WorldWideScience

Sample records for nano-scale pulverized cornstarch

  1. The Cornstarch Flamethrower

    CERN Document Server

    Concannon, Thomas

    2016-01-01

    Igniting cornstarch powder is a classic physics demonstration that showcases the rapid conduction of heat for a material in which the surface area is greater than the volume of its constituent particles. Including such a demonstration in a physics "magic show" for the general public presents certain challenges such as reproducibility and consistent crowd appeal. A simple but effective design for widely scattering cornstarch dust over a flame breaches these challenges and always results in consistently large, crowd-pleasing fireballs; so much so that the resulting demonstration has been dubbed the "cornstarch flamethrower." A small-scale version may also be used effectively for classroom instruction.

  2. Paradoxical ratcheting in cornstarch

    Science.gov (United States)

    Shinbrot, Troy; Rutala, Matthew; Montessori, Andrea; Prestininzi, Pietro; Succi, Sauro

    2015-10-01

    In this paper, we demonstrate that vertically vibrating a plate in a cornstarch suspension causes the suspension to vigorously ratchet up the plate. We show that this is a necessary consequence of the fact that cornstarch in water is shear thickening: when the plate moves up it opposes gravity and so the fluid stiffens; when it moves down it works with gravity and so the fluid flows. This produces asymmetric ratcheting that opposes gravity. We find several unusual states that result in this simple experimental system, and we reproduce the essential effect in two different numerical simulations.

  3. Packing Products: Polystyrene vs. Cornstarch

    Science.gov (United States)

    Starr, Suzanne

    2009-01-01

    Packing materials such as polystyrene take thousands of years to decompose, whereas packing peanuts made from cornstarch, which some companies are now using, can serve the same purpose, but dissolve in water. The author illustrates this point to her class one rainy day using the sculptures students made from polystyrene and with the cornstarch…

  4. Paradoxical ratcheting in cornstarch suspensions

    Science.gov (United States)

    Shinbrot, Troy; Siu, Theo; Rutala, Matthew

    2014-11-01

    Cornstarch suspensions are well known to exhibit strong shear thickening, and we show as a result that they must - and do - climb vertically vibrating rods and plates. This occurs because when the rod moves upward, it shears the suspension against gravity, and so the fluid stiffens, but when the rod moves downward, the suspension moves with gravity, and so the fluid is more compliant. This causes the fluid to be dragged up by the upstroke more than it is dragged down by the downstroke, effectively ratcheting the fluid up the rod every cycle. We show experimentally and computationally that this effect is paradoxically caused by gravity - and so goes away when gravity is removed - and we show that the suspension can be made to balance on the uphill side of an inclined rod in an analog of the inverted ``Kapitza pendulum,'' closely related to the recent report by Ramachandran & Nosonovsky, Soft Matter 10, 4633 (2014).

  5. Preparation and Properties of Cornstarch Adhesives

    Directory of Open Access Journals (Sweden)

    Li Yang

    2013-08-01

    Full Text Available The main goal of this study was to use cornstarch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly cornstarch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of cornstarch adhesives increased and then decreased with the increasing of temperature and the maximum value was obtained at 10oC; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared wither cornstarch adhesives which was pseudo-plastic fluids. Cornstarch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  6. Mechanics over micro and nano scales

    CERN Document Server

    Chakraborty, Suman

    2011-01-01

    Discusses the fundaments of mechanics over micro and nano scales in a level accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles Covers life sciences and chemistry for use in emerging applications related to mechanics over small scales Demonstrates the explicit interconnection between various scale issues and the mechanics of miniaturized systems

  7. Effect of polysaccharides on the gelatinization properties of cornstarch dispersions.

    Science.gov (United States)

    Xu, Zhiting; Zhong, Fang; Li, Yue; Shoemaker, Charles F; Yokoyama, Wallace H; Xia, Wenshui

    2012-01-18

    Konjac glucomannan (KG, neutral), carboxymethylcellulose (CMC, negatively charged), and chitosan (positively charged) were added to cornstarch dispersions to study the effect of polysaccharide-starch interactions on starch gelatinization properties. Pasting and retrogradation properties were measured with a rheometer and DSC. Swelling properties of the starch granules were determined by solubility index, swelling power, and particle size distribution. Depending on the nature of the different polysaccharides, viscosities of cornstarch dispersions were affected differently. The particle size distributions were not influenced by the addition of any of the polysaccharides. Swelling results showed that the KG and CMC molecules interacted with the released or partly released amylose in the cornstarch dispersions. This was correlated with the short-term retrogradation of the starch pastes being retarded by the additions of KG and CMC. However, the chitosan molecules appeared not to associate with the amylose, so the retrogradation of the chitosan-cornstarch dispersions was not retarded.

  8. Nonmonotonic settling of a sphere in a cornstarch suspension

    NARCIS (Netherlands)

    von Kann, S.; von Kann, Stefan; Snoeijer, Jacobus Hendrikus; Lohse, Detlef; van der Meer, Roger M.

    2011-01-01

    Cornstarch suspensions exhibit remarkable behavior. Here, we present two unexpected observations for a sphere settling in such a suspension: In the bulk of the liquid the velocity of the sphere oscillates around a terminal value, without damping. Near the bottom the sphere comes to a full stop, but

  9. Topology optimization for nano-scale heat transfer

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Maute, Kurt; Yang, Ronggui

    2009-01-01

    We consider the problem of optimal design of nano-scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean-free path of the heat carriers, phonons...

  10. "Nano" Scale Biosignatures and the Search for Extraterrestrial Life

    Science.gov (United States)

    Oehler, D. Z.; Robert, F.; Meibom, A.; Mostefaoui, S.; Selo, M.; Walter, M. R.; Sugitani, K.; Allwood, A.; Mimura, K.; Gibson, E. K.

    2008-01-01

    A critical step in the search for remnants of potential life forms on other planets lies in our ability to recognize indigenous fragments of ancient microbes preserved in some of Earth's oldest rocks. To this end, we are building a database of nano-scale chemical and morphological characteristics of some of Earth's oldest organic microfossils. We are primarily using the new technology of Nano-Secondary ion mass spectrometry (NanoSIMS) which provides in-situ, nano-scale elemental analysis of trace quantities of organic residues. The initial step was to characterize element composition of well-preserved, organic microfossils from the late Proterozoic (0.8 Ga) Bitter Springs Formation of Australia. Results from that work provide morphologic detail and nitrogen/carbon ratios that appear to reflect the well-established biological origin of these 0.8 Ga fossils.

  11. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  12. Effect of aging on the microstructure of plasticized cornstarch films

    Directory of Open Access Journals (Sweden)

    Rossana M.S.M. Thiré

    2005-06-01

    Full Text Available Aging of cornstarch films prepared by casting was investigated. Water and glycerol-plasticized cornstarch films were stored at 50% relative humidity over a period of 330 days. Aging was followed by X-ray diffraction (XRD and atomic force microscopy (AFM. XRD spectra indicated development of B-type crystallinity even for fresh films and that the crystallinity index increased from 0.06 to 0.28 as a function of storage time. AFM images of 270-day-old films revealed that the general morphology and the overall roughness have not changed due to aging. AFM phase contrast images at higher magnification showed an increasing number of ordered domains at the surface of these films, which may be attributed to recrystallization of amylose. No morphological change was observed at least at the surface of the granular region, which is enriched in amylopectin.

  13. Dynamic contact angle at nano-scale: a unified view

    OpenAIRE

    Lukyanov, Alex V.; Likhtman, Alexei E.

    2016-01-01

    Generation of dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at nano-scale, and therefore their understanding is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is t...

  14. Modeling nano-scale grain growth of intermetallics

    Indian Academy of Sciences (India)

    Mohsen Kazeminezhad

    2009-02-01

    The Monte Carlo simulation is utilized to model the nano-scale grain growth of two nanocrystalline materials, Pd81Zr19 and RuAl. In this regard, the relationship between the real time and the time unit of simulation, i.e. Monte Carlo step (MCS), is determined. The results of modeling show that with increasing time of heating, the grain sizes of both nano-crystalline materials increased as in the case of conventional materials. Moreover, it is found that for both nano-crystalline materials the relationship between the real time and MCS is in power law form, which is linear for the conventional materials.

  15. Nano-scale Electrodes for Molecular/Organic Electronics

    Institute of Scientific and Technical Information of China (English)

    K.Tsukagoshi

    2007-01-01

    1 Results Nanometer-scale electrodes with a nano-junction allow us to investigate conduction properties of nano-materials. Because many nano-materials usually form grain boundaries or domain boundaries with high tunneling resistance, it is difficult to investigate the intrinsic properties through a series of tunneling resistance. To make direct contact with the single nano-material, such as a single polymer string, we developed nano-scale electrodes. By using these nano-electrodes as new tool, we invest...

  16. A nano-scale alignment method for imprint lithography

    Institute of Scientific and Technical Information of China (English)

    WANG Li; LU Bing-heng; DING Yu-cheng; QIU Zhi-hui; LIU Hong-zhong

    2006-01-01

    A novel nano-scale alignment technique based generated by two pairs of quadruple gratings on mold and wafer are optically projected onto two photo-detector arrays,alignment errors in the x and y directions.The experiment sensitive to relative displacement of the mold and wafer,and the alignment accuracy obtained in the x and y directions and in θare ±20 nm,±25 nm and ±1 μrad (3σ),respectively.They can meet the requirements of alignment accuracy for submicron imprint lithography.

  17. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  18. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  19. Quasi-2D dynamic jamming of cornstarch suspensions

    Science.gov (United States)

    Peters, Ivo; Jaeger, Heinrich

    2014-03-01

    A dense suspension of cornstarch in water has the extraordinary behavior that, when perturbed lightly, it behaves like a liquid, but, when impacted at high velocities, the material solidifies. Waitukaitis et al. (Nature, 2012) have shown that this behavior is due to a dynamic jamming front that propagates through the system. The details of this jamming front, however, are obscured by the surrounding suspension in a 3-dimensional system. In our current experiment, we prepare a layer (thickness order 1 cm) of the cornstarch suspension, which floats on a dense, low-viscosity liquid. This setup provides a stress-free boundary condition on the bottom and upper surface of the suspension. The floating suspension is bounded at three sides by solid walls, and on one side by a thin rubber sheet. We perturb the system by impacting an object horizontally on one side at a controlled velocity using a linear actuator. Tracer particles sitting on the top surface of the suspension allow us to perform PIV on the perturbed suspension. From the PIV analysis we determine the shape of the jammed region, the growth rate, shear rates, and the expected force response due to the added mass. We compare this to direct force measurements and determine which components make up the total force response.

  20. Prepare dispersed CIS nano-scale particles and spray coating CIS absorber layers using nano-scale precursors.

    Science.gov (United States)

    Liou, Jian-Chiun; Diao, Chien-Chen; Lin, Jing-Jenn; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-01

    In this study, the Mo-electrode thin films were deposited by a two-stepped process, and the high-purity copper indium selenide-based powder (CuInSe2, CIS) was fabricated by hydrothermal process by Nanowin Technology Co. Ltd. From the X-ray pattern of the CIS precursor, the mainly crystalline phase was CIS, and the almost undetectable CuSe phase was observed. Because the CIS powder was aggregated into micro-scale particles and the average particle sizes were approximately 3 to 8 μm, the CIS power was ground into nano-scale particles, then the 6 wt.% CIS particles were dispersed into isopropyl alcohol to get the solution for spray coating method. Then, 0.1 ml CIS solution was sprayed on the 20 mm × 10 mm Mo/glass substrates, and the heat treatment for the nano-scale CIS solution under various parameters was carried out in a selenization furnace. The annealing temperature was set at 550°C, and the annealing time was changed from 5 to 30 min, without extra Se content was added in the furnace. The influences of annealing time on the densification, crystallization, resistivity (ρ), hall mobility (μ), and carrier concentration of the CIS absorber layers were well investigated in this study.

  1. Controlling high-throughput manufacturing at the nano-scale

    Science.gov (United States)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  2. Nano-scale processes behind ion-beam cancer therapy

    Science.gov (United States)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  3. Deposition of Nano-Scaled Coatings Using Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    D H Jung; B Park; J J Lee

    2004-01-01

    Nano-scaled Ti-B-N coatings could be produced by inductively coupled plasma (ICP) assisted magnetron spurtering. The properties and microstructure of the coating can be changed drastically by applying ICP to conventional magnetron sputtering. In this work, an internal type rf ICP process is used. The core of this technology is the efficient production and control of self-depositing ions and reactive gas ions by an induced electric field. Ti-B-N coatings were prepared by using a TiB2 target and a gas mixture of N2 and Ar at 200 ℃ and a pressure of 60 mTorr. In addition to ICP, the effect of the substrate bias voltage on the structure and properties of the coating was investigated. By applying ICP and a bias voltage to the substrate the hardness of the Ti-B-N coating is increased by more than 75 GPa, as a result of enhanced ionization in the plasma. The Ti-B-N coating, which has the highest hardness, shows the best surface uniformity and a very dense structure with a grain size of 3 nm. This sample also shows a high crystallinity compared to the coating prepared using other deposition parameters.

  4. Nano-scale CMOS analog circuits models and CAD techniques for high-level design

    CERN Document Server

    Pandit, Soumya; Patra, Amit

    2014-01-01

    Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database.Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physic

  5. Impact-activated solidification of cornstarch and water suspensions

    Science.gov (United States)

    Waitukaitis, Scott Russell

    Liquids typically offer little resistance to impacting objects . Surprisingly, dense suspensions of liquids mixed with micron-sized particles can provide tremendous impact resistance, even though they appear liquid like when left at rest or perturbed lightly. The most well-known example is a dense mixture of cornstarch and water, which can easily provide enough impact resistance to allow a full-grown person to run across its surface. Previous studies have linked this so-called ``shear thickening'' to experiments carried out under steady state shear and attributed it to hydrodynamic interactions or granular dilation. However, neither of these explanations alone can account for the stress scales required to keep a running person above the free surface. This thesis investigates the mechanism for this impact resistance in dense suspensions. We begin by studying impact directly and watching a rod as it strikes the surface of a dense suspension of cornstarch and water. Using high-speed video and embedded force and acceleration sensing, we show that the rod motion leads to the rapid growth of a solid-like object below the impact site. With X-ray videography to see the dynamics of the suspension interior and laser sheet measurements of the surface profile, we show how this solid drags on the surrounding suspension, creating substantial peripheral flow and leading to the rapid extraction of the impactor's momentum. Suspecting that the solidification below the rod may be related to jamming of the particle sub-phase, we carry out 2D experiments with macroscopic disks to show how uniaxial compression of an initially unjammed system can lead to dynamic jamming fronts. In doing so, we show how these fronts are sensitive to the system's initial packing fraction relative to the point at which it jams and also discover that the widths of these fronts are related to a diverging correlation length. Finally, we take these results back to the suspension, where we perform careful, speed

  6. Micro- and nano-scale optoelectronic devices using vanadium dioxide

    Science.gov (United States)

    Joushaghani, Arash

    Miniaturization has the potential to reduce the size, cost, and power requirements of active optical devices. However, implementing (sub)wavelength-scale electro-optic switches with high efficiency, low insertion loss, and high extinction ratios remains challenging due to their small active volumes. Here, we use the insulator-metal phase transition of vanadium dioxide (VO2), which exhibits a large and reversible change in the refractive index across the phase transition to demonstrate compact, broadband, and efficient switches and photodetectors with record-setting characteristics. We begin by analyzing the electrical and optical properties of VO2 thin films across the phase transition and discuss the fabrication processes that yield micron- and nano-scale VO2 devices. We then demonstrate a surface plasmon thermo-optic switch, which achieves an extinction ratio of 10 dB in a 5 um long device, a record for plasmonic devices. The switch operates over a 100 nm optical bandwidth, and exhibits a thermally limited switching time of 40 mus. We investigate the current and voltage induced switching of VO2 in nano-gap junctions and show optical switching times as short as 20 ns. The two terminal VO2 junctions are incorporated in a silicon photonics platform to yield silicon-VO2 hybrid waveguide devices with a record extinction ratio of 12 dB in a 1 mum long device. In photodetector mode, the devices exhibit a nonlinear responsivity greater than 12 A/W for optical powers less than 1 muW. This device is the smallest electrically controlled and integrated switch and photodetector capable of achieving extinction ratios > 10 dB/mum. We finally investigate the ultra-fast thermal heating in gold nano-apertures and demonstrate that electron heating can change the gold lattice temperature by 300 K in tens of picoseconds. These nano-apertures can be hybridized with VO2 to demonstrate high extinction and ultrafast optical switches.

  7. Nano-scaled semiconductor devices physics, modelling, characterisation, and societal impact

    CERN Document Server

    Gutiérrez-D, Edmundo A

    2016-01-01

    This book describes methods for the characterisation, modelling, and simulation prediction of these second order effects in order to optimise performance, energy efficiency and new uses of nano-scaled semiconductor devices.

  8. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  9. Pulverized fuel-oxygen burner

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    2017-09-05

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.

  10. Treatment of distillery wastewater by the nano-scale zero-valent iron and the supported nano-scale zero-valent iron.

    Science.gov (United States)

    Homhoul, Phatkanok; Pengpanich, Sitthiphong; Hunsom, Mali

    2011-01-01

    The treatment of wastewater from the distillery industry was carried out by using nano-scale- and supported nano-scale zero-valent iron at a laboratory scale and ambient temperature. Effects of dilution, pH, mixing rate, zero-valent iron dosage, and amount of support for the zero-valent iron were investigated. All parameters had a significant effect on the removal efficiency of all investigated pollutants. Increasing the number of dilutions and the nano-scale zero-valent iron dosage led to the increase of removal efficiency of pollutants. Higher removal efficiency was achieved in an acidic initial pH of wastewater. The reduction of all pollutants was limited by the kinetics of the pollutant destruction/reduction by nano-scale zero-valent iron particles at a mixing rate greater than 170 rpm. At optimum condition, greater than 95, 94, and 64% of color, chemical oxygen demand, and biochemical oxygen demand were removed, respectively, within 6 hours. Additionally, the presence of a support had a significant effect on pollutant removal.

  11. Performance characteristic of a Stirling refrigeration cycle in micro/nano scale

    Science.gov (United States)

    Nie, Wenjie; He, Jizhou; Du, Jianqiang

    2009-02-01

    The aim of the paper is to present the performance characteristics of a Stirling refrigeration cycle in micro/nano scale, in which the working substance of cycle is an ideal Maxwellian gas. Due to the quantum boundary effect on the gas particles confined in the finite domain, the cycle no longer possesses the condition of perfect regeneration. The inherent regenerative losses, the refrigeration heat and coefficient of performance (COP) of the cycle are derived. It is found that, for the micro/nano scaled Stirling refrigeration cycle devices, the refrigeration heat and COP of cycle all depend on the surface area of the system (boundary of cycle) besides the temperature of the heat reservoirs, the volume of system and other parameters, while for the macro scaled refrigeration cycle devices, the refrigeration heat and COP of cycle are independent of the surface area of the system. Variations of the refrigeration heat ratio rR and the COP ratio rε with the temperature ratio τ and volume ratio rV for the different surface area ratio rA are examined, which reveals the influence of the boundary of cycle on the performance of a micro/nano scaled Stirling refrigeration cycle. The results are useful for designing of a micro/nano scaled Stirling cycle device and may conduce to confirming experimentally the quantum boundary effect in the micro/nano scaled devices.

  12. A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhang-Ming; Li Ru; Hao Bao-Tian; Yang Yin-Tang

    2009-01-01

    Based on the heat diffusion equation of multilevel interconnects, a novel analytical thermal model for multilevel nano-scale interconnects considering the via effect is presented, which can compute quickly the temperature of multilevel interconnects, with substrate temperature given. Based on the proposed model and the 65 nm complementary metal oxide semiconductor (CMOS) process parameter, the temperature of nano-scale interconnects is computed. The computed results show that the via effect has a great effect on local interconnects, but the reduction of thermal conductivity has little effect on local interconnects. With the reduction of thermal conductivity or the increase of current density, however, the temperature of global interconnects rises greatly, which can result in a great deterioration in their performance. The proposed model can be applied to computer aided design (CAD) of very large-scale integrated circuits (VLSIs) in nano-scale technologies.

  13. Investigation of the Static and Dynamic Mechanical Properties of Nano-scale Water

    Science.gov (United States)

    Stambaugh, Corey; Kwon, Soyoung; Jhe, Wonho

    2011-03-01

    The behavior of liquids on the nano-scale has become an area of interest as new fabrication techniques have allowed for increasingly smaller structures to be made. While much work has been done on the interactions forces at liquid and solid interfaces, questions still remain regarding the behavior of nano-scale liquids. By incorporating a micro-electromechanical force sensor (MEMS) into the quartz tuning fork based atomic force microscope (QTF-AFM) probe setup we are able to both manipulate and measure nano-scale water, which in turn provides information beyond the standard AFM approach. Here we look at both the static and dynamic mechanical properties of water formed between the tip of a (QTF-AFM) probe and the polysilicon surface of a MEMS device. Work supported by NSF grant OISE #0853104.

  14. Mechanisms of heat transport across a nano-scale gap in heat assisted magnetic recording

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2012-06-01

    This paper compares different mechanisms of heat transport across nano-scale gaps and discusses the role of electromagnetic phenomena in heat transport in general nano-scale layered structures. The results of the analysis suggest that heat transfer across sub-5 nm gaps like that appearing in prototypes of heat assisted magnetic recording (HAMR) systems is dominated by direct intermolecular interactions between the separated bodies and is little affected by electromagnetic radiation. The analysis further suggests that local heating for HAMR with sub-5 nm spacing can be more efficiently achieved by a Joule heater that is simpler to fabricate than laser-based optical systems and is less destructive for the nano-scale transducers than laser radiation, which may lead to their structural damage and short duration life of nanoscale transducers.

  15. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].

    Science.gov (United States)

    Li, Lei; Pan, Gang; Chen, Hao

    2010-03-01

    Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.

  16. LATTICE DEFORMATION AND PHASE TRANSFORMATION FROM NANO-SCALE ANATASE TO NANO-SCALE RUTILE TiO2 PREPARED BY A SOL-GEL TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    Yanqun Shao; Dian Tang; Jinghua Sun; Yekun Lee; Weihao Xiong

    2004-01-01

    Nano-scale rutile phase was transformed from nano-scale anatase upon heating, which was prepared by a sol-gel technique. The XRD data corresponding to the anatase and rutile phases were analyzed and the grain sizes of as-derived phases were calculated by Sherrer equation. The lattice parameters of the as-derived anatase and rutile unit cells were calculated and compared with those of standard lattice parameters on PDF cards. It was shown that the smaller the grain sizes, the larger the lattice deformation. The lattice parameter a has the negative deviation from the standard and the lattice parameter c has the positive deviation for both phases. The particles sizes had preferential influence on the longer parameter between the lattice parameters of a and c. With increasing temperatures, the lattice parameters of a and c in both phases approached to the equilibrium state. The larger lattice deformation facilitated the nucleation process, which lowered the transformation temperature. During the transformation from nano-scale anatase to rutile, besides the mechanism involving retention of the {112} pseudo-close-packed planes of oxygen in anatase as the{100} pseudo-close-packed planes in rutile, the new phase occurred by relaxation of lattice deformation and adjustment of the atomic sites in parent phase. The orientation relationships were suggested to be anatase {101}//rutile {101} and anatase //rutile, and the habit plane was anatase (101),

  17. Nano-scale simulative measuring model for tapping mode atomic force microscopy and analysis for measuring a nano-scale ladder-shape standard sample.

    Science.gov (United States)

    Lin, Zone-Ching; Chou, Ming-Ho

    2010-07-01

    This study proposes to construct a nano-scale simulative measuring model of Tapping Mode Atomic Force Microscopy (TM-AFM), compare with the edge effect of simulative and measurement results. It combines with the Morse potential and vibration theory to calculate the tip-sample atomic interaction force between probe and sample. Used Silicon atoms (Si) arrange the shape of the rectangular cantilever probe and the nano-scale ladder-shape standard sample atomic model. The simulative measurements are compared with the results for the simulative measurements and experimental measurement. It is found that the scan rate and the probe tip's bevel angle are the two reasons to cause the surface error and edge effect of measuring the nano-scale ladder-shape standard sample by TM-AFM. And the bevel angle is about equal to the probe tip's bevel angle from the results of simulated and experimented on the vertical section of the sample edge. To compare with the edge effect between the simulation and experimental measurement, its error is small. It could be verified that the constructed simulative measuring model for TM-AFM in this article is reasonable.

  18. Performance of lactating dairy cows fed whole cottonseed coated with gelatinized cornstarch.

    Science.gov (United States)

    Bernard, J K

    1999-06-01

    The handling characteristics of whole cottonseed are improved by coating with gelatinized cornstarch, but limited information is available on the effects of feeding the coated cottonseed to lactating dairy cows. Thirty-six lactating Jersey cows were used in a crossover design trial with 4-wk experimental periods to evaluate the influence of coating whole cottonseed with 2.5% gelatinized cornstarch on dry matter intake, milk yield, and composition. Cows were fed diets containing 10.2% alfalfa-orchardgrass hay, 45.2% corn silage, 15.0% coated or uncoated whole cottonseed, and 29.6% concentrate for ad libitum consumption. Coating whole cottonseed with gelatinized cornstarch tended to reduce dry matter intake, which averaged 16.2 and 15.9 kg/d for uncoated and coated cottonseed, respectively. Milk yield and composition were similar for uncoated and coated cottonseed. The yield of energy-corrected milk per unit of dry matter consumed was greater with coated cottonseed. Cows fed coated cottonseed gained body weight, but cows fed uncoated cottonseed lost weight. Concentrations of plasma urea were similar among treatments; however, NEFA concentrations were lower for cows fed coated whole cottonseed. Results of this trial indicate that coating whole cottonseed with 2.5% gelatinized cornstarch does not alter its feeding value for lactating dairy cows.

  19. The effect of polysaccharides on the gelatinization properties of cornstarch dispersions

    Science.gov (United States)

    Konjac glucomannan (neutral), CMC (negatively charged) and chitosan (positively charged) were added to cornstarch dis- persions, in order to study the effect of polysaccharide-starch interactions on the starch gelatinization properties. Pasting and retrogradation properties were measured with the rh...

  20. Relationship between nano-scale deformation of coal structure and metamorphic-deformed environments

    Institute of Scientific and Technical Information of China (English)

    JU Yiwen; JIANG Bo; HOU Quanlin; WANG Guiliang

    2005-01-01

    There is a more consanguineous relation between nano-scale deformation of coal structure and metamorphic-deformed environment. In different metamorphic-deformed environments, deformation in the coal structure can occur not only at micro-scale, but also at nano-scale, and even leads to the change of molecular structure and nano-scale pore (<100 nm) structure. The latter is the main space absorbing coalbed methane. Through X-ray diffraction (XRD) and liquid-nitrogen absorption methods, the characteristics of macromolecular and nano-scale pore structures of coals in different metamorphic-deformed environments and deformational series of coals have been studied. By combining with high-resolution transmission electron microcopy (HRTEM), the macromolecular and nano-scale pore structures are also directly observed. These results demonstrate that the stacking Lc of the macromolecular BSU in tectonic coals increases quickly from the metamorphic-deformed environment of low rank coals to that of high rank coals. For different deformed tectonic coals, in the same metamorphic-deformed environment, the difference of Lc is obvious. These changes reflect chiefly the difference of different temperature and stress effect of nano-scale deformation in tectonic coals. The factor of temperature plays a greater role in the increase of macromolecular structure parameters Lc, the influence of stress factor is also important. With the stress strengthening, Lc shows an increasing trend, and La /Lc shows a decreasing trend. Therefore, Lc and La /Lc can be used as the indicator of nano-scale deformation degree of tectonic coals. With increasing temperature and pressure, especially oriented stress, the orientation of molecular structure becomes stronger, and ordering degree of C-nets and the arrangement of BSU are obviously enhanced. For the deformation of nano-scale pore structure, in the same metamorphic-deformed environment, along with the strengthening of stress, the ratio of mesopores to

  1. Microstructure Charaterization of a Hardened and Tempered Tool Steel: from Macro to Nano Scale

    DEFF Research Database (Denmark)

    Højerslev, Christian; Somers, Marcel A. J.; Carstensen, Jesper V.

    2002-01-01

    The microstructure of a conventionally heat treated PM AISI M3:2 tool steel, was characterised by a combination of light optical and electron microscopy, covering the range from micro to nano scale. Dilatometry and X-ray diffractometry were used for an overall macro characterisation of the phases...

  2. EFFICIENT NANO-SCALE ADMIXTURE FOR FOAM STABILITY IMPROVEMENT OF CELLULAR CONCRETES

    Directory of Open Access Journals (Sweden)

    Grishina Аnna Nikolaevna

    2012-10-01

    Full Text Available The authors present their methodology of synthesis of a nano-scale additive designated for the stabilization of synthetic foaming agents. The nano-scale admixture is composed of iron hydroxide (III sol and aqueous sodium hydro silicates (water glass. Besides the above method, the topological structural model of the nano-scale additive is proposed. The additive stability was assessed upon its one-day storage (with the foaming agent added, and the assessment data are provided in the article. The authors have discovered that it is advisable to use an iron chloride solution in the concentration of 1 % to manufacture the iron hydroxide (III sol. The authors have also discovered that the rate of jellification goes up in the process of injecting the foaming agent into the foam that contains the nano-scale admixture developed by the authors. Dependence between the amount of sodium hydro silicate and the viscosity of the system composed of the water glass and the sol of iron hydroxide (III is examined in detail. The authors have identified that the average water glass viscosity curve demonstrates an extreme nature. The additive is used for the stabilization of the foam generated by synthetic foaming agents. The injection of the proposed additive improves foam stability. It is noteworthy that this positive result is free from any negative side effects.

  3. Biased transportations in a spatially asymmetric system at the nano-scale under thermal noise

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Under the theory of ratchet effect for mesoand macro-scale systems, the additional perturbation with a long time correlation and the breaking of spatial inversion symmetry are two main ingredients to bring unidirected transportations. With the help of a simple model system, we show that a spatially asymmetric system of the nano-scale length may induce biased transportations under thermal noise.

  4. Measurement of the Resonant Frequency of Nano-Scale Cantilevers by Hard Contact Readout

    DEFF Research Database (Denmark)

    Dohn, Søren; Hansen, Ole; Bolsen, A.

    2008-01-01

    It is shown that detection of the resonant frequency of a nano-scale cantilever is possible by measuring the time average current flowing from an electrode to the cantilever during hard contact occurring twice every cycle of the cantilever vibration. The electronic detection method is insensitive....... The readout method is thereby ideally suited for portable sensor systems....

  5. Quantum Boltzmann equation solved by Monte Carlo method for nano-scale semiconductor devices simulation

    Institute of Scientific and Technical Information of China (English)

    Du Gang; Liu Xiao-Yan; Han Ru-Qi

    2006-01-01

    A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.

  6. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating

    Science.gov (United States)

    Li, Weiwei; Liu, Weihao; Jia, Qika

    2016-03-01

    The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation can be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.

  7. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  8. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  9. Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. L.; Shah, S. A. A.; Hao, Y. L.; Prima, F.; Li, T.; Cairney, J. M.; Wang, Y. D.; Wang, Y.; Obbard, E. G.; Li, S. J.; Yang, R.

    2017-04-01

    It is well-known that the body centered cubic (bcc) crystal in titanium alloys reaches its stability limit as the electron-to-atom (e/a) ratio of the alloy drops down to ~4.24. This critical value, however, is much higher than that of a multifunctional bcc type alloy (e/a = 4.15). Here we demonstrate that a nano-scale concentration modulation created by spinodal decomposition is what stabilizes the bcc crystal of the alloy. Aided by such a nano-scale concentration heterogeneity, unexpected properties from its chemically homogeneous counterpart are obtained. This provides a new strategy to design functional titanium alloys by tuning the spinodal decomposition.

  10. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    Science.gov (United States)

    2010-09-01

    value nZVI nano -scale ZVI O&M operation and maintenance ORP oxidation-reduction potential P&T pump -and-treat PCE tetrachloroethene PRB...grade surfactant, biodegradable oil, water, and ZVI particles (either nano - or micro -scale iron, nZVI, or mZVI), which form emulsion particles. The...is composed of food- grade surfactant, biodegradable oil, water, and ZVI particles (either nano - or micro -scale iron, nZVI, or mZVI), which form

  11. Novel Nano-scale Overlay Alignment Method for Room-temperature Imprint Lithography

    Institute of Scientific and Technical Information of China (English)

    WANG Li; DING Yu-cheng; LU Bing-heng; LI Han-song; YAN Le; QIU Zhi-hui; LIU Hong-zhong; YIN Lie

    2005-01-01

    A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint are used to estimate the alignment errors in x and y directions. The experiment result indicates that complex and the alignment resolutions obtained in x and y directions are ±20 nm(3σ) and ±24 nm(3σ). They can meet the requirement of alignment accuracy for submicron imprint lithography.

  12. Characterization of nano-scale protective oxide films: application on metal chemical mechanical planarization

    OpenAIRE

    Karagöz, Ayşe; Craciun, V.; Başım, Gül Bahar

    2015-01-01

    This study focuses on the characterization of nano-scale metal oxide films for chemical mechanical planarization (CMP) applications. The protective nature of the self-grown metal oxide layers in the CMP slurry environment enable topographic selectivity required for metallization of interconnects. Tungsten was selected as the model metal film to study the formation and characteristics of the metal oxide nano-layers since tungsten CMP is very well-established in conventional semiconductor manuf...

  13. CATALYST TECHNOLOGY DEVELOPMENT FROM MACRO-,MICRO- DOWN TO NANO-SCALE

    Institute of Scientific and Technical Information of China (English)

    Wei Liu

    2005-01-01

    Catalyst and catalytic process technology has been an ever-growing field that involves chemical engineering, chemistry, and material science. A number of excellent review articles and books have been published on the subject. In this work, the author reviews the evolution and development of catalyst products with multi-scale methodology.The catalyst technologies are classified into three levels, macro-scale (reactor size), mini- and micro-scale (catalyst unit),and nano-scale (catalyst intrinsic structures). Innovation at different scales requires different sets of expertise, method,and knowledge. Specific examples of significant impact to practical application are used to illustrate technology development at each scale. The multi-scale analysis enables clear delineation of technology components and their relationship for a catalyst product and catalytic process. Manipulation of catalyst structures at nano-scale to increase intrinsic activity and/or selectivity is considered of large potential for future catalyst product development. Recent research results on Cu-CeO2 and Au-CeO2 composite catalysts for air pollution control and hydrogen production are used to show how novel catalytic properties can be discovered by unique combination of different but common materials at the nano-scale.

  14. Failure and deformation mechanisms at macro- and nano-scales of alkali activated clay

    Science.gov (United States)

    Sekhar Das, Pradip; Bhattacharya, Manjima; Chanda, Dipak Kr; Dalui, Srikanta; Acharya, Saikat; Ghosh, Swapankumar; Mukhopadhyay, Anoop Kumar

    2016-06-01

    Here we report two qualitative models on failure and deformation mechanisms at macro- and nano-scales of alkali activated clay (AACL), a material of extraordinary importance as a low cost building material. The models were based on experimental data of compressive failure and nanoindentation response of the AACL materials. A 420% improvement in compressive strength (σ c) of the AACL was achieved after 28 days (d) of curing at room temperature and it correlated well with the decrements in the residual alkali and pH concentrations with the increase in curing time. Based on extensive post-mortem FE-SEM examinations, a schematic model for the compressive failure mechanism of AACL was proposed. In addition, the nanoindentation results of AACL provided the first ever experimental evidence of the presence of nano-scale plasticity and a nano-scale contact deformation resistance that increased with the applied load. These results meant the development of a unique strain tolerant microstructure in the AACL of Indian origin. The implications of these new observations were discussed in terms of a qualitative model based on the deformation of layered clay structure.

  15. Design exploration of emerging nano-scale non-volatile memory

    CERN Document Server

    Yu, Hao

    2014-01-01

    This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices.  Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design, and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices.  Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design.   • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design, and hybrid NVM memory system optimization; • Provides both theoretical analysis and pr...

  16. In situ thermomechanical testing methods for micro/nano-scale materials.

    Science.gov (United States)

    Kang, Wonmo; Merrill, Marriner; Wheeler, Jeffrey M

    2017-02-23

    The advance of micro/nanotechnology in energy-harvesting, micropower, electronic devices, and transducers for automobile and aerospace applications has led to the need for accurate thermomechanical characterization of micro/nano-scale materials to ensure their reliability and performance. This persistent need has driven various efforts to develop innovative experimental techniques that overcome the critical challenges associated with precise mechanical and thermal control of micro/nano-scale specimens during material characterization. Here we review recent progress in the development of thermomechanical testing methods from miniaturized versions of conventional macroscopic test systems to the current state of the art of in situ uniaxial testing capabilities in electron microscopes utilizing either indentation-based microcompression or integrated microsystems. We discuss the major advantages/disadvantages of these methods with respect to specimen size, range of temperature control, ease of experimentation and resolution of the measurements. We also identify key challenges in each method. Finally, we summarize some of the important discoveries that have been made using in situ thermomechanical testing and the exciting research opportunities still to come in micro/nano-scale materials.

  17. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  18. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  19. Spin Coated Nano Scale PMMA Films for Organic Thin Film Transistors

    Science.gov (United States)

    Shekar, B. Chandar; Sathish, S.; Sengoden, R.

    Nano scale poly methyl methacrylate (PMMA) films are prepared by spin coating the solution of PMMA on to p-Si substrate. The thickness of the films coated is measured by Ellipsometry. The SA-XRD spectrum of the as grown and annealed films indicated the amorphous nature. The SEM analysis revealed no pinholes, pits and dendritic features on the surface. Both as grown and annealed films indicated smooth surface and amorphous structure. The capacitance-voltage (C-V) behaviour of the metal-insulator-semiconductor (MIS) structure with Al/PMMA/p-Si has been studied. The C-V behaviour carried out for various frequencies (f) ranging from 20 kHz to 1 MHz and for a bias voltage range of -20 V to +20 V. Both as grown and annealed films showed a small flat band voltage (VFB) shift towards the negative voltage. The small shift in the VFB observed may be due to charge traps and de-traps. The obtained C-V behaviour for as grown and annealed films indicated that as grown PMMA nano scale thin films do not have many defects such as voids and inhomogeneity etc. The observed C-V behavior, a very low shift in the flat band voltage (VFB 0); reasonably higher dielectric constant values; thermal stability up to 2800C; amorphous and smooth surface implies that nano scale thin PMMA film coated by spin coating could be used as an efficient dielectric layer in field effect organic thin film transistors (OTFTs).

  20. Carbopol 934, 940 and Ultrez 10 as viscosity modifiers of palm olein esters based nano-scaled emulsion containing ibuprofen

    National Research Council Canada - National Science Library

    Abdullah, Ghassan Zuhair; Abdulkarim, Muthanna Fawzy; Mallikarjun, Chitneni; Mahdi, Elrashid Saleh; Basri, Mahiran; Sattar, Munavvar Abdul; Noor, Azmin Mohd

    2013-01-01

    .... This work aimed to modify the poor flow properties of a nano-scaled emulsion comprising palm olein esters as the oil phase and ibuprofen as the active ingredient for topical delivery. Three Carbopol ® resins...

  1. Pushing the pulverized coal envelope with LEBS

    Energy Technology Data Exchange (ETDEWEB)

    Regan, J.W.; Borio, R.W.; Palkes, M. [and others

    1995-11-01

    In response to challenges from technologies such as IGCC and PFBC, the ABB LEBS Team has proposed removing the barriers to very large advances in environmental and thermal performance of pulverized coal plants. Pulverized coal will continue to be the source of more than half of our electric generation well into the next century and we must develop low-risk low-cost advances that will compete with the claimed performance of other technologies. This paper describes near-term PC technologies for new and retrofit applications which will accomplish this.

  2. Writing to and reading from a nano-scale crossbar memory based on memristors

    Science.gov (United States)

    Vontobel, Pascal O.; Robinett, Warren; Kuekes, Philip J.; Stewart, Duncan R.; Straznicky, Joseph; Williams, R. Stanley

    2009-10-01

    We present a design study for a nano-scale crossbar memory system that uses memristors with symmetrical but highly nonlinear current-voltage characteristics as memory elements. The memory is non-volatile since the memristors retain their state when un-powered. In order to address the nano-wires that make up this nano-scale crossbar, we use two coded demultiplexers implemented using mixed-scale crossbars (in which CMOS-wires cross nano-wires and in which the crosspoint junctions have one-time configurable memristors). This memory system does not utilize the kind of devices (diodes or transistors) that are normally used to isolate the memory cell being written to and read from in conventional memories. Instead, special techniques are introduced to perform the writing and the reading operation reliably by taking advantage of the nonlinearity of the type of memristors used. After discussing both writing and reading strategies for our memory system in general, we focus on a 64 × 64 memory array and present simulation results that show the feasibility of these writing and reading procedures. Besides simulating the case where all device parameters assume exactly their nominal value, we also simulate the much more realistic case where the device parameters stray around their nominal value: we observe a degradation in margins, but writing and reading is still feasible. These simulation results are based on a device model for memristors derived from measurements of fabricated devices in nano-scale crossbars using Pt and Ti nano-wires and using oxygen-depleted TiO2 as the switching material.

  3. Pulverized glass as an alternative filter medium

    Energy Technology Data Exchange (ETDEWEB)

    Piccirillo, J.B.; Letterman, R.D.

    1998-07-01

    A significant amount of low-value, recycled glass is stockpiled at recycling facilities or landfilled. This study was conducted to investigate the use of pulverized recycled glass as a filter medium in slow sand filtration. The glass was pulverized using a flail mill-type pulverizer. The size distribution of the pulverizer output was adjusted by sieving to meet the grain size requirements of the Ten States Standards and the USEPA for filter media were compared to a fourth unit containing silica sand media. The filter influent was spiked with clay, coliform group bacteria and the cysts and oocyst of Giardia lamblia and Cryptosporidium parvum. Over an 8 month period of continuous operation, the performance of the glass sand filter media was as good as or better than the silica sand, with removals of 56% to 96% for turbidity; 99.78% to 100.0% for coliform bacteria; 99.995% to 99.997% for giardia cysts; and 99.92% to 99.97% for cryptosporidium oocysts. According to a cost-benefit analysis, converting waste glass into filter media may be economically advantageous for recycling facilities.

  4. Nano scale modal confinement in 3D gap plasmon polariton cavities

    CERN Document Server

    Feigenbaum, E; Feigenbaum, Eyal; Orenstein, Meir

    2006-01-01

    Modal volumes at the nano-scale, much smaller than the "diffraction limit", with moderate quality factors, are demonstrated for a dielectric cylinder embedded in between metal plates. The modal field is bounded between the metal interfaces and can be reduced in size almost indefinitely in this dimension. But more controversial - due to the "plasmonic" effect - this reduction is accompanied by a similar in-plane modal size reduction. Another intriguing result is that higher order cavity modes exhibit lower radiation loss. The scheme is studied with effective index analysis, validated by FDTD simulations.

  5. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    DEFF Research Database (Denmark)

    Andersen, Felicie F; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De

    2008-01-01

     The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates...... be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures...

  6. Design and synthesis of new polyaromatic scaffolds for nano-scale applications

    OpenAIRE

    de Mendoza Bonmatí, Paula

    2010-01-01

    Design and Synthesis of New Polyaromatic Scaffolds for Nano-Scale ApplicationsResumen: En la última década, el diseño y la síntesis de nuevos sistemas poliaromáticos han resultado de gran interés gracias a sus propiedades únicas y sus aplicaciones potenciales para la obtención de dispositivos electrónicos, y como precursores de fullerenos. Hemos estudiado el mecanismo que procede a través de la activación del enlace C-H en la reacción intramolecular de arilación directa catalizada por paladio...

  7. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence le...... mixtures show that the enzyme activity is modulated by nano-scale lipid-domain formation in the lipid bilayer and lead to a characteristic lag-burst behavior. The simulations are found to be in semi-quantitative agreement with experimental data....

  8. Detecting Nano-Scale Vibrations in Rotating Devices by Using Advanced Computational Methods

    Directory of Open Access Journals (Sweden)

    Raúl M. del Toro

    2010-05-01

    Full Text Available This paper presents a computational method for detecting vibrations related to eccentricity in ultra precision rotation devices used for nano-scale manufacturing. The vibration is indirectly measured via a frequency domain analysis of the signal from a piezoelectric sensor attached to the stationary component of the rotating device. The algorithm searches for particular harmonic sequences associated with the eccentricity of the device rotation axis. The detected sequence is quantified and serves as input to a regression model that estimates the eccentricity. A case study presents the application of the computational algorithm during precision manufacturing processes.

  9. Thermoelectric effect in nano-scaled lanthanides doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E H; Canepa, H R; Walsoee de Reca, N E [Centro de Investigacion en Solidos, CITEFA, San Juan Bautista de La Salle 4397 (B1603ALO) Villa Martelli, Buenos Aires (Argentina); Schaeuble, N; Aguirre, M H, E-mail: canepa@citefa.gov.a, E-mail: myriam.aguirre@empa.c [Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Testing and Research, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2009-05-01

    Start Nano-scaled ZnO with 1% Er doping was prepared by soft chemistry methods. The synthesis was carried out in anhydrous polar solvent to achieve a crystal size of a few nanometers. Resulting particles were processed as precipitates or multi layer films. Structural characterization was evaluated by X-Ray diffraction and transmission and scanning electron microscopy. In the case of films, UV-Vis characterization was made. The thermoelectrical properties of ZnO:Er were evaluated and compared with a typical good thermoelectric material ZnO:Al. Both materials have also shown high Seebeck coefficients and they can be considered as potential compounds for thermoelectric conversion.

  10. Associative effects of supplementing rice straw-based diet with cornstarch on intake, digestion, rumen microbes and growth performance of Huzhou lambs.

    Science.gov (United States)

    Zhang, Xian-Dong; Wang, Jia-Kun; Chen, Wei-Jian; Liu, Jian-Xin

    2010-04-01

    Thirty-six male Hu lambs consuming a rice straw-based diet were used in a 60-day trial to study the associative effects of cornstarch supplementation on intake, digestion, ruminal microbial population and growth performance. All animals were fed rice straw ad libitum together with 160 g/day of rapeseed meal and supplemented with cornstarch at levels of 0 (control), 60, 120 or 180 g/day, respectively. Increment of supplementary cornstarch showed little influence on rice straw intake. Optimal growth performance and highest apparent digestibility of organic matter was achieved in the 120 g/day cornstarch group (P performance. High levels of cornstarch, however, would decrease cellulase activity and populations of cellulolytic bacteria, and hence the digestibility of forage.

  11. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  12. Synthesis and Characterization of Tb-incorporated Apatite Nano-scale Powders

    Institute of Scientific and Technical Information of China (English)

    L.J. Sun; P.F. Ni; D.G. Guo; C.Q. Fang; J. Wang; F. Yang; X.F. Huang; Y.Z. Hao; H. Zhu; K.W. Xu

    2012-01-01

    Nano-scale Tb-incorporated apatite (nano-Tb-AP) particles with different Tb contents (Tb/(Tb+Ca)) of 0%, 5%, 10% and 20% were synthesized through a simple wet chemical method in this study. The crystal structure, thermal stabilities, chemical groups, crystal morphologies and crystal sizes of the nano--Tb-AP particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), respectively. It was found that lattice constants, particle sizes, crystalline and thermal stability varied with the doped Tb contents. With the increasing of Tb content, the lattice constants, particle size, length/diameter ratio, crystalline and thermal stability of nano-Tb-AP gradually decrease. Especially, almost all the 20%Tb-AP nano particles had been decomposed at 1200 ℃ while only a few of the decomposed products (β-TCP) were detected in the Tb-free nano apatite powders: This kind of nano-scale Tb-incorporated apatite exhibits an extremely potential clinic application because it integrates both the excellent biological functions of Tb element and apatite in human body.

  13. Current Progress of Mechanical Properties of Metals with Nano-scale Twins

    Institute of Scientific and Technical Information of China (English)

    Lei LU

    2008-01-01

    Focus on face-centered cubic (fcc) metals with nano-scale twins lamellar structure, this paper presents a brief overview of the recent progress made in improving mechanical properties, including strength, ductility, work hardening, strain rate sensitivities, and in mechanistically understanding the underling deformation mechanisms. Significant developments have been achieved in nano-twinned fcc metals with a combination of high strength and considerable ductility at the same time, enhanced work hardening ability and enhanced rate sensitivity. The findings elucidate the role of interactions between dislocations and twin boundaries (TBs) and their contribution to the origin of outstanding properties. The computer simulation analysis accounts for high plastic anisotropy and rate sensitivity anisotropy by treating TBs as internal interfaces and allowing special slip geometry arrangements that involve soft and hard modes of deformation. Parallel to the novel mechanical behaviors of the nano-twinned materials, the investigation and developments of nanocrystalline materials are also discussed in this overview for comparing the contribution of grain boundaries/TBs and grain size/twin lamellar spacing to the properties. The recent advances in the experimental and computational studies of plastic deformation of the fcc metals with nano-scale twin lamellar structures provide insights into the possible means of optimizing comprehensive mechanical properties through interfacial engineering.

  14. Introducing a nano-scale crossed hot-wire for high Reynolds number measurements

    Science.gov (United States)

    Fan, Yuyang; Fu, Matthew; Hultmark, Marcus

    2016-11-01

    Hot-wire anemometry is commonly used for high Reynolds number flow measurements, mainly because of its continuous signal and high bandwidth. However, measuring two components of velocity in high Reynolds number wall-bounded flows has proven to be quite challenging with conventional crossed hot-wires, especially close to the wall, due to insufficient resolution and obstruction from the probe. The Nano-Scale Thermal Anemometry Probe (NSTAP) is a miniature hot-wire that drastically increased the spatial and temporal resolutions for single-component measurements by using a nano-scale platinum wire. Applying a novel combining method and reconfiguration of the NSTAP design, we created a sensor (x-NSTAP) that is capable of two-component velocity measurements with a sensing volume of approximately 50 × 50 × 50 μ m, providing spatial and temporal resolutions similar to the single component NSTAP. The x-NSTAP is deployed in the Superpipe facility for accurate measurements of the Reynolds stresses at very high Reynolds numbers. Supported under NSF Grant CBET-1510100 (program manager Dimitrios Papavassiliou).

  15. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    Science.gov (United States)

    Kim, Nammoon; Kim, Youngok

    2011-10-01

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  16. Aspects of Characterisation of Thin Coating Adhesion at the Nano-Scale

    Institute of Scientific and Technical Information of China (English)

    Jisheng E; Aiyang Zhang; Ben D. Beake

    2002-01-01

    In response to current development of materials in nano-science,characterisation of thin coating adhesion on a nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more technologically advanced. With a review of technology and mechanisms of evaluating the adhesion failure of coatings,three techniques,nano impact ,nano-scratch and nano-indentation techniques ,for charactering the adhesion of thin coatings on a nano scale are described.Results of charactering the adhesion faliure of thin coatings using three different techniques indicate that the nano-scratch and nano-indentation techniques are very useful tools ,particularly in charactering the performance of thin coatings under nano-abra sive wear conditions. However,results from these types of tests cannot be easily applied to predict the performance of coatings whose are subject to nano-erosive wear,cyclic nano-fatigue or multiple nano-impacts during service. Instead,results of the new dynamic testing technique ,impact technique ,are found to correlate well with the coating performance under fatigue conditions,precisely because the impact test more closely simulates the actual contact (adhesion failure and wear)conditions of thin coatings occurring in nano-erosive/nano-fatigue/nano-impact wear.

  17. An integrated nano-scale approach to profile miRNAs in limited clinical samples

    Science.gov (United States)

    Seumois, Grégory; Vijayanand, Pandurangan; Eisley, Christopher J; Omran, Nada; Kalinke, Lukas; North, Mal; Ganesan, Asha P; Simpson, Laura J; Hunkapiller, Nathan; Moltzahn, Felix; Woodruff, Prescott G; Fahy, John V; Erle, David J; Djukanovic, Ratko; Blelloch, Robert; Ansel, K Mark

    2012-01-01

    Profiling miRNA expression in cells that directly contribute to human disease pathogenesis is likely to aid the discovery of novel drug targets and biomarkers. However, tissue heterogeneity and the limited amount of human diseased tissue available for research purposes present fundamental difficulties that often constrain the scope and potential of such studies. We established a flow cytometry-based method for isolating pure populations of pathogenic T cells from bronchial biopsy samples of asthma patients, and optimized a high-throughput nano-scale qRT-PCR method capable of accurately measuring 96 miRNAs in as little as 100 cells. Comparison of circulating and airway T cells from healthy and asthmatic subjects revealed asthma-associated and tissue-specific miRNA expression patterns. These results establish the feasibility and utility of investigating miRNA expression in small populations of cells involved in asthma pathogenesis, and set a precedent for application of our nano-scale approach in other human diseases. The microarray data from this study (Figure 7) has been submitted to the NCBI Gene Expression Omnibus (GEO; http://ncbi.nlm.nih.gov/geo) under accession no. GSE31030. PMID:23304658

  18. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    Directory of Open Access Journals (Sweden)

    Kim Nammoon

    2011-01-01

    Full Text Available Abstract In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  19. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  20. Nano-scale Interfacial Friction Behavior between Two Kinds of Materials in MEMS Based on Molecular Dynamics Simulations

    Institute of Scientific and Technical Information of China (English)

    YANG Ping; LIAO Linbo; DING Jianning; YANG Jichang; LI Changsheng; FAN Zen; LIN Zhiyong

    2006-01-01

    The aim of this article was to provide a systematic method to perform molecular dynamics simulation or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is an important factor affecting the performance and reliability of MEMS. The model of the nano-scale interfacial friction behavior between two kinds of materials was presented based on the Newton's equations of motion. The Morse potential function was selected for the model. The improved Verlet algorithm was employed to resolve the model, the atom trajectories and the law of the interfacial friction behavior. Comparisons with experimental data in other paper confirm the validity of the model. Using the model it is possible to simulate or evaluate the importance of different factors for designing of the nano-scale interfacial friction behavior between two kinds of materials in MEMS.

  1. Velocity oscillations and stop-go cycles: The trajectory of an object settling in a cornstarch suspension

    NARCIS (Netherlands)

    von Kann, S.; Snoeijer, Jacobus Hendrikus; van der Meer, Roger M.

    2013-01-01

    We present results for objects settling in a cornstarch suspension. Two surprising phenomena can be found in concentrated suspensions. First, the settling object does not attain a terminal velocity but exhibits oscillations around a terminal velocity when traveling through the bulk of the liquid. Se

  2. Volume changes at macro- and nano-scale in epoxy resins studied by PALS and PVT experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, A. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina) and CICPBA, Pinto 399, B7000GHG Tandil (Argentina)]. E-mail: asomoza@exa.unicen.edu.ar; Salgueiro, W. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina); Goyanes, S. [LPMPyMC, Depto. de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Ramos, J. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain); Mondragon, I. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain)

    2007-02-15

    A systematic study on changes in the volumes at macro- and nano-scale in epoxy systems cured with selected aminic hardeners at different pre-cure temperatures is presented. Free- and macroscopic specific-volumes were measured by PALS and pressure-volume-temperature techniques, respectively. An analysis of the relation existing between macro- and nano-scales of the thermosetting networks developed by the different chemical structures is shown. The result obtained indicates that the structure of the hardeners governs the packing of the molecular chains of the epoxy network.

  3. Fabrication of ordered micro- and nano-scale patterns based on optical discs and nanoimprint

    Science.gov (United States)

    Guo, Hui-jing; Zhang, Xiao-liang; Li, Xiao-chun

    2016-07-01

    A simple method to fabricate one-dimensional (1-D) and two-dimensional (2-D) ordered micro- and nano-scale patterns is developed based on the original masters from optical discs, using nanoimprint technology and soft stamps. Polydimethylsiloxane (PDMS) was used to replicate the negative image of the 1-D grating pattern on the masters of CD-R, DVD-R and BD-R optical discs, respectively, and then the 1-D pattern on one of the PDMS stamps was transferred to a blank polycarbonate (PC) substrate by nanoimprint. The 2-D ordered patterns were fabricated by the second imprinting using another PDMS stamp. Different 2-D periodic patterns were obtained depending on the PDMS stamps and the angle between the two times of imprints. This method may provide a way for the fabrication of complex 2-D patterns using simple 1-D masters.

  4. Nano-scaled diffusional or dislocation creep analysis of single-crystal ZnO

    Directory of Open Access Journals (Sweden)

    P. H. Lin

    2016-09-01

    Full Text Available The nanoindentation time-dependent creep experiments with different peak loads are conducted on c-plane (0001, a-plane (112¯0 and m-plane (101¯0 of single-crystal ZnO. Under nano-scaled indentation, the creep behavior is crystalline orientation-dependent. For the creep on (0001, the stress exponent at low loads is ∼1 and at high loads ∼4. The stress exponents under all loads are within 3∼7 for the creep on (112¯0 and (101¯0. This means that diffusion mechanism and dislocation mechanism is operative for different planes and loads. The relative difficulty of dislocations activation is an additional factor leading to the occurring of diffusion creep on the c-plane of single-crystal ZnO.

  5. Ultra-fast nano-scale phase transitions in systems driven far from equilibrium

    Science.gov (United States)

    Caro, A.; Lopasso, E. M.; Caro, M.; Turchi, P. E. A.

    2004-03-01

    We study the thermodynamic forces acting on the evolution of the nanoscale regions excited by laser shots into solid targets. We analyze the role of diffusion, thermo-migration, and the liquidus-solidus two-phase field crossing, as the system cools down from the induced melt under different conditions of energy deposition. To determine the relevance of these thermodynamic forces, solute redistribution is evaluated using molecular dynamics simulations of equilibrium Au-Ni solid solutions. Our results show the combined effects of thermo-migration and solute redistribution that, depending on the material, can reinforce or cancel each other. These effects show that the combination of ultra-fast but nano-scale characteristics of these processes can be used to produce nanoscale modifications of composition in alloys

  6. The electrical conductivity characteristics of Fe/Cu nano-scale multilayer materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A mathematical model for describing the relationship betweenelectrical conductivity and the thickness of bilayer, ratio of sublayer thickness of a nano-scale multilayer material (MLM) is presented. Fe/Cu MLM was synthesized by electron beam physical vapor deposition (EB-PVD) technique, and the dependence of electrical conductivity of Fe/Cu MLM on the bilayer thickness and ratio of sublayer thickness were investigated. It is shown that the electrical conductivity of Fe/Cu MLM with fixed ratio of sublayer thickness decreases sharply when the thickness of bilayer becomes thinner than 30 nm. When the bilayer thickness is kept constant, the electrical conductivity linearly decreases with the increasing ratio of sublayer thickness. The values of parameters in the model were obtained by fitting the measured results of electrical conductivity of Fe/Cu MLM with fixed ratio of sublayer thickness. It is found that the calculated values agree well with measured ones.

  7. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non......There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence......-equilibrium action of the enzyme phospholipase A(2) which hydrolyses lipid-bilayer substrates. The resulting product molecules are assumed to induce local variations in the membrane interfacial pressure. Monte Carlo simulations of the non-equilibrium properties of the model for one-component as well as binary lipid...

  8. A New Reforming Reaction Mechanism of Carbon Dioxide with Methane on Nano Scale Nickel catalyst

    Directory of Open Access Journals (Sweden)

    Long Wei

    2016-01-01

    Full Text Available The reforming mechanism of CO2-CH4 on Nano scale Ni metal catalyst was investigated using the B3LYP density functional method and MP2/Lanl2dz method. It was found that the reaction include thirteen steps and the activation energy of each step was 44.7175, 200.4707, 171.0781, 307.2596, 124.5252, 330.7904, 593.9056, 177.5526, 226.6793, 277.789 2, 394.5525,399.5340 and 105.4115 kJ·mol−1. The rate determining step was the fourth step. The enthalpy value of each step was 31.6136, 106.7138, −104.2589, 79.9641, 93.5573,174.6 121, 259.6409, −141.9192, −439.9338, −265.4756, −208.3245, 131.6561 and −86.1765 kJ·mol−1.

  9. Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2014-05-01

    Gelation properties of Alaska pollock surimi as affected by addition of nano-scaled fish bone (NFB) at different levels (0%, 0.1%, 0.25%, 0.5%, 1% and 2%) were investigated. Breaking force and penetration distance of surimi gels after setting increased significantly as NFB concentration increased up to 1%. The first peak temperature and value of storage modulus (G'), which is known to relate to the unfolding and aggregation of light meromyosin, increased as NFB concentration increased. In addition, 1% NFB treatment demonstrated the highest G' after gelation was completed. The activity of endogenous transglutaminase (TGase) in Alaska pollock surimi increased as NFB calcium concentration increased. The intensity of myosin heavy chain cross-links also increased as NFB concentration increased indicating the formation of more ε-(γ-glutamyl) lysine covalent bond by endogenous TGase and calcium ions from NFB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe

    Energy Technology Data Exchange (ETDEWEB)

    Vallikivi, M.; Hultmark, M.; Smits, A.J. [Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, NJ (United States); Bailey, S.C.C. [University of Kentucky, Department of Mechanical Engineering, Lexington, KY (United States)

    2011-12-15

    A new nano-scale thermal anemometry probe (NSTAP) has been developed using a novel procedure based on deep reactive ion etching. The performance of the new probe is shown to be superior to that of the previous design by Bailey (J Fluid Mech 663:160-179, 2010). It is then used to measure the streamwise velocity component of fully developed turbulent pipe flow, and the results are compared with data obtained using conventional hot-wire probes. The NSTAP agrees well with the hot-wire at low Reynolds numbers, but it is shown that it has better spatial resolution and frequency response. The data demonstrate that significant spatial filtering effects can be seen in the hot-wire data for probes as small as 7 viscous units in length. (orig.)

  11. Morphology of Nano-scale Silica and Titania from Flames Distorted by Electric Coronas

    Science.gov (United States)

    Hyeon-Lee, J.; Beaucage, G.; Vemury, S.; Pratsinis, S.

    1997-03-01

    Flame synthesis of ultrafine titania and silica particles in the presence of a gaseous electric discharge leads to nano-sized powders with controlled size and crystallinity. Charging during particle formation reduces the particle size and narrows the size distribution, breaking the limit posed by the self-preserving theory for coagulation (S. Vemur, S. E. Pratsinis, Appl. Phys. Lett. 66, 2275-7 (1995)). The work presented here focuses on the nano-scale morphology of these ultrafine particles using microscopy, SAXS and Bonse-Hart SAXS. The powders form mass-fractal morphologies with variation in the primary particle, mass-fractal dimension and aggregate size with the electric discharge strength. Under some conditions the particles display a transition from mass to surface fractal.

  12. Nano-scale electron bunching in laser-triggered ionization injection in plasma accelerators

    CERN Document Server

    Xu, X L; Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; An, W; Yu, P; Mori, W B; Joshi, C

    2015-01-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Due to the phase dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three dimensional effects limit the wave number of the modulation to between $> 2k_0$ and about $5k_0$, where $k_0$ is the wavenumber of the injection laser. Such a nano-scale bunched beam can be diagnosed through coherent transition radiation upon its exit from the plasma and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  13. Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

    Science.gov (United States)

    Zhamu, Aruna [Centerville, OH; Shi, Jinjun [Columbus, OH; Guo, Jiusheng [Centerville, OH; Jang, Bor Z [Centerville, OH

    2012-03-13

    A method of exfoliating a layered material to produce separated nano-scaled platelets having a thickness smaller than 100 nm. The method comprises: (a) providing a graphite intercalation compound comprising a layered graphite containing expandable species residing in an interlayer space of the layered graphite; (b) exposing the graphite intercalation compound to an exfoliation temperature lower than 650.degree. C. for a duration of time sufficient to at least partially exfoliate the layered graphite without incurring a significant level of oxidation; and (c) subjecting the at least partially exfoliated graphite to a mechanical shearing treatment to produce separated platelets. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  14. Investigation of MEMS force sensors for nano-scale water measurements

    Science.gov (United States)

    Kwon, Soyoung; Jhe, Wonho; Stambaugh, Corey

    2011-03-01

    Nanoscale water formed by capillary condensation has typically been studied by means of an atomic force microscope (AFM). While this approach can provide details about the dynamic visco-elastic properties, it is limited in the type of information that can be measured. Here we propose replacing the fixed sample surface generally used in AFM systems with movable micro-mechanical force sensors (MEMS) fabricated specifically for tapping mode or shear mode. By incorporating a MEMS device we can directly measure the adhesion force, pull-in distance and capillary force of nano confined water while the AFM collects information pertaining to the dynamic visco-elastic properties. In this talk, we will characterize the force measurement in the system and discuss the behavior of the device in the presence of nano-scale water. Work supported NRF of Korea and NSF grant OISE #0853104.

  15. Line edge roughness induced threshold voltage variability in nano-scale FinFETs

    Science.gov (United States)

    Rathore, Rituraj Singh; Sharma, Rajneesh; Rana, Ashwani K.

    2017-03-01

    In aggressively scaled devices, the FinFET technology has become more prone to line edge roughness (LER) induced threshold voltage variability. As a result, nano scale FinFET structures face the problem of intrinsic statistical fluctuations in the threshold voltage. This paper describes the all LER induced variability of threshold voltage for 14 nm underlap FinFET using 3-D numerical simulations. It is concluded that percentage threshold voltage (VTH) fluctuations referenced with respect to rectangular FinFET can go up to 8.76%. This work has also investigated the impact of other sources of variability such as random dopant fluctuation, work function variation and oxide thickness variation on threshold voltage.

  16. A combined method for correlative 3D imaging of biological samples from macro to nano scale

    Science.gov (United States)

    Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios C.; Knudsen, Lars; Wrede, Christoph; Izykowski, Nicole; Grothausmann, Roman; Jonigk, Danny; Ochs, Matthias; Ripken, Tammo; Kühnel, Mark P.; Meyer, Heiko

    2016-10-01

    Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.

  17. Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters.

    Science.gov (United States)

    Shi, Jing; Wang, Yachao; Yang, Xiaoping

    2013-11-22

    In this study, a comprehensive investigation on nano-scale machining of polycrystalline copper structures is carried out by molecular dynamics (MD) simulation. Simulation cases are constructed to study the impacts of grain size, as well as various machining parameters. Six polycrystalline copper structures are produced, which have the corresponding equivalent grain sizes of 5.32, 6.70, 8.44, 13.40, 14.75, and 16.88 nm, respectively. Three levels of depth of cut, machining speed, and tool rake angle are also considered. The results show that greater cutting forces are required in nano-scale polycrystalline machining with the increase of depth of cut, machining speed, and the use of the negative tool rake angles. The distributions of equivalent stress are consistent with the cutting force trends. Moreover, it is discovered that in the grain size range of 5.32 to 14.75 nm, the cutting forces and equivalent stress increase with the increase of grain size for the nano-structured copper, while the trends reserve after the grain size becomes even higher. This discovery confirms the existence of both the regular Hall-Petch relation and the inverse Hall-Petch relation in polycrystalline machining, and the existence of a threshold grain size allows one of the two relations to become dominant. The dislocation-grain boundary interaction shows that the resistance of the grain boundary to dislocation movement is the fundamental mechanism of the Hall-Petch relation, while grain boundary diffusion and movement is the reason of the inverse Hall-Petch relation.

  18. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  19. GaN nanowire tip for high aspect ratio nano-scale AFM metrology (Conference Presentation)

    Science.gov (United States)

    Behzadirad, Mahmoud; Dawson, Noel; Nami, Mohsen; Rishinaramangalam, Ashwin K.; Feezell, Daniel F.; Busani, Tito L.

    2016-09-01

    In this study we introduce Gallium Nitride (GaN) nanowire (NW) as high aspect ratio tip with excellent durability for nano-scale metrology. GaN NWs have superior mechanical property and young modulus compare to commercial Si and Carbon tips which results in having less bending issue during measurement. The GaN NWs are prepared via two different methods: i) Catalyst-free selected area growth, using Metal Organic Chemical Vapor Deposition (MOCVD), ii) top-down approach by employing Au nanoparticles as the mask material in dry-etch process. To achieve small diameter tips, the semipolar planes of the NWs grown by MOCVD are etched using AZ400k. The diameter of the NWs fabricated using the top down process is controlled by using different size of nanoparticles and by Inductively Coupled Plasma etching. NWs with various diameters were manipulated on Si cantilevers using Focus Ion Beam (FIB) to make tips for AFM measurement. A Si (110) substrate containing nano-scale grooves with vertical 900 walls were used as a sample for inspection. AFM measurements were carried out in tapping modes for both types of nanowires (top-down and bottom-up grown nanowires) and results are compared with conventional Si and carbon nanotube tips. It is shown our fabricated tips are robust and have improved edge resolution over conventional Si tips. GaN tips made with NW's fabricated using our top down method are also shown to retain the gold nanoparticle at tip, which showed enhanced field effects in Raman spectroscopy.

  20. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices.

    Science.gov (United States)

    Zepon, Karine Modolon; Petronilho, Fabricia; Soldi, Valdir; Salmoria, Gean Vitor; Kanis, Luiz Alberto

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes.

  1. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  2. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  3. Nano-pulverization of poorly water soluble compounds with low melting points by a rotation/revolution pulverizer.

    Science.gov (United States)

    Yuminoki, K; Takeda, M; Kitamura, K; Numata, S; Kimura, K; Takatsuka, T; Hashimoto, N

    2012-08-01

    We report a method for pulverizing poorly water soluble compounds with low melting points to nanoparticles without producing an amorphous phase using a rotation/revolution pulverizer. Fenofibrate, flurbiprofen, and probucol were used as crystalline model compounds. They were suspended in a methylcellulose aqueous solution and pulverized with zirconia balls by the rotation/revolution pulverizer. Beeswax, an amorphous compound, was also examined to investigate whether nano-pulverization of a compound with a low melting point was possible. Beeswax was suspended in ethyl alcohol cooled with liquid nitrogen and pulverized with zirconia balls by the rotation/revolution pulverizer. By optimizing the pulverization parameters, nanoparticles (D50 revolution speed of 1000 rpm and a rotation/revolution ratio of 1.0 when the vessel was 0 degrees C. Amorphous fenofibrate and flurbiprofen were not detected by differential scanning calorimetry or powder X-ray diffraction, whereas small amounts of amorphous probucol were detected. Beeswax was pulverized to nanoparticles (D50 = 0.14 microm) with ethyl alcohol cooled with liquid nitrogen. Fine nanoparticles of these poorly water soluble compounds with low melting points were obtained by controlling the rotation/revolution speed and reducing the vessel temperature.

  4. Semi-wet selective pulverizing system: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Hirayama, Y.

    1975-05-01

    The operation of the semi-wet selective pulverizing system for recovering materials from municipal waste is described. In this system both pulverization and classification of materials is accomplished in one machine. This process can be used to recover paper, plastics, metals, and compostable materials. (LCL)

  5. Single-electron tunneling by using a two-dimensional Corbino nano-scale disk

    Energy Technology Data Exchange (ETDEWEB)

    Taira, H., E-mail: taira.hisao@s.hokkyodai.ac.jp [Faculty of Education, Hokkaido University of Education, Kita-ku, Sapporo 002-8502 (Japan); Suzuki, A., E-mail: asuzuki@rs.kagu.tus.ac.jp [Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo 162-8601 (Japan)

    2015-09-15

    We investigate a single-electron tunneling effect of two-dimensional electron systems formed in the Corbino nano-scale disk. By controlling bias and gate voltages, the transistor using this effect is able to control electrons one by one. The present study focuses on the electronic transmission probability affected by the charging energy in the Corbino-type single-electron transistor. We reformulated the Schrödinger equation for an electron in the Corbino disk in order to consider the effect of the curvature of the disk, taking into account the charging effect on the performance of the Corbino-type single-electron transistor. We formulated the transmission probability of the electron by applying the Wentzel-Kramers-Brillouin (WKB) method. The electron’s energy in the formula of the transmission probability is then associated to the energy eigenvalue of the Schrödinger equation for an electron in an effective confining potential. We numerically solved the Schrödinger equation to evaluate the transmission probability. Our results show that the transmission probability strongly depends on the charging energy stored in the Corbino disk depending on its size.

  6. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  7. Design and test challenges in Nano-scale analog and mixed CMOS technology

    Directory of Open Access Journals (Sweden)

    Mouna Karmani

    2011-07-01

    Full Text Available The continuous increase of integration densities in Complementary Metal–Oxide–Semiconductor (CMOStechnology has driven the rapid growth of very large scale integrated (VLSI circuit for today's high-techelectronics industries from consumer products to telecommunications and computers. As CMOStechnologies are scaled down into the nanometer range, analog and mixed integrated circuit (IC design andtesting have become a real challenge to ensure the functionality and quality of the product. The first part ofthe paper presents the CMOS technology scaling impact on design and reliability for consumer and criticalapplications. We then propose a discussion on the role and challenges of testing analog and mixed devicesin the nano-scale era. Finally we present the IDDQ testing technique used to detect the most likely defects ofbridging type occurring in analog CMOS circuits during the manufacturing process and creating a resistivepath between VDD supply and the ground.To prove the efficiency of the proposed technique we design a CMOS 90nm operational amplifier (Opamp and a Built in Current Sensor (BICS to validate the technique and correlate it with post layoutsimulation results.

  8. Design and test challenges in Nano-scale analog and mixed CMOS technology

    Directory of Open Access Journals (Sweden)

    Mouna Karmani

    2011-06-01

    Full Text Available The continuous increase of integration densities in Complementary Metal–Oxide–Semiconductor (CMOStechnology has driven the rapid growth of very large scale integrated (VLSI circuit for today's high-tech electronics industries from consumer products to telecommunications and computers. As CMOS technologies are scaled down into the nano meter range, analog and mixed integrated circuit (IC design and testing have become a real challenge to ensure the functionality and quality of the product. The first part of the paper presents the CMOS technology scaling impact on design and reliability for consumer and critical applications. We then propose a discussion on the role and challenges of testing analog and mixed devices in the nano-scale era. Finally we present the IDDQ testing technique used to detect the most likely defects of bridging type occurring in analog CMOS circuits during the manufacturing process and creating a resistive path between VDD supply and the ground.To prove the efficiency of the proposed technique we design a CMOS 90nm operational amplifier (Opamp and a Built in Current Sensor (BICS to validate the technique and correlate it with post layout simulation results.

  9. Analysis and Correction of Dynamic Geometric Misalignment for Nano-Scale Computed Tomography at BSRF.

    Directory of Open Access Journals (Sweden)

    Jian Fu

    Full Text Available Due to its high spatial resolution, synchrotron radiation x-ray nano-scale computed tomography (nano-CT is sensitive to misalignments in scanning geometry, which occurs quite frequently because of mechanical errors in manufacturing and assembly or from thermal expansion during the time-consuming scanning. Misalignments degrade the imaging results by imposing artifacts on the nano-CT slices. In this paper, the geometric misalignment of the synchrotron radiation nano-CT has been analyzed by partial derivatives on the CT reconstruction algorithm and a correction method, based on cross correlation and least-square sinusoidal fitting, has been reported. This work comprises a numerical study of the method and its experimental verification using a dataset measured with the full-field transmission x-ray microscope nano-CT at the beamline 4W1A of the Beijing Synchrotron Radiation Facility. The numerical and experimental results have demonstrated the validity of the proposed approach. It can be applied for dynamic geometric misalignment and needs neither phantom nor additional correction scanning. We expect that this method will simplify the experimental operation of synchrotron radiation nano-CT.

  10. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination.

    Science.gov (United States)

    Chatraei, Fatemeh; Zare, Hamid R

    2013-03-01

    In this study, a promising electrochemical sensor was fabricated by the electrodeposition of nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles, RuON) on a glassy carbon electrode (RuON-GCE). Then, the electrocatalytic oxidation of iodate and periodate was investigated on it, using cyclic voltammetry, chronoamperometry and amperometry as diagnostic techniques. The charge transfer coefficient, α, and the charge transfer rate constant, ks, for electron transfer between RuON and GCE were calculated as 0.5 ± 0.03 and 9.0 ± 0.7 s(-1) respectively. A comparison of the data obtained from the electrocatalytic reduction of iodate and periodate at a bare GCE (BGCE) and RuON-GCE clearly shows that the unique electronic properties of nanoparticles definitely improve the characteristics of iodate and periodate electrocatalytic reduction. The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k', for the reduction of iodate and periodate at RuON-GCE surface were determined using cyclic voltammetry. Amperometry revealed a good linear relationship between the peak current and the concentration of iodate and periodate. The detection limits of 0.9 and 0.2 μM were calculated for iodate and periodate respectively.

  11. Dynamic hydrophobicity of heterogeneous pillared surfaces at the nano-scale

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae Woo; Ha, Man Yeong; Jang, Joon Kyoung [Pusan National University, Busan (Korea, Republic of); Ambrosia, Matthew Stanley [Catholic University of Pusan, Busan (Korea, Republic of)

    2015-04-15

    In this study, the static and dynamic behaviors of nano-scale water droplets on heterogeneous surfaces were investigated using molecular dynamics simulations. The surface consisted of a flat plate and pillar structures. The surface was designed with four pillar heights and three pillar characteristic energies. Simulations were first run so that the water droplet reached the static equilibrium state. Once the static water droplets were in Cassie-Baxter state, increasing the pillar height had very little effect on the contact angle. Droplets on the surface with the strongest pillar characteristic energy never reached the Cassie-Baxter state and contact angles tended to decrease with increasing pillar height. Then five forces were applied to the water droplets parallel to the surface to observe the dynamic behavior of the droplets. Then, the effect of the pillar characteristic energy on the behavior of the dynamic water droplet was discussed using the contact angle hysteresis ( cosθ{sub Re} - cosθ{sub Ad}) as the pillar height and the magnitude of the applied force varied. When compared to the homogeneous cases, it was found that except at the lowest pillar height all of the lower pillar characteristic energy cases were hydrophobic and did not depend much on pillar height or magnitude of force. Whereas the higher pillar characteristic energy cases were generally hydrophilic and the hydrophobicity depended greatly on the magnitude of the force.

  12. Improvements of a nano-scale crossed hot-wire for high Reynolds number measurements

    Science.gov (United States)

    Fan, Yuyang; Hultmark, Marcus

    2015-11-01

    Hot-wire anemometry, despite its limited spatial and temporal resolution, is still the preferred tool for high Reynolds number flow measurements, mainly due to the continuous signal. To address the resolution issues, the Nano-Scale Thermal Anemometry Probe (NSTAP) was developed at Princeton University. The NSTAP has a sensing volume more than one order of magnitude smaller than conventional hot-wires, and it has displayed superior performance. However, the NSTAP can only measure a single component of the velocity. Using a novel combining method, a probe that enables two-component velocity measurements has been created (the x-NSTAP). The measurement volume is approximately 50 × 50 × 50 μ m, more than one order of magnitude smaller in all directions compared to conventional crossed hot-wires. The x-NSTAP has been further improved to allow more accurate measurements with the help of flow visualization using a scaled model but matching Reynolds number. Results from turbulent flow measurements with the new x-NSTAP are also presented. Supported under NSF grant CBET-1510100 (program manager Dimitrios Papavassiliou).

  13. Quasicontinuum simulations of geometric effect on onset plasticity of nano-scale patterned lines

    Science.gov (United States)

    Jin, Jianfeng; Cao, Jingyi; Zhou, Siyuan; Yang, Peijun; Guo, Zhengxiao

    2017-09-01

    Onset plasticity of metallic nano-lines or nano-beams is of considerable scientific and technological interest in micro-/nano- mechanics and interconnects of patterned lines in electronic devices, where capability of resistance to deformation is important. In this study, a multiscale quasicontinuum (QC) method was used to explore such an issue in a nano-scale copper (Cu) line protruding from a relatively large single crystal Cu substrate during compression. The results show that the yield stress of a rectangular beam on the substrate can be greatly reduced compared with that of a flat surface of the same area. For the rectangular line, the aspect ratio (width/height) affects dislocation morphology at the onset plasticity without much change of yield stress. However, for the trapezoidal line, the yield stress decreases with the base angle (α), especially when the α is over 54.7°. As the sidewall orientation changes from at α = 0°, then to at α = 54.7° and finally to at α = 90°, a higher surface energy could enable easier dislocation formation and lower yield stress. Meanwhile, it is found that the interaction between the line and the support substrate also shows a great effect on yield stress. Moreover, although it is possible to open two extra dislocation slip planes inside from the two bottom corners of the Cu line with the α over 54.7°, dislocation nucleation derived from them is only observed at α = 90°.

  14. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.

    Science.gov (United States)

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi

    2017-05-23

    This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.

  15. Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites

    Science.gov (United States)

    Jang, Bor Z.; Zhamu, Aruna

    2011-02-22

    Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  16. Nano-scale chemical evolution in a proton-and neutron-irradiated Zr alloy

    Science.gov (United States)

    Harte, Allan; Topping, M.; Frankel, P.; Jädernäs, D.; Romero, J.; Hallstadius, L.; Darby, E. C.; Preuss, M.

    2017-04-01

    Proton-and neutron-irradiated Zircaloy-2 are compared in terms of the nano-scale chemical evolution within second phase particles (SPPs) Zr(Fe,Cr)2 and Zr2(Fe,Ni). This is accomplished through ultra-high spatial resolution scanning transmission electron microscopy and the use of energy-dispersive X-ray spectroscopic methods. Fe-depletion is observed from both SPP types after irradiation with both irradiative species, but is heterogeneous in the case of Zr(Fe,Cr)2, predominantly from the edge region, and homogeneously in the case of Zr2(Fe,Ni). Further, there is evidence of a delay in the dissolution of the Zr2(Fe,Ni) SPP with respect to the Zr(Fe,Cr)2. As such, SPP dissolution results in matrix supersaturation with solute under both irradiative species and proton irradiation is considered well suited to emulate the effects of neutron irradiation in this context. The mechanisms of solute redistribution processes from SPPs and the consequences for irradiation-induced growth phenomena are discussed.

  17. Nano-scale characterization of the dynamics of the chloroplast Toc translocon.

    Science.gov (United States)

    Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D

    2008-01-01

    Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.

  18. Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices

    Science.gov (United States)

    Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine

    2016-03-01

    We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.

  19. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  20. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  1. Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes

    Science.gov (United States)

    Jasni, M. R. M.; Deraman, M.; Suleman, M.; Hamdan, E.; Sazali, N. E. S.; Nor, N. S. M.; Shamsudin, S. A.

    2016-02-01

    Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graphene in the GMs change the values of Csp, Emax, Pmax, ESR and τo from (61-96) F/g, 2 Wh/kg, 104 W/kg, 2.6 Ω and 38 s, to the respective values of (110-124) F/g, 3 Wh/kg, 156 W/kg, 3.4 Ω and 63 s. This study demonstrates that the graphene addition in the GMs has a significant effect on the electrochemical behavior of the electrodes.

  2. Bilayer lipid membrane (BLM) based ion selective electrodes at the meso-, micro-, and nano-scales.

    Science.gov (United States)

    Liu, Bingwen; Rieck, Daniel; Van Wie, Bernard J; Cheng, Gary J; Moffett, David F; Kidwell, David A

    2009-03-15

    This paper presents a novel method for making micron-sized apertures with tapered sidewalls and nano-sized apertures. Their use in bilayer lipid membrane-based ion selective electrode design is demonstrated and compared to mesoscale bilayers and traditional PVC ion selective electrodes. Micron-sized apertures are fabricated in SU-8 photoresist films and vary in diameter from 10 to 40 microm. The tapered edges in SU-8 films are desired to enhance bilayer lipid membrane (BLM) formation and are fabricated by UV-light overexposure. Nano-apertures are made in boron diffused silicon film. The membranes are used as septa to separate two potassium chloride solutions of different concentrations. Lecithin BLMs are assembled on the apertures by ejecting lipid solution. Potassium ionophore, dibenzo-18-crown-6, is incorporated into BLMs by dissolving it in the lipid solution before membrane assembly. Voltage changes with increasing potassium ion concentrations are recorded with an A/D converter. Various ionophore concentrations in BLMs are investigated. At least a 1% concentration is needed for consistent slopes. Electrode response curves are linear over the 10(-6) to 0.1M range with a sub-Nernstian slope of 20mV per Log concentration change. This system shows high selectivity to potassium ions over potential interfering sodium ions. BLMs on the three different aperture sizes at the meso-, micro-, and nano-scales all show similar linear ranges and limits of detection (LODs) as PVC ion selective membranes.

  3. The need for nano-scale modeling in solid oxide fuel cells.

    Science.gov (United States)

    Ryan, E M; Recknagle, K P; Liu, W; Khaleel, M A

    2012-08-01

    Solid oxide fuel cells (SOFCs) are high temperature fuel cells, which are being developed for large scale and distributed power systems. SOFCs promise to provide cleaner, more efficient electricity than traditional fossil fuel burning power plants. Research over the last decade has improved the design and materials used in SOFCs to increase their performance and stability for long-term operation; however, there are still challenges for SOFC researchers to overcome before SOFCs can be considered competitive with traditional fossil fuel burning and renewable power systems. In particular degradation due to contaminants in the fuel and oxidant stream is a major challenge facing SOFCs. In this paper we discuss ongoing computational and experimental research into different degradation and design issues in SOFC electrodes. We focus on contaminants in gasified coal which cause electrochemical and structural degradation in the anode, and chromium poisoning which affects the electrochemistry of the cathode. Due to the complex microstructures and multi-physics of SOFCs, multi-scale computational modeling and experimental research is needed to understand the detailed physics behind different degradation mechanisms, the local conditions within the cell which facilitate degradation, and its effects on the overall SOFC performance. We will discuss computational modeling research of SOFCs at the macro-, meso- and nano-scales which is being used to investigate the performance and degradation of SOFCs. We will also discuss the need for a multi-scale modeling framework of SOFCs, and the application of computational and multi-scale modeling to several degradation issues in SOFCs.

  4. STUDY ON EFFICACY OF ACARBOSE (WITH AND WITHOUT CORNSTARCH DIET IN COMPARISON WITH ROSIGLITAZONE IN DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Khatoon Humera

    2013-02-01

    Full Text Available The aim of this study is to compare metabolic effects of acarbose and rosiglitazone, especially in controlling hyperglycemia and hypercholesterolemia. We have selected acarbose and rosiglitazone for the present study among various currently approved oral hypoglycemics. As diet is also an important component in diabetic therapy, effects of resistant starch diets (e.g. cooked cornstarch on carbohydrate and lipid metabolism were also studied.The metabolic effects of the drugs were investigated and significant changes with respect to blood glucose levels, HbA1c along with lipids profile of drug-treated animals were compared with untreated animal after 7, 15 and 30 days. The experimental result showed excellent glycemic control when acarbose was administered alone. Acarbose along with cooked cornstarch diet produced a more favorable lipid profile, but with significant increased level (p<0.001 of triglycerides. These findings suggest that acarbose and acarbose along with cooked cornstarch are more effective in controlling hyperglycemia with more favorable lipid profile when compared with rosiglitazone.

  5. Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

    Directory of Open Access Journals (Sweden)

    Seonki Hong

    2014-06-01

    Full Text Available Quinone tanning is a well-characterized biochemical process found in invertebrates, which produce diverse materials from extremely hard tissues to soft water-resistant adhesives. Herein, we report new types of catecholamine PEG derivatives, PEG-NH-catechols that can utilize an expanded spectrum of catecholamine chemistry. The PEGs enable simultaneous participation of amine and catechol in quinone tanning crosslinking. The intermolecular reaction between PEG-NH-catechols forms a dramatic nano-scale junction resulting in enhancement of gelation kinetics and mechanical properties of PEG hydrogels compared to results obtained by using PEGs in the absence of amine groups. Therefore, the study provides new insight into designing new crosslinking chemistry for controlling nano-scale chemical reactions that can broaden unique properties of bulk hydrogels.

  6. Wear properties of H13 with micron scale and nano scale grains bionic units processed by laser remelting

    Science.gov (United States)

    Zhang, Peng; Zhou, Hong; Wang, Cheng-tao; Liu, Yan; Ren, Lu-quan

    2013-12-01

    By simulating the cuticles of some soil animals, a combination of soft part (untreated substrate) and hard part (laser remelting area) structure was designed on metal surface to get an improved performance. Different specimens were prepared which contained units with micro and nano scale grains. The microstructures were observed by environmental field emission scanning electron microscopy. X-ray diffraction was used to identify the phases. The results of these tests indicate that due to the rapid solidification condition in the water, nano scale grains have a high microhardness between 1300 and 1000 HV. Retained austenite was found in it. Some of them transform to martensite in block on ring wear test. Specimens with bionic unit have a better wear resistance. Especially, the units with nano grains bring a further enhancement. The alternate soft and hard in macroscopic (substrate and laser remelting area) and microscopic (austenite and martensite) structure played a key role in improving the H13 wear resistance.

  7. Electrochemical performance of nano-scale β-Ni(OH)2 prepared at different transformations of pH value

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li; ZHANG Li-jun; HAN Xi-jiang; ZHANG Cui-fen

    2008-01-01

    The influence of transforming pH values on the electrochemical performance of nano-scale Ni(OH)2was analyzed. The measurement results of XRD indicate that the nano-scale Ni (OH)2 prepared at different transformations of pH value is β( Ⅱ )-phase with different crystal lattice parameters. Cyclic voltammograms (CV) and electrochemical impedance spectroscopy(EIS) measurement results show that transformations of pH value affect the proton diffusion coefficient (D) and charge-transfer resistance (Rct) of the material. The simu-lation of cell experiment shows that the sample prepared at a pH of 10. 1 exhibits the maximum specific capacity(327. 8 mAh/g) and higher discharge platform, the discharge performance of electrodes depends on both D and Rct, so the kinetics characteristics that electrodes reaction is controlled by both mass-transfer step and charge-transfer step are put forward.

  8. Effect of Turbulence on Flame Propagation in Cornstarch Dust-Air Mixtures

    Institute of Scientific and Technical Information of China (English)

    Shuangfeng WANG; Yikang PU; Fu JIA; Artur GUTKOWSKI

    2006-01-01

    Following the quantitative determination of dust cloud parameters, this study investigated the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160×160 mm square cross section, and gave particular attention to the effect of turbulence on flame characteristics. The turbulence induced by dust dispersion process was measured using a particle image velocimetry (PIV) system. Upward propagating dust flames were visualized with direct light and shadow photography. The results show that a critical value of the turbulence intensity can be specified below which laminar flame propagation would be established. This transition condition is about 10 cm/s. Themeasured propagation speed of laminar flames appears to be in the range of 0.45-0.56 m/s, consistent with the measurements reported in the literature. For the present experimental conditions, the flame speed is little sensitive to the variations in dust concentration. Some information on the flame structure was revealed from the shadow records, showing the typical heterogeneous feature of dust combustion process.

  9. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, Karine Modolon [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Petronilho, Fabricia [FICEXP, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Soldi, Valdir [POLIMAT, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Salmoria, Gean Vitor [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Kanis, Luiz Alberto, E-mail: luiz.kanis@unisul.br [TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil)

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes. - Highlights: • Melt extruded bio-based matrices containing silver sulfadiazine was produced. • The silver sulfadiazine is stable during melt-extrusion. • The extrudate matrices shown bacterial growth inhibition. • The matrices obtained have potential to development wound healing membranes.

  10. Effect of annealing and pressure on microstructure of cornstarches with different amylose/amylopectin ratios.

    Science.gov (United States)

    Liu, Hongsheng; Yu, Long; Simon, George; Zhang, Xiaoqing; Dean, Katherine; Chen, Ling

    2009-02-17

    This work focuses on the effect of annealing and pressure on microstructures of starch, in particular the crystal structure and crystallinity to further explore the mechanisms of annealing and pressure treatment. Cornstarches with different amylose/amylopectin ratios were used as model materials. Since the samples covered both A-type (high amylopectin starch: waxy and maize) and B-type (high amylose starch: G50 and G80) crystals, the results can be used to clarify some previous confusion. The effect of annealing and pressure on the crystallinity and double helices were investigated by X-ray diffraction (XRD) and (13)C CP/MAS NMR spectroscopy. The crystal form of various starches remained unchanged after annealing and pressure treatment. XRD detection showed that the relative crystallinity (RC) of high amylopectin starches was increased slightly after annealing, while the RC of high amylose-rich starches remained unchanged. NMR measurement supported the XRD results. The increase can be explained by the chain relaxation. XRD results also indicated that some of the fixed region in crystallinity was susceptible to outside forces. The effect of annealing and pressure on starch gelatinization temperature and enthalpy are used to explore the mechanisms.

  11. A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing

    Science.gov (United States)

    Chenliang, Liang; Weili, Liu; Shasha, Li; Hui, Kong; Zefang, Zhang; Zhitang, Song

    2016-05-01

    Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electro-mechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs. Thus, we introduce the method of chemical mechanical polishing (CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti-6Al-4V (Ti64) in the CMP process, and optimize the composition of CMP slurry. Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy (XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti-6Al-4V. Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China (Grant No. 2009ZX02030-1), the National Natural Science Foundation of China (Grant No. 51205387), the Support by Science and Technology Commission of Shanghai City, China (Grant No. 11nm0500300), and the Science and Technology Commission of Shanghai City, China (Grant No. 14XD1425300).

  12. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  13. Effect of transformation pH on performance of nano-scale β-Ni(OH)2

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li; WANG Shou-jun; SHENG Jun; HAN Xi-jiang

    2007-01-01

    The influence of transformation pH value on the performance of nano-scale Ni(OH)2 was analyzed. The measurement results of XRD and TEM indicate that the samples are composed of β-Ni(OH)2 with crystal size of 20-50 nm, and the crystal lattice parameters of nano-scale Ni(OH)2 prepared at different transformation pH values are different. With the increase of transformation pH value, the agglomeration of nano-scale Ni(OH)2 becomes obvious. Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) measurement results show that transformation pH value affects the proton diffusion coefficient(D) and charge-transfer resistance(Rct) of the material. The specific capacity is up to 327.8 mA-h/g, and the discharge performance of electrodes depends on both D and Rct, so the kinetic characteristics that electrodes reaction is controlled by both mass-transfer step and charge-transfer step was put forward.

  14. Coal char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  15. Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.

    Science.gov (United States)

    Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M

    2014-04-01

    The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of

  16. Nano-Scale Secondary Ion Mass Spectrometry - A new analytical tool in biogeochemistry and soil ecology

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, A M; Ritz, K; Nunan, N; Clode, P L; Pett-Ridge, J; Kilburn, M R; Murphy, D V; O' Donnell, A G; Stockdale, E A

    2006-10-18

    Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecological function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review

  17. Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport

    Science.gov (United States)

    Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.

    2011-12-01

    Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.

  18. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    Science.gov (United States)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  19. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination

    Energy Technology Data Exchange (ETDEWEB)

    Chatraei, Fatemeh; Zare, Hamid R., E-mail: hrzare@yazd.ac.ir

    2013-03-01

    In this study, a promising electrochemical sensor was fabricated by the electrodeposition of nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles, RuON) on a glassy carbon electrode (RuON-GCE). Then, the electrocatalytic oxidation of iodate and periodate was investigated on it, using cyclic voltammetry, chronoamperometry and amperometry as diagnostic techniques. The charge transfer coefficient, {alpha}, and the charge transfer rate constant, k{sub s}, for electron transfer between RuON and GCE were calculated as 0.5 {+-} 0.03 and 9.0 {+-} 0.7 s{sup -1} respectively. A comparison of the data obtained from the electrocatalytic reduction of iodate and periodate at a bare GCE (BGCE) and RuON-GCE clearly shows that the unique electronic properties of nanoparticles definitely improve the characteristics of iodate and periodate electrocatalytic reduction. The kinetic parameters such as the electron transfer coefficient, {alpha}, and the heterogeneous electron transfer rate constant, k Prime , for the reduction of iodate and periodate at RuON-GCE surface were determined using cyclic voltammetry. Amperometry revealed a good linear relationship between the peak current and the concentration of iodate and periodate. The detection limits of 0.9 and 0.2 {mu}M were calculated for iodate and periodate respectively. Highlights: Black-Right-Pointing-Pointer Ruthenium oxide nanoparticles, RuON, were used for electrocatalytic reduction iodate and periodate. Black-Right-Pointing-Pointer Formal potential, E{sup 0} Prime , of the surface redox couple of RuON is pH-dependent. Black-Right-Pointing-Pointer The heterogeneous electron transfer rate constant values between both analytes and RuON were calculated.

  20. Analysis of Voltage Transfer Characteristics of Nano-scale SOI CMOS Inverter with Variable Channel Length and Doping Concentration

    Directory of Open Access Journals (Sweden)

    A. Daniyel Raj

    2015-03-01

    Full Text Available During many decades, continuous device performance improvement has been made possible only through device scaling. But presently, due to aggressive scaling at the sub-micron or nanometer region, the conventional planner silicon technology is suffering from the fundamental physical limits. Such imposed limits on further downscaling of silicon planner technology have lead to alternative device technology like Silicon-On-Insulator (SOI technology. Due-to some of its inherent advantages, the Silicon-On-Insulator (SOI technology has reduced the Short-channel-effects (SCEs and thus increased transistor scalability. Till now, intense research interests have been paid in practical fabrication and theoretical modeling of SOI MOSFETs but a little attention has been paid to understand the circuit level performance improvement with nano-scale SOI MOSFETs. The circuit level performance analysis of SOI MOSFET is highly essential to understand the impact of SOI technology on next level VLSI circuit and chip design and for doing so device compact models are high on demand. In such scenario, under present research, a physics based compact device model of SOI MOSFET has been developed. At the first phase of the compact model development, a physics based threshold voltage model has been developed by solving 2-D Poisson’s equation at the channel region and at the second phase, a current-voltage model has been developed with drift-diffusion analysis. Different SCEs, valid at nano-scale, are effectively incorporated in threshold voltage and Current-Voltage model. At the third phase, using the compact model, the Voltage Transfer Characteristics (VTC for a nano-scale SOI CMOS inverter has been derived with graphical analysis. The impacts of different device parameters e.g.; channel length and channel doping concentration on VTC has been investigated through simulation and the results have been analyzed.

  1. Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA

    Directory of Open Access Journals (Sweden)

    Hasan Muhammad Luqman Bin

    2017-01-01

    Full Text Available Drag or frictional force is defined as force that acts opposite to the object’s relative motion through a fluid which then will cause frictional pressure loss in the pipeline. Drag Reducing Agent (DRA is used to solve this issue and most of the DRAs are synthetic polymers but has some environmental issues. Therefore for this study, biopolymer known as Coconut Residue (CR is selected as the candidate to replace synthetic polymers DRA. The objective of this study is to evaluate the effectiveness of Nano-scale biopolymer DRA on the application of water injection system. Carboxymethyl cellulose (CMC is extracted by synthesizing the cellulose extracted from CR under the alkali-catalyzed reaction using monochloroacetic acid. The synthesize process is held in controlled condition whereby the concentration of NaOH is kept at 60%wt, 60 °C temperature and the reaction time is 4 hours. For every 25 g of dried CR used, the mass of synthesized CMC yield is at an average of 23.8 g. The synthesized CMC is then grinded in controlled parameters using the ball milling machine to get the Nano-scale size. The particle size obtained from this is 43.32 Nm which is in range of Nano size. This study proved that Nano-size CMC has higher percentage of drag reduction (%DR and flow increase (%FI if compared to normal-size CMC when tested in high and low flow rate; 44% to 48% increase in %DR and %FI when tested in low flow rate, and 16% to 18% increase in %DR and %FI when tested in high flow rate. The success of this research shows that Nano-scale DRA can be considered to be used to have better performance in reducing drag.

  2. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  3. Study on thin film lubrication in the nano scale%纳米薄膜润滑研究

    Institute of Scientific and Technical Information of China (English)

    温诗铸; 雒建斌

    2001-01-01

    该文是近年来作者关于纳米薄膜润滑的研究的全面总结。首先介绍了纳米量级润滑膜厚度测量技术,进而系统地阐述了润滑理论中存在的两个尚未完全弄清的问题,即弹流润滑和边界润滑之间润滑状态的形态特征以及润滑膜的失效准则,包括:1)薄膜润滑作为弹流润滑与边界润滑之间一种新的润滑状态的性能特征;2)薄膜润滑的物理模型,弹流润滑与薄膜润滑间的转化关系以及膜厚与工况因子的相关性;3)纳米润滑膜时间效应及其产生原因;4)电场对纳米润滑膜特性的影响;5)纳米润滑膜的失效准则;6)新的润滑状态判断准则。%he summary of recent research about thin film lubrication (TFL)in the nano scale is made. First, the measuring technique of film thickness in the nano scale is introduced. Then, the two problems unsettled completely in lubrication theory, such as the characteristics of the lubrication regime between elasto- hydrodynamic lubrication (EHL) and boundary lubrication (BL), and the failure criterion of the lubricant film, are expounded systematically. They include: 1) the characteristics of TFL as a new lubrication regime between EHL and BL, 2) physical model of TFL, transition conditions from EHL to TFL and the relationship between the film thickness and operating parameters, 3) the time effect of lubricating film in the nano scale and the reason of its creation, 4) the effect of external electric field on the nanotribological properties of lubricant film, 5) the failure criterion of lubricant film in the nano scale, 6) a new method distinguishing lubrication regimes.

  4. NOx control in large-scale power plant boilers through superfine pulverized coal technology

    Institute of Scientific and Technical Information of China (English)

    Jie YIN; Jianxing REN; Dunsong WEI

    2008-01-01

    Superfine pulverized coal technology can effectively reduce NOx emission in coal-fired power plant boilers. It can also economize the cost of the power plant and improve the use of the ash in the flue gas. Superfine pulverized coal technology, which will be widely used in China, includes common superfine pulverized coal technology and superfine pulverized coal reburning technology. The use of superfine pulver-ized coal instead of common coal in large-scale power plants will not only reduce more than 30% of NOx emission but also improve the thermal efficiency of the boiler.

  5. Characterization of Nano-scale Aluminum Oxide Transport Through Porous Media

    Science.gov (United States)

    Norwood, Sasha Norien

    Land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers. Although nutrient rich, biosolids have been found to contain high concentrations of unregulated and/or unrecognized emerging contaminants (e.g., pharmaceuticals, personal care products) while containing a significant fraction of inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of these nano-sized colloidal materials through the soil column and into our surface and groundwater bodies. Transport of emerging pollutants of concern through the soil column, at minimum, is impacted by colloidal properties (e.g., chemical composition, shape, aggregation kinetics), solution chemistry (e.g., pH, ionic strength, natural organic matter), and water flow velocity. The purpose of this current research was to characterize the long-term transport behavior of aluminum oxide nanoparticles (Al 2O3) through a natural porous media with changes in pH, aqueous-phase concentration, pore-water velocity and electrolyte valence. Additionally, deposition rates during the initial stages of deposition were compared to several models developed based on colloid filtration theory and DLVO stability theory. Benchtop column laboratory experiments showed that, under environmentally relevant groundwater conditions, Al2O3 nanoparticles are mobile through saturated porous media. Mobility increased under conditions in which the nanoparticles and porous media were of like charge (pH 9). Changes in linear pore water velocity, under these same high pH conditions, showed similar transport behavior with little mass retained in the system. Deposition is believed to be kinetically controlled at pH 9, as evidenced by the slightly earlier breakthrough as flow rate increased and was further supported by observed concentration effects on the arrival wave

  6. Physicochemical Changes and Resistant-Starch Content of Extruded Cornstarch with and without Storage at Refrigerator Temperatures

    Directory of Open Access Journals (Sweden)

    David Neder-Suárez

    2016-08-01

    Full Text Available Effects of extrusion cooking and low-temperature storage on the physicochemical changes and resistant starch (RS content in cornstarch were evaluated. The cornstarch was conditioned at 20%–40% moisture contents and extruded in the range 90–130 °C and at screw speeds in the range 200–360 rpm. The extrudates were stored at 4 °C for 120 h and then at room temperature. The water absorption, solubility index, RS content, viscoelastic, thermal, and microstructural properties of the extrudates were evaluated before and after storage. The extrusion temperature and moisture content significantly affected the physicochemical properties of the extrudates before and after storage. The RS content increased with increasing moisture content and extrusion temperature, and the viscoelastic and thermal properties showed related behaviors. Microscopic analysis showed that extrusion cooking damaged the native starch structure, producing gelatinization and retrogradation and forming RS. The starch containing 35% moisture and extruded at 120 °C and 320 rpm produced the most RS (1.13 g/100 g after to storage at low temperature. Although the RS formation was low, the results suggest that extrusion cooking could be advantageous for RS production and application in the food industry since it is a pollution less, continuous process requiring only a short residence time.

  7. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  8. Nonreciprocal lasing and polarization selectivity in silicon ring Raman lasers based on micro- and nano-scale waveguides

    Science.gov (United States)

    Vermeulen, N.

    2012-06-01

    In this paper I present a generic model that describes the lasing characteristics of continuous-wave circular and racetrack-shaped ring Raman lasers based on micro- and nano-scale silicon waveguides, including their lasing directionality and polarization behavior. This model explicitly takes into account the effective Raman gain values for forward and backward lasing, the Raman amplification in the bus waveguide, and the spatial gain variations for different polarization states in the ring structure. I show numerically that ring lasers based on micro-scale waveguides generate unidirectional lasing in either the forward or backward direction because of an asymmetry in nonlinear losses at near-infrared telecommunication wavelengths, whereas those based on nanowires yield only backward lasing due to a non-reciprocity in effective gain. Furthermore, the model indicates that backward lasing can yield a significantly higher lasing output at the bus waveguide facets than lasing in the forward direction. Finally, considering a TE-polarized pump input for a (100) grown silicon ring Raman laser, I demonstrate numerically that the polarization state of the lasing radiation strongly depends on whether micro-scale or nano-scale waveguides are used.

  9. Inkjet-based deposition of polymer thin films enabled by a lubrication model incorporating nano-scale parasitics

    Science.gov (United States)

    Singhal, Shrawan; Meissl, Mario J.; Bonnecaze, Roger T.; Sreenivasan, S. V.

    2013-09-01

    Thin film lubrication theory has been widely used to model multi-scale fluid phenomena. Variations of the same have also found application in fluid-based manufacturing process steps for micro- and nano-scale devices over large areas where a natural disparity in length scales exists. Here, a novel inkjet material deposition approach has been enabled by an enhanced thin film lubrication theory that accounts for nano-scale substrate parasitics. This approach includes fluid interactions with a thin flexible superstrate towards a new process called Jet and Coat of Thin-films (JCT). Numerical solutions of the model have been verified, and also validated against controlled experiments of polymer film deposition with good agreement. Understanding gleaned from the experimentally validated model has then been used to facilitate JCT process synthesis resulting in substantial reduction in the influence of parasitics and a concomitant improvement in the film thickness uniformity. Polymer films ranging from 20 to 500 nm mean thickness have been demonstrated with standard deviation of less than 2% of the mean film thickness. The JCT process offers advantages over spin coating which is not compatible with roll-to-roll processing and large area processing for displays. It also improves over techniques such as knife edge coating, slot die coating, as they are limited in the range of thicknesses of films that can be deposited without compromising uniformity.

  10. Experimental study on ignition characteristics of pulverized coal under high-temperature oxygen condition

    Science.gov (United States)

    Liu, G. W.; Liu, Y. H.; Dong, P.

    2016-08-01

    The high-temperature oxygen ignition technology of pulverized coal, which can replace the oil gun and achieve oil-free pulverized coal ignition by mixing the high- temperature oxygen and the pulverized coal stream directly, was proposed and a relevant ignition experimental system was built. The ignition characteristics of pulverized coal under high-temperature oxygen condition were investigated: the ignition process was described and analyzed, the influence of relevant parameters on the pulverized coal stream ignition were obtained and analyzed. The results showed: when the oxygen heating temperature is over 750 °C, the pulverized coal stream could be ignited successfully by high-temperature oxygen; increasing the pulverized coal concentration, primary air temperature and oxygen volume flow rate or decreasing the primary air velocity is helpful for the ignition and combustion of the pulverized coal stream.

  11. Low NOx nozzle tip for a pulverized solid fuel furnace

    Science.gov (United States)

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  12. Enhancement of pulverized coal combustion by plasma technology

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovski, M.A.; Jankoski, Z.; Lockwood, F.C.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B. [University of Rouen, Rouen (France)

    2007-07-01

    Plasma-assisted pulverized coal combustion is a promising technology for thermal power plants (TPP). This article reports one- and three- dimensional numerical simulations, as well as laboratory and industrial measurements of coal combustion using a plasma-fuel system (PFS). The chemical kinetic and fluid mechanics involved in this technology are analysed. The results show that a PFS, can be used to promote early ignition and enhanced stabilization of a pulverized coal flame. It is shown that this technology, in addition to enhancing the combustion efficiency of the flame, reduces harmful emissions from power coals of all ranks (brown, bituminous, anthracite and their mixtures). Data summarising the experience of 27 pulverized coal boilers in 16 thermal power plants in several countries (Russia, Kazakhstan, Korea, Ukraine, Slovakia, Mongolia and China), embracing steam productivities from 75 to 670 tons per hour (TPH), are presented. Finally, the practical computation of the characteristics of the PFS, as function of coal properties, is discussed.

  13. The Nano Pulverization of Traditional Chinese Medicine Liuwei Dihuang

    Institute of Scientific and Technical Information of China (English)

    MA Peiyan; FU Zhengyi; SU Yanli; MA Jingjing

    2006-01-01

    The crude drug of Liuwei Dihuang was pulverized to nano particles to improve its bioavailability. The appropriate technique parameters were studied. Paeonol, typical marker of Liuwei Dihuang, was extracted with organic solvent in ultrasonic and its content was determined by HPLC. The appropriate techniques parameters are as follows: rotating speed control 1200 r/min, grinding time control 50min and mass percent concentration control 3.8%. The experimental results show that the average particle diameter is 161.9 nm and the great majority of the plant cell wall is broken into pieces after nano pulverization. The extraction efficiency of paeonol is increased by 23.5%.

  14. Comparison of Charging Characteristics of Polymerized and Pulverized Toners

    Institute of Scientific and Technical Information of China (English)

    Yasushi Hoshino; Tsunenori Nakanishi; Ye Zhou; Hidetaka Ishihara

    2004-01-01

    Toner charge is very important in electrophotographic printing process. Although many studies on toner charging mechanism have been carried out, the mechanism is very complex and the understanding of toner charging characteristics is not yet sufficient. Toner charge distribution is measured by E-SPART (electrical single particle aerodynamic relaxation time) analyzer, which can measure the size and charge of toner. The measured toners are polymerized and pulverized type. Charging is carried out as follows: the toner is mixed with the carrier and the mixture is bottled into the roller, and mixed by rotating the roller. Toner charge dependences on toner wt% are compared between polymerized and pulverized toner.

  15. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  16. Phy-chemical Attributes of Nano-scale V2O5/TiO2 Catalyst and Its’ Effect on Soot Oxidation

    OpenAIRE

    Deqing Mei; Lichang Li; Chen Zhu; Xiang Zhao; Yinnan Yuan

    2016-01-01

    The V2O5 catalysts which supported on nano-scale TiO2 with variation of vanadium contents (5%, 10%, 20% and 40%) were prepared by an incipient-wetness impregnation method. The phase structures of nano-scale V2O5/TiO2 catalysts with different loading rates were characterized by Scanning electron microscope (SEM), X-Ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectra. The oxidation activities of catalysts over diesel soot were performed in a themogravimetric analysis (TGA) syst...

  17. Entransy analysis and optimization of performance of nano-scale irreversible Otto cycle operating with Maxwell-Boltzmann ideal gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar

    2016-08-01

    This paper made attempt to investigate thermodynamically a nano scale irreversible Otto cycle for optimizing its performance. This system employed an ideal Maxwell-Boltzmann gas as a working fluid. Two different scenarios were proposed in the multi-objective optimization process and the results of each of the scenarios were examined separately. The first scenario made attempt to maximize the dimensionless ecological function and minimize the dimensionless entransy dissipation of the system. Furthermore, the second scenario tried to maximize the ecological coefficient of performance and minimize the dimensionless entransy dissipation of the system. The multi objective evolutionary method integrated with non-dominated sorting genetic algorithm was used to optimize the proposed objective functions. To determine the final output of each scenario, three efficient decision makers were employed. Finally, error analysis was employed to determine the deviation of solutions chosen by decision makers.

  18. Role of Interface Charges on High-k Based Poly-Si and Metal Gate Nano-Scale MOSFETs

    Directory of Open Access Journals (Sweden)

    N. Shashank

    2011-01-01

    Full Text Available The characteristics of typical sub-100 nm high K gate dielectrics MOSFET with different gate materials are simulated by two dimensional device simulators (ATLAS and ATHENA. The impact of interface charges on the characteristics of Poly-Si and TiN metal gate MOSFETs are investigated. The simulation results shows that, at high interface charge densities, the devices with Poly-Si gate degrade much compared to metal gate MOSFET structures. Emphasis is given to study the mobility degradation which stands as a major hurdle with the implementation of high-k dielectrics in nano-scale devices. The advantages of using Watt model over other models for the extraction of channel mobility is also clearly explained. The performance of the high-k MOSFET with metal electrode and poly-silicon electrode is also compared for various interface state charges.

  19. Process nano scale mechanical properties measurement of thin metal films using a novel paddle cantilever test structure

    CERN Document Server

    Tong, Chi-Jia

    2008-01-01

    A new technique was developed for studying the mechanical behavior of nano-scale thin metal films on substrate is presented. The test structure was designed on a novel "paddle" cantilever beam specimens with dimensions as few hundred nanometers to less than 10 nanometers. This beam is in triangle shape in order to provide uniform plane strain distribution. Standard clean room processing was used to prepare the paddle sample. The experiment can be operated by using the electrostatic deflection on the paddle uniform distributed stress cantilever beam and then measure the deposited thin metal film materials on top of it. A capacitance technique was used to measurement on the other side of the deflected plate to measure its deflection with respect to the force. The measured strain was converted through the capacitance measurement for the deflection of the cantilever. System performance on the residual stress measurement of thin films are calculated with three different forces on the "paddle" cantilever beam, incl...

  20. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    Science.gov (United States)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  1. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    KAUST Repository

    Almuslem, A. S.

    2017-02-14

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  2. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    Science.gov (United States)

    Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong

    2015-11-01

    We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge-discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  3. Fabrication of nano scaled protein monolayer consisting of cytochrome c on self-assembled 11-MUA layer for bioelectronic device.

    Science.gov (United States)

    Lee, Taek; Kim, Sang-Uk; Lee, Jin-Ho; Min, Junhong; Choi, Jeong-Woo

    2009-12-01

    The biomolecular/organic hetero-structure films (cytochrome c/11-mercapto-undecanoic acid) on gold substrates were controlled and fabricated with molecular level for developing valuable molecular electronic devices. Cytochrome c is a metalloprotein having redox property, which can be directly applicable to biomemory device as a active element. For efficient immobilization of the protein on the gold substrate, 11-mercapto-undecanoic acid (11-MUA) was used as a linker material between protein and inorganic substrate. The proposed nano scaled biomolecular/organic hetero-structure layer (cytochrome c/11-MUA) on gold surface was investigated by using surface plasmon resonance technique. The molecular morphology of the fabricated protein layer was confirmed by scanning tunneling microscopy. Electrochemical properties of fabricated biomolecular/organic hetero layer were verified using cyclic voltammetry. Their redox properties was sustained over 1000 cycles of cyclic voltametry. It proved that the fabricated film was a suitable platform for the bioelectronic device application.

  4. Signal Processing for Wireless Communication MIMO System with Nano- Scaled CSDG MOSFET based DP4T RF Switch.

    Science.gov (United States)

    Srivastava, Viranjay M

    2015-01-01

    In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.

  5. Influence of wheat kernel physical properties on the pulverizing process.

    Science.gov (United States)

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

  6. The effect of pulverization on the albedo of lunar rocks

    NARCIS (Netherlands)

    Minnaert, Marcel Gilles Jozef

    1969-01-01

    Measures of the albedo under full-moon conditions have been made on two samples of very dark rocks, pulverized and sieved so as to obtain powders of different grain size. Below a size of 0.05 mm the albedo suddenly increases, obviously because the individual grains become transparent. By a rough cal

  7. PROJECT OF COAGULANT DISPENSER IN PULVERIZATION AERATOR WITH WIND DRIVE

    Directory of Open Access Journals (Sweden)

    Ewa Osuch

    2017-09-01

    Full Text Available Lakes are one of most important freshwater ecosystems, playing significant role in functioning of nature and human economy. Swarzędzkie Lake is good example of ecosystem, which in last half-century was exposed to the influence of strong anthropopressure. Direct inflow of sewage with large number of biogens coming to the lake with water of inflows caused distinct disturbance of its functioning. In autumn 2011 restoration begined on Swarzędzkie Lake for reduction of lake trophy and improvement of water quality. For achieving better and quicker effect, simultaneously combination of some methods was applied, among others method of oxygenation of over-bottom water with help of pulverization aerator and method of precise inactivation of phosphorus in water depths. Characterization and analysis of improved coagulant dispenser applying active substance only during work of pulverization aerator is the aim of this thesis. Principle of dispenser work, its structure and location in pulverization aerator were explained. It was stated, that introduction to water a factor initiating process of phosphorus inactivation causes significant reduction of mineral phosphorus in water and size of coagulant dose correlates with intensity of work of pulverization aerator with wind drive.

  8. The effect of pulverization on the albedo of lunar rocks

    NARCIS (Netherlands)

    Minnaert, Marcel Gilles Jozef

    Measures of the albedo under full-moon conditions have been made on two samples of very dark rocks, pulverized and sieved so as to obtain powders of different grain size. Below a size of 0.05 mm the albedo suddenly increases, obviously because the individual grains become transparent. By a rough

  9. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide.

    Science.gov (United States)

    Salimi, Abdollah; Sharifi, Ensiyeh; Noorbakhsh, Abdollah; Soltanian, Saied

    2007-02-01

    Cyclic voltammetry was used for simultaneous formation and immobilization of nickel oxide nano-scale islands and catalase on glassy carbon electrode. Electrodeposited nickel oxide may be a promising material for enzyme immobilization owing to its high biocompatibility and large surface. The catalase films assembled on nickel oxide exhibited a pair of well defined, stable and nearly reversible CV peaks at about -0.05 V vs. SCE at pH 7, characteristic of the heme Fe (III)/Fe (II) redox couple. The formal potential of catalase in nickel oxide film were linearly varied in the range 1-12 with slope of 58.426 mV/pH, indicating that the electron transfer is accompanied by single proton transportation. The electron transfer between catalase and electrode surface, (k(s)) of 3.7(+/-0.1) s(-1) was greatly facilitated in the microenvironment of nickel oxide film. The electrocatalytic reduction of hydrogen peroxide at glassy carbon electrode modified with nickel oxide nano-scale islands and catalase enzyme has been studied. The embedded catalase in NiO nanoparticles showed excellent electrocatalytic activity toward hydrogen peroxide reduction. Also the modified rotating disk electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant catalase/nickel oxide modified glassy carbon electrodes exhibited fast amperometric response (within 2 s) to hydrogen peroxide reduction (with a linear range from 1 microM to 1 mM), excellent stability, long term life and good reproducibility. The apparent Michaelis-Menten constant is calculated to be 0.96(+/-0.05)mM, which shows a large catalytic activity of catalase in the nickel oxide film toward hydrogen peroxide. The excellent electrochemical reversibility of redox couple, high stability, technical simplicity, lake of need for mediators and short preparations times are advantages of this electrode. Finally the activity of biosensor for nitrite reduction was also investigated.

  10. Multi-objective optimization and exergetic-sustainability of an irreversible nano scale Braysson cycle operating with Ma

    Directory of Open Access Journals (Sweden)

    Mohammad H. Ahmadi

    2016-06-01

    Full Text Available Nano technology is developed in this decade and changes the way of life. Moreover, developing nano technology has effect on the performance of the materials and consequently improves the efficiency and robustness of them. So, nano scale thermal cycles will be probably engaged in the near future. In this paper, a nano scale irreversible Braysson cycle is studied thermodynamically for optimizing the performance of the Braysson cycle. In the aforementioned cycle an ideal Maxwell–Boltzmann gas is used as a working fluid. Furthermore, three different plans are used for optimizing with multi-objectives; though, the outputs of the abovementioned plans are assessed autonomously. Throughout the first plan, with the purpose of maximizing the ecological coefficient of performance and energy efficiency of the system, multi-objective optimization algorithms are used. Furthermore, in the second plan, two objective functions containing the ecological coefficient of performance and the dimensionless Maximum available work are maximized synchronously by utilizing multi-objective optimization approach. Finally, throughout the third plan, three objective functions involving the dimensionless Maximum available work, the ecological coefficient of performance and energy efficiency of the system are maximized synchronously by utilizing multi-objective optimization approach. The multi-objective evolutionary approach based on the non-dominated sorting genetic algorithm approach is used in this research. Making a decision is performed by three different decision makers comprising linear programming approaches for multidimensional analysis of preference and an approach for order of preference by comparison with ideal answer and Bellman–Zadeh. Lastly, analysis of error is employed to determine deviation of the outcomes gained from each plan.

  11. Nano-scale experimental investigation of in-situ wettability and spontaneous imbibition in ultra-tight reservoir rocks

    Science.gov (United States)

    Akbarabadi, Morteza; Saraji, Soheil; Piri, Mohammad; Georgi, Dan; Delshad, Mohammad

    2017-09-01

    We investigated spontaneous imbibition behavior, three-dimensional fluid occupancy maps, and in-situ wettability at the nano scale in five ultra-tight and shale reservoir rock samples. For this purpose, we developed a novel technique by integrating a custom-built in-situ miniature fluid-injection module with a non-destructive high-resolution X-ray imaging system. Small cylindrical core samples (15-60 μm in diameter) were prepared from reservoir rocks using Focused-Ion Beam (FIB) milling technique. The pore network inside the samples were first characterized using ultra-high resolution three-dimensional images obtained at initial state by X-ray nano-tomography (Nano-CT) and FIB-Scanning Electron Microscopy (FIB-SEM) techniques at the nano scale. The petrophysical parameters, including porosity, permeability, pore-size distribution, and organic content were computed for each sample using image analysis. We then performed series of imbibition experiments using brine, oil, and surfactant solutions on each core sample. We observed that both oil and brine phases spontaneously imbibe into the pore network of the rock samples at various quantities. We also, for the first time, examined fluid distribution in individual pores and found a complex wettability behavior at the pore scale in the reservoir rock samples. Three pore types were identified with water-wet, oil-wet, and fractionally-wet behaviors. This work opens a new path to developing an improved understanding of the pore-level physics involved in multi-phase flow and transport not only in tight rock samples but also in other nanoporous material used in different science and engineering applications.

  12. Carbopol 934, 940 and Ultrez 10 as viscosity modifiers of palm olein esters based nano-scaled emulsion containing ibuprofen.

    Science.gov (United States)

    Abdullah, Ghassan Zuhair; Abdulkarim, Muthanna Fawzy; Mallikarjun, Chitneni; Mahdi, Elrashid Saleh; Basri, Mahiran; Sattar, Munavvar Abdul; Noor, Azmin Mohd

    2013-01-01

    Micro-emulsions and sometimes nano-emulsions are well known candidates to deliver drugs locally. However, the poor rheological properties are marginally affecting their acceptance pharmaceutically. This work aimed to modify the poor flow properties of a nano-scaled emulsion comprising palm olein esters as the oil phase and ibuprofen as the active ingredient for topical delivery. Three Carbopol ® resins: 934, 940 and Ultrez 10, were utilized in various concentrations to achieve these goals. Moreover, phosphate buffer and triethanolamine solutions pH 7.4 were used as neutralizing agents to assess their effects on the gel-forming and swelling properties of Carbopol ® 940. The addition of these polymers caused the produced nano-scaled emulsion to show a dramatic droplets enlargement of the dispersed globules, increased intrinsic viscosity, consistent zeta potential and transparent-to-opaque change in appearance. These changes were relatively influenced by the type and the concentration of the resin used. Carbopol ® 940 and triethanolamine appeared to be superior in achieving the proposed tasks compared to other materials. The higher the pH of triethanolamine solution, the stronger the flow-modifying properties of Carbopol ® 940. Transmission electron microscopy confirmed the formation of a well-arranged gel network of Carbopol ® 940, which was the major cause for all realized changes. Later in vitro permeation studies showed a significant decrease in the drug penetration, thus further modification using 10% w/w menthol or limonene as permeation promoters was performed. This resulted in in vitro and in vivo pharmacodynamics properties that are comparably higher than the reference chosen for this study.

  13. Simulation of self-organized waveguides for self-aligned coupling between micro- and nano-scale devices

    Science.gov (United States)

    Yoshimura, Tetsuzo

    2015-05-01

    We propose an optical coupling technique based on the reflective self-organized lightwave network (R-SOLNET), where optical devices with different core sizes are connected, for nano-scale-waveguide-based optical interconnects. Growth of R-SOLNET between a 3-μm-wide waveguide and a 600-nm-wide waveguide, on the core edge of which a luminescent target has been deposited, is simulated by the finite-difference time-domain method. The two waveguides are placed with gap distances ranging from 16 to 64 μm in a photopolymer with a refractive index that increases upon exposure to a write beam and luminescence. When a 400 nm wavelength write beam is introduced from the micro-scale waveguide, 470 nm luminescence is generated from the target. In the area where the write beam and the luminescence overlap, the refractive index increases rapidly. The write beam and the luminescence thus attract each other to merge into one through the self-focusing, forming a self-aligned coupling waveguide of R-SOLNET with a coupling loss of 1.5-1.8 dB, even when a lateral misalignment of 600 nm exists between them. This indicates that the R-SOLNET can be used as an optical solder to connect a micro-scale waveguide to a nano-scale waveguide. The optimum writing time required to attain the minimum coupling loss increases with increasing lateral misalignment. The dependence of the optimum writing time on the misalignment is reduced with increasing gap distance, and it almost vanishes when the distance is 64 μm, enabling unmonitored optical solder formation. R-SOLNET utilizing the two-photon photochemistry is briefly described as the next-generation SOLNET.

  14. 纳米级润滑与表面改性研究%Lubrication and Surface Modification in Nano Scale

    Institute of Scientific and Technical Information of China (English)

    张朝辉; 雒建斌

    2004-01-01

    A great improvement in nano technology has been witnessed in recent years. Major advances in two branches are discussed here: one is thin film lubrication (TFL) in nano scale and the other is nano-scale surface modification. The advancements of researches on TFL involve measuring techniques, film versus working parameter relations, mechanism exploration, and predicable numerical models. Surface modification to reduce pole-tip-recession (PTR) is introduced. The usage of a partial fluorinated hexaphenoxy cyclotriphosphazene, X-1P, in improving the thermal stability of the lube, and chemical mechanical polishing process coupled with nano particles are introduced. The results given will provide some insights of the modem nano technology.%纳米技术在过去的几年里取得了巨大的进展.关注其两个主要方面:纳米级的薄膜润滑与纳米表面改性研究.薄膜润滑(thin film lubrication,TFL)的研究进展包括薄膜润滑测试技术、薄膜润滑的膜厚-工况相关特性、机理探索以及数学计算预测模型等方面.介绍了降低极尖沉降(pole-tip-recession,PTR)的技术,使用含有氮磷的环状化合物--X-1P来提高润滑剂的热稳定性的方法,以及使用纳米粒子的化学机械抛光技术.这些研究成果揭示了现代纳米技术的一些重要特征.

  15. Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): Effect of ionic strength and initial pH

    DEFF Research Database (Denmark)

    Kim, Do-Gun; Hwang, Yuhoon; Shin, Hang-Sik

    2016-01-01

    Kinetic models for pollutants reduction by Nano-scale Zero Valent Iron (NZVI) were tested in this study to gain a better understanding and description of the reaction. Adsorption kinetic models and a heterogeneous catalytic reaction kinetic equation were proposed for nitrate removal and for ammon...

  16. Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones

    Science.gov (United States)

    Aben, F. M.; Doan, M.-L.; Mitchell, T. M.; Toussaint, R.; Reuschlé, T.; Fondriest, M.; Gratier, J.-P.; Renard, F.

    2016-04-01

    Previous studies show that pulverized rocks observed along large faults can be created by single high-strain rate loadings in the laboratory, provided that the strain rate is higher than a certain pulverization threshold. Such loadings are analogous to large seismic events. In reality, pulverized rocks have been subject to numerous seismic events rather than one single event. Therefore, the effect of successive "milder" high-strain rate loadings on the pulverization threshold is investigated by applying loading conditions below the initial pulverization threshold. Single and successive loading experiments were performed on quartz-monzonite using a Split Hopkinson Pressure Bar apparatus. Damage-dependent petrophysical properties and elastic moduli were monitored by applying incremental strains. Furthermore, it is shown that the pulverization threshold can be reduced by successive "milder" dynamic loadings from strain rates of ~180 s-1 to ~90 s-1. To do so, it is imperative that the rock experiences dynamic fracturing during the successive loadings prior to pulverization. Combined with loading conditions during an earthquake rupture event, the following generalized fault damage zone structure perpendicular to the fault will develop: furthest from the fault plane, there is a stationary outer boundary that bounds a zone of dynamically fractured rocks. Closer to the fault, a pulverization boundary delimits a band of pulverized rock. Consecutive seismic events will cause progressive broadening of the band of pulverized rocks, eventually creating a wider damage zone observed in mature faults.

  17. Developing an Effective Model for Shale Gas Flow in Nano-scale Pore Clusters based on FIB-SEM Images

    Science.gov (United States)

    Jiang, W. B.; Lin, M.; Yi, Z. X.; Li, H. S.

    2016-12-01

    Nano-scale pores existed in the form of clusters are the controlling void space in shale gas reservoir. Gas transport in nanopores which has a significant influence on shale gas' recoverability displays multiple transport regimes, including viscous, slippage flow and Knudsen diffusion. In addition, it is also influenced by pore space characteristics. For convenience and efficiency consideration, it is necessary to develop an upscaling model from nano pore to pore cluster scale. Existing models are more like framework functions that provide a format, because the parameters that represent pore space characteristics are underdetermined and may have multiple possibilities. Therefore, it is urgent to make them clear and obtained a model that is closer to reality. FIB-SEM imaging technology is able to acquire three dimensional images with nanometer resolution that nano pores can be visible. Based on the images of two shale samples, we used a high-precision pore network extraction algorithm to generate equivalent pore networks and simulate multiple regime (non-Darcy) flow in it. Several structural parameters can be obtained through pore network modelling. It is found that although the throat-radius distributions are very close, throat flux-radius distributions of different samples can be divided into two categories. The variation of tortuosity with pressure and the overall trend of throat-flux distribution changes with pressure are disclosed. A deeper understanding of shale gas flow in nano-scale pore clusters is obtained. After all, an upscaling model that connects absolute permeability, apparent permeability and other characteristic parameters is proposed, and the best parameter scheme considering throat number-radius distribution and flowing porosity for this model is selected out of three schemes based on pore scale results, and it can avoid multiple-solution problem and is useful in reservoir modelling and experiment result analysis, etc. This work is supported by

  18. Milk-based cornstarch porridge fortified with iron is effective in reducing anemia: a randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Arcanjo, Francisco Plácido Nogueira; Arcanjo, Cecília Costa; Arcanjo, Francisco Carlos Nogueira; Campos, Lício de Albuquerque; Amancio, Olga Maria Silverio; Braga, Josefina Aparecida Pellegrini

    2012-10-01

    This study evaluates the impact of a milk-based cornstarch porridge fortified with iron, in 4-year olds, compared with control on hemoglobin levels and anemia prevalence. This trial was a cluster-randomized, double-blind one, and used milk-based cornstarch porridge fortified with 10 mg elemental iron (FeSO(4)), daily, during 14 weeks, compared with control. The study population comprised 4-year-old preschoolers (n = 131). Mean hemoglobin values at baseline were found to be 10.6 ± 0.61 g dl(-1) for intervention group, and after intervention 11.5 ± 0.80 g/dl, p porridge fortified with ferrous sulfate increased hemoglobin levels and reduced anemia prevalence in 4-year-old preschoolers.

  19. On gas and particle radiation in pulverized fuel combustion furnaces

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Radiation is the principal mode of heat transfer in a combustor. This paper presents a refined weighted sum of gray gases model for computational fluid dynamics modelling of conventional air-fuel combustion, which has greater accuracy and completeness than the existing gaseous radiative property....... Although the refined gaseous radiative property model shows great advantages in gaseous fuel combustion modelling, its impacts are largely compromised in pulverized solid fuel combustion, in which particle-radiation interaction plays the dominant role in radiation heat transfer due to high particle loading....... Use of conversion-dependent particle emissivity and scattering factor will not only change the particle heating and reaction history, but also alter the radiation intensity and thus temperature profiles in the furnace. For radiation modelling in pulverized fuel combustion, the priority needs...

  20. Stabilization of pulverized coal combustion by plasma assist

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Maruta, K.; Takeda, K.; Solonenko, O.P.; Sakashita, M.; Nakamura, M. [Akita Prefectural University, Akita (Japan). Faculty of System Science & Technology

    2002-03-01

    Ignition and stabilization of pulverized coal combustion by plasma assist is investigated with a 10 kW plasma torch for three different kinds of coal, such as high, medium and low volatile matter coals. Not only high volatile matter coal but also low quality coal can be successfully burned with plasma assist. Research for volatile component of coal shows that a higher temperature field is necessary to extract the volatile matter from inferior coal, while their compositions are almost the same.

  1. Modeling of Pulverized Coal Combustion in Cement Rotary Kiln

    OpenAIRE

    2006-01-01

    In this paper, based on analysis of the chemical and physical processes of clinker formation, a heat flux function was introduced to take account of the thermal effect of clinker formation. Combining the models of gas-solid flow, heat and mass transfer, and pulverized coal combustion, a set of mathematical models for a full-scale cement rotary kiln were established. In terms of commercial CFD code (FLUENT), the distributions of gas velocity, gas temperature, and gas components in a cement rot...

  2. Development of automobile brake lining using pulverized cow hooves

    Directory of Open Access Journals (Sweden)

    Katsina C. BALA

    2016-06-01

    Full Text Available Asbestos has been used for so long as automobile brake lining material because of its good physical and chemical properties. However, due to the health hazard associated with its handling, it has lost favour and several alternative materials are being increasingly used. Asbestos-free brake lining was developed in this work using pulverized cow hooves along with epoxy resin, barium sulphate, graphite and aluminium oxide. This was with a view to exploiting the characteristics of cow hooves, which are largely discarded as waste materials to replace asbestos which has been found to be carcinogenic. Samples of brake linings were produced using compressive moulding in which the physical and mechanical properties of the samples were studied. The results obtained showed that proper bonding was achieved as the percentage by weight of epoxy resin increased and percentage by weight of pulverized cow hooves decreased. The hardness, compressive strength, coefficient of friction, water and oil absorption, relative density and wear rate of the brake linings were determined and compared with existing brake lining properties. The result indicates that pulverized cow hooves can be used as brake lining material for automobiles.

  3. Effects of sucrose and cornstarch on 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced colon and liver carcinogenesis in F344 rats

    DEFF Research Database (Denmark)

    Lindecrona, R.H.; Dragsted, Lars Ove; Poulsen, Morten

    2004-01-01

    The purpose of the present study was to compare the effect of sucrose and cornstarch on colon and liver carcinogenesis induced by 0.02% of the food-borne carcinogen 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) in the feed. Male F344 rats were allocated to four groups. Two groups were fed diets...... high in either cornstarch (68%) or sucrose (34% sucrose/34% cornstarch) and were initiated with IQ. The remaining two groups received the same two diets but did not receive any IQ. In both liver and colon, administration of IQ resulted in a higher level of DNA adducts. In animals not dosed with IQ......, sucrose increased the adduct level in both organs but to a lower level than IQ. However, simultaneous administration of IQ and sucrose did not further increase the adduct level. Both IQ and sucrose increased the expression of the DNA-repair enzyme ERCC1 in the liver. In the colon, the number of large...

  4. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    Science.gov (United States)

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-10-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  5. Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications

    Directory of Open Access Journals (Sweden)

    Maria Laura Coluccio

    2014-03-01

    Full Text Available The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  6. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.

    Science.gov (United States)

    Hossain, R; Pahlevani, F; Quadir, M Z; Sahajwalla, V

    2016-10-11

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels' performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  7. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications.

    Science.gov (United States)

    Coluccio, Maria Laura; Gentile, Francesco; Francardi, Marco; Perozziello, Gerardo; Malara, Natalia; Candeloro, Patrizio; Di Fabrizio, Enzo

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  8. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  9. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing

    2015-07-15

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years\\' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  10. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    CERN Document Server

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for ideal flat surface and a suppression factor that contains effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors are derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by the electropolishing is evaluated by using results of surface topographic study. The estimat...

  11. Effect of Nano-Scale and Micro-Scale Yttria Reinforcement on Powder Forged AA-7075 Composites

    Science.gov (United States)

    Joshi, Tilak C.; Prakash, U.; Dabhade, Vikram V.

    2016-05-01

    The present investigation deals with the development of AA-7075 metal matrix composites reinforced with nano yttria particles (0.1 to 3 vol.%) and micron yttria particles (1 to 15 vol.%) by powder forging. Matrix powders (AA-7075) and reinforcement powders (yttria) were blended, cold compacted, sintered under pure nitrogen, and finally hot forged in a closed floating die. The hot forged samples were artificially age hardened at 121 °C for various time durations to determine the peak aging time. The mechanical properties in the peak-aged condition as well as density and microstructure were determined and correlated with the reinforcement size and content. The nano composites exhibited a well-densified structure as well as better hardness and tensile/compressive strength as compared to micro-scale composites. The mechanical properties in nano-scale composites peaked at 0.5 vol.% yttria addition while for micro-scale composites these properties peaked at 5 vol.% yttria addition.

  12. Opto-Electronic Characterization CdTe Solar Cells from TCO to Back Contact with Nano-Scale CL Probe

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, John; Al-Jassim, Mowafak M.; Paudel, Naba; Mahabaduge, Hasitha; Kuciauskas, Darius; Guthrey, Harvey L.; Duenow, Joel; Yan, Yanfa; Metzger, Wyatt K.; Ahrenkiel, Richard K.

    2015-06-14

    We used cathodoluminescence (CL) (spectrum-per-pixel) imaging on beveled CdTe solar cell sections to investigate the opto-electronic properties of these devices from the TCO to the back contact. We used a nano-scale CL probe to resolve luminescence from grain boundary (GB) and grain interior (GI) locations near the CdS/CdTe interface where the grains are very small. As-deposited, CdCl2-treated, Cu-treated, and (CdCl2+Cu)-treated cells were analyzed. Color-coded CL spectrum imaging maps on bevels illustrate the distribution of the T=6 K luminescence transitions through the depth of devices with unprecedented spatial resolution. The CL at the GBs and GIs is shown to vary significantly from the front to the back of devices and is a sensitive function of processing. Supporting D-SIMS depth profile, TRPL lifetime, and C-V measurements are used to link the CL data to the J-V performance of devices.

  13. High voltage stability of LiCoO2 particles with a nano-scale Lipon coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoongu [ORNL; Veith, Gabriel M [ORNL; Nanda, Jagjit [ORNL; Unocic, Raymond R [ORNL; Dudney, Nancy J [ORNL

    2011-01-01

    For high-voltage cycling of rechargeable Li batteries, a nano-scale amorphous Li-ion conductor, lithium phosphorus oxynitride (Lipon), has been coated on surfaces of LiCoO{sub 2} particles by combining a RF-magnetron sputtering technique and mechanical agitation of LiCoO{sub 2} powders. LiCoO{sub 2} particles coated with 0.36 wt% ({approx}1 nm thick) of the amorphous Lipon, retain 90% of their original capacity compared to non-coated cathode materials that retain only 65% of their original capacity after more than 40 cycles in the 3.0-4.4 V range with a standard carbonate electrolyte. The reason for the better high-voltage cycling behavior is attributed to reduction in the side reactions that cause increase of the cell resistance during cycling. Further, Lipon coated particles are not damaged, whereas uncoated particles are badly cracked after cycling. Extending the charge of Lipon-coated LiCoO{sub 2} to higher voltage enhances the specific capacity, but more importantly the Lipon-coated material is also more stable and tolerant of high voltage excursions. A drawback of Lipon coating, particularly as thicker films are applied to cathode powders, is the increased electronic resistance that reduces the power performance.

  14. An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems

    Directory of Open Access Journals (Sweden)

    Mokrane Boudaoud

    2014-03-01

    Full Text Available Two-fingered micromanipulation systems with an integrated force sensor are widely used in robotics to sense and control gripping forces at the micro and nano-scales. They became of primary importance for an efficient manipulation and characterization of highly deformable biomaterials and nanostructures. This paper presents a chronological overview of gripping force measurement using two-fingered micromanipulation systems. The work summarizes the major achievements in this field from the early 90s to the present, focusing in particular on the evolution of measurement technologies regarding the requirements of microrobotic applications. Measuring forces below the microNewton for the manipulation of highly deformable materials, embedding force sensors within microgrippers to increase their dexterity, and reducing the influence of noise to improve the measurement resolution are among the addressed challenges. The paper shows different examples of how these challenges have been addressed. Resolution, operating range and signal/noise ratio of gripping force sensors are reported and compared. A discussion about force measurement technologies and gripping force control is performed and future trends are highlighted.

  15. On the moving interface effect in the stimulated Brillouin scattering in a nano-scale photonic waveguide

    CERN Document Server

    Su, Xiao-Xing; Li, Xiao-Shuang

    2016-01-01

    We present a theoretical research on the moving interface (MI) effect that may exist as a nonnegligible surface complementarity to the bulk photoelastic effect in the stimulated Brillouin scattering (SBS) process in a nano-scale photonic waveguide. Compared with the existing literature, we gain a deeper insight into the detailed physical mechanism on how the MI effect come into play in the three-wave interaction process of SBS, by arguing that the field changes of an optical wave caused by the motion of a sharp interface are further amplitude-modulated by a rectangular-wave envelop synchronizing with the acoustic wave that drives the interface motion. Based on a detailed theoretical analysis on the amplitude-modulation process, the rigorous expressions of the field perturbations on a participating optical wave in SBS caused by the interface motion are derived. As a direct application of the obtained rigorous expressions of the optical field perturbations, we further derive the opto-acoustical coupling coeffic...

  16. Nano-scale gap filling and mechanism of deposit-etch-deposit process for phase-change material

    Institute of Scientific and Technical Information of China (English)

    Ren Wan-Chun; Liu Bo; Song Zhi-Tang; Xiang Yang-Hui; Wang Zong-Tao; Zhang Bei-Chao; Feng Song-Lin

    2012-01-01

    Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture.Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality,purity,and accurate composition control.However,the conventional physical vapor deposition process cannot meet the gapfilling requirement with the critical device dimension scaling down to 90 nm or below.In this study,we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process,especially at the nano-scale critical dimension.The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed.We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling.We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process.We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.

  17. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12

    Science.gov (United States)

    Sakamoto, Jeff; Rangasamy, Ezhiylmurugan; Kim, Hyunjoung; Kim, Yunsung; Wolfenstine, Jeff

    2013-10-01

    A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm-1 at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.

  18. An Overview on Gripping Force Measurement at the Micro and Nano-scales Using Two-fingered Microrobotic Systems

    Directory of Open Access Journals (Sweden)

    Mokrane Boudaoud

    2014-03-01

    Full Text Available Two-fingered micromanipulation systems with an integrated force sensor are widely used in robotics to sense and control gripping forces at the micro and nano-scales. They became of primary importance for an efficient manipulation and characterization of highly deformable biomaterials and nanostructures. This paper presents a chronological overview of gripping force measurement using two-fingered micromanipulation systems. The work summarizes the major achievements in this field from the early 90s to the present, focusing in particular on the evolution of measurement technologies regarding the requirements of microrobotic applications. Measuring forces below the microNewton for the manipulation of highly deformable materials, embedding force sensors within microgrippers to increase their dexterity, and reducing the influence of noise to improve the measurement resolution are among the addressed challenges. The paper shows different examples of how these challenges have been addressed. Resolution, operating range and signal/noise ratio of gripping force sensors are reported and compared. A discussion about force measurement technologies and gripping force control is performed and future trends are highlighted.

  19. Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajie, E-mail: wanghuajie972001@163.com; Sun Yuanyuan; Cao Ying, E-mail: caoying1130@sina.com; Wang Kui; Yang Lin [Henan Normal University, College of Chemistry and Environmental Science (China); Zhang Yidong; Zheng Zhi [Xuchang University, Institute of Surface Micro and Nano Materials (China)

    2012-05-15

    Although nano-structured surfaces exhibit superior biological activities to the smooth or micro-structured surfaces, whether there is an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors is still controversial. In this study, porous aluminum oxide membranes with different pore sizes ranging from 25 to 120 nm were prepared by the anodic oxidation technique. The surface morphology, topography and wettability were analyzed by scanning electron microscope, atomic force microscope and water contact angle measurement, respectively. The results indicated that the synergistic action of the nano-topography structure and hydrophilic/hydrophobic properties resulted in a highest protein adsorption on the aluminum oxide membrane with 80 nm pore size. Additionally, the morphological, metabolic and cell counting methods showed that cells had different sensitivity to porous aluminum oxide membranes with different surface features. Furthermore, this sensitivity was cell type dependent. The optimal pore size of aluminum oxide membranes for cell growth was 80 nm for PC12 cells and 50 nm for NIH 3T3 cells.

  20. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  1. Dielectric strength of voidless BaTiO{sub 3} films with nano-scale grains fabricated by aerosol deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Ki; Lee, Young-Hie, E-mail: yhlee@kw.ac.kr [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); Lee, Seung-Hwan [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); In Kim, Soo; Woo Lee, Chang [Department of Nano and Electronic Physics, Kookmin University, Seoul (Korea, Republic of); Rag Yoon, Jung [R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); Lee, Sung-Gap [Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University, Jinju (Korea, Republic of)

    2014-01-07

    In order to investigate the dielectric strength properties of the BaTiO{sub 3} films with nano-scale grains with uniform grain size and no voids, BaTiO{sub 3} films were fabricated with a thickness of 1 μm by an AD process, and the fabricated films were sintered at 800, 900, and 1000 °C in air and reducing atmosphere. The films have superior dielectric strength properties due to their uniform grain size and high density without any voids. In addition, based on investigation of the leakage current (intrinsic) properties, it was confirmed that the sintering conditions of the reducing atmosphere largely increase leakage currents due to generated electrons and doubly ionized oxygen vacancies following the Poole-Frenkel emission mechanism, and increased leakage currents flow at grain boundary regions. Therefore, we conclude that the extrinsic breakdown factors should be eliminated for superior dielectric strength properties, and it is important to enhance grain boundaries by doping acceptors and rare-earth elements.

  2. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation.

    Science.gov (United States)

    Peters, Kirsten; Unger, Ronald E; Kirkpatrick, C James; Gatti, Antonietta M; Monari, Emanuela

    2004-04-01

    Recent studies give support for a connection between the presence of inorganic particles (of microm and nm size) in different organs and tissues and the development of inflammatory foci, called granulomas. As the potential source of particles (e.g. porcelain dental bridges) and the location of particle detection were topographically far apart, a distribution via the blood stream appears highly probable. Thus, endothelial cells, which line the inner surface of blood vessels, would come into direct contact with these particles, making particle-endothelial interactions potentially pathogenically relevant. The objective of this study was to evaluate the effects that five different nano-scaled particles (PVC, TiO2, SiO2, Co, Ni) have on endothelial cell function and viability. Therefore, human endothelial cells were exposed to different amounts of the above-mentioned particles. Although most particle types are shown to be internalised (except Ni-particles), only Co-particles possessed cytotoxic effects. Furthermore, an impairment of the proliferative activity and a pro-inflammatory stimulation of endothelial cells were induced by exposure to Co- and, to a lesser extent, by SiO2-particles. If a pro-inflammatory stimulation of endothelial cells occurs in vivo, a chronic inflammation could be a possible consequence.

  3. The influence of nano-scale second-phase particles on deformation of fine grained calcite mylonites

    Science.gov (United States)

    Herwegh, Marco; Kunze, Karsten

    2002-09-01

    Grey and white carbonate mylonites were collected along thrust planes of the Helvetic Alps. They are characterised by very small grain sizes and non-random grain shape (SPO) and crystallographic preferred orientation (CPO). Presumably they deformed in the field of grain size sensitive flow by recrystallisation accommodated intracrystalline deformation in combination with granular flow. Both mylonites show a similar mean grain size, but in the grey mylonites the grain size range is larger, the grain shapes are more elongate and the dynamically recrystallised calcite grains are more often twinned. Grey mylonites have an oblique CPO, while the CPO in white mylonites is symmetric with respect to the shear plane. Combustion analysis and TEM investigations revealed that grey mylonites contain a higher amount of highly structured kerogens with particle sizes of a few tens of nanometers, which are finely dispersed at the grain boundaries. During deformation of the rock, nano-scale particles reduced the migration velocity of grain boundaries by Zener drag resulting in slower recrystallisation rates of the calcite aggregate. In the grey mylonites, more strain increments were accommodated by individual grains before they became refreshed by dynamic recrystallisation than in white mylonites, where grain boundary migration was less hindered and recrystallisation cycles were faster. Consequently, grey mylonites represent 'deformation' microfabrics while white mylonites are characterised by 'recrystallisation' microfabrics. Field geologists must utilise this different deformation behavior when applying the obliquity in CPO and SPO of the respective mylonites as reliable shear sense indicators.

  4. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  5. Observation of multiple superconducting gaps in Fe1+yTe1-xSex via a nano-scale approach to point-contact spectroscopy

    OpenAIRE

    Peng, Haibing; De, Debtanu; Wu, Zheng; Diaz-Pinto, Carlos

    2012-01-01

    We report a distinct experimental approach to point-contact Andreev reflection spectroscopy with diagnostic capability via a unique design of nano-scale normal metal/superconductor devices with excellent thermo-mechanical stability, and have employed this method to unveil the existence of two superconducting energy gaps in iron chalcogenide Fe1+yTe1-xSex which is crucial for understanding its pairing mechanism. This work opens up new opportunities to study gap structures in superconductors an...

  6. Contribution of nano-scale effects to the total efficiency of converters of thermal neutrons on the basis of gadolinium foils

    CERN Document Server

    Abdushukurov, D A; Muminov, Kh Kh; Chistyakov, D Yu

    2008-01-01

    We study the influence of nano-scale layers of converters made from natural gadolinium and its 157 isotope into the total efficiency of registration of thermal neutrons. Our estimations show that contribution of low-energy Auger electrons with the runs about nanometers in gadolinium, to the total efficiency of neutron converters in this case is essential and results in growth of the total efficiency of converters. The received results are in good consent to the experimental data.

  7. The Influence of Fluorination on Nano-Scale Phase Separation and Photovoltaic Performance of Small Molecular/PC71BM Blends

    Directory of Open Access Journals (Sweden)

    Zhen Lu

    2016-04-01

    Full Text Available To investigate the fluorination influence on the photovoltaic performance of small molecular based organic solar cells (OSCs, six small molecules based on 2,1,3-benzothiadiazole (BT, and diketopyrrolopyrrole (DPP as core and fluorinated phenyl (DFP and triphenyl amine (TPA as different terminal units (DFP-BT-DFP, DFP-BT-TPA, TPA-BT-TPA, DFP-DPP-DFP, DFP-DPP-TPA, and TPA-DPP-TPA were synthesized. With one or two fluorinated phenyl as the end group(s, HOMO level of BT and DPP based small molecular donors were gradually decreased, inducing high open circuit voltage for fluorinated phenyl based OSCs. DFP-BT-TPA and DFP-DPP-TPA based blend films both displayed stronger nano-scale aggregation in comparison to TPA-BT-TPA and TPA-DPP-TPA, respectively, which would also lead to higher hole motilities in devices. Ultimately, improved power conversion efficiency (PCE of 2.17% and 1.22% was acquired for DFP-BT-TPA and DFP-DPP-TPA based devices, respectively. These results demonstrated that the nano-scale aggregation size of small molecules in photovoltaic devices could be significantly enhanced by introducing a fluorine atom at the donor unit of small molecules, which will provide understanding about the relationship of chemical structure and nano-scale phase separation in OSCs.

  8. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Understanding Nano-scale Electronic Systems via Large-scale Computation

    Science.gov (United States)

    Cao, Chao

    2009-03-01

    Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.

  9. Pulse-biased etching of Si3N4-layer in capacitively-coupled plasmas for nano-scale patterning of multi-level resist structures.

    Science.gov (United States)

    Lee, Hyelim; Kim, Sechan; Choi, Gyuhyun; Lee, Nae-Eung

    2014-12-01

    Pulse-biased plasma etching of various dielectric layers is investigated for patterning nano-scale, multi-level resist (MLR) structures composed of multiple layers via dual-frequency, capacitively-coupled plasmas (CCPs). We compare the effects of pulse and continuous-wave (CW) biasing on the etch characteristics of a Si3N4 layer in CF4/CH2F2/O2/Aretch chemistries using a dual-frequency, superimposed CCP system. Pulse-biasing conditions using a low-frequency power source of 2 MHz were varied by controlling duty ratio, period time, power, and the gas flow ratio in the plasmas generated by the 27.12 MHz high-frequency power source. Application of pulse-biased plasma etching significantly affected the surface chemistry of the etched Si3N4 surfaces, and thus modified the etching characteristics of the Si3N4 layer. Pulse-biased etching was successfully applied to patterning of the nano-scale line and space pattern of Si3N4 in the MLR structure of KrF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer/Si3N4. Pulse-biased etching is useful for tuning the patterning of nano-scale dielectric hard-mask layers in MLR structures.

  10. Nano-scale zero valent iron transport in a variable aperture dolomite fracture and a glass fracture

    Science.gov (United States)

    Mondal, P.; Sleep, B. E.; Cui, Z.; Zhou, Z.

    2014-12-01

    Experiments and numerical simulations are being performed to understand the transport behavior of carboxymethyl cellulose polymer stabilized nano-scale zero valent iron (nZVI) in a variable aperture dolomite rock fracture and a variable aperture glass replica of a fractured slate. The rock fracture was prepared by artificially inducing a fracture in a dolomite block along a stylolite, and the glass fracture was prepared by creating molds with melted glass on two opposing sides of a fractured slate rock block. Both of the fractures were 0.28 m in length and 0.21 m in width. Equivalent hydraulic apertures are about 110 microns for the rock fracture and 250 microns for the glass replica fracture. Sodium bromide and lissamine green B (LGB) serve as conservative tracers in the rock fracture and glass replica fracture, respectively. A dark box set-up with a light source and digital camera is being used to visualize the LGB and CMC-nZVI movement in the glass fracture. Experiments are being performed to determine the effects of water specific discharge and CMC concentration on nZVI transport in the fractures. Transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry were performed to determine the stability and characteristics of the CMC-nZVI mixture. The transport of bromide, LGB, CMC, and CMC-nZVI in both fractures is being evaluated through analysis of the effluent concentrations. Time-lapse images are also being captured for the glass fracture. Bromide, LGB, and CMC recoveries have exceeded 95% in both fractures. Significant channeling has been observed in the fractures for CMC transport due to viscous effects.

  11. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Doglioni, Carlo

    2017-08-01

    In August and October 2016, two normal fault earthquakes (Mw 6.0 and Mw 6.5, respectively) struck the Amatrice-Norcia area in the central Apennines, Italy. The mainshocks nucleated at depths of 7-9 km with the co-seismic slip propagating upward along the Mt. Gorzano Fault (MGF) and Mt. Vettore Fault System (MVFS). To recognize possible weakening mechanisms along the carbonate-hosted seismogenic faults that generated the Amatrice-Norcia earthquakes, the fresh co-seismic fault exposure (i.e., ;nastrino;) exposed along the Mt. Vettoretto Fault was sampled and analyzed. This exposed fault belongs to the MVFS and was exhumed from 2-3 km depth. Over the fresh fault surface, phyllosilicates concentrated and localized along mm- to μm-thick layers, and truncated clasts and fluid-like structures were found. At the nano-scale, instead of their common platy-lamellar crystallographic texture, the analyzed phyllosilicates consist of welded nm-thick nanospherules and nanotubes similar to phyllosilicates deformed in rotary shear apparatus at seismic velocities or altered under high hydrothermal temperatures (> 250 °C). Moreover, the attitude of the Mt. Vettoretto Fault and its kinematics inferred from exposed slickenlines are consistent with the co-seismic fault and slip vectors obtained from the focal mechanisms computed for the 2016 mainshocks. All these pieces of evidence suggest that the Mt. Vettoretto Fault slipped seismically during past earthquakes and that co-seismic slip was assisted and facilitated at depths of < 3 km by phyllosilicate-rich layers and overpressured fluids. The same weakening processes may also have been decisive in facilitating the co-seismic slip propagation during the 2016 Mw 6.0 Amatrice and Mw 6.5 Norcia earthquakes. The microstructures found along the Mt. Vettoretto Fault, which is certainly a seismogenic fault, provide a realistic synoptic picture of co-seismic processes and weakening mechanisms that may occur in carbonate-hosted seismogenic

  12. Nano scale dynamics of bubble nucleation in confined liquid subjected to rapid cooling: Effect of solid-liquid interfacial wettability

    Science.gov (United States)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.

    2017-06-01

    This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.

  13. Nano-Scale Secondary Ion Mass Spectrometry: Potential And Pitfalls Of This Technique For Soil Organic Matter Stabilization

    Science.gov (United States)

    Herrmann, A. M.

    2007-12-01

    The mechanisms by which organic matter is stabilized in soils are still poorly understood, and it is notable that some postulated mechanisms are currently only weakly supported by data. A major obstacle to progress is the lack of techniques of adequate sensitivity and resolution for data collection needed to further our understanding of soil organic matter stabilization at relevant scales. Nano-Secondary Ion Mass Spectrometry (NanoSIMS) is a cutting edge technology linking high resolution microscopy with isotopic analysis, which allows precise, spatially-explicit, elemental and isotopic analysis at micro-and nanoscale. The power of NanoSIMS lies in the ability of the instrument to distinguish stable isotopes of elements with a high sensitivity, i.e. concentrations in parts per million can be detected. The level of spatial resolution achievable is better than 50 nm (133Cs+ primary beam) with NanoSIMS, a significant improvement on other SIMS instruments and on X-ray micro-analytical techniques. These instruments have been applied to studies of presolar materials from meteorites, in material science, geology and mineralogy as well as biology. Recently, the potential of NanoSIMS has been demonstrated to explore in situ the biophysical interface in soils (Herrmann et al., 2007). I will present recent findings illustrating the capacity of NanoSIMS to improve our fundamental understanding of soil processes at the nano- and micro-scale, along with my experiences in the methodological approaches that need consideration with respect to experimental design and sample preparation. Herrmann, AM, Clode, PL, Fletcher, IR, Nunan N, Stockdale, EA, O'Donnell, AG, Murphy, DV, 2007. A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry 21, 29-34.

  14. Experimental study on the angle of repose of pulverized coal

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Jiansheng Zhang; Shi Yang; Hai Zhang; Hairui Yang; Guangxi Yue

    2010-01-01

    An experimental study on the angle of repose(AoR)of pulverized coal with different particle sizes and different moisture contents(MC)was conducted.Three different measurement methods,free-base piling,fixed-base piling and sliding,were used.The data were analyzed by one-way and two-way analysis of variance.The results showed that the AoRs of pulverized coal with particle sizes smaller than 150 μm were in the range of 30-50°.The characterization of the flowability of pulverized coal was some cohesiveness or true cohesiveness.The increase of MC will increase AoR and thus decrease the flowability of the powder.However,the particle size effect is bifurcated.Below a critical size,the decrease of particle size decreases the flowability; while above the critical size,the decrease of particle size increases the flowability.It was found that the value of the critical size strongly depends on the powder density.Moreover,the AoR dependence on particle size could be linked with the Geldart's particle classification.The critical size at the turning point is on the boundary between Group A and Group B in Geldart's classification diagram.Based on the experimental results,there is no significant cross interaction between particle size and MC.The AoRs measured by free-base method and fixed-base method are close,but both remarkably smaller than that measured by the sliding method.

  15. A new approach to study fast pyrolysis of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Yao, J.; Lin, W. [Chinese Academy of Sciences, Institute of Chemical Metallurgy Fast Reactions Laboratory, Beijing, BJ (China)

    2002-07-01

    An experimental study of the effects of varying bed temperature and coal particle size on the fast pyrolysis of pulverized coal in a downer reactor is described. A Datong bituminous coal (particle size 0.5 and 0.34 mm) was studied at temperatures ranging from 592{sup o} C to 720{sup o} C. The experiments were conducted in a batch apparatus. An on-line gas analyzer was used to measure carbon dioxide release curves. The experimental data were used to develop a pyrolysis model that quantifies the fast heating of fine coal particles. 14 refs., 4 figs., 2 tabs.

  16. Amphiphilic semi-interpenetrating polymer networks using pulverized rubber

    Science.gov (United States)

    Shahidi, Nima

    Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media

  17. Feasibility of Pulverized Oyster Shell as a Cementing Material

    Directory of Open Access Journals (Sweden)

    Chou-Fu Liang

    2013-01-01

    Full Text Available This research intends to study the cementing potential of pulverized oyster shell, rich in calcium, when mixed with fly ash and soil. Cylindrical compacted soil and cubic lime specimens with different proportions of the shells and fly ash are made to study the strength variance. Soil, which is classified as CL in the USCS system, commercialized pulverized oyster shell, F-type fly ash, and lime are mixed in different weight percentages. Five sample groups are made to study the compressive strength of soil and lime specimens, respectively. The lime cubes are made with 0.45 W/B ratio and the cylindrical soils are compacted under the standard Procter compaction process with 20% moisture content. The results show that increment of shell quantity result to lower strength on both the soil and lime specimens. In a 56-day curing, the compressive strength of the lime cubes containing fly ash increases evidently while those carrying the shell get little progress in strength. The soil specimens containing fly ash gradually gain strength as curing proceeds. It suggests that mixtures of the shell and fly ash do not process any Pozzolanic reaction nor help to raise the unconfined strength of the compacted soil through the curing.

  18. Impact of nongray multiphase radiation in pulverized coal combustion

    Science.gov (United States)

    Roy, Somesh; Wu, Bifen; Modest, Michael; Zhao, Xinyu

    2016-11-01

    Detailed modeling of radiation is important for accurate modeling of pulverized coal combustion. Because of high temperature and optical properties, radiative heat transfer from coal particles is often more dominant than convective heat transfer. In this work a multiphase photon Monte Carlo radiation solver is used to investigate and to quantify the effect of nongray radiation in a laboratory-scale pulverized coal flame. The nongray radiative properties of carrier phase (gas) is modeled using HITEMP database. Three major species - CO, CO2, and H2O - are treated as participating gases. Two optical models are used to evaluate radiative properties of coal particles: a formulation based on the large particle limit and a size-dependent correlation. Effect of scattering due to coal particle is also investigated using both isotropic scattering and anisotropic scattering using a Henyey-Greenstein function. Lastly, since the optical properties of ash is very different from that of coal, the effect of ash content on the radiative properties of coal particle is examined. This work used Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  19. Modeling Polymer Stabilized Nano-scale Zero Valent Iron Transport Experiments in Porous Media to Understand the Transport Behavior

    Science.gov (United States)

    Mondal, P.; Krol, M.; Sleep, B. E.

    2015-12-01

    A wide variety of groundwater contaminants can be treated with nano-scale zero valent iron (nZVI). However, delivery of nZVI in the subsurface to the treatment zones is challenging as the bare nZVI particles have a higher tendency to agglomerate. The subsurface mobility of nZVI can be enhanced by stabilizing nZVI with polymer, such as carboxymethyl cellulose (CMC). In this study, numerical simulations were conducted to evaluate CMC stabilized nZVI transport behavior in porous media. The numerical simulations were based on a set of laboratory-scale transport experiments that were conducted in a two-dimensional water-saturated glass-walled sandbox (length - 55 cm; height - 45 cm; width - 1.4 cm), uniformly packed with silica sand. In the transport experiments: CMC stabilized nZVI and a non-reactive dye tracer Lissamine Green B (LGB) were used; water specific discharge and CMC concentration were varied; movements of LGB, and CMC-nZVI in the sandbox were tracked using a camera, a light source and a dark box. The concentrations of LGB, CMC, and CMC-nZVI at the sandbox outlet were analyzed. A 2D multiphase flow and transport model was applied to simulate experimental results. The images from LGB dye transport experiments were used to determine the pore water velocities and media permeabilities in various layers in the sand box. These permeability values were used in the subsequent simulations of CMC-nZVI transport. The 2D compositional simulator, modified to include colloid filtration theory (CFT), treated CMC as a solute and nZVI as a colloid. The simulator included composition dependent viscosity to account for CMC injection and mixing, and attachment efficiency as a fitting parameter for nZVI transport modeling. In the experiments, LGB and CMC recoveries were greater than 95%; however, CMC residence time was significantly higher than the LGB residence time and the higher CMC concentration caused higher pressure drops in the sandbox. The nZVI recovery was lower than 40

  20. Processing and characterization of Polystyrene/cornstarch/organophilic clay hybrids; Processamento e caraterizacao de hibridos de poliestireno, amido e argila organofilica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Carlos Ivan R. de; Amorim, Ywrrenan C.; Andrade, Cristina T. de, E-mail: ivan@ima.ufrj.br [Instituto de Macromoleculas Professora Eloisa Mano - IMA, Universidade Federal do Rio de Janeiro - UFRJ, RJ (Brazil)

    2011-07-01

    Polystyrene/cornstarch composite blends with organophilic Cloisite 15A were prepared in an internal mixer in the presence of maleic anhydride (MA). The contents of clay were 1, 3 and 5%, based on the weight of the blend. The results obtained by X-ray diffraction revealed significant intercalation and exfoliation of clay particles within the polymeric moiety, which indicate increased interaction between the components of the nanocomposites. Thermogravimetric analysis results revealed the increase in thermal stability for the compatibilized blends in relation to the noncompatibilized PS/starch blends. The composites showed better thermal stability with increasing clay content. (author)

  1. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengkun; Jiang, Feihong [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China); Lee, Tung-Ching, E-mail: lee@aesop.rutgers.edu [Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 (United States); Yue, Tianli, E-mail: yuetl305@nwsuaf.edu.cn [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-25

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe{sub 3}O{sub 4} nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe{sub 3}O{sub 4} magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe{sub 3}O{sub 4} nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe{sub 3}O{sub 4}/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability.

  2. Assessment of nano-scale Stirling refrigerator using working fluid as Maxwell-Boltzmann gases by thermo-ecological and sustainability criteria

    Science.gov (United States)

    Açıkkalp, Emin; Savaş, Ahmet Fevzi; Caner, Necmettin; Yamık, Hasan

    2016-08-01

    Purpose of this paper is to investigate a nano scale irreversible Stirling refrigerator regarding size effects and presents one novel thermo-ecological criteria. System is researched by using four thermo-ecological and sustainable criteria. One novel criteria called modified ecological coefficient of performance (MECOP) is presented. Calculations are performed for irreversible cycle and results are obtained numerically. Finally, performance of the considered cycle is discussed and regarded criteria are compared. According to results, ESI is the most stable ecological criteria and MECOP is more stable than ECOP and x should be chosen as big as possible.

  3. Application of Response Surface Methodology to Study the Effects of Brisket Fat, Soy Protein Isolate, and Cornstarch on Nutritional and Textural Properties of Rabbit Sausages

    Directory of Open Access Journals (Sweden)

    Joseph M. Wambui

    2017-01-01

    Full Text Available The effects of brisket fat, soy protein isolate, and cornstarch on chemical and textural properties of rabbit sausages were studied using surface response methodology. Sausage samples were prepared using a five-level three-variable Central Composite Rotatable Design with 16 combinations, including two replicates of the center point, carried out in random order. The level of brisket fat (BF, soy protein isolate (SPI, and cornstarch (CS in the sausage formulation ranged within 8.3–16.7%, 0.7–2.3%, and 1.3–4.7%, respectively. Increasing BF decreased moisture and ash contents but increased protein and fat contents of the sausages (p<0.05. Increasing SPI increased moisture content but decreased ash and carbohydrate contents of the sausages (p<0.05. Increasing CS increased carbohydrate content (p<0.05. Increasing BF increased hardness, adhesiveness, cohesiveness, and chewiness but decreased springiness (p<0.05. SPI addition increased springiness but decreased adhesiveness, cohesiveness, and chewiness (p<0.05. In conclusion, varying the levels of BF and SPI had a more significant effect on chemical and textural properties of rabbit sausages than CS.

  4. Influence of gradual cobalt substitution on lithium nickel phosphate nano-scale composites for high voltage applications

    Energy Technology Data Exchange (ETDEWEB)

    Örnek, Ahmet, E-mail: ahmetornek0302@hotmail.com [Kafkas University, Atatürk Vocational School of Healthcare, 36100 Kars (Turkey); Bulut, Emrah [Sakarya University, Department of Chemistry, 54187 Sakarya (Turkey); Can, Mustafa [Sakarya University, Arifiye Vocational School, 54580 Sakarya (Turkey)

    2015-08-15

    The carbon-free LiNiPO{sub 4} and cobalt doped LiNi{sub 1−x}Co{sub x}PO{sub 4}/C (x = 0.0–1.0) were synthesized and investigated for high voltage applications (> 4 V) for Li-ion batteries. Nano-scale composites were prepared by handy sol–gel approach using citric acid under slightly reductive gas atmosphere (Ar-H{sub 2}, 85:15%). Structural and morphological characteristics of the powders were revealed by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and inductively coupled plasma (ICP). Except for a small impurity phase (Ni{sub 3}P), phase pure samples crystallized in the olivine-lattice structure with a linear relationship between lattice parameters (a, b and c) and chemical composition. The FE-SEM images proved that LiNiPO{sub 4}/C particles (50–80 nm) did not agglomerate, and showed that as the cobalt content was higher agglomeration had increased. The electrochemical properties of all electrodes were investigated by galvanostatic charge–discharge measurements. Substitution of Ni{sup 2} {sup +} by Co{sup 2} {sup +} caused higher electronic conductivities and showed more effective Li{sup +} ion mobility. When the cobalt content is 100%, the capacity reached to a higher level (146.2 mA h g{sup −} {sup 1}) and good capacity retention of 85.1% at the end of the 60 cycles was observed. The cycling voltammogram (CV) revealed that LiCoPO{sub 4}/C electrode improved the electrochemical properties. The Ni{sup 3} {sup +}–Ni{sup 2} {sup +} redox couple was not observed for carbon free LiNiPO{sub 4}. Nevertheless, it was observed that carbon coated LiNiPO{sub 4} sample exhibits a significant oxidation (5.26 V)–reduction (5.08 V) peaks. With this study, characteristics of the LiNi{sub 1−x}Co{sub x}PO{sub 4}/C series were deeply evaluated and discussed. - Highlights: • Structural, morphological and electrochemical effects of Co doped LiNi{sub 1−} {sub x

  5. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2016-05-01

    Full Text Available In this study, Ga2O3-doped ZnO (GZO thin films were deposited on glass and flexible polyimide (PI substrates at room temperature (300 K, 373 K, and 473 K by the radio frequency (RF magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002 peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

  6. Characterization of Mechanical Properties at the Micro/Nano Scale: Stiction Failure of MEMS, High-Frequency Michelson Interferometry and Carbon NanoFibers

    Science.gov (United States)

    Kheyraddini Mousavi, Arash

    Different forces scale differently with decreasing length scales. Van der Waals and surface tension are generally ignored at the macro scale, but can become dominant at the micro and nano scales. This fact, combined with the considerable compliance and large surface areas of micro and nano devices, can leads to adhesion in MicroElectroMechanical Systems (MEMS) and NanoElectroMechanical Systems (NEMS) - a.k.a. stiction-failure. The adhesive forces between MEMS devices leading to stiction failure are characterized in this dissertation analytically and experimentally. Specifically, the adhesion energy of poly-Si μcantilevers are determined experimentally through Mode II and mixed Mode I&II crack propagation experiments. Furthermore, the description of a high-frequency Michelson Interferometer is discussed for imaging of crack propagation of the μcantilevers with their substrate at the nano-scale and harmonic imaging of MEMS/NEMS. Van der Waals forces are also responsible for the adhesion in nonwoven carbon nanofiber networks. Experimental and modeling results are presented for the mechanical and electrical properties of nonwoven (random entanglements) of carbon nanofibers under relatively low and high-loads, both in tensions and compression. It was also observed that the structural integrity of these networks is controlled by mechanical entanglement and flexural rigidity of individual fibers as well as Hertzian forces at the fiber/fiber interface.

  7. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells.

    Science.gov (United States)

    Gulati, Karan; Prideaux, Matthew; Kogawa, Masakazu; Lima-Marques, Luis; Atkins, Gerald J; Findlay, David M; Losic, Dusan

    2016-12-07

    The success of implantation of materials into bone is governed by effective osseointegration, requiring biocompatibility of the material and the attachment and differentiation of osteoblastic cells. To enhance cellular function in response to the implant surface, micro- and nano-scale topography have been suggested as essential. In this study, we present bone implants based on 3D-printed titanium alloy (Ti6Al4V), with a unique dual topography composed of micron-sized spherical particles and vertically aligned titania nanotubes. The implants were prepared by combination of 3D-printing and anodization processes, which are scalable, simple and cost-effective. The osseointegration properties of fabricated implants, examined using human osteoblasts, showed enhanced adhesion of osteoblasts compared with titanium materials commonly used as orthopaedic implants. Gene expression studies at early (day 7) and late (day 21) stages of culture were consistent with the Ti substrates inducing an osteoblast phenotype conducive to effective osseointegration. These implants with the unique combination of micro- and nano-scale topography are proposed as the new generation of multi-functional bone implants, suitable for addressing many orthopaedic challenges, including implant rejection, poor osseointegration, inflammation, drug delivery and bone healing. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    Science.gov (United States)

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  9. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M J; Rudd, R E; McElfresh, M W; Balhorn, R

    2009-04-23

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discrete {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.

  10. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2015-05-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  11. The Cornstarch Flamethrower

    Science.gov (United States)

    Concannon, Tom

    2008-01-01

    Doing physics "magic shows" for the general public or for local area schools is usually an integral part of any physics department's outreach program. These demonstration shows should not only teach fundamental physics principles with "standard" demonstrations (like the rocket cart) but should also include the "wow!" types of demonstrations for…

  12. Study on the NOx release rule along the boiler during pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    JIN Jing; ZHANG Zhongxiao; LI Ruiyang

    2007-01-01

    Numerical simulation and experimental study on NOx release along the boiler during pulverized coal combustion have been conducted.With the increase of temperature the NOx emission increased and the peak value of NOx release moved forward.But when the temperature increased to a certain degree,NOx emission began to reduce.NOx emission increased with the increase of nitrogen content of coal.The peak value of NOx release moved backwards with the increase of coal rank.NOx emission increased obviously with the increase of stoichiometric ratio.There existed a critical average diameter of the pulverized coal (de).If d≤dc,NOx emission reduced with the decrease of pulverized coal size.If d>de,NOx emission reduced with the increase of the pulverized coal size.The results showed that the simulation results are in agreement with the experimental results for concentration distribution of NOx along the axis of the furnace.

  13. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    OpenAIRE

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg; Pedersen, Kim Hougaard; Jensen, Anker Degn; Dam-Johansen, Kim; Glarborg, Peter

    2011-01-01

    In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows, heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulver...

  14. Comparison of efficacy of pulverization and sterile paper point techniques for sampling root canals.

    Science.gov (United States)

    Tran, Kenny T; Torabinejad, Mahmoud; Shabahang, Shahrokh; Retamozo, Bonnie; Aprecio, Raydolfo M; Chen, Jung-Wei

    2013-08-01

    The purpose of this study was to compare the efficacy of the pulverization and sterile paper point techniques for sampling root canals using 5.25% NaOCl/17% EDTA and 1.3% NaOCl/MTAD (Dentsply, Tulsa, OK) as irrigation regimens. Single-canal extracted human teeth were decoronated and infected with Enterococcus faecalis. Roots were randomly assigned to 2 irrigation regimens: group A with 5.25% NaOCl/17% EDTA (n = 30) and group B with 1.3% NaOCl/MTAD (n = 30). After chemomechanical debridement, bacterial samplings were taken using sterile paper points and pulverized powder of the apical 5 mm root ends. The sterile paper point technique did not show growth in any samples. The pulverization technique showed growth in 24 of the 60 samples. The Fisher exact test showed significant differences between sampling techniques (P technique showed no difference between irrigation regimens. However, 17 of the 30 roots in group A and 7 of the 30 roots in group B resulted in growth as detected by pulverization technique. Data showed a significant difference between irrigation regimens (P = .03) in pulverization technique. The pulverization technique was more efficacious in detecting viable bacteria. Furthermore, this technique showed that 1.3% NaOCl/MTAD regimen was more effective in disinfecting root canals. Published by Elsevier Inc.

  15. Liquefaction behavior of finely pulverized coal. Chobifunsaitan no ekika hanno kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kamo, T.; Miki, K.; Yamamoto, Y. (National Institute for Resources and Environment, Tsukuba (Japan))

    1992-11-05

    The reaction process of coal liquefaction which uses ultrafine pulverized coal having a particle diameter of several micrometers was investigated in order to improve the catalytic efficiency between coal and catalyst. Two kinds of samples were prepared by crushing Taiheiyo-coal into less than 100-mesh by usual technique and further pulverizing the crushed coal to several [mu]m. When iron oxide catalyst, sulfur and tetralin solvent were used, pulverizing does not bring a significant improvement in conversion rate and the yield of liquefaction oil capable of being distillated. This is considered to be due to the coagulation between fine particles before or during reaction, suggesting the importance of selecting reaction conditions etc. In the case of pulverized coal, hydrogen consumption is high and hydrogenation of heavy fractions such as SRC proceeds. When liquefaction-oil circulating solvent and red mud-sulfur-based catalyst were used, gas yield was low in pulverized coal, but no significant improvement was not shown in oil yield of liquefaction oil. The conversion rate and SRC yield were somewhat high in the case of pulverized coal. 3 figs., 2 tabs.

  16. Starch-g-poly (vinyl alcohol)as Compatibilizer for Reducing the Phase Separation Rates of Polyvinyl Alcohol/Cornstarch Pastes

    Institute of Scientific and Technical Information of China (English)

    祝志峰; 周永元

    2001-01-01

    Starch- g-poly(vinyl alcohol) as a compatibilizing agent for reducing the phase separation rates of polyvinyl alcohol/starch pastes has been investigated by blending and dissolving the two polymers in distilled water. The separation rates were quantitatively evaluated by the term of initiul demixing time. The grafted starches, with a series of grafting ratios, were prepared by grafting a number of vinyl acetate onto granular cornstarch in aqueous dispersion and then alcoholating in methanol. It was found that the addition of small amounts of starch- g poly (vinyl alcohol ) in the size compositions can effectively decrease the separation rates of the blended pastes in comparison to pure starch/PVA ones.Moreover, the influence of the grafting ratio, starch content, and PVA variety on the separation rates was also studied.

  17. Bioavailability of iron, zinc, folate, and vitamin C in the IRIS multi-micronutrient supplement: effect of combination with a milk-based cornstarch porridge.

    Science.gov (United States)

    Kamp, Fernanda; Jandel, Doris; Hoenicke, Imke; Pietrzk, Klaus; Gross, Rainer; Trugo, Nadia M; Donangelo, Carmen M

    2003-09-01

    The effect of combining a multi-micronutrient supplement with a milk-based cornstarch porridge on the bioavailability of iron, zinc, folate, and vitamin C was evaluated using the plasma curve response over time (8 hours) in healthy women. Three tests were carried out in a crossover design: S (multi-micronutrient supplement), MS (multi-micronutrient supplement plustest meal), and M (test meal). Relative bioavailability was determined as the percent ratio of the area under the curve (AUC) in MS corrected by M, and AUC in S. Compared to S, AUC in MS was smaller for iron (p porridge is small. Therefore, the tested meal is a suitable vehicle for the multi-micronutrient supplement.

  18. Physicochemical characterization of pulverized phyllite rocks to geopolymer resin synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Melo, L.G.A. [Instituto Militar de Enegenharia (IME), Rio de Janeiro, RJ (Brazil); Pires, E.F.C. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Pereira, R.A.; Silva, F.J. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Raneiro (IFRJ), RJ (Brazil)

    2016-07-01

    Full text: Geopolymeric materials have common properties considered unique, such as: early-high compressive strength, durability, high chemical resistance to acids and sulfates attacks, ability to immobilize toxic and radioactive compounds, low porosity, low permeability, and resistance to high temperatures. Together with its environmental benefits, such as low energy consumption and low carbon dioxide emissions during production, these inorganic polymers are strategic materials for sustainable development and a good alternative to Portland cement. The main objective for introducing alternative materials is to lower the associated costs of its industrial process. Thus, the use of phyllite as the geopolymer precursor, is encouraged by its abundance, low cost, and the fact that it already is applied to the ceramic industries as kaolin substitute. This paper presents a physical characterization using TEM, SEM, XRD and XRF techniques of two pulverized phyllite rocks used as geopolymer precursors for refractory applications. It was found that both phyllite rocks studied have a high quartz content of approximately 50% that can be explored as 'filler' function in the microstructure, which stabilizes residual tensions after curing. Kaolinite and muscovite minerals are present up to 40% and are responsible for the high strengths in the geopolymer resins, as determined by compressive strength tests. (author)

  19. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Philips, S.D.; Smoot, L.D.

    1989-08-01

    The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

  20. Experimental study on preheated combustion of pulverized semi-coke

    Science.gov (United States)

    Yao, Yao; Zhu, Jianguo; Lu, Qinggang; Zhou, Zuxu

    2015-06-01

    In a test rig, pulverized semi-coke was preheated to 850oC in a circulating fluidized bed (CFB) and then combusted at 1100oC in a down-fired combustor (DFC). Experiments were conducted to reveal the effects of three secondary air nozzle cases (co-axial jet, top circular jet and wall circular jet) on the NO emission. The results show that the optimized secondary air nozzle can reduce NO emission. O2 concentration profile is the major factor affecting NO generation and emission, which is led by the secondary air nozzle. The lower O2 concentration led to the generation of lower initial NO. The NO emission at the exit of the DFC was reduced from 189 to 92 mg/m3 (@ 6% O2) with the decrease of initial generation. The peak of NO at 100 mm below the nozzle should be attributed to the oxidization of NH3 in the syngas, rather than the oxidization of fuel-N in the char. The low and well-distributed O2 concentration contributes to the reduction of initial NO, which helps to reduce the NO emission. The combustion efficiencies of the cases of the co-axial jet, the top circular jet, and the wall circular jet are 97.88%, 98.94% and 98.74%, respectively.

  1. Small intestinal digestion of raw cornstarch in cattle consuming a soybean hull-based diet is improved by duodenal casein infusion.

    Science.gov (United States)

    Brake, D W; Titgemeyer, E C; Bailey, E A; Anderson, D E

    2014-09-01

    Six duodenally and ileally cannulated steers were used in 3 sequential studies to measure 1) basal nutrient flows from a soybean hull-based diet, 2) small intestinal digestibility of raw cornstarch continuously infused into the duodenum, and 3) responses of small intestinal starch digestion to duodenal infusion of 200 or 400 g/d casein. Our objective was to evaluate responses in small intestinal starch digestion in cattle over time and to measure responses in small intestinal starch digestion to increasing amounts of MP. On average, cattle consumed 3.7 kg/d DM, 68 g/d dietary N, and 70 g/d dietary starch. Starch flow to the duodenum was small (38 g/d), and N flow was 91 g/d. Small intestinal digestibility of duodenal N was 57%, and small intestinal digestion of duodenal starch flow was extensive (92%). Small intestinal starch digestibility was 34% when 1.5 kg/d raw cornstarch was continuously infused into the duodenum. Subsequently, cattle were placed in 1 of 2 replicated Latin squares that were balanced for carryover effects to determine response to casein infusions and time required for adaptation. Duodenal infusion of casein linearly increased (P ≤ 0.05) small intestinal starch digestibility, and small intestinal starch digestion adapted to infusion of casein in 6 d. Ethanol-soluble starch and unpolymerized glucose flowing to the ileum increased linearly (P ≤ 0.05) with increasing infusion of casein. Plasma cholecystokinin was not affected by casein infusion, but circulating levels of glucose were increased by casein supplementation (P ≤ 0.05). Responses in small intestinal starch digestion in cattle adapted to casein within 6 d, and increases in duodenal supply of casein up to 400 g/d increased small intestinal starch digestion in cattle.

  2. Feeding of nano scale oats β-glucan enhances the host resistance against Edwardsiella tarda and protective immune modulation in zebrafish larvae.

    Science.gov (United States)

    Udayangani, R M C; Dananjaya, S H S; Fronte, Baldassare; Kim, Cheol-Hee; Lee, Jehee; De Zoysa, Mahanama

    2017-01-01

    In this study, we prepared and characterized the oats origin of nano scale β-glucan (NBG) and investigated the immunomodulatory properties in zebrafish larvae. Newly prepared NBG (average particle size of 465 nm) was fully soluble in water. Zebrafish larvae survival rate was increased against pathogenic bacteria Edwardsiella tarda, when NBG was added to the water (500 μg/mL) compared to NBG non-exposed controls. Moreover, quantitative real time PCR (qRT-PCR) results showed up-regulation of immune functional genes including TNF-α, IL-1β, β-defensin, lysozyme, IL 10, IL 12 and C-Rel indicating higher survival rate could be due to stronger immunomodulatory function of NBG (500 μg/mL). Thus, non-toxic, water soluble and biodegradable NBG from oats could be considered as the potential immunostimulant for larval aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. An investigation of the effects of history dependent damage in time dependent fracture mechanics: nano-scale studies of damage evolution

    Energy Technology Data Exchange (ETDEWEB)

    Brust, F.W. (Bud) Jr; Mohan, R.; Yang, Y.P.; Oh, J.; Katsube, N.

    2002-12-01

    High-temperature operation of technical engineering systems is critical for system efficiency, and will be a key driver in the future US DOE energy policy. Developing an understanding of high-temperature creep and creep-fatigue failure processes is a key driver for the research work described here. The focus is on understanding the high-temperature deformation and damage development on the nano-scale (50 to 500 nm) level. The high-temperature damage development process, especially with regard to low and high cyclic loading, which has received little attention to date, is studied. Damage development under cyclic loading develops in a fashion quite different from the constant load situation. The development of analytical methodologies so that high-temperature management of new systems can be realized is the key goal of this work.

  4. An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application

    Science.gov (United States)

    Li, Jing; Fan, Kun; Cai, Weiwei; Ma, Liying; Xu, Guoxiao; Xu, Sen; Ma, Liang; Cheng, Hansong

    2016-11-01

    A novel in-situ nano-scale swelling-filling (SF) strategy is proposed to modify commercial Nafion membranes for performance enhancement of direct methanol fuel cells (DMFCs). A Nafion membrane was filled in-situ with proton conductive macromolecules (PCMs) in the swelling process of a Nafion membrane in a PCM solution. As a result, both proton conductivity and methanol-permeation resistivity of the SF-treated Naifion membrane was substantially improved with the selectivity nearly doubled compared to the original Nafion membrane. The mechanical strength of the optimal SF treated Nafion membrane was also enforced due to the strong interaction between the PCM fillers and the Nafion molecular chains. As a result, a DMFC equipped with the SF-treated membrane yielded a 33% higher maximum power density than that offered by the DMFC with the original Nafion membrane.

  5. Radiation damage of biomolecular systems: Nano-scale insights into Ion-beam cancer therapy. 2nd Nano-IBCT conference

    Science.gov (United States)

    Śmiałek, Małgorzata A.; Limão-Vieira, Paulo; Mason, Nigel J.; Solov'yov, Andrey V.

    2014-10-01

    The second Nano-IBCT conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy was held in Sopot, Poland, from May 20th to May 24th, 2013. The Nano-IBCT action had been launched in December 2010 and brings together experts from different disciplines (physics, chemistry, biology, hadron-therapy centres, medical institutions), with specialisms in the radiation damage of biological matter. This meeting follows up the first one that was held in October, 2011 in Caen, France and we were pleased to see again so many of the participants of the previous meeting as well as to welcome some new colleagues joining and sharing their knowledge and expertise in this field. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  6. 桔梗皂甙对玉米淀粉糊部分理化特性的影响%Effect of platycodins on physical-chemical properties of cornstarch paste

    Institute of Scientific and Technical Information of China (English)

    纵伟; 李翠翠

    2012-01-01

    为了研究桔梗皂甙对玉米淀粉糊部分理化特性的影响,在玉米淀粉糊中添加桔梗皂甙,测定添加皂甙后玉米淀粉的颗粒形态、玉米淀粉糊的表观黏度、凝沉特性和淀粉糊形成的凝胶特性.结果表明,随着皂甙添加量的增大,淀粉颗粒变小,淀粉糊的黏度增加,抗凝沉能力增加;桔梗皂甙的添加也对淀粉糊形成的淀粉凝胶特性产生影响,玉米淀粉凝胶的凝胶强度、硬度、弹性、胶着性、咀嚼度及回复力与桔梗皂甙的添加量呈负相关,黏着性与桔梗皂甙的添加量呈正相关.桔梗皂甙可对玉米淀粉性能产生一定的影响.%In order to study the effect of platycodins on physical - chemical properties of cornstarch paste, the platyco-dins was added in comstarch paste. The shape of cornstarch granule, the apparent viscosity, the retrogradation and the hydroge properties of cornstarch paste with platycodins were studied. The results showed; the size of cornstarch granule was decreased with the amount of platycodins increased, but the apparent viscosity and anti - retrogradation increased with the amount of platycodins increased. Moreover, the platycodins also influenced gelation properties of cornstarch. The strength, hardness, springiness, gumminess , chewiness and restoring force of comstarch gelation have negative correlation with platycodins, but the adhesive was positive correlated with platycodins. In conclusion, platycodins can affect the physical - chemical properties of cornstarch.

  7. A kinetic model of carbon burnout in pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.; Jian-Kuan Sun; Lunden, M. [Brown University, Providence, RI (United States). Division of Engineering

    1998-04-01

    The degree of carbon burnout is an important operating characteristic of full-scale suspension-fired coal combustion systems affecting boiler efficiency, electrostatic precipitator operation and the value of fly ash as a saleable product. Prediction of carbon loss requires special char combustion kinetics valid through the very high conversions targeted in industry (typically {gt} 99.5%), and valid for a wide-range of particle temperature histories occurring in full-scale furnaces. The paper presents high-temperature kinetic data for five coal chars in the form of time-resolved burning profiles that include the late stages of combustion. It then describes the development and validation of the Carbon Burnout Kinetic Model (CBK), a coal-general kinetics package that is specifically designed to predict the total extent of carbon burnout and ultimate fly ash carbon content for prescribed temperature/oxygen histories typical of pulverized coal combustion systems. The model combines the single-film treatment of cha oxidation with quantitative descriptions of thermal annealing, statistical kinetics, statistical densities, and ash inhibition in the late stages of combustion. In agreement with experimental observations, the CBK model predicts (1) low reactivities for unburned carbon residues extracted from commercial ash samples, (2) reactivity loss in the late stages of laboratory combustion, (3) the observed sensitivity of char reactivity to high-temperature heat treatment on second and subsecond time scales, and (4) the global reaction inhibition by mineral matter in the late stages of combustion observed in single-particle imaging studies. The model ascribes these various char deactivation phenomena to the combined effects of thermal annealing, ash inhibition, and the preferential consumption of more reactive particles (statistical kinetics), the relative contributions of which vary greatly with combustion conditions. 39 refs., 4 figs., 4 tabs., 1 app.

  8. Plasma system for start-up of pulverized fuel-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dyjakon, A.K. [Wroclaw Univ. of Technology, Wroclaw (Poland). Inst. of Power Engineering and Fluid Mechanics

    2009-07-01

    Pulverized coal combustion requires preliminary heating of the combustion chamber. Conventional heavy oil start-up systems are used during the boiler kindling, resulting in pollution, additional maintenance and high cost. This paper described the advantages of a plasma start-up system for the ignition and stabilization of a pulverized coal flame in coal-fired steam boiler. In a plasma start-up system, the heat source for ignition and stabilization of the pulverized coal combustion is a plasma at a temperature of 5,000 to 10,000 degrees C. The plasma interaction involves rapid heating of coal particles and thermal decomposition of the organic compounds resulting in fast release of the volatile matter and destruction of particles below 5 {mu}m. It also involves thermal dissociation of gaseous products with radical generation and gas ionization. The highly reactive mixture that is produced promotes flame propagation in the presence of oxygen. A continuous plasma discharge in a pulverized burner stabilizes the dust flame. This paper described the advantages associated with the use of a plasma start-up system, such as the possibility of limiting pollutant emissions to the atmosphere. It also presented laboratory study results on the influence of the fuels such as lignite, bituminous coal, wood and carbonaceous shale and their properties on the operational range of the plasma assisted pulverized coal burner. 13 refs., 2 tabs., 7 figs.

  9. Gasification in pulverized coal flames. First annual progress report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Thomas, J. F.; Laurendeau, N. M.

    1976-07-01

    This project concerns the production of power and synthesis gas from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. A literature review of vortex and cyclone reactors is complete. Preliminary reviews of confined jet reactors and pulverized coal reaction models have also been completed. A simple equilibrium model for power gas production is in agreement with literature correlations. Cold gas efficiency is not a suitable performance parameter for combined cycle operation. The coal handling facility, equipped with crusher, pulverizer and sieve shaker, is in working order. Test cell flow and electrical systems have been designed, and most of the equipment has been received. Construction of the cyclone gasifier has begun. A preliminary design for the gas sampling system, which will utilize a UTI Q-30C mass spectrometer, has been developed.

  10. Numerical study of co-firing pulverized coal and biomass inside a cement calciner.

    Science.gov (United States)

    Mikulčić, Hrvoje; von Berg, Eberhard; Vujanović, Milan; Duić, Neven

    2014-07-01

    The use of waste wood biomass as fuel is increasingly gaining significance in the cement industry. The combustion of biomass and particularly co-firing of biomass and coal in existing pulverized-fuel burners still faces significant challenges. One possibility for the ex ante control and investigation of the co-firing process are computational fluid dynamics (CFD) simulations. The purpose of this paper is to present a numerical analysis of co-firing pulverized coal and biomass in a cement calciner. Numerical models of pulverized coal and biomass combustion were developed and implemented into a commercial CFD code FIRE, which was then used for the analysis. Three-dimensional geometry of a real industrial cement calciner was used for the analysis. Three different co-firing cases were analysed. The results obtained from this study can be used for assessing different co-firing cases, and for improving the understanding of the co-firing process inside the calculated calciner.

  11. Cofiring coal-water slurry fuel with pulverized coal as a NOx reduction strategy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1997-12-31

    A low solids, low viscosity coal-water slurry fuel (CWSF) was formulated and produced from impounded bituminous coal fines and burned in a utility-scale boiler to investigate NOx emissions reduction during the cofiring of CWSF with pulverized coal. Tests were conducted at the Pennsylvania Electric Company (Penelec) Seward Station, located near Seward, Pennsylvania in a Babcock and Wilcox (B and W), front-wall fired, pulverized coal boiler (34 MWe). Two B and W pulverizers feed coal to six burners (two burner levels each containing three low-NOx burners). Approximately 20% of the thermal input was provided by CWSF, the balance by pulverized coal. There was a significant reduction of NOx emissions when cofiring CWSF and pulverized coal as compared to firing 100% pulverized coal. The level of reduction was dependent upon the cofiring configuration (i.e., cofiring in the upper three, lower three, or all six burners), with NOx emissions being reduced by as much as 26.5%. The reduction in NOx emissions was not due to the tempering effect of the water in the CWSF, because a greater reduction in NOx occurred when cofiring CWSF than when injecting the same quantity of water at the same boiler firing rate. This paper discusses the tests in detail and the proposed reburn mechanism for the NOx reduction. In addition, combustion test results from the front-wall fired unit at the Seward Station will be compared to CWSF cofire tests that have been conducted at cyclone-fired units at Tennessee Valley Authority`s (TVA) Paradise Station (704 MWe), Drakesboro, Kentucky and Southern Illinois Power Cooperative`s (SIPC) Marion, Illinois Station (33 MWe).

  12. Simulation of low-temperature plasma interaction with pulverized coal for incineration improvement

    Energy Technology Data Exchange (ETDEWEB)

    A. Askarova; E. Karpenko; V. Messerle; A. Ustimenko [Al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2003-07-01

    Plasma activation promotes more effective and environmental friendly low-grade coals incineration. The work presents numerical modeling results of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration at power boilers. Thermodynamic code TERRA allows calculating products compound of plasma activated pulverized coal depended on temperature, pressure and plasma source power. Considering plasma source kinetic code PLASMA-COAL gives initial data for 3D-modeling of power boilers furnaces by FLOREAN code. 5 refs., 13 figs., 5 tabs.

  13. Ash formation under pressurized pulverized coal combustion conditions

    Science.gov (United States)

    Davila Latorre, Aura Cecilia

    Coal combustion is a source of inorganic particulate matter (ash), which can deposit in boilers and also be emitted into the atmosphere becoming part of ambient fine particulate matter (PM 2.5). In order to decrease coal combustion emissions per unit of power produced, higher efficiency systems have been proposed, including systems operating at elevated pressures. These new operating conditions will affect pollutant formation mechanisms, particularly those associated with the conversion of mineral matter to ash. Ash particle formation mechanisms are particularly sensitive to changes in pressure as they are related to the structure of coal char particles at early stages of combustion. To assess the importance of pressure on ash particle formation, pyrolyzed chars and ash particles from pressurized pulverized combustion of two bituminous and one subbituminous U.S. coals at operating pressures up to 30 atm were studied. Pressure changes the distribution of char particle types, changing the spatial distribution of the minerals during the combustion process and therefore affecting particle formation mechanisms. Chars were examined by Scanning Electron Microscopy (SEM) and classified into two different types (cenospheric and solid) depending on porosity and wall thickness. A correlation for estimating the amount of these cenospheric char particles was then proposed for bituminous coals based on the operating conditions and coal maceral analysis. The ash particle size distribution of the coals combusted at different operating pressures was measured using Computer Controlled Scanning Electron Microscopy (CCSEM). The results of the char characterization and ash particle size distribution measurements were then incorporated into an ash particle formation algorithm that was proposed and implemented. The model predicts ash particle size and composition distributions at elevated pressures under conditions of complete char burnout. Ash predictions were calculated by first

  14. Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates

    Science.gov (United States)

    Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich

    2017-01-01

    We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.

  15. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Science.gov (United States)

    Zweiacker, K.; McKeown, J. T.; Liu, C.; LaGrange, T.; Reed, B. W.; Campbell, G. H.; Wiezorek, J. M. K.

    2016-08-01

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ˜1.3 m s-1 to ˜2.5 m s-1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s-1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  16. Three-dimensional phase segregation of micro-porous layers for fuel cells by nano-scale X-ray computed tomography

    Science.gov (United States)

    Andisheh-Tadbir, Mehdi; Orfino, Francesco P.; Kjeang, Erik

    2016-04-01

    Modern hydrogen powered polymer electrolyte fuel cells (PEFCs) utilize a micro-porous layer (MPL) consisting of carbon nanoparticles and polytetrafluoroethylene (PTFE) to enhance the transport phenomena and performance while reducing cost. However, the underlying mechanisms are not yet completely understood due to a lack of information about the detailed MPL structure and properties. In the present work, the 3D phase segregated nanostructure of an MPL is revealed for the first time through the development of a customized, non-destructive procedure for monochromatic nano-scale X-ray computed tomography visualization. Utilizing this technique, it is discovered that PTFE is situated in conglomerated regions distributed randomly within connected domains of carbon particles; hence, it is concluded that PTFE acts as a binder for the carbon particles and provides structural support for the MPL. Exposed PTFE surfaces are also observed that will aid the desired hydrophobicity of the material. Additionally, the present approach uniquely enables phase segregated calculation of effective transport properties, as reported herein, which is particularly important for accurate estimation of electrical and thermal conductivity. Overall, the new imaging technique and associated findings may contribute to further performance improvements and cost reduction in support of fuel cell commercialization for clean energy applications.

  17. Scientific Challenges of Producing Natural Gas from Organic-Rich Shales - From the Nano-Scale to the Reservoir Scale (Louis Néel Medal Lecture)

    Science.gov (United States)

    Zoback, Mark D.

    2013-04-01

    In this talk I will discuss several on-going research projects with the PhD students and post-Docs in my group that are investigating the wide variety of factors affecting the success of stimulating gas production from extremely low permeability organic-rich shales. First, I will present laboratory measurements of pore structure, adsorption and nano-scale fluid transport on samples of the Barnett, Eagle Ford, Haynesville, Marcellus and Horn River shale (all in North America). I will also discuss how these factors affect ultimate gas recovery. Second, I present several lines of evidence that indicate that during hydraulic fracturing stimulation of shale gas reservoirs there is pervasive slow slip occurring on pre-existing fractures and faults that are not detected by standard microseismic monitoring. I will also present laboratory and modeling studies that demonstrate why slowly slipping faults are to be expected. In many cases, slow slip on faults may be the most important process responsible for stimulating gas production in the reservoirs. Finally, I discuss our research on the viscoplastic behavior of the shales and what viscoplasticity implies for the evolution of the physical properties of the reservoir and in situ stress magnitudes.

  18. Characterization of multi-scale porous structure of fly ash/phosphate geopolymer hollow sphere structures: from submillimeter to nano-scale.

    Science.gov (United States)

    Li, Ruifeng; Wu, Gaohui; Jiang, Longtao; Sun, Dongli

    2015-01-01

    In the present work, the porous structure of fly ash/phosphate geopolymer hollow sphere structures (FPGHSS), prepared by pre-bonding and curing technology, has been characterized by multi-resolution methods from sub-millimeter to nano-scale. Micro-CT and confocal microscopy could provide the macroscopic distribution of porous structure on sub-millimeter scale, and hollow fly ashes with sphere shape and several sub-millimeter open cells with irregular shape were identified. SEM is more suitable to illustrate the distribution of micro-sized open and closed cells, and it was found that the open cells of FPGHSS were mainly formed in the interstitial porosity between fly ashes. Mercury porosimeter measurement showed that the micro-sized open cell of FPGHSS demonstrated a normal/bimodal distribution, and the peaks of pore size distribution were mainly around 100 and 10 μm. TEM observation revealed that the phosphate geopolymer was mainly composed of the porous area with nano-pores and dense areas, which were amorphous Al-O-P phase and α-Al2O3 respectively. The pore size of nano-pores demonstrated a quasi-normal distribution from about 10 to 100 nm. Therefore, detailed information of the porous structure of FPGHSS could be revealed using multiple methods.

  19. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  20. Taste acceptability of pulverized brand-name and generic drugs containing amlodipine or candesartan.

    Science.gov (United States)

    Uestuener, Peter; Ferrarini, Alessandra; Santi, Maristella; Mardegan, Chiara; Bianchetti, Mario G; Simonetti, Giacomo D; Milani, Gregorio P; Lava, Sebastiano A G

    2014-07-01

    Trials with pulverized brand-name antihypertensive drugs suggest that, from the perspective of taste acceptability, crushed candesartan, chlortalidon, hydrochlorothiazide, lercanidipine and lisinopril should be preferred to pulverized amlodipine, atenolol, bisoprolol, enalapril, irbesartan, losartan, ramipril, telmisartan and valsartan. Brand-name antihypertensive drugs and the corresponding generic medicines have never been compared with respect to their taste acceptability. We therefore investigated among healthy health care workers the taste acceptability of a pulverized 1 mg-test dose of the brand-name and two generics containing either the dihydropyridine calcium-channel blocker amlodipine (Norvasc(®), Amlodipin-Mepha(®) and Amlodipin Pfizer(®)) or the angiotensin receptor antagonist candesartan (Atacand(®), Cansartan-Mepha(®) and Pemzek(®)). For this purpose, a smiley-face scale depicting four degrees of pleasure was used. Between November and December 2013, the taste test was performed among 19 nurses (15 female and 4 male subjects) and 12 physicians (5 female and 7 male subjects) aged between 25 and 49 years. Pulverized brand-names and generics containing either amlodipine or candesartan did not differ with respect to their taste acceptability.

  1. Modeling of pulverized coal combustion stabilization by means of plasma torches

    Energy Technology Data Exchange (ETDEWEB)

    Miroslav Sijercic; Srdjan Belosevic; Predrag Stefanovic [VINCA Institute of Nuclear Science, Belgrade (Serbia and Montenegro)

    2005-07-01

    Application of plasma-system for pulverized coal ignition and combustion stabilization in utility boiler furnaces promises to achieve certain savings compared to the use of heavy oil burners. Plasma torches are built in air-coal dust mixture ducts between coal mills and burners. Characteristics of processes in the ducts with plasma-system for pulverized coal combustion stabilization are analyzed in the paper, with respect to the modeling and numerical simulation of mass, momentum and heat transfer in two-phase turbulent gas particle flow. The simulations have been performed for three different geometries of the air-coal dust mixture ducts with plasma torches, for TENT A1 utility boiler and pulverized lignite Kolubara-Field 'D'. Selected results of numerical simulation of processes are presented. The plasma-system thermal effect is discussed regarding corresponding savings of liquid fuel. The results of numerical simulations have been analyzed with respect to the processes in the duct and especially with respect to the influence of the duct shape to a temperature field at the out let cross section, as a basis for the duct geometry optimization. It has been emphasized that numerical simulation of processes can be applied in analysis and optimization of pulverized coal ignition and combustion stabilization and enables efficient and cost-effective scaling-up procedure from laboratory to industrial level. 22 refs., 4 figs.

  2. Macrocospic and physiochemical characterization of a sugarless and gluten-free cake enriched with fibers made from pumpkin seed (Cucurbita maxima, L. flour and cornstarch

    Directory of Open Access Journals (Sweden)

    Cristiane Mesquita da Silva Gorgônio

    2011-03-01

    Full Text Available The Consumers' interest for products with caloric reduction has increased, and their development is a technological challenge. The consumption of cakes has grown in importance and the demand for dietary products has stimulated the use of sweeteners and the optimization of bakery products. The consumption of fibers is related to chronic diseases prevention. Pumpkin seeds (maximum Cucurbita, L., rich in fibers, can be used as a source of fiber in food products. A gluten-free diet is not easy to follow since gluten free products are not always available. The objective of this work was to perform a physicochemical characterization of cakes prepared with flours blends (FB based on Pumpkin Seed Flour (PSF. The cakes were elaborated with FB in the ratios of 30:70 (C30 and 40:60 (C40 of PSF and cornstarch (CS, respectively. The results showed gluten absence and near-neutral pH. The chemical analysis of C30 and B40 showed increase of ashes, lipids, proteins, and insoluble dietary fiber and a decrease in the content of carbohydrates and calories. The chemical composition of C40 presented the greatest content of lipids, proteins, and dietary fibers, the lowest content of calories, and the best physical parameters. Therefore, both products proved suitable for human consumption.

  3. Comments on "Entransy analysis and optimization of performance of nano-scale irreversible Otto cycle operating with Maxwell-Boltzmann ideal gas"

    Science.gov (United States)

    Awad, M. M.

    2017-03-01

    The purpose of this discussion is to increase the awareness of the divergent views on the entransy concept among the readers of chemical physics. Comments are presented in particular on the paper by Ahmadi et al. (2016) where the authors used entransy dissipation in their analysis. Based on the view points of independent different groups of researchers world wide, I draw the attention of readers to the reality that entransy has no physical meaning. In this study, comments on the entransy, and in particular on the paper by Ahmadi et al. [1], are presented to increase the awareness of the divergent views on the entransy concept among the readers of chemical physics. Details of these comments are given below. Ahmadi et al. [1] applied the entransy analysis on the nano scale irreversible Otto cycle. The researchers considered five separate variables including compression process efficiency (ηC), the pressure ratio (x), expansion process efficiency (ηE), temperature of state point 1 (T1) and temperature of state point 3 (T3), as the decision parameters to assess the dimensionless ecological function, the dimensionless entransy dissipation, the ecological coefficient of performance and the energy efficiency of the nano scale irreversible Otto cycle executing thermodynamic analysis. During their analysis, they used entransy dissipation. It is well known that entransy dissipation analysis is a duplicate of entropy generation analysis as shown by Grazzini et al. [2]. Also, Lucia [3] showed that there is a link between the entropy generation and the entransy dissipation, underlining that the two approaches are similar. In addition, Bejan [4] showed that entransy dissipation is a number proportional to well known measures of irreversibility like lost exergy (destroyed available work) and entropy generation. Furthermore, Awad [5] mentioned that irreversibility (entropy generation, or exergy destruction) is a universal tendency in nature that is recognized as the second law

  4. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice.

    Science.gov (United States)

    Aki, Toshihiko; Shigyo, Mikao; Nakano, Ryouhei; Yoneyama, Tadakatsu; Yanagisawa, Shuichi

    2008-05-01

    The main physiological roles of phloem and xylem in higher plants involve the transport of water, nutrients and metabolites. They are also involved, however, in whole plant events including stress responses and long-distance signaling. Phloem and xylem saps therefore include a variety of proteins. In this study, we have performed a shotgun analysis of the proteome of phloem and xylem saps from rice, taking advantage of the complete and available genomic information for this plant. Xylem sap was prepared using the root pressure method, whereas phloem sap was prepared with a unique method with the assistance of planthoppers to ensure the robustness of the detected proteins. The technical difficulties caused by the very limited availability of rice samples were overcome by the use of nano-flow liquid chromatography linked to a mass spectrometer. We identified 118 different proteins and eight different peptides in xylem sap, and 107 different proteins and five different peptides in phloem sap. Signal transduction proteins, putative transcription factors and stress response factors as well as metabolic enzymes were identified in these saps. Interestingly, we found the presence of three TERMINAL FLOWER 1/FLOWERING LOCUS T (FT)-like proteins in phloem sap. The detected FT-like proteins were not rice Hd3a (OsFTL2) itself that acted as a non-cell-autonomous signal for flowering control, but they were members of distinct subfamilies of the FT family with differential expression patterns. These results imply that proteomics on a nano scale is a potent tool for investigation of biological processes in plants.

  5. Effects of Bias Pulsing on Etching of SiO2 Pattern in Capacitively-Coupled Plasmas for Nano-Scale Patterning of Multi-Level Hard Masks.

    Science.gov (United States)

    Kim, Sechan; Choi, Gyuhyun; Chae, Heeyeop; Lee, Nae-Eung

    2016-05-01

    In order to study the effects of bias pulsing on the etching characteristics of a silicon dioxide (SiO2) layer using multi-level hard mask (MLHM) structures of ArF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer (ACL)/SiO2, the effects of bias pulsing conditions on the etch characteristics of a SiO2 layer with an ACL mask pattern in C4F8/CH2F2/O2/Ar etch chemistries were investigated in a dual-frequency capacitively-coupled plasma (CCP) etcher. The effects of the pulse frequency, duty ratio, and pulse-bias power in the 2 MHz low-frequency (LF) power source were investigated in plasmas generated by a 27.12 MHz high-frequency (HF) power source. The etch rates of ACL and SiO2 decreased, but the etch selectivity of SiO2/ACL increased with decreasing duty ratio. When the ACL and SiO2 layers were etched with increasing pulse frequency, no significant change was observed in the etch rates and etch selectivity. With increasing LF pulse-bias power, the etch rate of ACL and SiO2 slightly increased, but the etch selectivity of SiO2/ACL decreased. Also, the precise control of the critical dimension (CD) values with decreasing duty ratio can be explained by the protection of sidewall etching of SiO2 by increased passivation. Pulse-biased etching was successfully applied to the patterning of the nano-scale line and space of SiO2 using an ACL pattern.

  6. Study on the coating of nano-scale SiO2 film on the surface of nanocrystalline Mg-Al layered double hydroxides

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zejiang; MEI Xiujuan; XU Chenghua; QIU Fali

    2005-01-01

    The coating process of a nano-scale SiO2 film on the nanocrystalline Mg-Al layered double hydroxides via a sol-gel process was investigated. The uniform and dense SiO2 film with a thickness of about 5 nm on the nano-LDHs particles was characterized by the solubility test in the dilute HNO3 or HCl acid, TEM and FT-IR, XRD, TG and DSC. The chemical shifts of binding energies of Al 2p, Mg 2p, Si 2s and O 1s on the coated particles indicate that the coating of the SiO2 nano-film on the surface of the nano-LDHs proceeds through the formation of Mg-O-Si and Al-O-Si bonds. The thermal analysis shows that both the SiO2-coated nano-LDHs and the nano-LDHs have a similar mass loss process, in which there are three obvious stages of mass loss in the temperature range of 40-700℃. Furthermore, the more the coated amount of SiO2 on the surface of the nano-LDHs is, the less the mass loss of the samples is at 700℃.The nano- LDHs have two obvious endothermic peaks at 244.67℃ and 430.13℃, whose corresponding heat absorption capacities are 412.28 J/g and 336.30 J/g, respectively. In contrast, the coated nano-LDHs have only one endothermic peak at 243.60℃ with a heat absorption capacity of 221.25 J/g.

  7. Proteomic analysis of prolactinoma cells by immuno-laser capture microdissection combined with online two-dimensional nano-scale liquid chromatography/mass spectrometry

    Directory of Open Access Journals (Sweden)

    Chen Luping

    2010-01-01

    Full Text Available Abstract Background Pituitary adenomas, the third most common intracranial tumor, comprise nearly 16.7% of intracranial neoplasm and 25%-44% of pituitary adenomas are prolactinomas. Prolactinoma represents a complex heterogeneous mixture of cells including prolactin (PRL, endothelial cells, fibroblasts, and other stromal cells, making it difficult to dissect the molecular and cellular mechanisms of prolactin cells in pituitary tumorigenesis through high-throughout-omics analysis. Our newly developed immuno-laser capture microdissection (LCM method would permit rapid and reliable procurement of prolactin cells from this heterogeneous tissue. Thus, prolactin cell specific molecular events involved in pituitary tumorigenesis and cell signaling can be approached by proteomic analysis. Results Proteins from immuno-LCM captured prolactin cells were digested; resulting peptides were separated by two dimensional-nanoscale liquid chromatography (2D-nanoLC/MS and characterized by tandem mass spectrometry. All MS/MS spectrums were analyzed by SEQUEST against the human International Protein Index database and a specific prolactinoma proteome consisting of 2243 proteins was identified. This collection of identified proteins by far represents the largest and the most comprehensive database of proteome for prolactinoma. Category analysis of the proteome revealed a widely unbiased access to various proteins with diverse functional characteristics. Conclusions This manuscript described a more comprehensive proteomic profile of prolactinomas compared to other previous published reports. Thanks to the application of immuno-LCM combined with online two-dimensional nano-scale liquid chromatography here permitted identification of more proteins and, to our best knowledge, generated the largest prolactinoma proteome. This enlarged proteome would contribute significantly to further understanding of prolactinoma tumorigenesis which is crucial to the management of

  8. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles

    Science.gov (United States)

    Lehmann, Johannes; Liang, Biqing; Solomon, Dawit; Lerotic, Mirna; LuizãO, Flavio; Kinyangi, James; SchäFer, Thorsten; Wirick, Sue; Jacobsen, Chris

    2005-03-01

    Small-scale heterogeneity of organic carbon (C) forms in soils is poorly quantified since appropriate analytical techniques were not available up to now. Specifically, tools for the identification of functional groups on the surface of micrometer-sized black C particles were not available up to now. Scanning Transmission X-ray Microscopy (STXM) using synchrotron radiation was used in conjunction with Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy to investigate nano-scale distribution (50-nm resolution) of C forms in black C particles and compared to synchrotron-based FTIR spectroscopy. A new embedding technique was developed that did not build on a C-based embedding medium and did not pose the risk of heat damage to the sample. Elemental sulfur (S) was melted to 220°C until it polymerized and quenched with liquid N2 to obtain a very viscous plastic S in which the black C could be embedded until it hardened to a noncrystalline state and was ultrasectioned. Principal component and cluster analysis followed by singular value decomposition was able to resolve distinct areas in a black carbon particle. The core of the studied biomass-derived black C particles was highly aromatic even after thousands of years of exposure in soil and resembled the spectral characteristics of fresh charcoal. Surrounding this core and on the surface of the black C particle, however, much larger proportions of carboxylic and phenolic C forms were identified that were spatially and structurally distinct from the core of the particle. Cluster analysis provided evidence for both oxidation of the black C particle itself as well as adsorption of non-black C. NEXAFS spectroscopy has great potential to allow new insight into black C properties with important implications for biogeochemical cycles such as mineralization of black C in soils and sediments, and adsorption of C, nutrients, and pollutants as well as transport in the geosphere, hydrosphere, and atmosphere.

  9. 纳米氢氧化镁的合成及其形貌控制%Synthesis and Morphology Control of Nano-Scaled Magnesium Hydroxide

    Institute of Scientific and Technical Information of China (English)

    徐林林; 张华; 杜喜玲; 祝建; 钟新华

    2009-01-01

    用乙醇和水的混合溶剂热法合成氢氧化镁纳米材料,并用透射电镜(TEM)和X射线衍射(XRD)表征其形貌和结构,同时考察了镁源、温度、反应时间、反应物浓度和溶剂热体系对氢氧化镁纳米材料形貌的影响,探索其生长机理.镁源通过改变氢氧化镁纳米粒子的结晶习性从而影响形貌,温度和反应时间受热力学和动力学的控制使氢氧化镁纳米材料的生长从六个等价面的取向生长向各向同性生长转变,从而导致形貌由六边形片状结构向圆形变化,反应物浓度和溶剂热体系影响成核快慢,从而影响氢氧化镁纳米材料的晶型.%The solvothermal synthesis and morphology control of nano-scaled magnesium hydroxide are reported. The impacts of a variety of factors, such as magnesium source, temperature, reaction time, concentration and solvent thermal system on the morphologies and crystal structure of Mg(OH)_2 are studied in detail. The mechanism of crystal growth is also explored. TEM and XRD results indicate that magnesium source with different anions could affect the morphology because of the polarity. Temperature, reaction time, concentration and solution system could result in the hexagon- and round- shaped nanosheets due to the kinetic and thermodynamic control, respectively, thus tuning the size of nanosheets.

  10. The Influencing Factors and Countermeasures for Self-ignition of Pulverized Coal Warehouse in Pulverized Coal Milling System%中间储仓式制粉系统粉仓自燃影响因素及对策

    Institute of Scientific and Technical Information of China (English)

    金帆; 李善涛

    2012-01-01

    针对中国石化上海石油化工股份有限公司热电部410 t/h煤粉炉在停炉抢修期间中间储仓式的粉仓内温度急剧上升、煤粉自燃的现象,分析了引起煤粉自燃的影响因素。根据实际情况,提出了煤粉自燃的防治措施和预防粉仓温度升高的方法。%Regarding the quick rising of temperature in the middle-warehouse pulverized coal house and self-ignition of pulverized coal in 410 t/a pulverized coal furnace during shutdown and emergency repairing period,the influencing factors causing self-ignition of pulverized coal were analyzed.Based on the practical situation,the preventions for self-ignition of pulverized coal and methods for preventing temperature in pulverized coal house from rising were raised.

  11. Cold Gas-particle Flows in a New Swirl Pulverized-coal Burner by PDPA Measurement

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new type of swirl burner has been developed to stabilize pulverized-coal combustion by burning different types of coal at different loads and to reduce NOx formation during combustion. The burner uses a device to concentrate the coal powder in the primary-air tube that divides the primary coal-air into two streams with different pulverized-coal concentrations. This paper reports the measurement of gas-particle flows at the exit of the different swirl burners using a 3-D Phase Doppler Particle Anemometer (PDPA). The effect of different geometrical configurations on the two-phase flow field is studied. The results that give the two-phase flow fields and particle concentrations show the superiority of the new swirl burner.

  12. XRF Analysis of mineralogical matrix effects and differences between pulverized and fused ferromanganese slag

    Directory of Open Access Journals (Sweden)

    VALENTINA ZIVANOVIC

    2011-06-01

    Full Text Available Determination and analysis is only as good as the sample preparation that preceded it. Even the most sophisticated analysis is worthless if it follows sloppy sampling and poor preparation. Whether one does plasma emission, infrared or X-ray fluorescence or another spectroscopic technique, it is essential to get reproducible and accurate analysis. This paper shows the effect of mineralogical matrix differences in quantitative measurements by XRF of the main elements (Al, Ca, Mg, Si, Mn and K as oxides of ferromanganese alloy slag. Fused and pulverized slag show a significant difference in XRF microstructure, micro heterogeneity and mineralogy although the results of measurements between pulverized and fused slag, expressed as a percentage of the main elements, is not different. Other analytical techniques such as ICP-OES and classical gravimetric and titrimetric were also used for checking the XRF calibration accuracy

  13. New computer program plots coal particle size to monitor pulverizer performance

    Energy Technology Data Exchange (ETDEWEB)

    Tartar, A.M. (Univ. of Missouri, St. Louis, MO (United States)); Mueller, W.K. (Union Electric Co., St. Louis, MO (United States)); Marrero, T.R.

    1994-11-01

    Maintaining proper coal particle size and distribution is one of many considerations in achieving efficient combustion performance. Improper pulverizer operation and maintenance can result in an excessive percentage of either coarse coal particles, which tends to increase the amount of unburned carbon in the ash, or fine coal particles, which can limit the throughput of the pulverizer and, if too fine, can affect coal burning rates and residence time in boilers. Traditionally, coal particle size plotting and distribution have been done by hand and required special graphing paper formulated using the Rosin and Rammler equation. Now there is an alternative. This article describes a computerized procedure for plotting the fineness of coal particles after the milling process developed by engineers at Union Electric Co., St. Louis, Mo., and the University of Missouri, Columbia. Known as an ANTAR-UE, this procedure is being used by the Betterment Engineering group at Union Electric to plot mill fineness data.

  14. On-line tracking of pulverized coal and biomass fuels through flame spectrum analysis

    Institute of Scientific and Technical Information of China (English)

    迟天阳; 张宏建

    2007-01-01

    This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis. A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible, near-infrared and mid-infrared spectral bands as well as a part of far-infrared band. Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame. Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt. Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig. Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.

  15. Pulverized-coal-firing small-size boiler for coal-cartridge system

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Kawasaki Heavy Industries, Ltd. supplied a test boiler plant to the Iwakuni Experimental Station of the Coal Cartridge System (CCS) Promotion Association in September 1985; this was the first pulverized-coal-fired small industrial boiler in Japan. Tests will be performed for two years, until fiscal 1987, at the CCS Iwakuni Experimental Station to establish a method of coal-firing with a performance comparable to heavy oil firing. The boiler plant has been operating satisfactorily.

  16. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    Science.gov (United States)

    Eissenberg, David M.; Liu, Yin-An

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  17. Small scale experiment on the plasma assisted thermal chemical preparation and combustion of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Masaya, Sugimoto; Koichi, Takeda [Akita Prefectural University (Japan); Solonenko, O.P. [Institute of Theoretical and Applied Mechanics, Novosibirsk (Russian Federation); Sakashita, M.; Nakamura, M. [Japan Technical Information Service, Tokyo (Japan)

    2001-07-01

    Ignition and stable combustion of pulverized coal with Nitrogen and Air plasmas are investigated experimentally for some different types of coal. The experimental results show that air plasma has strong effect for ignition and stabilization of coal combustion. In addition, suppression of NO{sub x} production could be possible even in air plasma. It is possible to ignite and burn stably for the inferior coal that contains volatile matter in the ratio of only 10% of dry total mass. (authors)

  18. Analysis of Fracture Pattern of Pulverized Quartz Formed by Stick Slip Experiment

    Science.gov (United States)

    Nishikawa, Osamu; Muto, Jun; Otsuki, Kenshiro; Kano, Harumasa; Sasaki, Osamu

    2013-04-01

    In order to clarify how wall rocks of faults are damaged, fracture pattern analysis was performed imaging experimentally pulverized rocks by a micro-focus X-ray CT. Analyzed samples are core (diameter of 2cm) of single crystals of synthetic quartz and natural quartzites, which were pre-cut 50° to the core axis and mirror-polished. Experiments were conducted with axial strain rate of 10-3/s under the confining pressure of 180 MPa and room temperature using gas apparatus. Intense fracturing of the core occurred during the stick-slip with very large stress drop. Although thin melt layer is formed on the slip plane, the core is pulverized overall by tensile fracturing characterized by apparent lack of shear deformation. X-ray CT images demonstrate the fracture pattern being strongly controlled by slip direction and shear sense. Cracks are exponentially increased toward the slip plane and concentrated in the central portion rather than outer margin of core. Cracks tend to develop parallel to core axis and at high to moderate angles (90° ~ ±50°) with the plane including both core axis and slip direction, and lean to be higher angle to the surface near the slip plane. Due to this fracture pattern, the pulverized fragments show polygonal column or needle in shape with sharp and curving edges irrespective of their sizes, and the intensely fractured slip surface exhibit distinct rugged topography of an array of ridges developed perpendicular to slip direction. Mode and distribution pattern of fractures indicate that the stress concentration at the rupture front during dynamic rupture propagation or the constructive interference of reflected seismic waves focused at the center of core are possible mechanisms of pulverization.

  19. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  20. Insights into pulverized rock formation from dynamic rupture models of earthquakes

    Science.gov (United States)

    Payne, R. M.; Duan, B.

    2017-02-01

    Pulverized rocks (PR) are extremely incohesive and highly fractured rocks found within the damage zones of several large strike-slip faults around the world. They maintain their crystal structure, show little evidence of shearing or chemical alteration, and are believed to be produced by strong tensile forces. Several mechanisms for pulverization have been proposed based on simple qualitative analyses or laboratory experiments under simplified loading conditions. Numerical modelling, however, can offer new insights into what is needed to produce PR and likely conditions of formation. We perform dynamic rupture simulations of different earthquakes, varying the magnitude, the slip distribution, and the rupture speed (supershear and subshear), while measuring the stresses produced away from the fault. To contextualize our results, a basic threshold of 10 MPa is set as the tensile strength of the rock mass and recordings are made of where, when, and by how much this threshold is exceeded for each earthquake type. Guided by field observations, we discern that a large (>Mw 7.1) subshear earthquake along a bimaterial fault produces a pulverized rock distribution most consistent with observations. The damage is asymmetric with the majority on the stiffer side of the fault extending out for several hundred metres. Within this zone there is a large and sudden volumetric expansion in all directions as the rupture passes. We propose that such an extreme tensile stress state, repeated for every earthquake, eventually produces the PR seen in the field.

  1. Effect of microstructure on the breakage of tin bronze machining chips during pulverization via jet milling

    Science.gov (United States)

    Afshari, Elham; Ghambari, Mohammad; Farhangi, Hasan

    2016-11-01

    In this study, jet milling was used to recycle tin bronze machining chips into powder. The main purpose of this study was to assess the effect of the microstructure of tin bronze machining chips on their breakage behavior. An experimental target jet mill was used to pulverize machining chips of three different tin bronze alloys containing 7wt%, 10wt%, and 12wt% of tin. Optical and electron microscopy, as well as sieve analysis, were used to follow the trend of pulverization. Each alloy exhibited a distinct rate of size reduction, particle size distribution, and fracture surface appearance. The results showed that the degree of pulverization substantially increased with increasing tin content. This behavior was attributed to the higher number of machining cracks as well as the increased volume fraction of brittle δ phase in the alloys with higher tin contents. The δ phase was observed to strongly influence the creation of machining cracks as well as the nucleation and propagation of cracks during jet milling. In addition, a direct relationship was observed between the mean δ-phase spacing and the mean size of the jet-milled product; i.e., a decrease in the δ-phase spacing resulted in smaller particles.

  2. Scaling up nano-milling of poorly water soluble compounds using a rotation/revolution pulverizer.

    Science.gov (United States)

    Yuminoki, K; Tachibana, S; Nishimura, Y; Mori, H; Takatsuka, T; Hashimoto, N

    2016-02-01

    We previously reported that a rotation/revolution pulverizer (NP-100) could mill a small amount of a drug (0.1 g) into nanoparticles in several minutes. In this investigation, scale up from the milligram to the kilogram scale of the nano-milling process by the rotation/revolution pulverizer was studied. Phenytoin was used as a model drug with low solubility in water. After confirming the improvement of the phenytoin bioavailability by milling to nanoparticles using NP-100, scaling parameters were evaluated using NP-100 and the middle scale model of NP-100 (ARV-3000T). A theoretical equation for the specific collisional energy was adapted for wet milling; this suggested that the relative centrifugal acceleration of revolution (revolution G) and the drug concentration in the suspension were the two most important parameters. The results obtained using NP-100 and ARV-3000T correlated well when these two parameters were identical. These results were applied to the large scale model of NP-100 (ARV-10KT), where 2 kg (1 kg x 2) of phenytoin nanoparticles were obtained in 60 min. The results from PXRD and DSC indicated that the milled phenytoin by ARV-3000T and ARV-10KT maintained its crystallinity. These results suggest nano-milling using a rotation/revolution pulverizer will be widely applicable to the development of nano-medicine.

  3. Fea04/PNIPAM纳米复合微球的制备%Preparation of Fe304/PNIPAM Nano-scale Composite-microspheres

    Institute of Scientific and Technical Information of China (English)

    温裕乾; 蔡力锋; 林志勇; 钱浩; 韩惠琴; 林现水

    2012-01-01

    Magnetic Fe304 nanoparticles were prepared by co-precipitation, and further encapsulated with poly(N-isopropylacrylamide) via seeded emulsion polymerization to form Fe3Oa/PNIPAM nano-scale composite-microspheres. The microspheres were characterized by FTIR, TEM, TGA and DTS. Herewith the effects of the concentration of monomer (NIPAM), cross-linker (MBA) and emulsifier (SDBS) on the diameter, magnetic Fe304 content of the microspheres were investigated. The reaction parameters show notable influence on the structure and morphology of the microspheres, and as a result, the diameter and magnetite content of the microspheres decreased with the decrease of monomer concentration and the increase of cross-linker concentration and emulsifier concentration.%用化学共沉淀法制备Fe304磁性纳米粒子,以N-异丙基丙烯酰胺(NIPAM)、N,N’-亚甲基双丙烯酰胺(MBA)和偶氮二异丁腈(AIBN)为原料,用种子乳液聚合法制备了具有温敏性的Fea04/PNIPAM纳米复合微球。用红外光谱仪(FTIR)、透射电镜(TEM)、热重分析仪(TGA)及Zeta粒度仪(DTS)等手段对复合微球进行了表征,研究了单体(NIPAM)、交联剂(MBA)、乳化剂(SDBS)用量对复合微球粒径及磁含量的影响。结果表明:Fea04/PNIPAM纳米复合微球呈球形,具有温敏性,反应条件对复合微球的结构和形貌有较为显著的影响,其粒径和磁含量随着单体浓度的减少、交联剂和乳化剂用量的增加而变小。

  4. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Petchwattana, Nawadon [Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110 (Thailand); Covavisaruch, Sirijutaratana, E-mail: sirijutaratana.c@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Sripanya, Panjapong [Thai Oleochemicals Company Limited (A Subsidiary of PTT Global Chemical Public Company Limited), Mueang Rayong, Rayong 21150 (Thailand)

    2014-01-05

    Highlights: • The effect of a SBR based β-NA on the properties iPP was investigated. • The addition of β-NA led to higher population of nuclei and smaller spherulites. • β to α phase transformation was observed when re-extrusion process was applied. • Impact strength was increased when the β-NA was added from 0.10 to 0.20 wt%. -- Abstract: The influence of a specific nano-scaled styrene butadiene rubber based β-nucleating agent (β-NA) on the properties of isotactic polypropylene (iPP) was investigated in the current research. β-NA was applied at the concentration ranged from 0.05 to 0.50 wt%. Microscopic observation revealed that the neat iPP crystals grew very slowly; they ranged in size from 100 to 200 μm. The addition of β-NA led to higher population of nuclei and smaller spherulites than those found in neat iPP. The addition of only 0.05 wt% β-NA significantly decreased the sizes of the spherulites down to 5 μm; the crystal grew very rapidly, leading to extremely fine morphology. Analysis by X-ray diffraction (XRD) confirmed that iPP/β-NA constituted mainly of β-crystal structure. The transformation of β to α phase was observed upon re-extrusion, it was verified by the lowered fraction of the β-crystalline phase (K{sub β}) although the total degree of crystallinity remained unchanged. A significant improvement in the impact strength of the iPP/β-NA was observed when the β-NA was employed from 0.10 to 0.20 wt%, leading to the formation of tough β-crystals in the β-NA nucleated iPP. The color measurement implied that the iPP nucleated with β-NA was superior in terms of whiteness but it was less transparent, as was evident by the increased haze.

  5. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Tree, D.R.

    1999-03-01

    Nitrogen oxide emissions from pulverized coal combustion have been and will continue to be a regulated pollutant for electric utility boilers burning pulverized coal. Full scale combustion models can help in the design of new boilers and boiler retrofits which meet emissions standards, but these models require validation before they can be used with confidence. The objective of this work was to obtain detailed combustion measurements of pulverized coal flames which implement two NO reduction strategies, namely reburning and advanced reburning, to provide data for model validation. The data were also compared to an existing comprehensive pulverized coal combustion model with a reduced mechanism for NO reduction under reburning and advanced reburning conditions. The data were obtained in a 0.2 MW, cylindrical, down-fired, variable swirl, pulverized coal reactor. The reactor had a diameter of 0.76 m and a length of 2.4 m with access ports along the axial length. A Wyodak, sub-bituminous coal was used in all of the measurements. The burner had a centrally located primary fuel and air tube surrounded by heated and variably swirled secondary air. Species of NO, NO{sub x}, CO, CO{sub 2} and O{sub 2} were measured continuously. Aqueous sampling was used to measure HCN and NH{sub 3} at specific reactor locations. Samples were drawn from the reactor using water quenched suction probes. Velocity measurements were obtained using two component laser doppler anemometry in back-scatter mode. Temperature measurements were obtained using a shielded suction pyrometer. A series of six or more radial measurements at six or more axial locations within the reactor provided a map of species, temperature, and velocity measurements. In total, seven reactor maps were obtained. Three maps were obtained at baseline conditions of 0, 0.5 and 1.5 swirl and 10% excess air. Two maps were obtained under reburning conditions of 0.78 stoichiometric ratio and 1.5 swirl and 0.9 stoichiometric ratio and

  6. Experimental and theoretical analyses of pulverization and recycling of vulcanized rubber

    Science.gov (United States)

    Bilgili, Ecevit Atalay

    A two-stage process for recycling of vulcanized rubber was proposed. In the first stage, the vulcanized rubber was shredded into granulates, and then the granulates were pulverized into fine particles using a single screw extruder in the solid state shear extrusion (SSSE) process. In the second stage, the produced rubber powder was compression molded to produce new items. The major objective of this research is to understand the fundamental aspects of the pulverization and the compression molding of the rubber powder. Fine rubber particles were obtained using the SSSE process when the granulates were compressed sufficiently, and loss of strain energy due to viscoelastic stress relaxation was minimized by significant cooling in the pulverization zone. Agglomeration of rubber particles was found to be competing with the pulverization process. A sharp temperature gradient in the rubber was experimentally determined, which was qualitatively predicted by our heat transfer computer simulation. The rubber particles produced by the SSSE process and the unprocessed rubber granulates were analyzed using physical, thermal, and chemical characterization methods. The characterization study showed that the particles had irregular shapes with convoluted surfaces, and that the powder had a larger specific surface area compared with a cryogenically produced powder. The particles had lower crosslink density than the granulates indicating the breakage of sulfur crosslinks in the rubber, which makes the SSSE powder very suitable for many recycling applications. In the second stage, the produced powder within several size ranges was compression molded at various processing conditions. Rubber slabs with low-medium tensile strength were obtained without using any virgin rubber. It was found that the strength of the slabs is strongly dependent on the degree of particle bonding. Inhomogeneous shearing deformations of a homogeneous thermoelastic slab and a non-homogeneous rubber-like slab

  7. pulver: an R package for parallel ultra-rapid p-value computation for linear regression interaction terms.

    Science.gov (United States)

    Molnos, Sophie; Baumbach, Clemens; Wahl, Simone; Müller-Nurasyid, Martina; Strauch, Konstantin; Wang-Sattler, Rui; Waldenberger, Melanie; Meitinger, Thomas; Adamski, Jerzy; Kastenmüller, Gabi; Suhre, Karsten; Peters, Annette; Grallert, Harald; Theis, Fabian J; Gieger, Christian

    2017-09-29

    Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)-SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables. We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels. The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/ .

  8. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    Science.gov (United States)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated

  9. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  10. Plasma-fuel systems for environment and economy indexes of pulverized coal incineration and gasification improvement

    Energy Technology Data Exchange (ETDEWEB)

    E. Karpenko; V. Messerle; A. Ustimenko [United Power System of Russia, Gusinoozersk (Russian Federation). Branch Centre of Plasma-Power Technologies of Russian J.S.Co.

    2003-07-01

    Coal is one of the main energy resources. To improve efficiency of coal incineration new plasma-energy technologies are developing. Steam-productivity 75t/h 670t/h boilers were tested for their starting up by plasma ignition of pulverized coal and flame stabilization. Laboratory (coal consumption to 20kg/h) and pilot (coal consumption 300kg/h and 32000kg/h) plasma gasification experiments are given. Plasma air and steam gasification of coal with its mineral mass utilization is studied. 8 refs., 10 figs., 4 tabs.

  11. Effects of moisture release and radiation properties in pulverized fuel combustion: A CFD modelling study

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    Pulverized fuels (PF) prepared and fired in utility boilers always contain some moisture. For some fuels with high moisture contents (e.g., brown coals), the share of the evaporation enthalpy is quite significant compared to the heat released during combustion, which often needs to be reclaimed.......g., oxy-fuel or air–fuel), account for the variations in CO2 and H2O concentrations in a flame, and include the impacts of other participating gases (e.g., CO and hydrocarbons) needs to be derived for combustion CFD community....

  12. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  13. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  14. Anatomy of an upgraded pulverized coal facility: Combustion modification through flue gas scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.U. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Savichky, W.J.; O`Dea, D.T. [New York State Electric and Gas Corp., Binghamton, NY (United States)

    1997-12-31

    Regeneration is a biological term for formation or creating anew. In the case of Milliken station, a species of steam generation (Tangentus coali) regeneration refers to refitting critical systems with the latest technological advances to reduce emissions while maintaining or improving performance. The plant has undergone a series of operations which provided anatomical changes as well as a face lift. Each of the two units were place in suspended animation (outage) to allow these changes to be made. The paper describes the project which includes retrofitting combustion systems, pulverizers, boiler liners, scrubbers, and control room. This retrofit is meant to increase thermal efficiency while reducing the formation of nitrogen oxides.

  15. Pyrolysis and Combustion of Pulverized Wheat Straw in a Pressurized Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Gjernes, Erik; Hansen, Lars Kresten

    1996-01-01

    Within the past decade, there has been an interest for pressurized combustion and gasification of solid fuels in power plants due to the potential for high efficiency. The utilization of new types of solid fuels for pressurized combustion and gasification depends on char yield and char reactivity...... at relevant conditions. The pressurized entrained now reactor designed at Rise is introduced. Pyrolysis and combustion at 10 and 20 bar pressure have been studied using pulverized wheat straw. Samples of partly reacted particles are collected, and the conversion is calculated using the ash tracer technique...

  16. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  17. A novel model for cost performance evaluation of pulverized coal injected into blast furnace based on effective calorific value

    Institute of Scientific and Technical Information of China (English)

    徐润生; 张建良; 左海滨; 李克江; 宋腾飞; 邵久刚

    2015-01-01

    The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.

  18. Engineering and organizational solutions for improvement of engineering and economic characteristics of the TPE-216 boilers equipped with MV-3300/800/490 pulverizing fans

    Science.gov (United States)

    Kirillov, M. V.; Safronov, P. G.

    2014-07-01

    Efficiency of coal-fired boilers is determined in many respects by optimal operation of the coal-pulverizing plants that are increasingly frequently equipped with pulverizing fans. By an example of retrofitted MV-3300/800/490 pulverizing fans, the effects of different factors on the performance and economic efficiency of the coal-pulverizing plants are analyzed. The experience gained in retrofitting MV-3300/800/490 pulverizing fans by introducing the three-crusher operation mode of a TPE-216 boiler employing the internal recirculation and a blading device in the classifier was also studied. Optimization of the boiler's operation mode was made when switching over from the four-crusher to the three-crusher mode, which considerably improved the engineering and economic characteristics.

  19. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W.

    1998-07-01

    Strategies are being developed at Penn State to produce ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The work is being conducted on the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Technical issues related to trace element emissions that are to be addressed include: (1) the effectiveness of coal cleaning; (2) the effect of fuel form (CWSF and pulverized coal); (3) partitioning between the solid and vapor phases; (4) the effect of boiler size; (5) penetration through particulate control devices; (6) the effect of sootblowing; and (7) mercury speciation. This paper discusses the results of preliminary work to determine trace element emissions when firing a raw and cleaned pulverized coal in a pilot-scale combustor. A companion paper, which follows in the proceedings, gives the results of polynuclear aromatic hydrocarbon (PAH) emissions testing in the pilot-scale combustor and in a small industrial boiler. Results from fine particulate testing is found elsewhere in the proceedings.

  20. Investigation on Pulverized Coal Combustion Behavior by Non-Isothermic Integral Thermogravimetry Method

    Institute of Scientific and Technical Information of China (English)

    QI Cheng-lin; ZHANG Jian-liang; LIN Xiang-hai; LIU Qin-yuan; WANG Xiao-liu

    2011-01-01

    The combustion process of pulverized coal was investigated by non-isothermic integral thermogravimetry. The thermogravimetry curves were fitted by the Coats-Redferm approximation function, and kinetic parameters and characteristic temperatures were obtained. The optimal mixing ratio and particle size can be ascertained. The characteristic temperature of pulverized coal can be obtained from the thermogravimetry curve, and the combustion of coal can be divided into homogeneous and heterogeneous combustion according to the differential thermal analysis curve. The activation energy of a single type of coal ranking from low to high is as follows: bituminous coal, meager-lean coal, and anthracite. In the first mixing method, with more low-price meager-lean coal B replacing high price anthracite A, the activation energy slightly decreases; with more bituminous coal replacing meager-lean coal, total tendency makes a declining of activation. In the later mixing method, with an increase in particle size, a declining activation energy can be seen in total tendency.

  1. SYSTEM OF PRECISE DOSING OF COAGULANT IN THE PULVERIZING AERATOR POWERED BY WIND USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Andrzej Osuch

    2017-06-01

    Full Text Available One of the methods used to support land restoration lakes is the method of pulverizing aeration. Use of aerators powered exclusively by wind improves the condition of reservoirs, while not compromising the environment. The pulverizing aeration process drive is windy on the water aeration zone near bottom, while removing harmful gases anaerobic metabolism. Aerators of this type due to the unique method of operation also enable dosing of inactivation coagulants with oxygenated water to the depths of the lake. Mileage coagulant dosing can be made dependent on the speed of the wind, which has an impact on the performance of his work, because with the increase of wind speed dispensing valve coagulants should be stronger open. One of the methods for assessing the state of lakes is to measure water transparency. The softer visibility, the most likely state of the water is better. Dosage of coagulant so you can make the transparency of the water. Similarly, with increasing transparency water dispensing valve should be more covered up. Control of the drain valve dispenser coagulant can be simultaneously dependent on two factors. The study was designed method of control drain valve dispenser coagulant using fuzzy inference.

  2. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Rajive Ganguli

    2012-01-01

    Full Text Available The impact of particle size distribution (PSD of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal, emissions (SO2, NOx, CO, and carbon content of ash (fly ash and bottom ash. The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal. These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency and thereby, increasing their marketability.

  3. Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.S.K. [SLIET, Longowal (India). Dept. of Chemical Technology

    2008-09-15

    This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

  4. Pulverizing Portraits

    DEFF Research Database (Denmark)

    Elias, Camelia

    on interdisciplinary approaches to poetry via visual aesthetics, poststructuralist literary and theoretical perspectives, and philosophy. Camelia Elias takes a look at what characterizes contemporary American prose poetry, namely an intensified awareness of being close to something. Poets such as Lynn Emanuel have...

  5. Effects of Dietary Cornstarch Levels on Fat Metabolism of Hepatopancrease in Litopenaeus vannamei%不同玉米淀粉水平对凡纳滨对虾肝胰腺脂肪代谢的影响

    Institute of Scientific and Technical Information of China (English)

    郭冉; 刘永坚; 田丽霞; 夏辉; 王家庆

    2011-01-01

    采用8周的生长实验研究了以玉米淀粉为糖源的不同淀粉水平(w为10%、15%、20%、25%、30%、35%)对初始体质量为(0.96±0.02)g凡纳滨对虾的生长、体营养成分组成、肝胰脏显微结构和肝胰腺脂肪合成酶的影响.实验饲料中w(蛋白质)为38%;w(脂肪)=5%.实验在室内循环水族箱内进行,实验用水为天然咸淡水(盐度:6‰~14‰),6组饲料每组设3个重复,每箱30尾虾,饱食量投喂.实验结果表明:w(淀粉)=15%实验组对虾的增质量率、SGR最高,分别为453.62%和3.06,与w(淀粉)=10%和w(淀粉)=20%组无显著性差异,但明显高于其他各组;w(淀粉)=10%组的对虾成活率最高(96.67%),w(淀粉)=25%组最低(66.67%);w(淀粉)在25%~35%时,对虾的增质量率、成活率、SGR显著低于w(淀粉)为10%、15%和20%组(P<0.05).w(淀粉)=20%组的体蛋白含量最低(72.24%),w(淀粉)=30%组最高(75.27%),其余各组没有显著性差异;高淀粉组体脂肪含量相对较高.从凡纳滨对虾的肝胰脏组织学切片观察到,饲料w(淀粉)为10%~35%的范围内,肝胰脏脂肪无异常积累.肝胰腺中脂肪合成酶活性很低,苹果酸脱氢酶活性随饲料淀粉含量的增加而升高.总之,在饲料蛋白含量为w=38%左右时,凡纳滨对虾饲料适宜的淀粉含量(w)为10%~20%.%The ability of Litopenaeus vannamei (initial mean weight: (0. 96 ±0. 02) g) to utilize different levels of cornstarch was examined in terms of growth indices, body composition, microscopic structure and lipogenic enzyme of the hapetopancreas. Six isonitrogenous semipurified diets were fed to shrimp to satiation for 8 weeks in triplicate tanks (30 shrimps per tank) connected to a natural brackish water ( salinity: 6‰ ~ 14‰) recirculating system. Diets contained different levels of cornstarch (w, 10%、 15%、20%、 25%、 30%、 35% ) as the source of carbohydrate. Weight gain (WG), survival rate and SGR were considerably affected by cornstarch

  6. Gasification in pulverized coal flames. Final report (Part I). Pulverized coal combustion and gasification in a cyclone reactor: experiment and model

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, J. S.; Laurendeau, N. M.

    1979-05-01

    A unified experimental and analytical study of pulverized coal combustion and low-BTU gasification in an atmospheric cyclone reactor was performed. Experimental results include several series of coal combustion tests and a coal gasification test carried out via fuel-rich combustion without steam addition. Reactor stability was excellent over a range of equivalence ratios from .67 to 2.4 and air flowrates from 60 to 220 lb/hr. Typical carbon efficiencies were 95% for air-rich and stoichiometric tests and 80% for gasification tests. The best gasification results were achieved at an equivalence ratio of 2.0, where the carbon, cold gas and hot gas efficiencies were 83, 45 and 75%, respectively. The corresponding product gas heating value was 70 BTU/scf. A macroscopic model of coal combustion in the cyclone has been developed. Fuel-rich gasification can also be modeled through a gas-phase equilibrium treatment. Fluid mechanics are modeled by a particle force balance and a series combination of a perfectly stirred reactor and a plug flow reactor. Kinetic treatments of coal pyrolysis, char oxidation and carbon monoxide oxidation are included. Gas composition and temperature are checked against equilibrium values. The model predicts carbon efficiency, gas composition and temperature and reactor heat loss; gasification parameters, such as cold and hot gas efficiency and make gas heating value, are calculated for fuel-rich conditions. Good agreement exists between experiment and theory for conditions of this investigation.

  7. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    temperatures of ~1300oC and ~800oC, respectively. It was found that during pulverized wood combustion, the deposit formation at the hightemperature location was characterized by a slow and continuous growth of deposits followed by the shedding of a large layer of deposits, while the deposit formation...

  8. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.

    Science.gov (United States)

    Zhang, Yanwen; Cai, Ningsheng; Yang, Jingbiao; Xu, Bo

    2008-10-01

    The reduction of nitric oxide using ammonia combined with methane and pulverized coal additives has been studied in a drop tube furnace reactor. Simulated flue gas with 1000 ppm NO(x) and 3.4% excess oxygen was generated by cylinder gas. Experiments were performed in the temperature range of 700-1200 degrees C to investigate the effects of additives on the DeNO(x) performance. Subsequently, a kinetic mechanism was modified and validated based on experimental results, and a computational kinetic modeling with CHEMKIN was conducted to analyze the secondary pollutants. For both methane and pulverized coal additives, the temperature window is shifted towards lower temperatures. The appropriate reaction temperature is shifted to about 900 and 800 degrees C, respectively with 1000 ppm methane and 0.051 g min(-1) pulverized lignite coal. The addition of methane and pulverized coal widens the temperature window towards lower temperature suggesting a low temperature application of the process. Furthermore, selective non-catalytic reduction (SNCR) reaction rate is accelerated evidently with additives and the residence time to complete the reaction is shortened distinctly. NO(x) reduction efficiency with 80% is achieved in about 0.3s without additive at 1000 degrees C. However, it is achieved in only about 0.2s with 100 ppm methane as additive, and only 0.07 and 0.05s are needed respectively for the cases of 500 and 1000 ppm methane. The modified kinetic modeling agrees well with the experimental results and reveals additional information about the process. Investigation on the byproducts where NO(2) and N(2)O were analyzed by modeling and the others were investigated by experimental means indicates that emissions would not increase with methane and pulverized coal additions in SNCR process and the efficacious temperature range of SNCR reaction is widened approximately with 100 degrees C.

  9. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  10. Impact of petrographic properties on the burning behavior of pulverized coal using a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    S. Biswas; N. Choudhury; S. Ghosal; T. Mitra; A. Mukherjee; S.G. Sahu; M. Kumar [Jadavpur University, Dhanbad (India). Central Fuel Research Institute]. sb_cfri@yahoo.co.in

    2007-12-15

    The combustion behavior of three Indian coals of different rank with wide variation in ash content and maceral compositions were studied using a drop tube furnace (DTF). Each coal was pulverized into a specific size (80% below 200 mesh) and fed into the DTF separately. The DTF runs were carried out under identical conditions for all of the coals. The carbon burnout was found out from the chemical analyses of the feed coals and the char samples collected from different ports of the DTF. Char morphology analyses was carried on the burnout residues of the top port. The top port results show better burnout of the lower rank coals which however was not observed in the last port. An attempt has been made to account for this variation in terms of rank and petrographic parameters of the respective coals. 20 refs., 1 fig., 6 tabs.

  11. Burnout of pulverized biomass particles in large scale boiler - Single particle model approach

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)

    2010-05-15

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)

  12. Breaking and Characteristics of Ganoderma Lucidum Spores by High Speed Entrifugal Shearing Pulverizer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The spores of Ganoderma lucidum were ground and broken to ultrafine particles by high speed centrifugal shearing(HSCS) pulverizer. The characteristics of Ganoderma lucidum spores were analyzed by scanning electron microscope (SEM), Fourier transform infrared spectrophotometry (FTIR). Ultraviolet-visible pectrophotometer was used to determine the extraction ratio of aqueous solubility polysaccharide between the raw and broken spores. The immunological function on the mice before and after the breaking of spores was investigated. The experimental results show that after being ground, the sporoderm-broken ratio reachs 100%,the original active ingredients of ganoderma lucidum spores do not change, and the extraction ratio of aqueous solubility polysaccharide is greatly increased by 40.08%. The broken spores show much higher immunological activity comparing with original spores of Ganoderma lucidum.

  13. Modelling of pulverized coal boilers: review and validation of on-line simulation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Diez, L.I.; Cortes, C.; Campo, A. [University of Zaragoza, Zaragoza (Spain). Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE)

    2005-07-01

    Thermal modelling of large pulverized fuel utility boilers has reached a very remarkable development, through the application of CFD techniques and other advanced mathematical methods. However, due to the computational requirements, on-line monitoring and simulation tools still rely on lumped models and semiempirical approaches, which are often strongly simplified and not well connected with sound theoretical basis. This paper reviews on-line modelling techniques, aiming at the improvement of their capabilities, by means of the revision and modification of conventional lumped models and the integration of off-line CFD predictions. The paper illustrates the coherence of monitoring calculations as well as the validation of the on-line thermal simulator, starting from real operation data from a case-study unit. The outcome is that it is possible to significantly improve the accuracy of on-line calculations provided by conventional models, taking into account the singularities of large combustion systems and coupling offline CFD predictions for selected scenarios.

  14. Low-cost Evaporator Protection Method against Corrosion in a Pulverized Coal Fired Boiler

    Directory of Open Access Journals (Sweden)

    Arkadiusz Krzysztof Dyjakon

    2010-07-01

    Full Text Available Corrosion processes appearing on the watertubes in a combustion chamber of pulverized coal-fired boilers require permanent control and service. Subject to the power plant strategy, different anti-corrosion protection methods can be applied. Technical-economical analysis has been performed to evaluate and support the decisions on maintenance and operation services. The paper presents and discusses results of the application of an air protection system in boiler OP-230 in view of anti-corrosion measures. It is indicated that a low-cost protection method of watertubes (evaporator against corrosion can be efficient and lead to financial savings in comparison to the standard procedure of replacement of watertube panels.

  15. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  16. Pulverized coal injection in blast furnaces at ArcelorMittal Tubarao (AMT)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, C.A.; Fujihara, F.K.; Defendi, G.A.; Tauffer Barros, R.J. [ArcelorMittal Tubarao, Serra (Brazil). Ironmaking Dept.

    2008-07-01

    The main factors that influence the performance of coal injected into blast furnaces include coal properties, combustion conditions and the equipment used in the plants for grinding, transportation and injection of coal. This paper focused on coal properties and the main operational control changes in the no.1 blast furnace at ArcelorMittal Tubarao. The furnace was modified from an all coke operation to a pulverized coal injection (pci) operation in order to ensure high productivity, low fuel consumption and longer service life. ArcelorMittal Tubarao has developed a coal buying model based on energy balance and the chemical analysis of ash. In the energy balance, the ratio between the heat supplied by carbon combustion and the heat consumed by the cracking of water and volatiles results in the potential rate of coke replacement by coal. 5 refs., 1 tab., 10 figs.

  17. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection.

    Science.gov (United States)

    Du, Shan-Wen; Chen, Wei-Hsin; Lucas, John A

    2014-06-01

    To evaluate the utility potential of pretreated biomass in blast furnaces, the fuel properties, including fuel ratio, ignition temperature, and burnout, of bamboo, oil palm, rice husk, sugarcane bagasse, and Madagascar almond undergoing torrefaction and carbonization in a rotary furnace are analyzed and compared to those of a high-volatile coal and a low-volatile one used in pulverized coal injection (PCI). The energy densities of bamboo and Madagascar almond are improved drastically from carbonization, whereas the increase in the calorific value of rice husk from the pretreatment is not obvious. Intensifying pretreatment extent significantly increases the fuel ratio and ignition temperature of biomass, but decreases burnout. The fuel properties of pretreated biomass materials are superior to those of the low-volatile coal. For biomass torrefied at 300°C or carbonized at temperatures below 500°C, the pretreated biomass can be blended with coals for PCI.

  18. Pulverized coal torch combustion in a furnace with plasma-coal system

    Science.gov (United States)

    Messerle, V. E.; Ustimenko, A. B.; Askarova, A. S.; Nagibin, A. O.

    2010-09-01

    Combustion of a pulverized coal torch has been numerically simulated on the basis of the equations of multicomponent turbulent two-phase flows. The results of three-dimensional simulation of conventional and plasma activated coal combustion in a furnace are presented. Computer code Cinar ICE was verified at coal combustion in the experimental furnace with thermal power of 3 MW that was equipped with plasma-fuel system. Operation of the furnace has been studied at the conventional combustion mode and with plasma activation of coal combustion. Influence of plasma activation of combustion on thermotechnical characteristics of the torch and decrease of carbon loss and nitrogen oxides concentration at the furnace outlet has been revealed.

  19. Adapter for converting an oil burner head for burning of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.E.

    1988-03-29

    This patent describes a burner head means forming a primary air passage in the burner head including a portion of generally circular configuration in cross-section having openings uniformally circularly disposed about its periphery, and a manifold effective to envelope the primary air passage means. The manifold has inlet means for connection to a source of pulverized coal and air, internal coal and air passages downstream of the inlet effective to divide incoming coal and air into a plurality of discrete streams thereof, and a manifold coal and air outlet opening from each coal and air passage. The manifold outlet openings each are in communication with a duct means having an outlet discharging into one of the openings about the periphery of the primary air passage means.

  20. Influence of constricted air distribution on NOx emissions in pulverized coal combustion boiler

    Institute of Scientific and Technical Information of China (English)

    WEI Feng(魏风); ZHANG Jun-ying(张军营); TANG Bi-guang(唐必光); ZHENG Chu-guang(郑楚光)

    2003-01-01

    This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NOx emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NOx emissions and the principle of boiler operation and regulation through analyzing NOx emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NOx emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.

  1. Flame radiant image numeralization for pulverized coal combustion in BF raceway

    Institute of Scientific and Technical Information of China (English)

    WEN Liang-ying; OU Yang-qi; BAI Chen-guang; WANG Hua

    2005-01-01

    In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put forward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique.

  2. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  3. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  4. Practice of promoting pulverized coal injection rate at no.4 blast furnace of China Steel Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, N.W.; Chang, C.T [China Steel Corp., Kaohsiung, Taiwan (China)

    2008-07-01

    In 2006, the China Steel Corporation (CSC) upgraded the injection system of its no.4 blast furnace to increase the pulverized coal (PC) rate which averaged 136 to 143 kg/thm. This paper described the scheduled shutdown of the furnace in May 2007 in order to modify it from a dilute phase injection system to a dense phase system using the technology of the Kuettner Company. Through proper burden distribution and operational parameter adjustments, the pulverized coal (PC) rate was increased to 178 kg/thm by November 2007, corresponding to a 65 t/hr injection rate with a productivity of 2.58 t/m{sup 3}/d. This paper described the challenges encountered following commissioning as well as the strategies of process control. The main differences between the existing and new injection system were that nitrogen was used to substitute compressed air as the conveying gas and the coal to gas ratio was increased from about 10 to 30 kg/kg. As a result, the transport method and the operation pressure had to be reassessed. This paper described the coal blend injection; screening facility for coal preparation; location of the distributor; and coal accumulation in the coal flow meter. The blast furnace adjustments included burden thickness control; burden distribution adjustment; improvement of raw material quality; and theoretical flame temperature adjustment. The upgrade project has proven to be very successful and has improved the competitiveness of CSC blast furnace no.4 significantly. Plans to upgrade the no.2 and no.3 blast furnaces are underway. Once completed, the operating cost and coke consumption of the blast furnaces will be reduced considerably. The modification to dense phase conveying system has shown that coal with high Hardgrove Index requires a higher driving force in the pneumatic dense phase transport and that coal mill equipped with a rotating classifier is recommended along with screens at the upstream of the feed tank. 3 refs., 6 tabs., 9 figs.

  5. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  6. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    Science.gov (United States)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a

  7. Flat-flame burner studies of pulverized-coal combustion. Experimental results on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Peck, R.E.; Shi, L.

    1996-12-01

    Structure of laminar, premixed pulverized-coal flames in a 1-D reactor has been studied with emphasis on char reactivity. A 1.1-meter-long tube furnace accommodated high-temperature environments and long residence times for the laminar flames produced by a flat-flame, coal-dust burner. Experiments were conducted at different operating conditions (fuel type/size, fuel-air ratio). Measurements included solid sample composition, major gas species and hydrocarbon species concentrations, and gas- and particle-phase line-of-sight temperatures at different axial locations in flames. Degree of char burnout increased with coal volatiles content and decreased with coal particle size. Combustion in furnace was in oxidizer-deficient environment and higher burnout was achieved as the fuel-air ratio neared stoichiometric. For 0-45 {mu}m particles most of the fixed carbon mass loss occurred within 5 cm of the furnace inlet, and char reaction was slow downstream due to low oxidizer concentrations. Fixed carbon consumption of the 45-90 {mu}m particles generally was slower than for the small particles. About 40%-80% of the fixed carbon was oxidized in the furnace. Primary volatiles mass loss occurred within the first 4.5 cm, and more than 90% of the volatiles were consumed in the flames. The flames stabilized in the furnace produced less CH{sub 4} and H{sub 2} in the burnt gas than similar unconfined flames. NO concentrations were found to decrease along the furnace and to increase with decreasing fuel/air ratio. Temperature measurement results showed that gas-phase temperatures were higher than solid-phase temperatures. Temperatures generally decreased with decreasing volatiles content and increased as the equivalence ratio approached one. The results can be used to interpret thermochemical processes occurring in pulverized-coal combustion. (au) 15 refs.

  8. [Controlled release of prednisolone from suppository prepared using powder of pulverized tablet].

    Science.gov (United States)

    Tatsumi, Akitoshi; Oda, Shoko; Nakamoto, Tomoko; Muraoka, Reiko; Takahashi, Yoshiko; Tanaka, Kuniyoshi; Shikata, Toshiyuki; Tatsumi, Sumiyo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hamaguchi, Tsuneo; Kadobayashi, Muneo

    2008-04-01

    Prednisolone suppositories have been used successfully for the treatment of ulcerative colitis in hospital settings. However, the raw material of prednisolone suppository, JP prednisolone powder (JP Powder), was recently removed from the market. Therefore we studied the effects of raw material and suppository base on the release of prednisolone suppository for the purpose of designing a new suppository with similar effects to those of suppository prepared using JP powder (old suppository). New suppositories consisting of the powder of pulverized tablet as raw material and Witepsol H-15 and Witepsol E-75 as suppository base were prepared according to the fusion method. Suppository release test was performed by reciprocating dialysis tube method with tapping (RDT method) and dialysis tubing method (DT method). Both RDT method and DT method were performed using a suppository dissolution apparatus (modified JP disintegration apparatus) and a JP15 paddle apparatus, respectively. The test fluid was 50 mM phosphate buffer solution (pH 7.4) maintained at 37+/-0.5 degrees C. The results of release test by RDT method were similar to those of DT method. Release rate of prednisolone from the new suppository was much faster than that of old suppository. The addition of Witepsol E-75 to new suppository base markedly delayed the release of prednisolone from the new suppository. Release rate of prednisolone from the new suppository, consisting of pulverized tablet and Witepsol H-15 and Witepsol E-75 (76:24), corresponded well with that of the old suppository. It was suggested that this suppository could be used as incoming preparation of suppository prepared using JP powder.

  9. Inquiry into Safety Problems in Production of Shell Pulverized Coal Gasifier%Shell粉煤气化生产中安全问题的探讨

    Institute of Scientific and Technical Information of China (English)

    于英慧

    2011-01-01

    详细介绍了Shell粉煤气化工艺生产过程中常见的安全异常情况.探讨并提出了Shell粉煤气化工艺不同工段的安全措施.%Details are given of common abnormal conditions in safety during Shell pulverized coal gasification. An inquiry is made and safety measures are proposed for the various sections of the Shell pulverized coal gasification process.

  10. Reconstruction of the aero-mixture channels of the pulverized coal plant of the 100MW power plant unit

    Directory of Open Access Journals (Sweden)

    Ivanovic Vladan B.

    2011-01-01

    Full Text Available After the last revitalization of thermal power block of 100 MW in TPP “Kostolac A”, made in the year 2004, during the operation of the plant, pulverized coal deposition often occurred in horizontal sections of the aero-mixture channels. Deposition phenomenon manifested itself in places ahead of spherical compensators in the direction of flow of pulverized coal to the burners, due to unfavorable configuration of these channels. Coal dust deposited in the channels dried and spontaneously combusted, causing numerous damage to channels and its isolation as well as the frequent stoppage of the operation for necessary interventions. The paper presents the original solution of reconstruction of aero-mixture channels which prevented deposition of coal dust and its eventual ignition. In this way the reliability of the mill plant is maximized and higher availability of boiler and block as a whole is achieved.

  11. Influence of the feed moisture, rotor speed, and blades gap on the performances of a biomass pulverization technology.

    Science.gov (United States)

    Luo, Siyi; Zhou, Yangmin; Yi, Chuijie; Luo, Yin; Fu, Jie

    2014-01-01

    Recently, a novel biomass pulverization technology was proposed by our group. In this paper, further detailed studies of this technology were carried out. The effects of feed moisture and crusher operational parameters (rotor speed and blades gap) on product particle size distribution and energy consumption were investigated. The results showed that higher rotor speed and smaller blades gap could improve the hit probability between blades and materials and enhance the impacting and grinding effects to generate finer products, however, resulting in the increase of energy consumption. Under dry conditions finer particles were much more easily achieved, and there was a tendency for the specific energy to increase with increasing feed moisture. Therefore, it is necessary for the raw biomass material to be dried before pulverization.

  12. Impacts and implementation of fuel moisture release and radiation properties in modelling of pulverized fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Pulverized fuels (PF) prepared and fired in utility boilers usually contain a certain amount of moisture, either free moisture or chemically bound moisture. In PF furnaces, radiation which is the principal mode of heat transfer consists of contribution from both gas and particle phase. This paper...... presents different methods for fuel moisture release and new models for gas and particle radiative properties, and demonstrates their implementation, importance and impacts in PF combustion modelling via a comprehensive CFD study of a pulverized coal-fired utility boiler. To conclude, it is recommended...... to add the free moisture into the primary air stream while lump the moisture retained in the feed after the mills with volatiles in PF combustion modelling. For gas and particle radiation in PF boilers, it is found that particle radiation largely overwhelms gas radiation due to high particle loading...

  13. Fast-pulverization enabled simultaneous enhancement on cycling stability and rate capability of C@NiFe2O4 hierarchical fibrous bundle

    Science.gov (United States)

    Chen, Zerui; Zhang, Yu; Wang, Xiaoling; Sun, Wenping; Dou, Shixue; Huang, Xin; Shi, Bi

    2017-09-01

    Electrochemical-grinding induced pulverization is the origin of capacity fading in NiFe2O4. Increasing current density normally accelerates the pulverization that deteriorates lithium storage properties of NiFe2O4. Here we show that the high current induced fast-pulverization can serve as an efficient activation strategy for quick and simultaneous enhancement on cycling stability and rate capability of NiFe2O4 nanoparticles (NPs) that are densely packed on the hierarchically structured carbon nanofiber strand. At a high current density, the pulverization of NiFe2O4 NPs can be accomplished in a few cycles exposing more active surface. During the fast-pulverization, the hierarchically structured carbon nanofiber strand maintains conductive contact for the densely packed NiFe2O4 NPs regardless of charge or discharge, which also effectively suppresses the repetitive breaks and growths of solid-electrolyte-interphase (SEI) via multiple-level structural adaption that favourites the quick formation of a thin and dense SEI, thus providing strong interparticle connectivity with enhancement on cycling stability and rate capability (e.g. doubled capacity). Our findings demonstrate the potential importance of high current induced fast-pulverization as an efficient activation strategy for achieving durable electrode materials suffering from electrochemical-grinding effects.

  14. Numerical study of Pavlovskiy coal pulverized combustion in the furnace of BKZ-210-140 steam boiler

    Science.gov (United States)

    Zavorin, A. S.; Gil, A. V.; Khaustov, P. S.; Tabakaev, R. B.; Buslov, D. A.

    2014-10-01

    In this paper pulverized combustion of insufficiently investigated low-grade Pavlovskiy coal is simulated using the modern engineering software FIRE 3D. The object of study is a widespread in Russia BKZ-210-140 steam boiler. The results of computer simulation are represented with average temperatures in horizontal sections and oxygen concentration. Curves are plotted for three steam generating capacity loads of the boiler: 100%, 70% and 50%.

  15. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1998-04-01

    Title Ed of the Clean Air Act Amendments of 1990 designates 189 hazardous air pollutants (HAPs). Fourteen of the 189 substances identified are: antimony (Sb), beryllium (Be), chlorine (0), cobalt (Co), manganese (Mn), nickel (Ni), selenium (Se), fluorine (F), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and phosphorous (P). Eleven of these elements have been detected in the flue gas of pulverized coal-fired utility boilers. Currently there are no regulations that limit the emissions of these elements during coal combustion in utility- or industrial-scale boilers. Given the growing body of risk assessment data on these elements and their impact on the environment and human health, it is possible that regulations on emission levels for certain elements will be imposed. A knowledge of the occurrence of trace elements in coal and their behavior during combustion is essential to predict emissions and to develop control technologies for remediation. The partitioning of trace elements during combustion can be traced to their volatility within the system. For purposes of this paper, the classification of trace elements summarized by Clarke and Sloss will be used: Group I elements, i.e., elements that are not easily volatilized and form larger bottom ash and fly ash particles; Group H elements, i.e., elements that are partially or completely volatilization followed by condensation as small particles or on the surface of small particles; and Group III elements, i.e., elements that are readily volatilized and usually remain in the gas phase system.

  16. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

  17. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  18. Feasibility investigation and combustion enhancement of a new burner functioning with pulverized solid olive waste

    Directory of Open Access Journals (Sweden)

    Bounaouara H., Sautet J.C., Ben Ticha H., Mhimid A.

    2014-01-01

    Full Text Available This article describes an experimental study on solid olive residue (olive cake combustion in form of pulverized jet. This is a contribution to the valorization of olive residue as a source of renewable energy available in the majority of mediterranean countries. A sample of olive cake from Tunisian origin is prepared for the experiment; this sample is crushed, dried and sifted in order to obtain the desired particles form. A new burner made up of a coaxial cylindrical tube is especially designed and fabricated. In order to start the combustion of olive cake and maintain the main flame, two types of pilot flame were used: a central premixed flame of methane/oxygen and an annular diffusion flame of methane. This paper shows the conditions for an efficient olive cake burner operation in free air. The effects of particle size and pilot flame position have been discussed. The olive cake combustion is possible only with particles at a size below 200 μm. Moreover, the combustion maintained by the annular pilot flame ensures better burning conditions than the central pilot flame. Finally, the inserted preheating system has improved the olive cake combustion.

  19. Soil and fertilizer amendments and edge effects on the floral succession of pulverized fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P. [Roehampton University, London (United Kingdom). Whitelands College

    2009-01-15

    Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species (D. incarnata, Pyrola rotundifolia, some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting ({ge} 10 years) effects on cover and soil composition.

  20. The past, present and future of pulverized coal injection at ThyssenKrupp Steel AG

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M.; Korthas, B.; Schmole, P. [ThyssenKrupp Steel AG., Duisburg (Germany). Hot Metal Production-Metallurgy Division

    2008-07-01

    Coal injection has been used to optimize blast furnace operation at the ThyssenKrupp Steel (TKS) plants in Germany for over 25 years. The main TKS plants are located at Duisburg on the Rhine river with optimum logistical conditions for raw materials and finished products. This presentation described the long history of blast furnace operation at TKS and the optimization of the combustion process in the raceway. The key factors for controlling coal combustion were coal properties; lance design; partial pressure of oxygen in the raceway; amount of nitrogen for the pneumatic coal transport; and additives to the coal. When changing over from the all-coke to the pulverized coal (PC)-coke mode of operation, the main attention was directed to blast velocity and burden distribution. Initially, 2 injection systems were developed in 1982 for a blast furnace pilot facility in Hamborn where coal was injected through 3 tuyeres of the blast furnace. The experience gained at the pilot facility was used for other production facilities. They were evaluated in terms of plant wear, pneumatic conveying characteristics, and behaviour of the system when using different types of coal. In 1987, the Schwelgern blast furnace was equipped with the dense flow system and the blast furnace in Ruhrort was equipped with an entrained flow system and metering valves. In February 1991, blast furnace no. 9 in Hamborn was equipped with the dense flow for all 28 tuyeres and is designed for an injection rate of 250 kg/THM. 21 figs.

  1. Asphalt modified with nonmetals separated from pulverized waste printed circuit boards.

    Science.gov (United States)

    Guo, Jiuyong; Guo, Jie; Wang, Shifeng; Xu, Zhenming

    2009-01-15

    Nonmetals separated from pulverized waste printed circuit boards (PCBs) were reused as a new modifier to improve the performance of asphalt. The classical and rheological properties of unmodified asphalt and non-metal-modified asphalt (NMA) were determined. Specifically, the influence of nonmetals content and particle size on these properties has been studied. When the nonmetals content was 25 wt% and the particle size group was 0.07-0.09 mm, the NMA had a viscosity of 1225 cP at 135 degrees C, a penetration of 53.7 dmm at 15 degrees C, a ring and ball softening point of 54 degrees C, a ductility of 43.5 cm at 15 degrees C, a G*/sin delta of 3995.27 Pa at 60 degrees C, and an upper limit temperature (G*/sin delta = 1 kPa) of 69.4 degrees C, all of which showed that the high temperature performance of asphalt was improved significantly. Therefore, this study gives a fundamental understanding of NMA and represents a novel attempt to deal with the fast increasing quantities of nonmetals from waste PCBs, which is significant from an environmental and economic standpoint.

  2. 椰壳粉碎机的研制%Development of coconut pulverizer

    Institute of Scientific and Technical Information of China (English)

    孙忠; 张燕; 梁栋

    2013-01-01

    介绍一种新型的椰子壳粉碎机,并介绍其双子滚齿、双子转子.该机械采用机械的方法实现自动粉碎椰壳.使用碾压和研磨相结合,粉碎率达到90%以上,成品细度能达到300目.并可以通过传送带对椰壳进行投料,粉碎过程可实现自动化,从而减少人工劳动力,提高粉碎效率.%Introduced a new type of coconut pulverizer,with the twin roll teeth and twin rotor.The pulverzier realized grinding coconut shell automatically with mechanical method.Combined with rolling and grinding,the degradation rate was over 90 percents,and the finish fineness reached 300 mesh.The process could realize atomization by carry belt,with less manual labor and high efficiency.

  3. Three Dimensional Modeling of Pulverized Coal combustion in a 600MW Corner Fired Boiler

    Institute of Scientific and Technical Information of China (English)

    SandroDal-Secco

    2000-01-01

    The three-dimensional code ESTET developed at the LNH has been used to predict the reactive flow in a 600 W coal fired boiler,Assuming a no-slip condition between the gas and the coal,the equations for a gas-particle mixture can e written.The pulverized coal particle size distribution is represented by a discrete number of particle size groups determined by the measured fineness distrbution.The combustion models taking into account the pyrolysis of the particle and the heterogeneous combustion of char have been validated using intensive measurements performed on the 600MW utility boiler.Heat fluxes were measured along the walls of the furnace and satisfactory agreement between computation and measurements has been achieved in terms of maximum flux location and heat flux intensity.Local measurements of velocities using LDV probe.gas temperature and gas species concentrations were performed in the vicinity of one burner and compared with the computed variables.Again we have observed a good agreement between the computations and the measurements in terms of jet penetration,temperature distribution.oxygen concentration and ash content.

  4. Experimental study on cement clinker co-generation in pulverized coal combustion boilers of power plants.

    Science.gov (United States)

    Wang, Wenlong; Luo, Zhongyang; Shi, Zhenglun; Cen, Kefa

    2006-06-01

    The idea to co-generate cement clinker in pulverized coal combustion (PCC) boilers of power plants is introduced and discussed. An experimental study and theoretical analysis showed this idea to be feasible and promising. By adding quick lime as well as other mineralizers to the coal and grinding the mixture before combustion, sulfoaluminate cement clinker with a high content of silicate (SCCHS) could be generated. The main mineral phases in SCCHS are 2CaO x SiO2 (dicalcium-silicate), 3CaO x 3Al2O3 x CaSO4 (calcium-sulfoaluminate) and 2CaO x A12O3 SiO2 (gehlenite). Performance tests showed that the SCCHS met the requirements for utilization in common construction. Based on this idea, zero solid waste generation from PCC would be realized. Furthermore, thermal power production and cement production could be combined, and this would have a significant effect on both environmental protection and natural resource saving.

  5. Occurrence and volatility of several trace elements in pulverized coal boiler

    Institute of Scientific and Technical Information of China (English)

    HUANG Ya-ji; JIN Bao-sheng; ZHONG Zhao-ping; XIAO Rui; TANG Zhi-yong; REN Hui-feng

    2004-01-01

    The contents of eight trace elements(Mn, Cr, Pb, As, Se, Zn, Cd, Hg) in raw coal, bottom ash and flyash were measured in a 220 t/h pulverized coal boiler. Factors affecting distribution of trace elements wereinvestigated, including fly ash diameter, furnace temperature, oxygen content and trace elements' characters. Onecoefficient of Meij was also improved to more directly show element enrichment in combustion products. Theseelements may be classified into three groups according to their distribution: Group 1: Hg, which is very volatile.Group 2: Pb, Zn, Cd, which are partially volatile. Group 3: Mn, which is hardly volatile. Se may be locatedbetween groups 1 and 2. Cr has properties of both group 1 and 3. In addition, the smaller diameter of fly ash, themore relative enrichment of trace elements( except Mn). The fly ash showed different adsorption mechanisms oftrace elements and the volatilization of trace elements rises with furnace temperature. Relative enrichments of traceelements(except Mn and Cr) in fly ash are larger than that in bottom ash. Low oxygen content can not alwaysimprove the volatilization of trace elements. Pb is easier to form chloride than Cd during coal combustion. Traceelements should be classified in accordance with factors.

  6. Pack Carburization of Mild Steel, using Pulverized Bone as Carburizer: Optimizing Process Parameters

    Directory of Open Access Journals (Sweden)

    Joseph Olatunde BORODE

    2010-12-01

    Full Text Available Investigation was conducted into the mechanical properties of mild steel subjected to packed carburization treatment using pulverized bone as the carburizer, carburized at 850C, 900C and 950C, soaked at the carburizing temperature for 15 minutes and 30 minutes, quenched in oil and tempered at 550C. Prior carburization process, standard test samples were prepared from the as received specimen for tensile and impact tests. After carburization process, the test samples were subjected to the standard test and from the data obtained, ultimate tensile strength, engineering strain, impact strength, Youngs moduli were calculated. The case and core hardness of the carburized tempered samples were measured. It was observed that the mechanical properties of mild steels were found to be strongly influenced by the process of carburization, carburizing temperature and soaking time at carburizing temperature. It was concluded that the sample carburized at 900C soaked for 15 minutes and the one carburized at 850C soaked for 30 minutes followed by oil quenching and tempering at 550C were better because they showed a trend of hard case with softer core.

  7. Comparative study of semi-industrial-scale flames of pulverized coals and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, J.; Barroso, J.; Cerecedo, L.M.; Ichaso, R. [University of Zaragoza, Zaragoza (Spain)

    2005-05-01

    Three p.f. flames have been studied in a semi-industrial furnace, using different fuels: a bituminous coal, a lignite, and a biomass (oak sawdust). The operating conditions were exactly the same for the two coals, and very similar to those for the biornass flame. The objective was to evaluate the impact of differences in fuel composition on flame characteristics, through measurement of the spatial distribution of the main parameters: temperature and concentrations of O{sub 2}, CO, NOx, unburnt hydrocarbons, and N{sub 2}O. The higher volatiles content in the lignite leads to higher temperatures and more intense combustion than the bituminous coal. Nevertheless, as might be expected, more marked differences are observed between the flames from the biomass and coals. The much higher volatiles content of the wood results in a more intense flame close to the burner, as indicated by visual observations and by concentrations of unburnt gases (CO and unburnt hydrocarbons) in that zone. It is remarkable that the combustion zone extends further for the biomass; while unburnt species were very low for the coals at an axial distance of 1 m, high values were detected for the pulverized oak. The measurements suggest that two stages can be distinguished in the biomass flame: a zone of intense combustion close to the burner, followed by a second region where the large biomass particles gradually devolatilize and are consumed.

  8. A simple numerical model to estimate the effect of coal selection on pulverized fuel burnout

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.K.; Hurt, R.H.; Niksa, S.; Muzio, L.; Mehta, A.; Stallings, J. [Brown University, Providence, RI (USA). Division Engineering

    2003-06-01

    The amount of unburned carbon in ash is an important performance characteristic in commercial boilers fired with pulverized coal. Unburned carbon levels are known to be sensitive to fuel selection, and there is great interest in methods of estimating the burnout propensity of coals based on proximate and ultimate analysis - the only fuel properties readily available to utility practitioners. A simple numerical model is described that is specifically designed to estimate the effects of coal selection on burnout in a way that is useful for commercial coal screening. The model is based on a highly idealized description of the combustion chamber but employs detailed descriptions of the fundamental fuel transformations. The model is validated against data from laboratory and pilot-scale combustors burning a range of international coals, and then against data obtained from full-scale units during periods of coal switching. The validated model form is then used in a series of sensitivity studies to explore the role of various individual fuel properties that influence burnout.

  9. Effective identification of the three particle modes generated during pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    YU DunXi; XU MingHou; YAO Hong; LIU XiaoWei; ZHOU Ke

    2008-01-01

    Based on the mass fraction size distribution of aluminum (AI), an improved method for effectively identifying the modes of particulate matter from pulverized coal combustion is proposed in this study. It is found that the particle size distributions of coal-derived particulate matter actually have three modes, rather than just mere two. The ultrafine mode is mainly generated through the vaporization and condensation processes. The coarse mode is primarily formed by the coalescence of molten minerals, while the newly-found central mode is attributed to the heterogeneous condensation or adsorption of vaporized species on fine residual ash particles. The detailed investigation of the mass fraction size distribution of sulfur (S) further demonstrates the rationality and effectiveness of the mass fraction size distribution of the AI in identifying three particle modes. The results show that not only can the number of particle modes be identified in the mass fraction size distributions of the AI but also can their size boundaries be more accurately defined. This method provides new insights in elucidating particle formation mechanisms and their physico-chemical characteristics.

  10. Two-stage numerical simulation for temperature profile in furnace of tangentially fired pulverized coal boiler

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XU Qiong-hui; ZHOU Ping

    2005-01-01

    Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-ation model was checked by the parameters measured in an operating boiler, DG130-9.8/540. The maximum of relative error is less than 12% and the absolute error is less than 120 ℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.

  11. Investigation of swirling flow mixing for application in an MHD pulverized coal combustor using isothermal modeling

    Energy Technology Data Exchange (ETDEWEB)

    Power, W. H.

    1980-05-01

    The purpose of this study was to investigate combustor reactant mixing with swirling oxidizer flow. The combustor configuration that was considered was designed to simulate a 4 lbm/sec mas flow pulverized coal combustor being tested in The University of Tennessee Space Institute MHD Facility. A one-fourth dimensionally scaled combustor model was developed for isothermal flow testing. A comparison was made of cold flow tests using 3 swirler designs with a base case oxidizer injector design of perforated plated which demonstrated acceptable performance in the 4 lbm/sec MHD combustor. The three swirlers that were evaluated were designed to allow a wide range of swirl intensity to be investigated. The design criterion of the swirler was the swirl number which has been related to swirler geometry. The results of the study showed that the swirlers that were tested fell short of the mixing characteristics displayed with the perforated plate base case oxidizer injector. Test data obtained with the cold flow model established that the actual swirl numbers of two of the swirlers were much lower than the design swirl numbers. Recirculation zones were defined for all configurations that were tested, and a comparison of velocity profiles was made for the configurations.

  12. Anisotropy and optical gain improvement in type-II In0.3Ga0.7As/GaAs0.4Sb0.6 nano-scale heterostructure under external uniaxial strain

    Science.gov (United States)

    Singh, A. K.; Riyaj, Md.; Anjum, S. G.; Yadav, Nisha; Rathi, Amit; Siddiqui, M. J.; Alvi, P. A.

    2016-10-01

    Alterations in optical transitions and distortions in wave symmetry in nano-scale QW (quantum well) heterostructures are seen due to external uniaxial strain under different polarizations. This paper reports the anisotropy phenomena and optical gain improvement realized in In0.3Ga0.7As/GaAs0.4Sb0.6 type-II QW-heterostructure (well width = 20 Å) under uniaxial strain in the SWIR (short wave infra red) region. The detailed study of the band structure, wave functions associated with the charge carriers in the respective bands and optical gain under electromagnetic field perturbation is reported. The 6 × 6 diagonal k → ·p → Hamiltonian matrix is evaluated and Luttinger-Kohn model is used for the band structure calculation. Optical gain spectrum in the QW-heterostructure under uniaxial strain along [110] for different polarizations of light is calculated. For a charge carrier injection of 5 × 1012/cm2 the optical gain is ∼1600/cm under input z-polarization, ∼14500/cm under x-polarization and ∼15700/cm under y-polarization without external uniaxial strain applied. A significant improvement in optical gain is observed under uniaxial strain along [110] direction under different input polarizations. Keeping in views its utilization in optoelectronics due its very high optical gain in near-infra-red region in x- or y-polarization mode, such structure can be considered as a novel structure.

  13. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling; Etude theorique a l'echelle nanometrique du carbure de silicium sous irradiation: modelisation classique et ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, G

    2006-10-15

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  14. The pulverization and handling of soft plastics for energy recovery; Soenderdelning och hantering av mjuka plaster foer energiutvinning

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, Sven-Erik

    2000-10-01

    The purpose of the project has primarily been to investigate suitable equipment (mills, crushers, shredders) for the pulverization of different types of soft plastics from the agricultural sector (large sacks and silage plastic) and the peat extraction industry (plastic covers) with the aim of being able to use the plastic material as fuel in conventional solid waste-fired plants. Many of the mills that are used for pulverizing different types of biofuel have proved not to be particularly suitable for soft plastics. The project has comprised the following: * Contact with a number of plant owners with different types of plants (grate, CFB and BFB boilers) for a review of existing fuel handling and fuel feed equipment as well as the demands they make on the fuel that is to be fired. * Contact with Trio Plast concerning previous tests carried out in connection with the collection, baling, handling, pulverization and combustion of plastics from the agricultural sector. * Contact with mill suppliers for participation in the tests and for feedback on experience gained in connection with the pulverization of soft plastics. * Choice of a suitable plant for practical trials based on contact with the above plant owners as a reference group. * Practical trials in 5 mills with the pulverization of soft plastics from agriculture (silage plastic and large sacks) as well as plastic from peat extraction (plastic covers) and * Evaluation of technical, economic, energy-related and environmental preconditions. Following contact with several owners of solid waste-fired combustion plants, and after hearing their opinions, it became clear that many of them were doubtful about the combustion of plastic. They are primarily afraid of tripping superheaters, etc. Consequently, two plants without superheaters, one in Oestersund and the other in Malmoe, were chosen for the tests. The mills that were tested were: * A SIM mill from WahIkvist, Oedeshoeg Plant - a mobile slow-action pulverizer for

  15. An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems

    Science.gov (United States)

    Pisupati; Wasco; Scaroni

    2000-05-29

    Results from a series of tests conducted to study the emission of polynuclear or polycyclic aromatic hydrocarbons (PAHs) from bench-scale and small industrial, water-tube boiler are discussed. A Middle Kittanning, and Upper Freeport seam coals were used in the study. Samples were extracted from the reactor outlet and from the inlet and outlet sides of the research boiler's (RB) baghouse using EPA promulgated methods.Only acenaphthene and fluoranthene were detected in down-fired combustor (DFC) samples. In addition to these two, naphthalene was detected in the RB samples. Emission factors ranged from 80 to 320 &mgr;g/kg of fuel fired. Although there were minor trends in the emissions' data, given the reproducibility limits for PAH compounds, no significant differences were found in the emissions with respect to the fuel type or form (pulverized coal (PC) vs. coal-water slurry fuel (CWSF), and raw vs. cleaned coal) and firing conditions (high and low excess air). The PAH emissions showed a decrease with increase in the firing rate.A bench-scale drop-tube reactor (DTR) was used to study the effects of temperature and residence time on PAH formation. The results revealed near constant PAH concentrations in the solid-phase samples, while the PAH concentrations in the vapor-phase samples increased as a function of temperature. At a temperature of around 1300 degrees C, the rate of PAH formation was exceeded by the rate of PAH oxidation, and PAH concentrations in the vapor phase began to decrease.

  16. Effect of CO2 gasification reaction on oxycombustion of pulverized coal char.

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Alejandro (Universidad Nacional de Colombia, Medellin, Colombia); Hecht, Ethan S.; Shaddix, Christopher R.; Haynes, Brian S. (University of Sydney, New South Wales, Australia)

    2010-07-01

    For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

  17. Nitric oxide formation mechanisms, and their computation in pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Flour, I.; Dal Secco, S.

    1995-10-01

    This report consists of a review of several articles on nitric oxide emissions from coal-fired furnace. Three mechanisms have been identified, depending on the initial nitrogen sources and the composition of specific flame regions: - thermal-NO, formed from molecular nitrogen in the combustion products region at high temperature, - prompt-NO, formed from molecular nitrogen in the oxidation zone, - fuel-NO, formed from the fuel-bound nitrogen, partly during the coal pyrolysis (homogeneous reactions) and partly through reactions on the surface of the particle. In the combustion of pulverized coal, the fuel-NO mechanism accounts for the main source of nitric oxide formed. Detailed schemes of those reactions - when available - are too much complex to be used in tri-dimensional computation of pollutant emissions in furnaces of practical interest. According to the literature, reduced schemes seem to have been applied most frequently. The reaction schemes for the fuel-NO and the prompt-NO are based on the results of De Soete. For the homogeneous reactions, the intermediate species formed is assumed to be mainly HCN, leading to both formation and reduction reactions for NO, depending on the flame region. The formation of nitric oxide from the char-bound nitrogen, through heterogeneous reactions on the surface on the particle, is modelled by assuming the char-bound nitrogen to be released as HCN, with a rate proportional to char combustion. The released char nitrogen then reacts through the same path as the HCN released during pyrolysis. In the thermal-NO mechanism, nitric oxide is formed from molecular nitrogen, through the extended Zeldovich mechanism. This scheme contains radical species (O, N), which concentrations are assumed to be determined from the stationary condition or the equilibrium assumption. However, in spite of the use of reduced schemes for NO formation, the modelling of the important effect of the turbulent fluctuations has to be taken into account.

  18. The aerodynamics of the near field of pressurised pulverized fuel combustors

    Energy Technology Data Exchange (ETDEWEB)

    Bergeles, G.; Anagnostopoulos, J.; Papadakis, G.; Mouzakis, F.; Voyages, C. [National Technical University of Athens, Athens (Greece). Lab. for Aerodynamics, Dept. of Mechanical Engineering

    1998-12-31

    This research aims at improving knowledge of an effective design of pressurized pulverized fuel combustors (PPFC). Problems investigated are slag, cleaning efficiency, near burner aerodynamics and effects of pressure on combustion characteristics and on NO concentration levels. The Coal Combustion Algorithm (CO. C.A.-3D code) was the basis for the numerical work performed. Several new models were developed and incorporated into the basic code; a model for the calculation of slag formation, thickness and flow inside a PPFC, three different techniques for domain decomposition by the use of locally refined, staggered or collocated grids; an improved NO postprocessor to account for elevated pressure and turbulence effects. A new version of the final code was developed to obtain solutions in 3-D, cylindrical co-ordinates. All the above models were validated using available experimental data. The slag model predictions were in agreement with the practical evidence. The advantages and disadvantages of each of the domain decomposition techniques were assessed. The best proposed technique was found to combine simplicity, increased accuracy of the predictions in complex flow regions, and significantly reduced computer memory and storage requirements. The use of cylindrical co-ordinates for calculations inside cylindrical-type combustion chambers was found to achieve a more stable convergence of the algorithm and a considerable reduction of numerical diffusion. The proposed modifications of a basic NO formation model produced very encouraging predictions in a wide range of combustion conditions examined (various pressures, temperatures and oxygen concentrations). The numerical work performed provides a engineering tool to improve the physical understanding of the effects of pressurization on the performance and efficiency of combustor design. 33 refs., 25 figs., 2 tabs.

  19. Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

    2007-08-15

    The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

  20. COMPUTATIONAL MODELING AND EXPERIMENTAL STUDIES ON NOx REDUCTION UNDER PULVERIZED COAL COMBUSTION CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Subha K. Kumpaty; Kannikeswaran Subramanian; Victor P. Nokku; Tyrus L. Hodges; Adel Hassouneh; Ansumana Darboe; Sravan K. Kumpati

    1998-06-01

    In this work, both computer simulation and experimental studies were conducted to investigate several strategies for NO{sub x} reduction under pulverized coal combustion conditions with an aim to meet the stringent environmental standards for NO{sub x} control. Both computer predictions and reburning experiments yielded favorable results in terms of NO{sub x} control by reburning with a combination of methane and acetylene as well as non-selective catalytic reduction of NO{sub x} with ammonia following reburning with methane. The greatest reduction was achieved at the reburning stoichiometric ratio of 0.9; the reduction was very significant, as clearly shown in Chapters III and V. Both the experimental and computational results favored mixing gases: methane and acetylene (90% and 10% respectively) and methane and ammonia (98% and 2%) in order to get optimum reduction levels which can not be achieved by individual gases at any amounts. Also, the above gaseous compositions as reburning fuels seemed to have a larger window of stoichiometric ratio (SR2 < 0.9) as opposed to just methane (SR2=0.9) so as to reduce and keep NO{sub x} at low ppm levels. From the various computational runs, it has been observed that although there are several pathways that contribute to NO{sub x} reduction, the key pathway is NO {r_arrow} HCN {r_arrow} NH{sub 3} {r_arrow} N{sub 2} + H{sub 2}. With the trends established in this work, it is possible to scale the experimental results to real time industrial applications using computational calculations.

  1. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  2. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    Science.gov (United States)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  3. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M.M. [Ain Shams University, Cairo (Egypt). Faculty of Education

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  4. Performance appraisal of the spent fuel dry pulverizing/mixing device

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. H.; Youn, J. S.; Hong, D. H.; Kim, Y. H.; Jin, J. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The spent fuel dry pulverizing/mixing device is used to deal with the spent fuels for the safe disposal. The separated pellets from hulls by a slitting device are put and oxidized from UO{sub 2} solid pellet to U{sub 3}O{sub 8} powder in the device. The device have been developed based on a voloxidation method which is one of several dry de-cladding methods. We have benchmarked dry de-cladding methods, analyzed applicability to the advanced spent fuel management process, integrated and compared several configuration, and finally derived detailed specifications proper to requirements for the device. Also, thermal characteristics of the device such as thermal stress and strain have been analyzed by the commercial software, I-DEAS, and the reliability of the results have been verified by the KOLAS(KOrea Laboratory Accrediation Scheme). The UO{sub 2} solid pellets are put in the device which has a capacity of 20 kgHM per a batch, heated up about 500 .deg. C in the air environment. Then, the UO{sub 2} solid pellets are oxidized into the U{sub 3}O{sub 8} powder, and the powder is collected in a special vessel. The device has been designed and developed as follows: the multi-staged fine hole meshes are used to reduce the size of the powder gradually, heat and air(oxygen) are supplied continuously to reduce the reaction time, and slight vibration effect are applied to collect powder cling to the device. Based on these results, it will be effectively applied to available data for designing and producing of the hot test facility.

  5. Mechanism development of the spent fuel dry pulverizing/mixing device

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. H.; Hong, D. H.; Kim, Y. H.; Yoon, J. S.; Jin, J. H.; Park, K. Y.; Song, T. G. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The spent fuel dry pulverizing/mixing device mechanism is used to deal with the spent fuels for the safe disposal. The separated pellets from hulls by a slitting device are put and oxidized from UO{sub 2} solid pellet to U{sub 3}O{sub 8} powder in the device. The device have been developed based on a voloxidation method which is one of several dry de-cladding methods. We have benchmarked dry de-cladding methods, analyzed applicability to the advanced spent fuel management process, integrated and compared several configuration, and finally derived detailed specifications proper to requirements for the device. Also, thermal characteristics of the device such as thermal stress and strain have been analyzed by the commercial software, I-DEAS, and the reliability of the results have been verified by the KOLAS(KOrea Laboratory Accreditation Scheme). The UO{sub 2} solid pellets are put in the device which has a capacity of 20 kgHM per a batch, heated up about 600 .deg. C in the air environment. Then, the UO{sub 2} solid pellets are oxidized into the U{sub 3}O{sub 8} powder, and the powder is collected in a special vessel. The device has been development as follows: the multi-staged fine hole meshes are used to reduce the size of the powder gradually, heat and air(oxygen) are supplied continuously to reduce the reaction time, and slight vibration effect are applied to collect powder cling to the device.

  6. Design and manufacture of the dry pulverizing{center_dot}mixing device

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Hoo; Yoon, Ji Sup; Kim, Young Hwan; Jin, Jae Hyoun [KAERI, Taejon (Korea, Republic of)

    2002-07-01

    The dry pulverizing/mixing device is used to deal with the spent fuels for the safe disposal. The separated pellets from hulls by a slitting device are put and oxidized from UO{sub 2} solid pellet to U{sub 3}O{sub 8} powder in the device. The device have been developed based on a voloxidation method which is one of several dry de-cladding methods. We have benchmarked dry de-cladding methods, analyzed applicability to the advanced spent fuel management process, integrated and compared several configuration, and finally derived detailed specifications proper to requirements for the device. Also, thermal characteristics of the device such as thermal stress and strain have been analyzed by the commercial software, I-DEAS, and the reliability of the results have been verified by the KOLAS(KOrea Laboratory Accreditation Scheme). The UO{sub 2} solid pellets are put in the device which has a capacity of 20 kgHM per a batch, heated up about 600 .deg. C in the air environment. Then, the UO{sub 2} solid pellets are oxidized into the U{sub 3}O{sub 8} powder, and the powder is collected in a special vessel. The device has been designed and developed as follows: the multi-staged fine hole meshes are used to reduce the size of the powder gradually, heat and air(oxygen) are supplied continuously to reduce the reaction time, and slight vibration effect are applied to collect powder cling to the device.

  7. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    Science.gov (United States)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-08-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame.

  8. Economic Analysis for Rebuilding of an Aged Pulverized Coal-Fired Boiler with a New Boiler in an Aged Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Burhanettin Cetin

    2013-01-01

    Full Text Available Fossil-fired thermal power plants (TPP produce a significant part of electricity in the world. Because of the aging TPPs and so their equipment (especially boiler, thermal power plants also produce less power than their installed capacities, and there has been power loss in time. This situation affects the supply and demand balance of countries. For this reason, aging equipments such as pulverized coal-fired boiler (PCB must be renewed and power loss must be recovered, instead of building new TPPs. In this study, economic analysis of rebuilding an aged pulverized coal-fired boiler with a new pulverized coal-fired boiler including flue gas desulfurization (FGD unit and a circulating fluidized bed boiler (FBB are investigated in an existing old TPP. Emission costs are also added to model, and the developed model is applied to a 200 MWe pulverized coal-fired thermal power plant in Turkey. As a result, the payback period and the net present value are calculated for different technical and economic parameters such as power loss, load factor, electricity price, discount rate, and escalation rate by using the annual value method. The outcomes of this study show that rebuilding of a pulverized coal-fired boiler with a new one is amortized itself in a very short time.

  9. Efficiency comparison of preparing nano-scale microbubbles by oscillation and sonication%机械振荡法与声振法制备纳米级微泡超声造影剂效能比较

    Institute of Scientific and Technical Information of China (English)

    郑剑; 王平; 尹庭辉; 郑博文; 程度; 郑荣琴

    2012-01-01

    目的 比较机械振荡法与声振法制备纳米级微泡超声造影剂(Nanobubbles,NBs)的效能.方法分别用机械振荡法和声振法制备NBs,比较两种方法制备NBs的粒径、粒径分布、浓度以及制备所耗时间等.结果 声振法与机械振荡法制备的NBs粒径分别为(373.88±18.43)nm、(360.74±14.39)nm,二者比较差异无统计学意义(P=0.523).声振法制备的NBs离心纯化前粒径分布较广,与机械振荡法制备的NBs粒径分布(分散系数,polidispersity值)比较差异有统计学意义(P<0.001).机械振荡法制备的NBs浓度为(1.48±0.15)×1010,明显高于声振法制备的NBs浓度[(8.07±0.62)×108] (P<0.001).声振法制备NBs较机械振荡法耗时长,两者比较差异有统计学意义(P<0.001).结论 机械振荡法与声振法均能制备出NBs,但与声振法相比,机械振荡法制备的NBs粒径分布窄,浓度高,用时短,可更加快速有效地制备NBs,适合进行肿瘤超声造影成像方面的实验研究.%Objective To compare the efficiency of oscillation with sonication in preparing nano-scale microbubbles (NBs).Methods Nano-scale microbubbles were prepared using oscillation and sonication respectively,and then compared the NBs' size,size distribution,concentrations and time-consumption of the two methods.Results The sizes of nanobubbles prepared by sonication and oscillation were (373.88 ±18.43)nm and (360.74 ± 14.39)nm,respectively.There was no significant difference in size between the two methods (P =0.523).The polidispersity was larger in sonication before centrifugation,there was significant difference between the two methods (P <0.001).The concentration of nanobubbles prepared by oscillation was (1.48 ± 0.15) × 1010,which was higher than that by oscillation [(8.07 ± 0.62) × 108],there was significant difference between the two methods (P < 0.001).The consuming time was shorter in oscillation,the difference was significant when compared with sonication (P

  10. Effect of the Reburning Zone Stoichiometry on the Nox Concentration at the Three-Stage Combustion of Pulverized Coal

    Directory of Open Access Journals (Sweden)

    Chernetskaya Nelya

    2016-01-01

    Full Text Available Numerical study of heat and mass transfer taking into account the combustion of coal particles in the furnace at the three-stage combustion of pulverized coal was performed. Analysis of the reburning zone stoichiometry on the concentration of nitrogen oxides at the furnace outlet was made. The values of excess air in the primary and reburning combustion zones, providing for the concentration of nitrogen oxides at the furnace outlet is not more than 350 mg/m3 and unburned carbon not more than 1 % when burning coal with a high content of nitrogen were established.

  11. Gasification in pulverized coal flames. Second quarterly progress report, October--December 1975. [Contains literature survey on vortex gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Laurendeau, N. M.

    1976-01-01

    This project is concerned with the production of power and synthesis gases from pulverized coal via suspension gasification. A literature review concerning the vortex type gasifier has been completed and a survey concerning the confined jet gasifier is underway. Preliminary design of the vortex gasifier is nearing completion. Test cell and coal handling facilities are in the final stages of design and coal handling equipment has been received. A mass spectrometer has been ordered and a preliminary survey of high-temperature probes is complete.

  12. 煤粉燃烧过程的数值模拟%Numerical simulation of pulverized-coal combustion

    Institute of Scientific and Technical Information of China (English)

    张宏博; 秦国彤; 纪任山; 王乃继

    2009-01-01

    The comparative study between CFD numerical results of pulverized coal combustion process and the experimental data is becoming an important measure for validating mathematical models and direct engineering practice. The CFD commercial software, FLUENT, was used to simulate the pulverized coal flow and combustion. Mixture-Fraction/PDF model was used to simulate turbulent combustion; P-1 radiation model was used for simulating radiation heat transfer; the Langrange/Euler's method was used for dealing with momentum, mass and energy exchange between the solid and the gas phase; the two-competing rates model for devolatilization and the kinitics/diffusion limited combustion model for simulating surface combustion of pulverized coal particles. The result of simulation is consistent with the data from actual combustion process. The simulation results show the rules of the volatile releasing and combustion processing of coke, which could provide important references to improve the combustion of the pulverized coal.%采用计算流体动力学软件对煤粉实际燃烧过程进行数值计算并结合其热态试验数据进行对比分析,已成为验证数学模型和指导工程实践的一种重要研究手段,应用商业软件FLUENT对煤粉燃烧及流场进行了数值模拟分析,采用混合分数/概率密度函数法模拟湍流燃烧,用P-1辐射模型开展辐射传热模拟,利用拉格朗日/欧拉法处理气固两相间的动量、质量和能量交换,对挥发份的析出采用双速率竞争模型,采用动力/扩散反应速率模型模拟煤粉颗粒的表面燃烧,并对模拟结果进行分析与对比,计算结果与实际燃烧过程有较好的一致性,数值模拟计算结果揭示了挥发分释放与焦炭燃烧的过程,为改善和优化煤粉的燃烧提供了重要的参考依据.

  13. 煤质变化对Shell粉煤气化工艺的影响%THE EFFECT OF COAL QUALITY CHANGE ON SHELL PULVERIZED-COAL GASIFICATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    吴国祥

    2011-01-01

    The Shell pulverized-coal gasification process is introduced,the specific requirement for coal quality by Shell pulverized-coal gasification process summarized,several factors related to coal quality and the effect of the changes of these factors on Shell pulverized-coal gasification plant highlighted and the preventive measures based on the effects concluded.%介绍Shell粉煤气化工艺流程,总结Shell粉煤气化工艺对煤质的具体要求,阐述与煤质相关的几方面因素及这些因素的变化对Shell粉煤气化装置的影响,并根据这些影响得出相应的预防措施。

  14. 磨煤机出口风压及风温的热控安装%Thermal control installation of air pressure and air temperature of pulverizer outlet

    Institute of Scientific and Technical Information of China (English)

    任强

    2011-01-01

    According to the operation ot ZGM-95 type pulverizer produced by Beijing electric power equipment factory great used in northern region, formation and factors of air pressure and air temperature of pulverizer outlet, this paper made induction and analysis, and made technical reformation to the problems influence of the accuracy of air pressure and air temperature of pulverizer outlet, made its accurate measurement, normal operation.%针对北方地区大量使用的北京电力设备总厂生产的ZGM-95型磨煤机在运行过程中,磨出口风压及风温的形成关系和因素,归纳和分析,对影响磨出口风压及风温准确性的问题进行技术改造,使其测量准确,运行正常。

  15. Nano-scale effects in electrochemistry

    DEFF Research Database (Denmark)

    Meier, J.; Schiøtz, Jakob; Liu, Ping;

    2004-01-01

    We report combined scanning tunneling microscopy and electrochemical reactivity measurements on individual palladium nanoparticles supported on a gold surface. It is shown that the catalytic activity towards electrochemical proton reduction is enhanced by more than two orders of magnitude as the ...... by the thickness-variation of the support-induced strain at the surface of the palladium nanoparticles. (C) 2004 Elsevier B.V. All rights reserved....

  16. Charge fluctuations in nano-scale capacitors

    CERN Document Server

    Limmer, David T; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-01-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers an efficient and accurate route to the differential capacitance and is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes, and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  17. Contact engineering for nano-scale CMOS

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-09-10

    High performance computation with longer battery lifetime is an essential component in our today\\'s digital electronics oriented life. To achieve these goals, field effect transistors based complementary metal oxide semiconductor play the key role. One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new challenges to integrate good contact materials in a small area. This can be counterproductive as smaller area results in higher contact resistance thus reduced performance for the transistor itself. At the same time, discovery of new one or two-dimensional materials like nanowire, nanotube, or atomic crystal structure materials, introduces new set of challenges and opportunities. In this paper, we are reviewing them in a synchronized fashion: fundamentals of contact engineering, evolution into non-planar field effect transistors, opportunities and challenges with one and two-dimensional materials and a new opportunity of contact engineering from device architecture perspective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Numerical modelling of lighting process in pulverized-coal burner of a boiler unit by the low-temperature plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevich, H.; Rychkov, A.D. [Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Occupational Technologies

    1999-07-01

    The authors numerically modelled the process of aeromixture ignition in a pulverized-coal burner by a central axysymmetric jet of air that is heated in an electrical are plasma generator up to about 5000 K. The aim was to investigate the process of coal particle ignition in the flow and establish the conditions under which the independent combustion of pulverized coal mixture occurs. The results obtained showed the important role of radiation heat transfer in initiating the combustion process of solid fuel particles. 8 refs., 5 figs.

  19. Pulverized coal injection on the blast furnaces at U.S. Steel Kosice, S.R.O.

    Energy Technology Data Exchange (ETDEWEB)

    Baran, P.; McCoy, M.; Szalona, T. [United States Steel Corp., Kosice (Slovakia)

    2008-07-01

    United States Steel Corporation at Kosice built a new modern PCI facility that meets environmental criteria and provides a replacement for financially demanding metallurgical coke with a less expensive pulverized coal. The pulverized coal injection (PCI) technology was applied to blast furnaces no. 2 and 3 in 1993 and has resulted in the following improvements: production has increased an average of 400 to 500 tons/day; pig iron production economics have improved not only because of replacing the metallurgical coke with PCI, but also due to a decrease in the total fuel rate for producing 1 ton of hot metal; blast furnace gas utilization increased with ETA CO values around 48 per cent; and the blast furnace operation is more stable by regular burden descend. The most distinguished change has been in the way raw materials are charged to the furnaces. This paper outlined the coal quality requirements for PCI and presented a basic technological description of PCI preparation. The operational experience of the 2 blast furnaces were presented for the period of 2000 to 2007. Recommendations for PCI rate increase were also presented. It was concluded that using PCI technology in blast furnace no. 1 may bring the greatest economic efficiency for United Steel Corporation at Kosice. 4 refs., 2 tabs., 8 figs.

  20. CFD investigation on the flow and combustion in a 300 MWe tangentially fired pulverized-coal furnace

    Science.gov (United States)

    Khaldi, Nawel; Chouari, Yoldoss; Mhiri, Hatem; Bournot, Philippe

    2016-09-01

    The characteristics of the flow, combustion and temperature in a 300 MWe tangentially fired pulverized-coal furnace are numerically studied using computational fluid dynamics. The mathematical model is based on a Eulerian description for the continuum phase and a Lagrangian description for coal particles. The combustion reaction scheme was modeled using eddy dissipation concept. The application of a proper turbulence model is mandatory to generate accurate predictions of flow and heat transfer during combustion. The current work presents a comparative study to identify the suitable turbulence model for tangentially fired furnace problem. Three turbulence models including the standard k-ɛ model, the RNG k-ɛ model and the Reynolds Stress model, RSM are examined. The predictions are compared with the published experimental data of Zheng et al. (Proc Combust Inst 29: 811-818, 2002). The RNG k-ɛ model proves to be the most suitable turbulence model, offering a satisfactory prediction of the velocity, temperature and species fields. The detailed results presented in this paper may enhance the understanding of complex flow patterns and combustion processes in tangentially fired pulverized-coal furnaces.

  1. Combined Whole-Rock to Nano-Scale Investigations Reveal Contrasting Response of Pt-Os and Re-Os Isotope Systematics During Magmatic and Post-Magmatic Processes

    Science.gov (United States)

    Coggon, J. A.; Luguet, A.; Lorand, J. P.; Fonseca, R.; Wainwright, A.; Appel, P.; Hoffmann, J. E.; Nowell, G. M.

    2015-12-01

    Advances in single-grain and micro- and nano-analytical techniques in recent years have been particularly important to the study of highly siderophile elements (HSE) and have contributed significantly to our knowledge and understanding of their host phases and behaviour. Furthermore, whole-rock- to nano-scale studies provide new perspectives for investigation of HSE isotope systematics. Recent multi-scale 187Re-187Os and 190Pt-186Os studies facilitate comparison, to a previously unattainable degree, of the differing responses of these two decay systems to magmatic and post-magmatic processes. It is well established that mafic-ultramafic melts are sensitive to disturbance of their Re-Os isotope systematics by crustal assimilation, due to the incompatibility and resulting enrichment of Re in crustal lithologies. In contrast the very long half-life and extremely low atomic abundance of 190Pt, combined with relatively low Pt concentrations in crustal rocks, generally render the Pt-Os isotope system insensitive to modification during assimilation. However, using new single chromite grain data (Coggon et al., 2015) from the >3.811 Ga Ujaragssuit nunât layered ultramafic body, Greenland, we show that it is possible to distinguish two distinct episodes of 187Os/188Os modification; Country rock contamination of the parent melt was followed by later metamorphic disturbance of the isotope system. The Pt-Os data (Coggon et al., 2013) from the same samples show no evidence of crustal assimilation, but preserve signatures of mantle melting at ~4.1 Ga as well as disturbance during metamorphism. Macro- to micro-petrographic study clearly demonstrates that Pt, Re and Os are hosted by different mineral phases, of different origins, in these samples. This, together with the physical parameters of the decay systems reported above, leads to the dissimilar behaviour and response of the 187Re-187Os and 190Pt-186Os isotope systems during both magmatic and post-magmatic processes and

  2. A numerical study of pulverized coal ignition by means of plasma torches in air-coal dust mixture ducts of utility boiler furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Belosevic, S.; Sijercic, M.; Stefanovic, P. [Institute for Nuclear Science Vinca, Belgrade (Serbia)

    2008-04-15

    Paper presents selected results of numerical simulation of processes in air-coal dust mixture duct of pulverized coal utility boiler furnace with plasma-system for pulverized coal ignition and combustion stabilization. Application of the system in utility boiler furnaces promises to achieve important savings compared with the use of heavy oil burners. Plasma torches are built in air-coal dust mixture ducts between coal mills and burners. Calculations have been performed for one of rectangular air-coal dust mixture ducts with two opposite plasma torches, used in 210 MWe utility boiler firing pulverized Serbian lignite. The simulations are based on a three-dimensional mathematical model of mass, momentum and heat transfer in reacting turbulent gas-particle flow, specially developed for the purpose. Characteristics of processes in the duct are analyzed in the paper, with respect to the numerical results. The plasma-system thermal effect is discussed as well, regarding corresponding savings of liquid fuel. It has been emphasized that numerical simulation of the processes can be applied in optimization of pulverized coal ignition and combustion stabilization and enables efficient and cost-effective scaling-up procedure from laboratory to industrial scale.

  3. Impact of Coal Fly Ash Addition on Combustion Aerosols (PM2.5) from Full-Scale Suspension-Firing of Pulverized Wood

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming

    2014-01-01

    The formation of combustion aerosols was studied in an 800 MWth suspension-fired power plant boiler, during combustion of pulverized wood pellets with and without addition of coal fly ash as alkali capture additive. The aerosol particles were sampled and characterized by a low-pressure cascade...

  4. Effects of nuclear reactions b etween protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory%质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析∗

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Since metal interconnect overlayers are central components of micro/nano scaled static random access memory (SRAM), the effects of their presence on proton-induced single-event susceptibility are noteworthy. Geant4 is used to calculate the kinds and probabilities of secondary particles existing in bulk silicon, which are produced from nuclear reac-tions between protons of different energies (30, 100, 200 and 500 MeV) and micro/nano scaled SRAM. The probabilities of secondary particles with Z >30 in different overlays are compared with one another;the particles are chiefly coming from nuclear reactions between 500 MeV protons and the SRAM topped with interconnect overlayers. In addition, the kinds and ranges of the secondary particles with high LETs (linear energy transfers) are also analyzed. Results show that there is an increase in the production of secondary particles with Z >30 due to the presence of metal interconnect overlayers and the rise of proton energy. The secondary particles with Z > 60 in bulk silicon are generated by proton interactions with tungsten. As another consequence of the interactions, the secondary particles with 30 6 Z 6 50 are produced, the probability of which is higher as the proton energy increases. The maximum LET for the secondary particles with 30 6 Z 6 50 is about 37 MeV·cm2/mg and the corresponding range is several microns, which may induce single event latch-up in micro/nano scaled SRAM with well depths on the order of microns. Results obtained support the theoretic analysis of proton-induced single event effects of aerospace devices in space radiation environment.

  5. 工业煤粉锅炉控制系统的开发及应用%Development and application of industrial pulverized coal boiler control system

    Institute of Scientific and Technical Information of China (English)

    麻林

    2014-01-01

    With the promotion of energy saving and environmental protection, improve the industrial boiler thermal efficiency is one of the most important parts, small and medium-sized industrial pulverized coal boiler is developed in recent years is more efficient coal-fired industrial boilers, the boiler of 200μm pulverized coal combustion stability has a very high demand, while new auxiliary unit. According to the characteristics of the pulverized coal boiler, developed a set of pulverized coal boiler con-trol system. The characteristics of the control system mainly includes additional storage, powder, powder supply control, combus-tion control and diagnosis of combustion control, to ensure the safe, stable, efficient pulverized coal boiler operation.%随着近几年节能环保的提倡,提高工业锅炉热效率是其中重要的部分,中小型工业煤粉锅炉是近几年出现的较为高效的燃煤工业锅炉,该锅炉对200目煤粉的稳定燃烧有很高的要求,同时新增辅机配套单元。针对工业煤粉锅炉的特点,开发了一套工业煤粉锅炉控制系统。该控制系统特点主要有:储粉、供粉控制、煤粉燃烧控制和燃烧诊断控制,从而保障了工业煤粉锅炉安全、稳定、高效的运行。

  6. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel

    Science.gov (United States)

    Nodelman; Pisupati; Miller; Scaroni

    2000-05-29

    Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed.

  7. The application of RANS CFD for design of SNCR technology for a pulverized coal-fired boiler

    Directory of Open Access Journals (Sweden)

    Ruszak Monika

    2017-06-01

    Full Text Available The article describes the technology of NOx emission abatement by SNCR method. The scope of research included CDF simulations as well as design and construction of the pilot plant and tests of NOx reduction by urea in the plant located in industrial pulverized-coal fired boiler. The key step of research was to determine the appropriate temperature window for the SNCR process. The proposed solution of the location of injection lances in the combustion chamber enabled to achieve over a 30% reduction of NOx. It is possible to achieve higher effectiveness of the proposed SNCR technology and meet the required emission standards via providing prior reduction of NOx to the level of 350 mg/um3 using the primary methods.

  8. Application of BCS technology in pulverized coal furnace%BCS技术在煤粉炉上的应用

    Institute of Scientific and Technical Information of China (English)

    高瑞峰; 于现军

    2015-01-01

    BCS是应用于燃烧过程的通用优化控制技术,已成功应用于链条炉、 CFB锅炉、高炉热风炉、轧钢加热炉等多种炉型。在此基础上, BCS首次在某热电厂3台65 t/h煤粉炉上得到应用,并取得了良好的运行效果。%BCS is a sort of general optimization control technology for combustion process, which has been successfully applied to CFB boiler , chain boiler, hot stove for blast furnace, and reheating fur-nace for rolling etc.The optimization control system based on BCS was first put into use for 3 ×65t/h pulverized coal boiler and gets good results.

  9. Mercury speciation and its emissions from a 220 MW pulverized coal-fired boiler power plant in flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.H.; Zhuo, Y.Q.; Duan, Y.F.; Chen, L.; Yang, L.G.; Zhang, L.A.; Jiang, Y.M.; Xu, X.C. [Southeast University, Nanjing (China). Thermoenergy Engineering Research Institute

    2007-07-15

    Distributions of mercury speciation of Hg{sup 0}, Hg{sup 2+} and Hg{sup P} in flue gas and fly ash were sampled by using the Ontario Hydro Method in a 220 MW pulverized coal-fired boiler power plant in China. The mercury speciation was varied greatly when flue gas going through the electrostatic precipitator (ESP). The mercury adsorbed on fly ashes was found strongly dependent on unburnt carbon content in fly ash and slightly on the particle sizes, which implies that the physical and chemical features of some elemental substances enriched to fly ash surface also have a non-ignored effect on the mercury adsorption. The concentration of chlorine in coal, oxygen and NOx in flue gas has a positive correlation with the formation of the oxidized mercury, but the sulfur in coal has a positive influence on the formation of elemental mercury.

  10. Experimental investigation on NO{sub x} emission and carbon burnout from a radially biased pulverized coal whirl burner

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shan; Hui, Shi' en; Zhou, Qulan; Xu, Tongmo; Hu, Hongli [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Taisheng [Dongfang Boiler Group Co., Ltd., Zigong, Sichuan 643001 (China)

    2009-09-15

    Experiments have been performed on 1 MW pulverized coal (pc) furnace in order to investigate the characteristics of coal combustion and NO{sub x} emission from a new type of radially biased dual register whirl burner. The burner is characterized by a primary air pipe with a continuously changing cross-section and an impact ring. The mixture of pulverized coal and air inside the primary pipe is split into two streams, which are the outer pc rich annular jet and the inner pc lean annular jet respectively. Three Chinese coals, which are high rank bituminous coal, low rank bituminous coal and meager coal respectively, are used in the experiments. We examine the influences of various parameters such as the relative position of the over-fire air (OFA) nozzle, over-fire air ratio (19.1%), primary air ratio, inner secondary air ratio, outer secondary air ratio, inner secondary air swirling intensity, and outer secondary air swirling intensity on NO{sub x} formation and unburned carbon in fly ash. With the primary air ratio increasing from 13.4% to 23.4%, the value of the NO{sub x} emission of the SH coal decreases by 26.7% at first, and then increases by 21.7%. In contrast, the value of the carbon in fly ash (C{sub FA}) increases by 40.1% at first, and then decreases by 58.3%. According to the experimental results, the influence of each individual parameter on NO{sub x} formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased whirl burner, the configuration of the furnace and the distribution of the air. (author)

  11. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  12. Optical properties of a heated cornstarch mixture

    Science.gov (United States)

    Vazquez-Landaverde, Pedro A.; Morales Sánchez, Eduardo; Huerta-Ruelas, Jorge A.

    2007-03-01

    In this study, the objective was to evaluate optical properties of a corn starch-water mixture as descriptors of its behavior under processing conditions. A solution of corn starch in water was prepared and heated from 25 to 85°C in a temperature-controlled optical cell. For the measurement of optical properties, a polarized laser beam modulated through a photoelastic modulator and an analyzer, was used as optical probe. It was possible to measure transmitted light, along with optical rotation. Optical measurements showed changes related to temperature dependent phenomena such as starch granule swelling and gelatinization, in the ranges 25 to 60°C, 60 to 85°C. Above 80°C transmission values were higher, due to the solution clarification caused by corn starch gelatinization. Regarding optical rotation, it was difficult to obtain reliable measurements at low temperatures due to the high turbidity of the system. However, once gel was formed at higher temperatures, optical rotation and light transmission increased. This study demonstrated that optical techniques are suitable for the study of the behavior of water-starch mixtures under processing conditions such as heating, revealing a promising future for the monitoring of such phenomena in the production line to lower costs and improve product quality.

  13. 面向纳米电路的改进型卷积核可制造性模型建模研究∗%Improved convolution kernel based DFM mo del for nano-scale circuits

    Institute of Scientific and Technical Information of China (English)

    杨祎巍; 张宏博; 李斌

    2015-01-01

    囿于材料和工艺稳定性等原因,纳米级集成电路制造依然基于193 nm激发光的工艺,光刻波长远大于版图尺寸,使得制造中光的干涉和衍射现象极大降低了分辨率,影响了芯片质量,因此版图在制造前需要使用可制造性模型进行查错。传统模型对制造过程进行物理建模,通过对模型中的矩阵进行分解得到卷积核,所使用的物理模型不仅复杂,而且应用难度高,加之还有物理模型缺失的情况,因此难以描述具有上千参数的生产线。本文使用卷积的形式作为可制造性模型的框架,通过优化算法提取版图到硅片轮廓这一过程的信息并以卷积核的形式体现出来,卷积核中的每一个元素均为根据已知的生产线输入输出数据优化得出,是描述制造过程的一个维度。该模型克服了传统模型需要工艺参数等机密信息的缺陷,同时具有更强的描述制造过程的能力;模型甚至可以包含版图校正信息,描述从版图到硅片轮廓这一全流程。该模型在65 nm工艺下的实验结果表明该模型具有8 nm的精度。%Limited by materials and process stability, the nano-scale IC manufacturing process is still based on the 193 nm light technology and the wavelength is larger than the feature size of layout, thus the induced interference and diffraction greatly reduce the resolution, which affect the quality of the chip. So the layout needs to be checked by the design-for-manufacturability (DfM) model before manufacturing. Traditional DfM models describe the process steps using physical models, and deduce the convolution kernels by decomposing the matrix in corresponding physical models, which are not only complicated but also hard to use; thus combined with the insufficiency of physical models, it is difficult to describe the process with thousands of parameters. This paper uses convolution form as the framework of DfM model, and deduces

  14. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING%超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算

    Institute of Scientific and Technical Information of China (English)

    王斌; 刘振宇; 周晓光; 王国栋

    2013-01-01

    rolling on the precipitation behavior of nano-scale cementite particles was investigated. Based on the calculation results, the driving force of degenerated pearlitic transformation is the most negative in the three transformation mechanisms, at the same undercooled temperature, which theoretically indicates that the degenerated pearlitic transformation of undercooled austenite can easily occur to form cementite and ferrite with the equilibrium concentrations. In practical manufacturing, the diffusion of carbon atoms could be restrained by decreasing temperature in short time in the application of UFC, as a result that cementites would most likely dispersed in the form of nano-scaled particles directly, rather than being fully grown up into lamellar pealites. Due to the UFC, a large number of dispersed nano-scaled cementite areas were found in the microstructure of hot-rolled hypoeutectoid experiment steels, where the size of the cementites was within the range often to tens nanometers. The precipitation of nano-scaled cementites was realized without the micro-alloying elements. Moreover, there were a lot of carbon-rich areas in the microstructure of undercooled austenite, based on the equilibrium concentration calculation, in which the local mole fraction of carbon could be from 0.04 to 0.08, and this part of austenite with the high carbon concentration was apt to decompose and form likely the precipitation of nano-scaled cementites.

  15. Simulation of a high-pressure water jet structure as an innovative tool for pulverizing copper ore in KGHM Polska Miedź S.A.

    Directory of Open Access Journals (Sweden)

    Przemysław Józef Borkowski

    2016-01-01

    Full Text Available Effective comminution of copper ore for further processing during flotation is still a challenge, both as a technological problem as well as for the high energy costs of such processing.A high-pressure water jet is one alternative method of preparing copper ore for final flotation, causing distinct enlargement of the surface of micronized particles, which could be profitable for copper production.As a consequence of such innovative processing, particles of copper ore become micronized, ensuring grain fractions directly useful for flotation at the exit of the pulverizing apparatus (the hydro-jetting mill.The paper presents some results of simulation as well as describing an analysis of the phenomena occurring inside the high-pressure water and abrasive-water jets of specific structures, elaborated in the aspect of developing hybrid jets of maximum erosive efficiency, potentially useful for effective pulverization.

  16. Discussion on Improvement of Chain-grate Boiler to Pulverized Coal Boiler%某链条锅炉改造为煤粉锅炉的探讨

    Institute of Scientific and Technical Information of China (English)

    刘新龙; 王惠云; 杨林; 王鹏南

    2016-01-01

    对链条锅炉改造为煤粉锅炉做了系统的介绍。对改造中所涉及的各系统和设备进行了一定的分析,并证明链条炉改造为煤粉炉是可行的,其配套的烟气处理技术是有效的。%The improvement of the chain-grate boiler to pulverized coal boiler is systematically introduced. Based on the analysis of the related systems and equipments, it's proven that it's feasible to improve the chain-grate boiler to pulverized coal boiler and the corresponding flue gas treatment technology is efficient.

  17. 论路用混凝土掺合料——粉煤灰%Road Mixes the Material with the Concretes Pulverized Coal Ash

    Institute of Scientific and Technical Information of China (English)

    李吉平

    2009-01-01

    This paper introduced the road mixes the material pulverized coal ash with the concretes the characteristic, technical performance, to pulverized coal ash quality requirement, standard, choice, design requirements and isometric substitution law and excess substitution method com-putation principle.%文章介绍了路用混凝土掺合料粉煤灰的特点、技术性能、对粉煤灰的质量要求、标准、选择,以及设计要求和配制混凝土时取代水泥的等量取代法和超量取代法的计算原理.

  18. Particle-size distribution (PSD) of pulverized hair: A quantitative approach of milling efficiency and its correlation with drug extraction efficiency.

    Science.gov (United States)

    Chagas, Aline Garcia da Rosa; Spinelli, Eliani; Fiaux, Sorele Batista; Barreto, Adriana da Silva; Rodrigues, Silvana Vianna

    2017-08-01

    Different types of hair were submitted to different milling procedures and their resulting powders were analyzed by scanning electron microscopy (SEM) and laser diffraction (LD). SEM results were qualitative whereas LD results were quantitative and accurately characterized the hair powders through their particle size distribution (PSD). Different types of hair were submitted to an optimized milling conditions and their PSD was quite similar. A good correlation was obtained between PSD results and ketamine concentration in a hair sample analyzed by LC-MS/MS. Hair samples were frozen in liquid nitrogen for 5min and pulverized at 25Hz for 10min, resulting in 61% of particles 90% of particles were PSD is a key feature on analysis of pulverized hair as it can affect the method recovery and reproducibility. In addition, PSD is an important issue on sample retesting and quality control procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Comparative Techno-economic assessment of biomass and coal with CCS technologies in a pulverized combustion power plant in the United Kingdom

    OpenAIRE

    Al-Qayim, K.; Nimmo, W.; Pourkashanian, M

    2015-01-01

    The technical performance and cost effectiveness of white wood pellets (WWP) combustion in comparison to three types of coal namely U.S., Russian and Colombian coals are investigated in this study. Post-combustion capture and storage (CCS) namely with amine FG+, and oxy-fuel with carbon capture and storage (oxy-fuel) are applied to a 650 MW pulverized combustion (PC) plant. The impacts of the Renewable Obligation Certificate (ROC) and carbon price (CP) policy in accelerating the CCS deploymen...

  20. Numerical simulation of the influence of stationary louver and coal particle size on distribution of pulverized coal to the feed ducts of a power plant burner

    Directory of Open Access Journals (Sweden)

    Živković Goran

    2009-01-01

    Full Text Available One of the key requirements related to successful utilization of plasma technology as an oil-free backup system for coal ignition and combustion stabilization in power plant boilers is provision of properly regulated pulverized coal distribution to the feed ducts leading the fuel mixture to a burner. Proper regulation of coal distribution is deemed essential for achieving an adequate pulverized coal concentration in the zone where thermal plasma is being introduced. The said can be efficiently achieved by installation of stationary louver in the coal-air mixing duct ahead of the feed ducts of a burner. The paper addresses numerical simulation of a two-phase flow of air-pulverized coal mixture in the mixing ducts, analyzing the effects of particle size distribution on pulverized coal distribution to the burner feed ducts. Numerical simulation was performed using the FLUENT 6.3 commercial code and related poly-dispersed flow module, based on the PSI-CELL approach. Numerical experiments have been performed assuming a mono-dispersed solid phase with particle diameter ranging from 45 mm to 1200 mm. Distance between the louver blades and the resulting effect on the flow profile was analyzed as well. Results obtained indicate that the size of coal particles considerably influence the overall solid phase distribution. While fine particles, with diameters at the lower end of the above specified range, almost fully follow the streamlines of the continuous phase, coarser particles, which hit the louver blades, deflect towards the thermal plasma zone. In this manner, a desired phase concentration in the considered zone can be reached. For the said reason, installation of stationary louver have been deemed a very efficient way to induce phase separation, primarily due to more pronounced impact of the installed louver on discrete phase flow then the impact on the flow of the continuous phase.

  1. Investigation of the flow, combustion, heat-transfer and emissions from a 609MW utility tangentially fired pulverized-coal boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Caillat, Sébastien; Harion, Jean-Luc.;

    2002-01-01

    A numerical approach is given to investigate the performance of a 609 MW tangentially fired pulverized-coal boiler, with emphasis on formation mechanism of gas flow deviation and uneven wall temperature in crossover pass and on NOx emission. To achieve this purpose and obtain a reliable solution...... are reliable. These conclusions can be used to guide the design and operation of boilers of similar types....

  2. Combustion of wet pulverized coal in reactor flow; Combustao de particulas de carvao pulverizado contendo umidade em seu interior

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Valdeci Jose [Universidade do Planalto Catarinense (UNIPLAC), Lages, SC (Brazil). Dept. de Ciencias Exatas e Tecnologicas]. E-mail: vcosta@iscc.com.br; Krioukov, Viktor [Universidade Regional do Estado do Rio Grande do Sul (UNIJUI), Ijui, RS (Brazil). Programa de Pos-Graduacao em Modelagem Matematica]. E-mail: krioukov@main.unijui.tche.br; Maliska, Clovis Raimundo [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mail: maliska@sinmec.ufsc.br

    2000-07-01

    In this work I propose a numeric study destined to the combustion of wet pulverized coal in reacting flow. The mathematical model is composed by equations for the concentration of the substances in the reacting flow, written based in the chemical kinetics and exponential form, conservation equations and devolatilization equations, combustion of the carbon and residues. The study detects fluctuation among the temperatures of the gas and of the particles. The inclusion of the humidity as constituent part of the volatile matter doesn't affect the performance of the model, however, its presence alters the temperature profiles and the gaseous composition. With the increase of the humidity in the coal have a slight reduction in the time of combustion of the particle, what agrees with experimental data. The model foresees an increment in the difference Tp-Tg and a smaller production of CO with the increase of the wetness rate. The volatile ones, in spite of they have its fraction relatively reduced with the wetness presence they are liberated more slowly with its increment, provoking change in the position of front flame. (author)

  3. Use of fine-grained shredder dust as a cement admixture after a melting, rapid-cooling and pulverizing process

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, K. [Kyushu Institute of Technology, Fukuoka (Japan). Department of Applied Chemistry; Nakano, Y. [Kyushu Institute of Technology, Fukuoka (Japan). Graduate School, Department of Engineering; Yamasaki, T.; Shimuzu, K.; Idemitsu, T. [Kyushu Institute of Technology, Fukyoka (Japan). Department of Civil Engineering

    2004-12-01

    Shredder dust is a residue, which is removed from valuable ferrous metals found in scrap automobile and electronic waste. It is also an industrial waste byproduct which, under legislation in place since April 1996, must be disposed of in landfill sites. One method of disposing shredder dust is by scorification, however, this is a costly process and therefore impractical. Costs could be reduced if the shredder dust had a valuable use, and, in this paper, the authors examine its effectiveness as a cement admixture. First, molten shredder dust was crushed for use as a cement admixture. However, it was difficult to crush it completely because metallic grains were mixed in with molten shredder dust. These particles were removed by sifting and the molten shredder dust was crushed once again. Eventually, a fine 75 {mu}m and less powder type of slag was obtained. This slag was mixed with Ordinary Portland Cement (OPC) to form a cement mortar and subsequently a mortar test was conducted. From the test results, it was found that the long-term strength of the cement did not deteriorate even when it included 30% by weight of the pulverized molten shredder dust. (author)

  4. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  5. A New Agro/Forestry Residues Co-Firing Model in a Large Pulverized Coal Furnace: Technical and Economic Assessments

    Directory of Open Access Journals (Sweden)

    Shien Hui

    2013-08-01

    Full Text Available Based on the existing biomass co-firing technologies and the known innate drawbacks of dedicated biomass firing, including slagging, corrosion and the dependence on fuel, a new model of agro/forestry residue pellets/shreds and coal co-fired in a large Pulverized Coal (PC furnace was proposed, and the corresponding technical and economic assessments were performed by co-firing testing in a 300 MW PC furnace and discounted cash flow technique. The developed model is more dependent on injection co-firing and combined with co-milling co-firing. Co-firing not only reduces CO2 emission, but also does not significantly affect the fly ash use in cement industry, construction industry and agriculture. Moreover, economic assessments show that in comparison with dedicated firing in grate furnace, agro/forestry residues and coal co-firing in a large PC furnace is highly economic. Otherwise, when the co-firing ratio was below 5 wt%, the boiler co-firing efficiency was 0.05%–0.31% higher than that of dedicated PC combustion, and boiler efficiencies were about 0.2% higher with agro/forestry residues co-firing in the bottom and top burner systems than that in a middle burner system.

  6. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  7. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  8. The effects of unburned carbon on radiative heat transfer in a pilot pulverized coal furnace -- Numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhaohui; Xing Huawei; Zhou Yingbiao; Zheng Chuguang [National Lab. of Coal Combustion, Wuhan (China)

    1997-12-31

    This paper investigates the possible effect of residue char on the radiative heat transfer in a pilot furnace. Firstly, a program is constructed to incorporate radiative properties of particles in solving the radiative heat transfer, based on a computer code for predicting turbulent gas-solid flow and combustion. The radiative properties of single unburnt char are modeled by coated sphere model of Mie theory, while the local Planck average radiative properties of particle could be obtained by a scheme based on Lagrangian approach with particle turbulent dispersion, and the radiative heat transfer is solved by Discrete Transfer method. Then, comparisons are made among predicted results for a pilot-scale pulverized coal furnace by several particulate radiative properties models. It shows even for the pilot-scale furnace, the effect of particle concentration is more important than that of distinguishing between particles of char and ash. The residue carbon in ash has a tendency to enhance the radiative heat transfer for this case. The optimized burn-off rate to separate ash from char is near 0.65.

  9. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  10. Pulverized coal injection at BF N5 during campaign extension period : ArcelorMittal South Africa, Newcastle Works

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, V. [ArcelorMittal South Africa, Newcastle, KwaZulu-Natal (South Africa)

    2008-07-01

    Blast furnace no. 5 at ArcelorMittal South Africa's Newcastle facility was constructed in 1976 and designed to produce 5000 thm/day, with a hearth diameter of 10.14 m and a working volume of 2017 m{sup 3}. In April 2005, it began using pulverized coal (PC) following a planned maintenance shutdown. Initially, the PC was injected at a rate of 70 kg/thm, but within 5 months, the PC injection (PCI) rate was increased to 160 kg/thm. This was achieved with good replacement ratios, despite a burden that consisted of 40 per cent lump ore. However, the success was brief because of the high rate of unprepared burden, inadequate raw material quality and an aging hearth. The coke rate was therefore increased to reduce hearth wear while maintaining decent hot metal production, resulting in a lower than expected PCI rate of 100 kg/thm. The injection coal rate of 160 kg/thm will be targeted again once the hearth is replaced. Very few changes had been made in the PCI blend in the past because of the low-cost local supply of high volatile, medium ash coals. However, a new coal mine that opened in Newcastle in July 2007 made it possible to partially replace the coal in use. This paper described the operating parameters for the campaign extension period, which required a less than standard injection practice to reduce the amount of production outages. The hearth and stave conditions during the campaign extension were found to be the major barriers to injecting high PCI rates. It was concluded that it is important to re-evaluate the raw material cost for all the fuels used on a regular basis, since the costs to produce coke for higher injection rates could outweigh the advantages at the blast furnace. 3 refs., 1 tabs., 3 figs.

  11. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    Energy Technology Data Exchange (ETDEWEB)

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  12. Assessment against Experiments of Devolatilization and Char Burnout Models for the Simulation of an Aerodynamically Staged Swirled Low-NOx Pulverized Coal Burner

    Directory of Open Access Journals (Sweden)

    Marco Torresi

    2017-01-01

    Full Text Available In the next few years, even though there will be a continuous growth of renewables and a loss of the share of fossil fuel, energy production will still be strongly dependent on fossil fuels. It is expected that coal will continue to play an important role as a primary energy source in the next few decades due to its lower cost and higher availability with respect to other fossil fuels. However, in order to improve the sustainability of energy production from fossil fuels, in terms of pollutant emissions and energy efficiency, the development of advanced investigation tools is crucial. In particular, computational fluid dynamics (CFD simulations are needed in order to support the design process of low emission burners. Even if in the literature several combustion models can be found, the assessment of their performance against detailed experimental measurements on full-scale pulverized coal burners is lacking. In this paper, the numerical simulation of a full-scale low-NO x , aerodynamically-staged, pulverized coal burner for electric utilities tested in the 48 MW th plant at the Combustion Environment Research Centre (CCA - Centro Combustione e Ambiente of Ansaldo Caldaie S.p.A. in Gioia del Colle (Italy is presented. In particular, this paper is focused on both devolatilization and char burnout models. The parameters of each model have been set according to the coal characteristics without any tuning based on the experimental data. Thanks to a detailed description of the complex geometry of the actual industrial burner and, in particular, of the pulverized coal inlet distribution (considering the entire primary air duct, in order to avoid any unrealistic assumption, a correct selection of both devolatilization and char burnout models and a selection of suited parameters for the NO x modeling, accurate results have been obtained in terms of NO x formation. Since the model parameters have been evaluated a priori, the numerical approach proposed

  13. 低挥发分煤粉燃烧新技术发展与应用%Development and application of low volatile pulverized coal combustion technique

    Institute of Scientific and Technical Information of China (English)

    周建明

    2011-01-01

    Introduce the development and application of low volatile pulverized coal combustion technique. The representative burners and framework of boilers were demonstrated and the key techniques, including strengthening hot gas back flow,keeping adopting pulverized coal concentration,and extending length of flame,were also analyzed and these techniques can help pulverized coal ignite quickly and keep stable ignition. The suitable combustion system should be strictly chosen for low volatilization pulverized coal, such as tangentially firing, opposed firing, W-shape flame, and CUF firing and so on. Meanwhile, being the superior stability in anthracite combustion to tangential firing and opposed firing,W-shape boilers are mainly used. Having the strongpoint of stable combustion, high combustion efficiency, stepped firing in recirculation and low NO, emission, the high-temperature combustion technique for low volatilization coal will have wide application foreground.%介绍了国内外低挥发分煤粉燃烧技术及发展.对具有代表性的燃烧器及炉膛结构进行简要分析,说明热回流、煤粉浓缩、延长火焰长度等关键技术在实现低挥发分难燃煤粉快速着火、稳定燃烧中的应用.指出尽管燃烧器在应用中取得一定的效果,但仍然存在一些问题,因而对于低挥发分煤种还需要同时选择合理的燃烧方式,如切向燃烧、对冲燃烧、W型火焰燃烧及CUF火焰燃烧等技术.其中,W型火焰燃烧方式对难燃无烟煤的燃烧稳定性优于四角和对冲燃烧方式,是目前主要采用的燃烧结构.高温空气燃烧技术对低挥发分煤具有火焰稳定、热效率高、再循环分级燃烧,低NOx排放等优点,将成为更有前景的燃烧技术.

  14. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    Fine particles formed from combustion of a bituminous coal and co-combustion of coal with 7 th% (thermal percentage) solid recovered fuel (SRF) in a pulverized coal-fired power plant were sampled and characterized in this study. The particles from dedicated coal combustion and co-combustion both...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  15. Experiments and computational modeling of pulverized-coal ignition. Semiannual report, Apr 1, 1998--Sep 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    John C. Chen; Samuel Owusu-Ofori

    1998-10-31

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals. It is unclear whether ignition occurs first at the particle-oxygen interface (heterogeneous ignition) or if it occurs in the gas phase due to ignition of the devolatilization products (homogeneous ignition). Furthermore, there have been no previous studies aimed at determining the dependence of the ignition mechanism on variations in experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition mechanism of various coals by direct observation, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. They propose to use a novel laser-based ignition experiment to achieve their objectives. The heating source will be a pulsed, carbon dioxide laser in which both the pulse energy and pulse duration are independently variable, allowing for a wide range of heating rates and particle temperatures--both of which are decoupled from each other and from the particle size. This level of control over the experimental conditions is truly novel in ignition and combustion experiments. Laser-ignition experiments also offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature

  16. Selection of Special Valves in Pulverized Coal Gasiifcation Industry%粉煤气化特殊阀门选型

    Institute of Scientific and Technical Information of China (English)

    张赫

    2016-01-01

    China is a country of ‘lean oil, less gas, rich in coal’, therewith the technology of coal gasification is an important means to realize the clean and efficient use of coal. Moreover the technology of pressured pulverized coal gasification recognized as a mature technology in the industry possess advantages of large production capacity and high gasification efficiency. However, the erosion of special valve from abrasion by particles of process fluid can be serious, which will cause the short service cycle and huge economic losses. This paper is based on the successful experience in the similar domestic plants among these years, summarize the application of variety of special valves in the industry, put forward suggestions of instrument selection, and provide the reference for the engineering of similar projects in the future.%我国是一个“贫油、少气、富煤”的国家,煤气化技术是实现煤炭清洁高效利用的重要手段。粉煤加压气化技术是目前业内认可较为成熟的技术,具有生产能力大、气化效率高的特点。然而由于其工艺介质的特点,其中所应用的特殊阀门磨损严重,使用周期短,导致装置频繁停车,造成了巨大的经济损失。本文根据近些年国内粉煤气化的成功运行经验,对其中多种特殊应用的阀门使用进行了总结探讨,提出建议的仪表选型,为同类项目的仪表设计工作提供参考依据。

  17. Technological Analysis on Choren High-Pressure Pulverized Coal Gasification Process%科林高压干粉煤气化工艺技术分析

    Institute of Scientific and Technical Information of China (English)

    赵小倩; 胡长胜

    2011-01-01

    The process and features of Choren high-pressure pulveried coal gasification are presented. Operability of the gasification technology is analysed. And the operation data as compared with the other two coal gasification processes, i.e. pulverized coal gasification process with waste heat boiler and coal-water slurry pressure gasification process, using in China are described briefly. Choren high-pressure pulverized coal gasification process is featured with simple in equipment structure, wider applicability of coal variety, lower consumption and high localization of equipment.%介绍了科林高压干粉煤气化的工艺流程、工艺特点.对该气化技术的可操作性进行了分析,并与国内应用的2种煤气化工艺(干粉煤废锅气化工艺和水煤浆加压气化工艺)数据进行了简单对比.科林高压干粉煤气化工艺具有设备结构简单、煤种适用性更宽、消耗低和设备国产化程度高的特点.

  18. HT-L与Shell及Texaco粉煤气化技术的比较%Technological Comparison of HT-L with Shell and Texaco Pulverized Coal Gasification Processes

    Institute of Scientific and Technical Information of China (English)

    吴胜军

    2011-01-01

    介绍了HT-L粉煤气化技术的工艺特点,并从比氧耗、有效气成分、煤气化效率、能耗等方面与Shell 及Texaco粉煤气化技术进行了分析比较.结果表明:HT-L粉煤气化技术具有高效节能、煤种适用范围广、气化效率高、能耗低、建设和运行成本低、工艺成熟可靠并具有自主知识产权的优点,具有广阔的发展前景.%Process features are described of the HT-L pulverized coal gasification technology, and an analytical comparison is done with the Shell and Texaco pulverized coal gasification technology in terms of specific oxygen consumption, active gas constituent, coal gasification efficiency, and energy consumption. The results show that the HT-L technology has the advantages of highly efficient energy saving, wide scope of application to various coal types, high gasification efficiency, low energy consumption, low construction and operation cost, mature and reliable technology, and possession of independent intellectual property, and so it brings about broad prospects for development.

  19. PARTICLE SIZE-DEPENDENT PULVERIZATION OF B4C AND GENERATION OF B4C/STS NANOPARTICLES USED FOR NEUTRON ABSORBING COMPOSITES

    Directory of Open Access Journals (Sweden)

    JAEWOO KIM

    2014-10-01

    Full Text Available Pulverization of two different sized micro-B4C particles (∼10 μm and ∼150 μm was investigated using a STS based high energy ball milling system. Shapes, generation of the impurities, and reduction of the particle size dependent on milling time and initial particle size were investigated using various analytic tools including SEM-EDX, XRD, and ICP-MS. Most of impurity was produced during the early stage of milling, and impurity content became independent on the milling time after the saturation. The degree of particle size reduction was also dependent on the initial B4C size. It was found that the STS nanoparticles produced from milling is strongly bounded with the B4C particles forming the B4C/STS composite particles that can be used as a neutron absorbing nanocomposite. Based on the morphological evolution of the milled particles, a schematic pulverization model for the B4C particles was constructed.

  20. Comparative analysis of the influence of turbulence models on the description of the nitrogen oxides formation during the combustion of swirling pulverized coal flow

    Science.gov (United States)

    Kuznetsov, V.; Chernetskaya, N.; Chernetskiy, M.

    2016-10-01

    The paper presents the results of numerical research on the influence of the two- parametric k-ε, and k-ω SST turbulence models as well as Reynolds stress model (RSM) on the description of the nitrogen oxides formation during the combustion of pulverized coal in swirling flow. For the numerical simulation of turbulent flow of an incompressible liquid, we used the Reynolds equation taking into account the interfacial interactions. To solve the equation of thermal radiation transfer, the P1 approximation of spherical harmonics method was employed. The optical properties of gases were described based on the sum of gray gases model. To describe the motion of coal particles we used the method of Lagrange multipliers. Burning of coke residue was considered based on diffusion - kinetic approximation. Comparative analysis has shown that the choice of turbulence model has a significant impact on the root mean square (RMS) values of the velocity and temperature pulsation components. This leads to significant differences in the calculation of the nitrogen oxides formation process during the combustion of pulverized coal.

  1. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [Comparison of AFB plant and pulverized coal plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The first part of this report presents a comparison of the conceptual designs of a large (570 MW(e)) pulverized coal (PC) steam generator equipped with a wet limestone flue gas desulfurization (FGD) system and two equivalent sized atmospheric fluidized bed (AFB) steam generators including balance of plants for electric-power generation. The reader is cautioned that this portion of the report compares a zero generation AFB technology to pulverized coal technology which has been operationally and economically optimized for the past half-century. This comparison is intended to be indicative of whether further development of the AFB concept as a viable alternative to the PC/FGD concept for electric-power generation is merited. In the second part, the load-following capability of a once-through subcritical atmospheric fluidized bed boiler is analyzed. Digital computer simulation predictions of the plant's response to open loop step changes in firing rate, feedwater flow, governor valve, unit load demand, etc, are made. The predicted response of throttle pressure, steam temperature, unit load, etc, are compared to the response of a conventional coal-fired, once-through, subcritical unit. The load-following capability is assessed through this qualitative comparison. Additional model response predictions are also presented for which no test data are presently available.

  2. Numerical analysis of loads effect on combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Yang, Weihong; Blasiak, Wlodzimierz [Royal Institute of Technology (KTH), Stockholm (Sweden). Div. of Energy and Furnace Technology; Jankowski, Radoslaw; Kotecki, Michal; Szewczyk, Dariusz [Industrial Combustion Systems (ICS) Company, Poznan (Poland); Brzdekiewicz, Artur [Remak-Rozruch SA, Opole (Poland)

    2013-07-01

    This paper presents numerical study on the combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler. Three different loads have been simulated with combusting coal, 200, 170 and 140 MW, respectively. In order to get as precise as possible numerical analysis results, two-step simulation method has been adopted in this work, namely, air supply system simulation and furnace simulation. After air supply system simulation, the results have been taken as the initial and boundary conditions for furnace simulation. The comparison between the measured values and predicted results from 200 MW case shows much better agreement. According to the simulation results, the adopted two-step simulation method is reasonable and suitable for predicting the characters of the flow and combustion process. It is concluded that the distributions of temperature, O{sub 2} and CO concentration inside furnace with different loads shows good similarly. The total NOx emissions decreased with the boiler load reducing, and fuel NO{sub x} has the same trend as total NO{sub x}, and fuel NO{sub x} account for about 66% in total NO{sub x} in all the three cases. More important, thermal NO{sub x} slowly decreased with the rise of boiler load. More detailed results presented in this paper enhance the understanding of combustion processes and complex flow patterns of front-wall pulverized coal boilers.

  3. Industrial Experimental Study and Application of Plasma Pulverized Coal Ignition Burner%等离子煤粉点火燃烧器工业性试验研究及应用

    Institute of Scientific and Technical Information of China (English)

    崔凤誉; 张玉周

    2001-01-01

    This paper systematically explains the content and method of industrial experiment in plasma pulverized coal ignition burner analyzes the experiment results,and puts forward the two-parameter concentration of pulverized coal and fuel ratio combustion regulation-control of plasma pulverized coal ignition burner.On the basis of the industrial experiment,Shandong Yantai Coal-fired Power Plant has realized successfully the boiler ignition without oil aid by using plasma pulverized coal ignition burner for the first time.%阐释等离子煤粉点火燃烧器工业试验的内容及方法,并对其试验结果进行分析。提出等离子煤粉点火燃烧器燃烧调整的双参数煤粉浓度、燃功比控制法。在对等离子煤粉点火燃烧器工业试验基础上,2000年2月15日,山东烟台发电厂利用等离子煤粉点火燃烧器首次实现了机组无油点火。

  4. Bosonics: Phononics, Magnonics, Plasmonics in Nano-Scale Disorder(Nanonics), Metamaterials, Astro-Seismology (Meganonics): Brillouin-Siegel GENERIC: Generalized-Disorder Collective-Boson Mode-Softening Universality-Principle (G...P) With PIPUB Many-Body Localization

    Science.gov (United States)

    Siegel, Edward

    Siegel and Matsubara[Statphys-13(`77) Intl.Conf.Lattice-Dyn.(`77)Scripta Met.13,913(`80)]JMMM:5, 1, 84 (`77)22,1:41,58(`80)Mag.Lett.(`80)Phys./Chem.Liquids:4,(4) (`75)5,(1)(76)] generalization to GENERIC Siegel[J.Non-Xline-Sol.40,453(`80)] G...P GENERIC Brillouin[Wave-Propagation in Periodic-Structures(`22)]-Landau[`41]-Feynman[`51]-de Boer[in Phonons/Phonon-Interactions(`64)]-Egelstaff[Intro.Liquid-State(`65)]-Hubbard-Beebe[J.Phys.C(`67)]-``Anderson''[1958]- Siegel [J.Non-Xl.-Sol. 40, 453(`80)] GENERIC many-body localization. GENERIC Hubbard-Beebe[J.Phys.C(`67)] static structure-factor S(k) modulated kinetic-energy ω(k) = ℏ ⌃(2)k⌃(2)/2mS(k) expressing G....P(``bass-ackwardly'') aka homogeneity and isotropy creates GENERIC G...P with GENERIC pseudo-isotropic pseudo-Umklapp backscattering (PIPUB) for GENERIC many-body localization of and/or by mutually interacting collective-bosons: phonons(phononics) with magnons(magnonics) with plasmons(plasmonics) with fermions (electros, holes)...etc. in nano-scale ``disorder'', metamaterials and on very-macro-scales (surprisingly) Bildsten et.al. astro-seismology(meganonics) of red-giant main-sequence stars(Mira, Betelguese)!

  5. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  6. CFD analysis of the pulverized coal combustion processes in a 160 MWe tangentially-fired-boiler of a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano V. da; Beskow, Arthur B. [Universidade Regional Integrada do Alto Uruguai e das Misses (LABSIM/GEAPI/URI), Erechim, RS (Brazil). Dept. de Engenharia e Ciencia da Computacao. Grupo de Engenharia Aplicada a Processos Industriais], Emails: cristiano@uricer.edu.br, Arthur@uricer.edu.br; Indrusiak, Maria Luiza S. [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil). Programa de Engenharia Mecanica], E-mail: sperbindrusiak@via-rs.net

    2010-10-15

    The strategic role of energy and the current concern with greenhouse effects, energetic and exegetic efficiency of fossil fuel combustion greatly enhance the importance of the studies of complex physical and chemical processes occurring inside boilers of thermal power plants. The state of the art in computational fluid dynamics and the availability of commercial codes encourage numeric studies of the combustion processes. In the present work the commercial software CFX Ansys Europe Ltd. was used to study the combustion of coal in a 160 MWe commercial thermal power plant with the objective of simulating the operational conditions and identifying factors of inefficiency. The behavior of the flow of air and pulverized coal through the burners was analyzed, and the three-dimensional flue gas flow through the combustion chamber and heat exchangers was reproduced in the numeric simulation. (author)

  7. Principles of Selecting Type of Direct Flow Pulverized Coal Burner before Retrofit%直流煤粉燃烧器改造前的选型原则

    Institute of Scientific and Technical Information of China (English)

    李凤瑞

    2001-01-01

    针对锅炉燃烧器改造问题,提出在燃烧器改造前如何根据锅炉实际情况选择合适燃烧器类型的5项选型原则,包括煤种匹配原则、炉型匹配原则、工作业绩及创新性原则、经济性及安装检修方便性原则、运行自适应原则。对电厂煤粉燃烧器的改造有一定参考作用。%Which structure type of burner should be adopted for various utilities pulverized coal-fired boilers﹖ This paper puts forward five principles of selecting burner's type being of directive significance for the power plant that is going to retrofit burners.

  8. Influence of the gray gases number in the weighted sum of gray gases model on the radiative heat exchange calculation inside pulverized coal-fired furnaces

    Directory of Open Access Journals (Sweden)

    Crnomarković Nenad Đ.

    2016-01-01

    Full Text Available The influence of the number of gray gases in the weighted sum in the gray gases model on the calculation of the radiative heat transfer is discussed in the paper. A computer code which solved the set of equations of the mathematical model describing the reactive two-phase turbulent flow with radiative heat exchange and with thermal equilibrium between phases inside the pulverized coal-fired furnace was used. Gas-phase radiative properties were determined by the simple gray gas model and two combinations of the weighted sum of the gray gases models: one gray gas plus a clear gas and two gray gases plus a clear gas. Investigation was carried out for two values of the total extinction coefficient of the dispersed phase, for the clean furnace walls and furnace walls covered by an ash layer deposit, and for three levels of the approximation accuracy of the weighting coefficients. The influence of the number of gray gases was analyzed through the relative differences of the wall fluxes, wall temperatures, medium temperatures, and heat transfer rate through all furnace walls. The investigation showed that there were conditions of the numerical investigations for which the relative differences of the variables describing the radiative heat exchange decrease with the increase in the number of gray gases. The results of this investigation show that if the weighted sum of the gray gases model is used, the complexity of the computer code and calculation time can be reduced by optimizing the number of gray gases. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in-house developed software tools

  9. [An investigation of the formation of] polycyclic aromatic hydrocarbon (PAH) emissions when firing pulverized coal in a bench-scale drop tube reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pisupati, S.V.; Wasco, R.S.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.

    1998-12-31

    The Clean Air Act Amendments (CAAA) of 1990 contain provisions which will set standards for the allowable emissions of 188 analytes designated as hazardous air pollutants (HAPs). This list of HAPs was used to establish an initial list of source categories for which EPA would be required to establish technology-based emission standards, which would result in regulated sources sharply reducing routine emissions of toxic air pollutants. Polycyclic organic matter (POM) has also been referred to as polynuclear or polycyclic aromatic compounds (PACs). Nine major categories of POM have been defined by EPA. The study of organic compounds from coal combustion is complex and the results obtained so far are inconclusive with respect to emission factors. The most common organic compounds in the flue gas of coal-fired power plants are polycyclic aromatic hydrocarbons (PAHs). Furthermore, EPA has specified 16 PAH compounds as priority pollutants. These are naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, and dibenz[ah]anthracene. Penn State`s Combustion Laboratory is equipped to collect and analyze the HAPs in the flue gas from fossil fuels combustion. The overall objective of this study was to examine the effect of unit temperature on PAH emissions. A Modified Method 5 sampling train was used to isokinetically collect samples at desired locations in flue gas streams. The collected sample can be separated into solid, condensed liquid and gaseous phases. The PAHs of interest are extracted from the collected sample, concentrated, then separated and quantified by gas chromatography/mass spectrometry (GC/MS). This study was conducted using a bench-scale drop-tube reactor (DTR). The fuel selected for this study was a Middle Kittanning seam coal pulverized to 80% passing US Standard 200 mesh (commonly

  10. Application of the NOx Reaction Model for Development of Low-NOx Combustion Technology for Pulverized Coals by Using the Gas Phase Stoichiometric Ratio Index

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2011-03-01

    Full Text Available We previously proposed the gas phase stoichiometric ratio (SRgas as an index to evaluate NOx concentration in fuel-rich flames. The SRgas index was defined as the amount of fuel required for stoichiometric combustion/amount of gasified fuel, where the amount of gasified fuel was the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. In the present study we found that SRgas was a good index to consider the gas phase reaction mechanism in fuel-rich pulverized coal flames. When SRgas < 1.0, NOx concentration was strongly influenced by the SRgas value. NOx concentration was also calculated by using a reaction model. The model was verified for various coals, particle diameters, reaction times, and initial oxygen concentrations. The most important reactions were gas phase NOx reduction reactions by hydrocarbons. The hydrocarbon concentration was estimated based on SRgas. We also investigated the ratio as an index to develop a new low-NOx combustion technology for pulverized coals. We examined the relation between local SRgas distribution in the fuel-rich region in the low-NOx flame and NOx emissions at the furnace exit, by varying burner structures. The relationship between local SRgas value and local NOx concentration was also examined. When a low-NOx type burner was used, the value of SRgas in the flame was readily decreased. When the local SRgas value was the same, it was difficult to influence the local NOx concentration by changing the burner structure. For staged combustion, the most important item was to design the burner structure and arrangement so that SRgas could be lowered as much as possible just before mixing with staged air.

  11. The effects of strontium micro/nano-scale coating on the biological activity of BMMSCs%微/纳米化载锶涂层对骨髓间充质干细胞生物活性影响的研究

    Institute of Scientific and Technical Information of China (English)

    付乾; 李永锋; 程兵坤; 梁建飞; 秦东泽; 许珊珊; 齐亚平; 牛强; 孔亮

    2016-01-01

    目的:评价微/纳米化载锶涂层对骨髓间充质干细胞(BMMSCs)生物活性的影响。方法:将纯钛片分为3组,A组:光滑组(未经任何处理,n=24);B组:氢氟酸(HF)酸蚀组(n=24);C组:HF酸蚀+磁控溅射组(n=27)。SEM观察钛片表面形貌;X射线能谱(EDS)分析其表面元素含量;表面接触角检测钛片表面亲水性;离子释放试验检测C组的锶离子释放情况。在3组钛片表面分别接种BMMSCs,观察BMMSCs早期粘附能力;MTT检测细胞增殖能力;ALP活性评估细胞成骨分化能力。结果:3组钛片经不同方法处理后,B组形成微米级表面形貌;C组形成微/纳米表面形貌,并载入了锶元素,且锶元素可以离子形式释放;B、C组的亲水性、细胞粘附及增殖能力均高于A组,且B组高于C组;C组表面细胞的ALP活性显著高于B组。结论:微/纳米化载锶涂层有助于促进BMMSCs的增殖和成骨分化能力。%AIM:To evaluate the effects of strontium micro/nano scale coating on the biological activity of BMMSCs.METHODS:Titanium plates were divided into 3 groups:polished surface group (n =24,group A), Hydrofluoric (HF)acid etched surface group (n=24,group B),and HF acid etched plus magnetron sputtered sur-face group (n=27,group C).The surface properties of the plates were observed by SEM.The elemental composition was assessed by an energy dispersive X-Ray spectroscopy detector (EDS).The hydrophilia was evaluated by contact angles analysis.Sr2+release was examined.BMMSCs were seeded onto the surface of the plates,early adhesion and morphology of BMMSCs were observed by confocal microscopy and SEM.Cell viability and ALP activity were detected by MTT assay and ALP activity detection kits respectively.RESULTS:Micro-scale surface structure was formed after HF etching or after HF acid etched plus magnetron sputtering.The contact angle of the plate surface of group B and C was

  12. Application and Operational Maintenance Experience of Plasma Pulverized Coal Ignition Combustion Technology%等离子煤粉点火燃烧技术的应用及运维经验

    Institute of Scientific and Technical Information of China (English)

    刘俊臻

    2012-01-01

    介绍了交流等离子煤粉点火系统的工作原理、点火燃烧器功能、点火燃烧机理以及在上海吴泾热电厂2台1125t/h锅炉上的应用情况。总结了等离子煤粉点火装置和稳燃系统的安装、调试与日常运维经验。实践表明,等离子煤粉点火技术是一种节能、环保、快速升负荷的技术。锅炉点火燃油零消耗,既提高了煤粉燃烧的经济性,又减少了燃煤电厂的烟尘排放;既改善了厂区周边环境,又降低了生产成本。交流等离子煤粉点火系统的应用,可以获得较好的经济及社会效益。%The essay introduces operational principle of alternating plasma pulverized coal ignition system, the function of ignition burner, mechanization of ignition combustion and the application of plasma pulverized coal ignition combustion technology on two 1 125 t/h boilers in Shanghai Wujing Thermal Power Plant. It also makes a summary of installation, debugging and routine operational maintenance experience for plasma pulverized coal ignition device and stabilized combustion system. The practice proves that plasma pulverized coal ignition technology is a new technology with conservation of energy, environmental protection and quick power increasing. With ignition fuel oil zero consumption, it not only raises economical efficiency of pulverized coal burning, but also reduces smoke dust discharging in coal fired power plant, and improves power plant's surroundings as well as lowers the production cost effectively. The application of alternating plasma pulverized coal ignition system brings better economic and social benefits.

  13. Ignition et oxydation des particules de combustible solide pulvérisé Ignition and Oxidation of Pulverized Solid Fuel

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    élais d'ignition ont été déterminés pour un grand nombre de combustibles solides de rang inférieur et supérieur (charbons, cokes, asphaltènes, suies, bois, graphite. L'étude de la vitesse expérimentale de la combustion hétérogène, notamment l'étude de la température apparente d'activation, et sa dépendance par rapport à la taille des particules et à la concentration d'oxygène, montre que, dans les conditions des essais, cette combustion est contrôlée par la désorption du CO et se déroule principalement en régime cinético-diffusionnel mixte. L'étude de la dépendance des délais d'ignition par rapport à la température, la taille des particules et la pression partielle d'oxygène, suggère que, pendant ces délais, les réactions se déroulent en régime cinétique pur et que le produit des réactions de désorption est principalement le CO. The heated-grid method is used to investigate the competition between (1 the devolatilization and subsequent oxidation of pyrolysis products and (2 the ignition of the solid matrix and its rapid combustion. A comparison between the instant of ignition and the start of pyrolysis is used to determine the range in which ignition of a pyrolyzable solid fuel of the whole coal ignitiontype (i. e. when ignition occurs before pyrolysis becomes measurable occurs as a function of temperature, particle size and oxygen concentration. The results suggest that this type of ignition might occur, as a general rule, under conditions involving pulverized solid fuels in industrial flames. In the case of whole coalignition, the rate of combustion of the solid matrix is inhibited during the period following ignition. This inhibition is due partly to the difficulty oxygen has of spreading through the pores during the discharge of pyrolysis products and partly to preferential oxygen consumption during the oxidation of pyrolysis products, mainly when this oxidation develops in the form of flames. t is only when pyrolysis ends that

  14. Monolithic silica aerogel - material design on the nano-scale

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    By means of a production process in two major steps - a sol/gel process and a supercritical drying – open-cell, monolithic silica aerogel can be made. This material can have a density in the range of 30- to 300 kg/m3, corresponding to porosities between 86 and 98 %. The solid structure has...... of piezoelectric transducers. - Other applications could be; waste encapsulation, spacers for vacuum insulation panels, membranes, etc. Department of Civil Engineering is co-ordinator of a current EU FP5 research project1, which deals with the application of aerogel as transparent insulation materials in windows....... Due to the excellent optical and thermal properties of aerogel, it is possible to develop windows with both high insulation and high transmittance, which is impossible applying the conventional window techniques, i.e. extra layers of glass, low-e coatings and gas fillings. It can be shown...

  15. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    Science.gov (United States)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under different conditions. In addition, AFM was used to measure the charge density of cell surface in physiological conditions. We found that the treatments changed the cancer cells' ultra-structural and mechanical properties at the nanometer scale. Finally, we used AFM to characterize many non-biological materials with relevance to biomedical science. Various metals, polymers, and semi-conducting materials were characterized in air and multiple liquid media through AFM - techniques from which a plethora of industries can benefit. This applies especially to the fledging solar industry which has found much promise in nanoscopic insights. Independent of the material being examined, a reliable method to measure the surface force between a nano probe and a sample surface in a variety of ionic concentrations was also found in the process of procuring these measurements. The key findings were that the charge density increases with the increase of the medium's ionic concentration.

  16. Robust computing with nano-scale devices progresses and challenges

    CERN Document Server

    Huang, Chao

    2010-01-01

    The focus of this book is on various issues of robust nano-computing, defect-tolerance design for nano-technology at different design abstraction levels. It addresses both redundancy- and configuration-based methods as well as fault detecting techniques.

  17. Phonon transport across nano-scale curved thin films

    Science.gov (United States)

    Mansoor, Saad B.; Yilbas, Bekir S.

    2016-12-01

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  18. Phonon transport across nano-scale curved thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa

    2016-12-15

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  19. A Nano-scale Study on Film Stability

    Institute of Scientific and Technical Information of China (English)

    Cheng TAO; Gen Lin TIAN; Regine V. KLITZING; Peter BEHRENBRUCH

    2004-01-01

    Thickness and stability of films formed by different surfactants are studied by means of thin film balance (TFB) technique to observe the formation and stability of the films. It is demonstrated that stable Newton black films (NBFs) can be easily obtained with non-ionic surfactants (C12E5, C12G2) than ionic surfactants (C12TAB, C16TAB). Common black film (CBF) was obtained with C16TAB at 5×10-3 mol/L, while the film of C12TAB is unstable. It has been demonstrated that the horizontal forces should also be taken into consideration for explaining film stability.

  20. Industrial characterization of nano-scale roughness on polished surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik; Pilny, Lukas

    2015-01-01

    We report a correlation between the scattering value “Aq” and the ISO standardized roughness parameter Rq. The Aq value is a measure for surface smoothness, and can easily be determined from an optical scattering measurement. The correlation equation extrapolates the Aq value from a narrow...

  1. High-precision micro/nano-scale machining system

    Science.gov (United States)

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  2. Hybrid Continuum and Molecular Modeling of Nano-scale Flows

    Science.gov (United States)

    Povitsky, Alex; Zhao, Shunliu

    2010-11-01

    A novel hybrid method combining the continuum approach based on boundary singularity method (BSM) and the molecular approach based on the direct simulation Monte Carlo (DSMC) is developed and then used to study viscous fibrous filtration flows in the transition flow regime, Kn>0.25. The DSMC is applied to a Knudsen layer enclosing the fiber and the BSM is employed to the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size and the size of the coupling zone are determined. Results are compared to the experiments measuring pressure drop and flowfield in filters. The optimal location of singularities outside of flow domain was determined and results are compared to those obtained by regularized Stokeslets. The developed hybrid method is parallelized by using MPI and extended to multi-fiber filtration flows. The multi-fiber filter flows considered are in the partial-slip and transition regimes. For Kn˜1, the computed velocity near fibers changes significantly that confirms the need of molecular methods in evaluation of the flow slip in transitional regime.

  3. The surface parameters modifications at nano scale for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Safonov, V; Zykova, A; Smolik, J; Rogovska, R; Donkov, N; Georgieva, V, E-mail: zykov@bi.com.u

    2010-11-01

    Functional coatings deposition is an effective way of surface modification with direct control of stoichiometry, impurity elements, functional groups and surface charges. Modified surface properties such as composition, roughness, wettability have effect on the most important processes at biomaterial interface. The aim of present study was the analysis of surface roughness and surface free energy parameters of oxide Al{sub 2}O{sub 3} and Ta{sub 2}O{sub 5} coatings and the possibility to separate the influence of such factors on the regularities and mechanisms of nano materials interactions with the biological objects.

  4. Nano-scale orientation mapping of graphite in cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Theuwissen, Koenraad; Lacaze, Jacques [Institut CARNOT CIRIMAT, Université de Toulouse, ENSIACET, CS 44362, 31030 Toulouse Cedex 4 (France); Véron, Muriel [SIMAP, CNRS-Grenoble INP, BP 46 101 rue de la Physique, 38402 Saint Martin d' Hères (France); Laffont, Lydia, E-mail: lydia.laffont@ensiacet.fr [Institut CARNOT CIRIMAT, Université de Toulouse, ENSIACET, CS 44362, 31030 Toulouse Cedex 4 (France)

    2014-09-15

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains.

  5. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  6. Nano-Scale Devices for Frequency-Based Magnetic Biosensing

    Science.gov (United States)

    2017-01-31

    electrically contact a spin torque oscillator on a small rectangular silicon wafer which is mounted above one of the (silver) poles of a projected field...versus those induced by large particles which sit on top of the nanopatterened structure (Sec. IIIC in [3]). 1b. Using magnonic crystals for particle...or perhaps a slightly angled device wafer. DISTRIBUTION A. Approved for public release: distribution unlimited. Fig. 4. (a) Top -down SEM

  7. Mechanical properties of materials at micro/nano scales

    Science.gov (United States)

    Xu, Wei-Hua

    Mechanical properties of materials in small dimensions, including the depth-dependent hardness at the nano/micrometer scales, and the mechanical characterization of thin films and nanotubes, are reported. The surface effect on the depth-dependent nano/microhardness was studied and an apparent surface stress was introduced to represent the energy dissipated per unit area of a solid surface. A plastic bearing ratio model was proposed for the nanoindentation of rough surfaces. The energy dissipation occurring at the indented surface is among the factors that cause the Indentation Size Effect (ISE) at the micro/nanometer scales. Furthermore, an elastic-plastic bearing ratio model was developed for nanoindentation of rough surfaces with a flat indenter tip. The theoretical predictions agree with the experimental results and finite element simulations, from which the elastic constant and the surface hardness were extracted. The surface hardness exhibits an inverse ISE due to the interaction of asperities. The nanoindentation tests on Highly Oriented Pyrolytic Graphite (HOPG) may lead to the formation of carbon tubes, which are rolled up by the delaminated graphite layers. The nanoindentation loading-unloading curves reveal single pop-in and multiple pop-in phenomena, which is induced by fracture of the graphite layers and/or by delamination between the layers. From the load at pop-in, the fracture strength of the layers and/or the bonding strength between the layers can be estimated by the elastic field model for Hertzian contact including sliding friction for transverse isotropy. Two novel methods were developed to estimate the mechanical properties of films, including the Raman spectra method for the estimation of residual stresses in thin ferroelectric films and the microbridge testing method for the mechanical characterization of trilayer thin films. Mechanical characterization was also carried out on Tobacco Mosaic Virus (TMV) nanotubes with each being comprised of a RNA strand and 2130 identical coat protein. The nanobridge test determines the ratio of the deflection over the applied force for the different lengths of bridges, while the nanoindentation test gives the ratio of the applied force over the change in the nanotube's height. From these experimental data, we estimated the elastic modulus of TMV nanotubes with the model considering the substrate deformation.

  8. Nano-scale thermal transfer -- an invitation to fluctuation electrodynamics

    CERN Document Server

    Henkel, Carsten

    2016-01-01

    An electromagnetic theory of thermal radiation is outlined, based on the fluctuation electrodynamics of Rytov and co-workers. We discuss the basic concepts and the status of different approximations. The physical content is illustrated with a few examples on near-field heat transfer.

  9. Polarization Engineering in Nano-Scale Waveguides Using Lossless Media

    CERN Document Server

    Chang, PoHan; Helmy, Amr S

    2016-01-01

    A device that achieves controllable rotation of the state of polarization by rotating the orientation of the eigenmodes of a waveguide by 45$^{\\circ}$ is introduced and analyzed. The device can be implemented using lossless materials on a nanoscale and helps circumvent the inherent polarization dependence of photonic devices realized within the silicon on insulator platform. We propose and evaluate two novel polarization rotator-based schemes to achieve polarization engineering functions: (1) A multi-purpose device, with dimensions on the order of a few wavelengths which can function as a polarization splitter or an arbitrary linear polarization state generator. (2) An energy efficient optical modulator that utilizes eigenmode rotation and epsilon near zero (ENZ) effects to achieve high extinction ratio, polarization insensitive amplitude modulation without the need to sweep the device geometry to match the TE and TM mode attributes. By using indium tin oxide (ITO) as an example for a tunable material, the pr...

  10. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  11. STRUCTURE AND DYNAMICS OF POLYMERIC MATERIALS IN NANO-SCALE

    Institute of Scientific and Technical Information of China (English)

    Toshio Nishi; So Fujinami; Dong Wang; Hao Liu; Ken Nakajima

    2011-01-01

    The nano-palpation technique, i.e., nanometer-scale elastic and viscoelastic measurements based on atomic force microscope, is introduced. It is demonstrated to be very useful in analyzing nanometer-scale materials properties for the surfaces and interfaces of various types of soft materials. It enables us to obtain not only structural information but also mechanical information about a material at the same place and at the same time.

  12. Neural assembly models derived through nano-scale measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Branda, Catherine; Schiek, Richard Louis; Warrender, Christina E.; Forsythe, James Chris

    2009-09-01

    This report summarizes accomplishments of a three-year project focused on developing technical capabilities for measuring and modeling neuronal processes at the nanoscale. It was successfully demonstrated that nanoprobes could be engineered that were biocompatible, and could be biofunctionalized, that responded within the range of voltages typically associated with a neuronal action potential. Furthermore, the Xyce parallel circuit simulator was employed and models incorporated for simulating the ion channel and cable properties of neuronal membranes. The ultimate objective of the project had been to employ nanoprobes in vivo, with the nematode C elegans, and derive a simulation based on the resulting data. Techniques were developed allowing the nanoprobes to be injected into the nematode and the neuronal response recorded. To the authors's knowledge, this is the first occasion in which nanoparticles have been successfully employed as probes for recording neuronal response in an in vivo animal experimental protocol.

  13. Buckling of Thin Films in Nano-Scale

    Science.gov (United States)

    Wang, S.; Jia, H. K.; Sun, J.; Ren, X. N.; Li, L. A.

    2010-06-01

    Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  14. Nano-scale spinning detonation in condensed phase energetic materials

    Science.gov (United States)

    Zhakhovsky, Vasily; Budzevich, Mikalai; Landerville, Aaron; White, Carter; Oleynik, Ivan

    2013-06-01

    Single- and multi-headed spinning detonation waves are observed in molecular dynamics simulations of a condensed phase detonation of an energetic material (EM) confined in round tubes of different radii. The EM is modeled using a modified AB Reactive Empirical Bond Order potential. The thermochemistry and reactive equation of state are varied by adjusting the barrier height for the exothermic reaction AB +B --> A +BB. This allows us to study the evolution of the detonation-wave structure as a function of physico-chemical properties of the AB explosive. The detonation wave is found to exhibit a pulsating planar front in a tube of 8 nm radius, which later collapses due to the development of longitudinal perturbations. Upon increase of the tube's radius to 16 nm, the detonation wave structure is stabilized through the development of a single-headed spinning detonation. The spinning detonation displays a four-wave configuration, including incident, oblique, transverse, and contact shock waves. The contact shock generated by a contact discontinuity is observed for the first time in our MD simulations. A multi-headed turbulent-like detonation structure develops within tubes of larger radii, and exhibit features similar to those observed in gases.

  15. Design for manufacturability and yield for nano-scale CMOS

    CERN Document Server

    Chiang, Charles C

    2007-01-01

    Talks about the various aspects of manufacturability and yield in a nano-CMOS process and how to address each aspect at the proper design step starting with the design and layout of standard cells. This book is suitable for practicing IC designer and for graduate students intent on having a career in IC design or in EDA tool development.

  16. Micro to Nano Scale Heat Conduction in Thermoelectric Materials

    Science.gov (United States)

    Maldovan, Martin

    2011-03-01

    Understanding and controlling heat transfer in solids is very important for increasing the efficiency of thermoelectric materials such as skutterudites, clatharates, superlattices, nanowires, and quantum dots. Although the mechanisms governing the thermal conductivity have been understood for years, a comprehensive theoretical method to calculate heat transfer, particularly at small scales, has not been available. This is mainly due to the complexity of anharmonic processes and phonon boundary scattering. We present a comprehensive theoretical model to calculate the thermal conductivity of thermoelectric materials at small length scales. The approach involves an exact calculation of the reduction of the phonon mean free paths due to boundary scattering and removes the need to solve the Boltzmann equation or to use adjustable terms as in the Callaway or Holland models. The analysis is based on the kinetic theory of transport processes and considers general expressions for dispersion relations, phonon mean free paths, and surface specularity parameters. The results show an excellent agreement with experiments for thin films, nanowires, and superlattices over a wide range of temperature and across multiple length scales. The theoretical approach can further be applied to a wide variety of problems involving the conduction of heat in micro/nanostructured thermoelectrics. This research was funded by the MIT Energy Initiative.

  17. Towards a Nano Geometry? Geometry and Dynamics on Nano Scale

    CERN Document Server

    Booss-Bavnbek, Bernhelm

    2012-01-01

    This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elaborated - in contrast to the familiar Newtonian mechanics and the more recent, but by now also rather well established quantum field theories. Examples are given originating from the systems biology of insulin secreting pancreatic beta-cells and the mathematical challenges of an envisioned non-invasive control of magnetic nanoparticles.

  18. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  19. Effect of Ultra-fine Pulverization on the Dietary Fiber of Eleocharis tuberose Peel%超微粉碎对荸荠皮膳食纤维的影响

    Institute of Scientific and Technical Information of China (English)

    高志明; 陈振林; 罗杨合; 解庆林; 甘任民

    2012-01-01

    为研究超微粉碎对荸荠皮膳食纤维的影响,考察了不同超微粉碎时间下荸荠皮膳食纤维质量分数、组成,以及可溶性膳食纤维的溶出速度.结果表明,通过超微粉碎,荸荠皮总膳食纤维质量分数提高了8.57%,同时,不溶性膳食纤维质量分数下降了21.19%,而可溶性膳食纤维能提高了137.84%.此外,通过超微粉碎处理,荸荠皮可溶性膳食纤维的溶出速度能得到显著提高.%To evaluate the effect of ultra-fine pulverization on the dietary fiber in Eleocharis tuberose peel, the total content, composition of dietary fiber and dissolution velocity of soluble dietary fiber (SDF) in E. Tuberose peel powder treated by ultra-fine pulverization for different time were determined. The results showed that after ultra-fine pulverization, the total dietary fiber content in E. Tuberose peel increased by 8.75%; Meanwhile, the insoluble dietary fiber content decreased by 21.19% while soluble dietary fiber content increased by 137.84%. In addition, the dissolution velocity of soluble dietary fiber in E. Tuberose peel was observably rised by ultra-fine pulverization.

  20. Kinetic analysis of single-particle pulverized coal during high-gradient magnetic separation%高梯度磁选中单颗粒微粉煤的动力学分析

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 焦红光

    2012-01-01

    为了建立气固流态化磁选过程中颗粒群的相互作用模型,优化了高梯度磁选设备工作参数,在单颗粒微粉煤比磁化率一定的条件下,通过对高梯度磁选中单颗粒球形微粉煤的动力学分析,建立了气固流态化分选过程中的单颗粒煤粉运动的动态数学模型;进而探索出聚磁介质当量直径的临界模型,并分析了单颗粒微粉煤被捕集到聚磁介质上时相对气体流速的运动速度。%To establish the model of granule group interaction during gas-solid fluidization magnetic separa- tion, the paper optimized the operation parameters of the high-gradient magnetic separation equipment. On thecondition of keeping the specific magnetic susceptibility constant, through kinetic analysis of the spherical sin- gle-particle pulverized coal during high-gradient magnetic separation, a dynamic mathematical model of single- particle pulverized coal during gas-solid fluidization magnetic separation was established. And then the critical model of the equivalent diameter of the magnetic medium was achieved. Finally the relative gas flow velocity of single-particle pulverized coal was analyzed when single-particle pulverized coal was trapped onto the mag- netic medium.

  1. 邯钢高炉喷吹煤粉的快速热解机制%Flash Pyrolysis of Pulverized Injection Coal at Hansteel

    Institute of Scientific and Technical Information of China (English)

    刘然; 高永亮; 王杏娟; 吕庆; 杜林森; 王竹民

    2012-01-01

    Aimed at increasing pulverized coal injection at Handan Steel,the pyrolysis of coal in raceway was simulated.The coal of CL and DW were selected and the decomposition rate was calculated by plasma pyrolysis.Gas products were analyzed by gas chromatography and morphology of residues were observed by scanning electron microscopy(SEM).The results show that CL and DW decomposition rate is 43.10% and 52.04% respectively and gas products of coal after plasma pyrolysis,which are different from general pyrolysis,consist of CO,H2,CH4,C2H2 and small content of C2H4,etc.Pyrolysis product has changed evidently,particle size become smaller.The vesicular structure occurs in coal grains when DW is added in the sample,which makes the specific surface area of coal grain increase.The solid carbon combustion ratio in tuyeres can be enhanced,which will provide the theoretical basis for pulverized coal combustion rate.%为了提高邯钢高炉喷吹煤比,模拟煤粉在高炉内的热解。以邯钢喷吹用长治煤(以下简称CL)和大湾煤(以下简称DW)为原料,采用等离子体进行快速热解,计算反应后煤粉的分解率,利用气相色谱仪对气体产物进行分析以及用扫描电镜(SEM)观察反应产物的形貌特征。试验结果表明,CL和DW的分解率分别为43.10%和52.04%,气相产物主要为CO、H2、CH4、C2H2及少量C2H4等气体,热解产物的粒径减小,形貌发生明显变化。在CL煤的基础上配加不同比例的DW后,煤粉颗粒出现了孔状结构,因此可以提高炉内风口回旋区固定碳颗粒的燃烧率,为提高煤粉燃烧率提供理论依据。

  2. The applicability analysis of burning Indonesian coal in small efficient pulverized coal fired boiler%小型高效煤粉锅炉燃用印尼煤的适用性分析

    Institute of Scientific and Technical Information of China (English)

    王忠会; 马文静; 李会强; 马维唯

    2015-01-01

    结合高效煤粉锅炉的工艺流程、技术特点及印尼煤的煤质分析,探讨了小型高效煤粉锅炉燃用印尼煤的适用性分析。由小型工业煤粉锅炉燃用印尼煤的实际运行结果可知,可选择适合小型煤粉锅炉燃用的印尼煤燃料,以确保锅炉的正常运行。%The applicability analysis of burning Indonesian coal in small efficient pulverized coal fired boiler was done combined with efficient pulverized coal fired boiler process flow,technical features and coal quality analysis of the Indonesian coal.The practical operating results of small efficient pulverized coal fired boiler burning Indonesian coal showed that choosing the suitable Indonesian coal could ensure the normal operation of the boiler.

  3. Optimization Renovation of Low NOx Combustion in Pulverized Coal Fired Boiler of Thermal Power Plant%电厂煤粉锅炉的低氮燃烧优化改造

    Institute of Scientific and Technical Information of China (English)

    常志国

    2012-01-01

    The mechanism for generation of NOx in the combustion process of pulverized coal fired boiler was introduced. Connecting with renovation of pulverized coal fired boiler, the principle of reducing NOx discharge through air classification combustion was introduced, and the experimental result was analyzed and discussed. After air classification combustion renovation, the discharge of NOx from pulverized coal fired boiler decreased substantially, and the main performance indexes of boiler were improved, which achieved good economic profit and environmental protection effects.%阐述了在煤粉锅炉燃烧过程中氮氧化物(NOx)的产生机理和影响因素,结合煤粉锅炉改造,介绍了采用空气分级燃烧降低NOx排放的原理,并对试验结果进行了分析和讨论。实施空气分级燃烧改造后,煤粉锅炉的NOx排放量大幅减少,锅炉的主要性能参数指标得到提升,取得了良好的经济效益和环保效果。

  4. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    Science.gov (United States)

    Lemaire, R.; Menanteau, S.

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>105 K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  5. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, R., E-mail: romain.lemaire@mines-douai.fr; Menanteau, S. [Mines Douai, EI, F-59508 Douai (France)

    2016-01-15

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10{sup 5} K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  6. CFD simulation and experimental validation of co-combustion of chicken litter and MBM with pulverized coal in a flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, J.M.; Venneker, B.C.H.; di Nola, G.; de Jong, W.; Spliethoff, H. [Energy Technology section, Delft University of Technology, Leeghwaterstraat 44, NL-2628 CA Delft (Netherlands)

    2008-09-15

    The influence of co-combustion of solid biomass fuels with pulverized coal on burnout and CO emissions was studied using a flow reactor. The thermal input on a fuel feeding basis of the test rig was approximately 7 kW. Accompanied with the measurements, a reactor model using the CFD code AIOLOS was set up and first applied for two pure coal flames (with and without air staging). Reasonable agreement between measurements and simulations was found. An exception was the prediction of the CO concentration under sub-stoichiometric conditions (primary zone). As model input for the volatile matter release, the HTVM (high temperature volatile matter as defined by IFRF [IFRF, www.handbook.ifrf.net/handbook/glossary.html. ]) was used. Furthermore, a relatively slow CO oxidation rate obtained from the literature and the ERE (Extended Resistance Equation) model for char combustion were selected. Furthermore, the model was used for simulating co-firing of coal with chicken litter (CL) and meat and bone meal (MBM). The conditions applied are relevant for future co-firing practice with high thermal shares of secondary fuels (larger than 20%). The major flue gas concentrations were quite well described, however, CO emission predictions were only qualitatively following the measured trends when O{sub 2} is available and severely under-predicted under substoichiometric conditions. However, on an engineering level of accuracy, and concerning burnout, this work shows that co-combustion of the fuels can reasonably well be described with coal combustion sub-models. (author)

  7. Study on Cutting Performance of Nano-scale Zirconia Toughening Alumina Matrix Ceramic Tool Materials (Ⅱ)%纳米氧化锆增韧氧化铝基陶瓷刀具切削性能的研究(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    钟金豹

    2014-01-01

    研究新型陶瓷刀具A15Zc和A20Z(c+m)切削淬硬40Cr合金钢时的切削性能,并与已经商业化的陶瓷刀具SG4的切削性能进行了对比。结果表明:刀具后刀面磨损量随切削深度的增加而增大,而切削速度对刀具后刀面磨损量的影响较小;在较小的切削深度下切削时刀具具有良好的切削性能,A15Zc和A20Z(c+m)的抗磨损能力都好于SG4刀具;刀具的主要磨损形态为前后刀面磨损,主要磨损机制为前刀面的黏结磨损和后刀面的磨粒磨损。%Compared to the commercial ceramic tool SG4,the performances of nano-scale ZrO2 toughening Al2O3 matrix ceram-ics tool in machining the hardened 40Cr alloy steel,such as A15Zc and A20Z(c+m),were studied. When the hardened 40Cr alloy steel is machined,the tool flank wear widthes of A15Zc and A20Z(c+m)are increased with an increase of the cut depth and the effect of cutting speed on cutting performance is small. A15Zc and A20Z(c+m)have stronger wear resistance than SG4 at the smaller cut depth. The main wear patterns are tool wear on the rake face and flank,and the main wear mechanisms are bonding wear on tool rake face and abrasive wear on tool flank.

  8. 合同能源管理在煤粉工业锅炉岛市场化中的应用%Energy performance contracting in marketization of industrial pulverized coal boiler

    Institute of Scientific and Technical Information of China (English)

    纪任山

    2014-01-01

    为探索煤粉工业锅炉岛的合理经营模式,介绍了合同能源管理( EPC)的基本理论,并以案例从节能效果、其他实际应用效果(减员效果、节能减排效果)、项目经济性及节能效益、风险分析与控制等各方面分析了EPC模式在高效煤粉锅炉中的具体应用和EPC模式为高效煤粉锅炉带来的市场优势。结果表明,EPC模式是适合高效煤粉锅炉市场化推广的有效模式,也为其他高科技节能产品的商业化、产业化提供了成功的案例。组建合同能源管理联盟,为项目参与各方的发展提供良好的交流平台,也是未来的趋势。%In order to explore the reasonable management mode of pulverized coal fired industrial boiler island, introduce the profiles of in-dustrial boilers and the new technology system of pulverized coal industrial boilers island and the basic theory of energy performance con-tracting(EPC).At the same time,the energy saving effects,other practical application effects,economic projects,risk analysis and control of contract in pulverized coal fired boiler in the specific application and EPC model bring to the market advantages of efficient pulverized coal fired boiler were analyzed by cases.The results show that the EPC model is suitable,effective mode for the popularization of efficient pulverized coal boiler,which provides a successful case for the commercialized and industrialized of other high-tech energy-saving prod-ucts.Building an energy performance contracting alliances,which provides a good exchange platform for the development of the parties in-volved in a project,and it is the future trend.

  9. Research on Turmeric Fine Pulverizing Process and Its Powder Properties%郁金微细粉碎工艺及其微细粉的粉体学性质研究

    Institute of Scientific and Technical Information of China (English)

    郝月莆; 秦春凤; 向孙敏; 杨安东; 逯多

    2014-01-01

    目的:对郁金微细粉碎工艺及粉碎过后的郁金微细粉的粉体学性质进行研究分析,为郁金作为中药制剂原料药使用提供依据。方法:以d50为指标,运用正交设计优选郁金的微细粉碎工艺,并通过微细粉碎前后外观性状、红外光谱、流动性、吸湿性等方面进行比较研究,评价不同粒径郁金粉体的粉体学性质。结果:根据正交设计结果优选出了最佳微细粉碎工艺,即投料量为1200 g、含水量为5.5%、粉碎时间为40 min;郁金超微前后粉末的粉体学性质对比结果显示,随粒径变小,郁金粉体逐渐出现团聚现象,颗粒感消失,颜色变浅,粉末细腻,化学成分和分子结构未发生改变,流动性降低,平衡吸湿量增加,吸湿初始速度增大,但吸湿加速度降低,吸湿性略增强。结论:郁金微细粉碎工艺简便,可靠,粒径小,可行性高,可用于郁金的微细粉碎,综合评价优选微细粉四为较优粉体。%This paper was aimed to analyze and study the process of Turmeric fine pulverizing; and the powder properties of Turmeric ultra-micro powder after the process. Based on d50, the powder properties of Turmeric ultra-micro powder were summarized by using orthogonal design to select the optimal Turmeric fine pulverizing. Compari-sons were made on powder properties, such as exterior characters, IR spectra, fluidity and hygroscopicity before and after fine pulverizing. The results showed that optimal fine pulverizing process was determined based on orthogonal design. The conditions were that the material was 1 200 g, with water of 5.5% and crushing for 40 min. Compari-son of powder properties of Turmeric powders before and after fine pulverizing showed that as the diameter of the particle decreased. Turmeric particle gradually showed signs of aggregation. At the same time, granular sensation disappeared;the color turned lighter;powder became finer

  10. Feasibility of semi coke combustion in industrial pulverized coal boiler%煤粉工业锅炉燃烧兰炭试验研究

    Institute of Scientific and Technical Information of China (English)

    牛芳

    2015-01-01

    In order to burn semi coke in industrial pulverized coal boiler,taking the semi coke produced by Shaanxi Coal and Chemical In-dustry Group as research object,the pulverized coal combustion test in industrial boiler was conducted. The ignition,stable combustion and after-combustion were investigated. The corresponding reform measures were provided. The results showed that,the unique double-cone structure of the combustor and the mode of dense phase combustion provided favorable conditions for the ignition and stable combustion of semi coke. The blue coke could be ignited and burned stably when the excess air coefficient was 1. 2 and the proportion of primary air,sec-ondary air and tertiary air was 0. 11,0. 47,0. 42,the combustor was preheated for 3 minutes and the semi coke burned with oil for 4 mi-nutes. During combustion,the temperature in the back of furnace remained 550 ℃,while the temperature in the middle was over 800 ℃. In order to lower burning point,improve temperature in the fire area and make semi coke full combustion,the structure and size of combus-tor was adjusted,the preheating time was prolonged.%为提高兰炭在煤粉工业锅炉上的燃烧效率,以陕西煤业化工集团生产的兰炭为原料,进行煤粉工业锅炉燃烧试验,分析了兰炭着火、稳燃、燃烬情况;针对兰炭燃烧过程中存在的问题提出解决方案。结果表明:高效煤粉工业锅炉双锥燃烧器的独特结构和浓相燃烧的方式,为兰炭的着火和稳燃提供了良好条件。在过量空气系数1.2,一、二、三次风比例分别为0.11、0.47、0.42,预热时间3 min,伴燃时间4 min的条件下,实现了兰炭粉的着火和自维持稳定燃烧,燃烧期间后部温度保持在550℃,炉膛中部温度大于800℃。针对兰炭燃烧存在燃烧器内燃点靠后、着火区域温度低和兰炭燃烧不完全等问题,提出可通过调整燃烧室的结构和尺寸,使燃烧器蓄热能力增强,

  11. Efficient Lignite-fired Power Generation Technology Based on Open Pulverizing Systems With Flue Gas Drying Fan Mill and Recovery of Heat and Water From Pulverizing Exhaust%基于炉烟干燥及水回收风扇磨仓储式制粉系统的高效褐煤发电技术

    Institute of Scientific and Technical Information of China (English)

    马有福; 郭晓克; 肖峰; 施登宇

    2013-01-01

    提出了一种基于炉烟干燥及水回收风扇磨仓储式制粉系统的高效褐煤发电技术,并以某在役600 MW超临界褐煤(全水分39.5%)机组为对比工程,对应用炉烟干燥及水回收仓储式制粉系统的安全性、节能性及水回收效益进行了计算比较和分析讨论.结果表明:该技术可降低机组标煤发电煤耗10 g/(kW·h)左右,同时锅炉岛投资有所减小,厂用电基本不变;通过高湿制粉乏气的冷却,可回收大量原煤中水资源,若将其用于补充电厂水耗,有望实现“零水耗”褐煤电厂;以惰性烟气为制粉系统干燥剂,解决了困扰燃褐煤机组安全运行的制粉系统爆炸问题;在实现上述效果的同时,未产生新的污染物排放.该技术工艺及设备成熟,工程可行性佳;而且与以提高蒸汽参数为主要思路的超临界、超超临界、二次再热及700℃发电技术均可组合应用.该技术对加快褐煤产区电源基地建设和改善当地生态环境具有重大社会意义和显著经济效益,是值得深入研究与推广应用的绿色高效燃煤发电技术.%This paper advanced an efficient lignite-fired power generation technology based on open pulverizing system with flue gas drying fan mill and recovery of heat and water from pulverizing exhaust. In order to demonstrate the security, energy saving and water recovery advantages of this new technology, a detailed comparative calculation and analysis was performed by comparison with an operating 600 MW power generating unit which fired Chinese lignite with total moisture 39.5% and applied traditional direct-fired pulverizing system. The calculation results show that the gross standard coal consumption rate could be reduced about 10 g/(kWh) by applying this new technology, meanwhile the investment of boiler island could be slightly reduced and the service power remained unchanged on the whole. On the other hand, a mass of water resource could be recovered from

  12. Numerical study on the impact of varying operation conditions on NOx emissions of large-scale pulverized coal-fired utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue-yun [Jiangsu Institute of Economic and Trade Technology, Nanjing (China); Gao, Xiao-tao [Jiangsu Electric Power Test and Research CO., LTD, Nanjing (China); Zhang, Ming-yao [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    For complying with the increasingly strengthened regulation on NOx emission from coal fired power plant, newly built large-scale pulverized coal-fired utility boilers are all installed with low-NOx combustion systems to low NOx emissions. Understanding the characteristics of the system is essential for fully utilizing the system without affecting the combustion performance. In the present work, computational fluid dynamics (CFD) approach was applied to simulate the combustion and NOx formation processes in the furnace of 1,000 MW ultra- supercritical boiler equipped with an advanced low-NOx combustion system so as to study the impacts of varying the operation conditions on its NOx emission as well as combustion characteristics. The combustion system is the Mitsubishi Advanced Combustion Technology system consisting of six levels corner-fired pollution minimum (PM) coal burners and additional air to achieve air staging combustion. With the help of CFD simulation, the distributions of the combustion temperature and CO, O{sub 2} and NO concentrations were calculated and analyzed. The main influential operation parameters studied include coal type, additional air flow rate, excess air level and mill groups in service. The CFD simulations indicated that the main reasons of the low NOx emission from this boiler are on two aspects: rationally organizing the combustion process to achieve relatively uniform temperature distribution and reducing combustion environment in the main combustion zone, and combining the utilizations of the large amount of additional air to achieve deep air stage and the low excess air level as well as PM burners. It was also found that varying the operational parameters had considerable effects on the performance of the combustion system.

  13. Pulverized Coal Fired Boiler Water Wall Welding Method Exploration%煤粉锅炉水冷壁的焊接方法探究

    Institute of Scientific and Technical Information of China (English)

    李波涛; 江一平; 霍雅洁

    2016-01-01

    During tube header and tube bundle welding of pulverized coal fired boiler water wall tube, sometimes due to improper handling can cause severe wave tube deformation, individual fins seal defects such as cracks. In addition, because of the limitation of space position during welding, the operation is very difficult. In order to ensure the welding quality of tube header and tube bundle, reduce welding defects, more easily to conduct welding operation, a new welding way was designed. And the site-welding experiment for this welding way was carried out. The test results of welding sample showed that this welding method can obtain good effect, and once qualified rate reached 95%.%在煤粉锅炉水冷壁管屏的管集箱和管排焊接时,有时由于处理不当会造成管屏产生波浪变形,个别鳍片出现密封裂纹等缺陷.另外,由于焊接时空间位置的限制,操作相当困难.为了保证管集箱和管排的焊接质量,减少焊接缺陷,更方便地进行焊接操作,设计了一种新型焊接方法,并进行了现场焊接试验.对焊接试样的检测结果表明,该焊接方法可以取得较好的焊接效果,检测一次合格率达到95%.

  14. Analysis of the Common Faults of Coal Pulverizing System of Thermal Power Plant%火力电厂制粉系统常见故障分析

    Institute of Scientific and Technical Information of China (English)

    李炀文; 张超; 刘学伟

    2014-01-01

    Mill is the coal drying and grinding into qualified coal fineness to the boiler burner, the boiler to meet the load de-mand of machinery. ZGM-123G type coal pulverizer is a kind of medium speed coal mill of type system, its advantages of sim-ple, compact layout, power consumption is low, the disadvantage is the requirement to control boiler operation, such as milling system fault is a direct threat to the normal operation of the boiler. Abnormal phenomenon it is necessary to often happen on mill-ing system in the production process and the reason to make the summary, and put forward the accident processing method.%磨煤机是将原煤经干燥和碾磨后制成细度合格的煤粉送到锅炉燃烧器,以满足锅炉负荷的需求的机械。ZGM-123G型磨煤机是一种中速辊盘式磨煤机,其优点系统简单,布置紧凑,运行电耗也较低,缺点是对锅炉运行操作控制要求高,如制粉系统中出现故障就直接威胁到锅炉的正常运行。因此有必要对生产过程中制粉系统常发生的异常现象及原因做出总结,并针对性提出事故处理方法。

  15. 小型常压煤粉仓惰性气体保护系统设计及应用%Design and Application of Inert Gas Protection System to Small-Scale Atmospheric Pressure Pulverized Coal Bunker

    Institute of Scientific and Technical Information of China (English)

    徐尧; 王乃继; 肖翠微

    2012-01-01

    According to the fuel safety storage requirements of the pulverized coal-fired industrial boiler, in order to solve the coal spon- taneous combustion problems caused by CO content and the temperature increased in the coal bunker, with the related national standards and overseas design handbook, the design calculation method and system control plan of the inert gas protection system was provided for the small-scale atmospheric pressure pulverized coal bunker. According to the two coal bunkers with volume of 40 m^3 , an inert gas pro- tection system of the small-scale atmospheric pressure pulverized coal bunker was designed. When the CO content in the pulverized coal bunker reached at 1 200×10^-6 or the temperature at the any location of the bunker was over 70 ℃, the inert gas protection system would have a protection to the coal bunker with the automatic start, manual start or mechanical emergency start. The project cases were applied to verify the inert gas protection system. The result showed that when the storage value of the protective gas CO2 would be 355 kg, the low pressure CO2 inerting system applied to the protection of the pulverized coal bunker could remarkably reduce the risks of the pulverized coal spontaneous combustion.%为解决煤粉仓CO浓度或温度增高导致的自燃问题,根据煤粉工业锅炉系统燃料安全储存需求,参照相关国家标准和国外设计手册,提出了小型常压煤粉仓惰性气体保护系统设计计算方法和系统控制方案。针对2台容积40m^3的煤粉仓设计了小型常压煤粉仓惰性气体保护系统,当检测到煤粉仓内CO体积分数达1200×10^-6或任意一处温度高于70℃时,系统可通过自动启动、手动启动、机械应急启动3种方式对煤粉仓保护,结合工程实例对该系统予以验证。结果表明:采用低压CO2惰化系统对煤粉仓实施保护,当保护气体CO2的储存量为355kg,可明显降低煤粉自燃的风险。

  16. Test analysis of pulverizer starting up or shutting down without burner firing oil%锅炉磨煤机启停不投油的试验分析

    Institute of Scientific and Technical Information of China (English)

    贺光宇; 陈祥

    2015-01-01

    针对火电厂磨煤机启停时锅炉需投油助燃,增加发电成本的问题,华能大坝电厂对现有的磨煤机启停规程进行调整,对4台锅炉的磨煤机在设定条件下进行了启停不投油试验,确定了磨煤机启停时对应的燃烧器不投助燃油的锅炉运行条件。应用结果表明:实施磨煤机启停燃烧器不投油技术后,大坝电厂4台机组2014年至少节约燃油575 t,约合人民币413万多元,经济效益非常显著。%Aiming at the problem that when the pulverizer starting up or shutting down,burner need add oil to support hearth combustion,increasing the generation cost of coal-fired plant,under designed condition,makes the test of pulverizer starting up or shutting down without burner firing oil in Huaneng Ningxia Daba Power Plant,confirms the boiler running conditions of burner without the oil when the pulverizer starting up or shutting down. The application result shows that:after to implement the technology,4 units at least saving burning oil 575 ton,or about 4 130 000 Chinese yuan in Huaneng Ningxia Daba Power Plant,the economic benefit is evident.

  17. 运行参数对粉煤流化床(PC-FB)燃烧效率的影响%The Effect of Operation Parameters on the Combustion Efficiency of a Pulverized-coal Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    陈鸿伟; 金保升; 徐益谦

    2001-01-01

    With the help of a pulverized-coal fluidized bed (PC-FB) test rig with 0.3 MW heat input test data were obtained of the PC-FB combustion efficiency under various operation parameters. A detailed discussion and study was conducted focusing on the mechanism of influence of these operation parameters on PC-FB combustion efficiency. The study results indicate that the combustion efficiency of the PC-FB can be as high as 98% - 99%, comparable with that of a pulverized-coal furnace. The authors also pointed out for the first time in the present study that under a certain set of conditions it is possible to realize a low-temperature high-efficiency combustion of the pulverized-coal. These conditions include, among others, a rational matching of the following items: combustion temperature, particle residence time, flame turbulence and in-furnace oxygen concentration and particle concentration%在一座0.3 MW热输入的PC-FBC试验台上进行了试验研究,获得了不同操作参数下PC-FB燃烧效率的试验数据,详细讨论了这些参数对PC-FB燃烧效率的影响规律。研究结果表明,粉煤流化床的燃烧效率最高达98%~99%,可与煤粉炉相媲美。本试验研究亦首次提出,只要燃烧温度、颗粒停留时间、火焰湍流度(3T)及炉内氧浓度、颗粒浓度(2C)合理匹配,就能够实现煤粉的低温高效燃烧。

  18. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace

    Science.gov (United States)

    Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.

    2015-03-01

    This paper continues with the description of study results for an improved-design steam boiler vortex furnace, for the full-scale configuration of which the numerical modeling of a three-dimensional turbulent two-phase reacting flow has been performed with allowance for all the principal heat and mass transfer processes in the torch combustion of pulverized Berezovsk brown coal from the Kansk-Achinsk Basin. The detailed distributions of velocity, temperature, concentration, and heat flux fields in different cross sections of the improved vortex furnace have been obtained. The principal thermoengineering and environmental characteristics of this furnace are given.

  19. Investigation on Collection Performances of Plasma Signal for Pulverized Particle Coal Flow in Different Optical Collection%不同收光方式下煤粉流的等离子体信号探测

    Institute of Scientific and Technical Information of China (English)

    陈世和; 陆继东; 钟子铭; 潘凤萍; 潘刚; 张曦; 姚顺春; 罗嘉; 李军

    2013-01-01

    In order to reduce the adverse impact of the inhomogeneous of pulverized coal components, different optical path systems were set up and used to research the collection performances of plasma of pulverized coal by laser-induced breakdown spectroscopy. The coal samples, Shenmuhun, was chosen for experiment. The detected count and stability of special lines of coal in different optical collection were investigated on the self-built two-phase particle flow experiment bench, which was used to produce stable pulverized coal stream. The analysis results show that in the steadily repeat measurements, the counts of the lines collected by backside are weaker because of the intermediate perforated mirror, while the stability of the lines collected by side are worse because of the position change of plasma along the laser beam, the spatial inhomogeneity of plasma and the blocking effect of pulverized coal.%针对煤粉流组分分布的不均匀性,研究不同收光方式对煤粉流的激光诱导等离子体的光谱信号收集效果的影响.选用电厂常用燃煤神木混为实验对象,利用自行搭建的气固两相流实验台架产生稳定煤粉流,对比同向收光方式和侧向收光方式下煤的特征谱线信号探测的强度和稳定性.研究结果表明,相同实验条件下,中间穿孔反射镜使同向收光方式下探测的光谱信号强度较弱,而等离子体信号源位置沿激光束轴线的变化、等离子体信号本身沿空间分布的不均匀性及煤粉流的阻挡作用使侧向收光方式下探测的光谱信号稳定性较弱.

  20. 粉煤灰在含氟含磷废水处理中的应用%Application of Pulverized Fuel Ash in Treatment of Wastewater Contained with Fluorine and Phosphorus

    Institute of Scientific and Technical Information of China (English)

    邓慧; 李聪; 马宏飞; 杨翔华

    2012-01-01

    粉煤灰是火电厂排出的固体废弃物,其作为絮凝剂和吸附剂在废水处理方面已经得到了广泛的应用.人体长期过量摄人氟元素会导致地方性氟病,磷是引起水体富营养化的限制因素.该文叙述了粉煤灰在含氟含磷废水中的应用现状,探讨其影响因素和改性方法,并迸一步分析了粉煤灰除氟除磷的机理.结果表明,粉煤灰的组成,特别是其Ca/CaO含量和反应的操作条件对氟、磷的去除效果有较大的影响;酸、碱、盐、微波、负载、工艺改变和新材料转化等改性方法有利于提高粉煤灰对氟和磷的处理能力;粉煤灰对氟和磷的去除主要依赖于吸附作用和凝聚作用.%Pulverized fuel ash is a kind of industrial solid waste produced from thermo-electric plant, which has been widely used in waste water treatment as flocculant and adsorbent. Excessive fluorine intake for a long time causes endemic fluorosis, and phosphorus is the control (actor which results in eutrophication of water bodies as majority. The paper reviewed the current studies of pulverized fuel ash in fluorine and phosphorus removal, discussed the influencing factors and modified methods, analyzed the removal mechanism additionally. Results revealed that the constituents, especially Ca/CaO content, and operation condition affected the removal of fluorine and phosphorus a lot. Change of sour, alkali, salt, microwave, load, process and new material transformation were beneficial to improve pulverized fuel ash disposal capacities for fluorine and phosphorus. Fluorine and phosphorus removal by pulverized fuel ash depended on adsorption and agglomeration effects in most cases.

  1. Observer-Based Fuel Control Using Oxygen Measurement. A study based on a first-principles model of a pulverized coal fired Benson Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Palle; Bendtsen, Jan Dimon; Mortensen, Jan Henrik; Just Nielsen, Rene; Soendergaard Pedersen, Tom [Aalborg Univ. (Denmark). Dept. of Control Engineering

    2005-01-01

    This report describes an attempt to improve the existing control of coal mills used at the Danish power plant Nordjyllandsvaerket Unit 3. The coal mills pulverize raw coal to a fine-grained powder, which is injected into the furnace of the power plant. In the furnace the coal is combusted, producing heat, which is used for steam production. With better control of the coal mills, the power plant can be controlled more efficiently during load changes, thus improving the overall availability and efficiency of the plant. One of the main difficulties from a control point of view is that the coal mills are not equipped with sensors that detect how much coal is injected into the furnace. During the project, a fairly detailed, non-linear differential equation model of the furnace and the steam circuit was constructed and validated against data obtained at the plant. It was observed that this model was able to capture most of the important dynamics found in the data. Based on this model, it is possible to extract linearized models in various operating points. The report discusses this approach and illustrates how the model can be linearized and reduced to a lower-order linear model that is valid in the vicinity of an operating point by removing states that have little influence on the overall response. A viable adaptive control strategy would then be to design controllers for each of these simplified linear models, i.e., the control loop that sets references to the coal mills and feedwater, and use the load as a separate input to the control. The control gains should then be scheduled according to the load. However, the variations and uncertainties in the coal mill are not addressed directly in this approach. Another control approach was taken in this project, where a Kalman filter based on measurements of air flow blown into the furnace and the oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate

  2. 太阳能在煤粉锅炉上的应用%Application of Solar Energy in Pulverized Coal Boiler

    Institute of Scientific and Technical Information of China (English)

    王春华; 李梦浩; 徐乐乐; 刘小秋; 韩长明; 梁源

    2012-01-01

    Through conducting numerical simulation on the combustion and heat transfer process of the boiler, under the conditions of the different temperature the temperature distribution and volume fraction distribution of the pollutant in the combustion chamber were predicted. The results show that when the furnace temperature met the production requirement if the secondary and tertiary air is preheated to a high - temperature, the total amount of air and coal are both reduced. Meanwhile, the amount of the pollutants could be reduced to achieve the purpose of energy - saving and emissions - reduction. As the increasing air temperature, the furnace temperature at the same section is more uniformity, thus the water wall tube would be heated uniformly, which is helpful for water cycle stability in boiler. Therefore, combustion technology of high temperature and low oxygen could be used in the pulverized coal boiler. To reach high - temperature air, a solar air - heater should be installed on boilers tail to utilize solar energy to assist the flue gas waste heat to heat the secondary and tertiary air to 873 K above.%通过对煤粉锅炉炉膛内的燃烧、传热过程进行数值计算研究,预测了不同空气温度下炉膛内的温度分布和污染物体积分数分布.结果表明,在达到工业生产要求的炉内温度时,二、三次风使用高温空气,可降低总空气量和煤粉消耗量,同时还可减少污染物的生成量,达到节能减排的目的;随着空气温度的升高,炉膛内同一截面的温度更加趋于均匀,这样水冷壁各管吸热均匀,有利于锅炉水循环的稳定性,有利于煤粉锅炉应用高温低氧燃烧技术.为了实现空气高温,可在锅炉尾部增设太阳能空气加热器,利用太阳能辅助烟气余热将二、三次风加热到873 K以上.

  3. Design and improvement of a simple type of clod pulverizer%一种简易碎土筛土机的设计

    Institute of Scientific and Technical Information of China (English)

    王丽伟; 蒋德云; 孔晓玲; 陈林

    2013-01-01

    介绍了一种简易碎土筛土机的设计与改进.基于CATIA对该机进行了三维实体建模,研制了样机,并针对样机试验中出现的土块回弹、土块璀积以及碎土率不高等问题进行了研究.对加料斗结构设计的改进,解决了土块回弹现象.加料斗下端与筛筒实现了平滑连接,从而使土块顺利进入破碎室.刀轴前端增加了螺旋推进刀片,在碎土的同时起到了螺旋推进的作用.通过对加料斗以及刀片的改进明显改善了土块回弹和堆积现象,提高了碎土率.利用ANSYS软件对刀轴进行了有限元分析,用以确定刀轴的结构设计与选材满足工作强度需求.%In this paper, we introduced the design and improvement of one simple clod-crushers and clod-riddlers. An three-dimensional solid model was established based on CATIA (computer aided tri-dimensional interface application) , and an improvement was made on clod rebound, clod accumulation and low crushing rate based on the prototype during the experiment. The structural design of the feed inlet was modified to solve the clod rebound considerably and manufacturing-safety issue. The improved connection between the rock-bottom of the feed inlet and the sieve tube is smooth so that the clods can successfully reach the crush room. The propeller blade added in front of the blade shaft plays a great role of spiral advance while crushing clods. The improvement of the blade and feed inlet can increase the pulverizing rate. The blade shaft was analyzed with finite element based on ANSYS software so as to determine that the structure design and material selection could meet the intensity of the work request.

  4. Study on the influence of the amount of pulverized fuel ash on strength of reactive powder concrete%粉煤灰掺量对活性粉末混凝土强度影响的研究

    Institute of Scientific and Technical Information of China (English)

    鞠彦忠; 曲晶; 王德弘

    2014-01-01

    Through the experiments,it analysed the influence of curing conditions and the dosage of fly ash on mechanical properties of reactive powder concrete.Analysis results showed that the flexural strength of concrete was slightly increased with the increase of dosage of pulverized fuel ash,and the compressive strength reached the maximum when the ratio of pulverized fuel ash and cement was 0.3,steam curing of has a certain role in promoting the concrete strength.%通过试验研究了粉煤灰掺量和养护条件对活性粉末混凝土力学性能的影响。分析结果表明,混凝土的抗弯拉强度随着粉煤灰掺量的增加而略有增强,而抗压强度在粉煤灰水泥比为0.3时达到最大值,蒸汽养护对混凝土的强度有促进作用。

  5. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  6. An improvement method of pulverized coal caking problem and its application%一种有效改善煤粉结块问题的方法及其应用

    Institute of Scientific and Technical Information of China (English)

    汪林杰; 贾明生

    2013-01-01

    In accordance with the common phenomenon of coal caking in pulverized coal bunker, analyzed the factors of the factors of pulverized coal caking and put forward an effective solution to the problem of coal caking. In combination with the practical problem encountered in engineering practice, double - layer bunker made by ourselves can preheat the inside of the bunker and preserve the heat of it by means of roots blower , thus solving the problem of coal caking successfully.%针对煤粉仓普遍存在的结块搭桥的现象,分析了造成煤粉结块的主要因素,提出了一种有效改善煤粉结块问题的方法.结合工程实践中遇到的实际问题,自制研究了双层罐结构,并充分利用罗茨风机排气对双层罐内筒进行预热和保温,成功解决了粉仓结块的问题.

  7. Powder Leakage Cause Analysis and Control Measures of Double Cyclone Pulverized Coal Burner%双旋风煤粉燃烧器漏粉原因分析和控制措施

    Institute of Scientific and Technical Information of China (English)

    王勇; 蒋治其

    2015-01-01

    "W"type flame boiler burner is pulverized coal burner. Because of the large number and big size of the devices, the design layout is compact and there are many flange connections between devices. In order to ensure installation quality and operation safety of the burner, this article analyzes the causes and introduces the control measures of burner powder leakage from the aspect of installation.%“W”型火焰锅炉燃烧器为旋风煤粉燃烧器,因其设备多、设备尺寸较大,因而设计布置紧凑、设备间法兰连接较多。为保证燃烧器安装质量以及运行安全,本文从安装角度出发对燃烧器漏粉进行了原因分析和控制措施。

  8. Optimize to pulverizing system control method for the Indonesian high moisture lignite coal%针对印尼高水分褐煤的制粉系统优化控制方法

    Institute of Scientific and Technical Information of China (English)

    程学安

    2012-01-01

      This paper introduces the main problem of the lignite pulverizing system of large power stations, the use of actual production experience in Indonesia, for high-moisture lignite explosive the drying capacity demand large, the optimal control method. Domestic medium-speed mill boilers fueled with high moisture lignite certain reference.%  该文介绍了现有燃用褐煤的大型电站的制粉系统出现的主要问题,并利用在印尼实际的生产经验,针对高水分褐煤易爆炸,干燥出力需求大等特点,提出了相应的优化控制方法。对国内中速磨锅炉燃用高水分褐煤有一定的借鉴作用。

  9. 配煤技术在Shell粉煤气化中的应用及优化%THE APPLICATION AND OPTIMIZATION OF COAL BLENDING IN SHELL PULVERIZED-COAL GASIFICATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    吴国祥

    2012-01-01

    The requirement for coal property on Shell pulverized-coal gasification process is simply introduced and the definition and theoretical foundation of Coal blending technology are described.The main reasons for coal blending measure to Shell coal gasification plant are analyzed and concrete procedures of coal blending technology and corresponding cases are discussed in detail and the optimized measures for coal blending are resulted in.%介绍Shell粉煤气化工艺对煤质的要求,阐述配煤技术的定义及理论依据,分析Shell气化采用配煤措施的主要原因,详细论述配煤技术的具体实施步骤及相应案例,得出优化配煤的措施。

  10. 干法粉煤加压气化技术的开发现状和应用前景%Development Situation and Application Prospects of Pressure Dry Pulverized Coal Gasification Technology

    Institute of Scientific and Technical Information of China (English)

    门长贵

    2000-01-01

    干法粉煤加压气化是一种高效低污染的先进煤气化方法。本文简要介绍了干法粉煤加压气化的工艺原理、技术特点及开发现状,并指出了这种煤气化工艺技术在联合循环发电和煤化工等领域内的应用前景。%Pressure dry pulverized coal gasification is an advanced coal gasification technology for high efficiency and low pollution. This article mainly presents its processprinciple, technology characteristics and development situa-tion, as well as application prospects in the fields of IGCCand chemical industry.

  11. Numerical Simulation of Combustion Characteristics of a 300 MW Blast Furnace Gas/Pulverized Coal Combined Combustion Boiler%300MW煤粉/高炉煤气混燃锅炉燃烧特性数值模拟

    Institute of Scientific and Technical Information of China (English)

    王春波; 魏建国; 盛金贵; 李艳奇

    2012-01-01

    Blast furnace gas(BFG) produced from steel mill is a low heat value fuel,which combined with pulverized coal to combust in boiler is one of effective ways.However,the combustion characteristics would be changed greatly when compared with only pulverized coal combustion.For example,superheaters and reheaters are easy to excess rated temperatures and carbon content in fly ash will become higher,etc.All these problems lead to its limited application today.Take a 300MW BFG/pulverized coal boiler for example,the combustion characteristics were simulated by means of two mixture fractions way.The pure coal condition and three BFG ratio: 10%,20% and 30% conditions were investigated.It shows the temperature level in boiler is lowered obviously when BFG was mixed into boiler.For example,the maximal temperature is lowered about 81K when BFG ratio is 10% for a boiler section.Also,the temperature becomes lower with the BFG ratio.When BFG was mixed into boiler the flue gases volume would be increased.So,the actual stay time for pulverized coal in boiler will be shortened and it is more difficulty for coal to combust completely.Aslo,it is helpfully for control NO emission when BFG was mixed into boiler.%钢厂高炉煤气是一种低热值燃料,它和煤粉在炉内掺烧是其一种有效的利用途径。但煤粉掺烧高炉煤气后燃烧特性与纯煤粉燃烧有很大不同,掺烧过程中易发生过/再热器超温、飞灰含碳量过高等问题,导致其在大型锅炉上的应用很少。针对某钢厂300MW四角切圆煤粉/高炉煤气混燃锅炉,使用二混合分数法对其燃烧特性进行数值模拟。对比研究了纯燃煤工况和高炉煤气掺烧量分别为10%、20%、30%的工况,发现掺烧高炉煤气时炉内温度水平有明显下降(如,掺烧10%高炉煤气时截面最高温度降低81K),且随着掺烧量的增加而加剧,但下降的趋势变缓。掺烧高炉煤气后产生烟气量增多,炉膛出口烟速有明显增加,

  12. 恩德粉煤气化装置空喷塔改造工艺计算%Process Calculation of Reformation for Empty Spray Tower in Ende Pulverized Coal Gasification Plant

    Institute of Scientific and Technical Information of China (English)

    姜天夫

    2012-01-01

    Author has introduced the technical reformation scheme for the empty scrubber in Ende pulverized coal gasification plant and its process de- sign calculation principle ; the running effect indicates after reformation that the outlet temperature of water can be reduced from 60℃to 48℃, the con- tinuously running time of the empty scrubber is increased from less than 60 days to 100 days.%介绍了恩德粉煤气化装置空心洗涤塔的技术改造方案及其工艺设计计算过程;改造后的运行效果表明,出水温度由60℃降低到48℃,空心洗涤塔连续运行时间由不到60天增加到100天。

  13. Effect of tertiary air speed on combustion efficiency of pulverized coal burners%三次风速对煤粉燃烧器燃烧效率的影响

    Institute of Scientific and Technical Information of China (English)

    张文学; 郭彩; 武建新

    2015-01-01

    In order to study the influence of tertiary alr speed on burning efficiency of LB2000 type asphalt mixing station pulverized coal burners,a mathematical model was established.By using the Fluent software and the standard k-εmodel,numerical simulation on pulverized coal combustion in the burner was carried out.With different tertiary alr speeds,the temperature field,component concentration field,burning rate distribution field and particle traj ectory in the buerner were studied.According to the evaluation standard of combustion efficiency,the optimal tertiary alr speed should be from 40 m/s to 50 m/s.%为了研究三次风速对LB2000型沥青搅拌站煤粉燃烧器燃烧效率的影响,建立煤粉燃烧器数学模型,应用Fluent软件,采用标准k-ε模型对煤粉燃烧器中的煤粉燃烧进行模拟.在不同三次风风速下,对沥青搅拌站煤粉燃烧器的温度场、组分浓度场、燃尽率分布场和颗粒轨迹进行了分析.根据燃烧效率评价标准,得出了最佳三次风风速为40~50 m/s.

  14. 中药细胞级粉碎技术在中药巴布剂中的应用分析%Application of Cellular Level Pulverizing Technology Used in Chinese Medicine Cataplasm

    Institute of Scientific and Technical Information of China (English)

    田宇光

    2014-01-01

    Objective:To explore the value of cellular level pulverizing technology used in cataplasm.Methods:Common fine and ultra-fine powder poultice were prepared,and the different sizes of cataplasma puhuang psorhamnetin-3-O-neohesperidin transdermal absorp-tion were comparatively analyzed.Results:The permeation rate of isorhamnetin-3-O-neohesperidin in ultrafine powder cataplasma was significantly higher than that in ordinary poultice (P<0.05 ).Conclusion:Cellular level pulverizing technology used in Chinese medi-cine preparations can help to improve the quality and bioavailability of drugs,optimize the production processes of Chinese medicine preparations and reduce drugs profligacy,and hence it deserves further application.%目的:研究中药细胞级粉碎技术应用于中药巴布剂的价值。方法:制备普通细粉巴布剂和超细粉巴布剂,比较分析不同粒径巴布剂中蒲黄异鼠李素-3-O-新橙皮苷透皮吸收性。结果:超细粉巴布剂中异鼠李素-3-O-新橙皮苷的渗透速率显著高于普通巴布剂(P<0.05)。结论:中药细胞级粉碎技术应用于中药药剂的制备,有利于提高药物的质量以及生物利用度,优化中药药剂生产流程,降低药物浪费,值得进一步推广应用。

  15. Aspects chimiques de la combustion du charbon pulvérisé. Première partie Chemical Aspects of the Combustion of Pulverized Coal. Part One

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    deux mécanismes totalement différents, par exemple entre le mécanisme d'ignition homogène et le mécanisme d'ignition hétérogène du charbon, avec des conséquences pratiques pour la stabilisation de la flamme industrielle ; autre exemple : la compétition entre les divers mécanismes homogènes de formation d'oxydes d'azote et les mécanismes hétérogènes de leur réduction sur des particules solides de coke, de suie et de cendre. Avec ces idées présentes comme un leitmotiv implicite, on passe en revue les grandes étapes de la flamme industrielle de charbon pulvérisé : la dévolatilisation rapide avec la formation progressive de volatils gazeux, de goudrons et de coke ; la transformation partielle des produits gazeux et liquides de pyrolyse en suies ainsi que leur oxydation en phase gazeuse ; la combustion hétérogène du coke ; l'ignition du charbon et sa dépendance par rapport à des processus critiques homogènes et (ou hétérogènes. Comme exemple typique d'un épiphénomènechimique, on suit la transformation des espèces azotées en NO et en N2, qui se greffe en contrepoint et à chaque pas sur tes différents thèmes successifs de cette symphonie de l'oxydation du charbon. En de nombreux points de cette évolution du charbon à travers la flamme, les connaissances de la chimie de com-bustion en phase gazeuse constituent un instrument utile d'interprétation (par exemple : pour l'oxydation des volatils, pour la discussion des modalités d'ignition. II n'en reste pas moins vrai que la plupart des problèmes chimiques hétérogènes sont bien spécifiques de la flamme de charbon ; leur traitement est rendu ardu à cause de la complexité, évolutive au cours de la combustion, du combustible solide lui-même. It is not easy to obtain a full picture of the multiple chemical phenomena which occur inside a pulverized coal flame. This bibliographie review attempts to give more than just a juxtaposition of data from the recent literature and risks making

  16. Achievement report for fiscal 1999 on project for supporting the formation of energy/environmental technology verification project. International joint verification research project (Verification project relative to ignition and NOx reduction using plasma sub-burner in pulverized coal-fired furnace); 1999 nendo plasma sabubana ni yoru bifuntan nenshoro ni okeru chakka oyobi NO{sub x} teigen gijutsu ni kansuru jissho project seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project is executed through the cooperation of a Russian research institute, Akita Prefectural University, and the Ishikawajima-Harima Heavy Industries Co., Ltd. In the development of a plasma sub-burner and the basic research for its verification, a pulverized coal burning plasma sub-burner is designed and fabricated, a basic burning experiment is conducted for the plasma sub-burner, and plasma stabilization in a pulverized coal flow is simulated. In the verification study of the ignition by the plasma sub-burner in a pulverized coal-fired furnace, it is found that the newly-developed plasma sub-burner satisfies the prescribed operating conditions in the system and that the ignition of pulverized coal takes place across the air ratio range of 0.5-1.5 when pulverized coal is fed to the sub-burner. It is also found that NOx is reduced a great deal when a plasma operating on an orifice gas of air or nitrogen is generated in a gas which contains NOx. (NEDO)

  17. Ignition and Combustion of Pulverized Coal and Biomass under Different Oxy-fuel O2/N2 and O2/CO2 Environments

    Science.gov (United States)

    Khatami Firoozabadi, Seyed Reza

    This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi

  18. 尾砂胶结块体压缩及粉化特性试验研究%Experimental study of characteristics of compression and pulverization for cemented tailings blocks

    Institute of Scientific and Technical Information of China (English)

    田阳辉; 李小春; 魏宁

    2011-01-01

    地下采矿引起了地表塌陷和错动;尾矿库储存尾砂能力有限,同时又受到征地限制.为综合解决这两个问题,针对金山店铁矿现状,采用半干胶结块体充填塌陷区.但在上覆和周围岩层再塌陷过程中,充填块体易破碎粉化并诱发深部采空区泥石流.因此,需要研究塌陷后充填块体的粉化率以及诱发泥石流的可能性.为此,分别对抗压强度为1、3 MPa的尾砂胶结块体和抗压强度为6 MPa的尾砂胶结块体与废石混合体进行分级压缩,并记录竖向应力-应变;当加载到某一级荷载胶结块体发生破碎并粉化时,取样进行颗粒筛分试验,分析破碎块体的粒径分布曲线.对试验结果分析可得,在采空区发生塌陷压缩胶结块体时,各种状态下的块体粉化率为8%~15%;胶结块体与废石混合充填,可有效降低围岩塌陷后充填体破碎的块体粉化率,结合泥石流试验结果,尾砂胶结块体充填诱发泥石流的可能性较小;即使发生,也能保证矿区井下正常生产.%It formed a subsidence area and expanded the offset in surface because of underground mining. The mine waste reservoir was limited to storage much more tailings and expropriation was restricted by limited land. In order to solve these two problems, it was intended to backfill the disease area with semi-dry cemented blocks about the actualities in Jinshandian Iron Mine. When the overlying and surrounding strata collapse again, the filling block will be broken and pulverized easily, and which would induce debris flow in mined-out area. Therefore, there need to study the tailings' pulverization rate when the surface collapses again and the possibility of inducing debris flow. Accordingly, the cemented tailings blocks with strength of 1 Mpa and 3 Mpa were compressed level-to-level respectively. The mixture with the cemented tailings blocks with strength of 6 Mpa was compressed level-to-level too. While it was compressed

  19. 超微粉碎对小米麸皮膳食纤维物理特性的影响%Effect of superfine pulverizing on properties of millet bran dietary fiber

    Institute of Scientific and Technical Information of China (English)

    杨健; 王立东; 包国凤

    2013-01-01

    研究小米麸皮膳食纤维超微粉碎的物理特性;通过将小米麸皮膳食纤维原粉进行超微粉碎制得膳食纤维微粉,比较不同粒度的膳食纤维微粉在膨胀力、持水力、持油力、结合水力及阳离子交换能力等方面的物理性质变化;结果表明,超微粉碎后膳食纤维微粉的膨胀力、持水力、持油力、阳离子交换能力等物理性质均较原粉有较大提高,结合水力较原粉有所降低,粒度D50≤23.465 μm微粉的综合指标最佳,在25、37℃时,膨胀力分别为原粉的2.3、2.2倍,持水力分别为原粉的3.1、2.9倍,持油力均为原粉的1.6倍,结合水力均为原粉的0.7倍.说明超微粉碎能够较好的改善小米麸皮膳食纤维的物理特性,可广泛应用到药品和保健食品中.%The property of millet bran dietary fiber was studied by superfine pulverizing technology.Through contrasting the original and processed superfine by superfine pulverizing,the property about expansibility,waterholding capacity,oil-holding capacity,hydration water capacity and cation-exchange capacity were changed by contrasting different granularity of dietary fiber superfine.The result showed that the property about expansibility,water-holding capacity,oil-holding capacity and cation-exchange capacity was higher than original superfine,but the hydration water capacity was lower than that.The granularity about D50 ≤23.465μm had the optimal index.At the temperature 25℃ and 37℃,the expansibility was better than original superfine for 2.3 times and 2.2 times,the Water-holding capacity was better than original superfine for 3.1 times and 2.9 times,the Oil-holding capacity was average for 1.6 times,and the hydration water capacity was average for 0.7 times.The conclusion showed that the millet bran dietary fiber had the favourable property by superfine pulverizing,which could be used for drug and health-care food.

  20. Design and implementation of remote monitoring software for pulverized coal parameters in power station boiler%电站锅炉煤粉参数远程监控系统的软件设计与实现

    Institute of Scientific and Technical Information of China (English)

    胡昌镁; 何渊; 杨斌; 蔡小舒

    2015-01-01

    Online monitoring of pulverized coal in boiler provides the importance reference for optimal control of power station boiler.In order to realize the remote monitoring of particle size,concentration,and velocity of pulverized coal,the upper-computer software of data acquisition system was designed by using modular program design method.This software could realize the system configuration,real-time curve and histogram displaying, data storage,and so on.Each data acquisition and processing channel with 1 MHz sampling frequency was achieved by using multi-thread technology and automatic allocation simultaneously.The capability of real-time communication with the Distributed Control System (DCS)based on the Modbus communication protocol was achieved.The practical runs shown high stability and reliability of this software.And it could meet the demands of operation and optimizing control of boiler well.%电站锅炉煤粉颗粒参数在线监控对于锅炉优化控制有着重要的参考作用。为了实现煤粉管道内颗粒的细度、浓度、速度的实时监控,通过模块化的程序设计方案,设计了数据采集系统的上位机软件。该软件通过自定义控件实现了系统组态、实时曲线与柱状图数据显示、保存等功能。同时利用多线程和通道自动分配方法实现了单通道采样频率达1 MHz 的数据快速采集与处理,并基于 Modbus 通讯协议实现了与 DCS (Distributed Control System)的即时通讯。在电站长时间投入运行的结果表明,该系统具有良好的稳定性与可靠性,各项功能均满足锅炉运行与优化控制要求。