when the voltage exceeded a critical value (350 V). At 450 V, the polarization resistance of the sample prepared in alumina-rich electrolytes was higher by 3 orders of magnitude compared to the coating prepared in the electrolyte containing 1 g l{sup −1} alumina. A processing-microstructure-properties correlation is established.

  2. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    Science.gov (United States)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H.

    2016-05-01

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence of compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.

  3. Polythiophene/hexagonally ordered silica nanocomposite coating as a solid-phase microextraction fiber for the determination of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Abolghasemi, Mir Mahdi; Yousefi, Vahid

    2014-01-01

    A highly porous fiber coated with polythiophene/hexagonally ordered silica nanocomposite was prepared for solid-phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless-steel wire for the fabrication of the SPME fiber. Polythiophene/hexagonally ordered silica nanocomposite fibers were used for the extraction of some polycyclic aromatic hydrocarbons from water samples. The extracted analytes were transferred to the injection port of a gas chromatograph using a laboratory-designed SPME device. The results obtained prove the ability of the polythiophene/hexagonally ordered silica material as a new fiber for the sampling of organic compounds from water samples. This behavior is due most probably to the increased surface area of the polythiophene/hexagonally ordered silica nanocomposite. A one-at-a-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. Under the optimum conditions, the LOD of the proposed method is 0.1-3 pg/mL for analysis of polycyclic aromatic hydrocarbons from aqueous samples, and the calibration graphs were linear in a concentration range of 0.001-20 ng/mL (R(2) > 0.990) for most of the polycyclic aromatic hydrocarbons. The single fiber repeatability and fiber-to-fiber reproducibility were less than 8.6 and 19.1% (n = 5), respectively.

  4. Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Mahendiran, C. [Department of Chemistry and Kanbar Laboratory for Nanomaterials at the Bar-Ilan University Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel); Maiyalagan, T.; Scott, K. [School of Chemical Engineering and Advanced Materials, University of Newcastle Upon Tyne, Newcastle Upon Tyne NE1 7RU (United Kingdom); Gedanken, A., E-mail: gedanken@mail.biu.ac.il [Department of Chemistry and Kanbar Laboratory for Nanomaterials at the Bar-Ilan University Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2011-08-15

    Highlights: {yields} Carbon coated on NiO/MgO in a core/shell nanostructure is synthesized by RAPET. {yields} The carbon-coated NiO/MgO is supported by Pd. {yields} The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation studied. - Abstract: Carbon coated on NiO/MgO in a core/shell nanostructure was synthesized by the single-step RAPET (reaction under autogenic pressure at elevated temperatures) technique, and the obtained formation mechanism of the core/shell nanocomposite was presented. The carbon-coated NiO/MgO and its supported Pd catalyst, Pd/(NiO/MgO-C), were characterized by SEM, HR-TEM, XRD and cyclic voltammetry. The X-ray diffraction patterns confirmed the face-centered cubic crystal structure of NiO/MgO. Raman spectroscopy measurements provided structural evidence for the formation of a NiO/MgO composite and the nature of the coated carbon shell. The high-resolution transmission electron microscopy images showed the core and shell morphologies individually. The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation were investigated in an alkaline solution. The results indicated that the prepared Pd-NiO/MgO-C catalyst has excellent electrocatalytic activity and stability.

  5. Advanced anticorrosive coatings prepared from electroactive polyimide/graphene nanocomposites with synergistic effects of redox catalytic capability and gas barrier properties

    Directory of Open Access Journals (Sweden)

    J. M. Yeh

    2014-04-01

    Full Text Available In this study, electroactive polyimide (EPI/graphene nanocomposite (EPGN coatings were prepared by thermal imidization and then characterized by Fourier transformation infrared (FTIR and transmission electron microscope (TEM. The redox behavior of the as-prepared EPGN materials was identified by in situ monitoring for cyclic voltammetry (CV studies. Demonstrating that EPGN coatings provided advanced corrosion protection of cold-rolled steel (CRS electrodes as compared to that of neat EPI coating. The superior corrosion protection of EPGN coatings over EPI coatings on CRS electrodes could be explained by the following two reasons. First, the redox catalytic capabilities of amino-capped aniline trimer (ACAT units existing in the EPGN may induce the formation of passive metal oxide layers on the CRS electrode, as indicated by scanning electron microscope (SEM and electron spectroscopy for chemical analysis (ESCA studies. Moreover, the well-dispersed carboxyl-graphene nanosheets embedded in the EPGN matrix hinder gas migration exponentially. This would explain enhanced oxygen barrier properties of EPGN, as indicated by gas permeability analysis (GPA studies.

  6. Fe2O3/TiO2 nanocomposite photocatalyst prepared by supercritical fluid combination technique and its application in degradation of acrylic acid

    Science.gov (United States)

    Wei, J.; Zhang, J. C.

    2017-01-01

    Fe2O3/TiO2 nanocomposite photocatalysts were synthesized by supercritical fluid combination technique, consisting of sol-gel method and supercritical fluid drying. The photocatalytic activity of the samples was evaluated by the degradation of acrylic acid. The results indicated that the Fe2O3/TiO2 nanocomposite catalysts prepared by this novel technique showed significant improvement in catalytic activity compared with pure TiO2 or Fe2O3/TiO2 catalysts prepared by traditional drying. Both infrared and ultraviolet spectrum of Fe2O3/TiO2 nanocomposite photocatalysts shift a little to lower wavelength indicating that the absorption threshold of Fe doped nanocomposite photocatalysts shift into the visible light region. This phenomenon was also attested by the photocatalytic degradation test under visible light.

  7. Coatings for mechanical and chemical protection based on organic-inorganic sol-gel nanocomposites

    OpenAIRE

    Schmidt, Helmut K.; Kasemann, Reiner

    1994-01-01

    The sol-gel process opens the possibility of combining inorganic and organic units on a molecular or nanosized level. The flexible chemical approach of tailoring inorganic structures as well as organic polymeric structures in combination with the new concept of incorporation of nanoscaled metal oxide particles (in general boehmite) opens the possibility of achieving new multifunctional materials like extremely high scratch resistance, antisoiling properties, antifogging properties and corrosi...

  8. Coatings for mechanical and chemical protection based on organic-inorganic sol-gel nanocomposites

    OpenAIRE

    Schmidt, Helmut K.; Kasemann, Reiner

    1993-01-01

    The sol-gel process opens the possibility of combining inorganic and organic units on a molecular or nanosized level. The flexible chemical approach of tailoring inorganic structures as well as organic polymeric structures in combination with the new concept of incorporation of nanoscaled metal oxide particles (in general boehmite) opens the possibility of achieving new multifunctional materials like extremely high scratch resistance, antisoiling properties, antifogging properties and corrosi...

  9. Surface modification of orthodontic implants by nanocomposite coatings based on chitosan and metals

    Directory of Open Access Journals (Sweden)

    Suetenkov D.Ye.

    2013-09-01

    Full Text Available Purpose: to study the properties of nanostructured coatings in orthodontic implants. Material and methods. Low and average molecular mass chitosan, 3-amynopropil-3-methoxysylan and suspensions of 5 nm and 10 nm gold nano-spheres stabilized with natrium citrate were used for nanocomposed surfaces. 2mg/ml polyethylenamin water solution was used for making the underlayer before putting polyion coverage using «POLYION-1M». The polyion covering dynamics was studied by polyquartz weighing method. Morphology of created layers was studied with atomic microscopy, elements were studied by secondary ion mass-spectrometry. Results. The best transmission among structures of chito-san/metals was showed by low molecular mass of chitosan and 8-1 Onm nanoparticles of metals. Analysis of roughness of surface shows that nanoparticles of gold make the most solid surface on 3-amynopropil-3-methoxysylan underlayer. Conclusion. The development of biocomparative materials in maxillofacial surgery is considered to be effective method of decreasing the risk of post-operative inflammatory complications by local antibacterial effect.

  10. Synthesis of polyurethane/clay nanocomposites based palm oil polyol coating

    Directory of Open Access Journals (Sweden)

    Teuku Rihayat

    2015-12-01

    Full Text Available In this study, we investigated the Polyurethane paint based on palm oil with the addition of nanoparticles montmorillonite as a heat-resistant. The composites with 1 wt%, 3 wt% and 5 wt% of bentonite filler content obtained by synthesizing in situ were investigated and compared to the neat polyurethane matrix material. The processing of bentonite for montmorillonite was done through several stages including: sedimentation, ultrasonication, dried, sieved with a 200 mesh sieve, then characterized. Untreated MMT were isolated and modified with CTAB. The addition of MMT into polyurethane, as much as 5% wt, can increase the heat as evidenced by the TGA test. The TGA results indicated an enhanced thermal stability, as compared to the neat polyurethane. The onset degradation of neat polyurethane and weight reduction began at a temperature of 50-150°C and completely decomposed at the temperatures of 380°C and for PU MKS-MMT reduction, the initial weight started at a temperature of 150-200°C in 5 %wt and decomposed in the end at a temperature of 490°C. In this research, we also tested the gloss adhesive polyurethane with the addition of MMT; the result stated that the addition of 5%wt MMT can improve the adhesion of polyurethane. The addition of MMT in polyurethane can also enhance the gloss polyurethane compared with polyurethane coated without the addition of MMT.

  11. Physical-Mechanical Properties of Superhard Nanocomposite Coatings on Base Zr-Ti-Si-N

    Directory of Open Access Journals (Sweden)

    Alexandr POGREBNJAK

    2013-05-01

    Full Text Available Hard and super hard coatings of Zr-Ti-Si-N of from 2.8 μm to 3.5 μm thickness were fabricated using a vacuum arc source with high frequency stimulation. The samples were annealed in vacuum and in air at 1200 °C. It was found that films with a high Zr and Ti content were thermally stable up to 1180 °C. At the same time, a thin oxide layer of 180 nm to 240 nm was found on the surfaces, which protected the sample from destruction. Below 1000 °C annealing temperature in vacuum, changing of phase composition is determined by appearing of siliconitride crystallites (ß-Si3N4 with hexagonal crystalline lattice and by formation of ZrO2 oxide crystallites. Size of grains of a substitution solid solution (Zr, TiN varied from (10 – 12 nm to 25 nm, but Ti concentration in the solid solution increased. In the process of annealing, hardness of the best series of samples increased from (39.6 ±1.4 GPa to 53.6 GPa, which seemed to indicate that a spinodal segregation along grain interfaces was finished.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4429

  12. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer's disease in ovariectomized albino-rat model

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, Sanaa M.R. [Zoology Department, Women College, Ain Shams University, 11566 Cairo (Egypt); Darwish, Atef S., E-mail: atef_mouharam@sci.asu.edu.eg [Chemistry Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Kamal, Sara M. [Zoology Department, Women College, Ain Shams University, 11566 Cairo (Egypt)

    2016-08-01

    This paper upraises delivery and therapeutic actions of galantamine drug (GAL) against Alzheimer's disease (AD) in rat brain through attaching GAL to ceria-containing hydroxyapatite (GAL@Ce-HAp) as well ceria-containing carboxymethyl chitosan-coated hydroxyapatite (GAL@Ce-HAp/CMC) nanocomposites. Physicochemical features of such nanocomposites were analyzed by XRD, FT-IR, Raman spectroscopy, UV–vis spectrophotometer, N{sub 2}-BET, DLS, zeta-potential measurements, SEM, and HR-TEM. Limited interactions were observed in GAL@Ce-HAp with prevailed existence of dispersed negatively charged rod-like particles conjugated with ceria nanodots. On contrary, GAL@Ce-HAp/CMC was well-structured developing aggregates of uncharged tetragonal-shaped particles laden with accession of ceria quantum dots. Such nanocomposites were i.p. injected into ovariectomized AD albino-rats at galantamine dose of 2.5 mg/kg/day for one month, then brain tissues were collected for biochemical and histological tests. GAL@Ce-HAp adopted as a promising candidate for AD curativeness, whereas oxidative stress markers were successfully upregulated, degenerated neurons in hippocampal and cerebral tissues were wholly recovered and Aβ-plaques were vanished. Also, optimizable in-vitro release for GAL and nanoceria were displayed from GAL@Ce-HAp, while delayed in-vitro release for those species were developed from GAL@Ce-HAp/CMC. This proof of concept work allow futuristic omnipotency of rod-like hydroxyapatite particles for selective delivery of GAL and nanoceria to AD affected brain areas. - Highlights: • Ceria affords existence of negatively charged rod-like architecture hydroxyapatite. • Carboxymethyl chitosan-coated apatite adopts neutral tetragonal-shaped species. • Ceria-containing apatite-based galantamine composite is potent anti-Alzheimer drug. • Typical neurons act via Alzheimer curing by ceria-loading apatite-based galantamine.

  13. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    Science.gov (United States)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  14. COMBINING WLI AND SEM TECHNIQUES TO OBTAIN A 4D SURFACE IMAGE OF A ppHDMSO/AlCeO3 NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    Olivier Buchheit

    2011-05-01

    Full Text Available Compositional images from a SEM (scanning electron microscope are sometimes complemented by quantitative topographical data from devices such as an AFM (atomic force microscope or WLI (white light interferometer. Indeed, even if a SEM could provide both kinds of information (composition and topography, the topographical data are incomplete because the SEM does not allow measuring the vertical dimension (i.e., perpendicular to the measurement plane. Thus these two kinds of information are usually measured using two different techniques, and at different locations on the sample. Mean values of surface composition are then linked to mean values of topography, and as a consequence this approach does not allow precisely linking a local topographical peak to its corresponding composition. The present work deals with a SEM/WLI combination methodology, based on the characterization, at the same location, of a nanocomposite (nanoparticles of AlCeO3 dispersed in a plasma-polymerized hexamethyldisiloxane ppHMDSO matrix and deposited by atmospheric plasma on a glass substrate developed for improving anticorrosion properties. SEM images allow the supposition that the protuberances (peaks observed on the surface of a specimen are linked to the nanoparticles dispersed in the polymer coating, but this link is not fully convincing. Thanks to a precise localization method, SEM compositional data and WLI topographical data are here measured at the same location. The recombination of both signals to form a 4D image (3D geometry and 1D composition allows linking protuberances to nanoparticles aggregates without ambiguity. This composite image appears to be an interesting new tool (at the scale of observation, i.e., hundreds of micrometers for the study of nanostructured coatings.

  15. Antibiofilm Activity of Epoxy/Ag-TiO2 Polymer Nanocomposite Coatings against Staphylococcus Aureus and Escherichia Coli

    Directory of Open Access Journals (Sweden)

    Santhosh S. M.

    2015-04-01

    Full Text Available Dispersion of functional inorganic nano-fillers like TiO2 within polymer matrix is known to impart excellent photobactericidal activity to the composite. Epoxy resin systems with Ag+ ion doped TiO2 can have combination of excellent biocidal characteristics of silver and the photocatalytic properties of TiO2. The inorganic antimicrobial incorporation into an epoxy polymeric matrix was achieved by sonicating laboratory-made nano-scale anatase TiO2 and Ag-TiO2 into the industrial grade epoxy resin. The resulting epoxy composite had ratios of 0.5–2.0 wt% of nano-filler content. The process of dispersion of Ag-TiO2 in the epoxy resin resulted in concomitant in situ synthesis of silver nanoparticles due to photoreduction of Ag+ ion. The composite materials were characterized by DSC and SEM. The glass transition temperature (Tg increased with the incorporation of the nanofillers over the neat polymer. The materials synthesized were coated on glass petri dish. Anti-biofilm property of coated material due to combined release of biocide, and photocatalytic activity under static conditions in petri dish was evaluated against Staphylococcus aureus ATCC6538 and Escherichia coli K-12 under UV irradiation using a crystal violet binding assay. Prepared composite showed significant inhibition of biofilm development in both the organisms. Our studies indicate that the effective dispersion and optimal release of biocidal agents was responsible for anti-biofilm activity of the surface. The reported thermoset coating materials can be used as bactericidal surfaces either in industrial or healthcare settings to reduce the microbial loads.

  16. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  17. Beneficial silver: antibacterial nanocomposite Ag-DLC coating to reduce osteolysis of orthopaedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Endrino, J L; Sanchez-Lopez, J C; Galindo, R Escobar; Horwat, D; Anders, A, E-mail: jlendrino@icmm.csic.es

    2010-11-01

    Silver-containing diamond-like-carbon (DLC) is a promising material for biomedical implants due to its excellent combination of antibacterial and mechanical properties. In this work, a dual-cathode pulsed filtered cathodic arc source containing silver and graphite rods was employed in order to obtain DLC samples with various silver contents. Chemical composition of the samples was analyzed by acquiring their compositional depth-profiles using radio-frequency Glow Discharge Optical Emission Spectroscopy (rf-GDOES), while the microstructural properties were analyzed by X-ray diffraction and Raman spectroscopy. Tribological studies carried out against UHMWPE balls in fetal bovine serum indicate that the presence of silver in DLC could be beneficial to reduce the wear of the polymeric surfaces.

  18. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.

    Science.gov (United States)

    Esmaeilnejad-Ahranjani, Parvaneh; Kazemeini, Mohammad; Singh, Gurvinder; Arpanaei, Ayyoob

    2016-04-01

    A facile approach for the preparation of core-shell structured poly(acrylic acid) (PAA)-coated Fe3O4 cluster@SiO2 nanocomposite particles as the support materials for the lipase immobilization is reported. Low- or high-molecular-weight (1800 and 100,000, respectively) PAA molecules were covalently attached onto the surface of amine-functionalized magnetic silica nanoacomposite particles. The successful preparation of particles were verified by scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential measurement, and Fourier-transform infrared (FTIR) techniques. Once lipase is covalently immobilized onto the particles with an average diameter of 210 ± 50 nm, resulting from high binding sites concentrations on the low- and high-molecular-weight PAA-coated particles, high lipase immobilization efficiencies (86.2% and 89.9%, respectively), and loading capacities (786 and 816 mg g(-1), respectively) are obtained. Results from circular dichroism (CD) analysis and catalytic activity tests reveal an increase in the β-sheet content of lipase molecules upon immobilization, along with an enhancement in their activities and stabilities. The lipases immobilized onto the low- and high-molecular-weight PAA-coated particles show maximum activities at 55 and 50 °C, respectively, which are ∼28% and ∼15% higher than that of the free lipase at its own optimum temperature (40 °C), respectively. The immobilized lipases exhibit excellent performance at broader temperature and pH ranges and high thermal and storage stabilities, as well as superior reusability. These prepared magnetic nanocomposite particles can be offered as suitable support materials for efficient immobilization of enzymes and improvement of the immobilized enzymes properties.

  19. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Abrishamchian, Alireza [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hooshmand, Tabassom, E-mail: hoshmand@sina.tums.ac.ir [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadi, Mohammadreza [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained.

  20. Fabrication and characterization of chitosan nanoparticles and collagen-loaded polyurethane nanocomposite membrane coated with heparin for atrial septal defect (ASD) closure.

    Science.gov (United States)

    Kaiser, Eva; Jaganathan, Saravana Kumar; Supriyanto, Eko; Ayyar, Manikandan

    2017-07-01

    Atrial septal defect (ASD) constitutes 30-40% of all congenital heart diseases in adults. The most common complications in the treatment of ASD are embolization of the device and thrombosis formation. In this research, an occluding patch was developed for ASD treatment using a well-known textile technology called electrospinning. For the first time, a cardiovascular occluding patch was fabricated using medical grade polyurethane (PU) loaded with bioactive agents namely chitosan nanoparticles (Cn) and collagen (Co) which is then coated with heparin (Hp). Fourier transform infrared spectrum showed characteristic vibrations of several active constituents and changes in the absorbance due to the inclusion of active ingredients in the patch. The contact angle analysis demonstrated no significant decrease in contact angle compared to the control and the composite patches. The structure of the electrospun nanocomposite (PUCnCoHp) was examined through scanning electron microscopy. A decrease in nanofiber diameter between control PU and PUCnCoHp nanocomposite was observed. Water uptake was found to be decreased for the PUCnCoHp nanocomposite against the control. The hemocompatibility properties of the PUCnCoHp ASD occluding patch was inferred through in vitro hemocompatibility tests like activated partial thromboplastin time (APTT), prothrombin time (PT) and hemolysis assay. It was found that the PT and APTT time was significantly prolonged for the fabricated PUCnCoHp ASD occluding patch compared to the control. Likewise, the hemolysis percentage was also decreased for the PUCnCoHp ASD patch against the control. In conclusion, the developed PUCnCoHp patch demonstrates potential properties to be used for ASD occlusion.

  1. Effects of different polypyrrole/TiO2 nanocomposite morphologies in polyvinyl butyral coatings for preventing the corrosion of mild steel

    Science.gov (United States)

    Mahmoudian, M. R.; Alias, Y.; Basirun, W. J.; Ebadi, M.

    2013-03-01

    This study addresses the synthesis and comparison of the corrosion protective properties of two different polypyrrole/TiO2 nanocomposite (PPy/TiO2 NC) morphologies in a polyvinyl butyral coating on mild steel. The polymerization was performed via low-temperature in situ chemical oxidative polymerization in the presence of methyl orange (MO) and dodecyl benzene sulfonic acid (DBSA). The field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results show two different spherical and tube shapes in the core-shell structure of the PPy/TiO2 NCs synthesized in the presence DBSA and MO, respectively. The TEM results indicate that a thinner polypyrrole (PPy) shell is synthesized on the PPy/TiO2 NCs in the presence of MO than that synthesized in the presence of DBSA. Thermogravimetric analysis (TGA) results indicate that the mass percentages of the TiO2 NPs in the PPy/TiO2 NCs synthesized in the presence of MO and DBSA are 29.71 and 33.84%, respectively. The PPy/TiO2 NCs synthesized in the presence of MO were found to yield better anti-corrosion performance than those synthesized in the presence of DBSA. This result is due to the effect of the PPy surface area, which has more influence over corrosion control than the percentage of TiO2 nanoparticles in the nanocomposites.

  2. Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance

    Science.gov (United States)

    Liu, Tongyao; Liu, Bin; Wang, Jing; Yang, Linfen; Ma, Xinlong; Li, Hao; Zhang, Yihong; Yin, Shu; Sato, Tsugio; Sekino, Tohru; Wang, Yuhua

    2016-06-01

    A series of smart window coated multifunctional NIR shielding-photocatalytic films were fabricated successfully through KxWO3 and F-TiO2 in a low-cost and environmentally friendly process. Based on the synergistic effect of KxWO3 and F-TiO2, the optimal proportion of KxWO3 to F-TiO2 was investigated and the FT/2KWO nanocomposite film exhibited strong near-infrared, ultraviolet light shielding ability, good visible light transmittance, high photocatalytic activity and excellent hydrophilic capacity. This film exhibited better thermal insulation capacity than ITO and higher photocatalytic activity than P25. Meanwhile, the excellent stability of this film was examined by the cycle photocatalytic degradation and thermal insulation experiments. Overall, this work is expected to provide a possibility in integrating KxWO3 with F-TiO2, so as to obtain a multifunctional NIR shielding-photocatalytic nanocomposite film in helping solve the energy crisis and deteriorating environmental issues.

  3. Study of Oxidation Behaviour of Bond Coating Nanocomposites Ni-20Cr-6Al Powder Synthesized by Mechanical Alloying

    OpenAIRE

    Akbar Salarvand; Vahid Shafi pour

    2011-01-01

    In this study, nano crystalline Ni-20Cr-6Al composite powder was produced using a high energy planetary ball milling and a two-stage process. Then the oxidation behavior of coating of that superalloy at different temperatures considered. Nanostructured Ni-20Cr-6Al coating was deposited by cold spray for application as a bond coat to thermal barrier coating on industrial gas turbine components. The paper samples synthesized were characterized by scanning electron microscopy (SEM) and transmiss...

  4. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  5. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrll@163.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Key Laboratory of Composite Modified Material of Colleges in Heilongjiang Province, Qiqihar 161006 (China); Wang, Lili [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Hu, Tianyu [College of Environment and Resources, Jilin University, Changchun 130024 (China); Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  6. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage

    Science.gov (United States)

    A novel nanocomposite of silver/titanium dioxide/chitosan adipate (Ag/TiO2/CS) was developed through photochemical reduction using a chitosan adipate template. Chitosan served as a reducing agent for the metal ions, and anchored metal ions by forming Ag–N coordination bonds and electrostatic attract...

  7. Creation of coating surfaces possessing superhydrophobic and superoleophobic characteristics with fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene segments.

    Science.gov (United States)

    Goto, Yuki; Takashima, Hiroki; Takishita, Katsuhisa; Sawada, Hideo

    2011-10-15

    Fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene units [R(F)-(VM-SiO(2))(n)-R(F)/Ar-SiO(2)] were prepared by the sol-gel reaction of the corresponding oligomer [R(F)-(VM)(n)-R(F)] with 4,4'-bis(triethoxysilyl)-1,1'-biphenyl [Ar-Si(OEt)(3)] under alkaline conditions. R(F)-(VM-SiO(2))(n)-R(F)/Ar-SiO(2) nanocomposites were applied to the surface modification of PMMA to exhibit not only a good oleophobicity imparted by fluorine but also a fluorescent emission ability on the surface. Methanol sol solutions of R(F)-(VM-SiO(2))(n)-R(F)/Ar-SiO(2) nanocomposites were effective for the surface modification of glass through the dipping technique to exhibit good oleophobicity with superhydrophobicity on the modified glass surface. On the other hand, 1,2-dichloroethane sol solutions enabled R(F)-(VM-SiO(2))(n)-R(F)/Ar-SiO(2) nanocomposites to exhibit both superhydrophobic and superoleophobic characteristics on the modified surface through dipping the glass in these sol solutions.

  8. Fabrication of Chitosan-gold Nanocomposites Combined with Optical Fiber as SERS Substrates to Detect Dopamine Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jaewook; Kang, Ikjoong [Gachon Univ., Seongnam (Korea, Republic of)

    2014-01-15

    This research was aimed to fabricate an optical fiber-based SERS substrate which can detect dopamine neurotransmitters. Chitosan nanoparticles (NPs) were firstly anchored on the surface of optical fiber, and then gold layer was subseque N{sub T}ly deposited on the anchored chitosan NPs via electroless plating method. Finally, chitosan-gold nanocomposites combined with optical fiber reacted with dopamine molecules of 100-1500 mg/ day which is a standard daily dose for Parkinson's disease patientss. The amplified Raman signal at 1348 cm{sup -1} obtained from optical fiber-based SERS substrate was plotted versus dopamine concentrations (1-10 mM), demonstrating an approximate linearity of Y = 303.03X + 2385.8 (R{sup 2} = 0.97) with narrow margin errors. The optical fiber-based Raman system can be potentially applicable to in-vitro (or in-vivo) detection of probe molecules.

  9. Urchin-like CdS/ZrO{sub 2} nanocomposite prepared by microwave-assisted hydrothermal combined with ion-exchange and its multimode photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrlili@126.com, E-mail: qqhrll@163.com; Wang, Lili [Qiqihar University, College of Materials Science and Engineering (China); Zhang, Wenzhi [Qiqihar University, College of Chemistry and Chemical Engineering (China); Zhang, Xiuli; Chen, Xi; Dong, Xue [Qiqihar University, College of Materials Science and Engineering (China)

    2014-12-15

    A series of urchin-like CdS/ZrO{sub 2} nanocomposites with different mole ratios of Cd/Zr were prepared by a two-step method combining the microwave-assisted hydrothermal and ion exchange methods. The products were characterized by X-ray diffraction, ultraviolet–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results of the study revealed that the CdS/ZrO{sub 2} nanocomposites had mixed phases of tetragonal ZrO{sub 2} and hexagonal CdS. Moreover, the samples prepared by the microwave-assisted hydrothermal method possessed the urchin-like structure with a surface composed of protrude-like nanoparticles in large quantities. The absorption in the visible region changed slightly with increasing mole ratio of Cd/Zr. Moreover, compared to the nanocomposites prepared by the conventional heating, the nanocomposites prepared by the microwave-assisted hydrothermal synthesis showed significantly different Brunauer–Emmett–Teller values, and the urchin-like CdS/ZrO{sub 2} structures were obtained. The photocatalytic degradation of methyl orange under ultraviolet (UV) light irradiation indicated that the photocatalytic activity of the CdS/ZrO{sub 2} nanocomposite with CdS/ZrO{sub 2} molar ratio of 30 % was higher than those of CdS, ZrO{sub 2}, and other different ratios of CdS/ZrO{sub 2} nanocomposites. Moreover, under UV light, visible light, and microwave-assisted multimode photocatalytic degradation, the urchin-like CdS/ZrO{sub 2} nanocomposites significantly affected the photodegradation of various dyes. To understand the possible reaction mechanism of the photocatalysis by the CdS/ZrO{sub 2} nanocomposites, a series of controlled experiments were performed, and the stability and reusability of the CdS/ZrO{sub 2} nanocomposites were further investigated by the photocatalytic reaction.

  10. Bactericidal activities of woven cotton and nonwoven polypropylene fabrics coated with hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite "Earth-plus"

    Directory of Open Access Journals (Sweden)

    Kasuga E

    2011-09-01

    Full Text Available Eriko Kasuga1,2, Yoshiyuki Kawakami2,3, Takehisa Matsumoto1, Eiko Hidaka1, Kozue Oana2, Naoko Ogiwara1, Dai Yamaki4, Tsukasa Sakurada4, Takayuki Honda1,51Department of Laboratory Medicine, Shinshu University Hospital, 2Division of Infection Control and Microbiological Regulation, Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3Division of Clinical Microbiology, Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, 4Shinshu Ceramics Co Ltd, Kiso, Nagano, Japan; 5Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, JapanBackground: Bacteria from the hospital environment, including linens and curtains, are often responsible for hospital-associated infections. The aim of the present study was to evaluate the bactericidal effects of fabrics coated with the hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite "Earth-plus".Methods: Bactericidal activities of woven and nonwoven fabrics coated with Earth-plus were investigated by the time-kill curve method using nine bacterial strains, including three Staphylococcus aureus, three Escherichia coli, and three Pseudomonas aeruginosa strains.Results: The numbers of viable S. aureus and E. coli cells on both fabrics coated with Earth-plus decreased to below 2 log10 colony-forming units/mL in six hours and reached the detection limit in 18 hours. Viable cell counts of P. aeruginosa on both fabrics coated with Earth-plus could not be detected after 3–6 hours. Viable cells on woven fabrics showed a more rapid decline than those on nonwoven fabrics. Bacterial cell counts of the nine strains on fabrics without Earth-plus failed to decrease even after 18 hours.Conclusion: Woven cotton and nonwoven polypropylene fabrics were shown to have excellent antibacterial potential. The woven fabric was more bactericidal than the nonwoven fabric.Keywords: hydroxyapatite

  11. Preparation and characterization of ceramic/carbon coated Fe₃O₄ magnetic nanoparticle nanocomposite as a solid-phase microextraction adsorbent.

    Science.gov (United States)

    Heidari, Hassan; Razmi, Habib; Jouyban, Abolghasem

    2012-07-06

    A novel solid-phase microextraction (SPME) fiber based on a glass tube coated with ceramic/carbon coated Fe₃O₄ magnetic nanoparticle nanocomposite (C-Fe₃O₄/C MNP) was prepared by sol-gel technique. The carbon coated Fe₃O₄ magnetic nanoparticles were synthesized by a simple hydrothermal reaction and the resultant powder was mixed with sol-gel precursors to prepare C-Fe₃O₄/C MNP. The prepared C-Fe₃O₄/C MNP was deposited on surface of glass tubes as new substrate with a simple method. The results revealed that this procedure was a simple and reproducible technique for the preparation of SPME fibers coated with magnetic nanoparticles. The scanning electron micrographs of the fiber surface revealed a three-dimensional structure which is suitable as SPME adsorbents. Some polycyclic aromatic hydrocarbons (PAHs) were selected as model compounds for evaluating performance of the designed SPME fiber. The analytes were extracted with SPME, and desorbed using acetonitrile via ultrasonication. The extracts were analyzed by high performance liquid chromatography (HPLC) with fluorescence detection. The results demonstrated that the proposed method based on the C-Fe₃O₄/C MNP fiber had wide dynamic linear range (0.01-350 μg L⁻¹) with good linearity (R²>0.990) and low detection limits (0.7-50 pg mL⁻¹). The relative standard deviation ranged from 6.9% to 12.2% for inter-day variations. These fibers were successfully used for the analysis of spiked water samples, which demonstrating the applicability of the home-made C-Fe₃O₄/C MNP fibers.

  12. Preparation and properties of β-SiAlON/ZrN nano-composites from ZrO2-coated Si3N4 powder

    Directory of Open Access Journals (Sweden)

    Aljoša Maglica

    2007-12-01

    Full Text Available In this study we report on the preparation and properties ofβ-SiAlON/ZrN electro-conductive nano-composites from ZrO2-coated Si3N4 powder. The silicon nitride powder was coated with nano-sized zirconia particles by the precipitation of ZrO2 from a zirconium acetate solution using urea as the precipitating agent. For the preparation of sintered β-SiAlON/ZrN composites two different approaches were used. In the first one the ZrO2-coated Si3N4 powder was mixed with the appropriate sintering additives (Al2O3, Y2O3 and AlN and reaction sintered, while in the second approach the coated powder was first calcined at 1600°C to prepare ZrNcoated Si3N4 powder that was subsequently mixed with the sintering additives and sintered. For comparison, composites with the same composition were also prepared by mixing Si3N4 and ZrO2 powders with sintering additives and sintered. During the thermal treatment and/or sintering of the Si3N4/ZrO2/AlN powder mixtures zirconia reacts with silicon nitride and aluminium nitride to form zirconium nitride. However, during sintering the agglomeration and grain growth of small, nanometric ZrN particles occurs. Despite the fact that the samples were sintered at atmospheric pressure they are dense, have relatively good flexural strengths and are electrically conductive.

  13. Extending Shelf Life of Chilled Pork by Combination of Chitosan Coating With Spice Extracts

    Institute of Scientific and Technical Information of China (English)

    XIA Xiufang; KONG Baohua

    2008-01-01

    The effects of spices (cinnamon, rosemary, clove) extracts and chitosan on microbiological growth, drip loss, color, and lipid oxidation of fresh chilled meat stored for 28 days at 4"C were investigated. There were four treatments: control, coated with spices(cimmamon 1.5g·L-1+rosemary 1.5·L-1+colve 1.0 g·L-1),coated with 0.5% chitosan,coated with spices and chitosan.Chitosan coating resulted in significant inhibition of microbial growth (P<0.05), while the lowest microbial counts were obtained in the samples containing both chitosan and spices, indicating a possible synergistic effect. Chitosan and its combinations with spices also showed the most intense antioxidative effect when compared to the controls (P<0.05). Meanwhile, chitosan coating could decrease water loss and keep better color of chilled meat. The combined spice extracts and chitosan coating could effectively extend the shelf life of chilled meat.

  14. Electroless Ni-P-PTFE-Al2O3 Dispersion Nanocomposite Coating for Corrosion and Wear Resistance

    Science.gov (United States)

    Sharma, Ankita; Singh, A. K.

    2014-01-01

    With the aim to produce a coating having good corrosion and wear resistance alongside hardness but lesser friction coefficient, Ni-P-PTFE-Al2O3 (NiPPA) dispersion coating was developed. This was achieved by introducing nanosized polytetrafluoroethylene (PTFE) and alumina (Al2O3) in the Ni-P matrix deposited on mild steel substrate. The coating was characterized using scanning electron microscopy, energy dispersive analysis of x-ray, and x-ray diffractrometry. Microhardness and wear resistance of the coating was measured using Vicker's hardness tester and Pin-on-Disc method, respectively. The corrosion behavior was measured using electrochemical polarization and immersion tests with and without exposure in 3.5% NaCl solution. It is observed that codeposition of Al2O3 and PTFE particles with Ni-P coating results in comparatively smooth surface with nodular grains. The NiPPA coating was observed to have moderate hardness between electroless Ni-P-PTFE and Ni-P-Al2O3 coating and good wear resistance with lubricating effect. Addition of both PTFE and Al2O3 is observed to enhance corrosion resistance of the Ni-P coating. However, improvement in corrosion resistance is more due to addition of Al2O3 than PTFE. Continuous exposure for 10-20 days in corrosive solution is found to deteriorate corrosion protection properties of the coating.

  15. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    Science.gov (United States)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  16. Tribology of Nanocomposites

    CERN Document Server

    2013-01-01

    This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.

  17. 纳米复合涂料的研究进展%Present Status and Development of Nano-Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    刘福春; 韩恩厚; 柯伟

    2001-01-01

    综述了纳米复合涂料的研究现状,着重介绍了TiO2\\,SiO2\\,ZnO和Fe2O3等的纳米氧 化物的特性,以及制备耐老化、隐身、抗静电、抗菌杀菌和随角异色效应等纳米涂料的原理 与应用。简述了纳米复合涂料的制备和检测方法,提出了纳米复合涂料研究中存在的主要问 题,并指出纳米复合涂料的研究方向。%Cailiao baohu 2001,34(2),01∽ 04(Ch).The present status and development trend of newly developed nano-composite coatings were described. Emphases were made on the introduction of the characteristics of TiO2, SiO2, ZnO and Fe2O3 nanooxides,and the preparation and testings of nano-ageing resistant,nano-stealthy,nano-electric conducting,nano-antimicrobial and nano-functional coatings. The main problems still existed were pointed out by the authors.

  18. Electroactive β-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor

    Science.gov (United States)

    Mehebub Alam, Md; Sultana, Ayesha; Sarkar, Debabrata; Mandal, Dipankar

    2017-09-01

    The electroactive β-phase is most desirable due to its highest piezo-, pyro- and ferroelectric properties in poly(vinylidene fluoride) (PVDF). Induction of the β-phase is successfully accomplished in titanium dioxide (TiO2) nanoparticles (NPs) doped spin-coated PVDF nanocomposite (PNC) films. The optimized yields of β-phase and homogeneous ultra-smooth free-standing PNC film is utilized in a mechanical-energy harvesting application by fabricating a nanogenerator (NG) where the typical electrical poling step is not undertaken. Under a repeated human finger touch and release process, it delivers an open-circuit voltage of 5 V. Moreover, the physical sensing capabilities of the NG are examined through harvesting mechanical energy from mouse clicking of a laptop and wrist pulse detection, which indicates that it can also be used as a nanosensor. The blue photoluminescence centred at 444 nm, which was also observed in PNC films, makes us anticipate a new type of photonic application where the design feasibility of hybrid sensors, i.e. electromechanical and photonic combination, is also possible.

  19. Magnetic mixed hemimicelles dispersive solid-phase extraction based on ionic liquid-coated attapulgite/polyaniline-polypyrrole/Fe3O4 nanocomposites for determination of acaricides in fruit juice prior to high-performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Yang, Xiaoling; Qiao, Kexin; Liu, Fang; Wu, Xiaoling; Yang, Miyi; Li, Jing; Gao, Haixiang; Zhang, Sanbing; Zhou, Wenfeng; Lu, Runhua

    2017-05-01

    In this research, a novel method using magnetic mixed hemimicelles dispersive solid-phase extraction (MMHDSPE) based on C16mimBr-coated attapulgite/polyaniline-polypyrrole/Fe3O4 (ATP/PANI-PPY/Fe3O4) nanocomposites were investigated for enrichment and separation of three acaricides in fruit juice. In this method, we combined the simplicity and speed of dispersive solid-phase extraction, the advantages of mixed hemimicelles and the facility of the phase separation of the magnetic nanoparticles to develop a simple, rapid, sensitive, and effective method for detecting target analytes from the juice samples. ATP/PANI-PPY/Fe3O4 nanocomposites were successfully synthesized using a one-pot method. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental factors affecting the extraction efficiency including the sorbent type, amount of ATP/PANI-PPY/Fe3O4 nanocomposites, volume of ILs, sonication time, pH, and desorption conditions were optimized. Under the optimal conditions, good linearity was observed for all target analytes, with correlation coefficients (r(2)) ranging from 0.9994 to 0.9999; the limits of detection (LOD) were in the range of 0.16-0.57μgL(-1), and the recoveries of analytes using the proposed method ranged between 88.67% and 95.10%. The sorbents exhibited excellent repeatability in the range of 1.83-4.24% in extracting the three target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.19-6.24% and 2.23-8.36%, respectively. The method was successfully applied to analyze fruit juice samples by rapid preconcentration of acaricides.

  20. Enhanced photocatalytic performance of mesoporous TiO{sub 2} coated SBA-15 nanocomposites fabricated through a novel approach: supercritical deposition aided by liquid-crystal template

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Lin, Xiao; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng; Li, Ming; Chen, Feitai

    2016-03-15

    Highlights: • Highly uniform mesoporous TiO{sub 2} nanopartices were coated SBA-15. • MT showed smaller crystallite size, higher hydroxyl content and surface area. • MT/SBA-15 show enhanced photocatalytic activity and high reused activity. • The optimum MT loading rate and calcination temperature were obtained to be 15% and 400 °C, respectively. • Photocatalytic behaviors are discussed in terms of the Langmuir–Hinshelwood model. - Abstract: Mesoporous TiO2 coated SBA-15 (MT@S) nanocomposites were fabricated through supercritical CO{sub 2} deposition aided by liquid-crystal template. The as-prepared samples were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy and so on. The results reveal that MT uniformly deposited onto silica with titania incorporated in SBA-15 channels, showed smaller crystallite size, higher hydroxyl content and surface area than nonporous TiO{sub 2} coated SBA-15 (NT@S) obtained by a similar route without template. With TiO{sub 2} loading ratio of 15 wt% and calcination temperature of 400 °C, 15%MT@S-400 showed the enhanced degradation efficiency for azo dyes (methylene blue, methyl orange, and rhodamine B) and phenol in comparsion with 15%NT@S-400, due to those improved textural and physicochemical properties. Meanwhile, the reused MT@S also showed high photoactivity. Additionally, the effects of MT content and calcination temperature have been examined as operational parameters. Photocatalytic reactions followed pseudo-first-order kinetics and are discussed in terms of the Langmuir–Hinshelwood model.

  1. A novel dianionic amino acid ionic liquid-coated PEG 4000 modified Fe3O4 nanocomposite for the magnetic solid-phase extraction of trypsin.

    Science.gov (United States)

    Yang, Qin; Wang, Yuzhi; Zhang, Hongmei; Xu, Kaijia; Wei, Xiaoxiao; Xu, Panli; Zhou, Yigang

    2017-11-01

    A novel magnetic extractant, PEG 4000 modified Fe3O4nanomaterial that coated with dianionic amino acid ionic liquid (Fe3O4@PEG@DAAAIL), was successfully synthesized and characterized. X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and zeta potentials were used to confirm that the novel nanocomposite was successfully synthesized. Subsequently, the prepared Fe3O4@PEG@DAAAIL nanocomposite was used as the extractant for trypsin coupled with magnetic solid-phase extraction (MSPE). The concentrations of trypsin in the supernatant were detected by UV-vis spectrophotometer at 278nm. The extraction ability turned out to be better than the other four kinds of extractants prepared in this work. Furthermore, the influence of a series of factors, such as extraction time and temperature, initial trypsin concentration, the value of pH and ionic strength, was systematically investigated. Under the optimal extraction condition, the extraction capacity for trypsin could reach up to 718.73mg/g, absolutely higher than that of other adsorbents reported. This satisfactory extraction capacity could be maintained unchangeable after at least eight days, and kept over 90% of initial extraction capacity after eight recycles. What's more, the activity of trypsin after extraction retained 92.29% of initial activity, verifying the biocompatibility of the prepared extractant. Finally, the developed Fe3O4@PEG@DAAAIL-MSPE method was successfully applied to the real sample analysis with satisfactory results. All of above proves the potential value of Fe3O4@PEG@DAAAIL-MSPE in the analysis of biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electrophoretic deposition and characterization of HA/chitosan nanocomposite coatings on Ti6Al7Nb alloy

    Science.gov (United States)

    Moskalewicz, Tomasz; Kot, Marcin; Seuss, Sigrid; Kędzierska, Aleksandra; Czyrska-Filemonowicz, Aleksandra; Boccaccini, Aldo R.

    2015-01-01

    Nano-hydroxyapatite/chitosan (nc-HA/chitosan) composite coatings were produced on two phase (α+β) Ti6Al7Nb titanium alloy substrates by electrophoretic deposition (EPD). The microstructure of the coatings was examined by scanning- and transmission electron microscopy methods as well as by X-ray diffractometry. The coatings, 770 nm-800 nm thick, were uniform, without any cracks or presence of large voids and they exhibited good adhesion to the titanium alloy substrate. The microstructure of the coatings consisted of nc-HA needle-like particles homogeneously embedded in a chitosan matrix. The deposited coatings exhibited good adhesion to the substrate. The best adhesion to the titanium alloy was determined for the coating deposited from suspensions containing 4 g/L of HA at 10 V during 240 s. The results confirm EPD as a convenient method to develop uniform and crack-free nanoscale organic-inorganic composite coatings on two phase titanium alloy substrates with potential application in orthopedic and dental implants.

  3. Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings.

    Science.gov (United States)

    Amadeh, A; Ebadpour, R

    2013-02-01

    Metal-ceramic composite coatings are widely used in automotive and aerospace industries as well as micro-electronic systems. Electrodeposition is an economic method for application of these coatings. In this research, nickel-cobalt coatings reinforced by nano WC particles were applied on carbon steel substrate by pulse electrodeposition from modified Watts bath containing different amounts of cobalt sulphate as an additive. Saccharin and sodium dodecyl sulphate (SDS) were also added to electroplating bath as grain refiner and surfactant, respectively. The effect of cobalt content on wear and corrosion behavior of the coatings was investigated. Wear and corrosion properties were assessed by pin-on-disk and potentiodynamic polarization methods, respectively. Phase analysis was performed by X-ray diffraction (XRD) using CuK(alpha) radiation and the worn surfaces were studied by means of Scanning Electron Microscopy (SEM). The results showed that the addition of cobalt improved the wear resistance of the coatings. In the presence of 18 g/L cobalt in electrodeposition bath, the wear rate of the coating decreased to 0.002 mg/m and the coefficient of friction reduced to 0.695 while they were 0.004 mg/m and 0.77 in the absence of cobalt, respectively. This improvement in wear properties can be attributed to the formation of hcp phase in metallic matrix. Meanwhile, the corrosion resistance of the coatings slightly reduced because cobalt is more active metal with respect to nickel.

  4. Magnetoelectric polymer nanocomposite for flexible electronics

    KAUST Repository

    Alnassar, M.

    2015-03-06

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  5. 紫外光固化漆酚基纳米复合涂料性能的对比分析%Properties Comparative Analysis of UV-curable Urushiol Nanocomposite Coating

    Institute of Scientific and Technical Information of China (English)

    阮亿明

    2015-01-01

    The UV-curable technology was combined with organic/ inorganic hybrid nano materials preparation technology, applied renewable natural lacquer as the main raw material, four species composite coatings of Nano SiO2 / TiO2 / ZnO / OMMT were prepared by UV curing urushiol and UV curing urushiol. The conventional mechanical properties, UV resistance, solvent resistance and chemical resistance properties of urushiol formaldehyde condensates, were analyzed. The results showed that the properties of UV-curable urushiol and its four nano-composite coatings were improved greatly.%将紫外光固化技术与有机/无机纳米杂化材料制备技术相结合,以可再生天然生漆为主要原料,制得了紫外光固化漆酚和紫外光固化漆酚基纳米SiO2/TiO2/ZnO/OMMT的4种复合涂料.对比分析了其与漆酚甲醛缩聚物的常规物理机械性能、抗紫外线性能、抗溶剂性和耐化学介质性能.结果表明,紫外光固化漆酚和以其为基础的4种纳米复合涂料的各项性能均较漆酚甲醛缩聚物有较大提高.

  6. Ion Beam Analysis, structure and corrosion studies of nc-TiN/a-Si{sub 3}N{sub 4} nanocomposite coatings deposited by sputtering on AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    García, J. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Canto, C.E. [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Rodríguez, E.; Jiménez, O. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Solis, C.; Lucio, O.G. de [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Rocha, M.F. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, México, D.F. 07738 (Mexico)

    2014-07-15

    In this work, nanocomposite coatings of nc-TiN/a-Si{sub 3}N{sub 4}, were deposited on AISI 316L stainless steel substrate by a DC and RF reactive magnetron co-sputtering technique using an Ar–N{sub 2} plasma. The structure of the coatings was characterized by means of XRD (X-ray Diffraction). The substrate and coating corrosion resistance were evaluated by potentiodynamic polarization using a Ringer solution as electrolyte. Corrosion tests were conducted with the purpose to evaluate the potential of this coating to be used on biomedical alloys. IBA (Ion Beam Analysis) techniques were applied to measure the elemental composition profiles of the films and, XPS (X-ray Photoelectron Spectroscopy) were used as a complementary technique to obtain information about the compounds present in the films. The nanocomposite coatings of nc-TiN/a-Si{sub 3}N{sub 4} show crystalline (TiN) and amorphous (Si{sub 3}N{sub 4}) phases which confer a better protection against the corrosion effects compared with that of the AISI 316L.

  7. Bio-Inspired Fluoro-polydopamine Meets Barium Titanate Nanowires: A Perfect Combination to Enhance Energy Storage Capability of Polymer Nanocomposites.

    Science.gov (United States)

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-03-01

    Rapid evolution of energy storage devices expedites the development of high-energy-density materials with excellent flexibility and easy processing. The search for such materials has triggered the development of high-dielectric-constant (high-k) polymer nanocomposites. However, the enhancement of k usually suffers from sharp reduction of breakdown strength, which is detrimental to substantial increase of energy storage capability. Herein, the combination of bio-inspired fluoro-polydopamine functionalized BaTiO3 nanowires (NWs) and a fluoropolymer matrix offers a new thought to prepare polymer nanocomposites. The elaborate functionalization of BaTiO3 NWs with fluoro-polydopamine has guaranteed both the increase of k and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. The nanocomposite with 5 vol % functionalized BaTiO3 NWs discharges an ultrahigh energy density of 12.87 J cm(-3) at a relatively low electric field of 480 MV m(-1), more than three and a half times that of biaxial-oriented polypropylene (BOPP, 3.56 J cm(-3) at 600 MV m(-1)). This superior energy storage capability seems to rival or exceed some reported advanced nanoceramics-based materials at 500 MV m(-1). This new strategy permits insights into the construction of polymer nanocomposites with high energy storage capability.

  8. Preparation of (Ti, Sn)O2 Nano-Composite Photocatalyst by Supercritical Fluid Dry Combination Technology

    Institute of Scientific and Technical Information of China (English)

    Jingchang ZHANG; Qing LI; Weiliang CAO

    2005-01-01

    A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%~30.1%) were prepared from TiCl4and SnCl4.5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology.Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0~4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nanocomposite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity.

  9. Metal-polymer nanocomposites for functional applications

    Energy Technology Data Exchange (ETDEWEB)

    Faupel, Franz; Zaporojtchenko, Vladimir; Strunskus, Thomas [Christian-Albrechts-Universitaet zu Kiel (Germany). Institut fuer Materialwissenschaft - Materialverbunde; Elbahri, Mady [Christian-Albrechts-Universitaet zu Kiel (Germany). Institut fuer Materialwissenschaft - Nanochemistry and Engineering

    2010-12-15

    Nanocomposites combine favorable features of the constituents on the nanoscale to obtain new functionalities. The present paper is concerned with the preparation of polymer-based nanocomposites consisting of metal nanoparticles in a polymer matrix and the resulting functional properties. Emphasis is placed on vapor phase deposition which inter alia allows the incorporation of alloy clusters with well defined composition and tailored filling factor profiles. Examples discussed here include optical composites with tuned particle surface plasmon resonances for plasmonic applications, magnetic high frequency materials with cut-off frequencies well above 1 GHz, sensors that are based on the dramatic change in the electronic properties near the percolation threshold, and antibacterial coatings which benefit from the large effective surface of nanoparticles and the increased chemical potential which both strongly enhance ion release. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Mechanical Properties And Microstructure Of AlN/SiCN Nanocomposite Coatings Prepared By R.F.-Reactive Sputtering Method

    Directory of Open Access Journals (Sweden)

    Nakafushi Y.

    2015-06-01

    Full Text Available FIn this work, AlN/SiCN composite coatings were deposited by r.f.-reactive sputtering method using a facing target-type sputtering (FTS apparatus with composite targets consisting of Al plate and SiC chips in a gaseous mixture of Ar and N2, and investigated their mechanical properties and microstructure. The indentation hardness (HIT of AlN/SiCN coatings prepared from composite targets consisting of 8 ~32 chips of SiC and Al plate showed the maximum value of about 29~32 GPa at a proper nitrogen gas flow rate. X-ray diffraction (XRD patterns for the AlN/SiCN composite coatings indicated the presence of the only peeks of hexagonal (B4 structured AlN phase. AlN coatings clarified the columnar structure of the cross sectional view TEM observation. On the other hand, microstructure of AlN/SiCN composite coatings changed from columnar to equiaxed structure with increasing SiCN content. HR-TEM observation clarified that the composite coatings consisted of very fine equiaxial grains of B4 structured AlN phase and amorphous phase.

  11. Study of Oxidation Behaviour of Bond Coating Nanocomposites Ni-20Cr-6Al Powder Synthesized by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Akbar Salarvand

    2011-08-01

    Full Text Available In this study, nano crystalline Ni-20Cr-6Al composite powder was produced using a high energy planetary ball milling and a two-stage process. Then the oxidation behavior of coating of that superalloy at different temperatures considered. Nanostructured Ni-20Cr-6Al coating was deposited by cold spray for application as a bond coat to thermal barrier coating on industrial gas turbine components. The paper samples synthesized were characterized by scanning electron microscopy (SEM and transmission microscope (TEM. The crystallite size was found to be less than 18 nm. XRD pattern of the nanostructured Ni-20Cr-6Al milled powder consisted of two phases (Ni,Cr rich and (Ni3Al and so pure metals of Ni,Cr and Al that transferred into the coating. XRD pattern of the oxidized coating revealed that α-Al2O3 oxide was the main phase of the oxide and so Ni(Cr,Al 2O4 spinel phases despite the formation of α- Al2O3 oxide.

  12. Influence of in-flight particle state diagnostics on properties of plasma sprayed YSZ-CeO2 nanocomposite coatings

    Directory of Open Access Journals (Sweden)

    S. Mantry

    2014-07-01

    Full Text Available This article describes the influence of controlling in-flight hot particle characteristics on properties of plasma sprayed nanostructured yttria stabilized zirconia (YSZ coatings. This article depicts dependence of adhesion strength of as-sprayed nanostructured YSZ coatings on particle temperature, velocity and size of the splat prior to impact on the metallic substrate. Particle temperature measurement is based on two-color pyrometry and particle velocities are measured from the length of the particle traces during known exposure times. The microstructure and adhesion strength of as-sprayed nano-YSZ coatings were studied. Field emission scanning electron microscopy results revealed that morphology of coating exhibits bimodal microstructure consisting of nano-zones reinforced in the matrix of fully melted particles. The coating adhesion strength is noticed to be greatly affected by the melting state of agglomerates. Maximum adhesion strength of 42.39 MPa has been experimentally found out by selecting optimum levels of particle temperature and velocity. The enhanced bond strength of nano-YSZ coating may be attributed to higher interfacial toughness due to cracks being interrupted by adherent nano-zones.

  13. On the control of deposition process for enhanced mechanical properties of nc-TiC/a-C:H coatings with DC magnetron sputtering at low or high ion flux

    NARCIS (Netherlands)

    Souček, Pavel; Schmidtová, Tereza; Zábranský, Lukáš; Buršíková, Vilma; Vašina, Petr; Caha, Ondřej; Buršík, Jiří; Peřina, Vratislav; Mikšová, Romana; Pei, Y.T.; De Hosson, J.T.M.

    2014-01-01

    Nanocomposite coatings consisting of nanocrystallites embedded in an amorphous matrix can be tailored to exhibit unusual combination of properties such as high hardness and modulus combined with low friction and wear. The properties of the coatings are governed by parameters of the deposition plasma

  14. Fabrication of Superhydrophobic Surface on Polydopamine-coated Al Plate by Using Modified SiO{sub 2} Nanoparticles/Polystyrene Nano-Composite Coating

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Songho; Lee, Woohee; Ahn, Yonghyun [Dankook University, Yongin (Korea, Republic of)

    2016-04-15

    A superhydrophobic Al surface has been fabricated by coating with polydopamine, followed by coating with a modified silica nanoparticles/PS composite solution. The role of polydopamine layer is to improve the adhesion of the modified silica nanoparticles. This platform is an ideal structure for attaching various nano/micro particles. Aluminum is an important industrial metal, and the superhydrophobic surface of Al plates has potential applications in various fields. Aluminum is a relatively lightweight, soft, and durable metal with good thermal conductivity and excellent corrosion resistance.

  15. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs.

  16. Innovative fabrication of the flower-like nanocomposite coating on a nitinol fiber through Fenton's oxidation for selective and sensitive solid-phase microextraction.

    Science.gov (United States)

    Zhang, Min; Zhen, Qi; Wang, Huiju; Guo, Mei; Zhou, Shanshan; Wang, Xuemei; Du, Xinzhen

    2016-09-01

    A novel flower-like nanostructure was successfully in situ fabricated on the surface of nitinol wire through Fenton's oxidation for the first time. It was found that the densely immobilized coating on the surface of the nitinol fiber was composed of nickel and titanium oxide nanocomposite (NiO/TiO2NC). The NiO/TiO2NC coated fiber was used to extract aromatic compounds coupled with high performance liquid chromatography (HPLC) with UV detection and exhibited excellent extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) with larger delocalized π-system among the studied analytes. Important factors affecting extraction efficiency of PAHs were examined. Under the optimized conditions, the calibration curves were linear in the range from 0.05 to 500μgL(-1) with correlation coefficients of R(2)≥0.999, and the lowest limit of detection of 0.006μgL(-1) was achieved for benzo[a]pyrene. Furthermore, the intra-day and inter-day precisions for the single fiber varied from 4.69% to 5.97% and from 5.28% to 6.32% for five replicates of PAHs at the spiking level of 50μgL(-1), respectively. The fiber-to-fiber precision for five fibers prepared in different batches ranged from 6.19% to 8.35%. The developed method was successfully applied to concentration and determination of target PAHs from real environmental water samples. Moreover, this novel nitinol-based fiber exhibited long lifespan. Therefore, the proposed fiber can be used as a promising candidate for a conventional fused silica-based fiber in SPME.

  17. Effect of nano-composite and Thyme oil (Tymus Vulgaris L) coating on fruit quality of sweet cherry (Takdaneh Cv) during storage period.

    Science.gov (United States)

    Nabifarkhani, Naser; Sharifani, Mehdi; Daraei Garmakhany, Amir; Ganji Moghadam, Ebrahim; Shakeri, Alireza

    2015-07-01

    Sweet cherry is one of the most appreciated fruit by consumers since it is an early season fruit and has an excellent quality. In this study effect of active nano composite formed from chitosan (as a matrix material), nano cellulose fiber (1% concentration) and Thyme oils (Tymus Vulgaris L) at 1% concentration on fruits quality was investigated. Treated fruits were stored at 1°C for 5 weeks and changes of different qualities attributes including weight loss, total acidity, TSS, anthocyanin, total sugar and malic acid content (by high performance liquid chromatography (HPLC) method) were measured each week. Results showed that nano composite and Thyme oil significantly affect fruit's water retention and so decrease fruit weight loss and preserve anthocyanin (P < 0.05). None of applied treatments had any significant effects in comparison with control in regard to acidity while total sugar content and TSS significantly affected by treatment compared to control samples. Result of HPLC analysis showed that there was no significant difference between different treatment and control sample in term of malic acid concentrations during storage period but increase storage time lead to increase malic acid concentration in all treatments. For conclusion it can be Saied that fruits coating with nano-composite, lead to increase fruit shelf life, better appearance and prevents fungal growth that may be due to creation of an active packaging by these compounds.

  18. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    Science.gov (United States)

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes.

  19. Surface segregation in TiO2-based nanocomposite thin films

    Science.gov (United States)

    Sai Kiran Chakravadhanula, Venkata; Kübel, Christian; Hrkac, Tomislav; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz; Kienle, Lorenz

    2012-12-01

    The morphology of nanocomposites plays a pivotal role in understanding their functionality and determines their capabilities for applications. The use of nanocomposite coatings requires a study of the size effects on their functional properties. Noble metal nanoparticles are promising candidates for nanocomposite thin film applications due to their antibacterial, plasmonic and photocatalytic properties. In this contribution, the morphology of Ag-TiO2 and Au-TiO2 nanocomposite thin films has been investigated experimentally using electron tomography in transmission electron microscopy in combination with UV/vis spectroscopy. Based on the additional 3D information obtained from tomography, we propose a two-step model towards the observed bimodal particle size in these nanocomposite thin films prepared by co-sputtering from two different sources. Furthermore, we show that the optical properties exhibit a well-defined relation with the morphology of the nanocomposite thin films. The present investigations demonstrate the potential of electron tomography for revealing the complex structure and formation processes of functional nanocomposites.

  20. Tribology of nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering

    2013-02-01

    This book provides a comprehensive review of the latest developments in nanotribology. It contains the following five chapters: 1. Tribology of bulk polymer nanocomposites and nanocomposite coatings (M. D. Bermudez, F. J. Carrion, C. Espejo, J. Sanes); 2. Nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites (Jayashree Bijwe, Mohit Sharma); 3. Tribology of MoS{sub 2}-based nanocomposites (Kunhong Hu, Xianguo Hu, Yufu Xu, Xiaojun Sun, Yang Jiang); 4. Friction and wear of Al{sub 2}O{sub 3}-based composites with dispersed and agglomerated nanoparticles (Jinjun Lu, Jian Shang, Junhu Meng, Tao Wang); and 5. Wear of multi-scale phase reinforced composites (Zhenyu Jiang, Zhong Zhang).

  1. Graphene-doped PEDOT:PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC

    Directory of Open Access Journals (Sweden)

    Firuze Soltani-kordshuli

    2016-09-01

    Full Text Available In this paper, successful fabrication of highly conductive transparent graphene-doped PEDOT:PSS composite thin films is reported for the first time, using conventional and substrate vibration-assisted ultrasonic spray coating (SVASC. To suppress the challenges associated with spraying of the precursor solution containing graphene, graphene sheets were broken by sonication and were uniformly dispersed and stabilized in PEDOT:PSS aqueous solution using isopropyl alcohol (IPA. The mechanism of dispersion of graphene in PEDOT:PSS aqueous solution using IPA is elucidated. The maximum electrical conductivity of 298 S.cm−1 was obtained for a graphene-doped PEDOT:PSS thin film, which compared to the pristine PEDOT:PSS thin films shows a ten-fold increase, with a transparency comparable to that of the indium tin oxide (ITO-coated glass.

  2. Processing and characterization of extruded PET and its r-PET and MWCNT nanocomposite thin films by spin coating

    Indian Academy of Sciences (India)

    Arvind R Singh; Vineeta D Deshpande

    2016-02-01

    The objective of the present study was basic understanding of the formation of thin film morphology by spin coating using reorganized polyethylene terephthalate (r-PET) and multiwalled carbon nanotubes (MWCNTs) as fillers in PET. A study of the correlation between physical properties of the PET films and its surface morphology was carried out using atomic force microscopy-based power spectral density (PSD) analysis. No significant work of surface analysis, using PSD of thin films of PET has been reported till date. Dilute solution of PET, PET with 3 wt% (r-PET) and PET with 3 wt% (2 wt% r-PET + 1 wt% MWCNT) filler were prepared using trifluoroacetic acid (TFA) as a solvent and thin films were fabricated on glass substrate by the optimized spin coating technique. Preparation of r-PET and r-PET+ MWCNT fillers was obtained by the precipitation method using TFA as a solvent and acetone as an antisolvent. The samples before spin coating were extruded and for comparison, a film of non-extruded PET was also prepared. Structural studies by Fourier transform infrared and X-ray diffraction show higher degree of crystallinity in r-PET and decrease in chain entanglements. Owing to the crystallizing behaviour of r-PET, it allows better dispersion of MWCNT in the polymer matrix as compared with PET. The samples with fillers of MWCNT show more compact and unique mesh-like globular structure, indicating application for electromagnetic shielding foams and fibres.

  3. Microstructure characterization of oxidation of aluminized coating prepared by a combined process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.B. [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Tao, J. [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)], E-mail: taojie@nuaa.edu.cn; Xu, J.; Chen, Z.F.; Sun, X.J.; Xu, Z. [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)

    2008-08-31

    Alumina layer is a good candidate for the tritium penetration barrier that is important in the control of tritium losses due to permeation through structural materials used in high-temperature gas-cooled reactors and in fusion reactors. This paper describes the microstructure of the oxide film of the tritium penetration barrier formed on 316L stainless steel, which was prepared by a combined process, namely, aluminizing and oxidizing treatments using a double glow plasma technology. Microstructure and phase structure of the coatings investigated were examined by scanning electronic microscope (SEM), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM), respectively. The chemical composition and the chemical states of Al, O elements in the oxidation film were identified by X-ray photoelectron spectroscopy (XPS). After aluminization, the typical microstructure of the coating mainly consisted of an outer high aluminum-containing intermetallic compound layer (Fe{sub 2}Al{sub 5} and FeAl) and intermediate ferritic stainless steel ({alpha} Fe(Al))layer followed by the austenitic substrate. After the combined process, an oxide layer that consisted of Al{sub 2}O{sub 3} and spinel FeAl{sub 2}O{sub 4} had been successfully formed on the aluminizing coating surface, with an amorphous outmost surface and an underlying subsurface nanocrystalline structure.

  4. Combined slurry and cavitation erosion resistance of HVOF spray coated SS 410 steel

    Science.gov (United States)

    Amarendra, H. J.; Prathap, M. S.; Karthik, S.; Abhishek, A. M.; Madhu surya, K. C.; Gujjar gowda, S.; Anilkumar, T.

    2016-09-01

    The hydro turbine materials surface is degraded due to the slurry erosion and cavitation. The solid particles carried by water impacting the material results in slurry erosion. The damage occurred due to slurry erosion is the concern, when considered individually. The erosion damage is observed to be severe when slurry erosion and cavitation are combined. The hydro turbine material, martensitic stainless (SS 410) is surface modified with 80Ni-Cr by High Velocity Oxy Fuel spray process. The coated material subjected to post thermal treatment at a temperature of 950 ° C, soaked at 1 h, 2 h and 3 h are subjected to combined slurry and cavitation erosion test. The cavitation is created by using Cavitation Inducers. The tests are conducted by using silica sand as the erodent with three different sizes of 150, 200 and 300 μm. The results are compared with the as-received specimen. The results confirmed the effect of heat treatment on the end results, as the coated thermal treated specimens showed better erosion resistance against the as-received specimen. The eroded specimens are characterized by Scanning Electron Microscope. The thermal treated HVOF coated specimens shown the better erosion resistance.

  5. Technology of ultrasonic-electroless plating Ni-P-SiC nanocomposite coating%超声波-化学镀Ni-P-SiC纳米复合镀层的工艺研究

    Institute of Scientific and Technical Information of China (English)

    马春阳; 吴蒙华; 曲智家

    2011-01-01

    Ni-P-SiC nanocomposite coatings were prepared by ultrasonic-electroless plating on surface of 45 steel substrate. Through orthogonal experiment, the technology parameters of plating Ni-P-SiC nanocomposite coatings were optimized and the hest addition amount of SiC nanoparticles. ultrasonic power, temperature of plating liquid and pH value were determined. The microstructure of the coatings was observed and analysed by scanning electron microscopy ( SEM) and atomic force microscopy ( AFM) .%采用超声波-化学镀的方法,在45钢基体表面制备Ni-P-SiC纳米复合镀层.利用正交试验法对制备Ni-P-SiC纳米复合镀层的工艺参数进行优化,并确定SiC纳米粒子的加入量、超声波功率、复合镀液的温度以及pH值.最后,利用扫描电镜(SEM)和原子力显微镜(AFM)对复合镀层的显微组织形貌进行观察和分析.

  6. Biolubricant induced phase inversion and superhydrophobicity in rubber-toughened biopolymer/organoclay nanocomposites

    Science.gov (United States)

    Bayer, Ilker S.; Steele, Adam; Martorana, Philip; Loth, Eric; Robinson, Scott J.; Stevenson, Darren

    2009-08-01

    We present a simple technique to fabricate rubber-toughened biopolymer/organoclay nanocomposite coatings with highly water repellent surface wetting characteristics and strong adhesion to metal surfaces. The technique combines the principles of phase inversion and atomization of multicomponent polymer/organoclay suspensions containing a biolubricant as the nonsolvent. The biolubricant was a blend of cyclomethicone/dimethiconol oil with fruit kernel oils. The ternary system of cellulose nitrate/solvent/biolubricant was blended with rubber dispersed organoclay nanofluids. Natural, synthetic, and fluoroacrylic latex rubbers were used for the purpose. Self-cleaning superhydrophobic coatings were obtained from synthetic and fluoroacrylic rubbers whereas natural rubber containing formulations resulted in sticky superhydrophobic coatings.

  7. An anti-CD34 antibody-functionalized clinical-grade POSS-PCU nanocomposite polymer for cardiovascular stent coating applications: a preliminary assessment of endothelial progenitor cell capture and hemocompatibility.

    Directory of Open Access Journals (Sweden)

    Aaron Tan

    Full Text Available In situ endothelialization of cardiovascular implants has emerged in recent years as an attractive means of targeting the persistent problems of thrombosis and intimal hyperplasia. This study aimed to investigate the efficacy of immobilizing anti-CD34 antibodies onto a POSS-PCU nanocomposite polymer surface to sequester endothelial progenitor cells (EPCs from human blood, and to characterize the surface properties and hemocompatibility of this surface. Amine-functionalized fumed silica was used to covalently conjugate anti-CD34 to the polymer surface. Water contact angle, fluorescence microscopy, and scanning electron microscopy were used for surface characterization. Peripheral blood mononuclear cells (PBMCs were seeded on modified and pristine POSS-PCU polymer films. After 7 days, adhered cells were immunostained for the expression of EPC and endothelial cell markers, and assessed for the formation of EPC colonies. Hemocompatibility was assessed by thromboelastography, and platelet activation and adhesion assays. The number of EPC colonies formed on anti-CD34-coated POSS-PCU surfaces was not significantly higher than that of POSS-PCU (5.0±1.0 vs. 1.7±0.6, p>0.05. However, antibody conjugation significantly improved hemocompatibility, as seen from the prolonged reaction and clotting times, decreased angle and maximum amplitude (p<0.05, as well as decreased platelet adhesion (76.8±7.8 vs. 8.4±0.7, p<0.05 and activation. Here, we demonstrate that POSS-PCU surface immobilized anti-CD34 antibodies selectively captured CD34+ cells from peripheral blood, although only a minority of these were EPCs. Nevertheless, antibody conjugation significantly improves the hemocompatibility of POSS-PCU, and should therefore continue to be explored in combination with other strategies to improve the specificity of EPC capture to promote in situ endothelialization.

  8. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Behnaz BAKHSHANDEH; Masoud SOLEIMANI; Nasser GHAEMI; Iman SHABANI

    2011-01-01

    Aim: Bioartificial bone tissue engineering is an increasingly popular technique to solve bone defect challenges. This study aimed to investigate the interactions between matrix composition and appropriate cell type, focusing on hydroxyapatite (HA), to achieve a more effective combination for bone regeneration.Methods: Human unrestricted somatic stem cells (USSCs) were isolated from placental cord blood. The cellular and molecular events during the osteo-induction of USSCs were evaluated for 21 d under the following conditions: (1) in basal culture, (2) supplemented with hydroxyapatite nanoparticle (nHA) suspension, and (3) seeded on electrospun aligned nanoflbrous poly-ε-caprolactone/poly-L-lactic acid/nHA (PCL/PLLA/nHA) scaffolds. The scaffolds were characterized using scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and tensile test.Results: Maintenance of USSCs for 21 d in basal or osteogenic culture resulted in significant increase in osteoblast differentiation. With nHA suspension, even soluble osteo-inductive additives were ineffective, probably due to induced apoptosis of the cells. In con-trast to the hindrance of proliferation by nHA suspension, the scaffolds improved cell growth. The scaffolds mimic the nanostructure of natural bone matrix with the combination of PLLA/PCL (organic phase) and HA (inorganic phase) offering a favorable surface topogra-phy, which was demonstrated to possess suitable properties for supporting USSCs. Quantitative measurement of osteogenic markers, enzymatic activity and mineralization indicated that the scaffolds did not disturb, but enhanced the osteogenic potential of USSCs.Moreover, the alignment of the fibers led to cell orientation during cell growth.Conclusion: The results demonstrated the synergism of PCL/PLLA/nHA nanoflbrous scaffolds and USSCs in the augmentation of osteo-genic differentiation. Thus, nHA grafted into PCI./PLLA scaffolds can be a suitable choice for bone tissue

  9. Separation and preconcentration of riboflavin from human plasma using polythionine coated magnetite/hydroxyapatite nanocomposite prior to analysis by surfactant-enhanced fluorimetry

    Science.gov (United States)

    Farzin, Leila; Shamsipur, Mojtaba

    2017-09-01

    The exploration of novel adsorption properties of conductive polymers based on hybridization with biocompatible nanomaterials receives an increasing interest. In this regard, hydroxyapatite (HA) bioceramic is of critical importance mainly owing to its facile synthesis, high surface area, economic and low toxicity in biological environments. In this work, we first prepared and characterized a magnetite/hydroxyapatite (Fe3O4/HA) nanocomposite using the bio-waste chicken eggshell via an attractive green way that involved low cost and irrespective of toxicity. Then, polythionine as a novel class of conductive polymers was in situ coated on the synthesized magnetic bioceramic for the separation and preconcentration of riboflavin (vitamin B2) in human plasma before its fluorimetric determination. Considering the putative role of riboflavin in protecting against cancer and cardiovascular diseases, it is essential to evaluate this vitamin in biological fluids. The described method possesses a linear range of 0.75-262.5 μg L- 1 (R2 = 0.9985) and a detection limit of 0.20 μg L- 1 (signal-to-noise ratio of 3). The relative standard deviations (RSDs) for single-sorbent repeatability and sorbent-to-sorbent reproducibility were less than 4.0% and 7.6% (n = 5), respectively. The respective enrichment factor and extraction recovery of the method found to be 35.7 and 98.4%. The analytical performance of method for riboflavin was characterized by good consistency of the results with those obtained by the enzyme-linked immunosorbent assay (ELISA) conventional method (p-value of < 0.05). The optimized protocol intended for control determinations of riboflavin in human subjects and is addressed to clinical laboratories.

  10. Carbon-Nickel oxide nanocomposites: Preparation and charecterisation

    CSIR Research Space (South Africa)

    Tile, N

    2011-07-01

    Full Text Available Nanocomposite materials have wide range of applications in solar energy conversion. In this work, C-NiO nanocomposite coatings are prepared using sol-gel synthesis and deposited on aluminium substrates using a spin coater. The coatings are prepared...

  11. Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites

    Directory of Open Access Journals (Sweden)

    Habiba K

    2015-12-01

    Full Text Available Khaled Habiba,1,2 Joel Encarnacion-Rosado,2,3 Kenny Garcia-Pabon,2,4 Juan C Villalobos-Santos,2,5 Vladimir I Makarov,1 Javier A Avalos,2,6 Brad R Weiner,2,7,8 Gerardo Morell1,2,7 1Department of Physics, University of Puerto Rico – Rio Piedras Campus, 2Molecular Sciences Research Center, University of Puerto Rico, 3Department of Biology, 4Faculty of Education, University of Puerto Rico – Rio Piedras Campus, San Juan, 5Department of Biology, 6Department of Physics, University of Puerto Rico – Bayamon Campus, Bayamon, 7Institute for Functional Nanomaterials, University of Puerto Rico, 8Department of Chemistry, University of Puerto Rico – Rio Piedras Campus, San Juan, PR, USA Abstract: The combination of chemotherapy and photodynamic therapy has emerged as a promising strategy for cancer therapy due to its synergistic effects. In this work, PEGylated silver nanoparticles decorated with graphene quantum dots (Ag-GQDs were tested as a platform to deliver a chemotherapy drug and a photosensitizer, simultaneously, in chemo-photodynamic therapy against HeLa and DU145 cancer cells in vitro. Ag-GQDs have displayed high efficiency in delivering doxorubicin as a model chemotherapy drug to both cancer cells. The Ag-GQDs exhibited a strong antitumor activity by inducing apoptosis in cancer cells without affecting the viability of normal cells. Moreover, the Ag-GQDs exhibited a cytotoxic effect due to the generation of the reactive singlet oxygen upon 425 nm irradiation, indicating their applicability in photodynamic therapy. In comparison with chemo or photodynamic treatment alone, the combined treatment of Ag-GQDs conjugated with doxorubicin under irradiation with a 425 nm lamp significantly increased the death in DU145 and HeLa. This study suggests Ag-GQDs as a multifunctional and efficient therapeutic system for chemo-photodynamic modalities in cancer therapy. Keywords: multifunctional nanoparticles, silver nanoparticles, cancer therapy, drug

  12. Combined ellipsometry and refractometry technique for characterisation of liquid crystal based nanocomposites.

    Science.gov (United States)

    Warenghem, Marc; Henninot, Jean François; Blach, Jean François; Buchnev, Oleksandr; Kaczmarek, Malgosia; Stchakovsky, Michel

    2012-03-01

    Spectroscopic ellipsometry is a technique especially well suited to measure the effective optical properties of a composite material. However, as the sample is optically thick and anisotropic, this technique loses its accuracy for two reasons: anisotropy means that two parameters have to be determined (ordinary and extraordinary indices) and optically thick means a large order of interference. In that case, several dielectric functions can emerge out of the fitting procedure with a similar mean square error and no criterion to discriminate the right solution. In this paper, we develop a methodology to overcome that drawback. It combines ellipsometry with refractometry. The same sample is used in a total internal reflection (TIR) setup and in a spectroscopic ellipsometer. The number of parameters to be determined by the fitting procedure is reduced in analysing two spectra, the correct final solution is found by using the TIR results both as initial values for the parameters and as check for the final dielectric function. A prefitting routine is developed to enter the right initial values in the fitting procedure and so to approach the right solution. As an example, this methodology is used to analyse the optical properties of BaTiO(3) nanoparticles embedded in a nematic liquid crystal. Such a methodology can also be used to analyse experimentally the validity of the mixing laws, since ellipsometry gives the effective dielectric function and thus, can be compared to the dielectric function of the components of the mixture, as it is shown on the example of BaTiO(3)/nematic composite.

  13. Synergic combination of the sol–gel method with dip coating for plasmonic devices

    Directory of Open Access Journals (Sweden)

    Cristiana Figus

    2015-02-01

    Full Text Available Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol–gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip.

  14. Synergic combination of the sol-gel method with dip coating for plasmonic devices.

    Science.gov (United States)

    Figus, Cristiana; Patrini, Maddalena; Floris, Francesco; Fornasari, Lucia; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Artizzu, Flavia; Marongiu, Daniela; Saba, Michele; Marabelli, Franco; Mura, Andrea; Bongiovanni, Giovanni; Quochi, Francesco

    2015-01-01

    Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol-gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip.

  15. Effects of combined treatments of irradiation and antimicrobial coatings on reduction of food pathogens in broccoli florets

    Energy Technology Data Exchange (ETDEWEB)

    Takala, P.N.; Salmieri, S.; Vu, K.D. [INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, 531, Blvd des Prairies, Laval, QC, H7V 1B7 (Canada); Lacroix, M., E-mail: Monique.Lacroix@iaf.inrs.ca [INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, 531, Blvd des Prairies, Laval, QC, H7V 1B7 (Canada)

    2011-12-15

    The effect of combined treatment of antimicrobial coatings and {gamma}-radiation on reduction of food pathogens such as Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium was evaluated in broccoli florets. Broccoli florets were inoculated with pathogenic bacteria at 10{sup 6} CFU/g. Inoculated florets were then coated with methylcellulose-based coating containing various mixtures of antimicrobial agents: organic acids (OAs) plus lactic acid bacteria metabolites (LABs), OA plus citrus extract (CE), OA plus CE plus spice mixture (SM), and OA plus rosemary extract (RE). Coated florets were irradiated with various doses (0-3.3 kGy), and microbial analyses were used to calculate the D{sub 10} value and radiosensitive relative. The coating containing OA plus CE was the most effective formulation for increasing the sensitization of Escherichia coli by 2.4 times as compared to the control without the antimicrobial coating. For Salmonella Typhimurium, coating containing OA plus LAB was the most effective formulation, increasing radiosensitivity by 2.4 times as well. All antimicrobial coatings had almost the same effect of increasing the sensitivity of Listeria monocytogenes (from 1.31 to 1.45 times) to {gamma}-irradiation. - Highlights: > Demonstrate scientifically the synergistic effect of the combined treatment of gamma-irradiation and natural antimicrobial coating in reduction of food pathogens in broccoli. > The coating containing organic acids plus citrus extract was the most efficient formulation for increasing the sensitization of E. coli by 2.40 times as compared to the control. > The coating containing organic acids plus lactic acid bacteria metabolites was the most effective formulation causing the sensitization of S. Typhimurium to {gamma}-irradiation by 2.4 times. > Potential in application of developed formulations to protect food products against food pathogens.

  16. Sheet-like Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} nanocomposite coated by SiO{sub 2} + C with better electrochemical properties for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chunyan, E-mail: laichunyan@shiep.edu.cn; Wu, Tingting; Wang, Zhen [Shanghai University of Electric Power, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power (China)

    2016-01-15

    Sheet-like Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} nanocomposite coated by SiO{sub 2} + C layer was synthesized with one-step solid-state method. Dihydroxydiphenylsilane (DPSD) was used as the source of SiO{sub 2} and C. The sheet-like Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} nanocomposite has a thickness in the range of 20–30 nm. Because of the SiO{sub 2} + C-coated layer and the sheet-like morphology, the Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/(SiO{sub 2} + C) composites show better stability and higher capacity than pure Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} material and granular Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/(SiO{sub 2} + C) composites. The best sample, Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/(SiO{sub 2} + C)(2:8), shows a discharge capacity of 193.7 mAh g{sup −1} at 1C within the voltage range of 3.0–4.8 V and retains almost 90 % of the capacity after 50 cycles.

  17. Effects of combined treatments of irradiation and antimicrobial coatings on reduction of food pathogens in broccoli florets

    Science.gov (United States)

    Takala, P. N.; Salmieri, S.; Vu, K. D.; Lacroix, M.

    2011-12-01

    The effect of combined treatment of antimicrobial coatings and γ-radiation on reduction of food pathogens such as Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium was evaluated in broccoli florets. Broccoli florets were inoculated with pathogenic bacteria at 10 6 CFU/g. Inoculated florets were then coated with methylcellulose-based coating containing various mixtures of antimicrobial agents: organic acids (OAs) plus lactic acid bacteria metabolites (LABs), OA plus citrus extract (CE), OA plus CE plus spice mixture (SM), and OA plus rosemary extract (RE). Coated florets were irradiated with various doses (0-3.3 kGy), and microbial analyses were used to calculate the D10 value and radiosensitive relative. The coating containing OA plus CE was the most effective formulation for increasing the sensitization of Escherichia coli by 2.4 times as compared to the control without the antimicrobial coating. For Salmonella Typhimurium, coating containing OA plus LAB was the most effective formulation, increasing radiosensitivity by 2.4 times as well. All antimicrobial coatings had almost the same effect of increasing the sensitivity of Listeria monocytogenes (from 1.31 to 1.45 times) to γ-irradiation.

  18. Hot-melt sub- and outercoating combined with enteric aqueous coating to improve the stability of aspirin tablets

    Directory of Open Access Journals (Sweden)

    Xiuzhi Wang

    2017-05-01

    Full Text Available Aspirin is apt to hydrolyze. In order to improve its stability, a new method has been developed involving the application of hot-melt sub- and outercoating combined with enteric aqueous coating. The main aim was to investigate the influence of these factors on the stability of ASA and understand how they work. Satisfactory storage stability were obtained when the aspirin tablet core coated with Eudragit L30D55 film was combined with glycerin monostearate (GMS as an outercoat. Hygroscopicity testing indicated that the moisture penetrating into the tablet may result in a significant change in the physical properties of the coating film observed by scanning electron microscopy. Investigation of the compatibility between the drug and film excipients shows that the talc and methacrylic acid had a significant catalytic effect on ASA. A hypothesis was proposed that the hydrolysis of ASA enteric coated tablets (ASA-ECT was mostly concentrated in the internal film and the interfaces between the film and tablet core. In conclusion, hot-melt coating technology is an alternative to subcoating or outercoating. Also, GMS sub-coating was a better choice for forming a stable barrier between the tablet core and the polymer coating layer, and increases the structure and chemical stability.

  19. Photocatalytic activity of titania coatings synthesised by a combined laser/sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Adraider, Y. [School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA (United Kingdom); Pang, Y.X., E-mail: F6098038@tees.ac.uk [School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA (United Kingdom); Nabhani, F.; Hodgson, S.N. [School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA (United Kingdom); Sharp, M.C.; Al-Waidh, A. [General Engineering Research Institute, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2014-06-01

    Highlights: • Sol–gel method was used to prepare titania coatings. • Titania thin films were coated on substrate surface by dip coating. • Fibre laser was employed to irradiate the titania coated surfaces. • Photocatalytic efficiency of titania coatings was significantly improved after laser processing. - Abstract: Titania coatings were prepared using sol–gel method and then applied on the substrate surface by dip coating. Fibre laser (λ = 1064 nm) in continuous wave mode was used to irradiate the titania coated surfaces at different specific energies. The ATR-FTIR, XRD, SEM, EDS and contact angle measurement were employed to analyse surface morphology, phase composition and crystalline structure of laser-irradiated titania coatings, whilst the photocatalytic activity was evaluated by measuring the decomposition of methylene blue (MB) after exposure to the visible light for various illumination times. Results showed that the laser-irradiated titania coatings demonstrate significant different composition and microstructure in comparison with the as-coated from the same sol–gel titania. Photocatalytic efficiency of titania coatings was significantly improved after laser processing. The photocatalytic activity of laser-irradiated titania coatings was higher than that of the as-coated titania. The titania coating processed at laser specific energy of 6.5 J/mm{sup 2} exhibited the highest photocatalytic activity among all titania samples.

  20. Elimination of Listeria inoculated in ready-to-eat carrots by combination of antimicrobial coating and γ-irradiation

    Science.gov (United States)

    Turgis, Mélanie; Millette, Mathieu; Salmieri, Stéphane; Lacroix, Monique

    2012-08-01

    A combined treatment of an edible coating composed of trans-cinnamaldehyde (TCN; 0.5% p/p) with γ-irradiation was investigated against Listeria inoculated in peeled mini-carrots. First, the D10 value (γ-irradiation dose required to eliminate 90% of the bacterial population) of TCN was evaluated under air. This treatment resulted in a 3.66-fold increase in relative bacterial radiosensitivity (RBR) as compared to the control without antimicrobial coating. Secondly, the shelf life of mini-carrots during 21 day of storage at 4 °C was studied. Antimicrobial coating containing TCN was assayed in combination with two irradiation doses (0.25 and 0.5 kGy). Results suggested that the inactive coating did not have any antimicrobial effect against Listeria while the coating containing TCN resulted in a 1.29 log reduction in carrots packed under air after 21 days of storage. Hence, these observations indicated that the combination of irradiation with antimicrobial coating played an important role in enhancing the radiosensitization of Listeria to γ-irradiation.

  1. Semi-active control of piezoelectric coating's underwater sound absorption by combining design of the shunt impedances

    Science.gov (United States)

    Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu

    2015-10-01

    Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.

  2. Combination of inulin and time dependent polymethacrylates as a coating system to achieve colonic delivery of indomethacin

    Directory of Open Access Journals (Sweden)

    A Akhgari

    2009-10-01

    Full Text Available "n "nBackground:In the previous study it was shown that films prepared from inulin (In in combination with Eudragit RS (ERS and RL (ERL were susceptible to inulinase. Purpose: The aim of this work was to assess the suitability of these combinations for colonic delivery of indomethacin. "nMethods: Indomethacin was loaded onto non-pareil seeds using fluidized bed apparatus to produce pellets with 20% w/w drug load. Drug loaded pellets were coated with In-ERS in the ratios of 20:80 and 30:70, or In-ERL in the ratio of 20:80 to different coating loads. The release of drug was examined in simulated gastric (for 2 hrs and small intestine and in the presence of inulinase in simulated colonic medium (for 12 or 24 hrs. "nResults: The results of this study revealed that incorporation of inulin as a bacterially degradable polysaccharide into ERS or ERL could modulate drug release. Coating level up to 15% significantly affected drug release from In-ERL or In-ERS coated pellets. However further increase in coating load to 20% had no significant effect on drug release from In-ERL coated pellets (f1=9.39. Drug release from In-ERL coated pellets was faster and showed some pH dependency. "nConclusions: Formulation coated with In-ERS (20:80 and coating level of 20% was considered more appropriate for colon delivery of indomethacin, as drug release was pH independent and formulation was resistant to drug release in the upper GI media for up to 7 hrs. This formulation was also susceptible to inulinase and released about 40% of indomethacin in the simulated colonic media.

  3. Glaze Icing on Superhydrophobic Coating Prepared by Nanoparticles Filling Combined with Etching Method for Insulators

    Directory of Open Access Journals (Sweden)

    Chao Guo

    2015-01-01

    Full Text Available Icing on insulators may cause flashover or even blackout accidents in the power transmission system. However, there are few anti-icing techniques for insulators which consume energy or manpower. Considering the water repelling property, the superhydrophobic surface is introduced for anti-icing of insulators. Among the icing forms, the glaze icing owns the highest density, strongest adhesion, and greatest risk to the power transmission system but lacks researches on superhydrophobic surface. In this paper, superhydrophobic surfaces with contact angle of 166.4°, contact angle hysteresis of 0.9°, and sliding angle of less than 1° are prepared by nanoparticle filling combined with etching method. The coated glass slide and glass insulator showed excellent anti-icing performance in the glaze icing test at −5°C. The superhydrophobicity and anti-icing property of the coatings benefit from the low surface energy and hierarchical rough structure containing micron scale pits and nanoscale coralloid bulges supported by scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray photoelectron spectroscopy (XPS characterization.

  4. Antibacterial activity of nanocomposites of copper and cellulose.

    Science.gov (United States)

    Pinto, Ricardo J B; Daina, Sara; Sadocco, Patrizia; Pascoal Neto, Carlos; Trindade, Tito

    2013-01-01

    The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings.

  5. Ni-CeO2纳米复合镀层的制备与氧化性能%Preparation and oxidation behaviour of electrodeposited Ni-CeO2 nanocomposite coatings

    Institute of Scientific and Technical Information of China (English)

    张海军; 周月波; 孙俭峰

    2013-01-01

    Ni−CeO2 nanocomposite coatings with different CeO2 contents were prepared by codeposition of Ni and CeO2 nanoparticles with an average particle size of 7 nm onto pure Ni surfaces from a nickel sulfate. The CeO2 nanoparticles were dispersed in the electrodeposited nanocrystalline Ni grains (with a size range of 10−30 nm). The isothermal oxidation behaviours of Ni−CeO2 nanocomposite coatings with two different CeO2 particles contents and the electrodeposited pure Ni coating were comparatively investigated in order to elucidate the effect of CeO2 at different temperatures and also CeO2 contents on the oxidation behaviour of Ni−CeO2 nanocomposite coatings. The results show that the as-codeposited Ni−CeO2 nanocomposite coatings have a superior oxidation resistance compared with the electrodeposited pure Ni coating at 800 °C due to the codeposited CeO2 nanoparticles blocking the outward diffusion of nickel along the grain boundaries. However, the effects of CeO2 particles on the oxidation resistance significantly decrease at 1050 °C and 1150 °C due to the outward-volume diffusion of nickel controlling the oxidation growth mechanism, and the content of CeO2 has little influence on the oxidation.%  向普通电镀液中加入不同含量平均颗粒尺寸为7 nm的CeO2颗粒,在Ni表面复合电镀不同CeO2颗粒含量的 Ni−CeO2纳米复合镀层。研究表明,CeO2纳米颗粒弥散分布在10~30 nm的 Ni 中。为了了解温度和 CeO2颗粒含量对Ni−CeO2纳米复合镀层氧化性能的影响规律,对两种不同CeO2颗粒含量的Ni−CeO2纳米复合镀层和普通Ni镀层进行不同温度下的恒温氧化对比实验。氧化实验结果表明:在800°C时,CeO2抑制了Ni沿晶界外扩散,从而明显增强了Ni−CeO2纳米复合镀层的氧化性能;然而,在1050°C和1150°C时,由于Ni向外的体扩散控制Ni的氧化过程,此时CeO2对提高Ni−CeO2纳米复合镀层的氧化性能作用轻微;

  6. Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques

    Directory of Open Access Journals (Sweden)

    Abou Bakr Elshalakany

    2014-01-01

    Full Text Available A356 hypoeutectic aluminum-silicon alloys matrix composites reinforced by different contents of multiwalled carbon nanotubes (MWCNTs were fabricated using a combination of rheocasting and squeeze casting techniques. A novel approach by adding MWCNTs into A356 aluminum alloy matrix with CNTs has been performed. This method is significant in debundling and preventing flotation of the CNTs within the molten alloy. The microstructures of nanocomposites and the interface between the aluminum alloy matrix and the MWCNTs were examined by using an optical microscopy (OM and scanning electron microscopy (SEM equipped with an energy dispersive X-ray analysis (EDX. This method remarkably facilitated a uniform dispersion of nanotubes within A356 aluminum alloy matrix as well as a refinement of grain size. In addition, the effects of weight fraction (0.5, 1.0, 1.5, 2.0, and 2.5 wt% of the CNT-blended matrix on mechanical properties were evaluated. The results have indicated that a significant improvement in ultimate tensile strength and elongation percentage of nanocomposite occurred at the optimal amount of 1.5 wt% MWCNTs which represents an increase in their values by a ratio of about 50% and 280%, respectively, compared to their corresponding values of monolithic alloy. Hardness of the samples was also significantly increased by the addition of CNTs.

  7. Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series

    Science.gov (United States)

    Injumpa, Wishulada; Ritprajak, Patcharee; Insin, Numpon

    2017-04-01

    Iron oxides nanoparticles have been utilized in biological systems and biomedical applications for many years because they are relatively safe and stable comparing to other magnetic nanomaterials. In some applications, iron oxide nanoparticles were modified with silica in order to be more stable in biological systems and able to be functionalized with various functional groups. Moreover, poly(ethylene glycol) (PEG) was one on the most used polymer to graft onto the nanoparticles in order to increase their biocompatibility, dispersibility and stability in aqueous solutions. Therefore, the nanocomposites comprising iron oxide nanoparticles, silica, and PEG could become multifunctional carriers combining superparamagnetic character, multi-functionality and high stability in biological environments. Herein, we reported the preparation of the nanocomposites and effects of their sizes on cytotoxicity and inflammatory responses. The PEGylated silica-iron oxide nanocomposites were prepared by coating of poly(poly(ethylene glycol) monomethyl ether methacrylate) (PPEGMA) on magnetic nanoparticle-silica nanocomposites via Atom Transfer Radical Polymerization (ATRP). The iron oxide nanoparticles were synthesized using a thermal decomposition method. The silica shells were then coated on iron oxides nanoparticles using reverse microemulsion and sol-gel methods. The size series of the nanocomposites with the diameter of 24.86±4.38, 45.24±5.00, 98.10±8.88 and 202.22±6.70 nm as measured using TEM were obtained. Thermogravimetric analysis (TGA) was used for the determination of % weight of PPEGMA on the nanocomposites showing the weight loss of ranging from 65% for smallest particles to 30% for largest particles. The various sizes (20, 40, 100, 200 nm) and concentrations (10, 100, 1000 μg/mL) of the nanocomposites were tested for their cytotoxicity in fibroblast and macrophage cell lines using MTT assay. The different sizes did not affect cell viability of fibroblast, albeit

  8. Fibre reinforced polymer nanocomposites

    NARCIS (Netherlands)

    Vlasveld, D.P.N.

    2005-01-01

    In this thesis the results are described of the research on a combination of two types of composites: thermoplastic nanocomposites and continuous fibre composites. In this three-phase composite the main reinforcing phase are continuous glass or carbon fibres, and the matrix consists of a polyamide 6

  9. Encapsulation of paclitaxel into a bio-nanocomposite. A study combining inelastic neutron scattering to thermal analysis and infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Martins Murillo L.

    2015-01-01

    Full Text Available The anticancer drug paclitaxel was encapsulated into a bio-nanocomposite formed by magnetic nanoparticles, chitosan and apatite. The aim of this drug carrier is to provide a new perspective against breast cancer. The dynamics of the pure and encapsulated drug were investigated in order to verify possible molecular changes caused by the encapsulation, as well as to follow which interactions may occur between paclitaxel and the composite. Fourier transformed infrared spectroscopy, thermal analysis, inelastic and quasi-elastic neutron scattering experiments were performed. These very preliminary results suggest the successful encapsulation of the drug.

  10. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    Science.gov (United States)

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field.

  11. Multifunctional polymer nano-composite based superhydrophobic surface

    Science.gov (United States)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  12. Percolated conductive polyaniline-clay nanocomposite in polyvinyl chloride through the combined approach porous template and self-assembly

    Directory of Open Access Journals (Sweden)

    J. D. Sudha

    2014-02-01

    Full Text Available In this paper, we are reporting a novel strategy for the preparation of conductive polyaniline-clay nanocomposite in Polyvinylchloride (PVC matrix by admicellar emulsion polymerization using a low cost renewable resource based surfactant cum dopant. The highly oriented percolated network of polyaniline-clay nanocomposite in PVC matrix was revealed from the studies made by scanning electron microscopy (SEM and atomic force microscopy (AFM. Fourier transform infrared spectroscopy (FTIR results suggested that porous template was formed by the noncovalent interactions among the hydroxyl groups present in the nanoclay edges and the chloride ions present in PVC matrix. Here, the bio-based surfactant, 4-hydroxy-2-pentadecyl benzene-1-sulphonic acid (PDPSA performed multiple roles of dopant, emulsifier and soft template during the polymerization of anilinium+PDPSA– (An+PDPSA– in PVC-clay matrix. The prepared composite exhibited electrical conductivity (σdc of 4.8•10–2 S/cm and electromagnetic interference shielding efficiency (EMI SE of 55.2 dB suggesting it as a prospectable candidate for the encapsulation of electronic devices in high technological applications.

  13. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-02-15

    Graphical abstract: - Highlights: • A duplex coating was fabricated through combining MAO and baking layer. • A baking coating with a thickness of 92 μm was created on MAO-coated Mg alloy. • The duplex coating noticeably improved the corrosion resistance of Mg alloy. • The related corrosion and wear mechanisms were investigated. - Abstract: A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  14. Induction of osteoconductivity by BMP-2 gene modification of mesenchymal stem cells combined with plasma-sprayed hydroxyapatite coating

    Science.gov (United States)

    Wu, Jiang; Guo, Ying-qiang; Yin, Guang-fu; Chen, Huai-qing; Kang, Yunqing

    2008-11-01

    Success in bone implant depends greatly on the composition and surface features of the implant. The surface-modification measures not only favor the implant's osteoconductivity, but also promote both bone anchoring and biomechanical stability. This paper reports an approach to combine a hydroxyapatite (HA) coated substrate with a cellular vehicle for the delivery of bone morphogenetic protein-2 (BMP-2) synergistically enhancing the osteoconductivity of implant surfaces. We examined the attachment, growth and osteoinductive activity of transfected BMP-producing bone marrow mesenchymal stem cells (BMSCs) on a plasma-sprayed HA coated substrate. It was found that the HA coated substrate could allow the attachment and growth of BMP-2 gene modified BMSCs, and this combined application synergistically enhanced osteconductivity of the substrate surface. This synergistic method may be of osseointegration value in orthopedic and dental implant surgery.

  15. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: Mechanism and degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guyu; Sun, Yabing, E-mail: sybnju@163.com; Zhang, Chunxiao; Yu, Zhongqing

    2017-02-05

    Highlights: • Graphene Oxide-based catalyst was first applied with dielectric barrier discharge plasma. • The TiO{sub 2}-rGO showed efficient synergistic effect with gas phase dielectric barrier discharge plasma. • The property changes of TiO{sub 2}-rGO nanocomposite after plasma treatment were characterized. • The mechanism and possible pathways of APAP degradation in plasma/TiO{sub 2}-rGO system were proposed. - Abstract: Acetaminophen (APAP) served as the model pollutant to evaluate the feasibility of pollutant removal by gas phase dielectric barrier discharge plasma combined with the titanium dioxide-reduced Graphene Oxide (TiO{sub 2}-rGO) nanocomposite. TiO{sub 2}-rGO nanocomposite was prepared using the modified hydrothermal method and characterized by TEM and XPS before and after plasma process. The results indicated that the APAP degradation efficiency was significantly improved to 92% after 18 min of discharge plasma treatment coupling 0.25 g L{sup −1} TiO{sub 2}-rGO 5% wt at 18 kV, compared with the plasma alone and plasma combined with P25 TiO{sub 2}. The degradation mechanism for APAP in this system was studied by investigating the effects of the operational variables (e.g. discharge voltage and pH value) and the amount of the generated active species; and the results showed that O{sub 3} and H{sub 2}O{sub 2} yields were influenced notably by adding TiO{sub 2}-rGO. Also, it was observed that, compared with unused TiO{sub 2}-rGO, the photocatalytic performance of used TiO{sub 2}-rGO declined after several recirculation times due to the further reduction of Graphene Oxide in plasma system. Finally, intermediate products were analyzed by UV–vis spectrometry and HPLC/MS, and possible transformation pathways were identified with the support of theoretically calculating the frontier electron density of APAP.

  16. A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey.

    Science.gov (United States)

    Ghiasvand, Alireza; Dowlatshah, Samira; Nouraei, Nadia; Heidari, Nahid; Yazdankhah, Fatemeh

    2015-08-07

    A mechanically hard and cohesive porous fiber, with large surface area, for more strong attachment of the coating was provided by platinizing a stainless steel wire. Then, the platinized stainless steel fiber was coated with a multiwalled carbon nanotube/polyaniline (MWCNT/PANI) nanocomposite using electrophoretic deposition (EPD) method and applied for the extraction of thymol and carvacrol with direct-immersion solid-phase microextraction (DI-SPME) method followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) quantification. To provide a larger coarse surface for the tightened attachment of coating on the fiber, a stainless steel wire was platinized using a suitable optimized EPD method. Different experimental parameters were studied and the optimal conditions were obtained as: pH of the sample solution: 2; extraction time: 60min; salt content in the sample solution: 1% w/v NaNO3; desorption time: 60min; type and volume of the desorption solvent: acetonitrile, 100μL. Under the optimized conditions, limits of detection (LODs) were 0.6 and 0.8μgmL(-1) for thymol and carvacrol, respectively. Linear dynamic range (LDR) for the calibration curves of both analytes were 1-80μgmL(-1). Relative standard deviation (RSD%, n=6) was 6.8 for thymol and 12.7 for carvacrol. The proposed fiber was successfully applied for the recovery and determination of thymol and carvacrol in thyme, savory, and honey samples.

  17. Novel hybrid polymeric materials for barrier coatings

    Science.gov (United States)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  18. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. New types of coating systems for steel sheets by high-rate evaporation in combination with plasma processes

    Energy Technology Data Exchange (ETDEWEB)

    Scheffel, B.; Metzner, C. [Fraunhofer-Institut fuer Elektronenstrahl und Plasmatechnik (FEP), Dresden (Germany); Ehlers, K.D. [Salzgitter AG Stahl und Technologie (Germany); Schuhmacher, B. [Dortmunder Oberflaechencentrum GmbH, Dortmund (Germany); Flossdorf, F.J.; Steinbeck, G. [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany); Steffen, R. [Stahlwerke Bremen GmbH (Germany); Hagler, J. [voestalpine Stahl GmbH, Linz (Austria)

    2002-03-01

    High-rate evaporation in combination with plasma processes is a promising approach to obtain new types of steel sheet coating with improved corrosion resistance and application properties. To estimate the potential for the application of PVD-coatings (physical vapour deposition) different coating systems for steel sheet as well as for hot-dip or electro-galvanized steel sheet were designed. The samples were produced on a laboratory scale using PVD processes with very high deposition rates (in the order of 1 {mu}m s{sup -1}) as well as high-power plasma processes for the pre-treatment. The relationship between the composition, microstructure and properties of the coating systems, in particular concerning corrosion protection, abrasion during forming, phosphating and paint adhesion, were studied. It was found that the corrosion resistance of galvanized steel sheets can be considerably improved by vapour deposition of metal or inorganic films with a thickness of several hundred nanometers. Investigations on vapour deposition of titanium and stainless steel coatings on steel sheets, for applications in a severely corrosive environment, showed that the corrosion resistance in relation to the coating thickness can be significantly enhanced by means of plasma activation during the vapour deposition process. Finally, an outlook on possible industrial applications including an estimation of the process costs will be presented. For certain coating systems the results look promising. Consequently, these particular coating systems will be investigated in more detail by means of using a large-scale in-line deposition plant for metallic strips and sheets. (orig.)

  20. Fabrication and properties of multiferroic nanocomposite films

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-01-01

    A new type of multiferroic polymer nanocomposite is presented, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of a ferroelectric copolymer poly(vinylindene fluoride-trifluoroethylene) [P(VDF-TrFE)] and high aspect ratio ferromagnetic nickel (Ni) nanowires (NWs), which were grown inside anodic aluminum oxide membranes. The fabrication of nanocomposite films with Ni NWs embedded in P(VDF-TrFE) has been successfully carried out via a simple low-temperature spin-coating technique. Structural, ferromagnetic, and ferroelectric properties of the developed nanocomposite have been investigated. The remanent and saturation polarization as well as the coercive field of the ferroelectric phase are slightly affected by the incorporation of the NWs as well as the thickness of the films. While the former two decrease, the last increases by adding the NWs or increasing the thickness. The ferromagnetic properties of the nanocomposite films are found to be isotropic.

  1. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-09-01

    Flexibility, low cost, versatility, miniaturization and multi-functionality are key aspects driving research and innovation in many branches of the electronics industry. With many anticipated emerging applications, like wearable, transparent and biocompatible devices, interest among the research community in pursuit for novel multifunctional miniaturized materials have been amplified. In this context, multiferroic polymer-based nanocomposites, possessing both ferroelectricity and ferromagnetism, are highly appealing. Most importantly, these nanocomposites possess tunable ferroelectric and ferromagnetic properties based on the parameters of their constituent materials as well as the magnetoelectric effect, which is the coupling between electric and magnetic properties. This tunability and interaction is a fascinating fundamental research field promising tremendous potential applications in sensors, actuators, data storage and energy harvesting. This dissertation work is devoted to the investigation of a new class of multiferroic polymer-based flexible nanocomposites, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature, with the goal of understanding and optimizing the origin of their magnetoelectric coupling. The nanocomposites consist of high aspect ratio ferromagnetic nanowires (NWs) embedded inside a ferroelectric co-polymer, poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE) matrix. First, electrochemical deposition of ferromagnetic NWs inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films have been fabricated by means of spin coating and drop casting techniques. The effect of incorporation of NWs inside the ferroelectric polymer on its electroactive phase is discussed. The remanent and saturation polarization as well

  2. Biochar-based nano-composites for the decontamination of wastewater: A review.

    Science.gov (United States)

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Xu, Yan; Zeng, Guang-Ming; Hu, Xin-Jiang; Liu, Shao-Bo; Wang, Xin; Liu, Si-Mian; Li, Jiang

    2016-07-01

    Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified.

  3. Deposition of duplex Al 2O 3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation

    Science.gov (United States)

    Gu, Weichao; Shen, Dejiu; Wang, Yulin; Chen, Guangliang; Feng, Wenran; Zhang, Guling; Fan, Songhua; Liu, Chizi; Yang, Size

    2006-02-01

    Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al 2O 3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al 2O 3, γ-Al 2O 3, θ-Al 2O 3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.

  4. PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells.

    Science.gov (United States)

    Xue, Peng; Sun, Lihong; Li, Qian; Zhang, Lei; Guo, Jinhong; Xu, Zhigang; Kang, Yuejun

    2017-09-08

    The integration of multifunctional therapeutic capabilities into a single nanosystem has attracted much attention for use as an efficient cancer therapy. However, developing biocompatible therapeutic nano-agents with desirable safety, efficiency, targeting, and synergistic effects remains challenging. Herein, we designed a class of multifunctional PEGylated magnetic nanoparticles (NPs) with a core-shell structure and polydopamine (PDA) coating, which were loaded with the anticancer drug doxorubicin (DOX) for simultaneous targeted chemotherapy and photothermal ablation of tumour cells. This nanosystem showed strong near-infrared absorption due to the polydopamine layer and was capable of magnetic field-guided drug delivery due to the superparamagnetism of the carrier. The resultant product exhibited excellent stability and biocompatibility in vitro due to the PEGylation of dopamine. Notably, the combination of chemotherapy and photothermal therapy had an evident synergistic effect on the ablation of tumour cells. This multifunctional nanoplatform has promising potential as an efficient therapeutic agent for multimodal cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of the metal concentration on the structural, mechanical and tribological properties of self-organized a-C:Cu hard nanocomposite coatings

    Science.gov (United States)

    Pardo, A.; Buijnsters, J. G.; Endrino, J. L.; Gómez-Aleixandre, C.; Abrasonis, G.; Bonet, R.; Caro, J.

    2013-09-01

    The influence of the metal content (Cu: 0-28 at.%) on the structural, mechanical and tribological properties of amorphous carbon films grown by pulsed filtered cathodic vacuum arc deposition is investigated. Silicon and AISI 301 stainless steel have been used as substrate materials. The microstructure, composition and bonding structure have been determined by scanning electron microscopy, combined Rutherford backscattered spectroscopy-nuclear reaction analysis, and Raman spectroscopy, respectively. The mechanical and tribological properties have been assessed using nanoindentation and reciprocating sliding (fretting tests) and these have been correlated with the elemental composition of the films. A self-organized multilayered structure consisting of alternating carbon and copper metal nanolayers (thickness in the 25-50 nm range), whose formation is enhanced by the Cu content, is detected. The nanohardness and Young’s modulus decrease monotonically with increasing Cu content. A maximum value of the Young’s modulus of about 255 GPa is obtained for the metal-free film, whereas it drops to about 174 GPa for the film with a Cu content of 28 at.%. In parallel, a 50% drop in the nanohardness from about 28 GPa towards 14 GPa is observed for these coatings. An increase in the Cu content also produces an increment of the coefficient of friction in reciprocating sliding tests performed against a corundum ball counterbody. As compared to the metal free film, a nearly four times higher coefficient of friction value is detected in the case of a Cu content of 28 at.%. Nevertheless, the carbon-copper composite coatings produced a clear surface protection of the substrate despite an overall increase in wear loss with increasing Cu content in the range 3-28 at.%.

  6. Effect of the metal concentration on the structural, mechanical and tribological properties of self-organized a-C:Cu hard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A., E-mail: ainhoa.pardo@ctm.com.es [Fundació CTM Centre Tecnològic, Manresa (Spain); Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) (Spain); Buijnsters, J.G., E-mail: Ivan.Buijnsters@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Leuven (Belgium); Endrino, J.L., E-mail: jose.endrino@research.abengoa.com [Abengoa Research, Sevilla (Spain); Gómez-Aleixandre, C., E-mail: cgaleix@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) (Spain); Abrasonis, G., E-mail: g.abrasonis@hzdr.de [Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Bonet, R., E-mail: raul.bonet@ctm.com.es [Fundació CTM Centre Tecnològic, Manresa (Spain); Caro, J., E-mail: jaume.caro@ctm.com.es [Fundació CTM Centre Tecnològic, Manresa (Spain)

    2013-09-01

    The influence of the metal content (Cu: 0–28 at.%) on the structural, mechanical and tribological properties of amorphous carbon films grown by pulsed filtered cathodic vacuum arc deposition is investigated. Silicon and AISI 301 stainless steel have been used as substrate materials. The microstructure, composition and bonding structure have been determined by scanning electron microscopy, combined Rutherford backscattered spectroscopy-nuclear reaction analysis, and Raman spectroscopy, respectively. The mechanical and tribological properties have been assessed using nanoindentation and reciprocating sliding (fretting tests) and these have been correlated with the elemental composition of the films. A self-organized multilayered structure consisting of alternating carbon and copper metal nanolayers (thickness in the 25–50 nm range), whose formation is enhanced by the Cu content, is detected. The nanohardness and Young’s modulus decrease monotonically with increasing Cu content. A maximum value of the Young’s modulus of about 255 GPa is obtained for the metal-free film, whereas it drops to about 174 GPa for the film with a Cu content of 28 at.%. In parallel, a 50% drop in the nanohardness from about 28 GPa towards 14 GPa is observed for these coatings. An increase in the Cu content also produces an increment of the coefficient of friction in reciprocating sliding tests performed against a corundum ball counterbody. As compared to the metal free film, a nearly four times higher coefficient of friction value is detected in the case of a Cu content of 28 at.%. Nevertheless, the carbon–copper composite coatings produced a clear surface protection of the substrate despite an overall increase in wear loss with increasing Cu content in the range 3–28 at.%.

  7. Hybrid inorganic-organic materials: Novel poly(propylene oxide)-based ceramers, abrasion-resistant sol-gel coatings for metals, and epoxy-clay nanocomposites, with an additional chapter on: Metallocene-catalyzed linear polyethylene

    Science.gov (United States)

    Jordens, Kurt

    1999-12-01

    The sol-gel process has been employed to generate hybrid inorganic-organic network materials. Unique ceramers were prepared based on an alkoxysilane functionalized soft organic oligomer, poly(propylene oxide (PPO), and tetramethoxysilane (TMOS). Despite the formation of covalent bonds between the inorganic and organic constituents, the resulting network materials were phase separated, composed of a silicate rich phase embedded in a matrix of the organic oligomer chains. The behavior of such materials was similar to elastomers containing a reinforcing filler. The study focused on the influence of initial oligomer molecular weight, functionality, and tetramethoxysilane, water, and acid catalyst content on the final structure, mechanical and thermal properties. The sol-gel approach has also been exploited to generate thin, transparent, abrasion resistant coatings for metal substrates. These systems were based on alkoxysilane functionalized diethylenetriamine (DETA) with TMOS, which generated hybrid networks with very high crosslink densities. These materials were applied with great success as abrasion resistant coatings to aluminum, copper, brass, and stainless steel. In another study, intercalated polymer-clay nanocomposites were prepared based on various epoxy networks montmorillonite clay. This work explored the influence of incorporated clay on the adhesive properties of the epoxies. The lap shear strength decreased with increasing day content This was due to a reduction in the toughness of the epoxy. Also, the delaminated (or exfoliated) nanocomposite structure could not be generated. Instead, all nanocomposite systems possessed an intercalated structure. The final project involved the characterization of a series of metallocene catalyzed linear polyethylenes, produced at Phillips Petroleum. Polyolefins synthesized with such new catalyst systems are becoming widely available. The influence of molecular weight and thermal treatment on the mechanical, rheological

  8. The structure of the tungsten coatings deposited by Combined Magnetron Sputtering and Ion Implantation for nuclear fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Grigore, E., E-mail: edigrig@infim.ro [National Institute for Laser, Plasma and Radiation Physics, Bucharest, Euratom-MEdC Association (Romania); Ruset, C. [National Institute for Laser, Plasma and Radiation Physics, Bucharest, Euratom-MEdC Association (Romania); Rasinski, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Gherendi, M. [National Institute for Laser, Plasma and Radiation Physics, Bucharest, Euratom-MEdC Association (Romania); Matthews, G.F. [Culham Centre for Fusion Energy, Euratom Association, Abingdon (United Kingdom)

    2015-10-15

    Combined Magnetron Sputtering and Ion Implantation (CMSII) technology was used for W coating of about 1800 CFC tiles for ITER-like Wall (ILW) at JET and more than 1300 fine grain graphite tiles for ASDEX Upgrade tokamak. Thermal fatigue and carbidization due to the diffusion of the carbon from the substrate were found as main phenomena limiting the service lifetime of the W coatings. Detailed investigation of these coatings using SEM and STEM (scanning transmission electron microscopy) together with the FIB (focused ion beam) cutting technique revealed two fine networks of nano-pores with the size of 10–20 nm for zones of 250–350 nm at CFC-Mo and Mo-W interfaces. Formation of these nano-pores is associated with the energy of the ions striking the coating during the deposition process. By optimizing this energy the nano-pores disappeared. The structure and the performances of the W coatings produced by the new modified technology (CMSII-M) were compared with those deposited by standard benchmark technology. The HHF (high heat flux) tests carried out with an electron beam at a temperature of 1450 °C indicated a decrease of the defects affected area by a factor of about 1.7.

  9. Synthesis of carbon nanotube/layered double hydroxide nanocomposite as a novel fiber coating for the headspace solid-phase microextraction of phenols from water samples.

    Science.gov (United States)

    Abolghasemi, Mir Mahdi; Yousefi, Vahid; Piryaei, Marzieh

    2015-05-01

    In this research, a carbon nanotube/layered double hydroxide nanocomposite was synthesized by an in situ growth route by electrostatic force. The prepared carbon nanotube/layered double hydroxide nanocomposite was successfully prepared and deposited on a stainless-steel wire for the fabrication of the solid-phase microextraction fiber. The fiber was evaluated for the extraction of phenolic compounds from water samples. Analytical merits of the method, under optimum conditions (extraction temperature: 75°C, extraction time: 30 min, desorption time: 2 min, desorption temperature 260°C, salt concentration: 10% w/v) are 0.01-300 ng/mL for the linear dynamic range and 0.005-0.08 for the limit of detection. In optimum conditions, the repeatability for one fiber (n = 3), expressed as relative standard deviation, was between 6.5 and 9.9% for the phenolic compounds.

  10. An Investigation into the Corrosion Behavior of MgO/ZrO2 Nanocomposite Coatings Prepared by Plasma Electrolytic Oxidation on the AZ91 Magnesium Alloy

    Science.gov (United States)

    Eslamzadeh, Nasrollah; Ebrahimi-Kahrizsangi, Reza; Karbasi, Saeed; Zarebidaki, Arman; Gharavi, Farhad

    2017-09-01

    Plasma electrolytic oxidation (PEO) of AZ91 Mg alloys was performed in ZrO2 nanoparticles containing Na2SiO3-based electrolytes. The phase composition and the microstructure of PEO coatings were analyzed by x-ray diffraction and scanning electron microscopy followed by energy dispersive spectroscopy. Pitting corrosion properties of the coatings were investigated using cyclic polarization and electrochemical impedance spectroscopy tests in a Ringer solution. The results showed the better pitting corrosion resistance of the composite coating, as compared to the oxide one, due to the thickened inner layer and the decrease in the surface defects of the composite coating. Also, the PEO process decreased the corrosion current density from 25.06 µA/cm2 in the Mg alloy to 2.7 µA/cm2 in the oxide coating and 0.47 µA/cm2 in the composite coating.

  11. Combined, Independent Small Molecule Release and Shape Memory via Nanogel-Coated Thiourethane Polymer Networks.

    Science.gov (United States)

    Dailing, Eric A; Nair, Devatha P; Setterberg, Whitney K; Kyburz, Kyle A; Yang, Chun; D'Ovidio, Tyler; Anseth, Kristi S; Stansbury, Jeffrey W

    2016-01-28

    Drug releasing shape memory polymers (SMPs) were prepared from poly(thiourethane) networks that were coated with drug loaded nanogels through a UV initiated, surface mediated crosslinking reaction. Multifunctional thiol and isocyanate monomers were crosslinked through a step-growth mechanism to produce polymers with a homogeneous network structure that exhibited a sharp glass transition with 97% strain recovery and 96% shape fixity. Incorporating a small stoichiometric excess of thiol groups left pendant functionality for a surface coating reaction. Nanogels with diameter of approximately 10 nm bearing allyl and methacrylate groups were prepared separately via solution free radical polymerization. Coatings with thickness of 10-30 μm were formed via dip-coating and subsequent UV-initiated thiol-ene crosslinking between the SMP surface and the nanogel, and through inter-nanogel methacrylate homopolymerization. No significant change in mechanical properties or shape memory behavior was observed after the coating process, indicating that functional coatings can be integrated into an SMP without altering its original performance. Drug bioactivity was confirmed via in vitro culturing of human mesenchymal stem cells with SMPs coated with dexamethasone-loaded nanogels. This article offers a new strategy to independently tune multiple functions on a single polymeric device, and has broad application toward implantable, minimally invasive medical devices such as vascular stents and ocular shunts, where local drug release can greatly prolong device function.

  12. Polyamide blend-based nanocomposites: A review

    Directory of Open Access Journals (Sweden)

    W. S. Chow

    2015-03-01

    Full Text Available Polymer blend nanocomposites have been considered as a stimulating route for creating a new type of high performance material that combines the advantages of polymer blends and the merits of polymer nanocomposites. In nanocomposites with multiphase matrices, the concept of using nanofillers to improve select properties (e.g., mechanical, thermal, chemical, etc of a polymer blend, as well as to modify and stabilize the blend morphology has received a great deal of interest. This review reports recent advances in the field of polyamide (PA blend-based nanocomposites. Emphasis is placed on the PA-rich blends produced by blending with other thermoplastics in the presence of nanofillers. The processing and properties of PA blend-based nanocomposites with nanofillers are discussed. In addition, the mechanical properties and morphology changes of PA blends with the incorporation of nanofillers are described. The issues of compatibility and toughening of PA blend nanocomposites are discussed, and current challenges are highlighted.

  13. Enhanced antibacterial performance of Fe$_3$O$_4$–Ag and MnFe$_2$O$_4$–Ag nanocomposites

    Indian Academy of Sciences (India)

    U KURTAN; A GÜNER; M D AM˙IR; A BAYKAL

    2017-02-01

    In this work, we have described the antibacterial activities of Fe$_3$O$_4$ nanoparticles with different organic parts, including Humic acid (HA), Nicotinic acid (Nico) and Histidine (His), and the antibacterial activity ofMnFe$_2$O$_4$ nanoparticles coated with PANI and SiO$_2$ against different bacteria and some standard antibacterial drugs. The present study revealed that the newly fabricated various Fe$_3$O$_4$ and MnFe$_2$O$_4$ nanocomposites, when combined with some different organic parts, are superior antibacterial agents. Also, the synthesized nanocomposites can be easily separated from aqueous solution by magnetic filtration without any contamination of the medium.

  14. Combined Experimental and Numerical Simulations of Thermal Barrier Coated Turbine Blades Erosion

    Science.gov (United States)

    Hamed, Awate; Tabakoff, Widen; Swar, Rohan; Shin, Dongyun; Woggon, Nthanial; Miller, Robert

    2013-01-01

    A combined experimental and computational study was conducted to investigate the erosion of thermal barrier coated (TBC) blade surfaces by alumina particles ingestion in a single stage turbine. In the experimental investigation, tests of particle surface interactions were performed in specially designed tunnels to determine the erosion rates and particle restitution characteristics under different impact conditions. The experimental results show that the erosion rates increase with increased impingement angle, impact velocity and temperature. In the computational simulations, an Euler-Lagrangian two stage approach is used in obtaining numerical solutions to the three-dimensional compressible Reynolds Averaged Navier-Stokes equations and the particles equations of motion in each blade passage reference frame. User defined functions (UDF) were developed to represent experimentally-based correlations for particle surface interaction models which were employed in the three-dimensional particle trajectory simulations to determine the particle rebound characteristics after each surface impact. The experimentally based erosion UDF model was used to predict the TBC erosion rates on the turbine blade surfaces based on the computed statistical data of the particles impact locations, velocities and angles relative to the blade surface. Computational results are presented for the predicted TBC blade erosion in a single stage commercial APU turbine, for a NASA designed automotive turbine, and for the NASA turbine scaled for modern rotorcraft operating conditions. The erosion patterns in the turbines are discussed for uniform particle ingestion and for particle ingestion concentrated in the inner and outer 5 percent of the stator blade span representing the flow cooling the combustor liner.

  15. A molecularly imprinted polymer-coated CdTe quantum dot nanocomposite for tryptophan recognition based on the Förster resonance energy transfer process

    Science.gov (United States)

    Tirado-Guizar, Antonio; Paraguay-Delgado, Francisco; Pina-Luis, Georgina E.

    2016-12-01

    A new ‘turn-on’ Förster resonance energy transfer (FRET) nanosensor for l-tryptophan based on molecularly imprinted quantum dots (QDs) is proposed. The approach combines the advantages of the molecular imprinting technique, the fluorescent characteristics of the QDs and the energy transfer process. Silica-coated CdTe QDs were first synthesized and then molecularly imprinted using a sol-gel process without surfactants. The final composite presents stable fluorescence which increases with the addition of l-tryptophan. This ‘turn-on’ response is due to a FRET mechanism from the l-tryptophan as donor to the imprinted QD as acceptor. QDs are rarely applied as acceptors in FRET systems. The nanosensor shows selectivity towards l-tryptophan in the presence of other amino acids and interfering ions. The l-tryptophan nanosensor exhibits a linear range between 0 and 8 µM concentration, a detection limit of 350 nM and high selectivity. The proposed sensor was successfully applied for the detection of l-tryptophan in saliva. This novel sensor may offer an alternative approach to the design of a new generation of imprinted nanomaterials for the recognition of different analytes.

  16. The Influence of Temperature on Frictional Behavior of Plasma-Sprayed NiAl-Cr2O3 Based Self-Adaptive Nanocomposite Coatings

    Science.gov (United States)

    Ramazani, M.; Ashrafizadeh, F.; Mozaffarinia, R.

    2013-10-01

    Frictional behavior of nano and hybrid-structured NiAl-Cr2O3-Ag-CNT-WS2 adaptive self-lubricant coatings was evaluated at a range of temperatures, from room temperature to 700 °C. For this purpose, hybrid structured (HS) and nanostructured (NS) composite powders with the same nominal compositions were prepared by spray drying and heat treatment techniques. A series of HS and NS coating samples were deposited on steel substrate by an atmospheric plasma spraying process. The tribological behavior of both coatings was studied from room temperature to 700 °C at 100° intervals using a custom designed high temperature wear test machine. Scanning electron microscopy was employed for the evaluation of the composite coatings and worn surfaces. Experimental results indicated that the hybrid coating had inferior tribological properties when compared to the nanostructured coating, showing the attractive frictional behavior on the basis of low friction and high wear resistance; the NS coating possessed a more stable friction coefficient in the temperature range of 25-700 °C against alumina counterface. Microstructural examinations revealed more uniformity in NS plasma-sprayed coatings.

  17. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  18. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells.

    Directory of Open Access Journals (Sweden)

    Debra Franck

    Full Text Available Silk-based biomaterials in combination with extracellular matrix (ECM coatings were assessed as templates for cell-seeded bladder tissue engineering approaches. Two structurally diverse groups of silk scaffolds were produced by a gel spinning process and consisted of either smooth, compact multi-laminates (Group 1 or rough, porous lamellar-like sheets (Group 2. Scaffolds alone or coated with collagen types I or IV or fibronectin were assessed independently for their ability to support attachment, proliferation, and differentiation of primary cell lines including human bladder smooth muscle cells (SMC and urothelial cells as well as pluripotent cell populations, such as murine embryonic stem cells (ESC and induced pluripotent stem (iPS cells. AlamarBlue evaluations revealed that fibronectin-coated Group 2 scaffolds promoted the highest degree of primary SMC and urothelial cell attachment in comparison to uncoated Group 2 controls and all Group 1 scaffold variants. Real time RT-PCR and immunohistochemical (IHC analyses demonstrated that both fibronectin-coated silk groups were permissive for SMC contractile differentiation as determined by significant upregulation of α-actin and SM22α mRNA and protein expression levels following TGFβ1 stimulation. Prominent expression of epithelial differentiation markers, cytokeratins, was observed in urothelial cells cultured on both control and fibronectin-coated groups following IHC analysis. Evaluation of silk matrices for ESC and iPS cell attachment by alamarBlue showed that fibronectin-coated Group 2 scaffolds promoted the highest levels in comparison to all other scaffold formulations. In addition, real time RT-PCR and IHC analyses showed that fibronectin-coated Group 2 scaffolds facilitated ESC and iPS cell differentiation toward both urothelial and smooth muscle lineages in response to all trans retinoic acid as assessed by induction of uroplakin and contractile gene and protein expression. These

  19. Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coating

    DEFF Research Database (Denmark)

    Torabinejad, V.; Aliofkhazraei, M.; Rouhaghdam, A. Sabour

    2017-01-01

    A sulfate-based electrolyte was used for synthesis of multilayer (ML) and monolithic Ni-Fe-Al2O3 coatings. The ML electrodeposits were achieved by consecutive alteration of duty cycle of pulsed current between two values of 20% and 90%. The influences of the ML microstructure on mechanical...... properties and wear resistance of composite coatings were studied. The shear punch testing method was employed to evaluate the room temperature mechanical properties. It was shown that increasing the pulse frequency and decreasing the pulse duty cycle improved the mechanical properties of monolithic coatings...

  20. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes

    KAUST Repository

    Pendergast, MaryTheresa M.

    2013-01-01

    Four different types of nanocomposite reverse osmosis (RO) membranes were formed by interfacial polymerization of either polyamide (PA) or zeolite A-polyamide nanocomposite (ZA-PA) thin films over either pure polysulfone (PSf) or zeolite A-polysulfone nanocomposite (ZA-PSf) support membranes cast by wet phase inversion. All three nanocomposite membranes exhibited superior separation performance and interfacial properties relative to hand-cast TFC analogs including: (1) smoother, more hydrophilic surfaces (2) higher water permeability and salt rejection, and (3) improved resistance to physical compaction. Less compaction occurred for membranes with nanoparticles embedded in interfacially polymerized coating films, which adds further proof that flux decline associated with physical compaction is influenced by coating film properties in addition to support membrane properties. The new classes of nanocomposite membrane materials continue to offer promise of further improved RO membranes for use in desalination and advanced water purification. © 2011 Elsevier B.V.

  1. Laser ablation studies of nanocomposites

    Directory of Open Access Journals (Sweden)

    Oleg V. Mkrtychev

    2015-03-01

    Full Text Available The first experimental measurements of the threshold energy density values for the laser ablation of glass nanocomposites with nanodimensional coatings have been carried out under the action of the YAG–Nd laser power pulse radiation. The coatings in question were of different compositions and had been created by the sol–gel technology. The procedure for determining the laser ablation threshold energy density values was worked out on the base of the breakdown probability level of 0.5. The statistical processing of the measurement data over all the samples allowed obtaining the dependence of the ablation destruction threshold energy parameters on the coating physical and chemical properties such as the sample transmission in the visible region of the spectrum, coating thickness, the chemical composition of the film-forming solution, and on the pulse duration of laser radiation.

  2. Coating thickness measurements on gas-borne nanoparticles by combined mobility and aerodynamic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Frederik, E-mail: frederik.weis@kit.edu; Seipenbusch, Martin; Kasper, Gerhard [Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics (Germany)

    2015-01-15

    An on-line method is described and validated to measure the thickness of coatings on gas-borne nanoparticles. The method is essentially a tandem technique which measures the aerodynamic diameter of a particle twice—before and after coating—by a single-stage low-pressure impactor (SS-LPI) for the same mobility equivalent diameter preselected via differential mobility analyzer (DMA). A shell thickness is then derived from the change in effective particle density determined by the SS-LPI. The method requires a difference in mass density between carrier particle and coating material. Its theoretical sensitivity is shown to range between about 0.1 and 1 nm, depending on the density ratio. One advantage of this approach is that both DMA and SS-LPI are situated in series but downstream of the coating step, so as not to interfere with the coating process. The method was validated against transmission electron microscopy (TEM) measurements, using spherical silica–titania particles coated with conformal shells of molybdenum and bismuth oxide by chemical vapor deposition (CVD). For such spherical particles, the agreement with TEM was excellent. The technique was able to provide layer thicknesses for sub-nanometer layers barely or not resolved by TEM. The paper also discusses the impact of ‘non-ideal’ phenomena such as the formation of doublet particles by coagulation, the effect of multiply charged particles, or the onset of homogeneous decomposition of the coating precursor. With supporting experimental data, it is shown that such phenomena can be interpreted reliably from certain features of the impactor penetration curve. The on-line method can thus be used for fast screening of process parameters and reliable process monitoring for gas-phase synthesis of composite nanopowders.

  3. Fabrication of NiO Buffer Layer for YBCO Coated Conductors by Combining Sputtering and SOE Method

    Institute of Scientific and Technical Information of China (English)

    Liu Huizhong; Yang Jian; Yang Haitao; Wang Xiaohua; Gu Hongwei; Yuan Guansen

    2004-01-01

    In research of YBCO coated conductors, the development of a oxide template for epitaxial growth of YBCO is very important. Matsumoto et al have demonstrated the potential of the surface oxidation epitaxial (SOE) route for formation a cube textured NiO layer on nickel tapes. The epitaxial NiO functions as a buffer layer of chemical reaction between YBCO and nickel, and as a template for the epitaxial growth of YBCO. However, the surface quality of NiO is difficult to control and defects such as crack, spall and deep grooves exist in SOE NiO layer. A new approach combining sputtering and SOE method to obtain crack-free and cube textured NiO layer were reported. Ni tapes prepared by the combination of rolling and recrystallization were used for this work. A coating of Ni was first deposited on the tapes via magnetron sputtering. Then on the coating tapes, continuous and textured NiO layer were achieved by SOE technology.

  4. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  5. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    Directory of Open Access Journals (Sweden)

    Rajiv K. Pandey

    2013-12-01

    Full Text Available We report formation of polycarbazole (PCz–graphene nanocomposite over indium tin oxide (ITO coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device.

  6. A Multimodal Nanocomposite for Biomedical Imaging

    Science.gov (United States)

    Wu, Aiguo; Paunesku, Tatjana; Zhang, Zhuoli; Vogt, Stefan; Lai, Barry; Maser, Jörg; Yaghmai, Vahid; Li, Debiao; Omary, Reed A.; Woloschak, Gayle E.

    2013-01-01

    A multimodal nanocomposite was designed, synthesized with super-paramagnetic core (CoFe2O4), noble metal corona (Au), and semiconductor shell (TiO2). The sizes of core, core-corona, and core-corona-shell particles were determined by TEM. This multimodal nanocrystal showed promise as a contrast agent for two of the most widely used biomedical imaging techniques: magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Finally, these nanocomposites were coated with a peptide SN-50. This led to their ready uptake by the cultured cells and targeted the nanocomposites to the pores of nuclear membrane. Inside cells, this nanocomposite retained its integrity as shown by X-ray fluorescence microscopy (XFM). Inside cells imaged by XFM we found the complex elemental signature of nanoconjugates (Ti-Co-Fe-Au) always co-registered in the 2D elemental map of the cell. PMID:24817775

  7. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  8. Biofriendly nanocomposite containers with inhibition properties for the protection of metallic surfaces

    Science.gov (United States)

    Vakhitov, T. R.; Katnov, V. E.; Grishin, P. V.; Stepin, S. N.; Grigoriev, D. O.

    2017-03-01

    An attempt to combine two `green' compounds in nanocomposite microcontainers in order to increase protection properties of waterborne acryl-styrene copolymer (ASC) coatings has been made. N-lauroylsarcosine (NLS) served as a corrosion inhibitor, and linseed oil (LO) as a carrier-forming component. LO is compatible with this copolymer and can impart to the coating self-healing properties. For the evaluation of the protective performance, three types of coatings were compared. In the first two, NLS was introduced in the coating formulation in the forms of free powder and micro-containers filled with LO, correspondingly. The last one was a standard ASC coating without inhibitor at all. Low-carbon steel substrates were coated by these formulations by spraying and subjected subsequently to the neutral salt spray test according to DIN ISO 9227. Results of these tests as well as the data obtained by electrochemical study suggest that such containers can be used for the improvement of adhesion of ASC-based coatings to the substrate and for the enhancement of their protective performance upon integrity damage, whereas the barrier properties of intact coatings were decreased.

  9. Nano-enabled tribological thin film coatings: global patent scenario.

    Science.gov (United States)

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds.

  10. Polypyrrole-coated LiCoO2 nanocomposite with enhanced electrochemical properties at high voltage for lithium-ion batteries

    Science.gov (United States)

    Cao, Jingchao; Hu, Guorong; Peng, Zhongdong; Du, Ke; Cao, Yanbing

    2015-05-01

    A conducting polypyrrole thin film is successfully coated onto the surface of LiCoO2 by a simple chemical polymerization method. The structure and morphology of pristine LiCoO2 and PPy-coated LiCoO2 are investigated by the techniques of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Energy dispersive X-ray spectroscopy (EDXS), Fourier transform infrared spectrometry (FTIR) and thermogravimetric analysis (TGA) further demonstrate the existence of PPy. The electrochemical properties of the composites are investigated by galvanostatic charge-discharge test and AC impedance measurements, which show that the conductive PPy film on the surface significantly decrease the charge-transfer resistance of LiCoO2. The PPy-coated LiCoO2 exhibits a good electrochemical performance, showing initial discharge capacity of 182 mAh g-1 and retains 94.3% after 170 cycles. However, the retention of pristine LiCoO2 is only 83.5%. The rate capability results show that the reversible capacity retention (10C/0.2C) of LiCoO2 increases from 52.4% to 80.1% after being coated with PPy. The continuously coated thin PPy film is just like a capsule shell, which can protect the core (LiCoO2) from corrosion causing by the HF attacking and greatly reduce the dissolution of Co into electrolyte.

  11. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    Science.gov (United States)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  12. Latest Developments in PVD Coatings for Tooling

    Directory of Open Access Journals (Sweden)

    Gabriela Strnad

    2010-06-01

    Full Text Available The paper presents the recent developments in the field of PVD coating for manufacturing tools. A review of monoblock, multilayer, nanocomposite, DLC and oxinitride coatings is discussed, with the emphasis on coatings which enables the manufacturers to implement high productivity processes such as high speed cutting and dry speed machining.

  13. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR).

  14. Improving the cycle stability of LiCoPO{sub 4} nanocomposites as 4.8 V cathode: Stepwise or synchronous surface coating and Mn substitution

    Energy Technology Data Exchange (ETDEWEB)

    Örnek, Ahmet, E-mail: ahmetornek@kafkas.edu.tr [Kafkas University, Atatürk Vocational School of Health Science, Kars (Turkey); Can, Mustafa [Sakarya University, Arifiye Vocational School, Sakarya (Turkey); Yeşildağ, Ali [Kafkas University, Faculty of Engineering and Architecture, Department of Bioengineering, Kars (Turkey)

    2016-06-15

    Nanostructured LiCo{sub 1−x}Mn{sub x}PO{sub 4}/C (x = 0 and 0.05) materials were successfully produced as superior quality cathodes by combined sol-gel and carbothermal reduction methods. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), cyclic voltammetry (CV) and galvanostatic measurements were applied to determine the phase purity, morphology and electrochemical qualifications. HR-TEM analysis reveals that the thickness of the surface carbon layer of 5 to 10 nm range with the uniform distribution. LiCo{sub 0·95}Mn{sub 0·05}PO{sub 4}/C particles were between 40 and 80 nm and the same material exhibits a higher and stable reversible capacity (140 mA h g{sup −1}) with the long voltage plateau (4.76 V). Substitution of Co{sup 2+} with Mn{sup 2+} in LiCoPO{sub 4}/C has an influence on the initial discharge capacity and excellent cycling behaviour. The obtained results have attributed that production dynamics in nano-synthesis, the coating process with proper carbon source and an effective doping represent three parameters to prepare favorable cathode materials. - Highlights: • Structural, morphological and electrochemical effects of Mn doped LiCo{sub 1−x}Mn{sub x}PO{sub 4}–C electrodes are investigated. • Cheap, effective and simple sol-gel assisted carbothermal reduction approach is used. • After 60th cycle, capacity retention is almost 92% for LiCo{sub 0·95}Mn{sub 0.05}PO{sub 4}–C electrode. • Mn-doped sample exhibits distinctive oxidation (4.76 V and 4.12 V) peaks.

  15. Combined Effects of Pyramid-Like Structures and Antireflection Coating on Si Solar Cell Efficiency.

    Science.gov (United States)

    Cho, Chanseob; Oh, Junghwa; Lee, Byeungleul; Kim, Bonghwan

    2015-10-01

    We dev