WorldWideScience

Sample records for nano-scratch test applied

  1. Mechanical properties of ultra-thin HfO2 films studied by nano scratches tests

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Yong-Qing; Chang, Chia-Wei; Yao, Chih-Kai; Liao, Jiunn-Der

    2013-01-01

    10-nm-thick atomic layer deposited HfO 2 films were characterized in terms of wear resistance and indentation hardness to investigate the thermal annealing induced impacts on mechanical properties. The wear resistance of ultra-thin films at low loads was characterized using nano-scratch tests with an atomic force microscope. The depth of the nano-scratches decreases with increasing annealing temperature, indicating that the hardness of the annealed films increases with the annealing temperatures. Surface nanoindentation was also performed to confirm the nanoscratch test results. The hardness variation of the annealed films is due to the generation of HfSi x O y induced by the thermal annealing. X-ray photoelectron spectroscopy measurements proved that the hardness of formed HfSi x O y with increasing annealing temperatures. The existence of HfSi x O y broadens the interface, and causes the increase of the interfacial layer thickness. As a result, the surface hardness increases with the increasing HfSi x O y induced by the thermal annealing. - Highlights: ► Mechanical properties of HfO 2 films were assessed by nano-scratch and indentation. ► Scratch depth of HfO 2 films decreased with the increase of annealing temperatures. ► Nano-hardness of HfO 2 films increased with the increase of annealing temperatures

  2. Mechanical properties of ultra-thin HfO{sub 2} films studied by nano scratches tests

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wei-En; Chang, Yong-Qing [Center for Measurement Standards, Industrial Technology Research Institute, Room 216, Building 8, 321, Kuang Fu Road Sec. 2, Hsinchu, Taiwan (China); Chang, Chia-Wei; Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2013-02-01

    10-nm-thick atomic layer deposited HfO{sub 2} films were characterized in terms of wear resistance and indentation hardness to investigate the thermal annealing induced impacts on mechanical properties. The wear resistance of ultra-thin films at low loads was characterized using nano-scratch tests with an atomic force microscope. The depth of the nano-scratches decreases with increasing annealing temperature, indicating that the hardness of the annealed films increases with the annealing temperatures. Surface nanoindentation was also performed to confirm the nanoscratch test results. The hardness variation of the annealed films is due to the generation of HfSi{sub x}O{sub y} induced by the thermal annealing. X-ray photoelectron spectroscopy measurements proved that the hardness of formed HfSi{sub x}O{sub y} with increasing annealing temperatures. The existence of HfSi{sub x}O{sub y} broadens the interface, and causes the increase of the interfacial layer thickness. As a result, the surface hardness increases with the increasing HfSi{sub x}O{sub y} induced by the thermal annealing. - Highlights: ► Mechanical properties of HfO{sub 2} films were assessed by nano-scratch and indentation. ► Scratch depth of HfO{sub 2} films decreased with the increase of annealing temperatures. ► Nano-hardness of HfO{sub 2} films increased with the increase of annealing temperatures.

  3. Infrared spectroscopy, nano-mechanical properties, and scratch resistance of esthetic orthodontic coated archwires.

    Science.gov (United States)

    da Silva, Dayanne Lopes; Santos, Emanuel; Camargo, Sérgio de Souza; Ruellas, Antônio Carlos de Oliveira

    2015-09-01

    To evaluate the material composition, mechanical properties (hardness and elastic modulus), and scratch resistance of the coating of four commercialized esthetic orthodontic archwires. The coating composition of esthetic archwires was assessed by Fourier-transform infrared spectroscopy (FTIR). Coating hardness and elastic modulus were analyzed with instrumented nano-indentation tests. Scratch resistance of coatings was evaluated by scratch test. Coating micromorphologic characteristics after scratch tests were observed in a scanning electron microscope. Statistical differences were investigated using analysis of variance and Tukey post hoc test. The FTIR results indicate that all analyzed coatings were markedly characterized by the benzene peak at about 1500 cm(-1). The coating hardness and elastic modulus average values ranged from 0.17 to 0.23 GPa and from 5.0 to 7.6 GPa, respectively. Scratch test showed a high coating elasticity after load removal with elastic recoveries >60%, but different failure features could be observed along the scratches. The coatings of esthetic archwires evaluated are probably a composite of polyester and polytetrafluoroethylene. Delamination, crack propagation, and debris generation could be observed along the coating scratches and could influence its durability in the oral environment.

  4. An investigation of the tribological and nano-scratch behaviors of Fe–Ni–Cr alloy sintered by direct metal laser sintering

    International Nuclear Information System (INIS)

    Amanov, Auezhan; Sasaki, Shinya; Cho, In-Sik; Suzuki, Yusuke; Kim, Hae-Jin; Kim, Dae-Eun

    2013-01-01

    Highlights: ► Fe–Ni–Cr alloy was sintered by direct metal laser sintering. ► HFUP technique was able to produce a hardened surface layer. ► HFUP-treated specimen showed better tribological and scratch properties. - Abstract: In this work, the friction and wear behavior of Fe–Ni–Cr alloy specimens processed by direct metal laser sintering (DMLS) method was investigated by using a ball-on-disk reciprocating tribotester sliding against a hardened steel ball under dry sliding conditions. After DMLS, the specimens were further treated by hot isostatic pressing (HIP) in order to reduce the porosity and to increase the density. Subsequently, one of the specimens was subjected to high-frequency ultrasonic peening (HFUP) with the aim to enhance the tribological properties. The microstructural characterization was conducted using a scanning electron microscope (SEM) and an atomic force microscope (AFM). In addition, nano-scratch tests were carried out on the specimens using a nano-scratch testing (NST) system. The friction and nano-scratch tests results showed that the HFUP-treated specimen led to a reduction in friction coefficient and wear rate, and an increase in resistance to scratch compared to that of the HFUP-free specimen, which may be attributed to the increase in hardness and the formation of corrugated structure

  5. Study the scratch resistance of UV-cured epoxy acrylate in the presence of nano alumina particles via nano indentation

    International Nuclear Information System (INIS)

    Bastani, S.; Ebrahimi, M.; Kardar, P.

    2007-01-01

    In this research, an epoxy acrylate resin was synthesized, then the synthesized resin was used along with different multifunctional acrylate monomers and with a photoinitiator in different formulations and cured with UV radiation. The experiments were designed based on mixture method by using Design-Expert software. To investigate the effect of nano particles on the some of physical and mechanical properties of the UV cured resins, the suspension of nano alumina in TPGDA, was used in formulations. The hardness of prepared films was evaluated by using konig hardness tester and nano indentater. The scratch resistance and gloss of the films were also determined. The results showed that the visibility of scratch decreased when the nano particles were used. It seems that the self-healing property of the film improved in the presence of nano particles. The hardness of the samples with nano particles was found to be less than that the samples of without any nano particles. It was observed that the gloss of the films with the nano particles, almost was the same as the film without nano particles. (Author)

  6. Experimental investigation of the tip based micro/nano machining

    Science.gov (United States)

    Guo, Z.; Tian, Y.; Liu, X.; Wang, F.; Zhou, C.; Zhang, D.

    2017-12-01

    Based on the self-developed three dimensional micro/nano machining system, the effects of machining parameters and sample material on micro/nano machining are investigated. The micro/nano machining system is mainly composed of the probe system and micro/nano positioning stage. The former is applied to control the normal load and the latter is utilized to realize high precision motion in the xy plane. A sample examination method is firstly introduced to estimate whether the sample is placed horizontally. The machining parameters include scratching direction, speed, cycles, normal load and feed. According to the experimental results, the scratching depth is significantly affected by the normal load in all four defined scratching directions but is rarely influenced by the scratching speed. The increase of scratching cycle number can increase the scratching depth as well as smooth the groove wall. In addition, the scratching tests of silicon and copper attest that the harder material is easier to be removed. In the scratching with different feed amount, the machining results indicate that the machined depth increases as the feed reduces. Further, a cubic polynomial is used to fit the experimental results to predict the scratching depth. With the selected machining parameters of scratching direction d3/d4, scratching speed 5 μm/s and feed 0.06 μm, some more micro structures including stair, sinusoidal groove, Chinese character '田', 'TJU' and Chinese panda have been fabricated on the silicon substrate.

  7. Effects of AFM tip-based direct and vibration assisted scratching methods on nanogrooves fabrication on a polymer resist

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yanquan [The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Yan, Yongda, E-mail: yanyongda@hit.edu.cn [The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Zhuang, Yun; Hu, Zhenjiang [Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The comparison of three different atomic force microscope (AFM) tip-based material processing techniques to generate nano-grooves on polymethylmethacrylate (PMMA) thin film is presented. • The machined depths of the nano-grooves machined by these three methods are analyzed. • Nano-groove with the machined depth closed to the thickness of the thin-film resist is achieved. - Abstract: This study proposes two atomic force microscope (AFM) tip-based direct nanoscratching methods including single-pass scratching and multi-pass scratching compared with a vibration-assisted scratching method to fabricate nano-grooves on the surface of the polymethylmethacrylate (PMMA) thin-film resist. In order to protect the AFM tip from wearing and optimize the subsequent etching process, the machined depth is expected slightly less than the PMMA thickness to prevent the tip directly contacting with the silicon substrate and obtain better process results. First, single-pass scratching tests are performed on films with different thickness employing varied normal loads. Results show that the machined depths of the grooves cannot be obtained slightly less than the thickness of the film very easily when scratching with single-pass method, 50–120 nm in the present study, which may not be very suitable for the following etching process. Multi-pass and vibration-assisted methods are then utilized to solve this limitation of the machined depth in single-pass process. The machined depths using the multi-pass method are dependent on scratching times and the applied normal loads. Moreover, the depth closed to the thickness of the film can be obtained by enlarging the number of the scratching cycles. However, with a longer scratching time, large tip wear can be found. For vibration assisted method, the machined depths are controlled by the vibration amplitude and the applied normal load. With the vibration in z direction increasing, the machined depth can

  8. ESEM-BSE coupled with rapid nano-scratching for micro-physicochemical analysis of marine exposed concrete

    NARCIS (Netherlands)

    Palin, D.; Thijssen, A.; Wiktor, V.; Jonkers, H.M.; Schlangen, H.E.J.G.

    2015-01-01

    Ordinary Portland cement (OPC) mortar specimens submerged in sea-water were analysed through environmental scanning electron microscopy (ESEM) in back scattered electron (BSE) mode and nano-scratching. Results from both sets of analysis show the presence of distinct phases associated with aragonite,

  9. Surface deformation and friction characteristic of nano scratch at ductile-removal regime for optical glass BK7.

    Science.gov (United States)

    Li, Chen; Zhang, Feihu; Ding, Ye; Liu, Lifei

    2016-08-20

    Nano scratch for optical glass BK7 based on the ductile-removal regime was carried out, and the influence rule of scratch parameters on surface deformation and friction characteristic was analyzed. Experimental results showed that, with increase of normal force, the deformation of burrs in the edge of the scratch was more obvious, and with increase of the scratch velocity, the deformation of micro-fracture and burrs in the edge of the scratch was more obvious similarly. The residual depth of the scratch was measured by atomic force microscope. The experimental results also showed that, with increase of normal force, the residual depth of the scratch increased linearly while the elastic recovery rate decreased. Furthermore, with increase of scratch velocity, the residual depth of the scratch decreased while the elastic recovery rate increased. The scratch process of the Berkovich indenter was divided into the cutting process of many large negative rake faces based on the improved cutting model, and the friction characteristic of the Berkovich indenter and the workpiece was analyzed. The analysis showed that the coefficient of friction increased and then tended to be stable with the increase of normal force. Meanwhile, the coefficient of friction decreased with the increase of scratch velocity, and the coefficients, k ln(v) and μ0, were introduced to improve the original formula of friction coefficient.

  10. Microscopic assessment of bone toughness using scratch tests

    Directory of Open Access Journals (Sweden)

    Amrita Kataruka

    2017-06-01

    Full Text Available Bone is a composite material with five distinct structural levels: collagen molecules, mineralized collagen fibrils, lamellae, osteon and whole bone. However, most fracture testing methods have been limited to the macroscopic scale and there is a need for advanced characterization methods to assess toughness at the osteon level and below. The goal of this investigation is to present a novel framework to measure the fracture properties of bone at the microscopic scale using scratch testing. A rigorous experimental protocol is articulated and applied to examine cortical bone specimens from porcine femurs. The observed fracture behavior is very complex: we observe a strong anisotropy of the response with toughening mechanisms and a competition between plastic flow and brittle fracture. The challenge consists then in applying nonlinear fracture mechanics methods such as the J-integral or the energetic Size Effect Law to quantify the fracture toughness in a rigorous fashion. Our result suggests that mixed-mode fracture is instrumental in determining the fracture resistance. There is also a pronounced coupling between fracture and elasticity. Our methodology opens the door to fracture assessment at multiple structural levels, microscopic and potentially nanometer length scale, due to the scalability of scratch tests.

  11. The scratch test - Different critical load determination techniques. [adhesive strength of thin hard coatings

    Science.gov (United States)

    Sekler, J.; Hintermann, H. E.; Steinmann, P. A.

    1988-01-01

    Different critical load determination techniques such as microscopy, acoustic emission, normal, tangential, and lateral forces used for scratch test evaluation of complex or multilayer coatings are investigated. The applicability of the scratch test to newly developed coating techniques, systems, and applications is discussed. Among the methods based on the use of a physical measurement, acoustic emission detection is the most effective. The dynamics ratio between the signals below and above the critical load for the acoustic emission (much greater than 100) is well above that obtained with the normal, tangential, and lateral forces. The present commercial instruments are limited in load application performance. A scratch tester able to apply accurate loads as low as 0.01 N would probably overcome most of the actual limitations and would be expected to extend the scratch testing technique to different application fields such as optics and microelectronics.

  12. Important Details in Performing and Interpreting the Scratch Collapse Test.

    Science.gov (United States)

    Kahn, Lorna C; Yee, Andrew; Mackinnon, Susan E

    2018-02-01

    The utility of the scratch collapse test has been demonstrated in examination of patients with carpal and cubital tunnel syndromes and long thoracic and peroneal nerve compressions. In the authors' clinic, this lesser known test plays a key role in peripheral nerve examination where localization of the nerve irritation or injury is not fully understood. Test utility and accuracy in patients with more challenging presentations likely correlate with tester understanding and experience. This article offers a clear outline of all stages of the test to improve interrater reliability. The nuances of test performance are described, including a description of situations where the scratch collapse test is deemed inappropriate. Four clinical scenarios where the scratch collapse test may be useful are included. Corresponding video content is provided to improve performance and interpretation of the scratch collapse test. Diagnostic, V.

  13. Research on the Single Grit Scratching Process of Oxygen-Free Copper (OFC

    Directory of Open Access Journals (Sweden)

    Libin Zhang

    2018-04-01

    Full Text Available Single grit scratching is a basic form of material removal for many processes, such as grinding single point diamond turning and coating bonding performance tests. It has been widely used in the study of micro-scale and nano-scale material removal mechanisms. In this study, single grit linearly loading scratching tests were carried out on a scratching tester. A Rockwell indenter made of natural diamond was selected as the tool used, and the material of the workpiece was oxygen-free copper. Scratch topography was measured using a super-depth microscope to analyze the material deformation of the scratching process. A single grit scratching simulation has been developed by AdvantEdge™ to comprehensively study the material deformation of scratching processes. A material constitutive model and friction model were acquired using a quasi-static uniaxial compression experiment and a reciprocating friction test, respectively. These two models were used as the input models in the finite simulations. The simulated scratching forces aligned well with the experimental scratching forces, which verified the precision of the simulation model. Since only the scratching force could be obtained in the scratching experiment, the plastic strain, material flow, and residual stress of the scratching were further analyzed using simulations. The results showed that the plastic strain of the workpiece increased with the increase in scratching depth, and further analysis showed that the workpiece surface was distributed with residual compressive stress and the sub-surface was distributed with residual tensile stress in single grit scratching.

  14. Measuring mechanical properties of coatings : a methodology applied to nano-particle-filled sol-gel coatings on glass

    NARCIS (Netherlands)

    Malzbender, J.; Toonder, den J.M.J.; Balkenende, A.R.; With, de G.

    2002-01-01

    The main aim of this paper is to demonstrate the practical use of nano-indentation and scratch testing in determining mechanical properties of thin coatings. We place our emphasis on how information obtained using both techniques can be combined to give a more complete representation of the

  15. CAT SCRATCH DISEASE: RESULTS OF COMPLEMENT-FIXATION AND SKIN TESTS

    Science.gov (United States)

    Serologic and skin-testing data on a group of patients having cat scratch disease are presented to demonstrate a possible relationship to the psitt...indicate that the incidence of positive serologic reactions with the psitt-LGV group antigen is consistently higher in patients with cat scratch disease...patients, 2 of 5 did not respond with positive skin reactions when tested with cat scratch antigen, and at least 2 of the remaining 3 responded in a manner difficult to interpret.

  16. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Agarwal, Arvind; Benaduce, Ana Paula; Kos, Lidia

    2011-01-01

    This paper explores the nano-scratch technique for measuring the adhesion strength of a single osteoblast cell on a hydroxyapatite (HA) surface reinforced with carbon nanotubes (CNTs). This technique efficiently separates out the contribution of the environment (culture medium and substrate) from the measured adhesion force of the cell, which is a major limitation of the existing techniques. Nano-scratches were performed on plasma sprayed hydroxyapatite (HA) and HA-CNT coatings to quantify the adhesion of the osteoblast. The presence of CNTs in HA coating promotes an increase in the adhesion of osteoblasts. The adhesion force and energy of an osteoblast on a HA-CNT surface are 17 ± 2 μN/cell and 78 ± 14 pJ/cell respectively, as compared to 11 ± 2 μN/cell and 45 ± 10 pJ/cell on a HA surface after 1 day of incubation. The adhesion force and energy of the osteoblasts increase on both the surfaces with culture periods of up to 5 days. This increase is more pronounced for osteoblasts cultured on HA-CNT. Staining of actin filaments revealed a higher spreading and attachment of osteoblasts on a surface containing CNTs. The affinity of CNTs to conjugate with integrin and other proteins is responsible for the enhanced attachment of osteoblasts. Our results suggest that the addition of CNTs to surfaces used in medical applications may be beneficial when stronger adhesion of osteoblasts is desired.

  17. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2016-03-01

    Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  18. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bo; Zhao, Hongwei, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com; Zhao, Dan; Zhang, Peng; Yang, Yihan; Han, Lei [School of Mechanical Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China); Kui, Hailin, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com [School of Transportation, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China)

    2016-03-15

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  19. Diagnosis of carpal tunnel syndrome: interobserver reliability of the blinded scratch-collapse test

    NARCIS (Netherlands)

    Blok, Robin D.; Becker, Stéphanie J. E.; Ring, David C.

    2014-01-01

    The reliability of the scratch-collapse test for diagnosis of carpal tunnel syndrome (CTS) has not been tested by independent investigators. This study measured the reliability of the scratch-collapse test comparing the treating hand surgeon and blinded evaluators. We performed a prospective

  20. Mechanical characterization and single asperity scratch behaviour of dry zinc and manganese phosphate coatings

    NARCIS (Netherlands)

    Ernens, D.; de Rooij, M. B.; Pasaribu, H. R.; van Riet, E.J.; van Haaften, W.M.; Schipper, D. J.

    The goal of this study is to characterise the mechanical properties of zinc and manganese phosphate coatings before and after running in. The characterization is done with nano-indentation to determine the individual crystal hardness and single asperity scratch tests to investigate the deformation

  1. Scratch direction and threshold force in nanoscale scratching using atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Ampere A., E-mail: ampere.tseng@asu.edu [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Kuo, Chung-Feng Jeffrey; Jou, Shyankay [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Nishimura, Shinya; Shirakashi, Jun-ichi [Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588 (Japan)

    2011-09-01

    The nanoscaled tip in an AFM (atomic force microscope) has become an effective scratching tool for material removing in nanofabrication. In this article, the characteristics of using a diamond-coated pyramidal tip to scratch Ni-Fe thin film surfaces was experimentally investigated with the focus on the evaluation of the influence of the scratch or scan direction on the final shape of the scratched geometry as well as the applied scratch force. Results indicated that both the scratched profile and the scratch force were greatly affected by the scratch direction. It has been found that, to minimize the formation of protuberances along the groove sides and to have a better control of the scratched geometry, the tip face should be perpendicular to the scratching direction, which is also known as orthogonal cutting condition. To demonstrate the present findings, three groove patterns have been scratched with the tip face perpendicular to the scratching direction and very little amount of protuberances was observed. The threshold scratch force was also predicted based on the Hertz contact theory. Without considering the surface friction and adhesive forces between the tip and substrate, the threshold force predicted was twice smaller than the measurement value. Finally, recommendations for technical improvement and research focuses are provided.

  2. Scratch direction and threshold force in nanoscale scratching using atomic force microscopes

    International Nuclear Information System (INIS)

    Tseng, Ampere A.; Kuo, Chung-Feng Jeffrey; Jou, Shyankay; Nishimura, Shinya; Shirakashi, Jun-ichi

    2011-01-01

    The nanoscaled tip in an AFM (atomic force microscope) has become an effective scratching tool for material removing in nanofabrication. In this article, the characteristics of using a diamond-coated pyramidal tip to scratch Ni-Fe thin film surfaces was experimentally investigated with the focus on the evaluation of the influence of the scratch or scan direction on the final shape of the scratched geometry as well as the applied scratch force. Results indicated that both the scratched profile and the scratch force were greatly affected by the scratch direction. It has been found that, to minimize the formation of protuberances along the groove sides and to have a better control of the scratched geometry, the tip face should be perpendicular to the scratching direction, which is also known as orthogonal cutting condition. To demonstrate the present findings, three groove patterns have been scratched with the tip face perpendicular to the scratching direction and very little amount of protuberances was observed. The threshold scratch force was also predicted based on the Hertz contact theory. Without considering the surface friction and adhesive forces between the tip and substrate, the threshold force predicted was twice smaller than the measurement value. Finally, recommendations for technical improvement and research focuses are provided.

  3. Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data Analysis

    Science.gov (United States)

    Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.

    2011-01-01

    A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ

  4. Characterization of age-hardening behavior of eutectic surface on rheo-cast A356-T5 alloy by using nano/micro-indentation, scratching and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Youn, S.W. [Department of Precision and Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)]. E-mail: youn.sung-won@aist.go.jp; Kang, C.G. [National Research Laboratory of Thixo/Rheo Forming, School of Mechanical Engineering, Pusan National University, JangJun-Dong, Gumjung-Gu, Pusan 609-735 (Korea, Republic of)]. E-mail: cgkang@pusan.ac.kr

    2006-11-10

    This study investigates the nano/microstructure, the aging response (in T5 heat treatment), and the mechanical/tribological properties of the eutectic regions in rheo-cast A356 alloy parts using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. The aging responses of the eutectic regions in the rheo-cast A356 alloys aged at 150 deg. C for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Vickers hardness and indentation test results showed a similar trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found. The friction coefficient for the eutectic region was lower than that for the primary Al region.

  5. Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards

    Science.gov (United States)

    Street, Kenneth W., Jr.; Kobrick, Ryan L.; Klaus, David M.

    2013-01-01

    Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two interacting materials. Knowing the abrasive nature of an environment (abrasive)/construction material is crucial to designing durable equipment for use in such surroundings. The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width. The ZOI has been found to be at least twice the size of a standard width measurement; in some cases, considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for de tailed analysis. Documenting additional changes to various surface roughness par ameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Further - more, by investigating the use of custom scratch tips for specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized

  6. Nano Mechanical Machining Using AFM Probe

    Science.gov (United States)

    Mostofa, Md. Golam

    and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  7. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    International Nuclear Information System (INIS)

    Seo, Masahiro; Yamaya, Tadafumi

    2005-01-01

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width

  8. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Masahiro [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: seo@elechem1-mc.eng.hokudai.ac.jp; Yamaya, Tadafumi [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)

    2005-11-10

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width.

  9. Scratch resistance and localised damage characteristics of polymer surfaces - a review

    Energy Technology Data Exchange (ETDEWEB)

    Briscoe, B.J. [Department of Chemical Engineering and Chemical Technology, Imperial College, London SW7 2BY (United Kingdom); Sinha, S.K. [Department of Mechanical Engineering, National University of Singapore (Singapore)

    2003-11-01

    The ''Scratch Test'' is, arguably, the earliest and amongst the now most widely used techniques for evaluating a wide range of surface mechanical properties. Some of the areas where this test has been successfully used in the engineering field, both by research and industry, include the determination of the relative hardness of materials, characterizations of coatings, paints and thin-films, modeling of the wear of materials and the estimation of different material deformation characteristics when subjected to hard asperity damage. In this paper we have reviewed the ''state-of-the-art'' in the scratch method for polymeric materials. The paper provides some important theoretical models that have been developed in the field of scratching for material property characterizations. Results from different types of scratch tests (macro, micro and nano scales) on a range of polymeric materials are presented with critical discussion on the usefulness of each result. Finally, various areas for further research in scratching of polymer surfaces have been identified. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Der ''Ritztest'' ist wohl das aelteste und mit am meisten verwendete Verfahren zur Beurteilung von oberflaechenmechanischen Eigenschaften. Zu den technischen Bereichen, in denen dieser Test sowohl in der Forschung als auch in der Industrie erfolgreich Anwendung gefunden hat, zaehlen die Bestimmung der relativen Materialhaerte, die Charakterisierung von Beschichtungen, Lackierungen und Duennschichten, die Modellierung des Werkstoffverschleisses sowie die Abschaetzung verschiedener Werkstoffverformungsparameter bei Beanspruchung durch harte Rauheitsspitzen. Der vorliegende Bericht beschreibt den gegenwaertigen Stand der Anwendung des Ritzverfahrens fuer polymere Materialien. Er enthaelt wichtige theoretische Modelle, die fuer die Anwendung des Ritzens zur Charakterisierung von

  10. Acoustic emission generated during scratch test of various thin films

    Czech Academy of Sciences Publication Activity Database

    Boháč, Petr; Tomáštík, J.; Čtvrtlík, R.; Dráb, M.; Koula, V.; Cvrk, K.; Jastrabík, Lubomír

    2014-01-01

    Roč. 19, č. 12 (2014), s. 16635 ISSN 1435-4934 R&D Projects: GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : acoustic emission * scratch test * thin films * AE data analysis * mechanical toughness Subject RIV: BI - Acoustics

  11. A study of AFM-based scratch process on polycarbonate surface and grating application

    International Nuclear Information System (INIS)

    Choi, Chul Hyun; Lee, Dong Jin; Sung, Jun-Ho; Lee, Min Woo; Lee, Seung-Gol; Park, Se-Geun; Lee, El-Hang; O, Beom-Hoan

    2010-01-01

    We report on the possibility of applying atomic force microscope (AFM) lithography to draw micro/nano-structures on the surface of a polycarbonate (PC) substrate. We also fabricated a grating structure on the PC surface using the scratch method. An AFM silicon tip coated with a diamond layer was utilized as a cutting tool to scratch the surface of the sample. In order to obtain pattern depth deeper than the control method of interaction force, we used a scanner movement method which the sample scanner moves along the Z-axis. A grating of 100 μm x 150 μm was fabricated by the step and repeat method wherein the sample stage is moved in the direction of the XY-axis. The period and the depth of the grating are 500 and 50 nm, respectively. Light of 632.8 nm wavelength was diffracted on the surface of the PC substrate.

  12. Relationship between thin-film bond strength as measured by a scratch test, and indentation hardness for bonding agents.

    Science.gov (United States)

    Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato

    2016-03-01

    To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (pstrength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Prevalence and interest in the practice of scratch testing for contact urticaria: a survey of the American contact dermatitis society members.

    Science.gov (United States)

    Orb, Quinn; Millsop, Jillian Wong; Harris, KaLynne; Powell, Douglas

    2014-01-01

    Contact urticaria (CU) is the development of a wheal and flare on the skin after topical exposure to a particular chemical or compound. It can be diagnosed through a variety of techniques. Many chemicals that cause a type IV allergy can also cause CU. The incidence of CU to these chemicals is unknown. The aim of this study was to evaluate the opinions of the American Contact Dermatitis Society members regarding CU and scratch testing. We distributed an electronic survey to the American Contact Dermatitis Society members regarding observed prevalence of CU, frequency of scratch testing in clinical practice, and interest in learning about scratch testing in diagnosing CU and other skin contact conditions. We distributed 508 surveys and received 133 responses. Seventeen percent reported that CU was extremely rare, 32% reported that CU was rare, and 38.9% reported that CU was infrequent. Alternatively, 10.7% believed that CU was common, and 1.5% believed that CU was extremely common. A minority, 19.1%, performed scratch testing on patients with suspected CU. Most respondents, 54.6%, were interested in learning about scratch testing. Additional education regarding scratch testing could increase comfort and use of scratch testing in clinical practice. Further studies are needed to evaluate the prevalence of CU in the general population and better guide the use of testing for dermatologic patients.

  14. Nano-dot and nano-pit fabrication on a GaAs substrate by a pulse applied AFM

    International Nuclear Information System (INIS)

    Kim, H C; Yu, J S; Ryu, S H

    2012-01-01

    The nano-patterning characteristics of GaAs is investigated using a pulse applied atomic force microscope (AFM). Very short range voltage pulses of micro to nano-seconds’ duration are applied to a conductive diamond-coated silicon (Si) tip in contact mode, to regulate the created feature size. The effects of pulse conditions such as pulse voltage, duration, frequency, offset voltage, anodization time, and applied tip pressure on nano-dot generation are characterized, based on the experiments. An interesting phenomenon, nano-pit creation instead of nano-dot creation, is observed when the applied pulse duration is less than 100 μs. Pulse frequency and offset voltage are also involved in nano-pit generation. The electrical spark discharge between the tip and the GaAs's surface is the most probable cause of the nano-pit creation and its generation mechanism is explained by considering the relevant pulse parameters. Nano-pits over 15 nm in depth are acquired on the GaAs substrate by adjusting the pulse conditions. This research facilitates the fabrication of more complex nano-structures on semiconductor materials since nano-dots and nano-pits could be easily made without any additional post-processes. (paper)

  15. Evaluation of the scratch collapse test for the diagnosis of carpal tunnel syndrome

    NARCIS (Netherlands)

    Makanji, H. S.; Becker, S. J. E.; Mudgal, C. S.; Jupiter, J. B.; Ring, D.

    2014-01-01

    This prospective study measured and compared the diagnostic performance characteristics of various clinical signs and physical examination manoeuvres for carpal tunnel syndrome (CTS), including the scratch collapse test. Eighty-eight adult patients that were prescribed electrophysiological testing

  16. Scratch resistance of a polycarbonate + organoclay nanohybrid

    Directory of Open Access Journals (Sweden)

    2009-10-01

    Full Text Available A polycarbonate-based nanohybrid has been created containing 1 wt% of Bentone 2010, an organically modified montmorillonite. A micro-section on the nanohybrid obtained using focused ion beam (FIB and field emission scanning electron microscopy (FESEM was employed to observe the orientation of the nanoclay inside a polycarbonate (PC matrix in the cross-section FIB-milled face. A micro-scratch tester was used to measure the scratch resistance in terms of residual (healing depth Rh under progressive load and in sliding wear. Effects of the number of scratches, normal load and scratch velocity have been evaluated as a function of nanoclay orientation. In sliding wear (multiple scratching along the same groove, our nanohybrid reaches residual depth values that remain constant after a certain number of scratches, a manifestation of strain hardening. The number of scratches to induce strain hardening decreases as the normal applied load increases. SEM was used to characterize deformation and wear mechanisms that operate on contacts and the results related to the wear data.

  17. Adhesion analysis of polycrystalline diamond films on molybdenum by means of scratch, indentation and sand abrasion testing

    Energy Technology Data Exchange (ETDEWEB)

    Buijnsters, J.G. [Applied Physics, IMM, Department of Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Shankar, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Enckevort, W.J.P. van [Solid State Chemistry, IMM, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Schermer, J.J. [Experimental Solid State Physics III, IMM, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Meulen, J.J. ter [Applied Physics, IMM, Department of Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands)]. E-mail: htmeulen@sci.kun.nl

    2005-03-01

    Diamond films have been grown by hot-filament chemical vapour deposition (CVD) on molybdenum substrates under different growth conditions. The films grown with increasing substrate temperatures show a higher interconnection of diamond grains, whereas increasing methane concentrations in the 0.5-4.0% range lead to a transition from micro- towards nanocrystalline films. X-ray diffraction analysis shows Mo{sub 2}C interlayer formation. Indentation, scratch and sand erosion tests are used to evaluate the adhesion strength of the diamond films. Using steel ball indenters (diameter 750 {mu}m), indentation and scratch adhesion tests are performed up to final loads of 200 N. Upon indentation, the load values at which diamond film failure such as flaking and detachment is first observed, increase for increasing temperatures in the deposition temperature range of 450-850 deg C. The scratch adhesion tests show critical load values in the range of 16-40 N normal load for films grown for 4 h. In contrast, diamond films grown for 24 h at a methane concentration of 0.5% do not show any failure at all upon scratching up to 75 N. Film failure upon indenting and scratching is also found to decrease for increasing methane concentration in the CVD gas mixture. The sand abrasion tests show significant differences in coating failure for films grown at varying CH{sub 4}/H{sub 2} ratios. In contrast to the other tests, here best coating performance is observed for the films deposited with a methane concentration of 4%.

  18. A Novel Two-Axis Load Sensor Designed for in Situ Scratch Testing inside Scanning Electron Microscopes

    Directory of Open Access Journals (Sweden)

    Chengli Shi

    2013-02-01

    Full Text Available Because of a lack of available miniaturized multiaxial load sensors to measure the normal load and the lateral load simultaneously, quantitative in situ scratch devices inside scanning electron microscopes and the transmission electron microscopes have barely been developed up to now. A novel two-axis load sensor was designed in this paper. With an I-shaped structure, the sensor has the function of measuring the lateral load and the normal load simultaneously, and at the same time it has compact dimensions. Finite element simulations were carried out to evaluate stiffness and modal characteristics. A decoupling algorithm was proposed to resolve the cross-coupling between the two-axis loads. Natural frequency of the sensor was tested. Linearity and decoupling parameters were obtained from the calibration experiments, which indicate that the sensor has good linearity and the cross-coupling between the two axes is not strong. Via the decoupling algorithm and the corresponding decoupling parameters, simultaneous measurement of the lateral load and the normal load can be realized via the developed two-axis load sensor. Preliminary applications of the load sensor for scratch testing indicate that the load sensor can work well during the scratch testing. Taking advantage of the compact structure, it has the potential ability for applications in quantitative in situ scratch testing inside SEMs.

  19. Scratch cookbook

    CERN Document Server

    Milonovich, Brandon

    2013-01-01

    A practical approach with hands-on recipes to learn more about Scratch and its features.Scratch Cookbook is great for people who are still relatively new to programming but wish to learn more. It assumes you know the basics of computer operation. The methods of using Scratch are worked through quickly with a focus on more advanced topics, though readers can move at their own pace to learn all the techniques they need.

  20. In Situ TEM Scratch Testing of Perpendicular Magnetic Recording Multilayers with a Novel MEMS Tribometer

    Science.gov (United States)

    Hintsala, Eric D.; Stauffer, Douglas D.; Oh, Yunje; Asif, S. A. Syed

    2017-01-01

    Utilizing a newly developed two-dimensional (2D) transducer designed for in situ transmission electron microscope (TEM) nanotribology, deformation mechanisms of a perpendicular magnetic recording film stack under scratch loading conditions were evaluated. These types of films are widely utilized in storage devices, and loss of data by grain reorientation in the recording layers is of interest. The observed deformation was characterized by a stick-slip mechanism, which was induced by a critical ratio of lateral to normal force regardless of normal force. At low applied normal forces, the diamond-like carbon (DLC) coating and asperities in the recording layer were removed during scratching, while, at higher applied forces, grain reorientation and debonding of the recording layer was observed. As the normal force and displacement were increased, work for stick-slip deformation and contact stress were found to increase based upon an Archard's Law analysis. These experiments also served as an initial case study demonstrating the capabilities of this new transducer.

  1. Scratch deformation behavior of thermoplastic materials with significant differences in ductility

    International Nuclear Information System (INIS)

    Hadal, R.S.; Misra, R.D.K.

    2005-01-01

    A comparative study of the scratch deformation behavior of neat ethylene-propylene copolymers and polypropylene with significant differences in ductility is made by combining morphological examination by electron microscopy and scratch deformation parameters by atomic force microscopy. Also, the deformation behavior during scratch tests is examined for their respective long and short chain polymers. The ability of polymeric materials to resist scratch deformation under identical scratch test conditions follows the sequence (from maximum resistance to minimum resistance): short chain polypropylene > long chain polypropylene > short chain ethylene-propylene > long chain ethylene-propylene. The scratch tracks in ethylene-propylene copolymers were characterized by a consecutive parabolic pattern containing voids, while polypropylenes exhibited zig-zag periodic scratch tracks. The greater plastic flow in ethylene-propylene copolymers is encouraged by the high ductility of the copolymer and the ability to nucleate microvoids. The quasi-static periodic scratch tracks are a consequence of sequential accumulation and release of tangential force and represents the stick-slip process. The susceptibility to scratch deformation is discussed in terms of modulus, elastic recovery, scratch hardness, and entanglement density of polymeric materials. A higher effective entanglement density and percentage crystallinity of short chain polymers is helpful in enhancing scratch resistance as compared to their respective long chain polymers

  2. Nano-liquid chromatography applied to enantiomers separation.

    Science.gov (United States)

    Fanali, Salvatore

    2017-02-24

    This paper presents the state of the art concerning the separation of chiral compounds by means of nano-liquid chromatography (nano-LC). The enantiomers' separation and determination are a subject of fundamental importance in various application fields such as pharmaceutical industry, biomedicine, food, agrochemical etc. Nano-LC is a miniaturized chromatographic technique offering some advantages over conventional ones such as low consumption of mobile phase, sample volume and amount of chiral stationary phase, reduced costs etc. This is reported in the first part of the paper illustrating the features of the nano-LC. In addition, chiral resolution methods are briefly illustrated. Some chiral selectors, used in high-performance liquid chromatography have also been applied in nano-LC including cyclodextrins, glycopeptide antibiotics, modified polysaccharides etc. This is discussed in the second part of the review. Finally some examples of the applications available in literature are reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Scratch

    Directory of Open Access Journals (Sweden)

    Razvan BOLOGA

    2006-01-01

    Full Text Available The article is a brief introduction to the highly innovative product SCRATCH developed at MIT Media Lab by Professor Mitchell Resnick and his team. The product is intended to be used by young children with ages between 10 and 19 years in order to understand the programming basics. The key advantage of SCRATCH is the fact that it does not require any mathematical knowledge in order to use it.

  4. A nanometric cushion for enhancing scratch and wear resistance of hard films

    Directory of Open Access Journals (Sweden)

    Katya Gotlib-Vainshtein

    2014-07-01

    Full Text Available Scratch resistance and friction are core properties which define the tribological characteristics of materials. Attempts to optimize these quantities at solid surfaces are the subject of intense technological interest. The capability to modulate these surface properties while preserving both the bulk properties of the materials and a well-defined, constant chemical composition of the surface is particularly attractive. We report herein the use of a soft, flexible underlayer to control the scratch resistance of oxide surfaces. Titania films of several nm thickness are coated onto substrates of silicon, kapton, polycarbonate, and polydimethylsiloxane (PDMS. The scratch resistance measured by scanning force microscopy is found to be substrate dependent, diminishing in the order PDMS, kapton/polycarbonate, Si/SiO2. Furthermore, when PDMS is applied as an intermediate layer between a harder substrate and titania, marked improvement in the scratch resistance is achieved. This is shown by quantitative wear tests for silicon or kapton, by coating these substrates with PDMS which is subsequently capped by a titania layer, resulting in enhanced scratch/wear resistance. The physical basis of this effect is explored by means of Finite Element Analysis, and we suggest a model for friction reduction based on the "cushioning effect” of a soft intermediate layer.

  5. Effect of Scratches on Pinch Welds

    International Nuclear Information System (INIS)

    Korinko, P

    2005-01-01

    Fill stems for tritium reservoirs have stringent scratch requirements such that any indications that appear to have depth are cause for rework or rejection. A scoping study was undertaken to evaluate the effect of scratches approximately 0.0015 to 0.002 inch deep on the fitness for service and bond quality. The stems were characterized using borescope before and after welding. The four stems were welded with near optimal weld parameters, proof tested, and examined metallographically. The stems were radiographed, proof tested, and examined metallographically. The scratches did not adversely affect (1) the weld integrity based on radiography, (2) the ability to withstand the proof pressure, and (3) the weld quality based on metallographic cross-sections. Based on these limited results at a nominal weld current, the weld process is very robust. It may be able to recover from manufacturing defects and inspection anomalies worse than those expected for typical fill stem manufacturing processes; additional testing specific to each application over a range of weld heats is needed to verify applicability of these results

  6. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    International Nuclear Information System (INIS)

    Meng, F.; Xu, X.; Liu, X.; Wang, J.

    2014-01-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  7. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Xu, X.; Liu, X. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Wang, J. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China)

    2014-07-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  8. Detecting fine scratches on smooth surfaces with multiscale wavelet representation

    International Nuclear Information System (INIS)

    Yao, Li; Wan, Yan; Yao, Ming; Xu, Bugao

    2012-01-01

    This paper presents a set of image-processing algorithms for automatic detection of fine scratches on smooth surfaces, such as automobile paint surfaces. The scratches to be detected have random directions, inconspicuous gray levels and background noise. The multiscale wavelet transform was used to extract texture features, and a controlled edge fusion model was employed to merge the detailed (horizontal, vertical and diagonal) wavelet coefficient maps. Based on the fused detail map, multivariate statistics were applied to synthesize features in multiple scales and directions, and an optimal threshold was set to separate scratches from the background. The experimental results of 24 automobile paint surface showed that the presented algorithms can effectively suppress background noise and detect scratches accurately. (paper)

  9. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    Science.gov (United States)

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Material Removal and Specific Energy in the Dynamic Scratching of Gamma Titanium Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Lin, H.-T.; Wereszczak, A.A.

    2006-11-30

    Mechanical responses of three gamma titanium aluminides (TiAls) (denoted as Alloy A, Alloy B and Alloy C) subjected to dynamic scratching were studied by using a single-grit pendulum (rotating) scratch tester. The maximum depth of groove was {approx} 0.07 mm, and the scratch velocity was {approx} 1.0 m/s. Normal and tangential forces were monitored. The material removal mechanisms were examined using a scanning electron microscope (SEM) and the scratches were measured by using a laser profilometer. The mechanical properties of the tested TiAls were characterized by the instantaneous specific energy, scratch resistance and scratch hardness as related to the groove depth. Extensive thermal softening was observed in the dynamic scratch test of the TiAls, which facilitated both the detachment of developing chips and pile-up of material on side ridges. Sizable fractures were observed in the transverse direction in the tested TiAls; these fractures tended to participate in the chip formation, depending on the microstructure of the TiAl and the size of the scratch groove. Specific energy and scratch hardness are depth-dependent to various degrees for the TiAls tested. The material removal might be subjected to different mechanisms, but the overall material response can be effectively characterized by the HEM (Hwang, Evans and Malkin) model and the PSR (proportional specimen resistance) model. The depth-independent specific energy and scratch hardness can be used to screen candidate materials for the applications that are scratch-dominated versus impact-dominated. Among the three tested TiAls, the TiAl with larger colony or grain size exhibits a stronger capability of energy dissipation during material removal (higher depth-independent specific energy), while the TiAl with smaller colony size shows a higher resistance to indentation (higher depth-independent scratch hardness). The observations and conclusions in this study can serve as a base line for the further

  11. Material Removal and Specific Energy in the Dynamic Scratching of Gamma Titanium Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [ORNL; Lin, Hua-Tay [ORNL; Wereszczak, Andrew A [ORNL

    2006-11-01

    Mechanical responses of three gamma titanium aluminides (TiAls) (denoted as Alloy A, Alloy B and Alloy C) subjected to dynamic scratching were studied by using a single-grit pendulum (rotating) scratch tester. The maximum depth of groove was ~ 0.07 mm, and the scratch velocity used was ~ 1.0 m/s. Normal and tangential forces were monitored. The material removal mechanisms were examined using a scanning electron microscope (SEM) and the scratches were measured by using a laser profilometer. The mechanical properties of the tested TiAls were characterized by the instantaneous specific energy, scratch resistance and scratch hardness as related to the depth of groove. Extensive thermal softening was observed in the dynamic scratch of the tested TiAls, which facilitated both the detachments of developing chips and the pile-ups of materials on side ridges. Sizable fractures were observed in the transverse direction on the tested TiAls; these fractures tended to participate in the chip formation, depending on the microstructure of the TiAl and the size of the scratch groove. Specific energy and scratch hardness are depth-dependent to various degrees for the tested TiAls. The materiel removal might be subjected to different mechanisms, but the overall response of materials can be effectively characterized by the HEM (Hwang, Evans and Malkin) model and the PSR (proportional specimen resistance) model. The obtained depth-independent specific energy and scratch hardness can be used to screen the candidate materials for the specific purpose depending on whether the application is scratch-dominant or impact-dominant. Among the three tested TiAls, the TiAl with larger colony or grain size exhibits a stronger capability of energy dissipation in the material loss or material removal (higher depth-independent specific energy), while the TiAl with smaller colony size show a higher resistance against the indentation (higher depth-independent scratch hardness). The observations and

  12. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    Science.gov (United States)

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. (c) 2008 Wiley Periodicals, Inc.

  13. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  14. Somatostatin receptor scintigraphy in patients with cat-scratch disease

    International Nuclear Information System (INIS)

    Krause, R.; Schnedl, W.J.; Hoier, S.; Piswanger-Soelkner, C.; Lipp, R.W.; Daxboeck, F.; Reisinger, E.C.

    2006-01-01

    Aim: somatostatin receptor scintigraphy images various neoplastic, granulomatous, and auto-immun diseases. Cat-scratch disease in an infectious granulomatous disease usually affecting the lymphnodes. It is not known whether cat-scratch disease provides positive somatostatin receptor scintigrams. Patients, methods: twelve patients with lymphadenitis and suspected cat-scratch disease were investigated by immunofluorescence antibody testing and somatostatin receptor scintigraphy. Suppurated lymphnodes were extracted or drained and Bartonella henselae specific PCR was then performed. Results: eleven of 12 patients showed IgG antibodies against B. henselea. SRS showed positive scintigraphic results in 6 of 11 patients with CSD. B. henselae DNA was detected in tissue of lymphnodes from 4 of 5 patients with lymphnode extraction or lymphnode drainage. SRS demonstrated positive scintigrams in all patients with a positive PCR. In one patient with suspected CSD SRS was negative as well as antibody testing. Conclusion: somatostatin receptor scintigraphy correlated with positive Bartonella henselae specific PCR tests and positive Bartonella henselae specific antibody tests in patients with CSD. (orig.)

  15. Somatostatin receptor scintigraphy in patients with cat-scratch disease

    Energy Technology Data Exchange (ETDEWEB)

    Krause, R.; Schnedl, W.J.; Hoier, S. [Div. of Infectious Diseases, Dept. of Internal Medicine, Univ. Graz (Austria); Piswanger-Soelkner, C.; Lipp, R.W. [Div. of Nuclear Medicine, Dept. of Internal Medicine, Univ. Graz (Austria); Daxboeck, F. [Clinical Inst. for Hygiene and Medical Microbiology, Div. of Hospital Hygiene, Univ. of Vienna (Austria); Reisinger, E.C. [Div. of Infectious Diseases and Tropical Medicine, Dept. of Internal Medicine, Univ. Rostock (Germany)

    2006-07-01

    Aim: somatostatin receptor scintigraphy images various neoplastic, granulomatous, and auto-immun diseases. Cat-scratch disease in an infectious granulomatous disease usually affecting the lymphnodes. It is not known whether cat-scratch disease provides positive somatostatin receptor scintigrams. Patients, methods: twelve patients with lymphadenitis and suspected cat-scratch disease were investigated by immunofluorescence antibody testing and somatostatin receptor scintigraphy. Suppurated lymphnodes were extracted or drained and Bartonella henselae specific PCR was then performed. Results: eleven of 12 patients showed IgG antibodies against B. henselea. SRS showed positive scintigraphic results in 6 of 11 patients with CSD. B. henselae DNA was detected in tissue of lymphnodes from 4 of 5 patients with lymphnode extraction or lymphnode drainage. SRS demonstrated positive scintigrams in all patients with a positive PCR. In one patient with suspected CSD SRS was negative as well as antibody testing. Conclusion: somatostatin receptor scintigraphy correlated with positive Bartonella henselae specific PCR tests and positive Bartonella henselae specific antibody tests in patients with CSD. (orig.)

  16. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-12-01

    Full Text Available Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG was studied by in situ scratch testing inside the SEM. The whole removal process of the BMG during the scratch was captured in real time. Formation and growth of lamellar chips on the rake face of the Cube-Corner indenter were observed dynamically. Experimental results indicate that when lots of chips are accumulated on the rake face of the indenter and obstruct forward flow of materials, materials will flow laterally and downward to find new location and direction for formation of new chips. Due to similar material removal processes, in situ scratch testing is potential to be a powerful research tool for studying material removal mechanism of single point diamond turning, single grit grinding, mechanical polishing and grating fabrication.

  17. Sonography of cat scratch disease.

    Science.gov (United States)

    Melville, David M; Jacobson, Jon A; Downie, Brian; Biermann, J Sybil; Kim, Sung Moon; Yablon, Corrie M

    2015-03-01

    To characterize the sonographic features of cat scratch disease and to identify features that allow differentiation from other causes of medial epitrochlear masses. After Institutional Review Board approval was obtained, patients who underwent sonography for a medial epitrochlear mass or lymph node were identified via the radiology information system. Patients were divided into 2 groups: cat scratch disease and non-cat scratch disease, based on pathologic results and clinical information. Sonograms were retrospectively reviewed and characterized with respect to dimension, shape (round, oval, or lobular), symmetry, location (subcutaneous or intramuscular), multiplicity, echogenicity (anechoic, hypoechoic, isoechoic, hyperechoic, or mixed), hyperechoic hilum (present or absent), adjacent anechoic or hypoechoic area, hyperemia (present or absent), pattern of hyperemia if present (central, peripheral, or mixed), increased posterior through-transmission (present or absent), and shadowing (present or absent). Sonographic findings were compared between the patients with and without cat scratch disease. The final patient group consisted of 5 cases of cat scratch disease and 16 cases of other causes of medial epitrochlear masses. The 2 sonographic findings that were significantly different between the cat scratch disease and non-cat scratch disease cases included mass asymmetry (P = .0062) and the presence of a hyperechoic hilum (P = .0075). The other sonographic findings showed no significant differences between the groups. The sonographic finding of an epitrochlear mass due to cat scratch disease most commonly is that of a hypoechoic lobular or oval mass with central hyperemia and a possible adjacent fluid collection; however, the presence of asymmetry and a hyperechoic hilum differentiate cat scratch disease from other etiologies. © 2015 by the American Institute of Ultrasound in Medicine.

  18. Scratch induced failure of plasma sprayed alumina based coatings

    International Nuclear Information System (INIS)

    Hazra, S; Bandyopadhyay, P.P.

    2012-01-01

    Highlights: ► Scratch induced failure of alumina based coatings including nanostructured is reported. ► Ceramic is deposited on bond coat instead of steel, emulating a realistic situation. ► Lateral force data is supplemented with microscopy to observe coating failure. ► The failure mechanism during scratching has been identified. ► Critical load of failure has been calculated for each bond-top coat combination. -- Abstract: A set of plasma sprayed coatings were obtained from three alumina based top coat and two bond coat powders. Scratch test was undertaken on these coatings, under constant and linearly varying load. Test results include the lateral force data and scanning electron microscope (SEM) images. Failure occurred by large area spallation of the top coat and in most cases tensile cracks appeared on the exposed bond coat. The lateral force showed an increasing trend with an increase in normal load up to a certain point and beyond this, it assumed a steady average value. The locations of coating spallation and occurrence of maximum lateral force did not coincide. A bond coat did not show a significant role in determining the scratch adhesion strength.

  19. Nuclear magnetic resonance applied to the study of polymeric nano composites

    International Nuclear Information System (INIS)

    Tavares, Maria Ines Bruno

    2011-01-01

    Polymers and nanoparticles based nano composites were prepared by intercalation by solution. The obtained nano composites were characterized mainly by the nuclear magnetic spectroscopy (NMR), applying the analysis of carbon-13 (polymeric matrix), silicon-29 (nanoparticle), and by determination of spin-lattice relaxation of the hydrogen nucleus (T 1 H) (polymeric matrix). The NMR have presented a promising technique in the characterization of the nano charge dispersion in the studied polymeric matrixes.

  20. Adherence and scratching resistance of nanometric titania films

    International Nuclear Information System (INIS)

    Pascoali, S.; Dominguini, L.; Borges, J.B.

    2012-01-01

    TiO 2 films has been used to extend the wear resistance in bearing, seals for pumps and bone prostheses. In this study was analyzed the conventional hardness and scratch toughness. The scratching test equipment used was developed at the Laboratory of materials Labmat / UFSC. The tests were performed on Titania films deposited on glass plates and ceramics via reactive DC magnetron sputtering. The films were deposited by 10, 15 and 60 min. One of the samples has a titanium metal film of a few nanometers thick between the substrate and the Titania film, the oxide has been deposited for 30 min. At this rang of tests loads the deposited films show good adhesion to substrate, there was no cracking or spalling of the film. (author)

  1. Investigation on the Scratch Strength of Clear Paints Used in Furniture Industries on the Wood Species Beech, Elm, Alder and Spruce

    Directory of Open Access Journals (Sweden)

    Mohammad Ghofrani

    2014-05-01

    Full Text Available In This research, the scratch strength (Cross-Cut Test of clear paints (nitrocellulose lacquers and acid catalyst lacquers of wood species Beech, Elm, Alder and spruce were studied as a function of moisture content (MC of the samples. For this purpose, lumbers (550×110×12 mm were cut from sapwood in tangential surfaces and were air dried for one month according to wood drying procedures. Then, for pre-conditioning of moisture content, at the levels of 8%, 12% and 15%, the samples were placed in three clima rooms. Then, finish applied and strength tests were performed. The results revealed that for acid catalyst lacquers the highest scratch strength (10.4% belongs to Elm wood with 8% moisture content, and the lowest scratch strength (53.6% belongs to Spruce wood with nitrocellulose lacquers having 15% moisture content.

  2. Development of an efficient real-time disruption predictor from scratch on JET and implications for ITER

    International Nuclear Information System (INIS)

    Dormido-Canto, S.; Ramírez, J.M.; Vega, J.; Moreno, R.; Pereira, A.; Murari, A.; López, J.M.

    2013-01-01

    Prediction of disruptions from scratch is an ITER-relevant topic. The first operations with the new ITER-like wall constitute a good opportunity to test the development of new predictors from scratch and the related methodologies. These methodologies have been based on the Advanced Predictor Of DISruptions (APODIS) architecture. APODIS is a real-time disruption predictor that is in operation in the JET real-time network. Balanced and unbalanced datasets are used to develop real-time predictors from scratch. The discharges are used in chronological order. Also, different criteria to decide when to re-train a predictor are discussed. The best results are obtained by applying a hybrid method (balanced/unbalanced datasets) for training and with the criterion of re-training after every missed alarm. The predictors are tested off-line with all the discharges (disruptive/non-disruptive) corresponding to the first three JET ITER-like wall campaigns. The results give a success rate of 93.8% and a false alarm rate of 2.8%. It should be considered that these results are obtained from models trained with no more than 42 disruptive discharges. (paper)

  3. Interlaboratory Study (ILS) for F 548-01, The Standard Test Method for Intensity of Scratches on Aerospace Transparent Plastics

    National Research Council Canada - National Science Library

    Pinkus, Alan

    2003-01-01

    ...) as outlined in ASTM E 691. This report, which conforms to the ILS reporting format required by ASTM, describes the study that was conducted for ASTM test standard F 548-01, Intensity of Scratches on Aerospace Transparent Plastics...

  4. The procedure of evaluating the practical adhesion strength of new biocompatible nano- and micro-thin films in accordance with international standards

    Czech Academy of Sciences Publication Activity Database

    Kutílek, P.; Mikšovský, Jan

    2011-01-01

    Roč. 13, č. 3 (2011), s. 87-94 ISSN 1509-409X Institutional research plan: CEZ:AV0Z10100522 Keywords : practical adhesion * strength * nano-layer * micro-layer * international standards * scratch test Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.449, year: 2011 http://382.indexcopernicus.com/abstracted.php?level=5&ICID=962671

  5. Functional photocatalytically active and scratch resistant antireflective coating based on TiO{sub 2} and SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, M., E-mail: michal.mazur@pwr.edu.pl [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Wojcieszak, D.; Kaczmarek, D.; Domaradzki, J. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Song, S.; Gibson, D.; Placido, F. [Institute of Thin Films, Sensors & Imaging, University of the West of Scotland, Scottish Universities Physics Alliance, High Street, Paisley PA1 2BE (United Kingdom); Mazur, P. [University of Wroclaw, Institute of Experimental Physics, Max Born 9, 50-204 Wroclaw (Poland); Kalisz, M. [Motor Transport Institute, Centre for Material Testing and Mechatronics, Jagiellonska 80, 03-301 Warsaw (Poland); Poniedzialek, A. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Designed multilayer was deposited by microwave assisted magnetron sputtering method. • AR coating in designed wavelength range had transmittance higher than 97%. • The AR multilayer was hydrophobic and photocatalytically active. • AR coating was scratch resistant. • Deposited multilayer had higher hardness than the glass substrate. - Abstract: Antireflection (AR) multilayer coating, based on combination of five TiO{sub 2} and SiO{sub 2} thin films, was deposited by microwave assisted reactive magnetron sputtering process on microscope glass substrates. In this work X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and wettability measurements were used to characterize the structural and surface properties of the deposited coating. These studies revealed that prepared coating was amorphous with low surface roughness. Photocatalytic properties were determined based on phenol decomposition reaction. Measurements of optical properties showed that transmittance in the visible wavelength range was increased after the deposition of AR coating as-compared to bare glass substrate. The mechanical properties were determined on the basis of nano-indentation and scratch resistance tests. Performed research has shown that deposition of an additional thin 10 nm thick TiO{sub 2} thin film top layer, the prepared AR coating was photocatalytically active, hydrophobic, scratch resistant and had increased hardness as-compared to bare glass substrate. These results indicate that prepared AR multilayer could be used also as a self-cleaning and protective coating.

  6. The effect of Scratch environment on student’s achievement in teaching algorithm

    Directory of Open Access Journals (Sweden)

    Mehmet Tekerek

    2014-08-01

    Full Text Available In this study, the effect of Scratch environment in teaching algorithm in elementary school 6th grade Information and Communication Technologies course was examined. The research method was experimental method. Control group, pretest-posttest design of experimental research method and a convenience sample consisting of 60 6th grade students were used. The research instrument was achievement test to determine the effect of Scratch on learning algorithm. During the implementation process experiment group studied using Scratch and control group studied with traditional methods. The data was analyzed using independent-samples t-test, paired-samples t-test and ANCOVA statistics. According to findings there is no statically significant difference between posttest achievement scores of experiment and control groups. Similarly, In terms of gender there isn’t a statically significant difference between posttest scores of experiment and control groups.

  7. The role of the substrate in micro-scale scratching of epoxy-polyester films

    Science.gov (United States)

    Barletta, M.; Gisario, A.

    2011-02-01

    The present investigation analyzes the deformation response of electrostatically sprayed epoxy-polyester powder coatings by 'in situ' micro-mechanical tests. The characterization of the performance of the coatings was carried out by micro-scale scratching, by varying the indenter type, the applied load and the sliding speed. The tests were carried out on polymeric coatings deposited on as-received, micro and macro-corrugated AISI 304 stainless steel substrates and 'rigidly adhered' to them. Further tests were performed on 'free-standing' coatings, that is, on the as-received metal substrates pre-coated with an intermediate layer of silicon-based heat curable release coating. Experimental data allow us to evaluate the influence of the contact conditions between substrate and indenter and the role of the loading conditions on the scratch and penetration resistance of the epoxy-polyester coatings. The different responses of the polymeric coatings when deposited on untreated or pre-treated substrates as well as on an intermediate layer of release coating, contribute to a better understanding of the intrinsic roles of the polymeric material and substrate as well as the influence of the interfacial adhesion between coating and substrate.

  8. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    Directory of Open Access Journals (Sweden)

    Witold Brostow

    2017-03-01

    Full Text Available Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs. We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  9. Susceptibility to scratch surface damage of wollastonite- and talc-containing polypropylene micrometric composites

    International Nuclear Information System (INIS)

    Hadal, R.; Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2004-01-01

    The paper describes the effect of wollastonite and talc on the scratch deformation behavior of low and high crystallinity polypropylenes under identical test conditions. The vertical resolution of atomic force microscopy and lateral resolution of scanning electron microscopy is utilized to examine the characteristics of scratch damage. Contrary to the expectations that high crystallinity and stiffness of polypropylene composites should increase resistance to scratch deformation, the susceptibility to mechanical deformation depends on bonding of mineral particles to the polymer matrix. Scratch deformed regions in neat polypropylenes were free of voids and grooves, while reinforced-polypropylenes exhibited voids and debonding/detachment of filler particles. The severity of plastic deformation in reinforced polypropylenes is a function of debonding/detachment of mineral particles, which is comparatively more for talc-reinforced polypropylenes than wollastonite-reinforced polypropylenes because of the layered structure of talc that encourages delamination. Usage of coating and coupling agents improved the resistance to scratch deformation by promoting adhesion and bonding between the reinforcement and matrix

  10. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping).

    Science.gov (United States)

    Arts, Josje H E; Hadi, Mackenzie; Irfan, Muhammad-Adeel; Keene, Athena M; Kreiling, Reinhard; Lyon, Delina; Maier, Monika; Michel, Karin; Petry, Thomas; Sauer, Ursula G; Warheit, David; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-03-15

    The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights

  11. Electric Field Distribution and Switching Impulse Discharge under Shield Ball Surface Scratch Defect in an UHVDC Hall

    Directory of Open Access Journals (Sweden)

    Jianghai Geng

    2018-05-01

    Full Text Available The dimension and surface state of shielding fittings in ultra high voltage direct current (UHVDC converter station valve halls have a great influence on their surface electric field and switching impulse characteristics, which are important parameters confirming the air gap distance in the valve hall. The characteristics of impulse discharge under different lengths, dent degrees and burrs around the scratches of Φ1.3 m shield balls with a 2 m sphere-plane gap length were tested, in the UHVDC testing base of the Hebei Electric Power Research Institute. The discharge characteristics under the influence of the surface scratches of the shield ball were obtained. The results demonstrate that the discharge voltage of sphere-plane gap decreases obviously when there are unpolished scratches on the surface of the shield ball. However, when the scratches are polished, the discharge voltage has no significant impact. At the same time, a 1:1 full-scale impulse test model was established based on the finite element method. The electric field intensity and the space electric field distribution of the shield ball were obtained under the influence of scratches with or without burrs. The results of the simulation show that when the surface of the shield ball is smooth, the electric field distribution around it is even. The electric field intensity on the surface of the shield ball increases obviously when there are burrs around the scratches. When there is no burr around the scratches, the length and depth of the scratches have no obvious effect on its electric field distribution. Meanwhile, calculation results are consistent with test results. The results can provide an important basis for the design and optimization of shielding fittings, and technical support for its localization.

  12. Diagnostic value of scratch-chamber test, skin prick test, histamine release and specific IgE in birch-allergic patients with oral allergy syndrome to apple

    DEFF Research Database (Denmark)

    Osterballe, M; Scheller, R; Stahl Skov, P

    2003-01-01

    BACKGROUND: The aim of the study was to examine the diagnostic value of skin prick test (SPT), scratch-chamber test (SCT), histamine release (HR) and specific immunoglobulin E (IgE) in birch-allergic patients with oral allergy syndrome to apple. METHODS: Ten birch-allergic patients with oral...... a detailed case history about symptoms of oral allergy syndrome combined with a SPT with fresh apple peel or A72 will be useful....

  13. Scratch – um primeiro olhar

    Directory of Open Access Journals (Sweden)

    Flávia Linhalis Arantes

    2015-12-01

    Full Text Available In this paper, we report the “Scratch, a first glance” activity, conducted with the aim of registering the impressions and the responses of students when they looked for the first time to Scratch programs. We present a review on the characterization of Scratch language and environment, trying to identify what a student who never had contact with programming can use to extract information from the programs. Different from other works in literature, we highlight the commands written in the mother tongue of the students as a great facilitator to the understanding of the programs by the beginners. The results of the experiments show that the ability to read the programs is of great importance in the understanding from those who never had previous contact with programming.

  14. Synchronization in Scratch: A Case Study with Education Science Students

    Science.gov (United States)

    Nikolos, Dimitris; Komis, Vassilis

    2015-01-01

    The Scratch programming language is an introductory programming language for students. It is also a visual concurrent programming language, where multiple threads are executed simultaneously. Synchronization in concurrent languages is a complex task for novices to understand. Our research is focused on strategies and methods applied by novice…

  15. YBCO nanoSQUIDs applied to the investigation of small spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Perez, Maria Jose; Schwarz, Tobias; Woelbing, Roman; Mueller, Benedikt; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA" +, Universitaet Tuebingen (Germany); Reiche, Christopher F.; Muehl, Thomas; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Sese, Javier [Instituto de Nanociencia de Aragon and Advanced Microscopy Laboratory, Zaragoza (Spain)

    2015-07-01

    We present the realization of ultra-sensitive YBCO nanoSQUIDs based on submicron grain boundary junctions patterned by focused ion beam milling. White flux noise down to ∝ 50nΦ{sub 0}/Hz{sup 1/2} has been achieved, yielding spin sensitivities of down to a few μ{sub B}/Hz{sup 1/2} at T=4.2 K. Moreover, we demonstrate that magnetic fields up to the tesla range can be applied, fulfilling a fundamental condition for the study of small spin systems. As a proof-of-principle we present the successful deposition of a Fe-filled carbon nanotube (∝ 40 nm in diameter and ∝ 14 μm in length) and an individual Co nanopillar (base diameter of ∝ 50 nm and height ∝ 10 nm) close to the nanoSQUID loop. We show that sub-micrometric control over the particle position lead to large magnetic coupling factors between the nano-loop and the spin system. Together with the possibility of applying large magnetic fields, the latter has allowed us to directly observe the magnetization reversal of these spin systems at different temperatures.

  16. Dominance rank and self-scratching among wild female Barbary ...

    African Journals Online (AJOL)

    scratching rates over the study period, with subordinates showing higher rates of self-scratching. Analysis of temporal variation in females' self-scratching rates indicated that while these rates were related to measures of both grooming and aggression, ...

  17. The Scratch Programming Language and Environment

    Science.gov (United States)

    Maloney, John; Resnick, Mitchel; Rusk, Natalie; Silverman, Brian; Eastmond, Evelyn

    2010-01-01

    Scratch is a visual programming environment that allows users (primarily ages 8 to 16) to learn computer programming while working on personally meaningful projects such as animated stories and games. A key design goal of Scratch is to support self-directed learning through tinkering and collaboration with peers. This article explores how the…

  18. Owner observations regarding cat scratching behavior: an internet-based survey.

    Science.gov (United States)

    Wilson, Colleen; Bain, Melissa; DePorter, Theresa; Beck, Alexandra; Grassi, Vanessa; Landsberg, Gary

    2016-10-01

    This study was performed to examine aspects of the cat, environment and scratching post that might influence scratching behavior, in an effort to determine how inappropriate scratching behavior might be refocused on acceptable targets. An internet survey, posted on several public websites, gathered details about scratching behavior, as described by owners in their home environments, from 4331 respondents over a 4 month period. Responses from 39 different countries were analyzed, mostly from the USA, Canada and the UK. Owners offered traditionally recommended scratching substrates including rope, cardboard, carpet and wood. Rope was most frequently used when offered, although carpet was offered most commonly. Most owners provided at least one scratching post; cats scratched the preferred substrate more often when the post was a simple upright type or a cat tree with two or more levels and at least 3 ft high. Narrower posts (base width ⩽3 ft) were used more often than wider posts (base width ⩾5 ft). Intact or neutered cats (males and females) were as likely to scratch inappropriately, and inappropriate scratching decreased with age. Geriatric cats between the ages of 10 and 14 years preferred carpet substrate most frequently; all other ages preferred rope first. Inappropriate scratching decreased as the different types/styles of posts increased in the home. Inappropriate scratching did not increase if the number of cats or dogs increased in the household. Declawed cats were preventatively declawed most often to prevent household item destruction. Although cats can have individual preferences, our data provide a starting point for veterinarians recommending scratching posts to clients. © The Author(s) 2015.

  19. 'You scratch my back and I scratch yours' versus 'love thy neighbour' : two proximate mechanisms of reciprocal altruism

    NARCIS (Netherlands)

    Smaniotto, Rita Caterina

    2004-01-01

    Evolutionary psychologists generally believe that reciprocal altruism, the mutual providing of benefits, is governed by a ‘You scratch my back and I scratch yours’, or scorekeeping mechanism. According to this view, individuals are primarily concerned with maintaining a balanced relationship; that

  20. Applying online nano-UHPLC to proteomics

    DEFF Research Database (Denmark)

    Falkenby, Lasse Gaarde; Hørning, Ole; Ravnsborg, Christian

    Ultra High Performance Liquid Chromatography (UHPLC) pushes the limits of feasible column designs by allowing higher operational pressure. Migrating from nano-HPLC to nano-UHPLC and coupling directly to a mass spectrometer requires alterations to the setup to allow the increase in pressure. We...

  1. Synthesis and Characterization of Nano-Hydroxyapatite/mPEG-b-PCL Composite Coating on Nitinol Alloy

    Directory of Open Access Journals (Sweden)

    Mohamadreza Etminanfar

    2017-12-01

    Full Text Available In this study the bioactivity of hydroxyapatite/poly(ε-caprolactone–poly(ethylene glycol bilayer coatings on Nitinol superelastic alloy was investigated. The surface of Nitinol alloy was activated by a thermo-chemical treatment and hydroxyapatite coating was electrodeposited on the alloy, followed by applying the polymer coating. The surface morphology of coatings was studied using FE-SEM and SEM. The data revealed that the hydroxyapatite coating is composed of one-dimensional nano sized flakes and the polymer coating is uniformly covered the sublayer. Also, High resolution TEM studies on the hydroxyapatite samples revealed that each flake contains nano-crystalline grains with a diameter of about 15 nm. The hydroxyapatite monolayer coating was rapidly covered by calcium phosphate crystals (Ca/P=1.7 after immersion in simulated body fluid confirming the bioactivity of the nanostructured flakes. However, the flakes were weak against applied external forces because of their ultra-fine thickness. Scratch test was applied on hydroxyapatite/polymer coating to evaluate delamination of the coating from substrate. It was shown that, the polymer coating has a great influence on toughening the hydroxyapatite coating. To assess the degradation effect of the polymer layer on hydroxyapatite coating, samples were immersed in phosphate-buffered saline at 37 ᵒC. SEM studies on the samples revealed that the beneath layer of hydroxyapatite appears after 72 h without any visible change in morphology. It seems that, application of a biodegradable polymer film on the nanostructured hydroxyapatite coating is a good way to support the coating during implantation processes

  2. Effect of annealing on the mechanical and scratch properties of BCN films obtained by magnetron sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuyan, E-mail: xsynefu@126.com [Key Laboratory of Forest Sustainable Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040 (China); Ma, Xinxin [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wen, Huiying [Key Laboratory of Forest Sustainable Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040 (China); Tang, Guangze [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Chunwei [Key Laboratory of Forest Sustainable Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040 (China)

    2014-09-15

    Highlights: • The amorphous BCN films were annealed at different temperatures under vacuum condition. • The order degree increases with the annealing temperature increasing, and the films do not decompose even the annealing temperature rise to 1000 °C. • The nano-hardness and modulus of the films decrease with the increasing of annealing temperatures. • The critical load of BCN films is not affected by the annealing temperature, and the films have good interfacial adhesion. • The scratch resistance properties of BCN film are improved by annealing at 600 °C. - Abstract: Boron-carbon-nitride (BCN) films have been fabricated by direct current unbalanced magnetron sputtering. Boron carbide/graphite compound and a mixture of nitrogen and argon are used as target and carrier gas, respectively, during BCN synthesis. The obtained BCN films are annealed at different temperatures under vacuum condition. The effect of annealing temperature on the structure, mechanical properties and scratch behavior of the BCN films has been investigated. The results indicate that no decomposition products are found even the BCN films are annealed at 1000 °C. The hardness and elastic modulus of the films decrease with the increase of annealing temperatures. The BCN film annealed at 600 °C has the strongest scratch resistance. The friction coefficient of all BCN films is in range of 0.05 to 0.15.

  3. Effect of annealing on the mechanical and scratch properties of BCN films obtained by magnetron sputtering deposition

    International Nuclear Information System (INIS)

    Xu, Shuyan; Ma, Xinxin; Wen, Huiying; Tang, Guangze; Li, Chunwei

    2014-01-01

    Highlights: • The amorphous BCN films were annealed at different temperatures under vacuum condition. • The order degree increases with the annealing temperature increasing, and the films do not decompose even the annealing temperature rise to 1000 °C. • The nano-hardness and modulus of the films decrease with the increasing of annealing temperatures. • The critical load of BCN films is not affected by the annealing temperature, and the films have good interfacial adhesion. • The scratch resistance properties of BCN film are improved by annealing at 600 °C. - Abstract: Boron-carbon-nitride (BCN) films have been fabricated by direct current unbalanced magnetron sputtering. Boron carbide/graphite compound and a mixture of nitrogen and argon are used as target and carrier gas, respectively, during BCN synthesis. The obtained BCN films are annealed at different temperatures under vacuum condition. The effect of annealing temperature on the structure, mechanical properties and scratch behavior of the BCN films has been investigated. The results indicate that no decomposition products are found even the BCN films are annealed at 1000 °C. The hardness and elastic modulus of the films decrease with the increase of annealing temperatures. The BCN film annealed at 600 °C has the strongest scratch resistance. The friction coefficient of all BCN films is in range of 0.05 to 0.15

  4. Chronic UVA (365-nm) irradiation induced scratching in hairless mice: dose-time dependency and the effect of ketanserin

    International Nuclear Information System (INIS)

    Laat, J.M.T. de; Groenendijk, M.; Vloten, W.A. van; Gruijl, F.R. de; Seite, S.

    1997-01-01

    In a study on the dose-response relationship for longwave UVA (UVA1; 340-400 nm) carcinogenesis in hairless mice scratch marks appeared after months of daily exposure as an unwanted side effect. Tumor induction in the highest of the 4 tested dose groups (receiving a daily dose of 430 kJ/m 2 of 365-nm radiation) could not be determined because extensive scarification occurred prior to the development of any tumors. The induction of scratch marks could be scored and quantified in all 4 dose groups tested. The UVA1 dose-dependencies for the induction of tumors and scratch marks were compared. We found that the induction of scratch marks depended mainly on the cumulative UVA1 exposure, whereas tumor induction showed a lesser dose-dependency. An attempt was made to prevent the apparent pruritogenic effect of UVA1 irradiation and to understand its mechanism. The influence of ketanserin, a serotonin/histamine antagonist, on the UVA1 induction of scratch marks was tested in groups of 8 mice daily irradiated with 430 kJ/m 2 . No difference was found between treated and untreated animals. Histological examination of skin biopsies from irradiated mice from the 430-kJ/m 2 dose group from the UVA1 carcinogenic experiment, showed no changes in numbers of mast cells or other inflammatory features when compared to skin biopsies from unirradiated control mice. This indicated that UVA1-induced scratching is not mediated through mast cell release of serotonin and/or histamine. An adequate therapeutic treatment which can prevent UVA1-induced scratching would enable us to test tumor induction with UVA1 over a larger dose range, and may provide additional insight in how this radiation damages the skin. It remains conjectural whether there exists and analogous UVA-induced pruritus in human skin. (au)

  5. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Samad, Ubair Abdus [Department of Chemical Engineering, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Center of excellence for research in engineering materials (CEREM), Advance Manufacturing Institute, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Khan, Rawaiz [Department of Chemical Engineering, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Alam, Mohammad Asif [Center of excellence for research in engineering materials (CEREM), Advance Manufacturing Institute, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Al-Othman, Othman Y. [Department of Chemical Engineering, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Deanship of Graduate Studies, The Saudi Electric University, P. O. Box 93499, Riyadh 11673 (Saudi Arabia); Al-Zahrani, Saeed M. [Center of excellence for research in engineering materials (CEREM), Advance Manufacturing Institute, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); SABIC Polymer Research Center (SPRC) and department of chemical engineering, college of engineering, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia)

    2015-05-22

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  6. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    International Nuclear Information System (INIS)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-01-01

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale

  7. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    Science.gov (United States)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-01

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  8. Cat-Scratch Disease

    Science.gov (United States)

    ... CDC.gov . Healthy Pets, Healthy People About Pets & People Pets & Other Animals Birds Cats Dogs Farm Animals Backyard ... to have CSD and spread it to people, persons with a weakened immune system should ... Play rough with your pets because they may scratch and bite. Allow cats ...

  9. Scratch test induced shear banding in high power laser remelted metallic glass layers

    NARCIS (Netherlands)

    Matthews, D. T. A.; Ocelik, V.; de Hosson, J. Th. M.

    Laser remelted surface layers of a Cu-based metallic glass forming alloy have been produced with fully amorphous depths up to 350 mu m for single track widths of around 1.3 mm and have been checked by transmission of synchrotron radiation. They have been subjected to indentation hardness and scratch

  10. Materiality of a simulation: Scratch reading machine, 1931

    Directory of Open Access Journals (Sweden)

    Craig Saper

    2009-12-01

    Full Text Available Using Bob Brown's reading machine and the prepared texts for his machine, called readies, both designed in 1930, as an example of scratch turntablist techniques, suggests an alternative to narrow definitions of literacy and new ways to appreciate the history of scratch techniques. Brown's machine resembles the turntablist’s ability to rapidly shift reading (its direction, speed, and repetition rather than slowly flipping the pages of a book. Punctuation marks, in the readies, become visual analogies. For movement we see em-dashes (— that also, by definition, indicate that the sentence was interrupted or cut short. The old uses of punctuation, such as employment of periods to mark the end of a sentence, disappear. The result looks like a script for a turntablist’s performance, and dj Herc starts to sound like a reading teacher. An online simulation of Brown's machine, http://www.readies.org, reproduce, or approximate, the motion, scratch, jerking, flickering, and visual effects produced or illuminated with the machine. Those supplemental aspects of reading are always already part of reading. The supplement (movement, visuality, mechanicity to traditional notions of literacy usually remain part of an implicate process. The reading machine and scratch techniques are not simply a new conduit for the same supposedly natural process. The scratch reading highlights what Jacques Derrida calls the "virtual multimedia" (of reading print on paper. The increasing prevalence, even omnipresent and [to some critics] epidemic, use of text(ing machines, something outside or beside traditional literacy, the scratch-meaning becomes foregrounded. Brown's machine puts the natural process of reading under erasure or scratch (simply by adjusting the speed, direction, and layout. dj Herc did the same for music.

  11. Report: Discussion on the development of nano Ag/TiO2 coating bracket and its antibacterial property and biocompatibility in orthodontic treatment.

    Science.gov (United States)

    Zhang, Ronghe; Zhang, Weiwei; Bai, Xueyan; Song, Xiaotong; Wang, Chunyan; Gao, Xinxin; Tian, Xubiao; Liu, Fengzhen

    2015-03-01

    This paper aims to explore the antibacterial property of nano Ag/TiO2 coating bracket for the common bacteria in oral cavity, and discuss its biocompatibility. Micro morphology in the surface of nano Ag/TiO2 coating bracket was detected by scanning electron microscope (SEM), and surface roughness of ordinary mental bracket, nano TiO2 coating bracket and nano Ag/TiO2 coating bracket were measured. First, antibacterial property of nano Ag/TiO2 coating bracket on the common bacteria in oral cavity was studied by sticking membrane method. Secondly, bonding strength of nano TiO2 coating and nano Ag/TiO2 coating bracket in groups were detected by scratching test. The result showed that, the synthetic nano Ag/TiO2 coating was nanogranular films with rigorous organizational structure, presenting as smooth and clean surface, and antibacterial rate of nano Ag/TiO2 coating for the common bacteria in oral cavity for 20 min was more than 79% in the dark. All the findings suggested that, nano Ag/TiO2 coating bracket not only has antibacterial effect but also has good biocompatibility, therefore, it can satisfy the clinical request of orthodontic treatment.

  12. Indentation analysis of nano-particle using nano-contact mechanics models during nano-manipulation based on atomic force microscopy

    International Nuclear Information System (INIS)

    Daeinabi, Khadijeh; Korayem, Moharam Habibnejad

    2011-01-01

    Atomic force microscopy is applied to measure intermolecular forces and mechanical properties of materials, nano-particle manipulation, surface scanning and imaging with atomic accuracy in the nano-world. During nano-manipulation process, contact forces cause indentation in contact area between nano-particle and tip/substrate which is considerable at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models such as Hertz, Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS), Burnham–Colton–Pollock (BCP), Maugis–Dugdale (MD), Carpick–Ogletree–Salmeron (COS), Pietrement–Troyon (PT), and Sun et al. have been applied as the continuum mechanics approaches at nano-scale. In this article, indentation depth and contact radius between tip and substrate with nano-particle for both spherical and conical tip shape during nano-manipulation process are analyzed and compared by applying theoretical, semiempirical, and empirical nano-contact mechanics models. The effects of adhesion force, as the main contrast point in different nano-contact mechanics models, on nano-manipulation analysis is investigated for different contact radius, and the critical point is discussed for mentioned models.

  13. Metal layer mask patterning by force microscopy lithography

    International Nuclear Information System (INIS)

    Filho, H.D. Fonseca; Mauricio, M.H.P.; Ponciano, C.R.; Prioli, R.

    2004-01-01

    The nano-lithography of a metallic surface in air by atomic force microscopy while operated in contact mode and equipped with a diamond tip is presented. The aluminum mask was prepared by thermal deposition on arsenic sulfide films. The analysis of the scratches performed by the tip on the metallic mask show that the depth of the lithographed pattern increases with the increase of the applied normal force. The scanning velocity is also shown to influence the AFM patterning process. As the scanning velocity increases, the scratch depth and width decreases. Nano-indentations performed with the diamond tip show that the plastically deformed surface increases with the increase of the duration of the applied force. The use of the nano-lithography method to create nano-structures is discussed

  14. X-diffraction technique applied for nano system metrology

    International Nuclear Information System (INIS)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A.

    2009-01-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  15. Induction Heating System Applied to Injection Moulding of Micro and Nano Structures

    DEFF Research Database (Denmark)

    Menotti, Stefano

    The present Ph.D. thesis contains a study concerning induction heating system applied to injection moulding of micro and nano structures. The overall process chain was considered and investigated during the project including part design, simulation, conventional and non-conventional tooling...... part. In fact one of the main problems in micro injection moulding is the premature freezing of the polymer flow inside the cavity and often is not possible to obtain a full replica of the nano/micro structures embed on the surfaces. Some other defects that can be avoided with the use of an additional...

  16. [Eye and cat scratch disease: A case series].

    Science.gov (United States)

    Deschasse, C; Bielefeld, P; Muselier, A; Bour, J B; Besancenot, J F; Garcher, C C; Bron, A M

    2016-02-01

    Cat scratch disease is a pleiomorphic condition, sometimes with isolated ophthalmic involvement. We report the clinical observations of seven cases with ophthalmologic manifestations of cat scratch disease. There were seven patients, with a median age of 52 years, of whom five were women and three had unilateral involvement. Six exhibited Leber's stellate neuroretinitis, an incomplete syndrome in two cases, and one associated with chorioretinal foci. One patient had isolated retinal infiltrates. The diagnosis of cat scratch disease was confirmed by Bartonella henselae serology, positive in all cases. All patients received treatment with doxycycline. Ocular complications (with optic atrophy and macular retinal pigment epithelial changes) were noted in five cases. Ocular bartonellosis is an atypical clinical form. It requires a directed ancillary work-up with serology or PCR, which has the peculiarity of being highly specific if not very sensitive. Treatment is above all preventive. Antibiotics may be initiated. Cat scratch disease must be excluded in the work-up of posterior uveitis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Brain's reward circuits mediate itch relief. a functional MRI study of active scratching.

    Directory of Open Access Journals (Sweden)

    Alexandru D P Papoiu

    Full Text Available Previous brain imaging studies investigating the brain processing of scratching used an exogenous intervention mimicking scratching, performed not by the subjects themselves, but delivered by an investigator. In real life, scratching is a conscious, voluntary, controlled motor response to itching, which is directed to the perceived site of distress. In this study we aimed to visualize in real-time by brain imaging the core mechanisms of the itch-scratch cycle when scratching was performed by subjects themselves. Secondly, we aimed to assess the correlations between brain patterns of activation and psychophysical ratings of itch relief or pleasurability of scratching. We also compared the patterns of brain activity evoked by self-scratching vs. passive scratching. We used a robust tridimensional Arterial Spin Labeling fMRI technique that is less sensitive to motion artifacts: 3D gradient echo and spin echo (GRASE--Propeller. Active scratching was accompanied by a higher pleasurability and induced a more pronounced deactivation of the anterior cingulate cortex and insula, in comparison with passive scratching. A significant involvement of the reward system including the ventral tegmentum of the midbrain, coupled with a mechanism deactivating the periaqueductal gray matter (PAG, suggests that itch modulation operates in reverse to the mechanism known to suppress pain. Our findings not only confirm a role for the central networks processing reward in the pleasurable aspects of scratching, but also suggest they play a role in mediating itch relief.

  18. Shared Components of Rhythm Generation for Locomotion and Scratching Exist Prior to Motoneurons

    Directory of Open Access Journals (Sweden)

    Zhao-Zhe Hao

    2017-08-01

    Full Text Available Does the spinal cord use a single network to generate locomotor and scratching rhythms or two separate networks? Previous research showed that simultaneous swim and scratch stimulation (“dual stimulation” in immobilized, spinal turtles evokes a single rhythm in hindlimb motor nerves with a frequency often greater than during swim stimulation alone or scratch stimulation alone. This suggests that the signals that trigger swimming and scratching converge and are integrated within the spinal cord. However, these results could not determine whether the integration occurs in motoneurons themselves or earlier, in spinal interneurons. Here, we recorded intracellularly from hindlimb motoneurons during dual stimulation. Motoneuron membrane potentials displayed regular oscillations at a higher frequency during dual stimulation than during swim or scratch stimulation alone. In contrast, arithmetic addition of the oscillations during swimming alone and scratching alone with various delays always generated irregular oscillations. Also, the standard deviation of the phase-normalized membrane potential during dual stimulation was similar to those during swimming or scratching alone. In contrast, the standard deviation was greater when pooling cycles of swimming alone and scratching alone for two of the three forms of scratching. This shows that dual stimulation generates a single rhythm prior to motoneurons. Thus, either swimming and scratching largely share a rhythm generator or the two rhythms are integrated into one rhythm by strong interactions among interneurons.

  19. Control of surface thermal scratch of strip in tandem cold rolling

    Science.gov (United States)

    Chen, Jinshan; Li, Changsheng

    2014-07-01

    The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.

  20. FRICTION ANALYSIS ON SCRATCH DEFORMATION MODES OF VISCO-ELASTIC-PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Budi Setiyana

    2013-11-01

    Full Text Available Understanding of abrasion resistance and associated surfaces deformation mechanisms is of primary importance in materials engineering and design. Instrumented scratch testing has proven to be a useful tool for characterizing the abrasion resistance of materials. Using a conical indenter in a scratch test may result in different deformation modes, like as elastic deformation, ironing, ductile ploughing and cutting. This paper presents the friction analysis of some deformation modes of visco-elastic-plastic behaving polymer materials, especially PEEK (poly ether ether ketone.In general, it is accepted that the friction consist of an adhesion and a deformation component, which can be assumed to be independent to each others. During a scratch test, the friction coefficient is influenced by some parameters, such as the sharpness of indenter, the deformation modes and the degree of elastic recovery. Results show that the adhesion component strongly influences the friction in the elastic and ironing deformation mode (scratching with a blunt cone, friction for the cutting deformation mode (scratching with a sharp cone is dominantly influenced by the deformation component. From the analysis, it can be concluded that the adhesion friction model is suitable for ironing - elastic deformation mode and the deformation friction model with elastic recovery is good for cutting mode. Moreover, the ductile ploughing mode is combination of the adhesion and plastic deformation friction model. ANALISIS FRIKSI PADA BENTUK DEFORMASI AKIBAT GORESAN PADA MATERIAL VISKO-ELASTIK-PLASTIK. Pemahaman tentang ketahanan abrasi dan deformasi permukaan  yang  menyertainya merupakan hal yang penting dalam rekayasa dan disain material. Peralatan uji gores terbukti ampuh untuk menyatakan ketahanan abrasi dari material. Pemakaian indenter kerucut dalam uji gores akan menghasilkan beberapa bentuk deformasi seperti halnya deformasi elastik, penyetrikaan, plowing dan pemotongan

  1. Is scratch-cooking a cost-effective way to prepare healthy school meals with US Department of Agriculture foods?

    Science.gov (United States)

    Woodward-Lopez, Gail; Kao, Janice; Kiesel, Kristin; Lewis Miller, Markell; Boyle, Maria; Drago-Ferguson, Soledad; Braff-Guajardo, Ellen; Crawford, Patricia

    2014-09-01

    Despite the resurgence of interest in scratch-cooking as a way to increase the quality and appeal of school meals, many school districts are concerned about the cost implications of switching to scratch-cooking. US Department of Agriculture (USDA) Foods are the single largest source of ingredients for school meals, and about half of USDA Foods are diverted for processing before being sent to the school district. We aimed to determine whether school lunch entrées made in a district from basic or raw USDA Foods ingredients can be healthier and less expensive to prepare than those sent to external processors. This cross-sectional study examined the relationship between the extent of scratch-cooking and the nutritional content and cost to prepare entrées. Information was gathered by interview with school foodservice personnel and from school foodservice records from a convenience sample of 10 school districts in California that employed varying degrees of scratch-cooking and is diverse in terms of geographic location and the sociodemographics of the student body. The sample included all elementary school lunch entrées that contain USDA Foods offered during October 2010 for a total sample of 146 entrées. Ordinary least squares regressions were used to test for statistically significant differences in cost and nutrient content of entrées according to the level of scratch-cooking. There was no significant relationship between total costs and level of scratch-cooking. Entrées with the highest scratch-cooking scores had significantly lower food costs, higher labor costs, and not significantly different total costs compared with entrées with no scratch-cooking. Nutrient content was not consistently associated with scratch-cooking, but scratch-cooked entrées did include a larger variety of non-fast-food-type entrées. The findings suggest that scratch-cooking can be a cost-effective way to expand the variety of healthy school lunches prepared with USDA Foods

  2. Withdrawal of repeated morphine enhances histamine-induced scratching responses in mice.

    Science.gov (United States)

    Abe, Kenji; Kobayashi, Kanayo; Yoshino, Saori; Taguchi, Kyoji; Nojima, Hiroshi

    2015-04-01

    An itch is experientially well known that the scratching response of conditions such as atopic dermatitis is enhanced under psychological stress. Morphine is typical narcotic drug that induces a scratching response upon local application as an adverse drug reaction. Although long-term treatment with morphine will cause tolerance and dependence, morphine withdrawal can cause psychologically and physiologically stressful changes in humans. In this study, we evaluated the effects of morphine withdrawal on histamine-induced scratching behavior in mice. Administration of morphine with progressively increasing doses (10-50 mg/kg, i.p.) was performed for 5 consecutive days. At 3, 24, 48, and 72 hr after spontaneous withdrawal from the final morphine dose, histamine was intradermally injected into the rostral part of the back and then the number of bouts of scratching in 60 min was recorded and summed. We found that at 24 hr after morphine withdrawal there was a significant increase in histamine-induced scratching behavior. The spinal c-Fos positive cells were also significantly increased. The relative adrenal weight increased and the relative thymus weight decreased, both significantly. Moreover, the plasma corticosterone levels changed in parallel with the number of scratching bouts. These results suggest that morphine withdrawal induces a stressed state and enhances in histamine-induced scratching behavior. Increased reaction against histamine in the cervical vertebrae will participate in this stress-induced itch enhancement.

  3. Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice.

    Directory of Open Access Journals (Sweden)

    Devki D Sukhtankar

    Full Text Available Pruritus (itch is a severe side effect associated with the use of drugs as well as hepatic and hematological disorders. Previous studies in rodents suggest that bombesin receptor subtypes i.e. receptors for gastrin-releasing peptide (GRPr and neuromedin B (NMBr differentially regulate itch scratching. However, to what degree spinal GRPr and NMBr regulate scratching evoked by intrathecally administered bombesin-related peptides is not known. The first aim of this study was to pharmacologically compare the dose-response curves for scratching induced by intrathecally administered bombesin-related peptides versus morphine, which is known to elicit itch in humans. The second aim was to determine if spinal GRPr and NMBr selectively or generally mediate scratching behavior. Mice received intrathecal injection of bombesin (0.01-0.3 nmol, GRP (0.01-0.3 nmol, NMB (0.1-1 nmol or morphine (0.3-3 nmol and were observed for one hour for scratching activity. Bombesin elicited most profound scratching over one hour followed by GRP and NMB, whereas morphine failed to evoke scratching response indicating the insensitivity of mouse models to intrathecal opioid-induced itch. Intrathecal pretreatment with GRPr antagonist RC-3095 (0.03-0.1 nmol produced a parallel rightward shift in the dose response curve of GRP-induced scratching but not NMB-induced scratching. Similarly, PD168368 (1-3 nmol only attenuated NMB but not GRP-induced scratching. Individual or co-administration of RC-3095 and PD168368 failed to alter bombesin-evoked scratching. A higher dose of RC-3095 (0.3 nmol generally suppressed scratching induced by all three peptides but also compromised motor function in the rotarod test. Together, these data indicate that spinal GRPr and NMBr independently drive itch neurotransmission in mice and may not mediate bombesin-induced scratching. GRPr antagonists at functionally receptor-selective doses only block spinal GRP-elicited scratching but the suppression of

  4. Applied optics fundamentals and device applications nano, MOEMS, and biotechnology

    CERN Document Server

    Mentzer, Mark

    2011-01-01

    How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines

  5. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent

  6. Preservice Teachers' Introduction to Computing: Exploring Utilization of Scratch

    Science.gov (United States)

    Cetin, Ibrahim

    2016-01-01

    Computational thinking has been gaining new impetus in the academic community and in K-12 level education. Scratch is a visual programming environment that can be utilized to teach and learn introductory computing concepts. There are some studies investigating the effectiveness of Scratch for K-12 level education. However, studies that have been…

  7. Applying Nano technology to Human Health: Revolution in Biomedical Sciences

    International Nuclear Information System (INIS)

    Shrivastava, S.; Dash, D.

    2009-01-01

    Recent research on bio systems at the nano scale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, necrophorum engineering, and developing a sustainable environment. Nano bio systems research is a priority in many countries and its relevance within nano technology is expected to increase in the future. The realisation that the nano scale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nano medical research. The present review explores the significance of nano science and latest nano technologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas

  8. On indentation and scratching of thin films on hard substrates

    International Nuclear Information System (INIS)

    Larsson, Per-Lennart; Wredenberg, Fredrik

    2008-01-01

    Indentation and scratching of thin film/substrate structures, using sharp conical indenters, are studied theoretically and numerically and discussed in particular with material characterization in mind. For simplicity, but not out of necessity, the material behaviour is described by classical elastoplasticity accounting for large deformations. Explicit material parameters are chosen in order to arrive at representative results as regards material behaviour and indenter geometry. The main efforts are devoted towards an understanding of the influence from the film/substrate boundary on global indentation (scratching) properties at different material combinations. Global quantities to be investigated include indentation and scratching hardness, contact area and apparent coefficient of friction at scratching. A comparison of the mechanical behaviour at normal indentation and at scratching is also included. In addition, the behaviour of different field variables is studied and in this case the discussion is focused on fracture initiation governed by a critical stress criterion. The numerical investigation is performed using the finite element method and the numerical strategy is discussed in some detail. Throughout the analysis it is assumed that the substrate is considerably harder than the indented film and consequently the deformation of the substrate is neglected

  9. Cat-scratch disease osteomyelitis

    International Nuclear Information System (INIS)

    Heye, S.; Matthijs, P.; Campenhoudt, M. van; Wallon, J.

    2003-01-01

    We report on a patient who presented with osteomyelitis of a rib and adjacent abscess as a rare and atypical manifestation of cat-scratch disease. Radiographic findings showed an osteolytic lesion with adjacent mass. Biopsy, serology and polymerase chain reaction technique are essential for the final diagnosis. Prognosis is excellent with full recovery. (orig.)

  10. Nano-oxides to improve the surface properties of ceramic tiles

    International Nuclear Information System (INIS)

    Rambaldi, E.; Tucci, A.; Esposito, L.; Naldi, D.; Timellini, G.

    2010-01-01

    The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles. (Author) 20 refs.

  11. Tribological performance evidence on ternary and quaternary nitride coatings applied for industrial steel

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J. C.; Aguilar, Y. [Universidad del Valle, School of Materials Engineering, Ciudad Universitaria Melendez, Calle 13 No. 100-00, Edif. 320, A. A. 25360 Cali (Colombia); Aperador, W., E-mail: jcaicedoangulo1@gmail.com [Universidad Militar Nueva Granada, Department of Engineering, Carrera 11 No. 101-80, 6343200 Bogota D. C. (Colombia)

    2013-08-01

    A diagnostic of mechanical and tribological behavior in ternary Ti-C-N and quaternary Ti-Nb-C-N films deposited onto Si (100) and 4140 steel substrates by r.f. magnetron sputtering process varying negative bias voltage from 0 to 100 V, was done in this work. Growth parameters as power density, Ar/N{sub 2} flow rate, and substrate temperature were kept constant at the moment of the deposition. Introduction of Nb in the ternary Ti-C-N film was evaluated by X-ray diffraction analysis. Quantitative elemental concentration depth profile by glow discharge optical emission spectroscopy and the morphology via scanning electron microscopy were observed for the layers before the tests. Mechanical and tribological properties for both coatings were obtained by mean of nano indentation measurements through load versus displacement method, and scratch test using the critical load criterion, respectively. The failure modes from scratch test were observed via optical microscopy. X-ray diffraction results show as the amount of Nb is increased into the quaternary phase, the preferred orientation change in the film dur to the modification in the strain and lattice parameter. Energy dispersive X-ray results from previous work show the Ti CN and TiNbCN layers were stoichiometric. Nano indentation results reaching the elastic-plastic behavior of the Ti CN and Ti CN films with inclusion of Nb (TiNbCN), indicate not only the hardness and elastic modulus but also the critical load for the adhesive failure increase when increasing r.f negative bias voltage. An improvement of hardness and critical load around 60% and 28% for Ti CN as well as 26% and 31% for TiNbCN, respectively, was associated to an increasing in the r.f negative bias voltage from 0 to - 100 V. (Author)

  12. 'Nano-immuno test' for the detection of live Mycobacterium avium subspecies paratuberculosis bacilli in the milk samples using magnetic nano-particles and chromogen.

    Science.gov (United States)

    Singh, Manju; Singh, Shoor Vir; Gupta, Saurabh; Chaubey, Kundan Kumar; Stephan, Bjorn John; Sohal, Jagdip Singh; Dutta, Manali

    2018-04-26

    Early rapid detection of Mycobacterium avium subspecies paratuberculosis (MAP) bacilli in milk samples is the major challenge since traditional culture method is time consuming and laboratory dependent. We report a simple, sensitive and specific nano-technology based 'Nano-immuno test' capable of detecting viable MAP bacilli in the milk samples within 10 h. Viable MAP bacilli were captured by MAP specific antibody-conjugated magnetic nano-particles using resazurin dye as chromogen. Test was optimized using true culture positive (10-bovine and 12-goats) and true culture negative (16-bovine and 25-goats) raw milk samples. Domestic livestock species in India are endemically infected with MAP. After successful optimization, sensitivity and specificity of the 'nano-immuno test' in goats with respect to milk culture was 91.7% and 96.0%, respectively. Whereas, it was 90.0% (sensitivity) and 92.6% (specificity) with respect to IS900 PCR. In bovine milk samples, sensitivity and specificity of 'nano-immuno test' with respect to milk culture was 90.0% and 93.7%, respectively. However, with respect to IS900 PCR, the sensitivity and specificity was 88.9% and 94.1%, respectively. Test was validated with field raw milk samples (goats-258 and bovine-138) collected from domestic livestock species to detect live/viable MAP bacilli. Of 138 bovine raw milk samples screened by six diagnostic tests, 81 (58.7%) milk samples were positive for MAP infection in one or more than one diagnostic tests. Of 81 (58.7%) positive bovine raw milk samples, only 24 (17.4%) samples were detected positive for the presence of viable MAP bacilli. Of 258 goats raw milk samples screened by six diagnostic tests, 141 (54.6%) were positive for MAP infection in one or more than one test. Of 141 (54.6%) positive raw milk samples from goats, only 48 (34.0%) were detected positive for live MAP bacilli. Simplicity and efficiency of this novel 'nano-immuno test' makes it suitable for wide-scale screening of milk

  13. Which programming language should follow Scratch? JavaScript?

    OpenAIRE

    Bevčič, Mateja

    2017-01-01

    Pupils start with Scratch programming already in the second triennium of primary school. Scratch is a visual programming language where users learn basic programming by stacking blocks of commands. The problems then arise when switching to text-based programming as this represents a great and demanding step for pupils. It is for this very reason very important which programming language and environment we select as we try to make this step as easy as possible for pupils. Pyt...

  14. An unusual outcome in a child with hepatosplenic cat-scratch disease.

    Science.gov (United States)

    Vukelić, Dalibor; Benić, Branka; Bozinović, Dragomir; Vuković, Branka; Dakovic Rode, Oktavija; Culig, Zdravka; Vuković, Jurica; Batinica, Stipe; Visnjić, Stjepan; Puljiz, Ivan

    2006-10-01

    Typical cat-scratch disease (Bartonella henselae infection) in an immunocompetent child is usually associated with a history of scratch, bite or intimate contact with a cat. Most patients develop a non-tender papule in the scratch line after three to ten days. This may persist for only a few days or as long as two to three weeks. During the next two weeks or more, regional lymph nodes that drain the area gradually enlarge and then slowly resolve in more than 10% of patients. The nodes develop overlying erythema and may suppurate. Atypical forms of cat-scratch disease occur in a minority of cases and are characterized by ocular or neurological manifestations, hepatosplenic involvement, vertebral osteomyelitis, endocarditis etc. Immunocompromised individuals with B. henselae infection may develop bacillary angiomatosis, bacillary peliosis, and relapsing bacteremia. There have been several reports of hepatosplenic granulomas caused by B. henselae in immunocompetent children. We report a case of a 6-year-old boy with the hepatosplenic form of cat-scratch disease. Despite early diagnosis and long-term antimicrobial treatment, splenectomy could not be avoided.

  15. Effects of disinfecting alginate impressions on the scratch hardness of stone models.

    Science.gov (United States)

    Hiraguchi, Hisako; Nakagawa, Hisami; Wakashima, Mitsuru; Miyanaga, Kohichi; Saigo, Masataka; Nishiyama, Minoru

    2006-03-01

    This study investigated the effects of disinfecting alginate impressions on the scratch depth of resultant stone models. Eleven brands of alginate impression material and two disinfectants, 1% sodium hypochlorite and 2% glutaraldehyde, were used. Impressions were immersed in disinfectant solutions or stored in sealed bags after spraying with disinfectants, and then poured with a type V dental stone. The scratch depth of the stone model obtained from disinfected impression was measured. The storage of alginate impressions after spraying with disinfectants did not increase the scratch depth of resultant stone models. However, the effect of immersion in disinfectants on scratch depth varied with the brand of the alginate impression material.

  16. Irregular Firing and High-Conductance States in Spinal Motoneurons during Scratching and Swimming

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn; Alaburda, Aidas

    2016-01-01

    UNLABELLED: Intense synaptic transmission during scratch network activity increases conductance and induces irregular firing in spinal motoneurons. It is not known whether this high-conductance state is a select feature for scratching or a property that goes with spinal motor network activity...... in general. Here we compare conductance and firing patterns in spinal motoneurons during network activity for scratching and swimming in an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta elegans). The pattern and relative engagement of motoneurons are distinctly different...... in scratching and swimming. Nevertheless, we found increased synaptic fluctuations in membrane potential, irregular firing, and increased conductance in spinal motoneurons during scratch and swim network activity. Our finding indicates that intense synaptic activation of motoneurons is a general feature...

  17. Influence of mechanical scratch on the recorded magnetization stability of perpendicular recording media

    International Nuclear Information System (INIS)

    Nagano, Katsumasa; Sasaki, Syota; Futamoto, Masaaki

    2010-01-01

    Stability of recorded magnetization of hard disk drives (HDDs) is influenced by external environments, such as temperature, magnetic field, etc. Small scratches are frequently formed on HDD medium surface upon contacts with the magnetic head. Influence of temperature and mechanical scratch on the magnetization structure stability of perpendicular recording media was investigated by using a magnetic force microscope. The magnetic bit shape started to change at around 300 0 C for an area with no scratches, whereas for the area near a shallow mechanical scratch it started to change at a lower temperature around 250 0 C. An analysis of magnetization structure under an influence of temperature and mechanical scratch is carried out for the magnetization structure variation and recorded magnetization strength.

  18. Using Scratch: An Integrated Problem-Solving Approach to Mathematical Thinking

    Science.gov (United States)

    Calder, Nigel

    2010-01-01

    "Scratch" is a media-rich digital environment that utilises a building block command structure to manipulate graphic, audio, and video aspects. It incorporates elements of Logo including "tinkerability" in the programming process. In "Scratch" students use geometric and measurement concepts such as coordinates, angle, and length measurements. It…

  19. Carbon nanotubes: from nano test tube to nano-reactor.

    Science.gov (United States)

    Khlobystov, Andrei N

    2011-12-27

    Confinement of molecules and atoms inside carbon nanotubes provides a powerful strategy for studying structures and chemical properties of individual molecules at the nanoscale. In this issue of ACS Nano, Allen et al. explore the nanotube as a template leading to the formation of unusual supramolecular and covalent structures. The potential of carbon nanotubes as reactors for synthesis on the nano- and macroscales is discussed in light of recent studies.

  20. Human bubonic plague transmitted by a domestic cat scratch.

    Science.gov (United States)

    Weniger, B G; Warren, A J; Forseth, V; Shipps, G W; Creelman, T; Gorton, J; Barnes, A M

    1984-02-17

    Bubonic plague was transmitted to a 10-year-old girl in Oregon by a scratch wound inflicted by a domestic cat. The cat probably was infected by contact with infected wild rodents or their fleas. Yersinia pestis was identified in Diamanus montanus fleas collected from an abandoned burrow near the patient's home. Domestic cats may infect humans with Y pestis by inoculation from a scratch.

  1. Unclaimed Prize Information Biases Perceptions of Winning in Scratch Card Gambling.

    Science.gov (United States)

    Walker, Alexander C; Stange, Madison; Fugelsang, Jonathan A; Koehler, Derek J; Dixon, Mike J

    2018-03-29

    Unclaimed prize information (i.e., the number of prizes still available to be won) is information commonly provided to scratch card gamblers. However, unless the number of tickets remaining to be purchased is also provided, this information is uninformative. Despite its lack of utility in assisting gamblers in choosing the most favourable type of scratch card to play, we hypothesized that unclaimed prize information would bias participants' judgments within a scratch card gambling context. In Experiment 1 (N = 201), we showed that participants are influenced by this information such that they felt more likely to win, were more excited to play, and preferred to hypothetically purchase more of the scratch card with the greatest number of unclaimed prizes. In Experiment 2 (N = 201), we attempted to ameliorate this bias by providing participants with the number of tickets remaining to be purchased and equating the payback percentages of all three games. The bias, although attenuated, still persisted in these conditions. Finally, in Experiment 3 (N = 200), we manipulated the hypothetical scratch cards such that games with the highest number of unclaimed prizes were the least favourable, and vice versa. As in Experiment 2, participants still favoured cards with greater numbers of unclaimed prizes. Possible mechanisms underlying this bias are discussed. In conclusion, across three experiments, we demonstrate that salient unclaimed prize information is capable of exerting a strong effect over judgments related to scratch card games.

  2. Tribological Properties of Nanometric Atomic Layer Depositions Applied on AISI 420 Stainless Steel

    Directory of Open Access Journals (Sweden)

    E. Marin

    2013-09-01

    Full Text Available Atomic Layer Deposition ( ALD is a modern technique that Allows to deposit nanometric, conformal coatings on almost any kind of substrates, from plastics to ceramic, metals or even composites. ALD coatings are not dependent on the morphology of the substrate and are only regulated by the composition of the precursors, the chamber temperature and the number of cycles. In this work, mono- and bi -layer nanometric, protective low-temperature ALD Coatings, based on Al2O3 and TiO2 were applied on AISI 420 Stainless Steel in orderto enhance its relatively low corrosion resistance in chloride containing environments. Tribological testing were also performed on the ALD coated AISI 420 in order to evaluate the wear and scratch resistance of these nanometric layers and thus evaluate their durability. Scratch tests were performed using a standard Rockwell C indenter, under a variable load condition, in order to evaluate the critical loading condition for each coating. Wear testing were performed using a stainless steel counterpart, in ball-on-discconfiguration, in order to measure the friction coefficient and wear to confront the resistance. All scratch tests scars and wear tracks were then observed by means of Scanning Electron Microscopy (SEM in order to understand the wear mechanisms that occurred on the sample surfaces. Corrosion testing, performed under immersion in 0.2 M NaCl solutions, clearly showed that the ALD coatings have a strong effect in protecting the Stainless Steel Substrate against corrosion, reducing the corrosion current density by two orders of magnitude.Tribological The preliminary results showed that ALD depositions obtained at low Temperatures have a brittle behavior caused by the amorphous nature of their structure, and thus undergo delamination phenomena during Scratch Testing at relatively low applied loads. During ball-on-disc testing, the coatings were removed from the substrate, in particular for monolayer ALD configurations

  3. Orientation and the extent of exfoliation of clay on scratch damage in polyamide 6 nanocomposites

    International Nuclear Information System (INIS)

    Dasari, Aravind; Yu Zhongzhen; Mai Yiuwing; Kim, Jang-Kyo

    2008-01-01

    The major objectives of this work are to understand the effects of organoclay, its extent of exfoliation and orientation, and indenter geometry on the scratch characteristics of polyamide 6/organoclay nanocomposites. Two different organically treated clays are used for this purpose and their structural parameters in a polyamide 6 matrix quantified. It is shown that, while the material properties are important for scratching resistance, they are not the only determinants of the scratch performance of materials. Further, despite proving beneficial to scratch resistance, in terms of residual depth, the presence (and exfoliation) of organoclay promotes the formation of brittle cracks during scratching. But with no organoclay layers, plastic flow controls the scratch damage in neat polyamide 6 with large residual depths. Factors such as orientation of clay layers and variations of indenter tip geometry also exert dominant effects on scratch penetration resistance and damage. Additionally, significant plastic flow and rotation of organoclay layers from the original configuration are observed underneath the sliding indenter

  4. Mechanical and Tribological Properties of PVD-Coated Cemented Carbide as Evaluated by a New Multipass Scratch-Testing Method

    Directory of Open Access Journals (Sweden)

    M. Fallqvist

    2012-01-01

    Full Text Available A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.32O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.

  5. Scratch and Dig analýza povrchových vad pro zrcadla Metis

    Czech Academy of Sciences Publication Activity Database

    Špína, Michal; Procháska, František; Melich, Radek

    2017-01-01

    Roč. 62, č. 1 (2017), s. 11-13 ISSN 0447-6441 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Surface imperfection * Scratch and dig analysis * optical surface evaluation Subject RIV: JS - Reliability ; Quality Management, Testing OBOR OECD: Audio engineering, reliability analysis

  6. Effects of Using Alice and Scratch in an Introductory Programming Course for Corrective Instruction

    Science.gov (United States)

    Chang, Chih-Kai

    2014-01-01

    Scratch, a visual programming language, was used in many studies in computer science education. Most of them reported positive results by integrating Scratch into K-12 computer courses. However, the object-oriented concept, one of the important computational thinking skills, is not represented well in Scratch. Alice, another visual programming…

  7. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  8. Lessons Learned from Teaching Scratch as an Introduction to Object-Oriented Programming in Delphi

    Science.gov (United States)

    van Zyl, Sukie; Mentz, Elsa; Havenga, Marietjie

    2016-01-01

    As part of curriculum changes in South Africa, an introductory programming language, Scratch, must first be taught before switching to the well-established teaching of Delphi. The nature of programming in Scratch is considerably different from that in Delphi. It was assumed that the teaching of Scratch as introductory programming language could…

  9. The "hierarchical" Scratch Collapse Test for identifying multilevel ulnar nerve compression.

    Science.gov (United States)

    Davidge, Kristen M; Gontre, Gil; Tang, David; Boyd, Kirsty U; Yee, Andrew; Damiano, Marci S; Mackinnon, Susan E

    2015-09-01

    The Scratch Collapse Test (SCT) is used to assist in the clinical evaluation of patients with ulnar nerve compression. The purpose of this study is to introduce the hierarchical SCT as a physical examination tool for identifying multilevel nerve compression in patients with cubital tunnel syndrome. A prospective cohort study (2010-2011) was conducted of patients referred with primary cubital tunnel syndrome. Five ulnar nerve compression sites were evaluated with the SCT. Each site generating a positive SCT was sequentially "frozen out" with a topical anesthetic to allow determination of both primary and secondary ulnar nerve entrapment points. The order or "hierarchy" of compression sites was recorded. Twenty-five patients (mean age 49.6 ± 12.3 years; 64 % female) were eligible for inclusion. The primary entrapment point was identified as Osborne's band in 80 % and the cubital tunnel retinaculum in 20 % of patients. Secondary entrapment points were also identified in the following order in all patients: (1) volar antebrachial fascia, (2) Guyon's canal, and (3) arcade of Struthers. The SCT is useful in localizing the site of primary compression of the ulnar nerve in patients with cubital tunnel syndrome. It is also sensitive enough to detect secondary compression points when primary sites are sequentially frozen out with a topical anesthetic, termed the hierarchical SCT. The findings of the hierarchical SCT are in keeping with the double crush hypothesis described by Upton and McComas in 1973 and the hypothesis of multilevel nerve compression proposed by Mackinnon and Novak in 1994.

  10. Connections between Men and Health: discussing some scratches of masculinity

    Directory of Open Access Journals (Sweden)

    Andréia Burille

    2013-07-01

    Full Text Available In this article seeks to discuss the connections between men and health addressing some scratches of masculinity. At first, bring up some data from the thematic seminar "Being a man today: discussing some scratches masculinity," presented at the International Seminar Reviews Routes III, held in Porto Alegre, Brazil, in 2011. Therefore, we discuss the process of male socialization and scores some aspects of everyday life that can endanger / or scratch threaten masculinity, such as seeking care and even the aging process itself. It is noted that the heteronormative masculinity configures itself as the hegemonic model, stand out among other models. So, being a man is to fulfill roles and prescriptions which are rooted in a society that is structured on the basis of gender, even for this have to endanger your health.

  11. How does the presence of excreta affect the behavior of laying hens on scratch pads?

    Science.gov (United States)

    Pokharel, B B; Boecker, I; Kwon, I Y; Jeyachanthiran, L; McBride, P; Harlander-Matauschek, A

    2018-03-01

    Enriched cages for laying hens provide scratch pads for foraging on the wire mesh floors. Apart from foraging on scratch pads, hens also defecate on these pads, causing them to become soiled with excreta. This study was conducted to determine the relative preference of laying hens for foraging on clean (C) scratch pads or scratch pads soiled with excreta (E), and to study the behaviors performed by hens on such pads. A total of 288 laying hens was housed in 16 enriched cages (18 hens/cage), each divided into 2 compartments. On a daily basis, half of the scratch pads (one in each compartment) were removed and cleaned, while the other half were cleaned and then covered with 550 g (0.35 g/cm2) of conspecific excreta. The C and E scratch pads were then put back into the cages in a systematic order to avoid side bias. Feed was delivered automatically onto the scratch pads as a litter substrate. The frequency of visits and the total time spent performing different behaviors on C and E pads were video-recorded [the time of video recording was relative to litter (feed) delivery on the scratch pads] for a total of 10 min/d, 3 times/wk, over a period of 4 weeks. Overall, the allocation of the time budget for different behaviors was found to be-in order of greatest to least amount of time-resting, locomotor behaviors (walking and running), foraging, and dust bathing. Laying hens showed a relative preference for E scratch pads by visiting them more frequently (P = 0.001), and spent more time (P = 0.035) foraging on them, whereas they rested for more time (P hens. Similarly, the longer use of C scratch pads for resting indicates the need for an ideal and clean resting surface in enriched cages.

  12. Nano- and Macro-wear of Bio-carbo-nitrided AISI 8620 Steel Surfaces

    Science.gov (United States)

    Arthur, Emmanuel Kwesi; Ampaw, Edward; Zebaze Kana, M. G.; Adetunji, A. R.; Olusunle, S. O. O.; Adewoye, O. O.; Soboyejo, W. O.

    2015-12-01

    This paper presents the results of an experimental study of nano- and macro-scale wear in a carbo-nitrided AISI 8620 steel. Carbo-nitriding is carried out using a novel method that involves the use of dried, cyanide-containing cassava leaves, as sources of carbon and nitrogen. These are used in a pack cementation that is used to diffuse carbon and nitrogen into case layers at intermediate temperatures [673.15 K, 723.15 K, 773.15 K, and 823.15 K (400 °C, 450 °C, 500 °C, and 550 °C)]. Nano- and macro-scale wear properties are studied in the case-hardened surfaces, using a combination of nano-scratch and pin-on-disk experiments. The measured wear volumes (at both nano- and macro-length scales) are shown to increase with decreasing pack cyaniding temperature. The nano- and macro-wear resistances are also shown to be enhanced by the in situ diffusion of carbon and nitrogen from cyanide-containing bio-processed waste. The underlying wear mechanisms are also elucidated via atomic force microscopy and scanning electron microscopy observations of the wear tracks. The implications of the results are discussed for the design of hardened carbo-nitrided steel surfaces with improved wear resistance.

  13. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Nur Ubaidah Saidin; Ying, K.K.; KKhuan, N.I.; Mohammad Hafizuddin Jumali

    2013-01-01

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 V pp for Pd nano wires compared to only 2 V pp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  14. Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers

    NARCIS (Netherlands)

    Bode, S.; Enke, M.; Bose, R. K.; Schacher, F. H.; Garcia, S. J.; Van Der Zwaag, S.; Hager, M. D.; Schubert, U. S.

    2015-01-01

    Certain metallopolymers possess the ability to close scratches by a simple thermal treatment. The present study comprehensively explores the structure-property relationship of these materials by variation of the corresponding metal salts. The scratch-healing properties are studied in detail and

  15. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    Science.gov (United States)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  16. Scratch Hardness and Wear Performance of Laser-Melted Steels : Effects of Anisotropy

    NARCIS (Netherlands)

    Beurs, H. de; Minholts, G.; Hosson, J.Th.M. De

    Effects of the orientation of dendrites on the scratch hardness and wear performance of laser-melted steels have been investigated. Scratch experiments have been carried out with a Vickers indenter and wear experiments with a pin-on-disk tester. The deformed structure is investigated, using

  17. Raman characterization of damaged layers of 4H-SiC induced by scratching

    Directory of Open Access Journals (Sweden)

    Shin-ichi Nakashima

    2016-01-01

    Full Text Available Recent development of device fabrication of SiC is awaiting detailed study of the machining of the surfaces. We scratched 4H-SiC surfaces with a sliding microindenter made of a SiC chip, and characterized machining affected layers by micro-Raman spectroscopy. The results of the Raman measurement of the scratching grooves revealed that there were residual stress, defects, and stacking faults. Furthermore, with heavy scratching load, we found clusters of amorphous SiC, Si, amorphous carbon, and graphite in the scratching grooves. Analysis of the Raman spectra showed that SiC amorphization occurs first and surface graphitization (carbonization is subsequently generated through the phase transformation of SiC. We expect that the Raman characterization of machined surfaces provides information on the machining mechanism for compound semiconductors.

  18. Increased activity of pre-motor network does not change the excitability of motoneurons during protracted scratch initiation

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Alaburda, Aidas; Hounsgaard, Jørn Dybkjær

    2013-01-01

    of their intrinsic excitability. Here we employed an experimental paradigm of protracted scratch initiation in the integrated carapace-spinal cord preparation of adult turtles (Chrysemys scripta elegans). The protracted initiation of scratch network activity allows us to investigate the excitability of motoneurons...... and pre-motor network activity in the time interval from the start of sensory stimulation until the onset of scratch activity. Our results suggest that increased activity in the pre-motor network facilitates the onset of scratch episodes but does not change the excitability of motoneurons at the onset...... of scratching....

  19. Cat scratches, not bites, are associated with unipolar depression--cross-sectional study.

    Science.gov (United States)

    Flegr, Jaroslav; Hodný, Zdeněk

    2016-01-05

    A recent study performed on 1.3 million patients showed a strong association between being bitten by a cat and probability of being diagnosed with depression. Authors suggested that infection with cat parasite Toxoplasma could be the reason for this association. A cross sectional internet study on a non-clinical population of 5,535 subjects was undertaken. The subjects that reported having been bitten by a dog and a cat or scratched by a cat have higher Beck depression score. They were more likely to have visited psychiatrists, psychotherapists and neurologists in past two years, to have been previously diagnosed with depression (but not with bipolar disorder). Multivariate analysis of models with cat biting, cat scratching, toxoplasmosis, the number of cats at home, and the age of subjects as independent variables showed that only cat scratching had positive effect on depression (p = 0.004). Cat biting and toxoplasmosis had no effect on the depression, and the number of cats at home had a negative effect on depression (p = 0.021). Absence of association between toxoplasmosis and depression and five times stronger association of depression with cat scratching than with cat biting suggests that the pathogen responsible for mood disorders in animals-injured subjects is probably not the protozoon Toxoplasma gondii but another organism; possibly the agent of cat-scratched disease - the bacteria Bartonella henselae.

  20. Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli.

    Directory of Open Access Journals (Sweden)

    Tasuku Akiyama

    Full Text Available Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABA(A and GABA(B antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.

  1. Alice, Greenfoot, and Scratch--A Discussion

    Science.gov (United States)

    Utting, Ian; Cooper, Stephen; Kolling, Michael; Maloney, John; Resnick, Mitchel

    2010-01-01

    This article distills a discussion about the goals, mechanisms, and effects of three environments which aim to support the acquisition and development of computing concepts (problem solving and programming) in pre-University and non-technical students: Alice, Greenfoot, and Scratch. The conversation started in a special session on the topic at the…

  2. Scratch Behaviors of Cr-Coated Zr-Based Fuel Claddings for Accident-Tolerant Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ho; Kim, Il-Hyun; Kim, Hyun-Gil; Kim, Hyung-Kyu; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As the progression of Fukushima accident is worsened by the runaway reaction at a high temperature above 1200 .deg. C, it is essential to ensure the stabilities of coating layers on conventional Zr-based alloys during normal operations as well as severe accident conditions. This is because the failures of coating layer result in galvanic corrosion phenomenon by potential difference between coating layer and Zr alloy. Also, it is possible to damage the coating layer during handling and manufacturing process by contacting structural components of a fuel assembly. So, adhesion strength is one of the key factors determining the reliability of the coating layer on conventional Zr-based alloy. In this study, two kinds of Cr-coated Zr-based claddings were prepared using arc ion plating (AIP) and direct laser (DL) coating methods. The objective is to evaluate the scratch deformation behaviors of each coating layers on Zr alloys. Large area spallation below normal load of about 15 N appeared to be the predominant mode of failure in the AIP coating during scratch test. However, no tensile crack were found in entire stroke length. In DL coating, small plastic deformation and grooving behavior are more dominant scratching results. It was observed that the change of the slope of the COF curve did not coincide with the failure of coating layer.

  3. Preparation of small-area Josephson junction using the scratched edge of a Pb/In layer

    International Nuclear Information System (INIS)

    Okuyama, K.; Gundlach, K.H.; Hartfuss, H.J.

    1980-01-01

    Superconductor-insulator-superconductor (SIS) Josephson junctions with areas less than 1 μm 2 were formed at the scratched edge of the Pb/In electrode. The scratch was made with a razor blade. Notwithstanding the simple technique used for scratching, the yield to get good junction is relatively high. The I-V characteristic with and without 70-GHz radiation is shown

  4. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  5. Texture, residual strain, and plastic deformation around scratches in alloy 600 using synchrotron X-ray Laue micro-diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Suominen Fuller, M.L. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)], E-mail: mfuller@uwo.ca; Klassen, R.J. [Department of Mechanical and Materials Engineering, Room 3002 Spencer Engineering Building, University of Western Ontario, London, Ontario, N6A 5B9 (Canada); McIntyre, N.S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, A.R. [Applied Centre for Structural and Synchrotron Studies, Mawson Lakes Campus, University of South Australia, Adelaide, South Australia 5095 (Australia); Ramamurthy, S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); King, P.J. [Babcock and Wilcox Canada, 581 Coronation Blvd., Cambridge, Ontario, N1R5V3 (Canada); Liu, W. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2008-03-15

    Deformation around two scratches in Alloy 600 (A600) was studied nondestructively using synchrotron Laue differential aperture X-ray microscopy. The orientation of grains and elastic strain distribution around the scratches were measured. A complex residual deviatoric elastic strain state was found to exist around the scratches. Heavy plastic deformation was observed up to a distance of 20 {mu}m from the scratches. In the region 20-30 {mu}m from the scratches the diffraction spots were heavily streaked and split indicating misoriented dislocation cell structures.

  6. The epidemiology of bite and scratch injuries by vertebrate animals in Switzerland

    International Nuclear Information System (INIS)

    Matter, Hans C.

    1998-01-01

    Pet and wildlife populations are a potential source of various public health problems, and injuries and complications due to animal bites and scratches are the most obvious. As no population based data on the frequency of animal bites were available at a national level in Switzerland, a study was conducted by the Swiss Sentinel Surveillance Network. The objectives of this study were to estimate the incidence of medical consultations due to bite and scratch injuries in humans caused by vertebrate animals, to identify possible risk factors, and to assess bite management habits in primary health care. An annual bite and scratch incidence rate of 325 per 100,000 population was estimated. Consultations peaked during the summer months and geographical differences in the reported incidence were observed. Dogs accounted for more than 60% and cats for about 25% of all cases reported. Animal bites and scratches were frequent in persons under 20 years of age. In most ages, the incidence was higher among women than among men, but not in children under the age of ten years. The incidence of cat bites was especially high in adult women. Bites to the head and neck were most frequent in infants and young children and accounted for approximately one third of the reported cases in this age group. Patients sought medical care principally for primary wound care (52.0%) and for vaccination advice (29.6%). Rabies postexposure prophylaxis was initiated in 1.1% of patients. Wound infection was reported in 10.9% of cases, with cat bites/scratches being more often infected than injuries due to dogs. Hospitalization was reported in 0.3% of patients. Data from the emergency department of two district hospitals showed that head and neck injuries were more frequent in out-patients and a higher proportion of persons presented with wound infections (14.1%). The hospitalization rate for emergency department visits was 4.7%. Animal bites and scratches are common events in Switzerland. They

  7. Endometrial scratching in women with implantation failure after a first IVF/ICSI cycle; does it lead to a higher live birth rate? The SCRaTCH study: a randomized controlled trial (NTR 5342).

    Science.gov (United States)

    van Hoogenhuijze, N E; Torrance, H L; Mol, F; Laven, J S E; Scheenjes, E; Traas, M A F; Janssen, C; Cohlen, B; Teklenburg, G; de Bruin, J P; van Oppenraaij, R; Maas, J W M; Moll, E; Fleischer, K; van Hooff, M H; de Koning, C; Cantineau, A; Lambalk, C B; Verberg, M; Nijs, M; Manger, A P; van Rumste, M; van der Voet, L F; Preys-Bosman, A; Visser, J; Brinkhuis, E; den Hartog, J E; Sluijmer, A; Jansen, F W; Hermes, W; Bandell, M L; Pelinck, M J; van Disseldorp, J; van Wely, M; Smeenk, J; Pieterse, Q D; Boxmeer, J C; Groenewoud, E R; Eijkemans, M J C; Kasius, J C; Broekmans, F J M

    2017-07-21

    Success rates of assisted reproductive techniques (ART) are approximately 30%, with the most important limiting factor being embryo implantation. Mechanical endometrial injury, also called 'scratching', has been proposed to positively affect the chance of implantation after embryo transfer, but the currently available evidence is not yet conclusive. The primary aim of this study is to determine the effect of endometrial scratching prior to a second fresh in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycle on live birth rates in women with a failed first IVF/ICSI cycle. Multicenter randomized controlled trial in Dutch academic and non-academic hospitals. A total of 900 women will be included of whom half will undergo an endometrial scratch in the luteal phase of the cycle prior to controlled ovarian hyperstimulation using an endometrial biopsy catheter. The primary endpoint is the live birth rate after the 2 nd fresh IVF/ICSI cycle. Secondary endpoints are costs, cumulative live birth rate (after the full 2 nd IVF/ICSI cycle and over 12 months of follow-up); clinical and ongoing pregnancy rate; multiple pregnancy rate; miscarriage rate and endometrial tissue parameters associated with implantation failure. Multiple studies have been performed to investigate the effect of endometrial scratching on live birth rates in women undergoing IVF/ICSI cycles. Due to heterogeneity in both the method and population being scratched, it remains unclear which group of women will benefit from the procedure. The SCRaTCH trial proposed here aims to investigate the effect of endometrial scratching prior to controlled ovarian hyperstimulation in a large group of women undergoing a second IVF/ICSI cycle. NTR 5342 , registered July 31 st , 2015. Version 4.10, January 4th, 2017.

  8. Viscoelastic-Viscoplastic Modelling of the Scratch Response of PMMA

    Directory of Open Access Journals (Sweden)

    G. Kermouche

    2013-01-01

    Full Text Available This paper aims at understanding how to model the time-dependent behavior of PMMA during a scratch loading at a constant speed and at middle strain levels. A brief experimental study is first presented, consisting of the analysis of microscratches carried out at various scratching velocities and normal loads. The loading conditions have been chosen in such a way that neither (viscoelasticity nor (viscoplasticity of the PMMA may be neglected a priori. The main analyzed parameter is the tip penetration depth measured during the steady state. Then, a finite element model is used to investigate the potential of classical elastic-viscoplastic constitutive models to reproduce these experimental results. It is mainly shown that these models lead to unsatisfying results. More specifically, it is pointed out here that the time-independent Young modulus used in such models is not suitable. To take into account this feature, a viscoelastic-viscoplastic model based on the connection in series of a viscoelastic part with a viscoplastic part is proposed. It is shown that it leads to more acceptable results, which points out the importance of viscoelasticity in the scratch behavior of solid polymers.

  9. Children’s Civic Engagement in the Scratch Online Community

    Directory of Open Access Journals (Sweden)

    Ricarose Roque

    2016-09-01

    Full Text Available In public discourse, and in the governance of online communities, young people are often denied agency. Children are frequently considered objects to protect, safeguard, and manage. Yet as children go online from very early ages, they develop emergent forms of civic and political engagement. Children appropriate the affordances of digital platforms in order to discuss, connect, and act with their peers and in their communities. In this paper, we analyze civic engagement in Scratch Online, a creative community where children from around the world learn programming by designing and sharing interactive media projects. We explore the ways that young Scratch community members connect with issues of global importance, as well as with local topics and questions of community governance. We develop a typology of the strategies they use to express themselves, engage with their peers, and call for action. We then analyze the reaction of the community, including other Scratch members and adult moderators, and draw key lessons from these examples in order to describe guidelines for educators and designers who would like to support children’s rights to civic engagement in online learning environments.

  10. Digital holographic reconstruction detection of localized corrosion arising from scratches

    Directory of Open Access Journals (Sweden)

    LIANG WANG

    2010-04-01

    Full Text Available In this study, electrochemical methods and the digital holographic reconstruction technique were combined to detect the localized scratch-induced corrosion process of Alloy 690 in 0.50 mol dm-3 H2SO4 containing 0.10 mol dm-3 NaCl. The numerical reconstruction method has been proved to be an effective technique to detect changes of solution concentration. One can obtain direct information from the reconstructed images and capture subtle more revealing changes. It provides a method to detect localized corrosion arising from scratches.

  11. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    Science.gov (United States)

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P nano-ionomer, mean: 6.14 +/- 2.12 MPa; P Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  12. Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development

    Directory of Open Access Journals (Sweden)

    Shahereen Chowdhury

    2018-02-01

    Full Text Available The TiAlCrSiYN-based family of PVD (physical vapor deposition hard coatings was specially designed for extreme conditions involving the dry ultra-performance machining of hardened tool steels. However, there is a strong potential for further advances in the wear performance of the coatings through improvements in their architecture. A few different coating architectures (monolayer, multilayer, bi-multilayer, bi-multilayer with increased number of alternating nano-layers were studied in relation to cutting-tool life. Comprehensive characterization of the structure and properties of the coatings has been performed using XRD, SEM, TEM, micro-mechanical studies and tool-life evaluation. The wear performance was then related to the ability of the coating layer to exhibit minimal surface damage under operation, which is directly associated with the various micro-mechanical characteristics (such as hardness, elastic modulus and related characteristics; nano-impact; scratch test-based characteristics. The results presented exhibited that a substantial increase in tool life as well as improvement of the mechanical properties could be achieved through the architectural development of the coatings.

  13. Unilateral visual loss secondary to cat scratch disease in a healthy young man

    Directory of Open Access Journals (Sweden)

    Norfarizal Ashikin Abdullah

    2015-01-01

    Full Text Available Cat scratch disease is a benign clinical syndrome manifested as lymphadenopathy, fever and sometimes with atypical symptom of blurring of vision. It occurs following cat ’s bites or scratches. This case report presented a healthy young man presented with left eye blurring of vision for 1 month duration preceeded by history of recurrent low grade fever with previous history of being scratched by cat. Examination revealed optic disc edema with macula star. Thorough investigations were done and shown positive titre towards Bartonella henselae. He responded well with intravenous ceftazidime, oral doxycycline and rifampicin. His vision improved to 6/9 and 6/6 with pinhole after 3 months.

  14. Influence of Temperature and Mechanical Scratch on the Recorded Magnetization Stability of Longitudinal and Perpendicular Recording Media

    International Nuclear Information System (INIS)

    Nagano, Katsumasa; Tobari, Kousuke; Futamoto, Masaaki

    2011-01-01

    Stability of recorded magnetization of hard disk drive (HDD) is influenced by external environments, such as temperature and magnetic field. Small scratches are frequently formed on HDD medium surface upon contacts with the magnetic head. The influences of temperature and mechanical scratch on the magnetization structure stability are investigated for longitudinal and perpendicular recording media by using a magnetic force microscope. PMR media remained almost unchanged up to about 300 deg. C for the area with no scratches, whereas the areas near and under mechanical scratches started to change around 250 deg. C. The magnetization structure of LMR media started to change at about 100 degrees lower temperature under mechanical scratches when compared with no scratch areas. A quantitative analysis of magnetization structure variation is carried out by measuring the recorded magnetization strength difference estimated from the MFM images observed for a same sample area before and after exposing the sample to different temperatures.

  15. Reduction reactions applied for synthesizing different nano-structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque Brocchi, Eduardo de; Correia de Siqueira, Rogério Navarro [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Motta, Marcelo Senna [Basck Ltd. (United Kingdom); Moura, Francisco José, E-mail: moura@puc-rio.br [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Solórzano-Naranjo, Ivan Guillermo [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil)

    2013-06-15

    Different materials have been synthesized by alternative routes: nitrates thermal decomposition to prepare oxide or co-formed oxides and reduction by hydrogen or graphite to obtain mixed oxides, composites or alloys. These chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support its feasibility. In addition, selective reduction reactions have been applied to successfully produce metal/ceramic composites, and alloys. Structural characterization has been carried out by X-ray Diffraction and, more extensively, Transmission Electron Microscopy operating in conventional diffraction contrast (CTEM) and high-resolution mode (HRTEM), indicated the possibility of obtaining oxide and alloy crystals of sizes ranging between 20 and 40 nm. - Highlights: • The viability in obtaining Ni–Co, Cu–Al, Mn–Al co-formed nano oxides was evaluated. • Partial and complete H{sub 2} reduction were used to produce alloy, composite and Spinel. • XRD, TEM and HREM techniques were used to characterize the obtained nanostructures.

  16. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    Science.gov (United States)

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  17. Nano-crystallization of steel wire and its wear behavior

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China) and School of Materials Science and Engineering, Northwestern Polytecnical University, Xian 710072 (China)], E-mail: xuyunhua@vip.163.com; Peng, J.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China); Fang, L. [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xian 710049 (China)

    2008-06-15

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons.

  18. Nano-crystallization of steel wire and its wear behavior

    International Nuclear Information System (INIS)

    Xu, Y.H.; Peng, J.H.; Fang, L.

    2008-01-01

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons

  19. Modulated microwave absorption spectra from Josephson junctions on a scratched niobium wire

    International Nuclear Information System (INIS)

    Rubins, R.S.; Hutton, S.L.; Ravindran, K.; Subbaraman, K.; Drumheller, J.E.

    1997-01-01

    Modulated microwave absorption (MMA) spectra from Josephson junction formations on a scratched Nb wire have been studied at 9.3 GHz and 4 K. The peak-to-peak separation, δH of the Josephson lines was found to vary linearly with P 1/2 , where P is the applied microwave power, in contrast to a recent interpretation of junction formation in pressed lead pieces by Rubins, Drumheller, and Trybula. The interpretation of the MMA data on Nb are given in terms of the theory of Vichery, Beuneu, and Lejay for superconducting loops containing weak links. copyright 1997 The American Physical Society

  20. Cat scratch disease in an immunosuppressed patient with systemic lupus erythematosus.

    Science.gov (United States)

    Vargas-Hitos, J A; Sabio, J M; Navarrete-Navarrete, N; Arenas-Miras, M del M; Zamora-Pasadas, M; Jiménez-Alonso, J

    2016-03-01

    Cat scratch disease is an infectious disorder transmitted by cats that typically affects children and young adults. Immunosuppression is a well-known risk factor for the development of severe and atypical forms of the disease; hence it is under-diagnosed in patients with compromised immunity. We are reporting the first case of cat scratch disease, which presented as fever and fatigue, in a patient with systemic lupus erythematosus while receiving immunosuppressant therapy after a kidney transplant. © The Author(s) 2015.

  1. CT diagnosis of colonic lymphadenitis in the cat-scratch disease

    International Nuclear Information System (INIS)

    Zhuang Xiongjie; Wang Jingqun

    2004-01-01

    Objective: To make a further understanding of CT manifestations of colonic lymphadenitis in the cat scratch disease (CSD). Methods: The clinical data and CT features of colonic lymphadenitis in two cases of CSD were analyzed retrospectively. Results: Both patients had cat contact history. The CT findings were colonic lymphadenitis with solid mass, and marked enhancement after contrast administration. There were no colon narrownest and necrosis of colonic mucous membranes, besides lymph node enlargement along the regional lymphatic drainage. Conclusion: Combination of the cat contact history, CT scanning is of great value in the cat scratch disease. (authors)

  2. Effect of TMAH Etching Duration on the Formation of Silicon Nano wire Transistor Patterned by AFM Nano lithography

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Lew, K.C.

    2012-01-01

    Atomic force microscopy (AFM) lithography was applied to produce nano scale pattern for silicon nano wire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nano patterns. A conductive AFM tip was used to grow the silicon oxide nano patterns on silicon on insulator (SOI) wafer. The applied tip-sample voltage and writing speed were well controlled in order to form pre-designed silicon oxide nano wire transistor structures. The effect of tetra methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nano wire transistor structure has been investigated. A completed silicon nano wire transistor was obtained by removing the oxide layer via hydrofluoric acid etching process. The fabricated silicon nano wire transistor consists of a silicon nano wire that acts as a channel with source and drain pads. A lateral gate pad with a nano wire head was fabricated very close to the channel in the formation of transistor structures. (author)

  3. Applications of Nano-optics.

    Science.gov (United States)

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  4. NanoAODs

    CERN Document Server

    Husova, Lucia Anna

    2017-01-01

    The scientist on LHC experiment analyse a huge amount of data every day on the Grid. Thus new methods are requested, how to make the analysis more efficient. The NanoAOD is a derived dataset from AOD, where only information necessary for the analysis is stored. Thus the analysis can be more than two times faster, because of the smaller file size, which can be read faster on the Grid. The main goal of this summer student project was to help other users to start using NanoAODs by rewriting their user tasks. Two example users tasks were converted to NanoAODs and tested with the local train test. A speed up of 3.5 was reached. The results of the analysis tasks are identical independent if they use AODs or NanoAODs.

  5. Applying graphene oxide nano-film over a polycarbonate nanoporous membrane to monitor E. coli by infrared spectroscopy.

    Science.gov (United States)

    Singh, Krishna Pal; Dhek, Neeraj Singh; Nehra, Anuj; Ahlawat, Sweeti; Puri, Anu

    2017-01-05

    Nano-biosensors are excellent monitoring tools for rapid, specific, sensitive, inexpensive, in-field, on-line, and/or real-time detection of pathogens in foods, soil, air, and water samples. A variety of nano-materials (metallic, polymeric, and/or carbon-based) were employed to enhance the efficacy, efficiency, and sensitivity of these nano-biosensors, including graphene-based materials, especially graphene oxide (GO)-based materials. GO bears many oxygen-bearing groups, enabling ligand conjugation at the high density critical for sensitive detection. We have fabricated GO-modified nano-porous polycarbonate track-etched (PCTE) membranes that were conjugated to an Escherichia coli-specific antibody (Ab) and used to detect E. coli. The random distribution of nanopores on the PCTE membrane surface and the bright coating of the GO onto the membrane were confirmed by scanning electron microscope. Anti-E. coli β-gal Abs were conjugated to the GO surface via 1-ethyl-3,3-dimethylaminopropyl carbodiimide hydrochloride-N-hydroxysuccinimide chemistry; antibody coating was confirmed by the presence of a characteristic IR peak near 1600cm(-1). A non-corresponding Ab (anti-Pseudomonas) was used as a negative control under identical conditions. When E. coli interacted anti-E.coli β-gal with Ab-coated GO-nano-biosensor units, we observed a clear shift in the IR peak from 3373.14 to 3315cm(-1); in contrast, we did not observe any shift in IR peaks when the GO unit was coated with the non-corresponding Ab (anti-Pseudomonas). Therefore, the detection of E. coli using the described GO-nano-sensor unit is highly specific, is highly selective and can be applied for real-time monitoring of E. coli with a detection limit between 100μg/mL and 10μg/mL, similar to existing detection systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Male DNA under female fingernails after scratching: transfer and persistence evaluation by RT-PCR analysis and Y-STR typing.

    Science.gov (United States)

    Iuvaro, Alessandra; Bini, Carla; Dilloo, Silvia; Sarno, Stefania; Pelotti, Susi

    2018-04-17

    The collection of biological debris beneath fingernails can be useful in forensic casework when a struggle between the victim and the offender is suspected. In the present study, we set up a controlled scratching experiment in which female volunteers scratched the male volunteers' forearms, simulating a defensive action during an assault. A total of 160 fingernail samples were collected: 80 "control samples" before the scratching, 40 samples immediately after the scratching (t = 0 h), and 40 samples 5 h after the scratching (t = 5 h). The aim was to evaluate, using a real-time PCR approach and Y-STR profiling, the transfer and the persistence of male DNA under female fingernails after scratching. A significant reduction in DNA yield was observed between fingernail samples collected immediately and those collected 5 h after scratching, with a corresponding decrease in Y-STR profile quality. Overall, 38/40 (95%) of the fingernail samples collected immediately (t = 0 h) and 24/40 (60%) of those collected 5 h later (t = 5 h) were suitable for comparison and the scratched male volunteers could not be excluded as donors of the foreign DNA from 37 (92.5%) of the t = 0 h and from 10 (25%) of the t = 5 h profiles. The analysis of male DNA under female fingernails showed that Y-chromosome STR typing may provide extremely valuable genetic information of the male contributor(s), although 5 h after scratching the profile of the scratched male was lost in three-quarters of samples.

  7. [Behavior therapy technics in the treatment of endogenous eczema with special reference to compulsive scratching].

    Science.gov (United States)

    Böddeker, K W; Böddeker, M

    1976-01-01

    An exact observation and description of scratching behavior leads to a behavioral model for the obsessional scratching in patients with atopic dermatitis. The patient who cannot handle negative emotions because of a deficit in social behavior strategies suffers from diffuse tension. He can reduce the tension for the moment by scratching. Thus itching is being reinforced. The feeling of misbehavior occurs with delay and then again can serve as a stimulus for more tension.--Basing on this model behavior therapeutical techniques for breaking up this vicious circle are discussed.

  8. Dynamic dissolution-/permeation-testing of nano- and microparticle formulations of fenofibrate

    DEFF Research Database (Denmark)

    Sironi, Daniel; Rosenberg, Jörg; Bauer-Brandl, Annette

    2017-01-01

    -/ or nanoparticle-formulation was tested. Nondissolved nano-/microparticles served as a reservoir helping to maintain high levels of molecularly dissolved drug, which in turn caused high and constant permeation rates. The micelle-bound drug may also serve as a drug-reservoir, yet of subordinate importance as long...

  9. Nano Fertilizers

    Directory of Open Access Journals (Sweden)

    Hatice DAĞHAN

    2017-06-01

    Full Text Available Agricultural land is decreasing day by day due to erosion, environmental pollution, unconscious irrigation and fertilization. On the other hand, it is necessary to increase agricultural production in order to meet the needs of the developing industry as well as the nutritional needs of the growing population. In the recent years, nano fertilizers have begun to be produced to obtain the highest amount and quality of production from the unit area. Previous research shows that nano fertilizers cause an increase in the use efficiency of plant nutrients, reduce soil toxicity, minimize the potential adverse effects of excessive chemical fertilizer use, and reduce fertilizer application frequency. Nano fertilizers are important in agriculture to increase crop yield and nutrient use efficiency, and to reduce excessive use ofchemical fertilizers. The most important properties of these fertilizers are that they contain one or more of macro and micronutrients, they can be applied frequently in small amounts and are environmentally friendly. However, when applied at high doses, they exhibit decreasing effects on plant growth and crop yields, similar to chemical fertilizers. In this review, the definition, importan ce, and classification of nano fertilizers, their application in plant production, advantages and disadvantages and the results obtained in this field were discussed.

  10. Scratch's Third Body: Video Talks Back to Television

    NARCIS (Netherlands)

    Goldsmith, Leo

    2015-01-01

    abstractEmerging in the UK in the 1980s, Scratch Video established a paradoxical union of mass-media critique, Left-wing politics, and music-video and advertising aesthetics with its use of moving-image appropriation in the medium of videotape. Enabled by innovative professional and consumer video

  11. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Directory of Open Access Journals (Sweden)

    Ammar Ben Brahim

    2013-05-01

    Full Text Available This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting.

  12. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Science.gov (United States)

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  13. Scratch's Third Body: Video Talks Back to Television

    Directory of Open Access Journals (Sweden)

    Leo Goldsmith

    2015-12-01

    Full Text Available Emerging in the UK in the 1980s, Scratch Video established a paradoxical union of mass-media critique, Left-wing politics, and music-video and advertising aesthetics with its use of moving-image appropriation in the medium of videotape. Enabled by innovative professional and consumer video technologies, artists like George Barber, The Gorilla Tapes, and Sandra Goldbacher and Kim Flitcroft deployed a style characterized by the rapid sampling and manipulation of dissociated images drawn from broadcast television. Inspired by the cut-up methods of William Burroughs and the audio sampling practiced by contemporary black American musicians, these artists developed strategies for intervening in the audiovisual archive of television and disseminating its images in new contexts: in galleries and nightclubs, and on home video. Reconceptualizing video's “body,” Scratch's appropriation of televisual images of the human form imagined a new hybrid image of the post-industrial body, a “third body” representing a new convergence of human and machine.

  14. Therapeutic Efficacy of Endometrial Scratching in Repeated Controlled Ovarian Stimulation (COS) Failure Cycles

    Science.gov (United States)

    Wadhwa, Leena; Mishra, Mona

    2018-01-01

    Objective: The objective of the study was (1) “to evaluate the therapeutic efficacy of endometrial scratching in repeated controlled ovarian stimulation (COS) failure cycles.” And (2) “to compare differences in pregnancy outcome by endometrial scratching in early (D2–D4) and late follicular phases (D7–D9) of the same stimulation cycle.” Materials and Methods: Women attending infertility clinic in a tertiary care center and who have two or more repeated COS failure cycles and planned for COS with intrauterine insemination (IUI) were included in the study which is a prospective parallel, interventional, single-blinded, randomized control study, in 1:1 allocation ratio. A total of 165 patients were recruited and randomly allocated into three groups: Group A (n = 55) underwent endometrial scratching on D2–D4 of the same COS cycle, Group B (n = 55) on D7–D9, and Group C (n = 55) no intervention done. All the patients underwent COS according to standard protocol followed by IUI. Results: Clinical pregnancy rate was 12.73% (odds ratio [OR] =0.87 95% confidence interval [CI] =0.288–2.55, P = 1), 16.36% (OR = 1.15; 95% CI = 0.40–3.23, P = 1), and 14.54%, respectively, in Group A, B, and C, respectively (P = 0.86), as per intention to treat analysis. Using Chi-square test, P value between Group A and B was 0.787, between Group A and C was 1.000, and between Group B and C was 1.000. As per protocol analysis, clinical pregnancy rate was 13.46% (OR = 0.83; 95% CI = 0.27–2.5, P = 0.74), 19.57% (OR = 1.3 95%; CI = 0.45–3.73, P = 0.41), and 15.69%. Using Chi-square test, Pvalue between Group A and B was 0.588, between Group A and C was 0.967, and between Group B and C was 0.815. No abortions and multiple pregnancies occurred in either of the groups. Conclusion: The effect found was of good quantum in Group B as per protocol analysis which could be of clinical relevance if larger sample size would have been taken. Endometrial scratching is a cost

  15. Development of untethered SU-8 polymer scratch drive microrobots

    KAUST Repository

    Valencia Garcia, Manuel; Atallah, Tarek Nabil; Castro, David; Conchouso Gonzalez, David; Al Dosari, Mishari Ibraheem; Hammad, Rafat; Al Rawashdeh, Ehab Jamal; Zaher, Amir Omar; Kosel, Jü rgen; Foulds, Ian G.

    2011-01-01

    This paper presents the design, simulation, fabrication and testing of novel, untethered SU-8 polymer microrobots based on scratch drive actuators (SDAs). The design consists of two 100×120×10μm linked SDAs, individually operated close to their resonant frequencies. The resonant frequency and deflection behavior of an individual SDA can be controlled by its shape, thickness, and stiffening design features. As a result, paired SDAs can be actuated individually or simultaneously by a multifrequency driving signal, allowing for two-dimensional displacement. The fabrication process uses SU-8 as structural material and PMGI as sacrificial material. The SU-8 provides a flexible material for the SDA's plates as well as the bushing. Finally, a Cr/Au layer is blanket deposited to provide electrical conductivity.

  16. Multi-filamentary REBCO tapes fabricated by scratching a buffer layer along the tape longitudinal direction

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Chihaya, E-mail: chihaya.kurihara@jp.fujikura.com [Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba 285-8550 (Japan); Fujita, Shinji; Nakamura, Naonori; Igarashi, Mitsunori; Iijima, Yasuhiro [Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba 285-8550 (Japan); Higashikawa, Kohei; Uetsuhara, Dai; Kiss, Takanobu; Iwakuma, Masataka [Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395 (Japan)

    2016-11-15

    Highlights: • We developed new method of slitting tape between buffer layer processes for multi-filamentary tape. • By scratching buffer layer along the tape longitudinal direction, we find that REBCO layer is divided easily without damaging it. • We have developed 100 m class multi-filamentary REBCO tapes which are suitable for superconducting coils. - Abstract: A method for making multi-filamentary REBCO tapes by only scratching buffer layer was developed for coil application which requires accurate magnetic fields. By continuous I{sub c} measurement, we found that our new multi-filamentary tape could provide almost equal I{sub c} compared to conventional tapes. Then, using EBSD and RTR-SHPM methods, a divided structure of REBCO layer was surely confirmed. AC loss was also decreased. Furthermore, the result of delamination test of our new multi-filamentary tape showed enough mechanical property. As a result, we have succeeded in developing 100 m class multi-filamentary tape for superconducting coil.

  17. Multi-filamentary REBCO tapes fabricated by scratching a buffer layer along the tape longitudinal direction

    International Nuclear Information System (INIS)

    Kurihara, Chihaya; Fujita, Shinji; Nakamura, Naonori; Igarashi, Mitsunori; Iijima, Yasuhiro; Higashikawa, Kohei; Uetsuhara, Dai; Kiss, Takanobu; Iwakuma, Masataka

    2016-01-01

    Highlights: • We developed new method of slitting tape between buffer layer processes for multi-filamentary tape. • By scratching buffer layer along the tape longitudinal direction, we find that REBCO layer is divided easily without damaging it. • We have developed 100 m class multi-filamentary REBCO tapes which are suitable for superconducting coils. - Abstract: A method for making multi-filamentary REBCO tapes by only scratching buffer layer was developed for coil application which requires accurate magnetic fields. By continuous I_c measurement, we found that our new multi-filamentary tape could provide almost equal I_c compared to conventional tapes. Then, using EBSD and RTR-SHPM methods, a divided structure of REBCO layer was surely confirmed. AC loss was also decreased. Furthermore, the result of delamination test of our new multi-filamentary tape showed enough mechanical property. As a result, we have succeeded in developing 100 m class multi-filamentary tape for superconducting coil.

  18. Physical properties and collapse force of according to the z-position of poly-Si pattern using nano-tribology.

    Science.gov (United States)

    Kim, Soo In; Lee, Chang Woo

    2011-02-01

    Nowadays, many researchers try to measure the collapse force of fine pattern. However, most of the researches use LFM to gauge it indirectly and LFM can measure not for collapse force directly but only limited for horizontal force. Thus, nano-scratch is suggested to measure the collapse force possibly. We used poly-Si pattern on Si plate and changed the z-location of the pattern. From these experiments, the stiffness was decease as depth increase from surface and well fitted with negative exponential curve. Also, the elastic modulus was decreased. From the results, the collapse force of poly-Si nano-patterns was decreased as the depth increased over than 30% from the surface and the maximum collapse force was 26.91 microN and pattern was collapsed between poly-Si and plate.

  19. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    International Nuclear Information System (INIS)

    Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B.

    2010-01-01

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-β1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  20. Atypical form of cat scratch disease in immunocompetent patient

    Directory of Open Access Journals (Sweden)

    Kojić Miroslav

    2013-01-01

    Full Text Available Introduction. Cat scratch disease (CSD is an acute infectious disease with benign course caused by the bacteria Bartonella henselae. Clinically, it is usually manifested as regional lymphadenopathy and mild infective syndrome. Rare forms of the disease which usually occur in immunocompromised presons are: encephalitis, transverse myelitis, neuroretinitis, granulomatosus conjunctivitis, arthritis, hepatitis etc. Case report. We presented an atypical form of cat scratch disease in a young immunocompetent female person. The disease was manifested with prolonged fever, rash, purulent lymphadenitis and hepatitis. The diagnosis was based on characteristic patohystological finding and exclusion of the other causes of lymphadenopathy. The patient was treated by antibiotics for a few weeks, with surgical incision and drainage of the purulent lymphadenitis. Conclusion. Atypical forms of CSD could be an important differential-diagnostic problem, especially if there is no opportunity for serological confirmation of the disease.

  1. Gambling-Related Attitudes and Behaviors in Adolescents Having Received Instant (Scratch) Lottery Tickets as Gifts

    Science.gov (United States)

    Kundu, Priya V.; Pilver, Corey E.; Desai, Rani A.; Steinberg, Marvin A.; Rugle, Loreen; Krishnan-Sarin, Suchitra; Potenza, Marc N.

    2012-01-01

    Objective Instant (scratch) lottery ticket gambling is popular among adolescents. Prior research has not determined whether adolescents’ gambling behavior and attitudes toward gambling are influenced by the receipt of scratch lottery tickets as gifts. Method Cross-sectional survey data from 2,002 Connecticut high school students with past-year gambling were analyzed using bivariate approaches and logistic regression analyses. Interactions between gambling-problem severity and lottery-gift status were examined in relation to multiple outcomes. Results Adolescents who received a scratch lottery ticket as a gift compared with those who did not were more likely to report features of problem gambling, buy scratch lottery tickets for themselves, and buy and receive other types of lottery tickets; they were also less likely to report parental disapproval of gambling and to see gambling prevention efforts as important. Later (≥15 years) age-at-gambling-onset was inversely linked to gambling-problem severity in the lottery gift group (odds ratio [OR] = .38) but not in the nongift group (OR = .91), yielding a significant severity by gift status interaction. Other academic, health, and gambling-related correlates of gambling-problem severity were similar in the gift and nongift groups. Conclusions For adolescents, the receipt of scratch lottery tickets as gifts during childhood or adolescence was associated with risky/problematic gambling and with gambling-related attitudes, behaviors, and views suggesting greater gambling acceptability. The extent to which the receipt of scratch lottery tickets may promote gambling behaviors and the development of gambling problems warrants consideration. Education, prevention, and treatment strategies should incorporate findings relating to receipt of gambling products by underage individuals. PMID:23299004

  2. Case Reports of Cat Scratch Disease with Typical and Atypical Clinical Manifestations: A Literature Review

    Directory of Open Access Journals (Sweden)

    Gulshan Umbreen

    2017-04-01

    Full Text Available Cat scratch disease (CSD is the most well-known zoonotic disease spread by domestic animals like cats. Cats are the source of Bartonella henselae. Most patients more than ninety percent 3-12 days after a scratch from a cat, undoubtedly a little cat with insects present with one or more erythematous injuries at the site of inoculation, the sore is typically a crusted papule or, once in a while, a pustule. More than half of cases in one study show that the systemic indications went with the lymphadenopathy. These may incorporate fever, discomfort, migraine and anorexia and frequently happen in immunocompromised patients. Atypically clinical manifestations happen are altered mental status, perplexity, prolonged fever, respiratory protestations (atypical pneumonitis, Joint pain, synovitis, Back agony is uncommon. The hypothesis of the study to find out that cat scratch disease cause typical and atypical clinical manifestation. Study was conducted July 2015 to September 2015. The methodology sections of a review article are listed all of the databases and citation indexes that were searched such as Web of Science and PubMed and any individual journals that were searched. Various case reports were mentioned in the study. Case reports of cat scratch diseases with typical and atypical clinical manifestation included in the study. The objective of review of these reporting cases is to make physicians aware about cat scratch diseases and also need to create awareness about cat scratch disease in pet owner. Although it is self-limiting needs to report to health authorities. There are few cases reported in which mostly cases reported in twain, japan, Brazil, Texas, United States, Dhaka, Spain with typical and atypical clinical manifestation

  3. Nano-ADEPT Aeroloads Wind Tunnel Test

    Science.gov (United States)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; hide

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  4. Effects of Annotations and Homework on Learning Achievement: An Empirical Study of Scratch Programming Pedagogy

    Science.gov (United States)

    Su, Addison Y. S.; Huang, Chester S. J.; Yang, Stephen J. H.; Ding, T. J.; Hsieh, Y. Z.

    2015-01-01

    In Taiwan elementary schools, Scratch programming has been taught for more than four years. Previous studies have shown that personal annotations is a useful learning method that improve learning performance. An annotation-based Scratch programming (ASP) system provides for the creation, share, and review of annotations and homework solutions in…

  5. Improving reading comprehension skills through the SCRATCH program

    Directory of Open Access Journals (Sweden)

    Erdal Papatga

    2016-09-01

    Full Text Available The aim of this study was to reveal how reading comprehension skills of elementary fourth graders who have problems in reading comprehension can be improved by means of the SCRATCH program. The study was designed as a participant action research. It was carried out within a 15-week process at an elementary school with middle socio-economic level in the Eskisehir province in the fall term of the 2015-2016 school year. The participants of the study were eight fourth graders who had problems in reading comprehension and were selected based on the criterion sampling method. Different data gathering tools were employed in different stages of the study. These were the Informal Reading Inventory, readability assessment rubric, participant selection form and identification forms for developmental level in reading comprehension for the quantitative data, and observation notes, a researcher diary, video recordings, teacher and student observation notes, and the projects the students prepared using the SCRATCH program for the qualitative data. In the study, the analysis of the quantitative data was done with correlation analysis, and Kendall W Test that shows inter-rater reliability. In addition, the identification forms for developmental level in reading comprehension were used to reveal the improvement in reading comprehension skills, and the Informal Reading Inventory was employed to score these forms. On the other hand, the qualitative data were analysed through the thematic analysis method, and MAXQDA was used for the analysis. As a result of the analyses, it was found that the reading level of the eight students who had problems in reading comprehension went up from the anxiety level to the instructional level in some forms, and even to the independent reading level in other forms; in other words, there was an improvement in the reading comprehension skills of all eight students.

  6. Micro and macro scratch and microhardness study of biocompatible DLC and TiO.sub.2./sub. films prepared by laser

    Czech Academy of Sciences Publication Activity Database

    Mikšovský, Jan; Lukeš, J.; Tolde, Z.; Remsa, Jan; Kocourek, Tomáš; Jelínek, Miroslav

    2013-01-01

    Roč. 647, JAN (2013), 25-29 ISSN 1022-6680 Institutional support: RVO:68378271 Keywords : thin films * adhesion * scratch test * microhardness * Young ´s modulus * diamond-like-carbon (DLC) * titanium dioxide (TiO 2 ). Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Fracture toughness of bleached enamel: Effect of applying three different nanobiomaterials by nanoindentation test.

    Science.gov (United States)

    Khoroushi, Maryam; Mazaheri, Hamid; Saneie, Tahere; Samimi, Pouran

    2016-01-01

    Despite the absence of dispute about the efficacy of bleaching agents, a prime concern is about their compromising effect on the enamel structure. This in vitro study investigated whether the addition of three different biomaterials, including nano-bioactive glass (n-BG)/nano-hydroxy apetite (n-HA)/nano-amorphous calcium phosphate (n-ACP), to bleaching agents can affect the fracture toughness (FT) and vickers hardness number (VHN) of bovine enamel. The crowns of the newly extracted permanent bovine incisors teeth were separated from the root and sectioned along their central line; one half serving as the control specimen and the other half as the test specimen. After mounting and polishing procedure, all the control specimens (C) were subjected to nano-indentation test to obtain the baseline values of FT. Then, the control specimens were exposed to a 38% hydrogen peroxide for four times, each time for 10 min. The test specimens were divided into three groups and treated as follows, with the same protocol used for the control specimens: Group 1; ACP + hydrogen peroxide (HP) mixed gel; Group 2 BG + HP mixed gel; and Group 3 HA + HP mixed gel. FT measurements with nano-indentation were carried out subsequent to bleaching experiments. Data were analyzed using SPSS and Kruskal-Wallis test (α = 0.05). A significant difference in young's modulus (YM), VHN, and FT at baseline and subsequent to bleaching in control group was observed. However, no significant differences were found in YM, VHN, and FT between the test groups, compared to the respective baseline values. Under the limitations of the current study, it can be concluded that the n-HA, n-ACP, and n-BG could be potential biomaterials used to reduce the adverse effects of tooth bleaching.

  8. Fracture toughness of bleached enamel: Effect of applying three different nanobiomaterials by nanoindentation test

    Science.gov (United States)

    Khoroushi, Maryam; Mazaheri, Hamid; Saneie, Tahere; Samimi, Pouran

    2016-01-01

    Background: Despite the absence of dispute about the efficacy of bleaching agents, a prime concern is about their compromising effect on the enamel structure. This in vitro study investigated whether the addition of three different biomaterials, including nano-bioactive glass (n-BG)/nano-hydroxy apetite (n-HA)/nano-amorphous calcium phosphate (n-ACP), to bleaching agents can affect the fracture toughness (FT) and vickers hardness number (VHN) of bovine enamel. Materials and Methods: The crowns of the newly extracted permanent bovine incisors teeth were separated from the root and sectioned along their central line; one half serving as the control specimen and the other half as the test specimen. After mounting and polishing procedure, all the control specimens (C) were subjected to nano-indentation test to obtain the baseline values of FT. Then, the control specimens were exposed to a 38% hydrogen peroxide for four times, each time for 10 min. The test specimens were divided into three groups and treated as follows, with the same protocol used for the control specimens: Group 1; ACP + hydrogen peroxide (HP) mixed gel; Group 2 BG + HP mixed gel; and Group 3 HA + HP mixed gel. FT measurements with nano-indentation were carried out subsequent to bleaching experiments. Data were analyzed using SPSS and Kruskal–Wallis test (α = 0.05). Results: A significant difference in young's modulus (YM), VHN, and FT at baseline and subsequent to bleaching in control group was observed. However, no significant differences were found in YM, VHN, and FT between the test groups, compared to the respective baseline values. Conclusion: Under the limitations of the current study, it can be concluded that the n-HA, n-ACP, and n-BG could be potential biomaterials used to reduce the adverse effects of tooth bleaching. PMID:27307669

  9. Fracture toughness of bleached enamel: Effect of applying three different nanobiomaterials by nanoindentation test

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2016-01-01

    Full Text Available Background: Despite the absence of dispute about the efficacy of bleaching agents, a prime concern is about their compromising effect on the enamel structure. This in vitro study investigated whether the addition of three different biomaterials, including nano-bioactive glass (n-BG/nano-hydroxy apetite (n-HA/nano-amorphous calcium phosphate (n-ACP, to bleaching agents can affect the fracture toughness (FT and vickers hardness number (VHN of bovine enamel. Materials and Methods: The crowns of the newly extracted permanent bovine incisors teeth were separated from the root and sectioned along their central line; one half serving as the control specimen and the other half as the test specimen. After mounting and polishing procedure, all the control specimens (C were subjected to nano-indentation test to obtain the baseline values of FT. Then, the control specimens were exposed to a 38% hydrogen peroxide for four times, each time for 10 min. The test specimens were divided into three groups and treated as follows, with the same protocol used for the control specimens: Group 1; ACP + hydrogen peroxide (HP mixed gel; Group 2 BG + HP mixed gel; and Group 3 HA + HP mixed gel. FT measurements with nano-indentation were carried out subsequent to bleaching experiments. Data were analyzed using SPSS and Kruskal–Wallis test (α = 0.05. Results: A significant difference in young's modulus (YM, VHN, and FT at baseline and subsequent to bleaching in control group was observed. However, no significant differences were found in YM, VHN, and FT between the test groups, compared to the respective baseline values. Conclusion: Under the limitations of the current study, it can be concluded that the n-HA, n-ACP, and n-BG could be potential biomaterials used to reduce the adverse effects of tooth bleaching.

  10. Endometrial scratching in women with implantation failure after a first IVF/ICSI cycle; does it lead to a higher live birth rate? The SCRaTCH study: A randomized controlled trial (NTR 5342)

    OpenAIRE

    van Hoogenhuijze, N. E.; Torrance, H. L.; Mol, F.; Laven, J. S. E.; Scheenjes, E.; Traas, M. A. F.; Janssen, C.; Cohlen, B.; Teklenburg, G.; de Bruin, J. P.; van Oppenraaij, R.; Maas, J. W. M.; Moll, E.; Fleischer, K.; van Hooff, M. H.

    2017-01-01

    textabstractBackground: Success rates of assisted reproductive techniques (ART) are approximately 30%, with the most important limiting factor being embryo implantation. Mechanical endometrial injury, also called 'scratching', has been proposed to positively affect the chance of implantation after embryo transfer, but the currently available evidence is not yet conclusive. The primary aim of this study is to determine the effect of endometrial scratching prior to a second fresh in vitro ferti...

  11. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    Science.gov (United States)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  12. Time Series Modeling of Nano-Gold Immunochromatographic Assay via Expectation Maximization Algorithm.

    Science.gov (United States)

    Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Cao, Jie; Liu, Xiaohui

    2013-12-01

    In this paper, the expectation maximization (EM) algorithm is applied to the modeling of the nano-gold immunochromatographic assay (nano-GICA) via available time series of the measured signal intensities of the test and control lines. The model for the nano-GICA is developed as the stochastic dynamic model that consists of a first-order autoregressive stochastic dynamic process and a noisy measurement. By using the EM algorithm, the model parameters, the actual signal intensities of the test and control lines, as well as the noise intensity can be identified simultaneously. Three different time series data sets concerning the target concentrations are employed to demonstrate the effectiveness of the introduced algorithm. Several indices are also proposed to evaluate the inferred models. It is shown that the model fits the data very well.

  13. Development of untethered SU-8 polymer scratch drive microrobots

    KAUST Repository

    Valencia Garcia, Manuel

    2011-01-01

    This paper presents the design, simulation, fabrication and testing of novel, untethered SU-8 polymer microrobots based on scratch drive actuators (SDAs). The design consists of two 100×120×10μm linked SDAs, individually operated close to their resonant frequencies. The resonant frequency and deflection behavior of an individual SDA can be controlled by its shape, thickness, and stiffening design features. As a result, paired SDAs can be actuated individually or simultaneously by a multifrequency driving signal, allowing for two-dimensional displacement. The fabrication process uses SU-8 as structural material and PMGI as sacrificial material. The SU-8 provides a flexible material for the SDA\\'s plates as well as the bushing. Finally, a Cr/Au layer is blanket deposited to provide electrical conductivity.

  14. Improving Reading Comprehension Skills through the SCRATCH Program

    Science.gov (United States)

    Papatga, Erdal; Ersoy, Ali

    2016-01-01

    The aim of this study was to reveal how reading comprehension skills of elementary fourth graders who have problems in reading comprehension can be improved by means of the SCRATCH program. The study was designed as a participant action research. It was carried out within a 15- week process at an elementary school with middle socio-economic level…

  15. Nano mechanical properties of carbon films modified by ion radiation

    International Nuclear Information System (INIS)

    Foerster, C.E.; Serbena, F.C.; Lepienski, C.M.; Odo, G.Y.; Zawislak, F.C.; Lopes, J.M.J.; Baptista, D.L.; Garcia, I.T.S.

    2000-01-01

    In present work it is measured hardness, Young modulus and friction coefficient values for different types of carbon films. These films were submitted to different ion bombardment conditions (energy and fluencies). The mechanical behavior was obtained by nano indentation technique and analyzed by the Oliver/Pharr method. For friction coefficient determination the nano scratch procedure is used. Pristine C 60 films (fullerenes) has a hardness of 0.33 GPa. After irradiation with different ions (He, N and Bi), the hardness raise to about 14 GPa and the Young modulus change from 20 to about 200 GPa. For photoresist film AZ-1350J irradiation with Ar and He change the hardness from 0.4 to about 14 GPa and the Young modulus raise from 4 to 80 GPa. In a-C-H the hardness change from 3.5 to 11 GPa when submitted to N irradiation. In PPA films the hardness value raise from 0.5 to 11 GPa after irradiation with Ar. These mechanical and tribological results were analyzed in terms of deposited energy by the ion irradiation and compared with those presented in the literature. (author)

  16. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier

    International Nuclear Information System (INIS)

    Barletta, M.; Gisario, A.; Puopolo, M.; Vesco, S.

    2015-01-01

    Highlights: • Polysiloxane coatings as protective barriers to delay erosion/corrosion of Fe 430 B metal substrates. • Methyl groups feature a very small steric hindrance and confer ductility to the Si–O–Si backbone. • Phenyl groups feature a larger steric hindrance, but they ensure stability and high chemical inertness. • Remarkable adhesion to the substrate, good scratch resistance and high wear endurance. • Innovative ways to design of long lasting protective barriers against corrosion and aggressive chemicals. - Abstract: Polysiloxanes are widely used as protective barriers to delay erosion/corrosion and increase chemical inertness of metal substrates. In the present work, a high molecular weight methyl phenyl polysiloxane resin was designed to manufacture a protective coating for Fe 430 B structural steel. Methyl groups feature very small steric hindrance and confer ductility to the Si–O–Si backbone of the organic inorganic hybrid resin, thus allowing the achievement of high thickness. Phenyl groups feature larger steric hindrance, but they ensure stability and high chemical inertness. Visual appearance and morphology of the coatings were studied by field emission scanning electron microscopy and contact gauge surface profilometry. Micro-mechanical response of the coatings was analyzed by instrumented progressive load scratch, while wear resistance by dry sliding linear reciprocating tribological tests. Lastly, chemical inertness and corrosion endurance of the coatings were evaluated by linear sweep voltammetry and chronoamperometry in aggressive acid environment. The resulting resins yielded protective materials, which feature remarkable adhesion to the substrate, good scratch resistance and high wear endurance, thus laying the foundations to manufacture long lasting protective barriers against corrosion and, more in general, against aggressive chemicals

  17. Increased Urge to Gamble Following Near-Miss Outcomes May Drive Purchasing Behaviour in Scratch Card Gambling.

    Science.gov (United States)

    Stange, Madison; Graydon, Candice; Dixon, Mike J

    2017-09-01

    Previous research into scratch card gambling has highlighted the effects of these games on players' arousal and affective states. Specifically, near-miss outcomes in scratch cards (uncovering 2 of 3 needed jackpot symbols) have been associated with high levels of physiological and subjective arousal and negative emotional evaluations, including increased frustration. We sought to extend this research by examining whether near-misses prompted increases in gambling urge, and the subsequent purchasing of additional scratch cards. Participants played two scratch cards with varying outcomes with half of the sample experiencing a near-miss for the jackpot prize, and the other half experiencing a regular loss. Players rated their urge to continue gambling after each game outcome, and following the initial playing phase, were then able to use their winnings to purchase additional cards. Our results indicated that near-misses increased the urge to gamble significantly more than regular losses, and urge to gamble in the near-miss group was significantly correlated with purchasing at least one additional card. Although some players in the loss group purchased another card, there was no correlation between urge to gamble and purchasing in this group. Additionally, participants in the near-miss group who purchased additional cards reported higher levels of urge than those who did not purchase more cards. This was not true for the loss group: participants who experienced solely losing outcomes reported similar levels of urge regardless of whether or not they purchased more scratch cards. Despite near-misses' objective status as monetary losses, the increased urge that follows near-miss outcomes may translate into further scratch card gambling for a subset of individuals .

  18. Nano medicine in Action: An Overview of Cancer Nano medicine on the Market and in Clinical Trials

    International Nuclear Information System (INIS)

    Wang, R.; Billone, P.S.; Mullett, W.M.

    2013-01-01

    Nano medicine, defined as the application of nano technology in the medical field, has the potential to significantly change the course of diagnostics and treatment of life-threatening diseases, such as cancer. In comparison with traditional cancer diagnostics and therapy, cancer nano medicine provides sensitive cancer detection and/or enhances treatment efficacy with significantly minimized adverse effects associated with standard therapeutics. Cancer nano medicine has been increasingly applied in areas including nano drug delivery systems, nano pharmaceuticals, and nano analytical contrast reagents in laboratory and animal model research. In recent years, the successful introduction of several novel nano medicine products into clinical trials and even onto the commercial market has shown successful outcomes of fundamental research into clinics. This paper is intended to examine several nano medicines for cancer therapeutics and/or diagnostics-related applications, to analyze the trend of nano medicine development, future opportunities, and challenges of this fast-growing area.

  19. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

    Science.gov (United States)

    Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong

    2017-09-01

    Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.

  20. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

    Science.gov (United States)

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J; O'Neill, Catherine A

    2015-11-05

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration.

  1. Imaging Manifestations in Systemic Cat Scratch Disease: Case report

    International Nuclear Information System (INIS)

    Forero M, Julian F; Perez A, Maria C; Cerquera C, Fredy M

    2011-01-01

    Cat scratch disease is a zoonosis caused by Bartonella henselae, which is transmitted by scratches, bites or exposition to cats saliva (1). The disease typically manifests with local lymphadenitis after bacterial inoculation in the skin, however, there is an atypical systemic presentation in 5 to 10% of patients, which causes unspecific symptoms. There are several imaging findings that lead the radiologist to consider this diagnosis, in order to prevent an invasive procedure, especially if we consider that the majority of cases occur in the pediatric population (2,3). Although in the majority of cases the symptoms and imaging findings resolve spontaneously, there are specific indications like the systemic form of the disease,which requires antibiotic treatment. In the present article we are exposing a case report from Fundacion Cardioinfantil; we will review some epidemiologic aspects, clinical manifestations, diagnostic methods as well as imaging findings in Ultrasonography, Computed Tomography, Magnetic Resonance and Nuclear Medicine.

  2. Imaging Manifestations in Systemic Cat Scratch Disease: Case report

    International Nuclear Information System (INIS)

    Forero Melo, Julian Francisco; Perez Alvarado, Maria Carolina; Cerquera Cabrera, Fredy Martin

    2011-01-01

    Cat scratch disease is a zoonosis caused by Bartonella henselae, which is transmitted by scratches, bites or exposition to cats saliva (1). The disease typically manifests with local lymphadenitis after bacterial inoculation in the skin, however, there is an atypical systemic presentation in 5 to 10% of patients, which causes unspecific symptoms. There are several imaging findings that lead the radiologist to consider this diagnosis, in order to prevent an invasive procedure, especially if we consider that the majority of cases occur in the pediatric population (2,3). Although in the majority of cases the symptoms and imaging findings resolve spontaneously, there are specific indications like the systemic form of the disease, which requires antibiotic treatment. In the present article we are exposing a case report from Fundacion Cardio infantil; we will review some epidemiologic aspects, clinical manifestations, diagnostic methods as well as imaging findings in Ultrasonography, Computed Tomography, Magnetic Resonance and Nuclear Medicine.

  3. Machinability and scratch wear resistance of carbon-coated WC inserts

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivel, B., E-mail: palcecri@yahoo.co.in; Kumar, T. Prem; Sozhan, G.

    2015-03-15

    Highlights: • Cemented WC inserts were coated with carbon by CVD. • The deposits were either loosely held MWCNTs or adherent carbides. • Co-efficient of friction (ramp load; 1–13 N); 0.2 and 0.1 μ, respectively, for the uncoated and carbide-coated inserts. • The carbide-coated insert exhibited better machinability and surface finish than a commercial TiCN-coated insert. - Abstract: In this work, cemented tungsten carbide (WC) inserts were coated with nanocarbons/carbides by chemical vapor deposition (CVD) and their machinability and scratch wear resistance were investigated. The hardness and surface conditions of the WC substrate were studied before and after coating. The CVD-generated nanocarbons on the insert surfaces were examined by SEM, FE-SEM and TEM. The electron microscopic images revealed that the carbons generated were multi-walled carbon nanotubes (MWCNTs) or carbides depending on the experimental conditions. In both the cases, the cutting edges of the inserts had dense deposits. Scratch wear test with the coated inserts showed that the co-efficient of friction was 0.1 μ as against 0.2 μ for the uncoated inserts under a ramp load of 1–13 N. The machinability characteristics of commercially available TiCN-coated inserts and the carbon-coated WC inserts were compared by using a CNC machine and a Rapid I vision inspection system. It was found that the carbide-coated inserts exhibited machinability with better surface finish comparable to that of the TiCN-coated inserts while the MWCNT-coated inserts showed inferior adhesion properties.

  4. Durability assessment to environmental impact of nano-structured consolidants on Carrara marble by field exposure tests.

    Science.gov (United States)

    Bonazza, Alessandra; Vidorni, Giorgia; Natali, Irene; Ciantelli, Chiara; Giosuè, Chiara; Tittarelli, Francesca

    2017-01-01

    The EU policy of reducing the emissions of combustion generated pollutants entails climate induced deterioration to become more important. Moreover, products applied to preserve outdoor built heritage and their preliminary performance tests often turn out to be improper. In such context, the paper reports the outcomes of the methodology adopted to assess the durability and efficiency of nano-based consolidating products utilized for the conservation of carbonate artworks, performing field exposure tests on Carrara marble model samples in different sites in the framework of the EC Project NANOMATCH. Surface properties and cohesion, extent and penetration of the conservative products and their interactions with marble substrates and environmental conditions are here examined after outdoor exposure for eleven months in four different European cities and compared with the features of undamaged and of untreated damaged specimens undergoing the same exposure settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Allergy testing - skin

    Science.gov (United States)

    Patch tests - allergy; Scratch tests - allergy; Skin tests - allergy; RAST test; Allergic rhinitis - allergy testing; Asthma - allergy testing; Eczema - allergy testing; Hayfever - allergy testing; Dermatitis - allergy testing; Allergy testing; ...

  6. Nano Surface Engineering in the 21st Century

    Institute of Scientific and Technical Information of China (English)

    Xu Bin-shi; Wang Hai-dou; Dong Shi-yun; Shi Pei-jing; Xu Yi

    2004-01-01

    Nano surface engineering is the new development of surface engineering, and is the typical representation that the advanced nano technology improves the traditional surface engineering. The connotation of nano surface engineering is profound. The initial stage of nano surface engineering is realized at present day. The key technologies of nano surface engineering are the support to the equipment remanufacturing. Today the relatively mature key technologies are: nano thermal spraying technology, nano electric-brush plating technology, nano self-repairing anti-friction technology and metal surface nanocrystallization, etc. Many scientific issues have been continuously discovered. Meanwhile they have been applied in the practice more and more, and have archived the excellent remanufacturing effect.

  7. Estudio del comportamiento mecánico de un sistema recubierto mediante simulación computacional del ensayo de rayado//Mechanical Behavior study of a coated system by computer simulation of the scratch test

    Directory of Open Access Journals (Sweden)

    Eduardo A. Pérez Ruiz

    2015-05-01

    Full Text Available Una forma de evaluar un sistema recubierto es a través del ensayo de rayado. Los resultados obtenidos dependen de variables como: propiedades y geometría del indentador, tasa de carga, tasa de desplazamiento, propiedades de los materiales del sistema a evaluar como dureza, módulo elástico, microestructura, rugosidad superficial, espesor, entre otras. El presente trabajo analizó, a través de simulación computacional del ensayo de rayado, el efecto que tiene la geometría del indentador (cónica y esférica, la carga de rayado (20 N y 50 N, el espesor del recubrimiento (2,1 µm y 4,6 µm y el coeficiente de fricción (0,3 y 0,5 en el comportamiento de los esfuerzos y la deformación plástica en la superficie de un sistema recubierto. Los resultados sugieren que el coeficiente de fricción como variable de ensayo tiene una alta importancia en el comportamiento mecánico del sistema recubierto.Palabras claves: ensayo de rayado, simulación computacional, sistema recubierto.______________________________________________________________________________AbstractOne way to evaluate a coated system is through the scratch test. The results obtained depend of the variables including mechanical properties and geometry of indenter, loading, displacement, material properties in the system as hardness, elastic modulus, microstructure, roughness surface, thickness, among others, which are indicated in ASTM C1624 / 05. This paper analyzes through scratch test simulation, the effect of the indenter geometry (conical and spherical, the loading (20 N and 50 N, the thickness coating (2,1 µm and 4,6 µm and the friction coefficient values (0,3 and 0,5 in the stresses and plastic deformation behavior at the surface of a coated system. The results suggest that the coefficient of friction has a high importance in the mechanical performance of the coated system.Key words: scratch test, computacional simulation, coated system.

  8. Nano(Q)SAR: Challenges, pitfalls and perspectives.

    Science.gov (United States)

    Tantra, Ratna; Oksel, Ceyda; Puzyn, Tomasz; Wang, Jian; Robinson, Kenneth N; Wang, Xue Z; Ma, Cai Y; Wilkins, Terry

    2015-01-01

    Regulation for nanomaterials is urgently needed, and the drive to adopt an intelligent testing strategy is evident. Such a strategy will not only provide economic benefits but will also reduce moral and ethical concerns arising from animal testing. For regulatory purposes, such an approach is promoted by REACH, particularly the use of quantitative structure-activity relationships [(Q)SAR] as a tool for the categorisation of compounds according to their physicochemical and toxicological properties. In addition to compounds, (Q)SAR has also been applied to nanomaterials in the form of nano(Q)SAR. Although (Q)SAR in chemicals is well established, nano(Q)SAR is still in early stages of development and its successful uptake is far from reality. This article aims to identify some of the pitfalls and challenges associated with nano-(Q)SARs in relation to the categorisation of nanomaterials. Our findings show clear gaps in the research framework that must be addressed if we are to have reliable predictions from such models. Three major barriers were identified: the need to improve quality of experimental data in which the models are developed from, the need to have practical guidelines for the development of the nano(Q)SAR models and the need to standardise and harmonise activities for the purpose of regulation. Of these three, the first, i.e. the need to improve data quality requires immediate attention, as it underpins activities associated with the latter two. It should be noted that the usefulness of data in the context of nano-(Q)SAR modelling is not only about the quantity of data but also about the quality, consistency and accessibility of those data.

  9. Applied medical image processing a basic course

    CERN Document Server

    Birkfellner, Wolfgang

    2014-01-01

    A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying CD-ROM or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction.

  10. Nano-cellulose biopolymer based nano-biofilm biomaterial using plant biomass: An innovative plant biomaterial dataset

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif hossain

    2018-04-01

    Full Text Available The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials. Moreover, the chemical elements of nanobiofilm like K+, CO3−−, Cl−, Na+ showed standard data using the EN (166. Keywords: Nanocellulose, Nanobiofilm, Nanobioplastic, Biodegradable, Corn leaf

  11. Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guohua [Nanotribology Laboratory for Information Storage and MEMS/NEMS, Ohio State University, 650 Ackerman Road, Suite 255, Columbus, OH 43202 (United States); Bhushan, Bharat [Nanotribology Laboratory for Information Storage and MEMS/NEMS, Ohio State University, 650 Ackerman Road, Suite 255, Columbus, OH 43202 (United States)]. E-mail: bhushan.2@osu.edu

    2006-06-15

    Human hair ({approx}50-100 {mu}m in diameter) is a nanocomposite biological fiber with well-characterized microstructures, and is of great interest for both cosmetic science and materials science. Characterization of nanotribological and nanomechanical properties of human hair including the coefficient of friction and scratch resistance is essential to develop better shampoo and conditioner products and advance biological and cosmetic science. In this paper, the coefficient of friction and scratch resistance of Caucasian and Asian hair at virgin, chemo-mechanically damaged, and conditioner-treated conditions are measured using a nanoscratch technique with a Nano Indenter II system. The scratch tests were performed on both the single cuticle cell and multiple cuticle cells of each hair sample, and the scratch wear tracks were studied using scanning electron microscopy (SEM) after the scratch tests. The effect of soaking on the coefficient of friction, scratch resistance, hardness and Young's modulus of hair surface were also studied by performing experiments on hair samples which had been soaked in de-ionized water for 5 min. The nanotribological and nanomechanical properties of human hair as a function of hair structure (hair of different ethnicity), damage, treatment and soaking are discussed.

  12. Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat

    2006-01-01

    Human hair (∼50-100 μm in diameter) is a nanocomposite biological fiber with well-characterized microstructures, and is of great interest for both cosmetic science and materials science. Characterization of nanotribological and nanomechanical properties of human hair including the coefficient of friction and scratch resistance is essential to develop better shampoo and conditioner products and advance biological and cosmetic science. In this paper, the coefficient of friction and scratch resistance of Caucasian and Asian hair at virgin, chemo-mechanically damaged, and conditioner-treated conditions are measured using a nanoscratch technique with a Nano Indenter II system. The scratch tests were performed on both the single cuticle cell and multiple cuticle cells of each hair sample, and the scratch wear tracks were studied using scanning electron microscopy (SEM) after the scratch tests. The effect of soaking on the coefficient of friction, scratch resistance, hardness and Young's modulus of hair surface were also studied by performing experiments on hair samples which had been soaked in de-ionized water for 5 min. The nanotribological and nanomechanical properties of human hair as a function of hair structure (hair of different ethnicity), damage, treatment and soaking are discussed

  13. Evaluation of H{sub 2}O{sub 2}-generation during oxygen reduction at electrodeposited Pt particles on mask scratched electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Akira; Inoue, Mitsuhiro; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp

    2013-08-15

    In this study, the Pt particle deposition was systematically performed by our proposed mask scratch and subsequent Pt electrodeposition in order to investigate the H{sub 2}O{sub 2}-byproduct generation efficiency during O{sub 2} reduction. By peeling a part of polymer layer coated on a glassy carbon substrate using an atomic force microscope cantilever, scratched areas are regularly made. The Pt particles are deposited only on the above-mentioned scratched areas, indicating that the controlled Pt deposition has been achieved. The background cyclic voltammetry of the prepared electrodes showed that the deposited nanoparticles are certainly composed of Pt. Moreover, the electrochemical surface area of the deposited Pt (Pt-ESA) linearly increases with the increasing scratched area, revealing that the Pt-ESAs can be controlled by the mask scratch-based Pt electrodeposition method. It should be noted that an increase in the Pt-ESA not only increases the O{sub 2} reduction currents, but also enhances the H{sub 2}O{sub 2} generation efficiency.

  14. Effects of isothermal treatment on microstructure and scratch test behavior of plasma sprayed zirconia coatings

    Directory of Open Access Journals (Sweden)

    Veloso Guilherme

    2004-01-01

    Full Text Available The increase of the petroleum cost in the last decades revitalized the interest for lighter and more economic vehicles. Simultaneously, the demand for safe and unpolluted transports grows. The application of thermal barriers coatings (TBC on combustion chamber and on flat surface of pistons reduces the thermal losses of the engines, resulting in higher temperatures in the combustion chamber. This fact contributes to the improvement of the thermal efficiency (performance and for the reduction of incomplete combustion. Supported on these initial ideas, thermal barriers coatings constituted by CaO partially stabilized zirconia were produced and their microstructure examined. This coating still presents some drawbacks associated with thermal stresses and permeability to oxidizing gases, which will, eventually, lead to failure of the TBC by spallation. The failure may, in general, be associated to one of three factors: oxide growth at the ceramic-metal interface, formed during thermal cycling; stress build-up due to thermal cycling; and metal-oxide interface segregation, mainly of S. However, it is also relevant to understand the behavior of TBC's under isothermal oxidation. Therefore, this paper investigates the effect of oxidation on the adherence of thermal sprayed coatings. The adherence was measured by linear scratching tests, widely used for thin coatings. Plasma sprayed calcia partially stabilized zirconia was used as TBC and Ni-5%Al as bond coat, with Al substrates. Coated samples were submitted to heat treatments at 500 °C, for 50 h. The microstructures were examined by optical light microscopy, X-ray diffraction, profilometry and SEM.

  15. Application of nano-packaging in aquatics

    Directory of Open Access Journals (Sweden)

    D Jafarpour

    2018-03-01

    Conclusion: With regard to aquatics high nutritional value and their important presence in diet one should think of a way to increase it's survivability and maintaining quality. For this, nano technology can help packaging aquatics. Nano can be applied considerably in food health and environment protection.

  16. Scratch as a Computational Modelling Tool for Teaching Physics

    Science.gov (United States)

    Lopez, Victor; Hernandez, Maria Isabel

    2015-01-01

    The Scratch online authoring tool, which features a simple programming language that has been adapted to primary and secondary students, is being used more and more in schools as it offers students and teachers the opportunity to use a tool to build scientific models and evaluate their behaviour, just as can be done with computational modelling…

  17. Barriers and facilitators to cooking from 'scratch' using basic or raw ingredients: A qualitative interview study.

    Science.gov (United States)

    Lavelle, Fiona; McGowan, Laura; Spence, Michelle; Caraher, Martin; Raats, Monique M; Hollywood, Lynsey; McDowell, Dawn; McCloat, Amanda; Mooney, Elaine; Dean, Moira

    2016-12-01

    Previous research has highlighted an ambiguity in understanding cooking related terminology and a number of barriers and facilitators to home meal preparation. However, meals prepared in the home still include convenience products (typically high in sugars, fats and sodium) which can have negative effects on health. Therefore, this study aimed to qualitatively explore: (1) how individuals define cooking from 'scratch', and (2) their barriers and facilitators to cooking with basic ingredients. 27 semi-structured interviews were conducted with participants (aged 18-58 years) living on the island of Ireland, eliciting definitions of 'cooking from scratch' and exploring the reasons participants cook in a particular way. The interviews were professionally transcribed verbatim and Nvivo 10 was used for an inductive thematic analysis. Our results highlighted that although cooking from 'scratch' lacks a single definition, participants viewed it as optimal cooking. Barriers to cooking with raw ingredients included: 1) time pressures; (2) desire to save money; (3) desire for effortless meals; (4) family food preferences; and (5) effect of kitchen disasters. Facilitators included: 1) desire to eat for health and well-being; (2) creative inspiration; (3) ability to plan and prepare meals ahead of time; and (4) greater self-efficacy in one's cooking ability. Our findings contribute to understanding how individuals define cooking from 'scratch', and barriers and facilitators to cooking with raw ingredients. Interventions should focus on practical sessions to increase cooking self-efficacy; highlight the importance of planning ahead and teach methods such as batch cooking and freezing to facilitate cooking from scratch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Boundary lubrication by nano-particles; Lubrification limite par les nanoparticules

    Energy Technology Data Exchange (ETDEWEB)

    Cizaire, L.

    2003-09-15

    The replacement of aggressive organic molecules by mineral particles which could reduce friction and wear has been the main idea of this research work. The aim is thus to reduce product concentration in lubricant and pollutant gas emission. Boundary lubrication regime is well suited for this type of study in particular for being discriminative in tested nano-particles efficacy. We are firstly being interested in an anti-wear additive. A physical and chemical study of dialysed over based calcium sulfonates by EFTEM, XPS and ToF-SIMS lead to describe nano-particles as calcium carbonate core, still amorphous by the residual presence of calcium hydroxide and surrounded by di-dodecyl-benzene sulfonate surfactant chains. Their anti-wear action has been investigated by coupling many tribo-meters with different contact geometry. Rubbing surfaces were protected by a thick tribo-film being on surfaces without any scratches. When additive is in contact area under high pressure and shearing, micellar structure is broken. Hydro-carbonated chains initially control friction by being broken up and then with increasing of contact severity, sulfonate chains are expulsed out of the tribo-film. Tribo-film growth corresponds then to agglomeration and crystallization of calcium carbonate core striped of detergent chains. We have shown then friction reduction capabilities of inorganic-fullerene (IF) MoS{sub 2} nano-particles. Lubricating power of MoS{sub 2} layers is as good whatever the layers number leading thinking that friction value is intrinsic character of compound nature. Fullerene nano-particles were described by HR-TEM as a concentric and closed multi-layered structure. Coupling of Raman, XRD and EXAFS have shown that MoS{sub 2} layers were well organised in hexagonal form with distortion in Mo-Mo bonds reaching 1% of initial length. Chemical stability of such structure, in particular in regard of oxidation, is very impressive. XPS, XANES and ToF-SIMS analyses have lead to

  19. Numerical study of the influence of the thickness and roughness of TiN coatings on their wear in scratch testing

    Science.gov (United States)

    Eremina, G. M.; Smolin, A. Yu.

    2017-12-01

    One of the mostly used and complicated surgical operations on large human joints is total hip replacement. An endoprosthesis is chosen individually for each person on the basis of his anatomical features and physical activity. However, such an important factor affecting the durability of an endoprosthesis as wear in the head-acetabular cup friction pair is still poorly understood, and it is taken into account only qualitatively. The determining role in wear belongs to the structure of the surface layers and coatings of the friction pair. The mechanical and structural characteristics of the coating largely depend on the method of its application. In this paper, to study the tribological characteristics of the coating material of the friction pair, we use computer simulation of scratch testing. The simulations are performed with the application of the method of movable cellular automata. The model specimens correspond to real coatings manufactured under different treatment conditions (deposition temperature and time). The analysis of the simulation results allows one to choose the optimal regime corresponding to the maximum hardness of coatings or adhesive strength.

  20. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds

    Institute of Scientific and Technical Information of China (English)

    YANG Yan-Ning; ZHANG Zhi-Yong; ZHANG Fu-Chun; DONG Jun-Tang; ZHAO Wu; ZHAI Chun-Xue; ZHANG Wei-Hu

    2012-01-01

    An electrophoresis solution,prepared in a specific ratio of titanium (Ti)-doped nano-diamond,is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis.After high-temperature vacuum annealing,the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope,scanning electron microscopy and Raman spectroscopy.The field emission characteristics and luminescence features are also tested,and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed.The experimental results show that under the same conditions,the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti powder.Compared with the undoped nano-diamond cathode,the turn-on fields decline from 6.95 to 5.95 V/μm.When the electric field strength is 13.80 V/μm,the field emission current density increases to 130.00 μA/cm2.Under the applied fields,the emission current is stable and the luminescence is at its best,while the field emission characteristics of the 10 mg Ti-doped coating become worse,as does the luminescence.The reason for this could be that an excessive amount of TiC is generated on the surface of the coating.%An electrophoresis solution, prepared in a speciGc ratio of titanium (Ti)-doped nano-diamond, is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis. After high-temperature vacuum annealing, the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope, scanning electron microscopy and Raman spectroscopy. The field emission characteristics and luminescence features are also tested, and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed. The experimental results show that under the same conditions, the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti

  1. Mechanical and thermal properties of UV curable polyurethane acrylate composite coatings

    International Nuclear Information System (INIS)

    Mohd Sofian Alias; Nik Ghazali Nik Salleh; Mohd Hamzah Harun; Mohd Yusof Hamzah; Rosley Che Ismail

    2012-01-01

    UV curable coating formulation comprises urethane acrylate resin and nano silica as filter were synthesized to develop UV curable inorganic hybrid composite (PUA). The surface of the nano silica was chemically modified to improve its chemical interaction within the urethane acrylate matrix. The modification had been undertaken by applying vinyltrymetoxysilane (VTMOS) that acted as a coupling agent to produce organophilic silica shell (SIMA). The shell is linked to the silica via reaction with the surface silanol group of the silica. The disappearance of methoxy groups in VTMOS was demonstrated by FTIR spectrum. The percentage of silica particles in UV curable hybrid formulation were varied on 5 %, 10 %, 15 %, 20 % and 25 wt % respectively. In this work, the formulation was applied on medium density fiber board (MDF) substrate and subsequent has been irradiated under UV light. Then, the coated MDF were characterized by several testing equipment (TGA, DSC, scratch tester, instron, SEM). From the result, we found that the addition of silica nanoparticles exhibit significant improvement in coating film properties as compared to film without silica nanoparticle includes significant improvement in its modulus and scratch resistance. This make them as promising coating candidate for MDF product. On the other hand, we also found that an increase of silica particle up to 25 wt %, the viscosity has increased rapidly indicates that it is not suitable for acrylate coating formulation due to disappearance of desired effect known as thixotropy. (Author)

  2. New Ichnospecies of Scratching Traces from Phosphatic nodules (Cenomanian, England)

    Czech Academy of Sciences Publication Activity Database

    Chumakov, N. M.; Dronov, A. V.; Mikuláš, Radek

    2013-01-01

    Roč. 21, č. 3 (2013), s. 50-59 ISSN 0869-5938 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : trace fossils * Cenomanian * southern England * systems of scratches * biting traces * bioerosion * homodont * heterodont Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.714, year: 2013

  3. Report of International NanoSPD Steering Committee and statistics on recent NanoSPD activities

    International Nuclear Information System (INIS)

    Valiev, R Z; Langdon, T G

    2014-01-01

    Abstract. The Université de Lorraine in Metz, France, is the selected site for the 6th International Conference on Nanomaterials by Severe Plastic Deformation (NanoSPD6) following a series of five earlier conferences. This introductory paper reports on several major developments in NanoSPD activities as well as on very recent NanoSPD citation data which confirm the continued growth and expansion of this important research area. Close attention is given to the topics of workshops, conferences and seminars organized during these last three years as well as on books and reviews published prior to the NanoSPD6 conference. A special concern of the committee is in introducing and discussing the appropriate terminology to be applied in this new field of materials science and engineering

  4. Cat scratch disease complicated with aseptic meningitis and neuroretinitis

    Directory of Open Access Journals (Sweden)

    Vitor Laerte Pinto Jr.

    Full Text Available Cat scratch disease (CSD is a self limited condition characterized by fever, lymph node enlargement and less often eye involvement. Central nervous system involvement by Bartonella henselae infection is possibly an important cause of morbidity; its role as an agent of aseptic meningitis is unknown. We report a case of a 40 years-old man with CSD accompanied by aseptic meningitis and neuroretinitis. Serum indirect immmunofluorescence (IFI assays for B. henselae were positive and the cerebrospinal fluid (CSF analysis showed mononuclear pleocytosis and increased level of protein. Serological tests for other etiologies were negative. The patient responded well to antibiotic therapy with oral doxycicline plus rifampin and in the 12th day of hospitalization evolved to total regression of the headache and partial regression of the visual loss. Clinicians should consider CSD as a differential diagnosis when assessing previously healthy patients with aseptic meningitis associated with regional lymphadenopathy and epidemiological history of feline contact.

  5. Nano materials for Medical and Dental Applications

    International Nuclear Information System (INIS)

    Yub Kwon, T.; Oh, D.S.; Narayanan, R.

    2015-01-01

    Welcome to this special issue. Nano science and nano technology concepts are applicable across all fields of science and a more widespread application of nano materials and nano technologies is imminent or already occurring in many areas, including health care. Today is scientists take those cutting-edge technologies and concepts and apply them to medicine and dentistry. They are finding a wide variety of ways to make medical and dental materials at the nano scale to take advantage of their enhanced physical and biological properties.The purpose of this special issue is to publish high-quality research papers as well as review articles addressing recent advances in the field of nano materials for medical and dental applications. A particular interest is given to papers exploring or discussing nano materials and nano technologies related to delivery system, bonding substitutes, and surface modification techniques applicable in these areas. For this special issue, several investigators were invited to contribute original research findings that can stimulate continuing efforts to understand the cutting-edge applications of nano materials in medicine and dentistry.

  6. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  7. Plastic Deformation Induced by Nanoindentation Test Applied on ZrN/Si3N4 Multilayer Coatings

    Directory of Open Access Journals (Sweden)

    Zhengtao Wu

    2017-12-01

    Full Text Available ZrN/Si3N4 multilayer coating that alternates with either nanocrystalline ZrN or amorphous Si3N4 interlayers was fabricated by reactively magnetron sputtering in an Ar-N2 mixture atmosphere. The thicknesses of the nanocrystalline ZrN and the amorphous Si3N4 interlayers are ~12.5 and 2.5 nm, respectively. The ZrN/Si3N4 coating exhibits a promoted hardness of 28.6 ± 1.2 GPa when compared to the binary ZrN. Microstructure evolution just underneath the nanoindentation impression of the ZrN/Si3N4 multilayer coating has been investigated. The result indicates that both ZrN nanograin rotations and plastic flow of the Si3N4 interlayers contribute to the permanent deformation of the multilayer coating induced by the nanoindentation. In addition, the introduction of the a-Si3N4 interlayers hinders both the initiation and propagation of microcracks when the multilayer coating was applied to the scratch test. The propagation deflection of the microcracks was observed attributed to the heterogenous interface, which produces the hardness promotion of the multilayer coating eventually.

  8. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Maguer, A.

    2007-01-01

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author) [fr

  9. Improving the scratch resistance of sol-gel metal oxide coatings cured at 250 C through use of thermogenerated amines

    NARCIS (Netherlands)

    Langanke, J.; Arfsten, N.; Buskens, P.; Habets, R.; Klankermayer, J.; Leitner, W.

    2013-01-01

    Scratch resistant sol-gel metal oxide coatings typically require a thermal post-treatment step (curing process) at temperatures between 400 and 700 C. In this report, we demonstrate that the in situ generation of amines within sol-gel films facilitates the preparation of scratch resistant metal

  10. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  11. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    Science.gov (United States)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  12. Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions

    International Nuclear Information System (INIS)

    Benea, Lidia; Başa, Sorin-Bogdan; Dănăilă, Eliza; Caron, Nadège; Raquet, Olivier; Ponthiaux, Pierre; Celis, Jean-Pierre

    2015-01-01

    Highlights: • The friction and wear properties of Ni/nano-WC composite were studied. • Nano-WC reinforcement decreased friction coefficient in dry and wet conditions. • Nano-WC reinforcement fraction was seen to be 12 wt.%. • Nanohardness increased by 27% compared to nickel without WC reinforcements. • Ennoblement of OCP corresponding to the Ni/nano-WC composite coating. - Abstract: The fretting and wear behaviors of Ni/nano-WC composite coatings were studied by considering the effect of fretting frequency of 1 Hz during 10,000 cycles, at different applied loads in dry or wet conditions. The studies were performed on a ball-on-disk tribometer and the results were compared with pure Ni coating. The nanohardness of pure Ni and Ni/nano-WC composite coatings was tested by nanoindentation technique. To evaluate the wet wear (tribocorrosion) behavior the open circuit potential (OCP) was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors (PWRs). The results show that Ni/nano-WC composite coatings exhibited a low friction coefficient, high nanohardness and wear resistance compared with pure Ni coatings under similar experimental conditions. Ni/nano-WC composite coatings were obtained on stainless steel support by electrochemical codeposition of nano-sized WC particles (diameter size of ∼60 nm) with nickel, from a standard nickel Watts plating bath. The surface morphology and the composition of the coatings were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) respectively

  13. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  14. Experimental Analysis of Damping and Tribological Characteristics of Nano-CuO Particle Mixed Lubricant in Ball Bearings

    Science.gov (United States)

    Prakash, E.; Sivakumar, K.

    2015-12-01

    Experimental analysis of damping capacity and tribological characteristics of nano CuO added Servosystem 68 lubricant is attempted. CuO nano particles were synthesized by aqueous precipitation method and characterized. Prior to dispersion into lubricant, CuO nano particles were coated with 0.2 wt.% surfactant (Span-80) to stabilize the nano fluid. Tribological characteristics of particle added lubricant were tested in ASTM D 4172 four ball wear tester. Scanning electron microscopy test results of worn surfaces of nano CuO particle added lubricant were smoother than base lubricant. The particle added lubricant was applied in a new ball bearing and three defected ball bearings. When particle added lubricant was used, the ball defected bearing's vibration amplitude was reduced by 21.94% whereas it was 16.46% for new bearing and was ≤ 11% for other defected bearings. The formation of protection film of CuO over ball surface and regime of full film lubrication near the ball zone were observed to be reason for improved damping of vibrations.

  15. Fabrication of 3D nano-structures using reverse imprint lithography

    Science.gov (United States)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  16. Fabrication of 3D nano-structures using reverse imprint lithography

    International Nuclear Information System (INIS)

    Han, Kang-Soo; Cho, Joong-Yeon; Lee, Heon; Hong, Sung-Hoon; Kim, Kang-In; Choi, Kyung-woo

    2013-01-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED. (paper)

  17. Spatial variation of the number of graphene layers formed on the scratched 6H-SiC(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Osaklung, J. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Euaruksakul, C. [Synchrotron Light Research Institute, Nakhon Ratchasima 30000 (Thailand); Thailand Center of Excellence in Physics, CHE, Bangkok 10400 (Thailand); Meevasana, W., E-mail: worawat@g.sut.ac.th [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Synchrotron Light Research Institute, Nakhon Ratchasima 30000 (Thailand); Thailand Center of Excellence in Physics, CHE, Bangkok 10400 (Thailand); Songsiriritthigul, P. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Synchrotron Light Research Institute, Nakhon Ratchasima 30000 (Thailand); Thailand Center of Excellence in Physics, CHE, Bangkok 10400 (Thailand)

    2012-03-01

    The unique properties of graphene can vary greatly depending on the number of graphene layers; therefore, spatial control of graphene thickness is desired to fully exploit these properties in promising new devices. Using low energy electron microscopy (LEEM), we investigate how scratches on the surface of 6H-SiC(0 0 0 1) affect the epitaxial growth of graphene. Oscillations in the LEEM-image intensity as a function of electron energy (I-V LEEM analysis) show that the number of graphene layers clearly differs between regions of scratched and smooth substrate. The extent of the thicker graphene layers formed above scratches is found to be significantly larger than the width of the scratch itself. This finding can be implemented as an additional technique for spatially modulating graphene thickness.

  18. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  19. Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation – Recommendations from the FP7 project NanoRem

    DEFF Research Database (Denmark)

    Hjorth, Rune; Coutris, Claire; Nguyen, Nhung

    2017-01-01

    engineered Fe nanomaterials, specifically, Nano-Goethite, Trap-Ox Fe-zeolites, Carbo-Iron® and FerMEG12, developed within the European FP7 project NanoRem for sub-surface remediation towards a test battery consisting of eight ecotoxicity tests on bacteria (V. fisheri, E. coli), algae (P. subcapitata...... milled nZVI (FerMEG12), showed no toxicity in the test battery when tested in concentrations up to 100 mg/L, which is the cutoff for hazard labeling in chemicals regulation in Europe. However it should be noted that Fe nanomaterials proved challenging to test adequately due to their turbidity...

  20. Nano-impact testing of TiFeN and TiFeMoN films for dynamic toughness evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Beake, B D [Micro Materials Ltd, Willow House, Ellice Way, Yale Business Village, Wrexham LL13 7YL (United Kingdom); Vishnyakov, V M; Colligon, J S, E-mail: ben@micromaterials.co.uk [Dalton Research Institute, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)

    2011-03-02

    TiFeN and TiFeMoN films were deposited on silicon wafers by ion-beam-assisted deposition. Their mechanical properties were measured by nanoindentation (quasi-static) and nano-impact (dynamic) techniques. Nano-impact testing enabled assessment of their toughness and resistance to fatigue fracture under repetitive loading. At low impact forces, films with a higher resistance to plastic deformation (H{sup 3}/E{sup 2}) were much more resistant to the formation of cracks throughout the test. At higher impact forces, these films initially show impact resistance but with continued impacts they are unable to protect the Si substrate, performing as poorly as films with lower H{sup 3}/E{sup 2} and suffer delamination from the Si substrate over a large area.

  1. Flow and granular analysis of cement paste with Nano-silica (nS): from macro to nano concrete design

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Brouwers, H.J.H.; Hüsken, G.

    2010-01-01

    Current micro-silica is only applied in special cases, due to its high price, and nano-silica is not used in practice yet. The new nano-silica can be produced in such quantities and for low prices that mass application in concrete is within reach. It may replace cement in the mix, which is the most

  2. Light‐driven Nano­‐robotics - Invited Plenary Presentation, IEEE NANO 2016

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    ) and pioneering their use in so-called lightdriven nano-robotics. Hence, the aim of our latest R&D is to combine advanced topology optimisation, 3D printing of functionalized materials and light manipulation to demonstrate a structure-mediated micro-tonano coupling paradigm for controlled operation of robotic...... tools overcoming the diffraction limit while still being optically visible and manoeuvrable. 2PP-fabrication can already today create intricate nano-features merged onto larger microstructures that, in turn, are steerable by dynamic light beams. Applying multiple independently controllable laser beam...... traps on these structures will enable real-time light-driven nanorobotics with six-degrees-of-freedom. This sets the stage for new discoveries using calibrated steering of optimally shaped and functionalized nano-tools at the subcellular level and in full 3D - not available in the scientifi c world...

  3. Finite element analysis-based design of a fluid-flow control nano-valve

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Pandurangan, B.; Roy, W.N.

    2005-01-01

    A finite element method-based procedure is developed for the design of molecularly functionalized nano-size devices. The procedure is aimed at the single-walled carbon nano-tubes (SWCNTs) used in the construction of such nano-devices and utilizes spatially varying nodal forces to represent electrostatic interactions between the charged groups of the functionalizing molecules. The procedure is next applied to the design of a fluid-flow control nano-valve. The results obtained suggest that the finite element-based procedure yields the results, which are very similar to their molecular modeling counterparts for small-size nano-valves, for which both types of analyses are feasible. The procedure is finally applied to optimize the design of a larger-size nano-valve, for which the molecular modeling approach is not practical

  4. Integrated lithography to prepare periodic arrays of nano-objects

    International Nuclear Information System (INIS)

    Sipos, Áron; Szalai, Anikó; Csete, Mária

    2013-01-01

    We present an integrated lithography method to prepare versatile nano-objects with variable shape and nano-scaled substructure, in wavelength-scaled periodic arrays with arbitrary symmetry. The idea is to illuminate colloid sphere monolayers by polarized beams possessing periodic lateral intensity modulations. Finite element method was applied to determine the effects of the wavelength, polarization and angle of incidence of the incoming beam, and to predict the characteristics of nano-objects, which can be fabricated on thin metal layer covered substrates due to the near-field enhancement under silica colloid spheres. The inter-object distance is controlled by varying the relative orientation of the periodic intensity modulation with respect to the silica colloid sphere monolayer. It is shown that illuminating silica colloid sphere monolayers by two interfering beams, linear patterns made of elliptical holes appear in case of linear polarization, while circularly polarized beams result in co-existent rounded objects, as more circular nano-holes and nano-crescents. The size of the nano-objects and their sub-structure is determined by the spheres diameter and by the wavelength. We present various complex plasmonic patterns made of versatile nano-objects that can be uniquely fabricated applying the inherent symmetry breaking possibilities in the integrated lithography method.

  5. Fabrication of Nano-CeO2 and Application of Nano-CeO2 in Fe Matrix Composites

    International Nuclear Information System (INIS)

    Tiebao, W.; Chunxiang, C.; Xiaodong, W.; Guobin, L.

    2010-01-01

    It is expatiated that nano-CeO2 is fabricated by the direct sedimentation method. The components and particles diameter of nano-CeO2 powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-CeO2 with Al in Fe matrix composites are researched, which shows that the reaction is generated between CeO2 and Al in the composite, that is, 3CeO2+4Al - 2Al2O3+3[Ce], which obtains Al2O3 and active [Ce] during the sintering process. The active [Ce] can improve the performance of CeO2/Fe matrix composites. The suitable amount of CeO2 is about 0.05% in CeO2/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-CeO2/Fe matrix composites are more than those in no-added nano-CeO2 composites, which can explain that adding nano-CeO2 into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-CeO2 to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-CeO2.

  6. SNP typing on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez Sanchez, Juan Jose; Morling, Niels

    2005-01-01

    We describe a single nucleotide polymorphism (SNP) typing protocol developed for the NanoChip electronic microarray. The NanoChip array consists of 100 electrodes covered by a thin hydrogel layer containing streptavidin. An electric currency can be applied to one, several, or all electrodes...

  7. SCC modification by use of amorphous nano-silica

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Hüsken, G.; Brouwers, H.J.H.

    2014-01-01

    In this study two different types of nano-silica (nS) were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD), but produced through two different processes: fumed powder silica and precipitated silica in colloidal suspension. The influence of nano-silica

  8. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping

    Science.gov (United States)

    Landsiedel, Robert; Ma-Hock, Lan; Wiench, Karin; Wohlleben, Wendel; Sauer, Ursula G.

    2017-05-01

    As presented at the 2016 TechConnect World Innovation Conference on 22-25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) `Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial's respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as `qualifiers' to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.

  9. Somalia 2007: Starting from scratch on the long and winding road to ...

    African Journals Online (AJOL)

    ... 2007: Starting from scratch on the long and winding road to peace and democracy? ... other 40-odd minor tribes falling into the “half” category) blundered into the 21st century without a modern state or its institutions (Mbugua, 2004:26).

  10. Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant biomaterial

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif Hossain

    2018-04-01

    Full Text Available The nanocellulose derived biodegradable plant biomaterial as nano-coating can be used in the medical, biomedical cosmetics, and bioengineering products. Bio-plastic and some synthetic derived materials are edible and naturally biodegradable. The study was conducted to investigate edible nano-biopolymer based nano-coating of capsules and drugs or other definite biomedical materials from corn leaf biomass. Corn leaf biomass was used as an innovative sample to produce edible nano-coating bioplastic for drug and capsule coating and other industrial uses. The data show the negligible water 0.01% absorbed by bio-plastic nanocoating. Odor represented by burning test was under the completely standard based on ASTM. Moreover, data on color coating, tensile strength, pH, cellulose content have been shown under standard value of ASTM (American standard for testing and materials standard. In addition to that data on the chemical element test like K+, CO3−−, Cl-, Na+ exhibited positive data compared to the synthetic plastic in the laboratory using the EN (166 standardization. Therefore, it can be concluded that both organic (cellulose and starch based edible nano-coating bioplastic may be used for drug and capsule coating as biomedical and medical components in the pharmaceutical industries. Keywords: Nanocellulose, Nanobioplastic, Nanocoating, Biodegradable, Corn leaf

  11. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    Science.gov (United States)

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  13. Structure-­mediated nano-­biophotonics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    2015-01-01

    The synergy between photonics, nanotechnology and biotechnology is spawning the emerging fields of nano-biotechnology and nano-biophotonics. Photonic innovations already hurdle the diffraction barrier for imaging with nanoscopic resolutions. However, scientific hypothesis testing demands tools...

  14. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of Hull Scratching, Soaking, and Boiling on Antinutrients in Japanese Red Sword Bean (Canavalia gladiata).

    Science.gov (United States)

    Une, Satsuki; Nonaka, Koji; Akiyama, Junich

    2016-10-01

    The effects of hull processing, soaking, and boiling on the content or activity of antinutrients in the red sword bean (RSB; Canavalia gladiata) were investigated. RSB seeds were compared with kidney bean (KB; Phaseolus vulgaris) seeds that are starch based and often used as processed products in Japan. RSB seeds had higher weight, thicker hull, and higher protein content, but lower moisture content compared with KB seeds. Because of the strong and thick hull, the relative water absorption of untreated RSB seeds was very low after soaking. Seeds were soaked after dehulling, scratching, and roasting. The results showed that hull scratching was the optimal method for increasing water absorption during soaking compared with dehulling and roasting. After soaking, the water used for soaking was discarded, since it had a high content of polyphenols and bitter taste, and RSB seeds were boiled in fresh water for 20, 40, and 60 min. The results showed that polyphenol and tannin contents, antioxidant activity, and hemagglutinating activity, as well as maltase, sucrase, and trypsin inhibitor activities in scratched RSB seeds decreased significantly after boiling compared with those in raw seeds, whereas amylase inhibitor activity showed no significant change. Overall, it was concluded that the combination of hull scratching, soaking, and boiling in fresh water can reduce thermal-stable or sensitive antinutrients in RSB and thus, significantly improve its nutritional value. © 2016 Institute of Food Technologists®.

  16. Comparison of flux motion in type-II superconductors including pinning centers with the shapes of nano-rods and nano-particles by using 3D-TDGL simulation

    International Nuclear Information System (INIS)

    Ito, Shintaro; Ichino, Yusuke; Yoshida, Yutaka

    2015-01-01

    Highlights: • We constructed the 3D-TDGL simulator to calculate the flux motion. • We assumed two superconductors including only nano-rods and only nano-particles. • We succeeded to simulate the flux motion for various magnetic field angles. • If anyone introduce nano-rod, controlling the “single-kink” motion is very important. • The introduction of nano-particles is effective to pin the “single-kink” motion. - Abstract: Time-dependent Ginzburg–Landau (TDGL) equations are very useful method for simulation of the motion of flux quanta in type-II superconductors. We constructed the 3D-TDGL simulator and succeeded to simulate the motion of flux quanta in 3-dimension. We carried out the 3D-TDGL simulation to compare two superconductors which included only pinning centers with the shape of nano-rods and only nano-particle-like pinning centers in the viewpoint of the flux motion. As a result, a motion of “single-kink” caused the whole motion of a flux quantum in the superconductor including only the nano-rods. On the other hand, in the superconductor including the nano-particles, the flux quanta were pinned by the nano-particles in the various magnetic field applied angles. As the result, no “single-kink” occurred in the superconductor including the nano-particles. Therefore, the nano-particle-like pinning centers are effective shape to trap flux quanta for various magnetic field applied angles.

  17. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  18. Epitaxial Ni films, e-beam nano-patterning and BMR

    Science.gov (United States)

    Lukaszew, R. Alejandra; Zhang, Zhengdong; Pearson, Dave; Zambano, Antonio

    2004-05-01

    We have attempted to clarify possible domain-wall processes present in the recently reported large ballistic magnetoresistance effects in nano-contacts. To that effect we have used e-beam lithography applied to epitaxial Ni films to fabricate nano-bridges in more controlled geometry than electrochemical deposition. Our preliminary results indicate that magnetic domains do play a role in the magneto-resistance of these nano-bridges but the order of magnitude of the observed effect is considerably smaller than the reported observations in electrochemically prepared nano-contacts.

  19. Epitaxial Ni films, e-beam nano-patterning and BMR

    International Nuclear Information System (INIS)

    Lukaszew, R.A.; Zhang Zhengdong; Pearson, Dave; Zambano, Antonio

    2004-01-01

    We have attempted to clarify possible domain-wall processes present in the recently reported large ballistic magnetoresistance effects in nano-contacts. To that effect we have used e-beam lithography applied to epitaxial Ni films to fabricate nano-bridges in more controlled geometry than electrochemical deposition. Our preliminary results indicate that magnetic domains do play a role in the magneto-resistance of these nano-bridges but the order of magnitude of the observed effect is considerably smaller than the reported observations in electrochemically prepared nano-contacts

  20. 2012 Annual Conference on Experimental and Applied Mechanics

    CERN Document Server

    Crone, Wendy; Jin, Helena; Sciammarella, Cesar; Furlong, Cosme; Furlong, Cosme; Chalivendra, Vijay; Song, Bo; Casem, Daniel; Antoun, Bonnie; Qi, H; Hall, Richard; Tandon, GP; Lu, Hongbing; Lu, Charles; Yoshida, Sanichiro; Shaw, Gordon; Prorok, Barton; Barthelat, François; Korach, Chad; Grande-Allen, K; Lipke, Elizabeth; Lykofatitits, George; Zavattieri, Pablo; Starman, LaVern; Patterson, Eann; Backman, David; Cloud, Gary; Vol.1 Dynamic Behavior of Materials; Vol.2 Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; Vol.3 Imaging Methods for Novel Materials and Challenging Applications; Vol.4 Experimental and Applied Mechanics; Vol.5 Mechanics of Biological Systems and Materials; Vol.6 MEMS and Nanotechnology; Vol.7 Composite Materials and Joining Technologies for Composites

    2013-01-01

    Experimental and Applied Mechanics, Volume 4: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, the fourth volume of seven from the Conference, brings together 54 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental and Applied Mechanics, including papers on:  Fracture & Fatigue Microscale & Microstructural Effects in Fatigue & Fracture Material Applications Composite Characterization Using Digital Image Correlation Techniques Multi-Scale Simulation and Testing of Composites Residual Stress Inverse Problems/Hybrid Methods Nano-Composites Microstructure Material Characterization Modeling and Uncertainty Quantification Impact Behavior of Composites.

  1. Local endometrial scratching under ultrasound-guidance after failed intrauterine insemination and cycle outcome: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Badeea S. Soliman

    2017-03-01

    Full Text Available Background: Interaction between the embryo and endometrium plus endometrial receptivity is considered as two strong issues affecting the implantation outcome. Purpose: To investigate the effect of local endometrial scratching on pregnancy rate after failed previous intra uterine insemination. Study design: A prospective, randomized, control trial. Setting: At Cytogenetic and Endoscopy Unit, Zagazig University Hospital. Patients and methods: A total of 226 women either with unexplained or with mild male factor infertility were divided randomly into approximately two groups: in study group, 114 women and in control group, 112 women. For both groups, folliculometry was started at cycle day 7 additionally and at the same setting; endometrial scratching was done only for the study group. Outcome results: Biochemical and clinical pregnancy rates. Results: The biochemical and clinical pregnancy rates were significantly higher in the endometrial scratching group compared to the control group [27/106 (25.5% vs. 15/106 (14.1% p = 0.03 and 24/106 (22.6% vs. 12/106 (11.3%; p = 0.02] respectively. Also, ongoing pregnancy rate was statistically significantly different between both groups [22/106 (20.7% vs. 11/106 (10.4%; p = 0.03]. Conclusion: Endometrial scratching is useful in increasing pregnancy rates after failed previous intra uterine insemination trials when it is performed in the mid proliferative phase.

  2. Investigating the Role of Computer-Supported Annotation in Problem-Solving-Based Teaching: An Empirical Study of a Scratch Programming Pedagogy

    Science.gov (United States)

    Su, Addison Y. S.; Yang, Stephen J. H.; Hwang, Wu-Yuin; Huang, Chester S. J.; Tern, Ming-Yu

    2014-01-01

    For more than 2 years, Scratch programming has been taught in Taiwanese elementary schools. However, past studies have shown that it is difficult to find appropriate learning methods or tools to boost students' Scratch programming performance. This inability to readily identify tutoring tools has become one of the primary challenges addressed in…

  3. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  4. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  5. Membrane separation using nano-pores; Nano poa wo riyoshita makubunri

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, S. [Fukuoka Women`s Univ., Fukuoka (Japan)

    1995-08-01

    The membrane constituted by nano-pore only (NF membrane) is sold on the market recently as the membranes used for the matter separations in addition to the reverse osmosis membrane for changing seawater into fresh water, dialysis membrane used for artificial kidney, ultrafiltration membrane used for the separation and condensation of protein and the micro-filter used for removing microbe. It is possible for the membrane constituted by nano-pore to remove the virus with the size being from 20 to 300 nm. In this paper, the pore structure of NF membrane is explained, and then its application as the membrane for removing virus is described. Especially, it is possible for NF membrane to remove the virus with smallest size (parvovirus, etc.), prion albumen (bovine serum pathogen, etc.) and the special gene such as cancer, and it is further applied to the condensation and refining of virus and genes. The broader application of nano-pore to the control of the transportation of micro-particles in the future is expected. 3 refs., 2 figs.

  6. A pediatric case with peripheral facial nerve palsy caused by a granulomatous lesion associated with cat scratch disease.

    Science.gov (United States)

    Nakamura, Chizuko; Inaba, Yuji; Tsukahara, Keiko; Mochizuki, Mie; Sawanobori, Emi; Nakazawa, Yozo; Aoyama, Kouki

    2018-02-01

    Cat scratch disease is a common infectious disorder caused by Bartonella henselae that is transmitted primarily by kittens. It typically exhibits a benign and self-limiting course of subacute regional lymphadenopathy and fever lasting two to eight weeks. The most severe complication of cat scratch disease is involvement of the nervous system, such as encephalitis, meningitis, and polyneuritis. Peripheral facial nerve palsy associated with Bartonella infection is rare; few reported pediatric and adult cases exist and the precise pathogenesis is unknown. A previously healthy 7-year-old boy presented with fever, cervical lymphadenopathy, and peripheral facial nerve palsy associated with serologically confirmed cat scratch disease. The stapedius muscle reflex was absent on the left side and brain magnetic resonance imaging revealed a mass lesion at the left internal auditory meatus. The patient's symptoms and imaging findings were gradually resolved after the antibiotics and corticosteroids treatment. The suspected granulomatous lesion was considered to have resulted from the host's immune reaction to Bartonella infection and impaired the facial nerve. This is the first case report providing direct evidence of peripheral facial nerve palsy caused by a suspected granulomatous lesion associated with cat scratch disease and its treatment course. Copyright © 2017. Published by Elsevier B.V.

  7. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  8. Nano-technology and nano-toxicology

    OpenAIRE

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  9. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    Science.gov (United States)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  10. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite

    International Nuclear Information System (INIS)

    Mesquita, Joao Paulo de; Teixeira, Ivo F.; Donnici, Claudio L.; Pereira, Fabiano V.

    2011-01-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  11. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  12. Factors affecting the outcome of "endometrial scratch" in women with recurrent implantation failure.

    Science.gov (United States)

    Coughlan, Carol; Yuan, Xi; Demirol, Aygul; Ledger, William; Li, Tin Chiu

    2014-01-01

    To examine factors affecting the outcome of the endometrial scratch in women with recurrent implantation failure. A total of 57 eligible patients with a history of recurrent implantation failure underwent an endometrial biopsy in the luteal phase of the menstrual cycle in the month immediately preceding the embryo transfer cycle. The comparative group consisted of a retrospective cohort of 66 women with recurrent implantation failure but without endometrial biopsy. There were no significant differences between the intervention and control groups in terms of age, follicle-stimulating hormone (FSH), free androgen index, anti-Müllerian hormone, body mass index, the number of embryos transferred, and the number of embryo transfer cycles. The clinical pregnancy rate in the intervention group (53%) was significantly (p 10 IU/L. Women with a normal FSH are more likely to derive benefit from endometrial scratch.

  13. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  14. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  15. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests

    Science.gov (United States)

    Özdemir, T.; Güngör, A.; Akbay, I. K.; Uzun, H.; Babucçuoglu, Y.

    2018-03-01

    It is important to have a shielding material that is not easily breaking in order to have a robust product that guarantee the radiation protection of the patients and radiation workers especially during the medical exposure. In this study, nano sized lead oxide (PbO) particles were used, for the first time, to obtain an elastomeric composite material in which lead oxide nanoparticles, after the surface modification with silane binding agent, was used as functional material for radiation shielding. In addition, the composite material including 1%, 5%, 10%, 15% and 20% weight percent nano sized lead oxide was irradiated with doses of 81, 100 and 120 kGy up to an irradiation period of 248 days in a gamma ray source with an initial dose rate of 21.1 Gy/h. Mechanical, thermal properties of the irradiated materials were investigated using DSC, DMA, TGA and tensile testing and modifications in thermal and mechanical properties of the nano lead oxide containing composite material via gamma irradiation were reported. Moreover, effect of bismuth-III oxide addition on radiation attenuation of the composite material was investigated. Nano lead oxide and bismuth-III oxide particles were mixed with different weight ratios. Attenuation tests have been conducted to determine lead equivalent values for the developed composite material. Lead equivalent thickness values from 0.07 to 0.65 (2-6 mm sample thickness) were obtained.

  16. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    International Nuclear Information System (INIS)

    Chang, C.-W.; Liao, J.-D.

    2008-01-01

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment

  17. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-W.; Liao, J.-D. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)], E-mail: jdliao@mail.ncku.edu.tw

    2008-08-06

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment.

  18. Stability of fragrance patch test preparations applied in test chambers.

    Science.gov (United States)

    Mowitz, M; Zimerson, E; Svedman, C; Bruze, M

    2012-10-01

    Petrolatum patch test preparations are for practical reasons often applied in test chambers in advance, several hours or even days before the patient is tested. As many fragrance compounds are volatile it may be suspected that petrolatum preparations applied in test chambers are not stable over time. To investigate the stability of petrolatum preparations of the seven chemically defined components in the fragrance mix (FM I) when stored in test chambers. Samples of petrolatum preparations applied in test chambers stored at room temperature and in a refrigerator for between 4 and 144 h were analysed using liquid chromatographic methods. The concentration decreased by ≥ 20% within 8 h in four of seven preparations stored in Finn chambers at room temperature. When stored in a refrigerator only the preparation of cinnamal had decreased by ≥ 20% within 24 h. The stability of preparations of cinnamal stored in IQ chambers with a plastic cover was slightly better, but like the preparations applied in Finn chambers, the concentration decreased by ≥ 20% within 4 h at room temperature and within 24 h in a refrigerator. Cinnamal and cinnamyl alcohol were found to be more stable when analysed as ingredients in FM I compared with when analysed in individual preparations. Within a couple of hours several fragrance allergens evaporate from test chambers to an extent that may affect the outcome of the patch test. Application to the test chambers should be performed as close to the patch test occasion as possible and storage in a refrigerator is recommended. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  19. Performance enhancement of quantum dot-sensitized solar cells based on polymer nano-composite catalyst

    International Nuclear Information System (INIS)

    Seo, Hyunwoong; Gopi, Chandu V.V.M.; Kim, Hee-Je; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2017-01-01

    Highlights: •We studied polymer nano-composite containing TiO 2 nano-particles as a catalyst. •Polymer nano-composite was applied for quantum dot-sensitized solar cells. •Polymer nano-composite catalyst was considerably improved with TiO 2 nano-particles. •Polymer nano-composite showed higher photovoltaic performance than conventional Au. -- Abstract: Polymer nano-composite composed of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) and TiO 2 nano-particles was deposited on fluorine-doped tin oxide substrate and applied as an alternative to Au counter electrode of quantum dot-sensitized solar cell (QDSC). It became surface-richer with the increase in nano-particle amount so that catalytic reaction was increased by widened catalytic interface. Electrochemical impedance spectroscopy and cyclic voltammetry clearly demonstrated the enhancement of polymer nano-composite counter electrode. A QDSC based on polymer nano-composite counter electrode showed 0.56 V of V OC , 12.24 mA cm −2 of J SC , 0.57 of FF, and 3.87% of efficiency and this photovoltaic performance was higher than that of QDSC based on Au counter electrode (3.75%).

  20. Osteomyelitis in Cat-Scratch Disease: A Never-Ending Dilemma—A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    D. Donà

    2018-01-01

    Full Text Available Background. We performed a review of published case studies of osteomyelitis associated with cat-scratch disease to consolidate existing information on clinical presentation, diagnostic tools, therapy, and outcome, as well as presenting a case of disseminated cat-scratch disease in a 12-year-old female with skull osteomyelitis and spleen involvement. Methods. A search for articles indexed in PubMed, Embase, and Google Scholar was performed with the search terms “Bartonella,” “bone,” “osteomyelitis,” “osteolytic,” and “cat-scratch disease” limited to the immunocompetent pediatric population and articles in English. Results. 51 cases were identified. The average age was 7.8 years with equal sex distribution. Fever (84.3%, often with a prolonged course (64.7%, and osteoarticular pain (88.2% were the most common clinical findings. Lymphadenopathy was present in 64.7% of patients. Vertebral body was mainly involved (51.9%. MRI (50% and bone scintigraphy (48.1% were favored to confirm osteomyelitis, while serology was the preferred microbiological diagnostic. Various antibiotics were prescribed in combined or sequential regimens, with median duration of therapy of 23 days. About 12.5% of patients did not receive any treatment. Most patients had excellent prognosis; in particular, all patients not receiving any therapy showed complete recovery and no recurrence of symptoms. Conclusions. Bartonella henselae should be considered in differential diagnosis of localized lymphadentitis. Osteoarticular pain or limitation during cat-scratch disease in children should always be investigated for bone spreading. Owing to good prognosis, invasive procedures to obtain the bone material should be avoided. Serology is the gold standard diagnostic tool and MRI is the best radiographic technique to define bone and surrounding tissue involvement. Treatment represents a never-ending dilemma: surgical intervention or use of antibiotics is still

  1. Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens

    Science.gov (United States)

    El-Moslamy, Shahira H.; Elkady, Marwa F.; Rezk, Ahmed H.; Abdel-Fattah, Yasser R.

    2017-03-01

    Development of reliable and low-cost requirement for large-scale eco-friendly biogenic synthesis of metallic nanoparticles is an important step for industrial applications of bionanotechnology. In the present study, the mycosynthesis of spherical nano-Ag (12.7 ± 0.8 nm) from extracellular filtrate of local endophytic T. harzianum SYA.F4 strain which have interested mixed bioactive metabolites (alkaloids, flavonoids, tannins, phenols, nitrate reductase (320 nmol/hr/ml), carbohydrate (25 μg/μl) and total protein concentration (2.5 g/l) was reported. Industrial mycosynthesis of nano-Ag can be induced with different characters depending on the fungal cultivation and physical conditions. Taguchi design was applied to improve the physicochemical conditions for nano-Ag production, and the optimum conditions which increased its mass weight 3 times larger than a basal condition were as follows: AgNO3 (0.01 M), diluted reductant (10 v/v, pH 5) and incubated at 30 °C, 200 rpm for 24 hr. Kinetic conversion rates in submerged batch cultivation in 7 L stirred tank bioreactor on using semi-defined cultivation medium was as follows: the maximum biomass production (Xmax) and maximum nano-Ag mass weight (Pmax) calculated (60.5 g/l and 78.4 g/l respectively). The best nano-Ag concentration that formed large inhibition zones was 100 μg/ml which showed against A.alternate (43 mm) followed by Helminthosporium sp. (35 mm), Botrytis sp. (32 mm) and P. arenaria (28 mm).

  2. Scratching experiments on quartz crystals: Orientation effects in chipping

    Science.gov (United States)

    Tellier, C. R.; Benmessaouda, D.

    1994-06-01

    The deformation and microfracture properties of quartz crystals were studied by scratching experiments. The critical load at which microfractures are initiated was found to be orientation dependent, whereas the average width of ductile grooves and chips remained relatively insensitive to crystal orientation. In contrast, a marked anisotropy in the shape of chips was observed. This anisotropy has been interpreted in terms of microfractures propagating preferentially along slip planes. Simple geometrical conditions for the SEM (scanning electron microscopy) observation of active slip planes are proposed.

  3. Application of nano-structured conducting polymers to humidity sensing

    Science.gov (United States)

    Park, Pilyeon

    moisture levels because even low humidity levels saturate the sample surface within a few minutes. Because of this, it was not perfect to distinguish the effects of etching the PEDOT film for humidity detection and difficult to apply nano-columned PEDOT films as a humidity sensors under continuously changing humidity conditions. However, nano-columned PEDOT films showed excellent performance in simulated breath tests, i.e., an area where the medical needs sensors for pulmonary monitoring. Since the polymers are sensitive to heat, it was important to characterize the influence of temperature on the sensor performance. PANI nanowires and nano-columned PEDOT sensors were tested in the environmental chamber developed in this work as a function of temperature with the humidity fixed, and only the temperature was varied. The PANI nanowires showed very fast degradation at temperatures above room temperature, while the nano-columned PEDOT film performed up to 50 °C. The influence of other gases was also tested for the potential of gas sensing, selectivity, and chemical stability. In order to exclude the moisture effect during the measurement, the samples were characterized under the lowest humidity condition, RH 14% preserved in the system. Under these conditions the PANI nanowires responded to the gases (hydrogen and carbon monoxide were used), but the moisture inside the PANI nanowire was forced to influence the gas detection. Therefore, samples were dried overnight under a nitrogen environment and tested again. With this careful control of the moisture present, it was found that PANI nanowires respond to both hydrogen and carbon monoxide gases, however, there is no selectivity between gases. Nano-columned PEDOT films were also tested under the same experimental moisture-controlling conditions. It was shown that there was little response to other gases. Any response that may have been presented was buried in the electrical noise. Finally, both samples were tested for long

  4. Feature selection for disruption prediction from scratch in JET by using genetic algorithms and probabilistic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Augusto, E-mail: augusto.pereira@ciemat.es [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Vega, Jesús; Moreno, Raúl [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Dormido-Canto, Sebastián [Dpto. Informática y Automática – UNED, Madrid (Spain); Rattá, Giuseppe A. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Pavón, Fernando [Dpto. Informática y Automática – UNED, Madrid (Spain)

    2015-10-15

    Recently, a probabilistic classifier has been developed at JET to be used as predictor from scratch. It has been applied to a database of 1237 JET ITER-like wall (ILW) discharges (of which 201 disrupted) with good results: success rate of 94% and false alarm rate of 4.21%. A combinatorial analysis between 14 features to ensure the selection of the best ones to achieve good enough results in terms of success rate and false alarm rate was performed. All possible combinations with a number of features between 2 and 7 were tested and 9893 different predictors were analyzed. An important drawback in this analysis was the time required to compute the results that can be estimated in 1731 h (∼2.4 months). Genetic algorithms (GA) are searching algorithms that simulate the process of natural selection. In this article, the GA and the Venn predictors are combined with the objective not only of finding good enough features within the 14 available ones but also of reducing the computational time requirements. Five different performance metrics as measures of the GA fitness function have been evaluated. The best metric was the measurement called Informedness, with just 6 generations (168 predictors at 29.4 h).

  5. Feature selection for disruption prediction from scratch in JET by using genetic algorithms and probabilistic predictors

    International Nuclear Information System (INIS)

    Pereira, Augusto; Vega, Jesús; Moreno, Raúl; Dormido-Canto, Sebastián; Rattá, Giuseppe A.; Pavón, Fernando

    2015-01-01

    Recently, a probabilistic classifier has been developed at JET to be used as predictor from scratch. It has been applied to a database of 1237 JET ITER-like wall (ILW) discharges (of which 201 disrupted) with good results: success rate of 94% and false alarm rate of 4.21%. A combinatorial analysis between 14 features to ensure the selection of the best ones to achieve good enough results in terms of success rate and false alarm rate was performed. All possible combinations with a number of features between 2 and 7 were tested and 9893 different predictors were analyzed. An important drawback in this analysis was the time required to compute the results that can be estimated in 1731 h (∼2.4 months). Genetic algorithms (GA) are searching algorithms that simulate the process of natural selection. In this article, the GA and the Venn predictors are combined with the objective not only of finding good enough features within the 14 available ones but also of reducing the computational time requirements. Five different performance metrics as measures of the GA fitness function have been evaluated. The best metric was the measurement called Informedness, with just 6 generations (168 predictors at 29.4 h).

  6. Preparation and characterization of bipolar membranes modified by photocatalyst nano-ZnO and nano-CeO2

    International Nuclear Information System (INIS)

    Zhou Tingjin; Hu Yanyu; Chen Riyao; Zheng Xi; Chen Xiao; Chen Zhen; Zhong Jieqiong

    2012-01-01

    Nano-ZnO-CeO 2 coupled semiconductor was added into the chitosan (CS) anion exchange membrane layer to prepare the PVA-CMC/nano-ZnO-CeO 2 -CS (here, PVA: polyvinyl alcohol; CMC: carboxymethyl cellulose) bipolar membrane (BPM), and the prepared BPM was characterized by SEM, J-V characteristics, electronic universal testing machine, contact angle measurement and so on. Experimental results showed that nano-ZnO-CeO 2 exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano-ZnO or nano-CeO 2 , which could greatly reduce the membrane impedance of the BPM. Under the irradiation of high-pressure mercury lamps, the cell voltage of PVA-CMC/nano-ZnO-CeO 2 -CS BPM decreased by 0.7 V at the current density of 60 mA/cm 2 , and the cell voltages of PVA-CMC/nano-ZnO-CS BPM and PVA-CMC/nano-CeO 2 -CS BPM were only reduced by 0.3 V and 0.5 V, respectively. Furthermore, the hydrophilicity, and mechanical properties of the modified BPM were increased.

  7. Endometrial scratching in women with implantation failure after a first IVF/ICSI cycle; does it lead to a higher live birth rate? The SCRaTCH study: A randomized controlled trial (NTR 5342)

    NARCIS (Netherlands)

    van Hoogenhuijze, N.E.; H.L. Torrance (Helen); F. Mol (Femke); J.S.E. Laven (Joop); Scheenjes, E.; T. Traas (Theo); Janssen, C.; B.J. Cohlen (Ben); G. Teklenburg (Gijs); J.P. de Bruin (J.); van Oppenraaij, R.; Maas, J.W.M.; Moll, E.; K. Fleischer; M.H.A. van Hooff (Marcel); C.H. de Koning; A.E.P. Cantineau (Astrid); C.B. Lambalk (Cornelius); M.F.G. Verberg; Nijs, M.; Manger, A.P.; M.M.E. van Rumste (Minouche); van der Voet, L.F.; Preys-Bosman, A.; Visser, J.; Brinkhuis, E.; den Hartog, J.E.; A. Sluijmer (Alexander); Jansen, F.W.; Hermes, W.; Bandell, M.L.; Pelinck, M.J.; J. van Disseldorp (Jeroen); M. van Wely (Madelon); J.M.J. Smeenk; Pieterse, Q.D.; J.C. Boxmeer (Jolanda); Groenewoud, E.R.; M.J.C. Eijkemans (René); J.C. Kasius (J. C.); F.J.M. Broekmans (Frank)

    2017-01-01

    textabstractBackground: Success rates of assisted reproductive techniques (ART) are approximately 30%, with the most important limiting factor being embryo implantation. Mechanical endometrial injury, also called 'scratching', has been proposed to positively affect the chance of implantation after

  8. Endometrial scratching in women with implantation failure after a first IVF/ICSI cycle; does it lead to a higher live birth rate? The SCRaTCH study: a randomized controlled trial (NTR 5342)

    NARCIS (Netherlands)

    Hoogenhuijze, N.E. van; Torrance, H.L.; Mol, F.; Laven, J.S.; Scheenjes, E.; Traas, M.A.F.; Janssen, C.; Cohlen, B.; Teklenburg, G.; Bruin, J.P. de; Oppenraaij, R. van; Maas, J.W.; Moll, E.; Fleischer, K.; Hooff, M.H. van; Koning, C.; Cantineau, A.; Lambalk, C.B.; Verberg, M.; Nijs, M.; Manger, A.P.; Rumste, M. van; Voet, L.F. van der; Preys-Bosman, A.; Visser, J.; Brinkhuis, E.; Hartog, J.E. Den; Sluijmer, A.; Jansen, F.W.; Hermes, W.; Bandell, M.L.; Pelinck, M.J.; Disseldorp, J. van; Wely, M. van; Smeenk, J.; Pieterse, Q.D.; Boxmeer, J.C.; Groenewoud, E.R.; Eijkemans, M.J.; Kasius, J.C.; Broekmans, F.J.

    2017-01-01

    BACKGROUND: Success rates of assisted reproductive techniques (ART) are approximately 30%, with the most important limiting factor being embryo implantation. Mechanical endometrial injury, also called 'scratching', has been proposed to positively affect the chance of implantation after embryo

  9. Endometrial scratching in women with implantation failure after a first IVF/ICSI cycle; does it lead to a higher live birth rate? The SCRaTCH study : A randomized controlled trial (NTR 5342)

    NARCIS (Netherlands)

    van Hoogenhuijze, N. E.; Torrance, H. L.; Mol, F.; Laven, Joop S E; Scheenjes, E.; Traas, M.A.F.; Janssen, Bert J C; Cohlen, B.; Teklenburg, G.; Bruin, Jacob P; van Oppenraaij, R.; Maas, J. W M; Moll, Etelka; Fleischer, K.; van Hooff, Marcel H; de Koning, C.; Cantineau, A.; Lambalk, Cornelis B.; Verberg, M.F.G.; Nijs, M. M.; Manger, A. P.; Van Rumste, M. M.; Van der Voet, L F; Preys-Bosman, A.; Visser, J.; Brinkhuis, E.A.; den Hartog, J. E.; Sluijmer, A.; Jansen, F. W.; Hermes, W.; Bandell, M. L.; Pelinck, M. J.; van Disseldorp, J.; Wely, M.; Smeenk, J.; Pieterse, Q.D.; Boxmeer, J.C.; Groenewoud, Eva R.; Eijkemans, M. J.C.; Kasius, J. C.; Broekmans, F. J.M.

    2017-01-01

    Background: Success rates of assisted reproductive techniques (ART) are approximately 30%, with the most important limiting factor being embryo implantation. Mechanical endometrial injury, also called 'scratching', has been proposed to positively affect the chance of implantation after embryo

  10. CHF Enhancement in Flow Boiling using Al2O3 Nano-Fluid and Al2O3 Nano-Particle Deposited Tube

    International Nuclear Information System (INIS)

    Kim, Tae Il; Chun, T. H.; Chang, S. H.

    2010-01-01

    Nano-fluids are considered to have strong ability to enhance CHF. Most CHF experiments using nano-fluids were conducted in pool boiling conditions. However there are very few CHF experiments with nano-fluids in flow boiling condition. In the present study, flow boiling CHF experiments using bare round tube with Al 2 O 3 nano-fluid and Al 2 O 3 nano-particle deposited tube with DI water were conducted under atmospheric pressure. CHFs were enhanced up to ∼ 80% with Al 2 O 3 nano-fluid and CHFs with Al 2 O 3 nano-particle deposited tube were also enhanced up to ∼ 80%. Inner surface of test section tube were observed by SEM and AFM after CHF experiments

  11. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.

    Science.gov (United States)

    Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana

    2017-02-01

    Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Sporotrichoid Mycobacterium marinum infection of the face following a cat scratch.

    Science.gov (United States)

    Phan, Tai Anh; Relic, John

    2010-02-01

    Mycobacterium marinum infections in humans uncommonly affect the face and are not known to be associated with cat scratches. We describe a 24-year-old woman who presented with a 3-month history of multiple tender, occasionally discharging cystic nodules involving the left side of her face in a sporotrichoid distribution. She had suffered a cat scratch to her left lower eyelid 3 weeks before the onset of the eruption and owned multiple tropical fish tanks. She was systemically well and had no lymphadenopathy. She had a background history of a 4.5-mm-thick nodular melanoma of her temple treated by wide local excision and negative sentinel lymph node biopsy 4 years prior. Skin biopsies showed multiple variably sized granulomas surrounded by thick cuffs of lymphocytes involving the superficial and deep dermis with no organisms seen on Ziehl-Neelsen, peroidic acid-Schiff and methenamine silver stains. Laboratory investigations showed a mildly raised erythrocyte sedimentation rate but normal full blood count and C-reactive protein. Fluid from the left cheek grew an acid-fast bacillus identified as Mycobacterium marinum. The skin eruption cleared after 5-month treatment with oral clarithromycin 500 mg twice daily and rifampicin 600 mg daily.

  13. Every which way – nanos gene regulation in echinoderms

    OpenAIRE

    Oulhen, Nathalie; Wessel, Gary M.

    2014-01-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos ...

  14. Systemic Cat Scratch Disease

    Directory of Open Access Journals (Sweden)

    Hui-Min Liao

    2006-01-01

    Full Text Available Systemic cat scratch disease (CSD is often associated with prolonged fever and microabscesses in the liver and/or spleen. We report a case of systemic CSD with hepatic, splenic and renal involvement in an aboriginal child in Taiwan. A previously healthy 9-year-old girl had an intermittent fever for about 17 days, and complained of abdominal pain, headache and weight loss. Abdominal computed tomography showed multiple tiny hypodense nodular lesions in the spleen and both kidneys. Laparotomy revealed multiple soft, whitishtan lesions on the surface of the liver and spleen. Histopathologic examination of a biopsy specimen of the spleen showed necrotizing granulomatous inflammation with central necrosis surrounded by epithelioid cells and occasional Langhans' giant cells, strongly suggestive of Bartonella henselae infection. History revealed close contact with a cat. B. henselae DNA was detected by polymerase chain reaction in the tissue specimen, and the single antibody titer against B. henselae was greater than 1:2048. These results confirmed the diagnosis of visceral CSD caused by B. henselae. The patient's symptoms resolved after treatment with rifampin and tetracycline. This case illustrates the need for inclusion of systemic CSD in patients with fever of unknown origin and abdominal pain.

  15. Friction behavior of nano-textured polyimide surfaces measured by AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoliang [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wu, Chunxia; Che, Hongwei; Hou, Junxian [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); Jia, Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-30

    Highlights: • Flat PI film and nano-textured PI film were prepared by spin-coating process. • The nano-textured PI surface has effectively reduced the adhesion and friction. • Friction increased with the increasing of contact area and adhesion. • The growth rate of friction decreased with the increasing of applied load. - Abstract: Flat polyimide (PI) film and silicon dioxide nanoparticle-textured PI film were prepared by means of the spin-coating technique. The adhesion and friction properties of the flat PI surface and nano-textured PI surface were investigated by a series of Atomic force microscope (AFM) colloidal probes. Experimental results revealed that the nano-textured PI surface can significantly reduce the adhesive force and friction force, compared with the flat PI surface. The main reason is that the nano-textures can reduce the contact area between the sample surface and colloidal probe. The effect of colloidal probe size on the friction behavior of the flat and nano-textured PI surfaces was evaluated. The adhesive force and friction force of nano-textured PI surface were increased with the increasing of the size of interacting pairs (AFM colloidal probe) due to the increased contact area. Moreover, the friction forces of flat and nano-textured PI surfaces were increased with applied load and sliding velocity.

  16. Endometrial scratching in women with implantation failure after a first IVF/ICSI cycle; does it lead to a higher live birth rate? The SCRaTCH study: a randomized controlled trial (NTR 5342)

    NARCIS (Netherlands)

    van Hoogenhuijze, N. E.; Torrance, H. L.; Mol, F.; Laven, J. S. E.; Scheenjes, E.; Traas, M. A. F.; Janssen, C.; Cohlen, B.; Teklenburg, G.; de Bruin, J. P.; van Oppenraaij, R.; Maas, J. W. M.; Moll, E.; Fleischer, K.; van Hooff, M. H.; de Koning, C.; Cantineau, A.; Lambalk, C. B.; Verberg, M.; Nijs, M.; Manger, A. P.; van Rumste, M.; van der Voet, L. F.; Preys-Bosman, A.; Visser, J.; Brinkhuis, E.; den Hartog, J. E.; Sluijmer, A.; Jansen, F. W.; Hermes, W.; Bandell, M. L.; Pelinck, M. J.; van Disseldorp, J.; van Wely, M.; Smeenk, J.; Pieterse, Q. D.; Boxmeer, J. C.; Groenewoud, E. R.; Eijkemans, M. J. C.; Kasius, J. C.; Broekmans, F. J. M.

    2017-01-01

    Success rates of assisted reproductive techniques (ART) are approximately 30%, with the most important limiting factor being embryo implantation. Mechanical endometrial injury, also called 'scratching', has been proposed to positively affect the chance of implantation after embryo transfer, but the

  17. X-diffraction technique applied for nano system metrology; Tecnica de difracao de raios X aplicada na metrologia de nanossistemas

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A., E-mail: okuznetsov@inmetro.gov.b [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (DIMAT/INMETRO), Duque de Caxias, RJ (Brazil). Div. de Metrologia de Materiais

    2009-07-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  18. Instrument platforms for nano liquid chromatography.

    Science.gov (United States)

    Šesták, Jozef; Moravcová, Dana; Kahle, Vladislav

    2015-11-20

    The history of liquid chromatography started more than a century ago and miniaturization and automation are two leading trends in this field. Nanocolumn liquid chromatography (nano LC) and largely synonymous capillary liquid chromatography (capillary LC) are the most recent results of this process where miniaturization of column dimensions and sorbent particle size play crucial role. Very interesting results achieved in the research of extremely miniaturized LC columns at the end of the last century lacked distinctive raison d'être and only advances in mass spectrometry brought a real breakthrough. Configuration of nano LC-electrospray ionization mass spectrometry (LC-ESI-MS) has become a basic tool in bioanalytical chemistry, especially in proteomics. This review discusses and summarizes past and current trends in the realization of nano liquid chromatography (nano LC) platforms. Special attention is given to the mobile phase delivery under nanoflow rates (isocratic, gradient) and sample injection to the nanocolumn. Available detection techniques applied in nano LC separations are also briefly discussed. We followed up the key themes from the original scientific reports over gradual improvements up to the contemporary commercial solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fiscal 1998 research report on the R and D on produce process technology of eco-tailored tribo-materials/R and D on produce process technology of nano structure materials; Eco tailored tribo material sosei process gijutsu no kenkyu kaihatsu / nano metoru oda de seigyosareta material sosei process gijutsu no kenkyu kaihatsu 1998 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the R and D on produce process technology of nano structure materials, for reduction of friction and abrasion due to severe use conditions of automobile piston rings and valves, development of optimized produce process technology of eco-tailored tribo-materials with nano structures is in promotion by applying complex ion processing technology possible to control nano structures. In fiscal 1998, study was made on comparison of various ion processes and formation of nano structure single-phase films, and formation of Ti-Si system films was attempted as one of candidates of nano structure films. Problem points of existing test equipment as evaluation equipment of friction and abrasion for cams, shims and piston rings were arranged, and improvement and development of such equipment were considered. In the development of tribology evaluation technology, study was made on the sliding condition, environment and situation of a test equipment possible to simulate sliding of cams and shims, and the applicability of such equipment was also evaluated. (NEDO)

  20. Preparation and Characterization of Water-Based Nano-fluids for Nuclear Applications

    International Nuclear Information System (INIS)

    Williams, W.C.; Forrest, E.; Hu, L.W.; Buongiorno, J.

    2006-01-01

    As part of an effort to evaluate water-based nano-fluids for nuclear applications, preparation and characterization has been performed for nano-fluids being considered for MIT's nano-fluid heat transfer experiments. Three methods of generating these nano-fluids are available: creating them from chemical precipitation, purchasing the nano-particles in powder form and mixing them with the base fluid, and direct purchase of prepared nano-fluids. Characterization of nano-fluids includes colloidal stability, size distribution, concentration, and elemental composition. Quality control of the nano-fluids to be used for heat transfer testing is crucial; an exact knowledge of the fluid constituents is essential to uncovering mechanisms responsible for heat transport enhancement. Testing indicates that nano-fluids created by mixing a liquid with nano-particles in powder form are often not stable, although some degree of stabilization is obtainable with pH control and/or surfactant addition. Some commercially available prepared nano-fluids have been found to contain unacceptable levels of impurities and/or include a different weight percent of nano-particles compared to vendor specifications. Tools utilized to characterize and qualify nano-fluids for this study include neutron activation analysis (NAA), inductively-coupled plasma spectroscopy (ICP), transmission electron microscopy (TEM) imaging, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). Preparation procedures and characterization results for selected nano-fluids will be discussed in detail. (authors)

  1. TiO2/ CNT hetero-structure with variable electron beam diameter suitable for nano lithography

    International Nuclear Information System (INIS)

    Barati, F.; Abdi, Y.; Arzi, E.

    2012-01-01

    We report fabrication of a novel TiO 2 /carbon nano tube based field emission device suitable for nano lithography and fabrication of transistor. The growth of carbon nano tubes is performed on silicon substrates using plasma-enhanced chemical vapor deposition method. The vertically grown carbon nano tubes are encapsulated by TiO 2 using an atmospheric pressure chemical vapor deposition system. Field emission from the carbon nano tubes is realized by mechanical polishing of the prepared nano structure. The possibility of the application of such nano structures as a lithography tool with variable electron beam diameter was investigated. The obtained results show that spot size of less than 30 nm can be obtained by applying a proper voltage on TiO 2 surrounding gate. Electrical measurements of the fabricated device confirm the capability of this nano structure for the fabrication of field emission based field effect transistor. By applying a voltage between the gate and the cathode electrode, the emission current from carbon nano tubes shows a significant drop, indicating proper control of gate on the emission current.

  2. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications.

    Science.gov (United States)

    Noorbakhsh-Soltani, S M; Zerafat, M M; Sabbaghi, S

    2018-06-01

    Environmental concerns have led to extensive research for replacing polymer-based food packaging with bio-nano-composites. In this study, incorporation of nano-cellulose into gelatin and starch matrices is investigated for this purpose. Chitosan is used to improve mechanical, anti-fungal and waterproof properties. Experiments are designed and analyzed using response surface methodology. Nano-Cellulose is synthesized via acid hydrolysis and incorporated in base matrices through wet processing. Also, tensile strength test, food preservation, transparency in visible and UV and water contact angle are performed on the nano-composite films. DSC/TGA and air permeability tests are also performed on the optimal films. The results show that increasing nano-cellulose composition to 10% leads to increase the tensile strength at break to 8121 MN/m 2 and decrease the elongation at break. Also, increasing chitosan composition from 5% to 30% can enhance food preservation up to 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Scratch- and mar-resistant refinish two-pack clear coats – linear versus branched acrylics

    Czech Academy of Sciences Publication Activity Database

    Huybrechts, J.; Vaes, A.; Dušek, Karel; Dušková, Miroslava; Barsotti, R. J.

    2006-01-01

    Roč. 89, B4 (2006), s. 275-283 ISSN 1476-4865 Institutional research plan: CEZ:AV0Z40500505 Keywords : scratch resistance * mar resistance * refinishing two-pack clear coats Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.338, year: 2006

  5. Every which way--nanos gene regulation in echinoderms.

    Science.gov (United States)

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. Copyright © 2013 Wiley Periodicals, Inc.

  6. Some Durability Characteristics of Micro Silica and Nano Silica Contained Concrete

    Directory of Open Access Journals (Sweden)

    Mohammed Salah Nasr

    2016-12-01

    Full Text Available This paper aims to investigate the influence of replacement of cement with nano and micro silica admixtures on some durability properties of concrete such as water absorption, chloride content and pH tests. Three replacement ratios (5%,10%,15% of micro silica and four replacement proportions (0.5%,1.5%,3%,5% for nano silica were used in this study. Two exposure conditions were considered for chloride content test: wetting-drying and full immersing exposure in 6% of chloride ions solution, NaCl type. Results showed that mixes of %5 micro silica and 5% nano silica had lower content of chloride (about 0.19% and 0.18% for wetting-drying and full immersing exposure respectively. For water absorption test, all mixes incorporated micro and nano silica, except for %5 micro silica mix, showed lower absorption than control mixes. For pH test, results indicated that the adding of nano and micro silica didn’t affect adversely the alkalinity of concrete.

  7. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Self-organized antireflection CuIn(S,Se)_2 nano-protrusions on flexible substrates by ion erosion based on CuInS_2 nanocrystal precursor inks

    International Nuclear Information System (INIS)

    Yen, Yu-Ting; Wang, Yi-Chung; Chen, Chia-Wei; Tsai, Hung-Wei; Chen, Yu-Ze; Hu, Fan; Chueh, Yu-Lun

    2015-01-01

    Highlights: • CuIn(S,Se)_2 nano-protrusions were demonstrated on 36-cm"2 flexible substrates. • Nano-protrusions were created by ion erosion on selenized CuInS_2 nanocrystal precursor inks. • Tilt orientations and remarkable anti-reflectance characteristics of nano-protrusions can be precisely controlled. - Abstract: In this work, an approach to achieve surface nano-protrusions on a chalcopyrite CuIn(S,Se)_2 thin film was demonstrated. Home-made CuInS_2 nanocrystals with average diameter of 20 nm were prepared and characterized. By applying ion erosion process on the CuIn(S,Se)_2 film, large-area self-aligned nano-protrusions can be formed. Interestingly, the process can be applied on flexible substrate where the CuIn(S,Se)_2 film remains intact with no visible cracking after several bending tests. In addition, reflectance spectra reveal the extraordinary anti-reflectance characteristics of nano-protrusions on the CuIn(S,Se)_2 film with the incident light from 350 to 2000 nm. A 36-cm"2 CuIn(S,Se)_2 film with nano-protrusions on flexible molybdenum foil substrate has been demonstrated, which demonstrated the feasibility of developing low cost with a high optical absorption CuIn(S,Se)_2 flexible thin film.

  9. Compiling for Novel Scratch Pad Memory based Multicore Architectures for Extreme Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Aviral

    2016-02-05

    The objective of this proposal is to develop tools and techniques (in the compiler) to manage data of a task and communication among tasks on the scratch pad memory (SPM) of the core, so that any application (a set of tasks) can be executed efficiently on an SPM based manycore architecture.

  10. Superconducting nano-striplines as quantum detectors

    International Nuclear Information System (INIS)

    Casaburi, A.; Ejrnaes, M.; Mattioli, F.; Gaggero, A.; Leoni, R.; Martucciello, N.; Pagano, S.; Ohkubo, M.; Cristiano, R.

    2011-01-01

    The recent progress in the nanofabrication of superconducting films opens the road toward detectors with highly improved performances. This is the case for superconducting nano-striplines where the thickness and the width are pushed down to the extreme limits to realize detectors with unprecedented sensitivity and ultra fast response time. In this way quantum detectors for single photons at telecommunication wavelengths and for macromolecules such as proteins can be realized. As is often the case in applied nanotechnology, it is a challenge to make devices with the necessary macroscopic dimensions that are needed to interface present technologies, while maintaining the performance improvements. For nano-stripline detectors, both the fast temporal response and the device sensitivity is generally degraded when the area is increased. Here, we present how such detectors can be scaled up to macroscopic dimensions without losing the performance of the nano-structured active elements by using an innovative configuration. In order to realize ultrathin superconducting film the nano-layer is growth with a careful setup of the deposition technique which guarantees high quality and thickness uniformity at the nano-scale size. The active nano-strips are defined with the state-of-the-art electron beam nanolithography to achieve a highly uniform linewidth. We present working detectors based on nano-strips with thicknesses 9–40 nm and widths of 100–1000 nm which exhibit unprecedented speed and area coverage (40 × 40 μm 2 for single photon detectors and 1 × 1 mm 2 for single molecule detectors) based on niobium nitride thus enabling practical use of this nanotechnology.

  11. A Study on the Linkage between Nano Fusion Technology and Nuclear Technology

    International Nuclear Information System (INIS)

    Jeong, Ik; Lim, Chae Young; Lee, Jong Hee

    2009-02-01

    1) A survey of national energy policy trends in major nation - to secure renewal energy in the level of making a plan to supply national energy in the future - Tendency of energy policy based on Europe 2) A survey of the nano technology development - Status of major nano technology development - Developmental direction of nano technology related to nuclear energy 3) the nano technology development related with nuclear - high-temperature nuclear reactor by applying nano science and technology under quick development - materials required to high-level radioactive wastes treatment facility - develop materials of nuclear fusion facility in the long-term view 4) Innovation system of nano technology - Energy source -> conversion to energy -> distribution of energy -> energy storage -> energy use

  12. Development of the leptospirosis by experimental infection in hamsters (Mesocricetus auratus with Leptospira interrogans serovar Canicola, strain LO4, by intact and scratched skin exposures

    Directory of Open Access Journals (Sweden)

    Carolina de Sousa Américo Batista

    2010-10-01

    Full Text Available The establishment and evolution of leptospirosis in hamster (Mesocricetus auratus by experimental infection with Leptospira interrogans serovar Canicola, LO4 strain, by intact and scratched skin exposures, having as control the intraperitoneal route, were evaluated. Hundred-twenty female hamsters distributed in two groups according to inoculation route (intact and scratched skin were used. Infectious inoculum was constituted by a pure culture of L. interrogans serovar Canicola (strain LO4, isolated from liver from a slaughtered swine in Londrina, Paraná state and typified by agglutinins adsortion technique with monoclonal antibody kit at the Royal Tropical Institute, Amsterdam, the Netherlands. The animals were observed twice a day during 21 days. Animals that died were necropsied and kidneys, liver, genital tract (uterus and ovaries and brain were aseptically collected. On the 21st post-inoculation day, surviving animals were euthanized. In these animals, serum samples were also collected by cardiac puncture to antileptospires agglutinins research using microscopic agglutination test (MAT. Fresh direct microscopy and microbiological culture were used for the detection of leptospires. Scratched skin route induced larger lethality when compared to intact skin route, with establishment and evolution of leptospirosis. On the other hand, intact skin route induced renal and/or genital carrier state more frequently. LO4 strain presented low immunogenic power, characterized by soroconversion at the MAT in only one inoculated animal.

  13. Scratch-induced deformation in fine- and ultrafine-grained bulk alumina

    International Nuclear Information System (INIS)

    Huang, Lin; Zhang, Zhihui; Zhao, Yonghao; Yao, Wenlong; Mukherjee, Amiya K.; Schoenung, Julie M.

    2010-01-01

    The nanoscratch behavior of two bulk α-alumina samples with 1.3 μm and 290 nm average grain sizes, respectively, was investigated using a nanoindenter in scratch mode, in combination with atomic force and scanning electron microscopy. A ductile to brittle transition was observed in the fine-grained sample, while the ultrafine-grained sample exhibited predominantly ductile deformation with a fish-bone feature indicative of a stick-slip mechanism. These findings suggest that grain refinement can increase the potential for plastic deformation in ceramics.

  14. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  15. Protective effects of orally applied fullerenol nano particles in rats after a single dose of doxorubicin

    Directory of Open Access Journals (Sweden)

    Ičević Ivana Đ.

    2011-01-01

    Full Text Available Polyhydroxylated, water soluble, fullerenol C60(OH24 nano particles (FNP in vitro and in vivo models, showed an expressive biological activity. The goal of this work was to investigate the potential protective effects of orally applied FNP on rats after a single dose of doxorubicin (DOX (8 mg/kg (i.p. 6 h after the last application of FNP. After the last drug administration, the rats were sacrificed, and the blood and tissues were taken for the analysis. Biochemical and pathological results obtained in this study indicate that fullerenol (FNP, in H2O:DMSO (80:20, w/w solution given orally in final doses of 10, 14.4, and 21.2 mg/kg three days successively, has the protective (hepatoprotective and nephroprotective effect against doxorubicin-induced cytotoxicity via its antioxidant properties.

  16. Effects of nano-silica (NS) additions on durability of SCC mixtures

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Brouwers, H.J.H.; Andrade, C; Gulikers, JJW; Polder, R

    2015-01-01

    In this study, three different types of nano-silica were applied in self-compacting concrete (SCC), one produced by the controlled dissolution of the olivine mineral and two having similar particle size distributions (PSD), but produced through two different processes: fumed powder nano-silica and

  17. Design and Fabrication of Carbon Nano tube for Medical Application

    International Nuclear Information System (INIS)

    Azniza Abas; Nuzaihan, M.N.; Hafiza, N.; Nazwa, T.

    2011-01-01

    Carbon nano tubes or known as CNTs are allotropes of carbon with a cylindrical nano structure. They exhibit extraordinary strength and unique electrical properties, and are efficient thermal conductors [1]. Due to its ordinary properties this research will based on BIOSENSOR device. Normally these CNTs biosensor are based on an enzyme catalyzed reaction that will produce either electrons or protons. In particular, it is useful in genetic profiling of human diseases, which includes in identifying genes that are expressed in certain diseases such as cancer [2]. This research will based on design and fabricate sensor or device using carbon nano tube and integrate carbon nano tube (CNTs) onto wafer using combination of dichlorophosphate and nano manipulation. Carbon nano tubes device mask are design using AUTOCAD software; there is four mask involved, first mask is Gate Formation,second mask is insulation layer third mask is source and drain and final mask forth mask is used as test channel. For fabrication and optimization of biosensor using carbon nano tube CNT that will be involve both microfabrication and nano fabrication. This process will involve conventional photolithography process, electron beam evaporator, thermal oxidation and wet etching process. To inspect and characterize carbon nano tube electrical properties it will involve tools such as SEM, AFM, Dielectric Analyzer, IV-CV and Semiconductor Parametric Analyzer system. This inspection is very important to produce a perfect profile to produce a good biosensor based on carbon nano tube structure. Preparation of various samples for testing functionality of the device this various samples and conditions will be done to ensure the detection is precise. Conductivity and capacitance effect will be tested electrically to detect the hybridization of the sample. (author)

  18. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    International Nuclear Information System (INIS)

    Shin, Hong Gue; Kwon, Jong Tae; Seo, Young Ho; Kim, Byeong Hee

    2008-01-01

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 μm were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications

  19. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Gue; Kwon, Jong Tae [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of); Seo, Young Ho [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)], E-mail: mems@kangwon.ac.kr; Kim, Byeong Hee [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)

    2008-07-31

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 {mu}m were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications.

  20. Experimental designs applied to desorption of dichromate ions after separation and preconcentration from natural and industrial water by modified Nano-Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Sayar, Omid [Department of Chemical Engineering, Islamic Azad University, Tehran (Iran, Islamic Republic of); Abadi, Iman Jabbari Zahir [Department of Pharmacology and Toxicology, Tehran Medical Unit, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghi, Omid; Zhad, Hamid Reza Lotfi Zadeh; Tavassoli, Najmeh [Department of Chemistry, Islamic Azad University, Shahr-e-Rey Branch, Tehran (Iran, Islamic Republic of)

    2012-03-15

    Nano-alumina modified by 9-aminoacridine was used as a sorbent for separation and determination of dichromate ions from water. Statistical method, based on surface response design, has been used for the optimization of dichromate ions elution from 9-aminoacridine nano-alumina. The adsorbed dichromate ions were found to be eluted quantitatively with 0.8 mol L{sup -1} KCl in 1.6 mol L{sup -1} NaOH which optimized by response surface design. Under optimum conditions, the accuracy, precision (relative standard deviation, RSD%) and R-square of the method were calculated as >98, <3, and >94%, respectively. Remarkable agreement between experimental and theoretical data was confirmed the predicted assumption. The method was applied to the simultaneous determination of dichromate in natural and industrial water samples. We also examined the retention of dichromate anions in the presence of Cl{sup -}, NO{sub 3}{sup -}, and SO{sub 4}{sup 2-} anions at pH 3. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. The single-event effect evaluation technology for nano integrated circuits

    International Nuclear Information System (INIS)

    Zheng Hongchao; Zhao Yuanfu; Yue Suge; Fan Long; Du Shougang; Chen Maoxin; Yu Chunqing

    2015-01-01

    Single-event effects of nano scale integrated circuits are investigated. Evaluation methods for single-event transients, single-event upsets, and single-event functional interrupts in nano circuits are summarized and classified in detail. The difficulties in SEE testing are discussed as well as the development direction of test technology, with emphasis placed on the experimental evaluation of a nano circuit under heavy ion, proton, and laser irradiation. The conclusions in this paper are based on many years of testing at accelerator facilities and our present understanding of the mechanisms for SEEs, which have been well verified experimentally. (paper)

  2. Electronic properties and mechanical strength of β-phosphorene nano-ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Swaroop, Ram; Bhatia, Pradeep; Kumar, Ashok, E-mail: ashok@cup.ac.in [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India-151001 (India)

    2016-05-06

    We have performed first principles calculations to find out the effect of mechanical strain on the electronic properties of zig-zag edged nano ribbons of β-phosphorene. It is found that electronic band-gap get opened-up to 2.61 eV by passivation of the edges of ribbons. Similarly, the mechanical strength is found to be increase from 1.75 GPa to 2.65 GPa on going from unpassivated nano ribbons to passivated ones along with the 2% increase in ultimate tensile strain. The band-gap value of passivated ribbon gets decreased to 0.43 eV on applying strain up to which the ribbon does not break. These tunable properties of β-phospherene with passivation with H-atom and applying mechanical strain offer its use in tunable nano electronics.

  3. Magnetite nano-islands on Graphene

    Science.gov (United States)

    Anderson, Nathaniel; Zhang, Qiang; Rosenberg, Richard; Vaknin, David

    X-ray magnetic circular dichroism (XMCD) of ex-situ iron nano-islands grown on graphene reveals that iron oxidation spontaneously leads to the formation of magnetite nano-particles - i.e, the formation of the inverse spinel Fe3O4. Fe islands have been grown with two different heights (20 and 75 MLs) on epitaxial graphene and we have determined their magnetic behavior both as function of temperature and applied external field. Our XAS and XMCD at an applied magnetic field of B = 5 T show that the thin film (20 MLs) is totally converted to magnetite whereas the thicker film (75 MLs) exhibits magnetite properties but also those of pure metal iron. For both samples, temperature dependence of the XMCD shows clear transitions at ~120 K consistent with the Verwey transition of bulk magnetite. XMCD at low temperatures shows a weak hysteresis and provide the average spin and angular-momentum moments, the dipolar term, and the total moment . In addition, manipulation and comparison of the XMCD data from both samples allows us to extract information about the pure iron nano-islands from the thicker sample. Ames Laboratory is supported by the U.S. DOE, BES, MSE Contract No. DE-AC02-07CH11358. APS is supported by U.S. DOE Contract No. DE-AC02-06CH11357.

  4. SiO2@FeSO4 nano composite: A recoverable nano-catalyst for eco-friendly synthesis oximes of carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Mostafa Karimkoshteh

    2016-01-01

    Full Text Available Various aldoximes and ketoximes synthesis of corresponding aldehydes and ketones in the presence of SiO2@FeSO4 nano composite as recoverable nano catalyst and NH2OH·HCl. The SiO2@FeSO4 nano composite system was carried out between 10 to 15 min in oil bath (70-80 °C under solvent-free condition in excellent yields in addition this protocol can be used for industrial scales. This method offers some advantages in term of clean reaction conditions, easy work-up procedure, short reaction time, applied to convert α-diketones to α-diketoximes (as longer than other carbonyl compounds, α,β-unsaturated aldehydes and ketones to corresponding oximes and suppression of any side product. So we think that NH2OH•HCl/SiO2@FeSO4 nano composite system could be considered a new and useful addition to the present methodologies in this area. Structure of products and nano composite elucidation was carried out by 1H NMR, 13C NMR, FT-IR, scanning electron microscopy (SEM.

  5. Increasing Possibilities of Nano suspension

    International Nuclear Information System (INIS)

    Sutradhar, K.B.; Khatun, S.; Luna, I.P.

    2013-01-01

    Nowadays, a very large proportion of new drug candidates emerging from drug discovery programmes are water insoluble and thus poorly bioavailable. To avoid this problem, nano technology for drug delivery has gained much interest as a way to improve the solubility problems. Nano refers to particles size range of 1-1000 nm. The reduction of drug particles into the submicron range leads to a significant increase in the dissolution rate and therefore enhances bioavailability. Nanosuspensions are part of nano technology. This interacts with the body at subcellular (i.e., molecular) scales with a high degree of specificity and can be potentially translated into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic efficacy with minimal side effects. Production of drugs as nanosuspensions can be developed for drug delivery systems as an oral formulation and no noral administration. Here, this review describes the methods of pharmaceutical nano suspension production including advantages and disadvantages, potential benefits, characterization tests, and pharmaceutical applications in drug delivery

  6. Accessing the nanostructural analysis network organisation (NANO)

    International Nuclear Information System (INIS)

    Hicks, R.; Ringer, S.

    2003-01-01

    Full text: As a Major National Research Facility (MNRF), NANO unites five Australian microscopy and microanalysis centres to form the peak Australian facility for nanometric analysis of the structure and chemistry of materials. NANO is headquartered at the Australian Key Centre for Microscopy and Microanalysis at the University of Sydney and involves the Centres for Microscopy and Microanalysis at the Universities of Queensland and Western Australia, the Electron Microscope Unit at the University of New South Wales and the Microanalytical Research Centre at the University of Melbourne. Together these major centres maintain a wide range of complementary instrumentation for the characterisation of nanostructure. NANO links them into a co-ordinated national facility with unified charges and booking systems. The facility will provide open access to a wide range of present and future partners involving local and international linkages. For this reason, NANO is designed to allow the incorporation of other groups as additional nodes. All Australian researchers are eligible to apply for support to use NANO through the Travel and Access Program (NANO-TAP), which will support basic travel and accommodation costs as well as instrument time. Access to the national grid may involve on-site presence at a particular node or remote telemicroscopy. Both passive (observation) and active (operation) modes of telemicroscopy are available. This presentation will address the NANO-TAP application procedure, the use of remote telemicroscopy and the formation of additional nodes. Copyright (2003) Australian Microbeam Analysis Society

  7. Leaching of nano-ZnO in municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sakallioglu, T.; Bakirdoven, M.; Temizel, I. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Demirel, B., E-mail: burak.demirel@boun.edu.tr [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Copty, N.K.; Onay, T.T.; Uyguner Demirel, C.S. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Karanfil, T. [Environmental Engineering and Earth Science, Clemson University, Clemson, SC 29634 (United States)

    2016-11-05

    Highlights: • Leaching potential of 3 different types of nano-ZnO in real fresh MSW was investigated. • Batch tests were conducted at different pH, ionic strength and ZnO concentrations. • Most of the added nano-ZnO mass was retained within the solid waste matrix. • The pH and IS conditions did not significantly influence the leaching behavior of ZnO. • A kinetic particle deposition/detachment model was developed to analyze ZnO behavior. - Abstract: Despite widespread use of engineered nanomaterials (ENMs) in commercial products and their potential disposal in landfills, the fate of ENMs in solid waste environments are still not well understood. In this study, the leaching behavior of nano ZnO -one of the most used ENMs- in fresh municipal solid waste (MSW) was investigated. Batch reactors containing municipal solid waste samples were spiked with three different types of nano ZnO having different surface stabilization. The leaching of ZnO was examined under acidic, basic and elevated ionic strength (IS) conditions. The results of the 3-day batch tests showed that the percent of the added nano-ZnO mass retained within the solid waste matrix ranged between 80% and 93% on average for the three types of nano-ZnO tested. The pH and IS conditions did not significantly influence the leaching behavior of ZnO. To further analyze the behavior of ZnO in the MSW matrix, a kinetic particle deposition/detachment model was developed. The model was able to reproduce the main trends of the batch experiments. Reaction rate constants for the batch tests ranged from 0.01 to 0.4 1/hr, reflecting the rapid deposition of nano-ZnO within the MSW matrix.

  8. Cowpox after a cat scratch – case report from Poland

    Directory of Open Access Journals (Sweden)

    Karolina Świtaj

    2015-09-01

    Full Text Available Cowpox in humans is a rare zoonotic disease; its recognition is therefore problematic due to the lack of clinical experience. The differential diagnosis includes other poxvirus infections and also infections with herpesviruses or selected bacteria. The clinical course can be complicated and the improvement may take weeks. Late diagnosis is one of the causes of unnecessary combined antibiotic therapy or surgical intervention. A case of cowpox after a cat scratch in a 15-year-old girl is presented, with a summary of the available clinical data on cowpox infections.

  9. SPSS for applied sciences basic statistical testing

    CERN Document Server

    Davis, Cole

    2013-01-01

    This book offers a quick and basic guide to using SPSS and provides a general approach to solving problems using statistical tests. It is both comprehensive in terms of the tests covered and the applied settings it refers to, and yet is short and easy to understand. Whether you are a beginner or an intermediate level test user, this book will help you to analyse different types of data in applied settings. It will also give you the confidence to use other statistical software and to extend your expertise to more specific scientific settings as required.The author does not use mathematical form

  10. Image analysis of the nano DDS using photon radiation in SPring-8

    International Nuclear Information System (INIS)

    Noda, Nobuo; Koide, Kazuharu; Nemoto, Tetsuya; Matsuura, Hiroyuki; Makino, Ken-ichi; Nakano, Masahiro; Ju, Dong-Ying; Bian, Pei

    2007-01-01

    Recently, technology to handle a molecule of nano scale advances, and an applied technology is developed in every area. Development of nano-drug delivery system (DDS) is performed worldwide in the med-tech area. We try the effectiveness of nano-DDS. The dynamic behavior of nano-scale magnet in biomaterials is not well known. Therefore it is necessary we perform direct observation, and to get information of the behavior. Using strong photon beams in Spring-8 facility, we trace the magnets and investigate the leaf or the egg. (author)

  11. Every which way – nanos gene regulation in echinoderms

    Science.gov (United States)

    Oulhen, Nathalie; Wessel, Gary M.

    2014-01-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. PMID:24376110

  12. Utility of MR imaging in cat-scratch neuroretinitis

    International Nuclear Information System (INIS)

    Reddy, Arun K.; Morriss, Michael C.; Lowe, Lisa H.; Ostrow, Greg I.; Stass-Isern, Merrill; Olitsky, Scott E.

    2007-01-01

    About 80% of cat-scratch disease (CSD) infections occur in children, and CSD neuroretinitis (optic neuropathy with retinal exudates in a ''macular star'' pattern) mostly occurs in children and young adults. A recent study suggested that CSD optic neuropathy has specific features on MR imaging. However, MR imaging findings in CSD neuroretinitis are not well described in the pediatric literature. We present a patient with CSD neuroretinitis in whom these specific MR imaging features preceded the macular star, a funduscopic finding strongly suggestive of neuroretinitis. This case demonstrates how knowledge of these features is important in the appropriate diagnostic work-up of optic neuropathy. MR imaging also incidentally revealed neuritis of another cranial nerve in the auditory canal - a rare manifestation of CSD. (orig.)

  13. Nano-Impact (Fatigue Characterization of As-Deposited Amorphous Nitinol Thin Film

    Directory of Open Access Journals (Sweden)

    Rehan Ahmed

    2012-08-01

    Full Text Available This paper presents nano-impact (low cycle fatigue behavior of as-deposited amorphous nitinol (TiNi thin film deposited on Si wafer. The nitinol film was 3.5 µm thick and was deposited by the sputtering process. Nano-impact tests were conducted to comprehend the localized fatigue performance and failure modes of thin film using a calibrated nano-indenter NanoTest™, equipped with standard diamond Berkovich and conical indenter in the load range of 0.5 mN to 100 mN. Each nano-impact test was conducted for a total of 1000 fatigue cycles. Depth sensing approach was adapted to understand the mechanisms of film failure. Based on the depth-time data and surface observations of films using atomic force microscope, it is concluded that the shape of the indenter test probe is critical in inducing the localized indentation stress and film failure. The measurement technique proposed in this paper can be used to optimize the design of nitinol thin films.

  14. Nano- and micro-electromechanical systems fundamentals of nano- and microengineering

    CERN Document Server

    Lyshevski, Sergey Edward

    2005-01-01

    NANOTECHNOLOGY AND MICROTECHNOLOGY (NANO- AND MICRO- SCIENCE, ENGINEERING AND TECHNOLOGY), AND BEYOND Introduction and Overview: From Micro- to Nano- and Beyond to Stringo-Scale Introductory Definitions to the Subjects Current Developments and Needs for Coherent Revolutionary Developments Societal Challenges and Implications NANO- AND MICROSCALE SYSTEMS, DEVICES, AND STRUCTURES Sizing Features: From Micro- to Nano-, and from Nano- to Stringo-Scale MEMS and NEMS Definitions Introduction to Taxonomy of Nano- and Microsystem Synthesis and Design Introduction to Design and Optimization of Nano- and Microsystems in the Behavioral Domain NANO- AND MICROSYSTEMS: CLASSIFICATION AND CONSIDERATION Biomimetics, Biological Analogies,and Design of NEMS and MEMS Micro- and Nanoelectromechanical Systems: Scaling Laws and Mathematical Modeling MEMS Examples and MEMS Architectures Introduction to Microfabrication and Micromachining FUNDAMENTALS OF MICROFABRICATION AND MEMS FABRICATION TECHNOLOGIES Introducti...

  15. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  16. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  17. Nano-modified adhesive by graphene: the single lap-joint case

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Almir; Cruz, Diego Thadeu Lopes da; Avila, Antonio Ferreira, E-mail: aavila@netuno.lcc.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica

    2013-11-01

    This paper addresses the performance study on, low viscosity, nano-modified adhesives by graphene. For achieving this goal, single-lap joints following ASTM D 5868-01 were manufactured and tested. X-ray diffraction, scanning electron microscopy and nanoindentation were employed for graphene based nanostructures characterization. The increase on joint strength was around 57% when compared against the control group. Furthermore, all failures for the nano-modified adhesive were cohesive failure for the carbon fibre/epoxy composites indicating that the adhesive was tested. X-ray diffractions signatures indicate formation of nano-structures with 17-19 nm diameters. Moreover, nanoindentation tests revealed a homogeneous dispersion of graphene. (author)

  18. Možnosti měřicího systému NanoTest™ NT600

    Czech Academy of Sciences Publication Activity Database

    Čtvrtlík, Radim; Stranyánek, Martin; Boháč, Petr; Jastrabík, Lubomír

    2005-01-01

    Roč. 50, 7-8 (2005), s. 211-214 ISSN 0447-6441 R&D Projects: GA AV ČR(CZ) 1QS100100563 Institutional research plan: CEZ:AV0Z10100522 Keywords : nanoindentation * scratch test * impact test * dynamic hardness * pin on disc * acoustic emission Subject RIV: BH - Optics, Masers, Lasers

  19. Optical and nanomechanical study of anti-scratch layers on polycarbonate lenses

    Science.gov (United States)

    Charitidis, C.; Laskarakis, A.; Kassavetis, S.; Gravalidis, C.; Logothetidis, S.

    2004-07-01

    In recent years, as the optical-electronic industry developed, polymeric materials were gradually increasing in importance. Polycarbonate (PC) is a good candidate for eyewear applications due to its low weight and transparency. In the case of PC lenses, the deposition of anti-scratch (AS) coatings on the polymer surface is essential for the improvement of the mechanical behavior of the lens. In this work, we present a detailed investigation of the optical and nanomechanical properties of a PC based optical lens and coated by an AS coating as a protective overcoat. The study of the effect of the AS coating on the optical response of the PC lens has been performed by the use of Spectroscopic Ellipsometry (SE) in the IR spectral region, where the characteristic features corresponding to the different bonding configuration of the PC lens and the AS coating were studied. Also, the nanomechanical study of the PC lens, before and after the deposition of the AS coating, performed by nanoindentation measurements revealed the significant enhancement of the mechanical response of the AS/PC lens. More specifically, the AS/PC lens is characterized by enhanced values of hardness and elastic modulus. Finally, the use of AS coating has found to lead to a better scratch resistance and to the reduction of the coefficient of friction (μ) of the PC lens.

  20. Influence of nano-material on the expansive and shrinkage soil behavior

    International Nuclear Information System (INIS)

    Taha, Mohd Raihan; Taha, Omer Muhie Eldeen

    2012-01-01

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content (w opt ) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  1. Semiconductor Nano wires and Nano tubes: From Fundamentals to Diverse Applications

    International Nuclear Information System (INIS)

    Xiong, Q.; Grimes, C.A.; Zacharias, M.; Morral, A.F.; Hiruma, K.; Shen, G.

    2012-01-01

    Research in the field of semiconductor nano wires (SNWs) and nano tubes has been progressing into a mature subject with several highly interdisciplinary sub areas such as nano electronics, nano photonics, nano composites, bio sensing, optoelectronics, and solar cells. SNWs represent a unique system with novel properties associated to their one-dimensional (1D) structures. The fundamental physics concerning the formation of discrete 1D subbands, coulomb blockade effects, ballistic transport, and many-body phenomena in 1D nano wires and nano tubes provide a strong platform to explore the various scientific aspects in these nano structures. A rich variety of preparation methods have already been developed for generating well-controlled 1D nano structures and from a broad range of materials. The present special issue focuses on the recent development in the mechanistic understanding of the synthesis, the studies on electrical/optical properties of nano wires and their applications in nano electronics, nano photonics, and solar-energy harvesting. In this special issue, we have several invited review articles and contributed papers that are addressing current status of the fundamental issues related to synthesis and the diverse applications of semiconducting nano wires and nano tubes. One of the papers reviews the progress of the top-down approach of developing silicon-based vertically aligned nano wires to explore novel device architectures and integration schemes for nano electronics and clean energy applications. Another paper reviews the recent developments and experimental evidences of probing the confined optical and acoustic phonon in nonpolar semiconducting (Si and Ge) nano wires using Raman spectroscopy. The paper by K. Hiruma et al. spotlights the III semiconductor nano wires and demonstrates selective-area metal organic vapor phase epitaxy grown GaAs/In(Al)GaAs and InP/InAs/InP nano wires with heterojunctions along their axial and radial directions. The paper

  2. Scratch that itch: revisiting links between self-directed behaviour and parasitological, social and environmental factors in a free-ranging primate.

    Science.gov (United States)

    Duboscq, Julie; Romano, Valéria; Sueur, Cédric; MacIntosh, Andrew J J

    2016-11-01

    Different hypotheses explain variation in the occurrence of self-directed behaviour such as scratching and self-grooming: a parasite hypothesis linked with ectoparasite load, an environmental hypothesis linked with seasonal conditions and a social hypothesis linked with social factors. These hypotheses are not mutually exclusive but are often considered separately. Here, we revisited these hypotheses together in female Japanese macaques ( Macaca fuscata fuscata ) of Kōjima islet, Japan. We input occurrences of scratching and self-grooming during focal observations in models combining parasitological (lice load), social (dominance rank, social grooming, aggression received and proximity), and environmental (rainfall, temperature and season) variables. Using an information-theory approach, we simultaneously compared the explanatory value of models against each other using variation in Akaike's information criterion and Akaike's weights. We found that evidence for models with lice load, with or without environmental-social parameters, was stronger than that for other models. In these models, scratching was positively associated with lice load and social grooming whereas self-grooming was negatively associated with lice load and positively associated with social grooming, dominance rank and number of female neighbours. This study indicates that the study animals scratch primarily because of an immune/stimulus itch, possibly triggered by ectoparasite bites/movements. It also confirms that self-grooming could act as a displacement activity in the case of social uncertainty. We advocate that biological hypotheses be more broadly considered even when investigating social processes, as one does not exclude the other.

  3. Dialando: tangible programming for the novice with scratch, processing and arduino

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2010-01-01

    Full Text Available Programming for the Novice with Scratch, Processing and Arduino Andrew Cyrus Smith CSIR Meraka Institute, PO Box 395, Pretoria, 0001, South Africa acsmith @ csir.co.za Abstract This paper reports on a tangible programming system designed... the Arduino controlling circuitry which is connected to the laptop computer using a USB cable. 2. Our Approach Our research aims to provide the novice user a gentle introduction to the abstract programming abilities of the PC. In order to achieve...

  4. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    ) and elastic modulus (EM) measurements. Then in 12 rats, 4 types of membranes were randomly applied to cover the rat calvarial defects. The animals were sacrificed at 8weeks. Histologic analyses were performed using Hematoxylin-eosin (H&E) staining and Masson's Trichrome stains. For statistical analysis, analysis of variance (ANOVA) followed by Tukey's multiple comparison tests was applied. HA nanoparticles were fairly well distributed nanoparticles among the collagen fibers on the nano-HA-modified EGCG-collagen membranes, with smoother surface. Moreover, collagen membranes with modifications all maintained their collagen backbone and the mechanical properties were enhanced by EGCG and nano-HA treatments. In addition, EGCG cross-linked collagen membranes with nano-HA coatings promoted bone regeneration. Nano-HA modified EGCG-collagen membranes can be utilized as a barrier membrane to enhance the bone regeneration in GBR surgeries. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The world of Nano

    International Nuclear Information System (INIS)

    Noh, Seung Jeong; Hyun, Jun Won; An, Yong Hyeon; Lee, Sung Uk; Jee, Hye Gu; Kim, Young Seon

    2006-07-01

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  6. Antibacterial performance of nano polypropylene filter media containing nano-TiO{sub 2} and clay particles

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham, E-mail: e.naghashzargar@tx.iut.ac.ir; Semnani, Dariush, E-mail: d-semnani@cc.iut.ac.ir [Isfahan University of Technology, Department of Textile Engineering (Iran, Islamic Republic of)

    2015-10-15

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO{sub 2} were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO{sub 2} nanoparticles.

  7. Streptobacillus moniliformis as the causative agent in spondylodiscitis and psoas abscess after rooster scratches.

    Science.gov (United States)

    Dubois, Damien; Robin, Frédéric; Bouvier, Damien; Delmas, Julien; Bonnet, Richard; Lesens, Olivier; Hennequin, Claire

    2008-08-01

    We report a case of Streptobacillus moniliformis spondylodiscitis accompanied by a psoas abscess in an 80-year-old man scratched by a rooster. S. moniliformis was identified from abscess fluid by use of 16S rRNA gene sequencing. After 18 weeks of antimicrobial therapy, the clinical condition of the patient improved.

  8. Micro-hole array fluorescent sensor based on AC-Dielectrophoresis (DEP) for simultaneous analysis of nano-molecules

    Science.gov (United States)

    Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik

    2018-02-01

    We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.

  9. Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.S., E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Kim, J.W. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of); Choi, D.G. [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Han, C.S. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of)

    2011-01-15

    The synthesis of isolated carbon nanotubes with uniform outer diameters and ordered spacing over wafer-scale areas was investigated for fabrication of nano-electrode arrays on silicon wafers for field emission and sensor devices. Multi-walled carbon nanotubes (MWCNTs) were grown on TiN electrode layer with iron catalyst patterned by nano-imprint lithography (NIL), which allows the precise placement of individual CNTs on a substrate. The proposed techniques, including plasma-enhanced chemical vapor deposition (PECVD) and NIL, are simple, inexpensive, and reproducible methods for fabrication of nano-scale devices in large areas. The catalyst patterns were defined by an array of circles with 200 nm in diameter, and variable lengths of pitch. The nano-patterned master and Fe catalyst were observed with good pattern fidelity over a large area by atomic force microscope (AFM) and scanning electron microscopy (SEM). Nano-electrodes of MWCNTs had diameters ranging from 50 nm to 100 nm and lengths of about 300 nm. Field emission tests showed the reducing ignition voltage as the geometry of nanotube arrays was controlled by catalyst patterning. These results showed a wafer-scale approach to the control of the size, pitch, and position of nano-electrodes of nanotubes for various applications including electron field-emission sources, electrochemical probes, functionalized sensor elements, and so on.

  10. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  11. Utility of MR imaging in cat-scratch neuroretinitis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Arun K. [University of Missouri-Kansas City, School of Medicine, Kansas City, MO (United States); Morriss, Michael C.; Lowe, Lisa H. [University of Missouri-Kansas City, Department of Radiology, The Children' s Mercy Hospital and Clinics, Kansas City, MO (United States); Ostrow, Greg I.; Stass-Isern, Merrill; Olitsky, Scott E. [University of Missouri-Kansas City, Department of Ophthalmology, Children' s Mercy Hospital and Clinics, Kansas City, MO (United States)

    2007-08-15

    About 80% of cat-scratch disease (CSD) infections occur in children, and CSD neuroretinitis (optic neuropathy with retinal exudates in a ''macular star'' pattern) mostly occurs in children and young adults. A recent study suggested that CSD optic neuropathy has specific features on MR imaging. However, MR imaging findings in CSD neuroretinitis are not well described in the pediatric literature. We present a patient with CSD neuroretinitis in whom these specific MR imaging features preceded the macular star, a funduscopic finding strongly suggestive of neuroretinitis. This case demonstrates how knowledge of these features is important in the appropriate diagnostic work-up of optic neuropathy. MR imaging also incidentally revealed neuritis of another cranial nerve in the auditory canal - a rare manifestation of CSD. (orig.)

  12. Electrochemically deposited BiTe-based nano wires for thermoelectric applications

    International Nuclear Information System (INIS)

    Inn-Khuan, N.; Kuan-Ying, K.; Che Zuraini Che Abdul Rahman; Nur Ubaidah Saidin; Suhaila Hani Ilias; Thye-Foo, C.

    2013-01-01

    Full-text: Nano structured materials systems such as thin-films and nano wires (NWs) are promising for thermoelectric power generation and refrigeration compared to traditional counterparts in bulk, due to their enhanced thermoelectric figures-of-merit. BiTe and its derivative compounds, in particular, are well-known for their near-room temperature thermoelectric performance. In this work, both the binary and ternary BiTe-based nano wires namely, BiTe and BiSbTe, were synthesized using template-assisted electrodeposition. Diameters of the nano wires were controlled by the pore sizes of the anodised alumina (AAO) templates used. Systematic study on the compositional change as a function of applied potential was carried out via Linear Sweep Voltametry (LSV). Chemical compositions of the nano wires were studied using Energy Dispersive X-ray Spectrometry (EDXS) and their microstructures evaluated using diffraction and imaging techniques. Results from chemical analysis on the nano wires indicated that while the Sb content in BiSbTe nano wires increased with more negative deposition potentials, the formation of Te 0 and Bi 2 Te 3 were favorable at more positive potentials. (author)

  13. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Huan-Lin Luo

    2012-03-01

    Full Text Available In order to improve soft soil strength, a mixture of incinerated sewage sludge ash (SSA and cement was applied as a soil stabilizer. The intended mix ratio for SSA and cement was 3:1. A-6 clay was selected as the untreated soil. In this study, 15% of clay soil was replaced by SSA/cement to produce the treated soil specimens. Then, four different volumes, namely 0, 1, 2, and 3%, of nano-Al2O3 were mixed with the treated soil as an additive. Tests such as compaction, pH values, Atterberg limits, unconfined compressive strength (UCS, swell potential, California bearing ratio (CBR, and permeability were performed. The results indicate that both UCSs and CBR values of untreated soil were greatly improved by the use of 15% SSA/cement. Moreover, a 1% addition of nano-Al2O3 enhanced the treated soil in terms of both UCS and CBR values. Furthermore, the swell potential was effectively reduced by the use of 15% SSA/cement as compared with untreated soil and the 1% nano-Al2O3 additive fraction offered the best performance. From this study, we conclude that 15% of SSA/cement replacement could effectively stabilize A-6 clay soil, and 1% of nano-Al2O3 additive may be the optimum amount to add to the soil.

  14. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    Directory of Open Access Journals (Sweden)

    Ashrafi H.

    2016-06-01

    Full Text Available Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods: In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results: Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion: To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.

  15. Relations structure-propriétés et résistance à l’endommagement de vernis acrylate photo-polymérisables pour substrats thermoplastiques : évaluation de monomères bio-sourcés et de nano-charges

    OpenAIRE

    Prandato , Emeline

    2013-01-01

    The aim of this work was to develop 100% solids photo-polymerizable acrylate coatings, intended to protect thermoplastic pieces made of polycarbonate against mechanical damage, in particular scratches. The relationships between the composition, the structure and the properties of these coatings were examined. For this purpose the morphology, the thermomechanical properties and the scratch resistance of the materials, assessed by micro-scratch tests, were studied. The kinetics of the polymer n...

  16. Interfacial characteristics of polyethylene terephthalate-based piezoelectric multi-layer films

    International Nuclear Information System (INIS)

    Liu, Z.H.; Pan, C.T.; Chen, Y.C.; Liang, P.H.

    2013-01-01

    The study examines the deformation between interfaces and the adhesion mechanism of multi-layer flexible electronic composites. Indium tin oxide (ITO), aluminum (Al), and zinc oxide (ZnO) were deposited on a polyethylene terephthalate (PET) substrate using radio frequency magnetron sputtering at room temperature to form flexible structures (e.g., ITO/PET, Al/PET, ZnO/ITO/PET, and ZnO/Al/PET) for piezoelectric transducers. ITO and Al films are used as the conductive layers. A ZnO thin film shows a high (002) c-axis preferred orientation at 2θ = 34.45° and excellent piezoelectric properties. Nanoscratching and nano-indention testing were conducted to analyze the adhesion following periodic mechanical stress. Additionally, two Berkovich and conical probes with a curvature radius of 40 nm and 10 μm are examined for the scratching test. A 4-point probe is used to measure the conductive properties. The plastic deformation between the ductile Al film and PET substrate is observed using scanning electron microscopy to examine the chip formation on the ITO/PET. Delamination between the ZnO and Al/PET substrate was not observed. The result suggests that ZnO film has excellent adhesion with Al/PET compared to ITO/PET. - Highlights: ► Interfaces and adhesion mechanism of multi-layer flexible electronic composites ► Polyethylene terephthalate (PET) based flexible structures ► Nano-scratching and nano-indention tests were used to analyze adhesion. ► Using two various probes of Berkovich and conical ► Piezoelectric zinc oxide film has excellent adhesion with aluminum/PET

  17. Neuroretinitis Caused by Bartonella henselae (Cat-Scratch Disease in a 13-Year-Old Girl

    Directory of Open Access Journals (Sweden)

    Teodoro Durá-Travé

    2010-01-01

    Full Text Available Cat-scratch disease-related neuroretinitis is a relatively unusual pathology, with suspicious clinical epidemiological and serological diagnosis. We present a case of an adolescent suffering from unilateral neuroretinitis associated with Bartonella henselae infection characterized by abrupt loss of vision, optic disc swelling, and macular star exudates with optimal response to antibiotic treatment.

  18. Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA

    Directory of Open Access Journals (Sweden)

    Nabian Nima

    2013-01-01

    Full Text Available The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%. We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer’s solution with bovine serum albumin (BSA for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, surface electron microscope (SEM and transmission electron microscope (TEM. The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.

  19. DLC nano-dot surfaces for tribological applications in MEMS devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R. Arvind; Na, Kyounghwan [Nano-Bio Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Yi, Jin Woo; Lee, Kwang-Ryeol [Computational Science Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Yoon, Eui-Sung, E-mail: esyoon@kist.re.kr [Nano-Bio Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2011-02-01

    With the invention of miniaturized devices like micro-electro-mechanical systems (MEMS), tribological studies at micro/nano-scale have gained importance. These studies are directed towards understanding the interactions between surfaces at micro/nano-scales, under relative motion. In MEMS devices, the critical forces, namely adhesion and friction restrict the smooth operation of the elements that are in relative motion. These miniaturized devices are traditionally made from silicon (Si), whose tribological properties are not good. In this paper, we present a short investigation of nano- and micro-tribological properties of diamond-like carbon (DLC) nano-dot surfaces. The investigation was undertaken to evaluate the potential of these surfaces for their possible application to the miniaturized devices. The tribological evaluation of the DLC nano-dot surfaces was done in comparison with bare Si (1 0 0) surfaces and DLC coated silicon surfaces. A commercial atomic force microscope (AFM) was used to measure adhesion and friction properties of the test materials at the nano-scale, whereas a custom-built micro-tribotester was used to measure their micro-friction property. Results showed that the DLC nano-dot surfaces exhibited superior tribological properties with the lowest values of adhesion force, and friction force both at the nano- and micro-scales, when compared to the bare Si (1 0 0) surfaces and DLC coated silicon surfaces. In addition, the DLC nano-dot surfaces showed no observable wear at the micro-scale, unlike the other two test materials. The superior tribological performance of the DLC nano-dot surfaces is attributed to their hydrophobic nature and the reduced area of contact projected by them.

  20. DLC nano-dot surfaces for tribological applications in MEMS devices

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Na, Kyounghwan; Yi, Jin Woo; Lee, Kwang-Ryeol; Yoon, Eui-Sung

    2011-01-01

    With the invention of miniaturized devices like micro-electro-mechanical systems (MEMS), tribological studies at micro/nano-scale have gained importance. These studies are directed towards understanding the interactions between surfaces at micro/nano-scales, under relative motion. In MEMS devices, the critical forces, namely adhesion and friction restrict the smooth operation of the elements that are in relative motion. These miniaturized devices are traditionally made from silicon (Si), whose tribological properties are not good. In this paper, we present a short investigation of nano- and micro-tribological properties of diamond-like carbon (DLC) nano-dot surfaces. The investigation was undertaken to evaluate the potential of these surfaces for their possible application to the miniaturized devices. The tribological evaluation of the DLC nano-dot surfaces was done in comparison with bare Si (1 0 0) surfaces and DLC coated silicon surfaces. A commercial atomic force microscope (AFM) was used to measure adhesion and friction properties of the test materials at the nano-scale, whereas a custom-built micro-tribotester was used to measure their micro-friction property. Results showed that the DLC nano-dot surfaces exhibited superior tribological properties with the lowest values of adhesion force, and friction force both at the nano- and micro-scales, when compared to the bare Si (1 0 0) surfaces and DLC coated silicon surfaces. In addition, the DLC nano-dot surfaces showed no observable wear at the micro-scale, unlike the other two test materials. The superior tribological performance of the DLC nano-dot surfaces is attributed to their hydrophobic nature and the reduced area of contact projected by them.

  1. Nanostructured composite films of ceria nanoparticles with anti-UV and scratch protection properties constructed using a layer-by-layer strategy

    International Nuclear Information System (INIS)

    Zhang, Songsong; Li, Jie; Guo, Xianpeng; Liu, Lianhe; Wei, Hao; Zhang, Yingwei

    2016-01-01

    Highlights: • The fabrication of LbL multilayers used functional nanoparticles. • The film structure can be controlled in the nanoscopic range. • The constructed multilayers were transparent in the visible spectral region and presented anti-UV properties. • The multilayers presented scratch protection properties. - Abstract: Rare earth cerium oxide (ceria) nanoparticles have attracted extensive research attention due to their advantageous anti-UV and anti-scratch properties. However, a general and facile method for the fabrication of composite films using ceria and possessing these advantages is still lacking. Here, we report the fabrication of multilayers of ceria and polymeric species poly(styrene sulfonate) (PSS) and poly(diallyl-dimethyl ammonium) (PDDA) via the layer-by-layer deposition strategy. The thickness of the multilayers increased linearly with the number of bilayers, indicating accurate control of the film structure in the nanoscopic range. The constructed multilayers were transparent in the visible spectral region and at the same time presented anti-UV properties. In addition, the multilayers also presented scratch protection properties.

  2. Comparison of Antimicrobial Properties of Nano Quinolone with its Microscale Effects

    Science.gov (United States)

    Behbahani, G. Rezaie; Sadr, M. Hossaini; Nabipour, H.; Behbahani, H. Rezaei; Vahedpour, M.; Barzegar, L.

    2013-06-01

    Nano nalidixic acid was prepared by ultrasonic method in carbon tetrachloride. Nano nalidixic acid (quinolone antibiotic) was characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscope (SEM). The antibacterial activities of nano nalidixic acid were tested against microorganisms and compared with the microscale drug. The results show that nano nalidixic acid has good inhibitory properties against two Gram-positive species, Staphylococcus aureus and Bacillus subtilis. Nano nalidixic acid also showed good antifungal activity against Candida albicans. Nano nalidixic acid can be injected into the human body as a decontaminating agent to prevent the growth of harmful microorganisms more effectively than the micro-sized drug.

  3. Mechanical Behavior of Self-Compacting Concrete Containing Nano-Metakaolin

    Directory of Open Access Journals (Sweden)

    Mohammed Kareem Abed

    2017-08-01

    Full Text Available This paper presents the influence of nano- metakaolin addition for production self-compacting concrete (SCC. Nano-metakaolin material was used at four percentages (0, 1, 3 and 5 % as partial replacement by weight of cement [Reference mix (PC, (1%, 3%, 5% nano-metakaolin(1, 3, 5 NMK]. This research studied the influence of nano-metakaolin material on the fresh and mechanical properties which represented by the different tests were slump flow, T50cm, L-Box, V-funnel, compressive and flexural strength. From the results of this study, found that the SCC with 5% of nano-metakaolin material as partial replacement by weight of cement give the best results of fresh and mechanical properties of SCC mixes.

  4. Bonding performance of self-adhesive flowable composites to enamel, dentin and a nano-hybrid composite.

    Science.gov (United States)

    Peterson, Jana; Rizk, Marta; Hoch, Monika; Wiegand, Annette

    2018-04-01

    This study aimed to analyze bond strengths of self-adhesive flowable composites on enamel, dentin and nano-hybrid composite. Enamel, dentin and nano-hybrid composite (Venus Diamond, Heraeus Kulzer, Germany) specimens were prepared. Three self-adhesive composites (Constic, DMG, Germany; Fusio Liquid Dentin, Pentron Clinical, USA; Vertise Flow, Kerr Dental, Italy) or a conventional flowable composite (Venus Diamond Flow, Heraeus Kulzer, Germany, etch&rinse technique) were applied to enamel and dentin. Nano-hybrid composite specimens were initially aged by thermal cycling (5000 cycles, 5-55 °C). Surfaces were left untreated or pretreated by mechanical roughening, Al 2 O 3 air abrasion or silica coating/silanization. In half of the composite specimens, an adhesive (Optibond FL, Kerr Dental, Italy) was used prior to the application of the flowable composites. Following thermal cycling (5000 cycles, 5-55 °C) of all specimens, shear bond strengths (SBS) and failure modes were analyzed (each subgroup n = 16). Statistical analysis was performed by ANOVAs/Bonferroni post hoc tests, Weibull statistics and χ 2 -tests (p composites on enamel and dentin were significantly lower (enamel: composite (enamel: 13.0 ± 5.1, dentin: 11.2 ± 6.3), and merely adhesive failures could be observed. On the nano-hybrid composite, SBS were significantly related to the pretreatment. Adhesive application improved SBS of the conventional, but not of the self-adhesive composites. The self-adhesive composite groups showed less cohesive failures than the reference group; the occurence of cohesive failures increased after surface pretreatment. Bonding of self-adhesive flowable composites to enamel and dentin is lower than bonding to a nano-hybrid composite.

  5. Effect of organo clay addition on thermal properties of poly lactide/ polycaprolactone (PLA/ PCL) nano composites

    International Nuclear Information System (INIS)

    Siti Zulaiha Hairaldin; Wan Md Zin Wan Yunus; Norazoma Ibrahim

    2010-01-01

    In this study, melt blending technique was applied to prepare poly lactide/polycaprolactone (PLA/ PCL) nano composites with various blends. Montmorillonite (MMT) was used as an addition to the matrix. In this study, melt blending technique was applied to prepare poly lactide/polycaprolactone (PLA/ PCL) nano composites. Montmorillonite (MMT) was used as an addition to the matrix with various percentages. The other one is modified clay prepared by modifying the nature of montmorillonite with octadecylamine (ODA) to improve the characteristic of PLA/ PCL blends. X-ray diffraction (XRD) results indicated intercalation of the PLA/ PCL into silicate nano size interlayers galleries of the nano composites. The presence of modified clays in nano composite was confirmed by FTIR spectrum. TGA and DTG results show addition of MMT and modified clay ODA-MMT improved the thermal stability of the PLA/ PCL blends. (author)

  6. Philosophy, design and testing of a uniform applied load flat plate testing machine

    International Nuclear Information System (INIS)

    Quirk, A.; Crook, C.

    1976-08-01

    The presence of a central crack, and its associated plastic zones may significantly affect distribution of the stress applied by a loading machine, to a test plate. As a result the fracture stress may be affected, usually optimistically. Examples of these effects are discussed. The design of a machine in which the load is uniformly applied to the test specimen is described and preliminary test data presented. (author)

  7. Look@NanoSIMS--a tool for the analysis of nanoSIMS data in environmental microbiology.

    Science.gov (United States)

    Polerecky, Lubos; Adam, Birgit; Milucka, Jana; Musat, Niculina; Vagner, Tomas; Kuypers, Marcel M M

    2012-04-01

    We describe an open-source freeware programme for high throughput analysis of nanoSIMS (nanometre-scale secondary ion mass spectrometry) data. The programme implements basic data processing and analytical functions, including display and drift-corrected accumulation of scanned planes, interactive and semi-automated definition of regions of interest (ROIs), and export of the ROIs' elemental and isotopic composition in graphical and text-based formats. Additionally, the programme offers new functions that were custom-designed to address the needs of environmental microbiologists. Specifically, it allows manual and automated classification of ROIs based on the information that is derived either from the nanoSIMS dataset itself (e.g. from labelling achieved by halogen in situ hybridization) or is provided externally (e.g. as a fluorescence in situ hybridization image). Moreover, by implementing post-processing routines coupled to built-in statistical tools, the programme allows rapid synthesis and comparative analysis of results from many different datasets. After validation of the programme, we illustrate how these new processing and analytical functions increase flexibility, efficiency and depth of the nanoSIMS data analysis. Through its custom-made and open-source design, the programme provides an efficient, reliable and easily expandable tool that can help a growing community of environmental microbiologists and researchers from other disciplines process and analyse their nanoSIMS data. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots nano-CeO 2  nano iron oxides nano-Al 2 O 3  nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  9. The adsorption features between insecticidal crystal protein and nano-Mg(OH)2.

    Science.gov (United States)

    Pan, Xiaohong; Xu, Zhangyan; Zheng, Yilin; Huang, Tengzhou; Li, Lan; Chen, Zhi; Rao, Wenhua; Chen, Saili; Hong, Xianxian; Guan, Xiong

    2017-12-01

    Nano-Mg(OH) 2 , with low biological toxicity, is an ideal nano-carrier for insecticidal protein to improve the bioactivity. In this work, the adsorption features of insecticidal protein by nano-Mg(OH) 2 have been studied. The adsorption capacity could reach as high as 136 mg g -1 , and the adsorption isotherm had been fitted with Langmuir and Freundlich models. Moreover, the adsorption kinetics followed a pseudo-first or -second order rate model, and the adsorption was spontaneous and an exothermic process. However, high temperatures are not suitable for adsorption, which implies that the temperature would be a critical factor during the adsorption process. In addition, FT-IR confirmed that the protein was adsorbed on the nano-Mg(OH) 2 , zeta potential analysis suggested that insecticidal protein was loaded onto the nano-Mg(OH) 2 not by electrostatic adsorption but maybe by intermolecular forces, and circular dichroism spectroscopy of Cry11Aa protein before and after loading with nano-Mg(OH) 2 was changed. The study applied the adsorption information between Cry11Aa and nano-Mg(OH) 2 , which would be useful in the practical application of nano-Mg(OH) 2 as a nano-carrier.

  10. Sound Absorption and Friction Properties of Nano-Lotus Leaf Coated Concrete for Rigid Pavement

    Directory of Open Access Journals (Sweden)

    Marcelo GONZALEZ

    2016-09-01

    Full Text Available This paper presents the feasibility of superhydrophobic films to create the nano-lotus leaf effect on concrete surface and their influence on sound absorption and friction properties of concrete for application in rigid pavements. The study involved an evaluation of nanomaterials at the laboratory scale to analyze the effects of microtexture modification on the friction and sound absorption of concrete pavement. A number of laboratory specimens were produced by applying different amounts of nano-lotus leaf coating on the top of the textured concrete surface. The British pendulum test was used to measure the friction number, and an impedance tube was used to determine the sound absorption coefficient. Laboratory results indicate that nano-lotus leaf coated concrete can maintain the required friction property for rigid pavement, but may not increase the noise absorption. Further research must be carried out to determine possible benefit of the lotus leaf effect for reducing hydroplaning, particularly during heavy rainfall.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7638

  11. Influence of Nano Silica on Alkyd Films

    DEFF Research Database (Denmark)

    Nikolic, Miroslav

    . The present work centers on the reinforcement of alkyd binders emulsified in water and used in exterior wood coatings with nano silica. Raman spectroscopy was used throughout the study to maintain the reproducibility of results as it was found that colloidal nano silica can increase or decrease the speed...... of alkyd curing affecting the tested mechanical properties. Hydrophilic, colloidal nano silica was seen to have limited effect in improving the mechanical properties due to problems in properly dispersing and attaining good surface interactions with the hydrophobic alkyd polymer. Efforts in increasing...... the interactions with the alkyd polymer while keeping the nano filler stable in the water phase did not show further improvements of mechanical properties. The best results in respect to mechanical properties, as measured under static and dynamic loading, were obtained with the use of hexamethyldisilazane treated...

  12. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.

    Science.gov (United States)

    Shen, Renze; Xu, Weihong; Xue, Yanxiang; Chen, Luyuan; Ye, Haicheng; Zhong, Enyi; Ye, Zhanchao; Gao, Jie; Yan, Yurong

    2018-04-16

    In this study, nanofibrous scaffolds base on pure polylactic acid (PLA) and chitosan/PLA blends were fabricated by emulsion eletrospinning. By modulating their mechanical and biological properties, cell-compatible and biodegradable scaffolds were developed for periodontal bone regeneration. Pure PLA and different weight ratios of chitosan nano-particle/PLA nano-fibers were fabricated by emulsion eletrospinning. Scanning electron microscope (SEM) was performed to observe the morphology of nano-fibers. Mechanical properties of nano-fibers were tested by single fiber strength tester. Hydrophilic/hydrophobic nature of the nano-fibers was observed by stereomicroscope. In vitro degradation was also tested. Cells were seeded on nano-fibers scaffolds. Changes in cell adhesion, proliferation and osteogenic differentiation were tested by MTT assay and Alizarin Red S staining. Reverse transcription-polymerase chain reaction (RT-PCR) assay was used to evaluate the expression of (Toll-like receptor 4) TLR4, IL-6, IL-8, IL-1β, OPG, RUNX2 mRNA. It is shown that the mean diameter of nano-fibers is about 200 nm. The mean diameter of chitosan nano-particles is about 50 nm. The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers. By adding a certain amount of chitosan nano-particles, it promoted cell adhesion. It also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) by elevating the expression of osteogenic marker genes such as BSP, Ocn, collagen I, and OPN and enhanced ECM mineralization. Nonetheless, it caused higher expression of inflammatory mediators and TLR4 of human periodontal ligament cells (hPDLCs). The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers and increased its hydrophilicity. Pure PLA nano-fibers scaffold facilitated BMSCs proliferation. Adding an appropriate amount of chitosan nano-particles may promote its properties of cell proliferation

  13. The Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen

    Directory of Open Access Journals (Sweden)

    Wan Heo

    2016-03-01

    Full Text Available This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05. Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.

  14. Comparative evaluation of hydroxyapatite and nano-bioglass in two forms of conventional micro- and nano-particles in repairing bone defects (an animal study).

    Science.gov (United States)

    Nosouhian, Saied; Razavi, Mohammad; Jafari-Pozve, Nasim; Rismanchian, Mansour

    2015-01-01

    Many synthetic bone materials have been introduced for repairing bone defects. The aim of this study is to comparatively evaluate the efficacy of nano-hydroxyapatite (HA) and nano-bioglass bone materials with their traditional micro counterparts in repairing bone defects. In this prospective animal study, four healthy dogs were included. First to fourth premolars were extracted in each quadrant and five cavities in each quadrant were created using trephine. Sixteen cavities in each dog were filled by HA, nano-HA, bioglass, and nano-bioglass and four defects were left as the control group. All defects were covered by a nonrestorable membrane. Dogs were sacrificed after 15, 30, 45, and 60 days sequentially. All 20 samples were extracted by trephine #8 with a sufficient amount of surrounding bone. All specimens were investigated under an optical microscope and the percentage of total regenerated bone, lamellar, and woven bone were evaluated. Data analysis was carried out by SPSS Software ver. 15 and Mann-Whitney U-test (α =0.05). After 15 days, the bone formation percentage showed a significant difference between HA and nano-HA and between HA and bioglass (P bone formation after 15 days. Nano-bioglass and bioglass and nano-HA and nano-bioglass groups represented a significant difference and nano-bioglass showed the highest rate of bone formation after 30 days (P = 0.01). After 45 days, the bone formation percentage showed a significant difference between nano-bioglass and bioglass and between nano-HA and nano-bioglass groups (P = 0.01). Nano-HA and nano-bioglass biomaterials showed promising results when compared to conventional micro-particles in the repair of bone defects.

  15. Evaluation on the Toxic Effects of NanoAg to Catalase.

    Science.gov (United States)

    Zhang, Bin; Zhai, Wenxin; Liu, Rutao; Yu, Zehua; Shen, Hengmei; Hu, Xinxin

    2015-02-01

    Protein is the functional actor of life. Research on protein damage induced by nanomaterials may give insight into the toxicity mechanisms of nanoparticles. Studying nano silver over the impact of the structure and function of catalase (CAT) at the molecular level, is of great significance for a comprehensive evaluation of their toxic effects. The toxic effects of nanoAg on catalase were thoroughly investigated using steady state and time resolved fluorescence quenching measurements, ultraviolet-visible absorption spectroscopy, resonance light scattering spectroscopy (RLS), circular dichroism spectroscopy (CD) and transmission electron microscopy (TEM). NanoAg could decrease the amount of alpha-helix and increase the beta sheet structure, leading to loose the skeleton structure of catalase. The characteristic fluorescence of catalase was obviously quenched, which showed the exposal of internal hydrophobic amino acids enhanced, and its quenching type is dynamic quenching. The result of RLS and TEM showed that the distribution and size of nanoAg become more uniform and smaller after their interaction, resulting in a decrease of RLS intensity. NanoAg could make the activity of catalase rise. By changing the structure of catalase, nanoAg increases its enzymatic activity to a certain extent, breaking down its balance in vivo, thereby affecting the normal physiological activities. NanoAg has obvious toxic effects on catalase. This paper provided a new perspective and method for the toxic effects of nanoAg to biological macromolecules; provided basic data and reference gist for the hygienics and toxicology studies of nanoAg. It is conducive to the toxicity prevention and control work of nanoAg, promoting nano-technology applied to human production and living better.

  16. Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W

    International Nuclear Information System (INIS)

    Grigore, E; Ruset, C; Gherendi, M; Chioibasu, D; Hakola, A

    2016-01-01

    In the present paper marker structures consisting of W/Mo layers were deposited on bulk W samples by using a modified CMSII method. This technology, compared to standard CMSII, prevents the formation of nano-pore structures at interfaces. The thicknesses of the markers were in the range 20–35 μm to balance the requirements associated with the wall erosion in ITER and thermo-mechanical performances. The coatings structure and composition were evaluated by glow discharge optical emission spectrometry (GDOES), and energy dispersive x-ray spectroscopy measurements (EDX). The adhesion of the coatings to the substrate has been assessed by scratch test method. In order to evaluate their effectiveness as potential markers for fusion applications, the marker coatings have been tested in an electron beam facility at a temperature of 1000 °C and a power density of about 3 MW m −2 . A number of 300 pulses with duration of 420 s (35 testing hours) were applied on the marker coated samples. (paper)

  17. Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W

    Science.gov (United States)

    Grigore, E.; Ruset, C.; Gherendi, M.; Chioibasu, D.; Hakola, A.; contributors, JET

    2016-02-01

    In the present paper marker structures consisting of W/Mo layers were deposited on bulk W samples by using a modified CMSII method. This technology, compared to standard CMSII, prevents the formation of nano-pore structures at interfaces. The thicknesses of the markers were in the range 20-35 μm to balance the requirements associated with the wall erosion in ITER and thermo-mechanical performances. The coatings structure and composition were evaluated by glow discharge optical emission spectrometry (GDOES), and energy dispersive x-ray spectroscopy measurements (EDX). The adhesion of the coatings to the substrate has been assessed by scratch test method. In order to evaluate their effectiveness as potential markers for fusion applications, the marker coatings have been tested in an electron beam facility at a temperature of 1000 °C and a power density of about 3 MW m-2. A number of 300 pulses with duration of 420 s (35 testing hours) were applied on the marker coated samples.

  18. Scratch resistance of SiO2 and SiO2 - ZrO2 sol-gel coatings on glass-ceramic obtained by sintering

    International Nuclear Information System (INIS)

    Soares, V. O.; Soares, P.; Peitl, O.; Zanotto, E. D.; Duran, A.; Castro, Y.

    2013-01-01

    The sol-gel process is widely used to obtain coatings on glass-ceramic substrates in order to improve the scratch and abrasion resistance, also providing a bright and homogeneous appearance of a glaze avoiding expensive final polishing treatments. This paper describes the preparation of silica and silica / zirconia coatings by sol-gel method on Li 2 O-Al 2 O3-SiO 2 (LAS) glassceramic substrates produced by sintering. The coatings were deposited by dip-coating on LAS substrates and characterized by optical microscopy and spectral ellipsometry. On the other hand, hardness and elastic modulus, coefficient of friction and abrasion and scratch resistance of the coatings were determined and compared with the substrate properties. Coatings deposited on LAS glass-ceramic confere the substrate a bright and homogeneous aspect, similar to a glaze, improving the appearance and avoiding the final polishing. However these coatings do not increase the scratch resistance of the substrate only equaling the properties of the glass-ceramic. (Author)

  19. Optimization and characterization of adhesion properties of DLC coatings on different substrates

    International Nuclear Information System (INIS)

    Waseem, B; Alam, S; Irfan, M; Shahid, M; Soomro, B D; Hashim, S; Iqbal, R

    2014-01-01

    The Diamond Like Carbon coatings (DLC) are gaining prime importance in the field of surface engineering especially cutting tools technology. The self lubricating property of these coatings makes them unique among other coatings like TiN, TiAlN, CrN etc. Unlike other coatings, DLC coatings give better surface finish and their self lubrication reduces the wear of a part to large extent. In present work, different substrates were selected to study the wear and adhesion behavior of DLC coatings. The coating was produced by physical Vapor Deposition (PVD) technique and the adhesive properties of DLC coatings were analyzed under ambient conditions using nano Scratch testing. Scanning electron microscope (SEM) was used to observe the scratches and their mechanisms

  20. Optimization and characterization of adhesion properties of DLC coatings on different substrates

    International Nuclear Information System (INIS)

    Waseem, B.; Alam, S.; Irfan, M.; Shahid, M.; Soomro, B. D.; Hashim, S.; Iqbal, R.

    2013-01-01

    The Diamond Like Carbon coatings (DLC) are gaining prime importance in the field of surface engineering especially cutting tools technology. The self lubricating property of these coatings makes them unique among other coatings like TiN, TiAlN, CrN etc. Unlike other coatings, DLC coatings give better surface finish and their self lubrication reduces the wear of a part to large extent. In present work, different substrates were selected to study the wear and adhesion behavior of DLC coatings. The coating was produced by physical Vapor Deposition (PVD) technique and the adhesive properties of DLC coatings were analyzed under ambient conditions using nano Scratch testing. Scanning electron microscope (SEM) was used to observe the scratches and their mechanisms. (author)

  1. Simulation of SU-8 frequency-driven scratch drive actuators

    KAUST Repository

    Conchouso Gonzalez, David

    2013-04-01

    This paper presents the simulation of Scratch Drive Actuators (SDAs) for micro-robotic applications. SDAs use electrostatic forces to generate motion on top of an interdigitated electrode array. The purpose of this investigation is to evaluate several design geometries and micro-actuator configurations using ConventorWare®\\'s finite element analysis module. The study performed investigates the SDAs modal and electrostatic behavior and the effects of linking two or more SDAs together in a microrobot device. In addition, the interdigitated electrode array performance, used for power delivery, was studied by changing the thickness of its dielectric layer. We present our observations based on these studies, which will aid in the understanding and development of future SDA designs. © 2013 IEEE.

  2. Simulation of SU-8 frequency-driven scratch drive actuators

    KAUST Repository

    Conchouso Gonzalez, David; Carreno, Armando Arpys Arevalo; Castro, David; Al Rawashdeh, Ehab Jamal; Valencia Garcia, Manuel; Zaher, Amir Omar; Kosel, Jü rgen; Foulds, Ian G.

    2013-01-01

    This paper presents the simulation of Scratch Drive Actuators (SDAs) for micro-robotic applications. SDAs use electrostatic forces to generate motion on top of an interdigitated electrode array. The purpose of this investigation is to evaluate several design geometries and micro-actuator configurations using ConventorWare®'s finite element analysis module. The study performed investigates the SDAs modal and electrostatic behavior and the effects of linking two or more SDAs together in a microrobot device. In addition, the interdigitated electrode array performance, used for power delivery, was studied by changing the thickness of its dielectric layer. We present our observations based on these studies, which will aid in the understanding and development of future SDA designs. © 2013 IEEE.

  3. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments.

    Science.gov (United States)

    Ashrafi, H; Shariyat, M

    2016-06-01

    Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant-rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.

  4. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    Science.gov (United States)

    Ashrafi, H.; Shariyat, M.

    2016-01-01

    Introduction Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments. PMID:27672630

  5. Application of Gaia Analysis Software AGIS to Nano-JASMINE

    Science.gov (United States)

    Yamada, Y.; Lammers, U.; Gouda, N.

    2011-07-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). Nano-JASMINE is an ultra small (35 kg) satellite for astrometry observations in Japan and Gaia is ESA's large (over 1000 kg) next-generation astrometry mission. The accuracy of Nano-JASMINE is about 3 mas, comparable to the Hipparcos mission, Gaia's predecessor some 20 years ago. It is challenging that such a small satellite can perform real scientific observations. The collaboration for sharing software started in 2007. In addition to similar design and operating principles of the two missions, this is possible thanks to the encapsulation of all Gaia-specific aspects of AGIS in a Parameter Database. Nano-JASMINE will be the test bench for the Gaia AGIS software. We present this idea in detail and the necessary practical steps to make AGIS work with Nano-JASMINE data. We also show the key mission parameters, goals, and status of the data reduction for the Nano-JASMINE.

  6. Nano materials Synthesis, Applications, and Toxicity 2012

    International Nuclear Information System (INIS)

    Nadagouda, M.N.; Lytle, D.A.; Speth, Th.F.; Dionysiou, D.D.; Mukhopadhyay, Sh.M.

    2013-01-01

    Nano technology presents new opportunities to create better materials and products. Nano materials find wide applications in catalysis, energy production, medicine, environmental remediation, automotive industry, and other sectors of our society. Nano material-containing products are already available globally and include automotive parts, defense application, drug delivery devices, coatings, computers, clothing, cosmetics, sports equipment, and medical devices. This special issue includes emerging advances in the field, with a special emphasis given to nano material synthesis and applications. There is an increasing interest in identifying magnetically separable catalysts for the degradation of wastewater. In this issue, A. Perumal et al. report an investigation of temperature-dependent magnetic properties and photo catalytic activity of CoFe 2 O 4 -Fe 3 O 4 magnetic nano composites (MNCs) synthesized by hydrothermal processes. These MNCs have saturation magnetization of 90 emu/g and coercivity (HC) of 530 Oe. The photo catalytic activity of the MNCs has been examined on the reduction of methyl orange (MO), a colored compound used in dyeing and printing textiles. The MNCs act as an excellent photo catalyst on the degradation of organic contaminants and degrade 93% of MO in 5 hours of UV irradiation. The photo catalytic activity of MNCs is attributed to remarkably high band gap energy and small particle size. Also, the MNCs with reproducible photo catalytic activity are easily separated from water media by applying an external magnetic field and they act as a promising catalyst for the remediation of textile wastewater. Microwaves can play an important role in orchestrating nano materials for a wide range of technological applications

  7. 3rd International Conference on Micro and Nano Flows (MNF2011)

    CERN Document Server

    Koenig, Carola; Micro and Nano Flow Systems for Bioanalysis

    2013-01-01

    Micro and Nano Flow Systems for Bioanalysis addresses the latest developments in biomedical engineering at very small scales. It shows how organic systems require multi-scale understanding in the broadest sense whether the approach  is experimental or mathematical, and whether the physiological state is healthy or diseased. Micro-and nano-fluidics represent  key areas of translational research in which state-of-the-art engineering processes and devices are applied to bedside monitoring and treatment. By applying conventional micro- and nano-engineering to complex organic solids, fluids, and their interactions, leading researchers from throughout the world describe methods and techniques with great potential for use in medicine and clinical practice. Coverage includes the seeming plethora of new, fine-scale optical methods for measuring blood flow as well as endothelial activation and interaction with tissue. Generic areas of modeling and bioelectronics are also considered. In keeping with the recurring them...

  8. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens.

    Directory of Open Access Journals (Sweden)

    Shifra Ken Dror

    Full Text Available Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP (Savyon Diagnostics, Ashdod, IL, a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland. This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory.

  9. Some Observations on Carbon Nano tubes Susceptibility to Cell Phagocytosis

    International Nuclear Information System (INIS)

    Fraczek-Szczypta, A.; Menaszek, E.; Blazewicz, S.; Menaszek, E.

    2011-01-01

    The aim of this study was to assess the influence of different types of carbon nano tubes (CNTs) on cell phagocytosis. Three kinds of carbon nano tubes: single-walled carbon nano horns (SWCNHs), multi walled carbon nano tubes (MWCNTs), and ultra-long single-walled carbon nano tubes (ULSWCNTs) before and after additional chemical functionalization were seeded with macrophage cell culture. Prior to biological testing, the CNTs were subjected to dispersion process with the use of phosphate buffered solution (PBS) and PBS containing surfactant (Tween 20) or dimethyl sulfoxide (DMSO). The results indicate that the cells interaction with an individual nano tube is entirely different as compared to CNTs in the form of aggregate. The presence of the surfactant favors the CNTs dispersion in culture media and facilitates phagocytosis process, while it has disadvantageous influence on cells morphology. The cells phagocytosis is a more effective for MWCNTs and SWCNHs after their chemical functionalization. Moreover, these nano tubes were well dispersed in culture media without using DMSO or surfactant. The functionalized carbon nano tubes were easily dispersed in pure PBS and seeded with cells

  10. Comparative study on nano-Zirconium Oxide Materials used in Nuclear Technology

    International Nuclear Information System (INIS)

    Khalil, T.; Dakroury, G.A.; Abou El-Nour, F.; Abdel-Khlik, M.

    2004-01-01

    Nano-ZrO 2 powders were prepared using two advanced methods, namely SoI-GeI and Gelation techniques. Y 2 O 3 , Ce0 2 and Mg0 were used as stabilizers during the preparation processes. The function of these materials is to stabilize the meta stable tetragonal Zr0 2 phase responsible for the nano character of produced materials. The applied experimental procedures proved to be suitable to produce nano powders composed of crystallites of few nano-meter size with an interfacial component formed by all atoms situated in the grain boundaries. These two structure components (nano-sized crystallites and boundaries) of comparable volume fractions are crucial for the nano-structure materials. Powder agglo-meration, contamination during processing and remaining of the residual pores in the bodies were overcome during the sintering process of the powder by special treatment. Different analytical procedures such as DTA-TG, specific surface area, pore size analysis, density, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out for Zr0 2 produced by both SoI-GeI and Gelation techniques

  11. Self-assembled Nano-layering at the Adhesive interface.

    Science.gov (United States)

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  12. Standardization of Alternative Methods for Nano genotoxicity Testing in Drosophila melanogaster Using Iron Nanoparticles: A Promising Link to Nanodosimetry

    International Nuclear Information System (INIS)

    Parvathi, D. P.; Rajagopal, K.; Sumitha, R.

    2016-01-01

    The remarkable advancement of nano technology has triggered enormous production of metal nanoparticles and nano materials for diverse applications in clinical diagnostics and biomedical research. Nano technology has facilitated understanding and analysing nano toxicology in a holistic approach. Iron nanoparticles have been of special interest in recent research owing to their dynamic, paramagnetic, and catalytic properties. Research studies (in vitro model) have demonstrated the lack of toxicity in nano iron. The present study design involves in vivo toxicity assessment of nano iron at specific concentrations of 0.1mM, 1 mM, 5 mM, and 10 mM in Drosophila. DNA fragmentation assay in exposed and F1 population showed first-line toxicity to flies. Viability and reproductive ability were assessed at 24-hour and 48-hour intervals and thus indicated no statistical significance between the exposed and control groups. The wing spot assay has expressed transparent lack of toxicity in the studied concentrations of nano iron. Protein profiling has demonstrated that the protein profiles have been intact in the larvae which confirm lack of toxicity of nano iron. This leads to concluding that nano iron at the defined concentrations is neither genotoxic nor mutagenic.

  13. Effect of Nano and Micro Friction Modifier Based Lubricants on Wear behavior between Steel-Steel Contacts

    Directory of Open Access Journals (Sweden)

    S. Bhaumik

    2017-03-01

    Full Text Available The wear and surface morphology between steel (EN24, 22-24Rc-steel (EN 31, 58-60Rc contacts was investigated in presence of friction modifiers based (micro-graphite/nano particles- multi wall carbon nano tubes and zinc oxide mineral oil. Though a decrease in wear was observed (upto a certain concentration of nano friction modifiers but a weight-gain in pins after the tests was observed for all tests with ZnO nanoparticles while weight loss was observed in tests with multi wall carbon nano tubes and graphite particles based oil samples. Surface characterization of the worn surfaces showed more surface deteriorations in case of mineral oil (no friction modifiers and mineral oil with graphite as compared with nano particles/tubes based lubricants. The occurrence of a tribo film due to the deposition of nano particle and the formation of a modified layer on the pin surfaces are likely to be responsible for the reduction of coefficient of friction and better surface roughness. Apart from investigating the wear behaviour between two steel surfaces under micro and nano particles based lubricant and analysing the surfaces of the samples a part of the work was also focussed on the weight gain after tribo tests with ZnO nano particle additions.

  14. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  15. Dependence of thermal conductivity in micro to nano silica

    Indian Academy of Sciences (India)

    This work presents the measurement of thermal conductivity of nano-silica particles using needle probe method. The validation test of thermal probe was conducted on ice and THF hydrates using our experimental set up and the results are satisfactory when compared with the literature data. The nano silica used in this ...

  16. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  17. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H, E-mail: whchang@cycu.edu.t [Center for Nano Bioengineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2009-09-16

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg{sup -1} body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  18. Orthophosphate modulates the phytotoxicity of nano-ZnO to Lemna minor (L.).

    Science.gov (United States)

    Chen, Xiaolin; O'Halloran, John; Jansen, Marcel A K

    2018-03-02

    Because of their applications in large numbers of products, Zinc Oxide nanoparticles (nano-ZnO) will inevitably enter into the environment. Nano-ZnO released into the environment will be present in a complex matrix which can cause various chemical and physical transformations and modulate the biological reactivity of these particles. Due to their rapid growth and small size, Lemna minor is recommended by OECD for toxicological testing. Here, we tested how nano-ZnO reactivity is modulated by the suite of macro- and micronutrients that are present in Lemna minor growth media. Specifically, we measured ex situ Reactive Oxygen Species (ROS) formation by nano-ZnO, and subsequent in planta toxicity. The data show how orthophosphate can modulate both ex situ ROS formation, and in planta toxicity. This has ramifications for phytotoxicity testing, which is commonly performed under controlled conditions and on media containing orthophosphate.

  19. Fiber-optical switch using cam-micromotor driven by scratch drive actuators

    Science.gov (United States)

    Kanamori, Y.; Aoki, Y.; Sasaki, M.; Hosoya, H.; Wada, A.; Hane, K.

    2005-01-01

    We fabricated a 1 × 1 fiber-optic switch using a cam-micromotor driven by scratch drive actuators (SDAs). Using the cam-micromotor, mechanical translation and precise positioning of an optical fiber were performed. An optical fiber of diameter 50 µm was bent and pushed out with a cam-mechanism driven by the SDAs fabricated by surface micromachining. The maximum rotation speed of the cam-micromotor was 7.5 rpm at a driving frequency of 1.5 kHz. The transient time of the switch to attenuate coupling efficiency less than -40 dB was around 10 ms.

  20. Control of cancer growth using single input autonomous fuzzy Nano-particles

    Directory of Open Access Journals (Sweden)

    Fahimeh Razmi

    2015-04-01

    Full Text Available In this paper a single input fuzzy controller is applied on autonomous drug-encapsulated nanoparticles (ADENPs to restrict the cancer growth. The proposed ADENPs, swarmly release the drug in local cancerous tissue and effectively decreases the destruction of normal tissue. The amount of released drug is defined considering to feed backed values of tumor growth rate and the used drug. Some significant characteristics of Nano particles compared to Nano-robots is their ability to recognize the cancerous tissue from the normal one and their simple structure. Nano particles became an attractive topic in Nano science and many efforts have been done to manufacture these particles. Simulation results show that the proposed controlling method not only decreases the cancerous tissue effectively but also reduces the side effects of drug impressively.

  1. The Dr-nanos gene is essential for germ cell specification in the planarian Dugesia ryukyuensis.

    Science.gov (United States)

    Nakagawa, Haruka; Ishizu, Hirotsugu; Chinone, Ayako; Kobayashi, Kazuya; Matsumoto, Midori

    2012-01-01

    Homologs of nanos are required for the formation and maintenance of germline stem cell (GSC) systems and for gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, alternating between asexual and sexual reproduction; they develop and maintain their somatic stem cells (SSCs) and GCSs from pluripotent stem cells known as neoblasts. We isolated a nanos homolog, Dr-nanos, from the expressed sequence tags (ESTs) of the sexualized form of Dugesia ryukyuensis. We examined the expression of Dr-nanos in asexual and sexualized planarians by in situ hybridization and analyzed its function using RNA interference (RNAi) together with a planarian sexualization assay. A nanos homolog, Dr-nanos, was identified in the planarian D. ryukyuensis. Dr-nanos expression was observed in the ovarian primordial cells of the asexual worms. This expression increased in proportion to sexualization and was localized in the early germline cells of the ovaries and testes. In X-ray-irradiated worms, the expression of Dr-nanos decreased to a large extent, indicating that Dr-nanos is expressed in some subpopulations of stem cells, especially in GSCs. During the sexualization process, worms in which Dr-nanos was knocked down by RNAi exhibited decreased numbers of oogonia in the ovaries and failed to develop testes, whereas the somatic sexual organs were not affected. We conclude that Dr-nanos is essential for the development of germ cells in the ovaries and testes and may have a function in the early stages of germ cell specification, but not in the development of somatic sexual organs.

  2. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  3. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Science.gov (United States)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  4. Nano-JASMINE: use of AGIS for the next astrometric satellite

    Science.gov (United States)

    Yamada, Y.; Gouda, N.; Lammers, U.

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). The collaboration started at 2007 prompted by Uwe Lammers' proposal. In addition to similar design and operating principles of the two missions, this is possible thanks to the encapsulation of all Gaia-specific aspects of AGIS in a Parameter Database. Nano-JASMINE will be the test bench for Gaia AGIS software. We present this idea in detail and the necessary practical steps to make AGIS work with Nano-JASMINE data. We also show the key mission parameters, goals, and status of the data reduction for the Nano-JASMINE.

  5. Optimization of Finasteride Nano-Emulsion Preparation Using ...

    African Journals Online (AJOL)

    1Mazandaran University of Medical Sciences, School of Pharmacy, Sari, 2Department of Chemistry, ... Chemometric approach was applied for optimizing the size of the nano-emulsion droplets. ... water dispersions, having droplets with 100 .... Colloid. Interf. Sci. 2004; 108-109: 207–226. 4. Anton N, Benoit JP, Saulnier P.

  6. The Tribological Behaviors of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition

    Science.gov (United States)

    Wang, Song; Liao, Zhenhua; Liu, Yuhong; Liu, Weiqiang

    2015-11-01

    Three thin films (DLC, a-C, and TiN) were performed on Ti6Al4V by chemical vapor deposition. Carbon ion implantation was pretreated for DLC and a-C films while Ti transition layer was pretreated for TiN film to strengthen the bonding strength. X-ray diffraction, Raman measurement, nano-hardness and nano-scratch tester, and cross-section etching by FIB method were used to analyze film characteristics. Tribological behaviors of these coatings were studied by articulation with both ZrO2 and UHMWPE balls using ball-on-disk sliding. The thickness values reached ~0.46, ~0.33, and ~1.67 μm for DLC, a-C, and TiN film, respectively. Nano-hardness of the coatings compared with that of untreated and bonding strength (critical load in nano-scratch test) values of composite coatings compared with that of monolayer film all increased significantly, respectively. Under destructive test (ZrO2 ball conterface) in bovine serum lubrication, TiN coating revealed the best wear resistance while DLC showed the worst. Film failure was mainly attributed to the plowing by hard ZrO2 ball characterized by abrasive and adhesive wear. Under normal test (UHMWPE ball conterface), all coatings showed significant improvement in wear resistance both in dry sliding and bovine serum lubrication. Both DLC and a-C films showed less surface damage than TiN film due to the self-lubricating phenomenon in dry sliding. TiN film showed the largest friction coefficient both in destructive and normal tests, devoting to the big TiN grains thus leading to much rougher surface and then a higher value. The self-lubricating film formed on DLC and a-C coating could also decrease their friction coefficients. The results indicated that three coatings revealed different wear mechanisms, and thick DLC or a-C film was more promising in application in lower stress conditions such as artificial cervical disk.

  7. The Clinical Test of Nano gold Cosmetic for Recovering Skin Damage Due to Chemicals: Special Case

    Science.gov (United States)

    Taufikurohmah, T.; Wardana, A. P.; Tjahjani, S.; Sanjaya, I. G. M.; Baktir, A.; Syahrani, A.

    2018-01-01

    Manufacturing of Nano gold cosmetics was done at PT. Gizi Indonesia. Clinical trials to cosmetics data supported that cosmetics are able to treat skin health which has been reported partially. For special cases, the recovery process of facial skin damage should also receive attention including cases of facial skin damage caused by chemicals such as phenol, HCl, aqua regia or other harsh chemicals. The problem determined whether the Nano gold is able to recover skin damage due to the harsh chemicals. This clinical trial data on the forms of early skin damage caused by phenol was delivered in the forms of facial photos patients. The recovery progress of facial skin condition was obtained every week for two months. The data included the forms of widespread wounds during the recovery process. This statement supported by anova statistical analysis of the widespread wound changing every week for 8 times. The conclusion is skin damage due to Phenol impregnation can be recovered with the use of Nano gold cosmetics for 8 weeks. This results support the manufacturing of Nano gold cosmetics for the needs of society. It also suggest that Nano gold material can be used for medicine manufacturing in the future.

  8. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  9. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    Science.gov (United States)

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  10. Plasmonic graded nano-disks as nano-optical conveyor belt.

    Science.gov (United States)

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  11. Technologies for the 21st century: carbon nano tubes as adsorbents of metals

    International Nuclear Information System (INIS)

    Alguacil, F. J.; Cerpa, A.; Lado, I.; Lopez, F. A.

    2014-01-01

    Nowadays and in the recent past when the word nano appeared in almost anything it attracted immediate attention and interest, this is why carbon nano tubes, since its discovery nearly twenty years ago, caught the interest of a wide scientific and industrial population to apply the somewhat amazing properties of these nano materials in a number of applications. Among them, the removal of toxic and sometimes profitable metals from aqueous streams appeared, due to its economical and social impact, as one of the targets for their uses. This paper reviews some recent advances (2009-2013 years) in the application of carbon nano tubes materials in the removal of a variety of metals from these aqueous streams. (Author)

  12. MICRO & NANO TECHNOLOGIES – APPLICATIONS, DESIGN AND INTEGRATION

    Directory of Open Access Journals (Sweden)

    Dorin LEŢ

    2010-05-01

    Full Text Available The science of micro-nano technologies represents a multidisciplinary research domain, which provokes active participation of specialist from multiple domains (physics, chemistry, biology, mathematics, electronics, medicine, a.o.. Nanotechnology is an applied science domain focusing the design, synthesis and characterization of materials and devices starting from individual atoms and molecules level up to supramolecular level of strains of molecules with 100 molecular diameters. Operations at this dimensions implies the understanding of new scientific principles and new materials properties, which take place at micro and nano scale and are used in the development of materials, devices and systems with new and improved functions and performances. The properties and basic functions of structures and material systems at nano scale may be changed based on the organization of the living mater on molecular “weak” interactions (hydrogen binds, electrostatic dipole, Van der Waals forces, surface forces, electrofluidic forces, a.o..

  13. An education model of a nano-positioning system for mechanical engineers

    International Nuclear Information System (INIS)

    Lee, Dong Yeon; Gweon, Dae Gab

    2006-01-01

    The increasing use of nano-positioners in a wide variety of laboratory and industrial applications has created a need for nano-mechatronics education in all engineering disciplines. The subject of nano-mechatronics is broad and interdisciplinary. This article focuses on the way nano-mechatronics is taught in department of mechanical engineering at Korea Advanced Institute of Science and Technology (KAIST). As one model of nano-positioning systems, design and experimental methodology is presented in this article. For design phase, the stiffness and resonant frequencies are found analytically and verified by using a commercial finite element analysis program. Next, for experimental phase, various tests are performed to access the performances of the designed nano-positioner, for example, sine-tracking, multi-step response and travel-range check etc. Finally, the definition of 'separation frequency' is described and some comments are discussed

  14. Visible Light Irradiation-Mediated Drug Elution Activity of Nitrogen-Doped TiO2 Nano tubes

    International Nuclear Information System (INIS)

    Oh, S.; Moon, K.S.; Bae, J.M.; Moon, J.H.; Jin, S.

    2013-01-01

    We have developed nitrogen-doped TiO 2 nano tubes showing photo catalytic activity in the visible light region and have investigated the triggered release of antibiotics from these nano tubes in response to remote visible light irradiation. Scanning electron microscopy (SEM) observations indicated that the structure of TiO 2 nano tubes was not destroyed on the conditions of 0.05 and 0.1 M diethanolamine treatment. The results of X-ray photoelectron spectroscopy (XPS) confirmed that nitrogen, in the forms of nitrite (TiO 2 ) and nitrogen monoxide (NO), had been incorporated into the TiO 2 nano tube surface. A drug-release test revealed that the antibiotic-loaded TiO 2 nano tubes showed sustained and prolonged drug elution with the help of polylactic acid. Visible light irradiation tests showed that the antibiotic release from nitrogen-doped nano tubes was significantly higher than that from pure TiO 2 nano tubes (ρ ≨ 0.05).

  15. Radiation dosimetry using nano-BaSO{sub 4}:Eu

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, A.; Sharma R, K. [University of Delhi, Department of Physics, Sri Venkateswara College, Benito Juarez Road, Dhaula Kuan, 110021 New Delhi (India); Bahl, S.; Kumar, P. [Medical Physics Unit, IRCH, AIIMS, 110029 New Delhi (India); Pal L, S., E-mail: apandey@svc.ac.in [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, 110067 New Delhi (India)

    2015-10-15

    Nanocrystalline barium sulfate doped with europium (BaSO{sub 4}:Eu) was successfully prepared by the chemical co-precipitation technique and its thermoluminescence (Tl) dosimetry characteristics were studied for gamma radiation. Initially the dopant (Eu) concentration was varied, starting from 0.05 mol % to up to 1.00 mol %, and it was found that the nano phosphor BaSO{sub 4}:Eu with the dopant concentration of 0.2 mol % had the highest sensitivity within the given lot. The nano phosphor was also optimized for its annealing temperature in order to obtain the best results and was thereafter tested for its reusability and fading features. Further the nano phosphor was compared with the commercially available standard Tl dosimeter material LiF:Mg,Ti (popularly referred to as TLD-100) and it was found that the nano phosphor not only had a higher Tl sensitivity compared to the standard material over a wide range of doses but also had a Tl response which was linear even beyond the dose of 1 kGy. Linearity in Tl response to up to such high doses (∼1 kGy) is typical of nanocrystalline Tl phosphors. All the samples were irradiated by Co-60 source (having 1.25 MeV average energy) of gamma radiation. In order to test the energy independence of the nano phosphor (an important characteristic of an ideal Tl dosimeter) further studies are being carried out to examine the response of the nano phosphor to ionizing radiations of different energies. (Author)

  16. Preparation of Multi-walled Carbon Nano tubes/ Natural Rubber Composite by Wet Mixing Method

    International Nuclear Information System (INIS)

    Azira Abdul Aziz; Azira Abdul Aziz; Che Su Mat Saad; Mohamad Rusop Mahmood

    2011-01-01

    Natural rubber/multi-walled carbon nano tubes (Nr/MWCNTs) nanocomposite is formed by incorporating nano tubes in a polymer solution and subsequently evaporating the solvent. Using this technique, nano tubes will be dispersed homogeneously in the NR matrix in an attempt to increase the mechanical properties of these nano composites. Mechanical test results show an increase in the tensile strength for up to 19 times in relation to pure NR. In addition to mechanical testing, the morphology of the MWNTs into NR was studied by Field Emission Scanning Electron Microscopy (FESEM) in order to understand the morphology of the resulting system. Slight shift noted from Raman analyses from each different wt. % of MWCNTs with the NR due to the stress transfer that indicates reinforcement of the nano tubes. (author)

  17. Comparison between Fluoride and Nano-hydroxyapatite in Remineralizing Initial Enamel Lesion: An in vitro Study.

    Science.gov (United States)

    Daas, Issa; Badr, Sherine; Osman, Essam

    2018-03-01

    The aim of this study was to compare the effectiveness of nano-hydroxyapatite (nano-HAP) paste and fluoride varnish in remineralizing initial enamel lesion in young permanent teeth and their ability to resist secondary caries under dynamic pH cycling quantitatively and qualitatively. Initial caries-like lesions were artificially developed on 45 specimens. Specimens were divided into three groups: (1) Control (without treatment), (2) fluoride varnish (3M ESPE), and (3) nano-HAP paste (Desensibilize Nano P). The nano-HAP paste was applied twice separated by one pH cycle, and the varnish was applied only once followed by 7 days of pH cycling. All specimens were examined using DIAGNOdent® pen (KaVo, Germany), and a representative specimen was randomly selected from each group for qualitative evaluation using scanning electron microscope (SEM) at four stages: Baseline, after lesion formation, immediately after remineralization, and after pH cycling. Data were statistically analyzed with Statistical Package for the Social Sciences (SPSS), version 20. The degree of demineralization was significantly elevated in control group; however, no significant difference was found between fluoride varnish group and nano-HAP paste group (p Nano-HAP paste showed promising long-term protective effect in terms of surface depositions and maintaining a smooth surface compared with fluoride varnish. Based on the findings of this study, nano-HAP paste might be recommended as alternative remineralizing agent with lower fluoride concentration than fluoride varnish that could be beneficial for children, pregnant females, and those who are at high risk of dental fluorosis.

  18. The Sustainable Improvement of Manufacturing for Nano-Titanium

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2016-04-01

    Full Text Available Scientists have found that nanomaterials possess many outstanding features in their tiny grain structure compared to other common materials. Titanium at the nano-grain scale shows many novel characteristics which demonstrate suitability for use in surgical implants. In general, equal channel angular pressing (ECAP is the most popular and simple process to produce nano-titanium. However, ECAP is time-consuming, power-wasting, and insufficiently produces the ultrafine grain structure. Therefore, the objective of this research is to propose a new method to improve the ECAP’s performances to reach the ultrafine grain structure, and also to save production costs, based on the innovation theory of Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ. Research results show that the process time is reduced by 80%, and 94% of the energy is saved. Moreover, the grain size of the diameter for nano-titanium can be reduced from 160 nanometers (nm to 80 nm. The results are a 50% reduction of diameter and a 75% improvement of volume. At the same time, the method creates a refined grain size and good mechanical properties in the nano-titanium. The proposed method can be applied to produce any nanomaterial as well as biomaterials.

  19. Cancer Nano medicine

    International Nuclear Information System (INIS)

    Li, H.; Pike, M.M.; Luo, X.; Liu, L.H.

    2013-01-01

    Bioengineered nano materials have inspired revolutionary imaging and drug delivery methods whose clinical application in cancer research has resulted in powerful medical devices for early diagnosis, treatment, and prevention of cancer. Recent advances in super imaging agents have resulted in improved resolution and sensitivity. For instance, fluorescent quantum dots with wavelength-tunable emissions, plasmon-resonant gold nano structures with shape-controlled near-infrared absorptions, and MRI-active iron oxide nanoparticles are well-established molecular imaging probes for noninvasive cancer imaging. Nano materials are also considered to be the most effective vectors that can break through transport bio barriers and deliver a constant dose of multiple therapeutic agents to tumors and intracellular endocytic compartments for cancer gene therapy, immunotherapy, or chemotherapy. Furthermore, nano wire- or nano tube-based electronic devices demonstrate extraordinary sensitivity capable of detection at the single molecule or protein level. It is anticipated that developing nano technology-driven imaging, sensing, and therapeutic systems will dramatically advance cancer research and clinical treatments.

  20. Applied research for profilometric testing of the state of interior surfaces in heat exchanger tubes

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu; Panaitescu, Valeriu Nicolae

    2009-01-01

    Generally, the surface flaws identified at heat exchangers tubing are characteristic for the heat secondary systems, located on the external surfaces of the heat exchanger tubes and are mostly the results of the ageing phenomena in systems operation. The tests performed, with the impressing replicating device confirmed the applicability of the technique, functionality of the device and resulted in replicas on metal support, these being the hard copy of the negative of the test tube surface, allowing the profile measurement. The visual inspection of the replicas on the metallic support gives information about the surface geometry replicated, pointing out the marks, which belong to the same area under observation. The minimum and maximum values for the depth of the channel worked out in the inner test tube wall have been determined by profile graphic measurement on the replicas. The paper presents the structural and functional description of the experimental devices. The first results and some conclusions are also included. Two patent applications were submitted at State Office for Inventions and Trademarks (OSIM) covering the original data to protect royalty: 'The local pit flaws, scratches, incipient micro-cracks replicating device on inner cylindrical surfaces', under no. A/00299/17.04.2008 and 'The annular local flaw, incipient micro-cracks replicating device on inner cylindrical surface' under no. A/00300/17.04.2008

  1. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering.

    Science.gov (United States)

    Naghashzargar, Elham; Farè, Silvia; Catto, Valentina; Bertoldi, Serena; Semnani, Dariush; Karbasi, Saeed; Tanzi, Maria Cristina

    2015-07-04

    A novel biodegradable nano/micro hybrid structure was obtained by electrospinning P3HB or PCL nanofibers onto a twisted silk fibroin (SF) structure, with the aim of fabricating a suitable scaffold for tendon and ligament tissue engineering. The electrospinning (ES) processing parameters for P3HB and PCL were optimized on 2D samples, and applied to produce two different nano/micro hybrid constructs (SF/ES-PCL and SF/ES-P3HB).Morphological, chemico-physical and mechanical properties of the novel hybrid scaffolds were evaluated by SEM, ATR FT-IR, DSC, tensile and thermodynamic mechanical tests. The results demonstrated that the nanofibers were tightly wrapped around the silk filaments, and the crystallinity of the SF twisted yarns was not influenced by the presence of the electrospun polymers. The slightly higher mechanical properties of the hybrid constructs confirmed an increase of internal forces due to the interaction between nano and micro components. Cell culture tests with L929 fibroblasts, in the presence of the sample eluates or in direct contact with the hybrid structures, showed no cytotoxic effects and a good level of cytocompatibility of the nano/micro hybrid structures in term of cell viability, particularly at day 1. Cell viability onto the nano/micro hybrid structures decreased from the first to the third day of culture when compared with the control culture plastic, but appeared to be higher when compared with the uncoated SF yarns. Although additional in vitro and in vivo tests are needed, the original fabrication method here described appears promising for scaffolds suitable for tendon and ligament tissue engineering.

  2. Survey on Recent Designs of Compliant Micro-/Nano-Positioning Stages

    Directory of Open Access Journals (Sweden)

    Zeyi Wu

    2018-02-01

    Full Text Available Micromanipulation is a hot topic due to its enabling role in various research fields. In order to perform a high precision operation at a small scale, compliant mechanisms have been proposed and applied for decades. In microscale manipulation, micro-/nano-positioning is the most fundamental operation because a precision positioning is the premise of subsequent operations. This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years. It involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization. The review provides a reference to design a compliant micro-/nano-positioning stage for pertinent applications.

  3. Electroporation - a biophysical method for transferring nano-sized systems and drugs in vitro and in vivo

    International Nuclear Information System (INIS)

    Nikolova, B.; Atanasova, S.; Pehlivanova, V.; Jelev, J.; Tsoneva, Y.; Bakalova, R.; Peycheva, E.

    2017-01-01

    The aim of this study was to investigate the electrostatic internalisation of quinatum dots (QDs) and QDs containing nano-hydrogels in the Colon 26 cell line and their effect on cell viability as well as their passive and electrically mediated delivery in solid murine tumor models. Materials and methods: Colon 26 cancer cell line was used for in vitro experiments, survival was followed by a MTS test, and images were obtained by confocal microscopy. For in vivo experiments, mouse models with implanted Colon 26 cells were used. All in vivo measurements are carried out ~ 9-10 days after the inoculation, when the tumor size is ~ 100 mm 3 . Results: Electroporation facilitates the delivery of nanoparticles - both in vivo and in vitro. We demonstrate that increasing the applied tension leads to increased nanoparticle penetration into the cells without significantly reducing cell survival. The penetration of nano-hydrogels into tumor tissue is visualized by fluorescence imaging and MRI. The highest intensity of the tumor signal was recorded 30 minutes after the combined treatment (electroporation and QDs loaded nano-hydrogels), even 48 hours post electroporation. The data show a more efficient penetration and long retention of nanoparticles in the tumor after electroporation, due to the increased permeability of the cell membranes and local cleavage of the blood vessels. Conclusion: The internalization and retention of nano-hydrogels is a promising tool both in future strategies for the treatment of cancer and nano medicine. [bg

  4. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    Science.gov (United States)

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. BN-based nano-composites obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Major, B.; Kosydar, R.; Major, L; Mroz, W.; Burdynska, S.; Jelinek, M.; Kot, M.; Kustosz, R.

    2006-01-01

    Boron nitride thin layers were produced by means of the pulsed laser deposition technique from hexagonal boron nitride target. Two types of laser i.e. Nd: YAG with Q-switch as well as KrF coupled with RF generator were used. Influence of deposition parameters on surface morphology, phase composition as well as mechanical properties is discussed. Results obtained using Fourier Transformed Infrared Spectroscopy, Transmission and Scanning Electron Microscopy, Atomic Force Microscopy are presented. Micromechanical properties measured during micro indentation, scratch and wear tests are also shown. (authors)

  6. Production and Application of Olivine Nano-Silica in Concrete

    Science.gov (United States)

    Mardiana, Oesman; Haryadi

    2017-05-01

    The aim of this research was to produce nano silica by synthesis of nano silica through extraction and dissolution of ground olivine rock, and applied the nano silica in the design concrete mix. The producing process of amorphous silica used sulfuric acid as the dissolution reagent. The separation of ground olivine rock occurred when the rock was heated in a batch reactor containing sulfuric acid. The results showed that the optimum mole ratio of olivine- acid was 1: 8 wherein the weight ratio of the highest nano silica generated. The heating temperature and acid concentration influenced the mass of silica produced, that was at temperature of 90 °C and 3 M acid giving the highest yield of 44.90%. Characterization using Fourier Transform Infrared (FTIR ) concluded that amorphous silica at a wavenumber of 1089 cm-1 indicated the presence of siloxane, Si-O-Si, stretching bond. Characterization using Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) showed the surface and the size of the silica particles. The average size of silica particles was between 1-10 μm due to the rapid aggregation of the growing particles of nano silica into microparticles, caused of the pH control was not fully achieved.

  7. Preparation, Characterization, and Modeling of Carbon Nano fiber/Epoxy Nano composites

    International Nuclear Information System (INIS)

    Sun, L.H.; Yang, Z.G.; Ounaies, Z.; Whalen, C.A.; Gao, X.L.

    2011-01-01

    There is a lack of systematic investigations on both mechanical and electrical properties of carbon nano fiber (CNF)-reinforced epoxy matrix nano composites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nano composites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nano composites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nano composite with a 1.0 wt % CNFs. The alternate-current (AC) electrical properties of the CNF/epoxy nano composites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt % (0.058 vol %) CNFs and by ten orders of magnitude for nano composites with CNF volume fractions higher than 1.0 wt % (0.578 vol %). The percolation threshold (i.e., the critical CNF volume fraction) is found to be at 0.057 vol %.

  8. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Je Ha; Kwon, Oh Yang; Seo, Seong Wook [Inha University, Incheon (Korea, Republic of)

    2011-02-15

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10{approx}40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  9. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    International Nuclear Information System (INIS)

    Shin, Je Ha; Kwon, Oh Yang; Seo, Seong Wook

    2011-01-01

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10∼40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  10. Preliminary Study on CHF Enhancement of Cellulose Nano Fiber (CNF) Fluid with Wire Pool Boiling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Ki; Lee, Yun Seok; Lim, Dong Young; Song, Sub Lee; Lee, Jae Young; Lee, Kwon Yeong [Hanyang Global University, Pohang (Korea, Republic of); Hwang, Dong Soo [POSTECH, Pohang (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) is enhancement of a boiling system will make more compact and effective cooling systems, for examples, nuclear reactors, and air conditioning units. For decades, researchers have been trying to develop more efficient working fluid for heat transfer. This is where nano-fluid could play a key role. There have been a lot of researches for CHF enhancements in nucleate boiling by using nano-fluid which are composed of metal such as copper, Al{sub 2}O{sub 3} and ceramic. And a critical factor of the enhancement is deposition of nano-particles on heating surface, although some results of recent studies are contrary. Also, previous nano-fluid are expensive and have a problem in mass production, so they are difficult to apply to practical industries. Therefore we chose a new material, cellulose nano fiber (CNF) as a solution. CNF can be applied to real situation because it has some advantages which are cost-effectiveness, easiness to get and to make it in nano scale. CHF performance of CNF fluid was different from that of distilled water. Compared to CHF of distilled water, CHF of the CNF fluid which had 0.001V%, 0.01V%, and 0.1V% volumetric concentrations were enhanced to 1%, 104%, and 13% respectively. Likewise other nano-fluid, deposition phenomena was observed in this CNF fluid boiling experiment.

  11. Preliminary Study on CHF Enhancement of Cellulose Nano Fiber (CNF) Fluid with Wire Pool Boiling Experiment

    International Nuclear Information System (INIS)

    Hwang, Won Ki; Lee, Yun Seok; Lim, Dong Young; Song, Sub Lee; Lee, Jae Young; Lee, Kwon Yeong; Hwang, Dong Soo

    2016-01-01

    Critical heat flux (CHF) is enhancement of a boiling system will make more compact and effective cooling systems, for examples, nuclear reactors, and air conditioning units. For decades, researchers have been trying to develop more efficient working fluid for heat transfer. This is where nano-fluid could play a key role. There have been a lot of researches for CHF enhancements in nucleate boiling by using nano-fluid which are composed of metal such as copper, Al_2O_3 and ceramic. And a critical factor of the enhancement is deposition of nano-particles on heating surface, although some results of recent studies are contrary. Also, previous nano-fluid are expensive and have a problem in mass production, so they are difficult to apply to practical industries. Therefore we chose a new material, cellulose nano fiber (CNF) as a solution. CNF can be applied to real situation because it has some advantages which are cost-effectiveness, easiness to get and to make it in nano scale. CHF performance of CNF fluid was different from that of distilled water. Compared to CHF of distilled water, CHF of the CNF fluid which had 0.001V%, 0.01V%, and 0.1V% volumetric concentrations were enhanced to 1%, 104%, and 13% respectively. Likewise other nano-fluid, deposition phenomena was observed in this CNF fluid boiling experiment.

  12. Effect of cutting temperature on hardness of SiC and diamond in the nano-cutting process of monocrystalline silicon

    Science.gov (United States)

    Wang, Jiachun; Li, Yuntao; Liu, Xiaoxuan; Lv, Maoqiang

    2016-10-01

    In the process of cutting silicon by natural diamond tools, groove wear happens on the flank face of cutting tool frequently.Scholars believe that one of the wear reasons is mechanical scratching effect by hard particles like SiC. To reveal the mechanical scratching mechanism, it is essential to study changes in the mechanical properties of hard particles and diamond, especially the effect of cutting temperature on hardness of diamond and hard particles. Molecular dynamics (MD) model that contact-zone temperature between tool and workpiece was calculated by dividing zone while nano-cutting monocrystalline silicon was established, cutting temperature values in different regions were computed as the simulation was carried out.On this basis, the models of molecular dynamics simulation of SiC and diamond were established separately with setting the initial temperature to room temperature. The laws of length change of C-C bond and Si-C bond varing with increase of simulation temperature were studied. And drawing on predecessors' research on theoretical calculation of hardness of covalent crystals and the relationship between crystal valence electron density and bond length, the curves that the hardness of diamond and SiC varing with bond length were obtained. The effect of temperature on the hardness was calculated. Results show that, local cutting temperature can reach 1300K.The rise in cutting temperature leaded to a decrease in the diamond local atomic clusters hardness,SiC local atomic clusters hardness increased. As the cutting temperature was more than 1100K,diamond began to soften, the local clusters hardness was less than that of SiC.

  13. Ranking nano-enabled hybrid media for simultaneous removal of contaminants with different chemistries: Pseudo-equilibrium sorption tests versus column tests.

    Science.gov (United States)

    Custodio, Tomas; Garcia, Jose; Markovski, Jasmina; McKay Gifford, James; Hristovski, Kiril D; Olson, Larry W

    2017-12-15

    The underlying hypothesis of this study was that pseudo-equilibrium and column testing conditions would provide the same sorbent ranking trends although the values of sorbents' performance descriptors (e.g. sorption capacity) may vary because of different kinetics and competition effects induced by the two testing approaches. To address this hypothesis, nano-enabled hybrid media were fabricated and its removal performances were assessed for two model contaminants under multi-point batch pseudo-equilibrium and continuous-flow conditions. Calculation of simultaneous removal capacity indices (SRC) demonstrated that the more resource demanding continuous-flow tests are able to generate the same performance rankings as the ones obtained by conducing the simpler pseudo-equilibrium tests. Furthermore, continuous overlap between the 98% confidence boundaries for each SRC index trend, not only validated the hypothesis that both testing conditions provide the same ranking trends, but also pointed that SRC indices are statistically the same for each media, regardless of employed method. In scenarios where rapid screening of new media is required to obtain the best performing synthesis formulation, use of pseudo-equilibrium tests proved to be reliable. Considering that kinetics induced effects on sorption capacity must not be neglected, more resource demanding column test could be conducted only with the top performing media that exhibit the highest sorption capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  15. Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Tran, Vy Anh; Thinh Troung, Trieu; Pham Phan, Thu Anh

    2017-01-01

    Our research aimed to improve the overall energy conversion efficiency of DSCs by applying nitrogen-doped TiO2 nano-tubes (N-TNT) for the preparation of DSCs photo-anodes. The none-doped TiO2 nano-tubes (TNTs) were synthesized by alkaline hydrothermal treatment of Degussa P25 TiO2 particles in 10...

  16. Microleakage under orthodontic bands cemented with nano-hydroxyapatite-modified glass ionomer.

    Science.gov (United States)

    Enan, Enas T; Hammad, Shaza M

    2013-11-01

    To estimate the in vivo effect of nano-hydroxyapatite (HA) modification of banding glass-ionomer cement on microleakage under orthodontic bands. Eighty noncarious premolars scheduled for extraction in 20 orthodontic patients were randomly divided into four groups. Grouping was based on the ratio of nano-HA (0%, 5%, 10%, 15% by weight) added to the luting glass-ionomer cement (GIC) Ketac-Cem, which was used for cementation of prefabricated micro-etched orthodontic bands. Dye penetration method was used for microleakage evaluation at the cement-band and cement-enamel interfaces. Statistical evaluation was performed with a Kruskal-Wallis test and a Mann-Whitney U-test, and a Bonferroni-adjusted significance level was calculated. Bands cemented with conventional GIC showed the highest microleakage scores in comparison to those cemented with nano-HA-modified GIC. No significant difference was found between teeth banded with 10% and 15% modified GIC. Modification of the banding GIC with 15% nano-HA revealed a positive effect on reducing microleakage around orthodontic bands.

  17. Impedance and modulus spectroscopic study of nano hydroxyapatite

    Science.gov (United States)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  18. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  19. Field-induced Gap and Quantized Charge Pumping in Nano-helix

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; /Stanford U., Phys. Dept. /Tsinghua U., Beijing; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-02-15

    We propose several novel physical phenomena based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. Similar idea can be applied to 'geometrically' constructing one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  20. Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.

    Science.gov (United States)

    Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan

    2017-12-01

    To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.

  1. In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip

    International Nuclear Information System (INIS)

    Wang Yuelin; Li Tie; Zhang Xiao; Zeng Hongjiang; Jin Qinhua

    2014-01-01

    Our investigation of in situ observations on electronic and mechanical properties of nano materials using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) with the help of traditional micro-electro-mechanical system (MEMS) technology has been reviewed. Thanks to the stability, continuity and controllability of the loading force from the electrostatic actuator and the sensitivity of the sensor beam, a MEMS tensile testing chip for accurate tensile testing in the nano scale is obtained. Based on the MEMS chips, the scale effect of Young's modulus in silicon has been studied and confirmed directly in a tensile experiment using a transmission electron microscope. Employing the nanomanipulation technology and FIB technology, Cu and SiC nanowires have been integrated into the tensile testing device and their mechanical, electronic properties under different stress have been achieved, simultaneously. All these will aid in better understanding the nano effects and contribute to the designation and application in nano devices. (invited papers)

  2. Combinatorial Nano-Bio Interfaces.

    Science.gov (United States)

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  3. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    Science.gov (United States)

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (porthodontic metal brackets to nano-hybrid composite resin surfaces.

  4. Fire retardancy assessment of polypropylene composite filed with nano clay prepared from Iraqi bentonite

    Science.gov (United States)

    Kareem Salih, Watheq

    2018-05-01

    Fire retardants have an extraordinary importance because of their role in saving the people, property and reducing the damages and minimizing the dangers resulting from fires and burning of polymeric composites which are used in different civil and industrial fields. The work in this paper can be divided into two main stages. In first one nano-clay was manufactured from Iraqi bentonite and it was characterized using AFM, XRD, XRF, SEM, and BET. The AFM test showed the particle size of prepared nano clay was about 99.25 nm. In the second stage, polypropylene/nano clay composites at three low loading percents (0%,2%,4%,6%) were formulated via twin screw extruder. The fire retardancy tests included burning rate according to ASTM:D-635 and maximum flame height of flame according to ASTM:D-3014. Besides, the mechanical tests and thermal behavior of prepared samples were investigated. The results showed that (4%) of nano-clay had the maximum fire retardancy and while at (2%) loading, the maximum value of tensile strength and Yong modulus were obtained. The maximum heat of fusion was recorded for 6% nano clay sample. The final results assessment confirmed on the possibility of using low loadings of prepared nano clay to improve the fire retardancy, mechanical and thermal properties successfully.

  5. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  6. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    Science.gov (United States)

    Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.

    2018-05-01

    In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  7. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    Science.gov (United States)

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se 0 ) under both aerobic and anaerobic conditions. The biogenic nano-Se 0 converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg 0 ) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg 0 remediation, probably owing to the release of intracellular nano-Se 0 from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se 0 and Hg 0 . Biosynthesis of nano-Se 0 both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg 0 -contaminated surface and subsurface soils, where the redox potential often changes dramatically. Copyright © 2016. Published by Elsevier Ltd.

  8. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    Science.gov (United States)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  9. Weatherability and Leach Resistance of Wood Impregnated with Nano-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Nami Kartal S

    2010-01-01

    Full Text Available Abstract Southern pine specimens vacuum-treated with nano-zinc oxide (nano-ZnO dispersions were evaluated for leach resistance and UV protection. Virtually, no leaching occurred in any of the nano-ZnO–treated specimens in a laboratory leach test, even at the highest retention of 13 kg/m3. However, specimens treated with high concentrations of nano-ZnO showed 58–65% chemical depletion after 12 months of outdoor exposure. Protection from UV damage after 12 months exposure is visibly obvious on both exposed and unexposed surfaces compared to untreated controls. Graying was markedly diminished, although checking occurred in all specimens. Nano-zinc oxide treatment at a concentration of 2.5% or greater provided substantial resistance to water absorption following 12 months of outdoor exposure compared to untreated and unweathered southern pine. We conclude that nano-zinc oxide can be utilized in new wood preservative formulations to impart resistance to leaching, water absorption and UV damage of wood.

  10. ON NANO Λg-CLOSED SETS

    OpenAIRE

    Rajasekaran, Ilangovan; Nethaji, Ochanan

    2017-01-01

    Abstaract−In this paper, we introduce nano ∧g-closed sets in nano topological spaces. Some properties of nano ∧g-closed sets and nano ∧g-open sets are weaker forms of nano closed sets and nano open sets

  11. Transferring metallic nano-island on hydrogen passivated silicon surface for nano-electronics

    International Nuclear Information System (INIS)

    Deng, J; Troadec, C; Joachim, C

    2009-01-01

    In a planar configuration, precise positioning of ultra-flat metallic nano-islands on semiconductor surface opens a way to construct nanostructures for atomic scale interconnects. Regular triangular Au nano-islands have been grown on atomically flat MoS 2 substrates and manipulated by STM to form nanometer gap metal-pads connector for single molecule electronics study. The direct assembly of regular shaped metal nano-islands on H-Si(100) is not achievable. Here we present how to transfer Au triangle nano-islands from MoS 2 onto H-Si(100) in a clean manner. In this experiment, clean MoS 2 substrates are patterned as array of MoS 2 pillars with height of 8 μm. The Au triangle nano-islands are grown on top of the pillars. Successful printing transfer of these Au nano-islands from the MoS 2 pillars to the H-Si(100) is demonstrated.

  12. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  13. Electrical characterization of Ge–Sb–Te phase change nano-pillars using conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Bae, Byeong-Ju; Hong, Sung-Hoon; Hwang, Seon-Yong; Hwang, Jae-Yeon; Yang, Ki-Yeon; Lee, Heon

    2009-01-01

    The electrical characteristic of phase change material was studied in nano-scale using nanoimprint lithography and a conducting atomic force microscopy measurement system. Nanoimprint lithography was used to fabricate the nano-scale phase change material pattern. A Pt-coated AFM tip was used as a top electrode to measure the electrical characteristics of the GST nano-pillar. The GST nano-pillar, which is 200 nm in diameter, was amorphized by 2 V and 5 ns reset pulse and was then brought back to the crystalline phase by applying 1.3 V and 150 ns set pulse. Using this measurement system, the GST nano-pillar was switched between the amorphous and crystalline phases more than five times. The results of the reset and the set current measurement with the GST nano-pillar sizes show that the reset and the set currents also decreased with the decrease of the GST pillar size

  14. Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors

    International Nuclear Information System (INIS)

    Amin, S.; Siddique, T.

    2015-01-01

    In the present work reverse micro emulsion has been employed as nano reactors to synthesize nano crystalline Hydroxyapatite (HA). Two precursors; calcium and phosphate with different counter ions of each were used for the synthesis of HA at two different temperatures. To maintain the emulsified nano reactor, cyclohexane, TX-100 and 1-butanol including phosphate precursor was the continuous phase while aqueous Ca precursor solution was taken as the dispersed phase. Nano crystalline particles thus produced were evaluated on the basis of synthesis route, counter ions and temperature. It has been shown that emulsified nano reactors control the morphology, particle size and minimize phase transformation of HA. Characterizations of nano powder of HA are carried out using x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). HA crystallite size was found to be in the range of 20-25 nm whereas the morphology of nano particles changed from spheres to rods. (author)

  15. Nano devices and sensors

    CERN Document Server

    Liaw, Shien-Kuei; Chung, Yung-Hui

    2016-01-01

    This volume on semiconductor devices focuses on such topics as nano-imprinting, lithography, nanowire charge-trapping, thermo-stability in nanowires, nano-electrodes, and voltage and materials used for fabricating and improving electrical characteristics of nano-materials.

  16. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  17. Study of the morphology exhibited by exfoliated polyurethane/montmorillonite nano composites during in situ recovery tests

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iaci M., E-mail: iaci@ctex.eb.br [Divisao Belica do Centro Tecnologico do Exercito. CTEx, Rio de Janeiro, RJ (Brazil); Orefice, Rodrigo L. [Universidade Federal de Minas Gerais Departamento de Metalurgia e Materiais. UFMG, Belo Horizonte, MG (Brazil)

    2011-07-01

    By using small-angle X-ray scattering, this study aims to examine the SM behavior of montmorillonite polyurethane nano composites. To investigate the phase morphology, a deformed specimen was placed on a heating stage mounted at the Synchrotron beamline; the shape recovery was measured during 15 min. As temperature increases, the crystalline fraction rapidly decreases. The degree of clay delamination within the matrix increases, disturbing the formation of hard and soft segments. Deformation induces changes in the phase proportion, increasing the disperse phase contribution. During in situ tests, the ratio between matrix and disperse phase reaches an equilibrium controlled by the temperature. (author)

  18. Application of emission CT on nano-robot radiation imaging tracing and isotope sign in nano-robot

    International Nuclear Information System (INIS)

    Wang Xuewu; Cheng Jianping; Kang Kejun

    2000-01-01

    Nano-technology has been a scientific and technical frontier with major trends foreseen in several disciplines. Nano-robot is the most remarkable imagination of the application of nano-technology. And it should be concerned of tracing technology along with nano-robot. The character of nano-robot is deeply analyzed, the development status of emission CT is integrated, and the application of emission CT on nano-robot radiation imaging tracing is discussed. The isotope sign of nano-robot is especially calculated and analyzed

  19. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  20. Can schools save kids' palates? Cooking from scratch in schools--the greatest food service challenge of our time.

    Science.gov (United States)

    Collins, Beth

    2012-08-01

    School District Food Service Departments are faced with the enormous task of feeding children in the United States up to two thirds of the meals that they consume during the week at school. The shift in food production since the 1970s produced a trend away from scratch-cooked foods and resulted in more meals created from processed foods. The United States has reached a tipping point where the health of the current generation is compromised by increasing health risks of diet-related disease. Schools have been identified as a critical environment in which there is an opportunity to effect change in what children eat. As a result, in the last 10 years, there has been a resurgence of interest in freshly prepared meals in schools. This article explores one chef’s transition from the private sector to the public sector and the experiences of working with school districts to successfully transform their school food service operations into a scratch cooking model.

  1. Design methodology for nano-engineered surfaces to control adhesion: Application to the anti-adhesion of particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taekyung [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Cheongwan [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); Jung, Myungki; Lee, Jinhyung; Park, Changsu [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Kang, Shinill, E-mail: snlkang@yonsei.ac.kr [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of)

    2016-12-15

    Highlights: • A design method using the Derjaguin approximation with FEA for low-adhesion surface. • Fabrication of nanostructures with small adhesion forces by presented design method. • Characterization of adhesion force via AFM FD-curve with modified atypical tips. • Verification of low-adhesion of designed surfaces using centrifugal detachment tests. • Investigation of interdependence of hydrophobicity and anti-adhesion force. - Abstract: With increasing demand for means of controlling surface adhesion in various applications, including the semiconductor industry, optics, micro/nanoelectromechanical systems, and the medical industry, nano-engineered surfaces have attracted much attention. This study suggests a design methodology for nanostructures using the Derjaguin approximation in conjunction with finite element analysis for the control of adhesion forces. The suggested design methodology was applied for designing a nano-engineered surface with low-adhesion properties. To verify this, rectangular and sinusoidal nanostructures were fabricated and analyzed using force-distance curve measurements using atomic force microscopy and centrifugal detachment testing. For force-distance curve measurements, modified cantilevers with tips formed with atypical particles were used. Subsequently, centrifugal detachment tests were also conducted. The surface wettability of rectangular and sinusoidal nanostructures was measured and compared with the measured adhesion force and the number of particles remaining after centrifugal detachment tests.

  2. Optical properties of phosphorescent nano-silicon electrochemically doped with terbium

    Energy Technology Data Exchange (ETDEWEB)

    Gelloz, Bernard [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mentek, Romain; Koshida, Nobuyoshi [Tokyo University A and T, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2012-12-15

    Hybrid thin films consisting of oxidized nano-silicon doped with terbium have been fabricated. Nano-silicon was formed by electrochemical etching of silicon wafers. Terbium was incorporated into nano-silicon pores by electrochemical deposition. Different oxidizing thermal treatments were applied to the films. The samples treated by high-pressure water vapor annealing (HWA) exhibited strong blue emission with a phosphorescent component, as previously reported by our group. The low temperature (260 C) HWA also led to strong emission from Tb{sup 3+} ions, whereas typical high temperature (900 C) treatment generally used to activate Tb{sup 3+} ions in silicon-based materials led to less luminescent samples. Spectroscopic and dynamic analyses suggest that terbium was incorporated as a separate oxide phase in the pores of the porous nano-silicon. The PL of the terbium phase and nano-silicon phase exhibit different temperature and excitation power dependences suggesting little optical or electronic interaction between the two phases. The luminescence of terbium is better activated at low temperature (260 C) than at high temperature (900 C). The hybrid material may find some applications in photonics, for instance as a display material. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Vitrification of nanotoxic waste (Ru) from the production of nano-catalysts for direct ethanol fuel cells; Vitrificacao de nano-residuos toxicos (Ru) provenientes da producao de nano-catalisadores para celulas a combustivel de etanol direto

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C.; Julio-Junior, O.; Mello-Castanho, S.R.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Nanostructured catalysts have been developed for ethanol directly use in fuel cells, which due to the economic advantages that should have widespread use in the near future. The catalysts for these devices using nano-structured metal are based, where the toxic nature and environmental risks presented by these metals are largely enhanced by nano-dispersion. Thus, the production of nano-catalysts are potentially generating highly hazardous waste for public health and the environment. This study presents the treatment and inertization of ruthenium (Ru) nanoparticles waste containing by the vitrification technique and consequent attainment of silicate glasses for potential commercial use. Compositions were prepared containing up to about 20 wt % of nano-waste by changing the basic composition of glass soda-lime-borosilicate. After the fusion, at a temperature of 1100 deg C, the glasses were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Infra-red in the Fourier transform (FT-IR) techniques. The chemical stability was evaluated by hydrolytic attack test. The glass containing 20 wt % of nano-residue showed a high chemical stability, similar to a usual soda-lime glass. (author)

  4. Hydrothermal preparation and physicochemical studies of new copper nano-complexes for antitumor application

    Science.gov (United States)

    Saif, M.; El-Shafiy, Hoda F.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Nabeel, A. I.; Fouad, R.

    2018-03-01

    Two novel nano-complexes [(Cu)2(L) (NO3)2(OH2)] (CuH) and [Cu(HL) (OH2)2(NO3)] (CuCTH)were synthesized by hydrothermal method at 200 °C for 48 h in absence and presence of surfactant (CTAB), respectively. Introducing surfactant (CTAB) leads to changing stoichiometric metal/ligand ratio from binuclear (CuH) to mononuclear (CuCTH) nano-complexes. CuH shows irregular nano-flake shape while CuCTH have separately uniform nano-spherical morphology. Thermal analysis revealed that CuCTH is thermally stable in comparison with CuH Nano-complex. CuCTH absorption peak shifted to shorter wavelength (blue shift) and sharpness of the peak also decreased in presence of CTAB. The role of CTAB in the crystal growth is discussed. CuH and CuCTH nano-complexes were tested for their in vitro cytotoxicity against Ehrlich Ascites Carcinoma cell line (E.A.C.). Both nano-complexes effectively inhibited E.A.C. growth with IC50value of 37 and 25 μM for CuH and CuCTH, respectively. The high antitumor activity of CuCTH was attributed to several factors such as spherical morphology, smaller size, chemical structure, and geometry. The LD50 for high cytotoxic CuCTH nano-complex on mice was found to be 100 mg/kg with strong abscess in abdomen side effect. To overcome this side effect, different molar ratio of CuCTH and previously prepared ZnNano-complexes were tested for their in vitrocytotoxicity and in vivo toxicity. Obtained results show that the 2:8 M ratio between CuCTH and Zn nano-complexes gives very low toxicity without any side effects. Also, geometric optimization and conformational analysis were performed using semi-empirical PM3 method. Energy gap (ΔE), dipole moment, and structure activity relationship were performed and discussed.

  5. Comparison of pregnancy rates between patients with and without local endometrial scratching before intrauterine insemination.

    Science.gov (United States)

    Senocak, G C; Yapca, O E; Borekci, B

    2017-11-01

    To determine the implantation success of local endometrial injury in patients undergoing intrauterine insemination following ovulation induction with gonadotropins as an infertility treatment. In this prospective randomized controlled trial, ovulation induction was performed with gonadotropins in 80 patients following intrauterine insemination. In 40 patients, local endometrial injury (scratch) was performed in the midluteal phase of the cycle preceding ovarian stimulation with a Novak curette to the posterior side of the endometrial cavity. Fifteen pregnancies (37.5%) and 11 clinical pregnancies (27.5%) occurred in the intervention group, whereas eight pregnancies (20%) and five clinical pregnancies (12.5%) occurred in the control group. Although the pregnancy rates and clinical pregnancy rates were increased in the intervention group, no statistically significant difference was found between the intervention and control groups (pregnancy rates: P=0.084; clinical pregnancy rates: P=0.094). Performing local endometrial injury (scratch) in the cycle preceding ovulation induction in patients with a diagnosis of infertility and indication for intrauterine insemination increased the pregnancy and clinical pregnancy rates. This increase was not, however, statistically significant. More randomized, controlled, prospective studies with larger patient numbers are required before the use of iatrogenic induction of local endometrial injury can be recommended in routine clinical practice. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  7. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts.

    Science.gov (United States)

    Fronza, M; Heinzmann, B; Hamburger, M; Laufer, S; Merfort, I

    2009-12-10

    PHARMACOLOGICAL RELEVANCE: Presentation of the scratch assay as a convenient and inexpensive in vitro tool to gain first insights in the wound healing potential of plant extracts and natural compounds. The present study deals with the optimization of the scratch assay which can be used as an in vitro model for quantification of fibroblast migration to and proliferation into the wounded area. It is suitable for the first evaluation of the wound re-epithelialization potential of crude herbal extracts, isolated compounds and pharmaceutical preparations. As a proof of concept three preparations from traditional medicinal plants were investigated. Swiss 3T3 albino mouse fibroblasts were used in monolayers and platelet derived growth factor as positive control. Hexane and ethanolic extracts from Calendula officinalis and Matricaria recutita, Hypericum oil as well as the triterpenoids faradiol myristate and palmitate were studied. To differentiate between proliferation and migration antimitotic mitomycin C was added. Both extracts of Calendula officinalis stimulated proliferation and migration of fibroblasts at low concentrations, e.g. 10 microg/ml enhanced cell numbers by 64.35% and 70.53%, respectively. Inhibition of proliferation showed that this effect is mainly due to stimulation of migration. Faradiol myristate and palmitate gave comparable stimulation rates at an almost 50 microg/ml concentration, indicating that they contribute partially, but not most significantly to the wound healing effects of Calendula preparations. Extracts from Matricaria recutita were only moderately active. Hypericum oil was cytotoxic at concentrations higher than 0.5 microg/ml. The scratch assay in the present form can be used as a promising scientific approach and platform to differentiate between plant extracts known for their wound healing and their anti-inflammatory properties.

  8. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    Directory of Open Access Journals (Sweden)

    Hanuman Singh

    2018-05-01

    Full Text Available In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3 multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  9. IMPROVEMENT OF FATIGUE STRENGTH OF TIN BABBITT BY REINFORCING WITH NANO ILMENITE

    Directory of Open Access Journals (Sweden)

    M. V. S. BABU

    2017-08-01

    Full Text Available Tin Babbitt is an idle journal bearing material, its fatigue strength limits and its usage. To enhance its fatigue strength, in this paper a Tin Babbitt metal matrix is reinforced with nano Ilmenite. The metal matrix nanocomposite was fabricated by using ultrasonic assisted stir casting technique. ASTM standards in statistical planning for fatigue testing were employed in planning the fatigue tests. Fatigue tests were conducted at three stress levels, i.e., 0.9 UTS, 0.7 UTS and 0.5 UTS. Tests were conducted on a rotating-beam type fatigue testing machine. It was observed that the nano Ilmenite reinforcement enhanced the fatigue strength of Tin Babbitt.

  10. Development of nano SiO2 incorporated nano zinc phosphate coatings on mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.; Selvi, J. Arockia

    2015-01-01

    Highlights: • Nano SiO 2 incorporated nano zinc phosphate coating on mild steel was developed. • Coatings showed enhanced corrosion resistance. • The nano SiO 2 is adsorbed on mild steel surface and become nucleation sites. • The nano SiO 2 accelerates the phosphating process. - Abstract: This paper reports the development of nano SiO 2 incorporated nano zinc phosphate coatings on mild steel at low temperature for achieving better corrosion protection. A new formulation of phosphating bath at low temperature with nano SiO 2 was attempted to explore the possibilities of development of nano zinc phosphate coatings on mild steel with improved corrosion resistance. The coatings developed were studied by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Electrochemical measurements. Significant variation in the coating weight, morphology and corrosion resistance was observed as nano SiO 2 concentrations varied from 0.5–4 g/L. The results showed that, the nano SiO 2 in the phosphating solution changed the initial potential of the interface between mild steel substrate and phosphating solution and reduce the activation energy of the phosphating process, increase the nucleation sites and yielded zinc phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance. Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano SiO 2 . The new formulation reported in the present study was free from Ni or Mn salts and had very low concentration of sodium nitrite (0.4 g/L) as accelerator

  11. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    Science.gov (United States)

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Asif, Syed Amanula Syed

    2013-05-07

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  12. Template synthesis of test tube nanoparticles using non-destructive replication.

    Science.gov (United States)

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-03-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive 'bionanoreactors' loaded with enzymes.

  13. Development of an automatic test equipment for nano gauging displacement transducers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y-C [National Yunlin University of Science and Technology, Taiwan (China); Jywe, W-Y [National Formosa University, Taiwan (China); Liu, C-H [National Formosa University, Taiwan (China)

    2005-01-01

    In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decisive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate {+-}10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a

  14. Development of an automatic test equipment for nano gauging displacement transducers

    International Nuclear Information System (INIS)

    Wang, Y-C; Jywe, W-Y; Liu, C-H

    2005-01-01

    In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decisive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate ±10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a

  15. Development of an automatic test equipment for nano gauging displacement transducers

    Science.gov (United States)

    Wang, Yung-Chen; Jywe, Wen-Yuh; Liu, Chien-Hung

    2005-01-01

    In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decesive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate ±10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a

  16. Multiple nano elements of SCC--transition from phenomenology to predictive mechanistics

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2009-01-01

    Full text of publication follows: Predicting the occurrence and rate of stress corrosion cracking in materials of construction is one of the most critical pathways for assuring the reliability of light water nuclear reactor plants. It is the general intention of operators of nuclear plants that they continue performing satisfactorily for times of 60 to 80 years at least. Such times are beyond existing experience, and there are no bases for choosing credible predictions. Present bases for predicting SCC rely on anecdotal experience for predicting what materials sustain SCC in specified environments and on phenomenological correlations using such parameters as K (stress intensity), 1/T (temperature), E(corr) (corrosion potential), pH, [x] a (concentration), other established quantities, and statistical correlations. While these phenomenological correlations have served the industry well in the past, they have also allowed grievous mistakes. Further, such correlations are flawed in their fundamental credibility. Predicting SCC in aqueous solutions means to predict its dependence upon the seven primary variables: potential, pH, species, alloy composition, alloy structure, stress and temperature. A serious prediction of SCC upon these seven primary variables can only be achieved by moving to fundamental nano elements. Unfortunately, useful predictability from the nano approach cannot be achieved quickly or easily; thus, it will continue to be necessary to rely on existing phenomenology. However, as the nano approach evolves, it can contribute increasingly to the quantitative capacity of the phenomenological approach. The nano approach will require quite different talents and thinking than are now applied to the prediction of SCC; while some of the boundary conditions of phenomenology must continue to be applied, elements of the nano approach will include accounting for at least, typically, the following multiple elements as they apply at the sites of initiation and at

  17. To be nano or not to be nano?

    Science.gov (United States)

    Joachim, Christian

    2005-02-01

    Nanomaterials, nanostructures, nanostructured materials, nanoimprint, nanobiotechnology, nanophysics, nanochemistry, radical nanotechnology, nanosciences, nanooptics, nanoelectronics, nanorobotics, nanosoldiers, nanomedecine, nanoeconomy, nanobusiness, nanolawyer, nanoethics to name a few of the nanos. We need a clear definition of all these burgeoning fields for the sake of the grant attribution, for the sake of research program definition, and to avoid everyone being lost in so many nanos.

  18. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    Science.gov (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The nano-materials, at the heart of the nano galaxy; Les nano-materiaux, au coeur de la galaxie nano

    Energy Technology Data Exchange (ETDEWEB)

    Le Marois, G. [Direction Generale de l' Industrie, des Technologies de l' Information et des Postes, 75 - Paris (France); Carlac, D. [Societe Developpement et Conseil, 51 - Reims (France)

    2004-02-01

    The researches on nano-materials are continuously increasing in most of industrialized countries. Between 1998 and 2003, the corresponding investment has been multiplied by six in Europe, eight in Usa and in Japan, to reach 3 milliards of euros in the world. Based on the nano-technologies development, these materials would represent the main part of the market at short and middle dated. Many examples of utilization are presented. (A.L.B.)

  20. Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid

    International Nuclear Information System (INIS)

    Ngo Vo Ke Thanh; Nguyen Thi Phuong Phong

    2009-01-01

    In this work, silver nanoparticles were prepared by polyol process with microwave heating and incorporated on cotton fabric surfaces. The antibacterial performance of the antibacterial cotton fabric was tested for different concentration of nano-sized silver colloid, contact time germs, and washing times. It was found that antibacterial activity increased with the increasing concentration of nano-sized silver colloid. The antibacterial fabric with 758 mg/kg of silver nanoparticles on surface cotton was highly effective in killing test bacteria and had excellent water resisting property.

  1. Wear characterization of nano-hydroxyapatite with addition of titanium (HA-Ti)

    Science.gov (United States)

    Rosmamuhamadani, R.; Arawi, A. Z. O.; Talari, M. K.; Mahat, M. M.; Bonnia, N. N.; Sabrina; Yahaya, M.; Sulaiman, S.; Ismail, M. I. S.

    2018-04-01

    Hydroxyapatite (Ca10 (PO4)6(OH)2, HA), is an attractive material of an inorganic compound whose chemical composition and crystallographic structures are similar to the composition of the bone. A natural source such as egg shells is composed of 94 wt. % of calcium carbonate (CaCO3), which can be calcined as calcium oxide (CaO) by the calcinations process. The efficient temperature to produce CaO is 900 °C for 2 hours. The synthesis of nano-HA was done by the mixing the diammonium phosphate (DAP) and calcium hydroxide (Ca(OH)2) and subjected into a microwave for 30 minutes at 1100 W irradiation power. Ball milling process was used for 30 minutes to mix the nano-HA with different compositions of titanium. These were pressed to form pallets by hand hydraulic pump (force=2300 psi). The pallets then were sintered at 1200 °C with the heating rate of 3 °C/min for 2 hours. The pallets were tested by several mechanical testing including hardness, compression strength and wear. From the results, HA-25wt. %Ti composite gave the highest hardness, compression and coefficient of friction for wear test values which were 89.6 Hv, 82.5MPa and 0.76μ respectively. It showed that by adding Ti to nano-HA, the mechanical properties of nano-HA could be enhanced. The microstructure analyses by optical micrograph showed that nano-HA-Ti particles displayed shape likes needle morphology. The particles showed the high tendency to form the agglomerations.

  2. The JRC Nanomaterials Repository: A unique facility providing representative test materials for nanoEHS research.

    Science.gov (United States)

    Totaro, Sara; Cotogno, Giulio; Rasmussen, Kirsten; Pianella, Francesca; Roncaglia, Marco; Olsson, Heidi; Riego Sintes, Juan M; Crutzen, Hugues P

    2016-11-01

    The European Commission has established a Nanomaterials Repository that hosts industrially manufactured nanomaterials that are distributed world-wide for safety testing of nanomaterials. In a first instance these materials were tested in the OECD Testing Programme. They have then also been tested in several EU funded research projects. The JRC Repository of Nanomaterials has thus developed into serving the global scientific community active in the nanoEHS (regulatory) research. The unique Repository facility is a state-of-the-art installation that allows customised sub-sampling under the safest possible conditions, with traceable final sample vials distributed world-wide for research purposes. This paper describes the design of the Repository to perform a semi-automated subsampling procedure, offering high degree of flexibility and precision in the preparation of NM vials for customers, while guaranteeing the safety of the operators, and environmental protection. The JRC nanomaterials are representative for part of the world NMs market. Their wide use world-wide facilitates the generation of comparable and reliable experimental results and datasets in (regulatory) research by the scientific community, ultimately supporting the further development of the OECD regulatory test guidelines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  4. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  5. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Chhavi, E-mail: chhavisharma19@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee (India); Dinda, Amit Kumar, E-mail: amit_dinda@yahoo.com [Department of Molecular Medicine and Biology, Jaslok Hospital and Research Centre, Mumbai 400 026 (India); Potdar, Pravin D., E-mail: ppotdar@jaslokhospital.net [Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029 (India); Chou, Chia-Fu, E-mail: cfchou@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Mishra, Narayan Chandra, E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee (India)

    2016-07-01

    A novel nano-biocomposite scaffold was fabricated in bead form by applying simple foaming method, using a combination of natural polymers–chitosan, gelatin, alginate and a bioceramic–nano-hydroxyapatite (nHAp). This approach of combining nHAp with natural polymers to fabricate the composite scaffold, can provide good mechanical strength and biological property mimicking natural bone. Environmental scanning electron microscopy (ESEM) images of the nano-biocomposite scaffold revealed the presence of interconnected pores, mostly spread over the whole surface of the scaffold. The nHAp particulates have covered the surface of the composite matrix and made the surface of the scaffold rougher. The scaffold has a porosity of 82% with a mean pore size of 112 ± 19.0 μm. Swelling and degradation studies of the scaffold showed that the scaffold possesses excellent properties of hydrophilicity and biodegradability. Short term mechanical testing of the scaffold does not reveal any rupturing after agitation under physiological conditions, which is an indicative of good mechanical stability of the scaffold. In vitro cell culture studies by seeding osteoblast cells over the composite scaffold showed good cell viability, proliferation rate, adhesion and maintenance of osteoblastic phenotype as indicated by MTT assay, ESEM of cell–scaffold construct, histological staining and gene expression studies, respectively. Thus, it could be stated that the nano-biocomposite scaffold of chitosan–gelatin–alginate–nHAp has the paramount importance for applications in bone tissue-engineering in future regenerative therapies. - Highlights: • nHAp–chitosan–gelatin–alginate composite scaffold was successfully fabricated. • Foaming method, without surfactant, was applied successfully for fabricating the scaffold. • nHAp provided mechanical stability and nanotopographic features to scaffold matrix. • This scaffold shows good biocompatibility and proliferation with

  6. Comparative performance analysis of ice plant test rig with TiO2-R-134a nano refrigerant and evaporative cooled condenser

    Directory of Open Access Journals (Sweden)

    Amrat Kumar Dhamneya

    2018-03-01

    Full Text Available The nanoparticle is used in chillers for increasing system performance. The increasing concentration of nanoparticles (TiO2 in refrigerant increases the performances of the system due decreasing compressor work done and enhance heat transfer rate. For hot and dry climate condition, performances of air-cooled condenser minimize, and C. O. P. decreases extensively in chillers due to heat transfer rate decreases in the condenser. In the condenser, nano-refrigerants are not cool at the desired level, and the system was faulty. These drawbacks of the nano-particles mixed refrigerator have promoted the research and improving heat rejection rate in the condenser. In this article, vapour compression refrigeration system coupled with evaporative cooling pad, and nano-refrigerant, for improving the performance of the system in hot & dry weather is proposed and compared experimentally. Combined evaporative cooling system and ice plant test rig have been proposed for the appropriate heat rejection offered in the condenser due to a faulty system run at high pressure. The experimental investigations revealed that the performance characteristics of the evaporatively-cooled condenser are significantly enhanced. Maximum C.O.P. increases by about 51% in the hot and dry climate condition than the normal system.

  7. Functional Nano fibers: Production and Applications

    International Nuclear Information System (INIS)

    Khatri, Z.; Kim, I.S.; Kim, S.H.

    2016-01-01

    Nano fibers are lighter material with higher surface area in comparison to polymeric film. The ease of producing functional nano fiber is another advantage over many nano materials. Functional nano fiber in particular has attained a greater interest in recent years. The applications of functional nano fibers are increasing in various technical fields such as water filter membranes, tissue engineering, biosensors, drug delivery systems, wound dressings, catalysis, antibacterial. This special issue is comprised of well-selective articles that discuss production of functional nano fibers their applications in different emerging fields. M. Zhang et al. have presented exciting work on drug delivery using nano fibers. They used collagen that was extracted from abandoned Rana chensinensis skin in northeastern China via an acid enzymatic extraction method. They demonstrated two different nano fiber-vancomycin (VCM) systems, that is, VCM blended nano fibers and core-shell nano fibers with VCM in the core, and both systems sustained control release for a period of 80 hours. Another work was presented by R. Takai et al. on blood purification using composite nano fibers. About 10% of the population worldwide is affected by chronic kidney disease (CKD). The authors developed nano fiber meshes zeolite-polymer composite nano fibers for efficient adsorption of creatinine, which is a simpler and more accessible method for hemodialysis (HD) patients.

  8. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    Science.gov (United States)

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Baniasadi, Ehsan; Afshari, Ebrahim

    2016-01-01

    Highlights: • The performance of an integrated nano-fluid based solar Rankine cycle is studied. • The effect of solar intensity, ambient temperature, and volume fraction is evaluated. • The concept of Finite Time Thermodynamics is applied. • It is shown that CuO/oil nano-fluid has the best performance from exergy perspective. - Abstract: In this paper, the performance of an integrated Rankine power cycle with parabolic trough solar system and a thermal storage system is simulated based on four different nano-fluids in the solar collector system, namely CuO, SiO_2, TiO_2 and Al_2O_3. The effects of solar intensity, dead state temperature, and volume fraction of different nano-particles on the performance of the integrated cycle are studied using second law of thermodynamics. Also, the genetic algorithm is applied to optimize the net output power of the solar Rankine cycle. The solar thermal energy is stored in a two-tank system to improve the overall performance of the system when sunlight is not available. The concept of Finite Time Thermodynamics is applied for analyzing the performance of the solar collector and thermal energy storage system. This study reveals that by increasing the volume fraction of nano-particles, the exergy efficiency of the system increases. At higher dead state temperatures, the overall exergy efficiency is increased, and higher solar irradiation leads to considerable increase of the output power of the system. It is shown that among the selected nano-fluids, CuO/oil has the best performance from exergy perspective.

  10. Selective and lithography-independent fabrication of 20 nm nano-gap electrodes and nano-channels for nanoelectrofluidics applications

    International Nuclear Information System (INIS)

    Zhang, J Y; Wang, X F; Wang, X D; Fan, Z C; Li, Y; Ji, An; Yang, F H

    2010-01-01

    A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

  11. PolyNano M.6.1.1 Process validation state-of-the-art

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Calaon, Matteo

    2012-01-01

    Nano project. Methods for replication process validation are presented and will be further investigated in WP6 “Process Chain Validation” and applied to PolyNano study cases. Based on the available information, effective best practice standard process validation will be defined and implemented...... assessment methods, and presents measuring procedures/techniques suitable for replication fidelity studies. The report reviews state‐of‐the‐art research results regarding replication obtained at different scales, tooling technologies based on surface replication, process validation trough design...

  12. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard

    International Nuclear Information System (INIS)

    Biswas, Kaushik; Lu, Jue; Soroushian, Parviz; Shrestha, Som

    2014-01-01

    Highlights: • Field-testing of a nano-PCM wallboard under varying weather conditions. • Numerical model validation and annual simulations of PCM wallboard performance. • Reduced cooling electricity consumption results from PCM wallboard. • PCM wallboard reduces peak cooling loads with implications on power plant capacity. • PCM performance was sensitive to building temperature set point for cooling. - Abstract: In the United States, forty-eight (48) percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change materials (PCMs) in building envelopes can enhance the energy efficiency of buildings and reduce energy consumption. Experimental testing and numerical modeling of PCM-enhanced envelope components are two important aspects of the evaluation of their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM supported by expanded graphite (interconnected) nanosheets, which are highly conductive and allow enhanced thermal storage and energy distribution. The nano-PCM is shape-stable for convenient incorporation into lightweight building components. A wall with cellulose cavity insulation and a prototype PCM-enhanced interior wallboard was built and tested in a natural exposure test (NET) facility in a hot-humid climate location. The test wall contained the PCM wallboard and a regular gypsum wallboard, for a side-by-side annual comparison study. Further, numerical modeling of the wall containing the nano-PCM wallboard was performed to determine its actual impact on wall-generated heating and cooling loads. The model was first validated using experimental data, and then used for annual simulations using typical meteorological year (TMY3) weather data. This article presents the measured performance and numerical analysis evaluating the energy-saving potential of the nano-PCM-enhanced wallboard

  13. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  14. Evaluation of the LiveWell@School Food Initiative Shows Increases in Scratch Cooking and Improvement in Nutritional Content

    Science.gov (United States)

    Schober, Daniel J.; Carpenter, Leah; Currie, Venita; Yaroch, Amy L.

    2016-01-01

    Background: The purpose of this evaluation was to examine the effects of the LiveWell@School Food Initiative (LW@SFI), a Colorado-based childhood obesity prevention program that partners with school districts to enable them to serve more scratch cooked foods through culinary training, action planning, and equipment grants. Methods: This evaluation…

  15. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  16. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    Science.gov (United States)

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  17. Template synthesis of test tube nanoparticles using non-destructive replication

    International Nuclear Information System (INIS)

    Wagner, Jonathan; Rodgers, David; Yao Jingyuan; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive ‘bionanoreactors’ loaded with enzymes. (paper)

  18. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  19. Comparing among the Experiences of Self-Cutting, Hitting, and Scratching in Chinese Adolescents Attending Secondary Schools: An Interview Study

    Science.gov (United States)

    You, Jianing; Ma, Congfen; Lin, Min-Pei; Leung, Freedom

    2015-01-01

    This study examined adolescents' experiences associated with nonsuicidal self-injury (NSSI) and compared among the experiences of self-cutting, hitting, and scratching. Participants included 42 Chinese adolescents attending secondary schools. They had at least three NSSI episodes in the preceding year. Information about their experiences of NSSI…

  20. A Fabrication Technique for Nano-gap Electrodes by Atomic Force Microscopy Nano lithography

    International Nuclear Information System (INIS)

    Jalal Rouhi; Shahrom Mahmud; Hutagalung, S.D.; Kakooei, S.

    2011-01-01

    A simple technique is introduced for fabrication of nano-gap electrodes by using nano-oxidation atomic force microscopy (AFM) lithography with a Cr/ Pt coated silicon tip. AFM local anodic oxidation was performed on silicon-on-insulator (SOI) surfaces by optimization of desired conditions to control process in contact mode. Silicon electrodes with gaps of sub 31 nm were fabricated by nano-oxidation method. This technique which is simple, controllable, inexpensive and fast is capable of fabricating nano-gap structures. The current-voltage measurements (I-V) of the electrodes demonstrated very good insulating characteristics. The results show that silicon electrodes have a great potential for fabrication of single molecule transistors (SMT), single electron transistors (SET) and the other nano electronic devices. (author)